1 // SPDX-License-Identifier: GPL-2.0
3 * srmmu.c: SRMMU specific routines for memory management.
12 #include <linux/seq_file.h>
13 #include <linux/spinlock.h>
14 #include <linux/memblock.h>
15 #include <linux/pagemap.h>
16 #include <linux/vmalloc.h>
17 #include <linux/kdebug.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/init.h>
21 #include <linux/log2.h>
22 #include <linux/gfp.h>
26 #include <asm/mmu_context.h>
27 #include <asm/cacheflush.h>
28 #include <asm/tlbflush.h>
29 #include <asm/io-unit.h>
30 #include <asm/pgalloc.h>
31 #include <asm/pgtable.h>
32 #include <asm/bitext.h>
33 #include <asm/vaddrs.h>
34 #include <asm/cache.h>
35 #include <asm/traps.h>
36 #include <asm/oplib.h>
43 /* Now the cpu specific definitions. */
44 #include <asm/turbosparc.h>
45 #include <asm/tsunami.h>
46 #include <asm/viking.h>
47 #include <asm/swift.h>
54 enum mbus_module srmmu_modtype;
55 static unsigned int hwbug_bitmask;
57 EXPORT_SYMBOL(vac_cache_size);
60 extern struct resource sparc_iomap;
62 extern unsigned long last_valid_pfn;
64 static pgd_t *srmmu_swapper_pg_dir;
66 const struct sparc32_cachetlb_ops *sparc32_cachetlb_ops;
67 EXPORT_SYMBOL(sparc32_cachetlb_ops);
70 const struct sparc32_cachetlb_ops *local_ops;
72 #define FLUSH_BEGIN(mm)
75 #define FLUSH_BEGIN(mm) if ((mm)->context != NO_CONTEXT) {
79 int flush_page_for_dma_global = 1;
83 ctxd_t *srmmu_ctx_table_phys;
84 static ctxd_t *srmmu_context_table;
86 int viking_mxcc_present;
87 static DEFINE_SPINLOCK(srmmu_context_spinlock);
89 static int is_hypersparc;
91 static int srmmu_cache_pagetables;
93 /* these will be initialized in srmmu_nocache_calcsize() */
94 static unsigned long srmmu_nocache_size;
95 static unsigned long srmmu_nocache_end;
97 /* 1 bit <=> 256 bytes of nocache <=> 64 PTEs */
98 #define SRMMU_NOCACHE_BITMAP_SHIFT (PAGE_SHIFT - 4)
100 /* The context table is a nocache user with the biggest alignment needs. */
101 #define SRMMU_NOCACHE_ALIGN_MAX (sizeof(ctxd_t)*SRMMU_MAX_CONTEXTS)
103 void *srmmu_nocache_pool;
104 static struct bit_map srmmu_nocache_map;
106 static inline int srmmu_pmd_none(pmd_t pmd)
107 { return !(pmd_val(pmd) & 0xFFFFFFF); }
109 /* XXX should we hyper_flush_whole_icache here - Anton */
110 static inline void srmmu_ctxd_set(ctxd_t *ctxp, pgd_t *pgdp)
114 pte = __pte((SRMMU_ET_PTD | (__nocache_pa(pgdp) >> 4)));
115 set_pte((pte_t *)ctxp, pte);
119 * Locations of MSI Registers.
121 #define MSI_MBUS_ARBEN 0xe0001008 /* MBus Arbiter Enable register */
124 * Useful bits in the MSI Registers.
126 #define MSI_ASYNC_MODE 0x80000000 /* Operate the MSI asynchronously */
128 static void msi_set_sync(void)
130 __asm__ __volatile__ ("lda [%0] %1, %%g3\n\t"
131 "andn %%g3, %2, %%g3\n\t"
132 "sta %%g3, [%0] %1\n\t" : :
133 "r" (MSI_MBUS_ARBEN),
134 "i" (ASI_M_CTL), "r" (MSI_ASYNC_MODE) : "g3");
137 void pmd_set(pmd_t *pmdp, pte_t *ptep)
139 unsigned long ptp = __nocache_pa(ptep) >> 4;
140 set_pte((pte_t *)&pmd_val(*pmdp), __pte(SRMMU_ET_PTD | ptp));
144 * size: bytes to allocate in the nocache area.
145 * align: bytes, number to align at.
146 * Returns the virtual address of the allocated area.
148 static void *__srmmu_get_nocache(int size, int align)
150 int offset, minsz = 1 << SRMMU_NOCACHE_BITMAP_SHIFT;
154 printk(KERN_ERR "Size 0x%x too small for nocache request\n",
158 if (size & (minsz - 1)) {
159 printk(KERN_ERR "Size 0x%x unaligned in nocache request\n",
163 BUG_ON(align > SRMMU_NOCACHE_ALIGN_MAX);
165 offset = bit_map_string_get(&srmmu_nocache_map,
166 size >> SRMMU_NOCACHE_BITMAP_SHIFT,
167 align >> SRMMU_NOCACHE_BITMAP_SHIFT);
169 printk(KERN_ERR "srmmu: out of nocache %d: %d/%d\n",
170 size, (int) srmmu_nocache_size,
171 srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
175 addr = SRMMU_NOCACHE_VADDR + (offset << SRMMU_NOCACHE_BITMAP_SHIFT);
179 void *srmmu_get_nocache(int size, int align)
183 tmp = __srmmu_get_nocache(size, align);
186 memset(tmp, 0, size);
191 void srmmu_free_nocache(void *addr, int size)
196 vaddr = (unsigned long)addr;
197 if (vaddr < SRMMU_NOCACHE_VADDR) {
198 printk("Vaddr %lx is smaller than nocache base 0x%lx\n",
199 vaddr, (unsigned long)SRMMU_NOCACHE_VADDR);
202 if (vaddr + size > srmmu_nocache_end) {
203 printk("Vaddr %lx is bigger than nocache end 0x%lx\n",
204 vaddr, srmmu_nocache_end);
207 if (!is_power_of_2(size)) {
208 printk("Size 0x%x is not a power of 2\n", size);
211 if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
212 printk("Size 0x%x is too small\n", size);
215 if (vaddr & (size - 1)) {
216 printk("Vaddr %lx is not aligned to size 0x%x\n", vaddr, size);
220 offset = (vaddr - SRMMU_NOCACHE_VADDR) >> SRMMU_NOCACHE_BITMAP_SHIFT;
221 size = size >> SRMMU_NOCACHE_BITMAP_SHIFT;
223 bit_map_clear(&srmmu_nocache_map, offset, size);
226 static void srmmu_early_allocate_ptable_skeleton(unsigned long start,
229 /* Return how much physical memory we have. */
230 static unsigned long __init probe_memory(void)
232 unsigned long total = 0;
235 for (i = 0; sp_banks[i].num_bytes; i++)
236 total += sp_banks[i].num_bytes;
242 * Reserve nocache dynamically proportionally to the amount of
245 static void __init srmmu_nocache_calcsize(void)
247 unsigned long sysmemavail = probe_memory() / 1024;
248 int srmmu_nocache_npages;
250 srmmu_nocache_npages =
251 sysmemavail / SRMMU_NOCACHE_ALCRATIO / 1024 * 256;
253 /* P3 XXX The 4x overuse: corroborated by /proc/meminfo. */
254 // if (srmmu_nocache_npages < 256) srmmu_nocache_npages = 256;
255 if (srmmu_nocache_npages < SRMMU_MIN_NOCACHE_PAGES)
256 srmmu_nocache_npages = SRMMU_MIN_NOCACHE_PAGES;
258 /* anything above 1280 blows up */
259 if (srmmu_nocache_npages > SRMMU_MAX_NOCACHE_PAGES)
260 srmmu_nocache_npages = SRMMU_MAX_NOCACHE_PAGES;
262 srmmu_nocache_size = srmmu_nocache_npages * PAGE_SIZE;
263 srmmu_nocache_end = SRMMU_NOCACHE_VADDR + srmmu_nocache_size;
266 static void __init srmmu_nocache_init(void)
268 void *srmmu_nocache_bitmap;
269 unsigned int bitmap_bits;
275 unsigned long paddr, vaddr;
276 unsigned long pteval;
278 bitmap_bits = srmmu_nocache_size >> SRMMU_NOCACHE_BITMAP_SHIFT;
280 srmmu_nocache_pool = memblock_alloc(srmmu_nocache_size,
281 SRMMU_NOCACHE_ALIGN_MAX);
282 if (!srmmu_nocache_pool)
283 panic("%s: Failed to allocate %lu bytes align=0x%x\n",
284 __func__, srmmu_nocache_size, SRMMU_NOCACHE_ALIGN_MAX);
285 memset(srmmu_nocache_pool, 0, srmmu_nocache_size);
287 srmmu_nocache_bitmap =
288 memblock_alloc(BITS_TO_LONGS(bitmap_bits) * sizeof(long),
290 if (!srmmu_nocache_bitmap)
291 panic("%s: Failed to allocate %zu bytes\n", __func__,
292 BITS_TO_LONGS(bitmap_bits) * sizeof(long));
293 bit_map_init(&srmmu_nocache_map, srmmu_nocache_bitmap, bitmap_bits);
295 srmmu_swapper_pg_dir = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
296 memset(__nocache_fix(srmmu_swapper_pg_dir), 0, SRMMU_PGD_TABLE_SIZE);
297 init_mm.pgd = srmmu_swapper_pg_dir;
299 srmmu_early_allocate_ptable_skeleton(SRMMU_NOCACHE_VADDR, srmmu_nocache_end);
301 paddr = __pa((unsigned long)srmmu_nocache_pool);
302 vaddr = SRMMU_NOCACHE_VADDR;
304 while (vaddr < srmmu_nocache_end) {
305 pgd = pgd_offset_k(vaddr);
306 p4d = p4d_offset(pgd, vaddr);
307 pud = pud_offset(p4d, vaddr);
308 pmd = pmd_offset(__nocache_fix(pud), vaddr);
309 pte = pte_offset_kernel(__nocache_fix(pmd), vaddr);
311 pteval = ((paddr >> 4) | SRMMU_ET_PTE | SRMMU_PRIV);
313 if (srmmu_cache_pagetables)
314 pteval |= SRMMU_CACHE;
316 set_pte(__nocache_fix(pte), __pte(pteval));
326 pgd_t *get_pgd_fast(void)
330 pgd = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
332 pgd_t *init = pgd_offset_k(0);
333 memset(pgd, 0, USER_PTRS_PER_PGD * sizeof(pgd_t));
334 memcpy(pgd + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD,
335 (PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t));
342 * Hardware needs alignment to 256 only, but we align to whole page size
343 * to reduce fragmentation problems due to the buddy principle.
344 * XXX Provide actual fragmentation statistics in /proc.
346 * Alignments up to the page size are the same for physical and virtual
347 * addresses of the nocache area.
349 pgtable_t pte_alloc_one(struct mm_struct *mm)
354 if (!(ptep = pte_alloc_one_kernel(mm)))
356 page = pfn_to_page(__nocache_pa((unsigned long)ptep) >> PAGE_SHIFT);
357 spin_lock(&mm->page_table_lock);
358 if (page_ref_inc_return(page) == 2 && !pgtable_pte_page_ctor(page)) {
362 spin_unlock(&mm->page_table_lock);
367 void pte_free(struct mm_struct *mm, pgtable_t ptep)
371 page = pfn_to_page(__nocache_pa((unsigned long)ptep) >> PAGE_SHIFT);
372 spin_lock(&mm->page_table_lock);
373 if (page_ref_dec_return(page) == 1)
374 pgtable_pte_page_dtor(page);
375 spin_unlock(&mm->page_table_lock);
377 srmmu_free_nocache(ptep, SRMMU_PTE_TABLE_SIZE);
380 /* context handling - a dynamically sized pool is used */
381 #define NO_CONTEXT -1
384 struct ctx_list *next;
385 struct ctx_list *prev;
386 unsigned int ctx_number;
387 struct mm_struct *ctx_mm;
390 static struct ctx_list *ctx_list_pool;
391 static struct ctx_list ctx_free;
392 static struct ctx_list ctx_used;
394 /* At boot time we determine the number of contexts */
395 static int num_contexts;
397 static inline void remove_from_ctx_list(struct ctx_list *entry)
399 entry->next->prev = entry->prev;
400 entry->prev->next = entry->next;
403 static inline void add_to_ctx_list(struct ctx_list *head, struct ctx_list *entry)
406 (entry->prev = head->prev)->next = entry;
409 #define add_to_free_ctxlist(entry) add_to_ctx_list(&ctx_free, entry)
410 #define add_to_used_ctxlist(entry) add_to_ctx_list(&ctx_used, entry)
413 static inline void alloc_context(struct mm_struct *old_mm, struct mm_struct *mm)
415 struct ctx_list *ctxp;
417 ctxp = ctx_free.next;
418 if (ctxp != &ctx_free) {
419 remove_from_ctx_list(ctxp);
420 add_to_used_ctxlist(ctxp);
421 mm->context = ctxp->ctx_number;
425 ctxp = ctx_used.next;
426 if (ctxp->ctx_mm == old_mm)
428 if (ctxp == &ctx_used)
429 panic("out of mmu contexts");
430 flush_cache_mm(ctxp->ctx_mm);
431 flush_tlb_mm(ctxp->ctx_mm);
432 remove_from_ctx_list(ctxp);
433 add_to_used_ctxlist(ctxp);
434 ctxp->ctx_mm->context = NO_CONTEXT;
436 mm->context = ctxp->ctx_number;
439 static inline void free_context(int context)
441 struct ctx_list *ctx_old;
443 ctx_old = ctx_list_pool + context;
444 remove_from_ctx_list(ctx_old);
445 add_to_free_ctxlist(ctx_old);
448 static void __init sparc_context_init(int numctx)
453 size = numctx * sizeof(struct ctx_list);
454 ctx_list_pool = memblock_alloc(size, SMP_CACHE_BYTES);
456 panic("%s: Failed to allocate %lu bytes\n", __func__, size);
458 for (ctx = 0; ctx < numctx; ctx++) {
459 struct ctx_list *clist;
461 clist = (ctx_list_pool + ctx);
462 clist->ctx_number = ctx;
463 clist->ctx_mm = NULL;
465 ctx_free.next = ctx_free.prev = &ctx_free;
466 ctx_used.next = ctx_used.prev = &ctx_used;
467 for (ctx = 0; ctx < numctx; ctx++)
468 add_to_free_ctxlist(ctx_list_pool + ctx);
471 void switch_mm(struct mm_struct *old_mm, struct mm_struct *mm,
472 struct task_struct *tsk)
476 if (mm->context == NO_CONTEXT) {
477 spin_lock_irqsave(&srmmu_context_spinlock, flags);
478 alloc_context(old_mm, mm);
479 spin_unlock_irqrestore(&srmmu_context_spinlock, flags);
480 srmmu_ctxd_set(&srmmu_context_table[mm->context], mm->pgd);
483 if (sparc_cpu_model == sparc_leon)
487 hyper_flush_whole_icache();
489 srmmu_set_context(mm->context);
492 /* Low level IO area allocation on the SRMMU. */
493 static inline void srmmu_mapioaddr(unsigned long physaddr,
494 unsigned long virt_addr, int bus_type)
503 physaddr &= PAGE_MASK;
504 pgdp = pgd_offset_k(virt_addr);
505 p4dp = p4d_offset(pgdp, virt_addr);
506 pudp = pud_offset(p4dp, virt_addr);
507 pmdp = pmd_offset(pudp, virt_addr);
508 ptep = pte_offset_kernel(pmdp, virt_addr);
509 tmp = (physaddr >> 4) | SRMMU_ET_PTE;
511 /* I need to test whether this is consistent over all
512 * sun4m's. The bus_type represents the upper 4 bits of
513 * 36-bit physical address on the I/O space lines...
515 tmp |= (bus_type << 28);
517 __flush_page_to_ram(virt_addr);
518 set_pte(ptep, __pte(tmp));
521 void srmmu_mapiorange(unsigned int bus, unsigned long xpa,
522 unsigned long xva, unsigned int len)
526 srmmu_mapioaddr(xpa, xva, bus);
533 static inline void srmmu_unmapioaddr(unsigned long virt_addr)
542 pgdp = pgd_offset_k(virt_addr);
543 p4dp = p4d_offset(pgdp, virt_addr);
544 pudp = pud_offset(p4dp, virt_addr);
545 pmdp = pmd_offset(pudp, virt_addr);
546 ptep = pte_offset_kernel(pmdp, virt_addr);
548 /* No need to flush uncacheable page. */
552 void srmmu_unmapiorange(unsigned long virt_addr, unsigned int len)
556 srmmu_unmapioaddr(virt_addr);
557 virt_addr += PAGE_SIZE;
563 extern void tsunami_flush_cache_all(void);
564 extern void tsunami_flush_cache_mm(struct mm_struct *mm);
565 extern void tsunami_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
566 extern void tsunami_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
567 extern void tsunami_flush_page_to_ram(unsigned long page);
568 extern void tsunami_flush_page_for_dma(unsigned long page);
569 extern void tsunami_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
570 extern void tsunami_flush_tlb_all(void);
571 extern void tsunami_flush_tlb_mm(struct mm_struct *mm);
572 extern void tsunami_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
573 extern void tsunami_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
574 extern void tsunami_setup_blockops(void);
577 extern void swift_flush_cache_all(void);
578 extern void swift_flush_cache_mm(struct mm_struct *mm);
579 extern void swift_flush_cache_range(struct vm_area_struct *vma,
580 unsigned long start, unsigned long end);
581 extern void swift_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
582 extern void swift_flush_page_to_ram(unsigned long page);
583 extern void swift_flush_page_for_dma(unsigned long page);
584 extern void swift_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
585 extern void swift_flush_tlb_all(void);
586 extern void swift_flush_tlb_mm(struct mm_struct *mm);
587 extern void swift_flush_tlb_range(struct vm_area_struct *vma,
588 unsigned long start, unsigned long end);
589 extern void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
591 #if 0 /* P3: deadwood to debug precise flushes on Swift. */
592 void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
597 if ((ctx1 = vma->vm_mm->context) != -1) {
598 cctx = srmmu_get_context();
599 /* Is context # ever different from current context? P3 */
601 printk("flush ctx %02x curr %02x\n", ctx1, cctx);
602 srmmu_set_context(ctx1);
603 swift_flush_page(page);
604 __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
605 "r" (page), "i" (ASI_M_FLUSH_PROBE));
606 srmmu_set_context(cctx);
608 /* Rm. prot. bits from virt. c. */
609 /* swift_flush_cache_all(); */
610 /* swift_flush_cache_page(vma, page); */
611 swift_flush_page(page);
613 __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
614 "r" (page), "i" (ASI_M_FLUSH_PROBE));
615 /* same as above: srmmu_flush_tlb_page() */
622 * The following are all MBUS based SRMMU modules, and therefore could
623 * be found in a multiprocessor configuration. On the whole, these
624 * chips seems to be much more touchy about DVMA and page tables
625 * with respect to cache coherency.
629 extern void viking_flush_cache_all(void);
630 extern void viking_flush_cache_mm(struct mm_struct *mm);
631 extern void viking_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
633 extern void viking_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
634 extern void viking_flush_page_to_ram(unsigned long page);
635 extern void viking_flush_page_for_dma(unsigned long page);
636 extern void viking_flush_sig_insns(struct mm_struct *mm, unsigned long addr);
637 extern void viking_flush_page(unsigned long page);
638 extern void viking_mxcc_flush_page(unsigned long page);
639 extern void viking_flush_tlb_all(void);
640 extern void viking_flush_tlb_mm(struct mm_struct *mm);
641 extern void viking_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
643 extern void viking_flush_tlb_page(struct vm_area_struct *vma,
645 extern void sun4dsmp_flush_tlb_all(void);
646 extern void sun4dsmp_flush_tlb_mm(struct mm_struct *mm);
647 extern void sun4dsmp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
649 extern void sun4dsmp_flush_tlb_page(struct vm_area_struct *vma,
653 extern void hypersparc_flush_cache_all(void);
654 extern void hypersparc_flush_cache_mm(struct mm_struct *mm);
655 extern void hypersparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
656 extern void hypersparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
657 extern void hypersparc_flush_page_to_ram(unsigned long page);
658 extern void hypersparc_flush_page_for_dma(unsigned long page);
659 extern void hypersparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
660 extern void hypersparc_flush_tlb_all(void);
661 extern void hypersparc_flush_tlb_mm(struct mm_struct *mm);
662 extern void hypersparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
663 extern void hypersparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
664 extern void hypersparc_setup_blockops(void);
667 * NOTE: All of this startup code assumes the low 16mb (approx.) of
668 * kernel mappings are done with one single contiguous chunk of
669 * ram. On small ram machines (classics mainly) we only get
670 * around 8mb mapped for us.
673 static void __init early_pgtable_allocfail(char *type)
675 prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type);
679 static void __init srmmu_early_allocate_ptable_skeleton(unsigned long start,
688 while (start < end) {
689 pgdp = pgd_offset_k(start);
690 p4dp = p4d_offset(pgdp, start);
691 pudp = pud_offset(p4dp, start);
692 if (pud_none(*__nocache_fix(pudp))) {
693 pmdp = __srmmu_get_nocache(
694 SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
696 early_pgtable_allocfail("pmd");
697 memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
698 pud_set(__nocache_fix(pudp), pmdp);
700 pmdp = pmd_offset(__nocache_fix(pudp), start);
701 if (srmmu_pmd_none(*__nocache_fix(pmdp))) {
702 ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
704 early_pgtable_allocfail("pte");
705 memset(__nocache_fix(ptep), 0, PTE_SIZE);
706 pmd_set(__nocache_fix(pmdp), ptep);
708 if (start > (0xffffffffUL - PMD_SIZE))
710 start = (start + PMD_SIZE) & PMD_MASK;
714 static void __init srmmu_allocate_ptable_skeleton(unsigned long start,
723 while (start < end) {
724 pgdp = pgd_offset_k(start);
725 p4dp = p4d_offset(pgdp, start);
726 pudp = pud_offset(p4dp, start);
727 if (pud_none(*pudp)) {
728 pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
730 early_pgtable_allocfail("pmd");
731 memset(pmdp, 0, SRMMU_PMD_TABLE_SIZE);
732 pud_set((pud_t *)pgdp, pmdp);
734 pmdp = pmd_offset(pudp, start);
735 if (srmmu_pmd_none(*pmdp)) {
736 ptep = __srmmu_get_nocache(PTE_SIZE,
739 early_pgtable_allocfail("pte");
740 memset(ptep, 0, PTE_SIZE);
743 if (start > (0xffffffffUL - PMD_SIZE))
745 start = (start + PMD_SIZE) & PMD_MASK;
749 /* These flush types are not available on all chips... */
750 static inline unsigned long srmmu_probe(unsigned long vaddr)
752 unsigned long retval;
754 if (sparc_cpu_model != sparc_leon) {
757 __asm__ __volatile__("lda [%1] %2, %0\n\t" :
759 "r" (vaddr | 0x400), "i" (ASI_M_FLUSH_PROBE));
761 retval = leon_swprobe(vaddr, NULL);
767 * This is much cleaner than poking around physical address space
768 * looking at the prom's page table directly which is what most
769 * other OS's do. Yuck... this is much better.
771 static void __init srmmu_inherit_prom_mappings(unsigned long start,
774 unsigned long probed;
781 int what; /* 0 = normal-pte, 1 = pmd-level pte, 2 = pgd-level pte */
783 while (start <= end) {
785 break; /* probably wrap around */
786 if (start == 0xfef00000)
787 start = KADB_DEBUGGER_BEGVM;
788 probed = srmmu_probe(start);
790 /* continue probing until we find an entry */
795 /* A red snapper, see what it really is. */
797 addr = start - PAGE_SIZE;
799 if (!(start & ~(PMD_MASK))) {
800 if (srmmu_probe(addr + PMD_SIZE) == probed)
804 if (!(start & ~(PGDIR_MASK))) {
805 if (srmmu_probe(addr + PGDIR_SIZE) == probed)
809 pgdp = pgd_offset_k(start);
810 p4dp = p4d_offset(pgdp, start);
811 pudp = pud_offset(p4dp, start);
813 *__nocache_fix(pgdp) = __pgd(probed);
817 if (pud_none(*__nocache_fix(pudp))) {
818 pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE,
819 SRMMU_PMD_TABLE_SIZE);
821 early_pgtable_allocfail("pmd");
822 memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
823 pud_set(__nocache_fix(pudp), pmdp);
825 pmdp = pmd_offset(__nocache_fix(pudp), start);
827 *(pmd_t *)__nocache_fix(pmdp) = __pmd(probed);
831 if (srmmu_pmd_none(*__nocache_fix(pmdp))) {
832 ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
834 early_pgtable_allocfail("pte");
835 memset(__nocache_fix(ptep), 0, PTE_SIZE);
836 pmd_set(__nocache_fix(pmdp), ptep);
838 ptep = pte_offset_kernel(__nocache_fix(pmdp), start);
839 *__nocache_fix(ptep) = __pte(probed);
844 #define KERNEL_PTE(page_shifted) ((page_shifted)|SRMMU_CACHE|SRMMU_PRIV|SRMMU_VALID)
846 /* Create a third-level SRMMU 16MB page mapping. */
847 static void __init do_large_mapping(unsigned long vaddr, unsigned long phys_base)
849 pgd_t *pgdp = pgd_offset_k(vaddr);
850 unsigned long big_pte;
852 big_pte = KERNEL_PTE(phys_base >> 4);
853 *__nocache_fix(pgdp) = __pgd(big_pte);
856 /* Map sp_bank entry SP_ENTRY, starting at virtual address VBASE. */
857 static unsigned long __init map_spbank(unsigned long vbase, int sp_entry)
859 unsigned long pstart = (sp_banks[sp_entry].base_addr & PGDIR_MASK);
860 unsigned long vstart = (vbase & PGDIR_MASK);
861 unsigned long vend = PGDIR_ALIGN(vbase + sp_banks[sp_entry].num_bytes);
862 /* Map "low" memory only */
863 const unsigned long min_vaddr = PAGE_OFFSET;
864 const unsigned long max_vaddr = PAGE_OFFSET + SRMMU_MAXMEM;
866 if (vstart < min_vaddr || vstart >= max_vaddr)
869 if (vend > max_vaddr || vend < min_vaddr)
872 while (vstart < vend) {
873 do_large_mapping(vstart, pstart);
874 vstart += PGDIR_SIZE; pstart += PGDIR_SIZE;
879 static void __init map_kernel(void)
884 do_large_mapping(PAGE_OFFSET, phys_base);
887 for (i = 0; sp_banks[i].num_bytes != 0; i++) {
888 map_spbank((unsigned long)__va(sp_banks[i].base_addr), i);
892 void (*poke_srmmu)(void) = NULL;
894 void __init srmmu_paging_init(void)
904 unsigned long pages_avail;
906 init_mm.context = (unsigned long) NO_CONTEXT;
907 sparc_iomap.start = SUN4M_IOBASE_VADDR; /* 16MB of IOSPACE on all sun4m's. */
909 if (sparc_cpu_model == sun4d)
910 num_contexts = 65536; /* We know it is Viking */
912 /* Find the number of contexts on the srmmu. */
913 cpunode = prom_getchild(prom_root_node);
915 while (cpunode != 0) {
916 prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
917 if (!strcmp(node_str, "cpu")) {
918 num_contexts = prom_getintdefault(cpunode, "mmu-nctx", 0x8);
921 cpunode = prom_getsibling(cpunode);
926 prom_printf("Something wrong, can't find cpu node in paging_init.\n");
931 last_valid_pfn = bootmem_init(&pages_avail);
933 srmmu_nocache_calcsize();
934 srmmu_nocache_init();
935 srmmu_inherit_prom_mappings(0xfe400000, (LINUX_OPPROM_ENDVM - PAGE_SIZE));
938 /* ctx table has to be physically aligned to its size */
939 srmmu_context_table = __srmmu_get_nocache(num_contexts * sizeof(ctxd_t), num_contexts * sizeof(ctxd_t));
940 srmmu_ctx_table_phys = (ctxd_t *)__nocache_pa(srmmu_context_table);
942 for (i = 0; i < num_contexts; i++)
943 srmmu_ctxd_set(__nocache_fix(&srmmu_context_table[i]), srmmu_swapper_pg_dir);
946 srmmu_set_ctable_ptr((unsigned long)srmmu_ctx_table_phys);
948 /* Stop from hanging here... */
949 local_ops->tlb_all();
955 srmmu_allocate_ptable_skeleton(sparc_iomap.start, IOBASE_END);
956 srmmu_allocate_ptable_skeleton(DVMA_VADDR, DVMA_END);
958 srmmu_allocate_ptable_skeleton(
959 __fix_to_virt(__end_of_fixed_addresses - 1), FIXADDR_TOP);
960 srmmu_allocate_ptable_skeleton(PKMAP_BASE, PKMAP_END);
962 pgd = pgd_offset_k(PKMAP_BASE);
963 p4d = p4d_offset(pgd, PKMAP_BASE);
964 pud = pud_offset(p4d, PKMAP_BASE);
965 pmd = pmd_offset(pud, PKMAP_BASE);
966 pte = pte_offset_kernel(pmd, PKMAP_BASE);
967 pkmap_page_table = pte;
972 sparc_context_init(num_contexts);
975 unsigned long max_zone_pfn[MAX_NR_ZONES] = { 0 };
977 max_zone_pfn[ZONE_DMA] = max_low_pfn;
978 max_zone_pfn[ZONE_NORMAL] = max_low_pfn;
979 max_zone_pfn[ZONE_HIGHMEM] = highend_pfn;
981 free_area_init(max_zone_pfn);
985 void mmu_info(struct seq_file *m)
990 "nocache total\t: %ld\n"
991 "nocache used\t: %d\n",
995 srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
998 int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
1000 mm->context = NO_CONTEXT;
1004 void destroy_context(struct mm_struct *mm)
1006 unsigned long flags;
1008 if (mm->context != NO_CONTEXT) {
1010 srmmu_ctxd_set(&srmmu_context_table[mm->context], srmmu_swapper_pg_dir);
1012 spin_lock_irqsave(&srmmu_context_spinlock, flags);
1013 free_context(mm->context);
1014 spin_unlock_irqrestore(&srmmu_context_spinlock, flags);
1015 mm->context = NO_CONTEXT;
1019 /* Init various srmmu chip types. */
1020 static void __init srmmu_is_bad(void)
1022 prom_printf("Could not determine SRMMU chip type.\n");
1026 static void __init init_vac_layout(void)
1033 unsigned long max_size = 0;
1034 unsigned long min_line_size = 0x10000000;
1037 nd = prom_getchild(prom_root_node);
1038 while ((nd = prom_getsibling(nd)) != 0) {
1039 prom_getstring(nd, "device_type", node_str, sizeof(node_str));
1040 if (!strcmp(node_str, "cpu")) {
1041 vac_line_size = prom_getint(nd, "cache-line-size");
1042 if (vac_line_size == -1) {
1043 prom_printf("can't determine cache-line-size, halting.\n");
1046 cache_lines = prom_getint(nd, "cache-nlines");
1047 if (cache_lines == -1) {
1048 prom_printf("can't determine cache-nlines, halting.\n");
1052 vac_cache_size = cache_lines * vac_line_size;
1054 if (vac_cache_size > max_size)
1055 max_size = vac_cache_size;
1056 if (vac_line_size < min_line_size)
1057 min_line_size = vac_line_size;
1058 //FIXME: cpus not contiguous!!
1060 if (cpu >= nr_cpu_ids || !cpu_online(cpu))
1068 prom_printf("No CPU nodes found, halting.\n");
1072 vac_cache_size = max_size;
1073 vac_line_size = min_line_size;
1075 printk("SRMMU: Using VAC size of %d bytes, line size %d bytes.\n",
1076 (int)vac_cache_size, (int)vac_line_size);
1079 static void poke_hypersparc(void)
1081 volatile unsigned long clear;
1082 unsigned long mreg = srmmu_get_mmureg();
1084 hyper_flush_unconditional_combined();
1086 mreg &= ~(HYPERSPARC_CWENABLE);
1087 mreg |= (HYPERSPARC_CENABLE | HYPERSPARC_WBENABLE);
1088 mreg |= (HYPERSPARC_CMODE);
1090 srmmu_set_mmureg(mreg);
1092 #if 0 /* XXX I think this is bad news... -DaveM */
1093 hyper_clear_all_tags();
1096 put_ross_icr(HYPERSPARC_ICCR_FTD | HYPERSPARC_ICCR_ICE);
1097 hyper_flush_whole_icache();
1098 clear = srmmu_get_faddr();
1099 clear = srmmu_get_fstatus();
1102 static const struct sparc32_cachetlb_ops hypersparc_ops = {
1103 .cache_all = hypersparc_flush_cache_all,
1104 .cache_mm = hypersparc_flush_cache_mm,
1105 .cache_page = hypersparc_flush_cache_page,
1106 .cache_range = hypersparc_flush_cache_range,
1107 .tlb_all = hypersparc_flush_tlb_all,
1108 .tlb_mm = hypersparc_flush_tlb_mm,
1109 .tlb_page = hypersparc_flush_tlb_page,
1110 .tlb_range = hypersparc_flush_tlb_range,
1111 .page_to_ram = hypersparc_flush_page_to_ram,
1112 .sig_insns = hypersparc_flush_sig_insns,
1113 .page_for_dma = hypersparc_flush_page_for_dma,
1116 static void __init init_hypersparc(void)
1118 srmmu_name = "ROSS HyperSparc";
1119 srmmu_modtype = HyperSparc;
1124 sparc32_cachetlb_ops = &hypersparc_ops;
1126 poke_srmmu = poke_hypersparc;
1128 hypersparc_setup_blockops();
1131 static void poke_swift(void)
1135 /* Clear any crap from the cache or else... */
1136 swift_flush_cache_all();
1138 /* Enable I & D caches */
1139 mreg = srmmu_get_mmureg();
1140 mreg |= (SWIFT_IE | SWIFT_DE);
1142 * The Swift branch folding logic is completely broken. At
1143 * trap time, if things are just right, if can mistakenly
1144 * think that a trap is coming from kernel mode when in fact
1145 * it is coming from user mode (it mis-executes the branch in
1146 * the trap code). So you see things like crashme completely
1147 * hosing your machine which is completely unacceptable. Turn
1148 * this shit off... nice job Fujitsu.
1150 mreg &= ~(SWIFT_BF);
1151 srmmu_set_mmureg(mreg);
1154 static const struct sparc32_cachetlb_ops swift_ops = {
1155 .cache_all = swift_flush_cache_all,
1156 .cache_mm = swift_flush_cache_mm,
1157 .cache_page = swift_flush_cache_page,
1158 .cache_range = swift_flush_cache_range,
1159 .tlb_all = swift_flush_tlb_all,
1160 .tlb_mm = swift_flush_tlb_mm,
1161 .tlb_page = swift_flush_tlb_page,
1162 .tlb_range = swift_flush_tlb_range,
1163 .page_to_ram = swift_flush_page_to_ram,
1164 .sig_insns = swift_flush_sig_insns,
1165 .page_for_dma = swift_flush_page_for_dma,
1168 #define SWIFT_MASKID_ADDR 0x10003018
1169 static void __init init_swift(void)
1171 unsigned long swift_rev;
1173 __asm__ __volatile__("lda [%1] %2, %0\n\t"
1174 "srl %0, 0x18, %0\n\t" :
1176 "r" (SWIFT_MASKID_ADDR), "i" (ASI_M_BYPASS));
1177 srmmu_name = "Fujitsu Swift";
1178 switch (swift_rev) {
1183 srmmu_modtype = Swift_lots_o_bugs;
1184 hwbug_bitmask |= (HWBUG_KERN_ACCBROKEN | HWBUG_KERN_CBITBROKEN);
1186 * Gee george, I wonder why Sun is so hush hush about
1187 * this hardware bug... really braindamage stuff going
1188 * on here. However I think we can find a way to avoid
1189 * all of the workaround overhead under Linux. Basically,
1190 * any page fault can cause kernel pages to become user
1191 * accessible (the mmu gets confused and clears some of
1192 * the ACC bits in kernel ptes). Aha, sounds pretty
1193 * horrible eh? But wait, after extensive testing it appears
1194 * that if you use pgd_t level large kernel pte's (like the
1195 * 4MB pages on the Pentium) the bug does not get tripped
1196 * at all. This avoids almost all of the major overhead.
1197 * Welcome to a world where your vendor tells you to,
1198 * "apply this kernel patch" instead of "sorry for the
1199 * broken hardware, send it back and we'll give you
1200 * properly functioning parts"
1205 srmmu_modtype = Swift_bad_c;
1206 hwbug_bitmask |= HWBUG_KERN_CBITBROKEN;
1208 * You see Sun allude to this hardware bug but never
1209 * admit things directly, they'll say things like,
1210 * "the Swift chip cache problems" or similar.
1214 srmmu_modtype = Swift_ok;
1218 sparc32_cachetlb_ops = &swift_ops;
1219 flush_page_for_dma_global = 0;
1222 * Are you now convinced that the Swift is one of the
1223 * biggest VLSI abortions of all time? Bravo Fujitsu!
1224 * Fujitsu, the !#?!%$'d up processor people. I bet if
1225 * you examined the microcode of the Swift you'd find
1226 * XXX's all over the place.
1228 poke_srmmu = poke_swift;
1231 static void turbosparc_flush_cache_all(void)
1233 flush_user_windows();
1234 turbosparc_idflash_clear();
1237 static void turbosparc_flush_cache_mm(struct mm_struct *mm)
1240 flush_user_windows();
1241 turbosparc_idflash_clear();
1245 static void turbosparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1247 FLUSH_BEGIN(vma->vm_mm)
1248 flush_user_windows();
1249 turbosparc_idflash_clear();
1253 static void turbosparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1255 FLUSH_BEGIN(vma->vm_mm)
1256 flush_user_windows();
1257 if (vma->vm_flags & VM_EXEC)
1258 turbosparc_flush_icache();
1259 turbosparc_flush_dcache();
1263 /* TurboSparc is copy-back, if we turn it on, but this does not work. */
1264 static void turbosparc_flush_page_to_ram(unsigned long page)
1266 #ifdef TURBOSPARC_WRITEBACK
1267 volatile unsigned long clear;
1269 if (srmmu_probe(page))
1270 turbosparc_flush_page_cache(page);
1271 clear = srmmu_get_fstatus();
1275 static void turbosparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1279 static void turbosparc_flush_page_for_dma(unsigned long page)
1281 turbosparc_flush_dcache();
1284 static void turbosparc_flush_tlb_all(void)
1286 srmmu_flush_whole_tlb();
1289 static void turbosparc_flush_tlb_mm(struct mm_struct *mm)
1292 srmmu_flush_whole_tlb();
1296 static void turbosparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1298 FLUSH_BEGIN(vma->vm_mm)
1299 srmmu_flush_whole_tlb();
1303 static void turbosparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1305 FLUSH_BEGIN(vma->vm_mm)
1306 srmmu_flush_whole_tlb();
1311 static void poke_turbosparc(void)
1313 unsigned long mreg = srmmu_get_mmureg();
1314 unsigned long ccreg;
1316 /* Clear any crap from the cache or else... */
1317 turbosparc_flush_cache_all();
1318 /* Temporarily disable I & D caches */
1319 mreg &= ~(TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE);
1320 mreg &= ~(TURBOSPARC_PCENABLE); /* Don't check parity */
1321 srmmu_set_mmureg(mreg);
1323 ccreg = turbosparc_get_ccreg();
1325 #ifdef TURBOSPARC_WRITEBACK
1326 ccreg |= (TURBOSPARC_SNENABLE); /* Do DVMA snooping in Dcache */
1327 ccreg &= ~(TURBOSPARC_uS2 | TURBOSPARC_WTENABLE);
1328 /* Write-back D-cache, emulate VLSI
1329 * abortion number three, not number one */
1331 /* For now let's play safe, optimize later */
1332 ccreg |= (TURBOSPARC_SNENABLE | TURBOSPARC_WTENABLE);
1333 /* Do DVMA snooping in Dcache, Write-thru D-cache */
1334 ccreg &= ~(TURBOSPARC_uS2);
1335 /* Emulate VLSI abortion number three, not number one */
1338 switch (ccreg & 7) {
1339 case 0: /* No SE cache */
1340 case 7: /* Test mode */
1343 ccreg |= (TURBOSPARC_SCENABLE);
1345 turbosparc_set_ccreg(ccreg);
1347 mreg |= (TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* I & D caches on */
1348 mreg |= (TURBOSPARC_ICSNOOP); /* Icache snooping on */
1349 srmmu_set_mmureg(mreg);
1352 static const struct sparc32_cachetlb_ops turbosparc_ops = {
1353 .cache_all = turbosparc_flush_cache_all,
1354 .cache_mm = turbosparc_flush_cache_mm,
1355 .cache_page = turbosparc_flush_cache_page,
1356 .cache_range = turbosparc_flush_cache_range,
1357 .tlb_all = turbosparc_flush_tlb_all,
1358 .tlb_mm = turbosparc_flush_tlb_mm,
1359 .tlb_page = turbosparc_flush_tlb_page,
1360 .tlb_range = turbosparc_flush_tlb_range,
1361 .page_to_ram = turbosparc_flush_page_to_ram,
1362 .sig_insns = turbosparc_flush_sig_insns,
1363 .page_for_dma = turbosparc_flush_page_for_dma,
1366 static void __init init_turbosparc(void)
1368 srmmu_name = "Fujitsu TurboSparc";
1369 srmmu_modtype = TurboSparc;
1370 sparc32_cachetlb_ops = &turbosparc_ops;
1371 poke_srmmu = poke_turbosparc;
1374 static void poke_tsunami(void)
1376 unsigned long mreg = srmmu_get_mmureg();
1378 tsunami_flush_icache();
1379 tsunami_flush_dcache();
1380 mreg &= ~TSUNAMI_ITD;
1381 mreg |= (TSUNAMI_IENAB | TSUNAMI_DENAB);
1382 srmmu_set_mmureg(mreg);
1385 static const struct sparc32_cachetlb_ops tsunami_ops = {
1386 .cache_all = tsunami_flush_cache_all,
1387 .cache_mm = tsunami_flush_cache_mm,
1388 .cache_page = tsunami_flush_cache_page,
1389 .cache_range = tsunami_flush_cache_range,
1390 .tlb_all = tsunami_flush_tlb_all,
1391 .tlb_mm = tsunami_flush_tlb_mm,
1392 .tlb_page = tsunami_flush_tlb_page,
1393 .tlb_range = tsunami_flush_tlb_range,
1394 .page_to_ram = tsunami_flush_page_to_ram,
1395 .sig_insns = tsunami_flush_sig_insns,
1396 .page_for_dma = tsunami_flush_page_for_dma,
1399 static void __init init_tsunami(void)
1402 * Tsunami's pretty sane, Sun and TI actually got it
1403 * somewhat right this time. Fujitsu should have
1404 * taken some lessons from them.
1407 srmmu_name = "TI Tsunami";
1408 srmmu_modtype = Tsunami;
1409 sparc32_cachetlb_ops = &tsunami_ops;
1410 poke_srmmu = poke_tsunami;
1412 tsunami_setup_blockops();
1415 static void poke_viking(void)
1417 unsigned long mreg = srmmu_get_mmureg();
1418 static int smp_catch;
1420 if (viking_mxcc_present) {
1421 unsigned long mxcc_control = mxcc_get_creg();
1423 mxcc_control |= (MXCC_CTL_ECE | MXCC_CTL_PRE | MXCC_CTL_MCE);
1424 mxcc_control &= ~(MXCC_CTL_RRC);
1425 mxcc_set_creg(mxcc_control);
1428 * We don't need memory parity checks.
1429 * XXX This is a mess, have to dig out later. ecd.
1430 viking_mxcc_turn_off_parity(&mreg, &mxcc_control);
1433 /* We do cache ptables on MXCC. */
1434 mreg |= VIKING_TCENABLE;
1436 unsigned long bpreg;
1438 mreg &= ~(VIKING_TCENABLE);
1440 /* Must disable mixed-cmd mode here for other cpu's. */
1441 bpreg = viking_get_bpreg();
1442 bpreg &= ~(VIKING_ACTION_MIX);
1443 viking_set_bpreg(bpreg);
1445 /* Just in case PROM does something funny. */
1450 mreg |= VIKING_SPENABLE;
1451 mreg |= (VIKING_ICENABLE | VIKING_DCENABLE);
1452 mreg |= VIKING_SBENABLE;
1453 mreg &= ~(VIKING_ACENABLE);
1454 srmmu_set_mmureg(mreg);
1457 static struct sparc32_cachetlb_ops viking_ops __ro_after_init = {
1458 .cache_all = viking_flush_cache_all,
1459 .cache_mm = viking_flush_cache_mm,
1460 .cache_page = viking_flush_cache_page,
1461 .cache_range = viking_flush_cache_range,
1462 .tlb_all = viking_flush_tlb_all,
1463 .tlb_mm = viking_flush_tlb_mm,
1464 .tlb_page = viking_flush_tlb_page,
1465 .tlb_range = viking_flush_tlb_range,
1466 .page_to_ram = viking_flush_page_to_ram,
1467 .sig_insns = viking_flush_sig_insns,
1468 .page_for_dma = viking_flush_page_for_dma,
1472 /* On sun4d the cpu broadcasts local TLB flushes, so we can just
1473 * perform the local TLB flush and all the other cpus will see it.
1474 * But, unfortunately, there is a bug in the sun4d XBUS backplane
1475 * that requires that we add some synchronization to these flushes.
1477 * The bug is that the fifo which keeps track of all the pending TLB
1478 * broadcasts in the system is an entry or two too small, so if we
1479 * have too many going at once we'll overflow that fifo and lose a TLB
1480 * flush resulting in corruption.
1482 * Our workaround is to take a global spinlock around the TLB flushes,
1483 * which guarentees we won't ever have too many pending. It's a big
1484 * hammer, but a semaphore like system to make sure we only have N TLB
1485 * flushes going at once will require SMP locking anyways so there's
1486 * no real value in trying any harder than this.
1488 static struct sparc32_cachetlb_ops viking_sun4d_smp_ops __ro_after_init = {
1489 .cache_all = viking_flush_cache_all,
1490 .cache_mm = viking_flush_cache_mm,
1491 .cache_page = viking_flush_cache_page,
1492 .cache_range = viking_flush_cache_range,
1493 .tlb_all = sun4dsmp_flush_tlb_all,
1494 .tlb_mm = sun4dsmp_flush_tlb_mm,
1495 .tlb_page = sun4dsmp_flush_tlb_page,
1496 .tlb_range = sun4dsmp_flush_tlb_range,
1497 .page_to_ram = viking_flush_page_to_ram,
1498 .sig_insns = viking_flush_sig_insns,
1499 .page_for_dma = viking_flush_page_for_dma,
1503 static void __init init_viking(void)
1505 unsigned long mreg = srmmu_get_mmureg();
1507 /* Ahhh, the viking. SRMMU VLSI abortion number two... */
1508 if (mreg & VIKING_MMODE) {
1509 srmmu_name = "TI Viking";
1510 viking_mxcc_present = 0;
1514 * We need this to make sure old viking takes no hits
1515 * on it's cache for dma snoops to workaround the
1516 * "load from non-cacheable memory" interrupt bug.
1517 * This is only necessary because of the new way in
1518 * which we use the IOMMU.
1520 viking_ops.page_for_dma = viking_flush_page;
1522 viking_sun4d_smp_ops.page_for_dma = viking_flush_page;
1524 flush_page_for_dma_global = 0;
1526 srmmu_name = "TI Viking/MXCC";
1527 viking_mxcc_present = 1;
1528 srmmu_cache_pagetables = 1;
1531 sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1534 if (sparc_cpu_model == sun4d)
1535 sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1536 &viking_sun4d_smp_ops;
1539 poke_srmmu = poke_viking;
1542 /* Probe for the srmmu chip version. */
1543 static void __init get_srmmu_type(void)
1545 unsigned long mreg, psr;
1546 unsigned long mod_typ, mod_rev, psr_typ, psr_vers;
1548 srmmu_modtype = SRMMU_INVAL_MOD;
1551 mreg = srmmu_get_mmureg(); psr = get_psr();
1552 mod_typ = (mreg & 0xf0000000) >> 28;
1553 mod_rev = (mreg & 0x0f000000) >> 24;
1554 psr_typ = (psr >> 28) & 0xf;
1555 psr_vers = (psr >> 24) & 0xf;
1557 /* First, check for sparc-leon. */
1558 if (sparc_cpu_model == sparc_leon) {
1563 /* Second, check for HyperSparc or Cypress. */
1567 /* UP or MP Hypersparc */
1579 prom_printf("Sparc-Linux Cypress support does not longer exit.\n");
1586 /* Now Fujitsu TurboSparc. It might happen that it is
1587 * in Swift emulation mode, so we will check later...
1589 if (psr_typ == 0 && psr_vers == 5) {
1594 /* Next check for Fujitsu Swift. */
1595 if (psr_typ == 0 && psr_vers == 4) {
1599 /* Look if it is not a TurboSparc emulating Swift... */
1600 cpunode = prom_getchild(prom_root_node);
1601 while ((cpunode = prom_getsibling(cpunode)) != 0) {
1602 prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
1603 if (!strcmp(node_str, "cpu")) {
1604 if (!prom_getintdefault(cpunode, "psr-implementation", 1) &&
1605 prom_getintdefault(cpunode, "psr-version", 1) == 5) {
1617 /* Now the Viking family of srmmu. */
1620 ((psr_vers == 1) && (mod_typ == 0) && (mod_rev == 0)))) {
1625 /* Finally the Tsunami. */
1626 if (psr_typ == 4 && psr_vers == 1 && (mod_typ || mod_rev)) {
1636 /* Local cross-calls. */
1637 static void smp_flush_page_for_dma(unsigned long page)
1639 xc1((smpfunc_t) local_ops->page_for_dma, page);
1640 local_ops->page_for_dma(page);
1643 static void smp_flush_cache_all(void)
1645 xc0((smpfunc_t) local_ops->cache_all);
1646 local_ops->cache_all();
1649 static void smp_flush_tlb_all(void)
1651 xc0((smpfunc_t) local_ops->tlb_all);
1652 local_ops->tlb_all();
1655 static void smp_flush_cache_mm(struct mm_struct *mm)
1657 if (mm->context != NO_CONTEXT) {
1659 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1660 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1661 if (!cpumask_empty(&cpu_mask))
1662 xc1((smpfunc_t) local_ops->cache_mm, (unsigned long) mm);
1663 local_ops->cache_mm(mm);
1667 static void smp_flush_tlb_mm(struct mm_struct *mm)
1669 if (mm->context != NO_CONTEXT) {
1671 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1672 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1673 if (!cpumask_empty(&cpu_mask)) {
1674 xc1((smpfunc_t) local_ops->tlb_mm, (unsigned long) mm);
1675 if (atomic_read(&mm->mm_users) == 1 && current->active_mm == mm)
1676 cpumask_copy(mm_cpumask(mm),
1677 cpumask_of(smp_processor_id()));
1679 local_ops->tlb_mm(mm);
1683 static void smp_flush_cache_range(struct vm_area_struct *vma,
1684 unsigned long start,
1687 struct mm_struct *mm = vma->vm_mm;
1689 if (mm->context != NO_CONTEXT) {
1691 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1692 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1693 if (!cpumask_empty(&cpu_mask))
1694 xc3((smpfunc_t) local_ops->cache_range,
1695 (unsigned long) vma, start, end);
1696 local_ops->cache_range(vma, start, end);
1700 static void smp_flush_tlb_range(struct vm_area_struct *vma,
1701 unsigned long start,
1704 struct mm_struct *mm = vma->vm_mm;
1706 if (mm->context != NO_CONTEXT) {
1708 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1709 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1710 if (!cpumask_empty(&cpu_mask))
1711 xc3((smpfunc_t) local_ops->tlb_range,
1712 (unsigned long) vma, start, end);
1713 local_ops->tlb_range(vma, start, end);
1717 static void smp_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1719 struct mm_struct *mm = vma->vm_mm;
1721 if (mm->context != NO_CONTEXT) {
1723 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1724 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1725 if (!cpumask_empty(&cpu_mask))
1726 xc2((smpfunc_t) local_ops->cache_page,
1727 (unsigned long) vma, page);
1728 local_ops->cache_page(vma, page);
1732 static void smp_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1734 struct mm_struct *mm = vma->vm_mm;
1736 if (mm->context != NO_CONTEXT) {
1738 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1739 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1740 if (!cpumask_empty(&cpu_mask))
1741 xc2((smpfunc_t) local_ops->tlb_page,
1742 (unsigned long) vma, page);
1743 local_ops->tlb_page(vma, page);
1747 static void smp_flush_page_to_ram(unsigned long page)
1749 /* Current theory is that those who call this are the one's
1750 * who have just dirtied their cache with the pages contents
1751 * in kernel space, therefore we only run this on local cpu.
1753 * XXX This experiment failed, research further... -DaveM
1756 xc1((smpfunc_t) local_ops->page_to_ram, page);
1758 local_ops->page_to_ram(page);
1761 static void smp_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1764 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1765 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1766 if (!cpumask_empty(&cpu_mask))
1767 xc2((smpfunc_t) local_ops->sig_insns,
1768 (unsigned long) mm, insn_addr);
1769 local_ops->sig_insns(mm, insn_addr);
1772 static struct sparc32_cachetlb_ops smp_cachetlb_ops __ro_after_init = {
1773 .cache_all = smp_flush_cache_all,
1774 .cache_mm = smp_flush_cache_mm,
1775 .cache_page = smp_flush_cache_page,
1776 .cache_range = smp_flush_cache_range,
1777 .tlb_all = smp_flush_tlb_all,
1778 .tlb_mm = smp_flush_tlb_mm,
1779 .tlb_page = smp_flush_tlb_page,
1780 .tlb_range = smp_flush_tlb_range,
1781 .page_to_ram = smp_flush_page_to_ram,
1782 .sig_insns = smp_flush_sig_insns,
1783 .page_for_dma = smp_flush_page_for_dma,
1787 /* Load up routines and constants for sun4m and sun4d mmu */
1788 void __init load_mmu(void)
1794 /* El switcheroo... */
1795 local_ops = sparc32_cachetlb_ops;
1797 if (sparc_cpu_model == sun4d || sparc_cpu_model == sparc_leon) {
1798 smp_cachetlb_ops.tlb_all = local_ops->tlb_all;
1799 smp_cachetlb_ops.tlb_mm = local_ops->tlb_mm;
1800 smp_cachetlb_ops.tlb_range = local_ops->tlb_range;
1801 smp_cachetlb_ops.tlb_page = local_ops->tlb_page;
1804 if (poke_srmmu == poke_viking) {
1805 /* Avoid unnecessary cross calls. */
1806 smp_cachetlb_ops.cache_all = local_ops->cache_all;
1807 smp_cachetlb_ops.cache_mm = local_ops->cache_mm;
1808 smp_cachetlb_ops.cache_range = local_ops->cache_range;
1809 smp_cachetlb_ops.cache_page = local_ops->cache_page;
1811 smp_cachetlb_ops.page_to_ram = local_ops->page_to_ram;
1812 smp_cachetlb_ops.sig_insns = local_ops->sig_insns;
1813 smp_cachetlb_ops.page_for_dma = local_ops->page_for_dma;
1816 /* It really is const after this point. */
1817 sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1821 if (sparc_cpu_model != sun4d)
1824 if (sparc_cpu_model == sun4d)
1826 else if (sparc_cpu_model == sparc_leon)