2 * Copyright (C) 2012 Alexander Block. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/bsearch.h>
21 #include <linux/file.h>
22 #include <linux/sort.h>
23 #include <linux/mount.h>
24 #include <linux/xattr.h>
25 #include <linux/posix_acl_xattr.h>
26 #include <linux/radix-tree.h>
27 #include <linux/vmalloc.h>
28 #include <linux/string.h>
29 #include <linux/compat.h>
36 #include "btrfs_inode.h"
37 #include "transaction.h"
38 #include "compression.h"
41 * A fs_path is a helper to dynamically build path names with unknown size.
42 * It reallocates the internal buffer on demand.
43 * It allows fast adding of path elements on the right side (normal path) and
44 * fast adding to the left side (reversed path). A reversed path can also be
45 * unreversed if needed.
54 unsigned short buf_len:15;
55 unsigned short reversed:1;
59 * Average path length does not exceed 200 bytes, we'll have
60 * better packing in the slab and higher chance to satisfy
61 * a allocation later during send.
66 #define FS_PATH_INLINE_SIZE \
67 (sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
70 /* reused for each extent */
72 struct btrfs_root *root;
79 #define SEND_CTX_MAX_NAME_CACHE_SIZE 128
80 #define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2)
83 struct file *send_filp;
89 u64 cmd_send_size[BTRFS_SEND_C_MAX + 1];
90 u64 flags; /* 'flags' member of btrfs_ioctl_send_args is u64 */
92 struct btrfs_root *send_root;
93 struct btrfs_root *parent_root;
94 struct clone_root *clone_roots;
97 /* current state of the compare_tree call */
98 struct btrfs_path *left_path;
99 struct btrfs_path *right_path;
100 struct btrfs_key *cmp_key;
103 * infos of the currently processed inode. In case of deleted inodes,
104 * these are the values from the deleted inode.
109 int cur_inode_new_gen;
110 int cur_inode_deleted;
114 u64 cur_inode_last_extent;
118 struct list_head new_refs;
119 struct list_head deleted_refs;
121 struct radix_tree_root name_cache;
122 struct list_head name_cache_list;
125 struct file_ra_state ra;
130 * We process inodes by their increasing order, so if before an
131 * incremental send we reverse the parent/child relationship of
132 * directories such that a directory with a lower inode number was
133 * the parent of a directory with a higher inode number, and the one
134 * becoming the new parent got renamed too, we can't rename/move the
135 * directory with lower inode number when we finish processing it - we
136 * must process the directory with higher inode number first, then
137 * rename/move it and then rename/move the directory with lower inode
138 * number. Example follows.
140 * Tree state when the first send was performed:
152 * Tree state when the second (incremental) send is performed:
161 * The sequence of steps that lead to the second state was:
163 * mv /a/b/c/d /a/b/c2/d2
164 * mv /a/b/c /a/b/c2/d2/cc
166 * "c" has lower inode number, but we can't move it (2nd mv operation)
167 * before we move "d", which has higher inode number.
169 * So we just memorize which move/rename operations must be performed
170 * later when their respective parent is processed and moved/renamed.
173 /* Indexed by parent directory inode number. */
174 struct rb_root pending_dir_moves;
177 * Reverse index, indexed by the inode number of a directory that
178 * is waiting for the move/rename of its immediate parent before its
179 * own move/rename can be performed.
181 struct rb_root waiting_dir_moves;
184 * A directory that is going to be rm'ed might have a child directory
185 * which is in the pending directory moves index above. In this case,
186 * the directory can only be removed after the move/rename of its child
187 * is performed. Example:
207 * Sequence of steps that lead to the send snapshot:
208 * rm -f /a/b/c/foo.txt
210 * mv /a/b/c/x /a/b/YY
213 * When the child is processed, its move/rename is delayed until its
214 * parent is processed (as explained above), but all other operations
215 * like update utimes, chown, chgrp, etc, are performed and the paths
216 * that it uses for those operations must use the orphanized name of
217 * its parent (the directory we're going to rm later), so we need to
218 * memorize that name.
220 * Indexed by the inode number of the directory to be deleted.
222 struct rb_root orphan_dirs;
225 struct pending_dir_move {
227 struct list_head list;
231 struct list_head update_refs;
234 struct waiting_dir_move {
238 * There might be some directory that could not be removed because it
239 * was waiting for this directory inode to be moved first. Therefore
240 * after this directory is moved, we can try to rmdir the ino rmdir_ino.
246 struct orphan_dir_info {
252 struct name_cache_entry {
253 struct list_head list;
255 * radix_tree has only 32bit entries but we need to handle 64bit inums.
256 * We use the lower 32bit of the 64bit inum to store it in the tree. If
257 * more then one inum would fall into the same entry, we use radix_list
258 * to store the additional entries. radix_list is also used to store
259 * entries where two entries have the same inum but different
262 struct list_head radix_list;
268 int need_later_update;
273 static void inconsistent_snapshot_error(struct send_ctx *sctx,
274 enum btrfs_compare_tree_result result,
277 const char *result_string;
280 case BTRFS_COMPARE_TREE_NEW:
281 result_string = "new";
283 case BTRFS_COMPARE_TREE_DELETED:
284 result_string = "deleted";
286 case BTRFS_COMPARE_TREE_CHANGED:
287 result_string = "updated";
289 case BTRFS_COMPARE_TREE_SAME:
291 result_string = "unchanged";
295 result_string = "unexpected";
298 btrfs_err(sctx->send_root->fs_info,
299 "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu",
300 result_string, what, sctx->cmp_key->objectid,
301 sctx->send_root->root_key.objectid,
303 sctx->parent_root->root_key.objectid : 0));
306 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino);
308 static struct waiting_dir_move *
309 get_waiting_dir_move(struct send_ctx *sctx, u64 ino);
311 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino);
313 static int need_send_hole(struct send_ctx *sctx)
315 return (sctx->parent_root && !sctx->cur_inode_new &&
316 !sctx->cur_inode_new_gen && !sctx->cur_inode_deleted &&
317 S_ISREG(sctx->cur_inode_mode));
320 static void fs_path_reset(struct fs_path *p)
323 p->start = p->buf + p->buf_len - 1;
333 static struct fs_path *fs_path_alloc(void)
337 p = kmalloc(sizeof(*p), GFP_KERNEL);
341 p->buf = p->inline_buf;
342 p->buf_len = FS_PATH_INLINE_SIZE;
347 static struct fs_path *fs_path_alloc_reversed(void)
359 static void fs_path_free(struct fs_path *p)
363 if (p->buf != p->inline_buf)
368 static int fs_path_len(struct fs_path *p)
370 return p->end - p->start;
373 static int fs_path_ensure_buf(struct fs_path *p, int len)
381 if (p->buf_len >= len)
384 if (len > PATH_MAX) {
389 path_len = p->end - p->start;
390 old_buf_len = p->buf_len;
393 * First time the inline_buf does not suffice
395 if (p->buf == p->inline_buf) {
396 tmp_buf = kmalloc(len, GFP_KERNEL);
398 memcpy(tmp_buf, p->buf, old_buf_len);
400 tmp_buf = krealloc(p->buf, len, GFP_KERNEL);
406 * The real size of the buffer is bigger, this will let the fast path
407 * happen most of the time
409 p->buf_len = ksize(p->buf);
412 tmp_buf = p->buf + old_buf_len - path_len - 1;
413 p->end = p->buf + p->buf_len - 1;
414 p->start = p->end - path_len;
415 memmove(p->start, tmp_buf, path_len + 1);
418 p->end = p->start + path_len;
423 static int fs_path_prepare_for_add(struct fs_path *p, int name_len,
429 new_len = p->end - p->start + name_len;
430 if (p->start != p->end)
432 ret = fs_path_ensure_buf(p, new_len);
437 if (p->start != p->end)
439 p->start -= name_len;
440 *prepared = p->start;
442 if (p->start != p->end)
453 static int fs_path_add(struct fs_path *p, const char *name, int name_len)
458 ret = fs_path_prepare_for_add(p, name_len, &prepared);
461 memcpy(prepared, name, name_len);
467 static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
472 ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared);
475 memcpy(prepared, p2->start, p2->end - p2->start);
481 static int fs_path_add_from_extent_buffer(struct fs_path *p,
482 struct extent_buffer *eb,
483 unsigned long off, int len)
488 ret = fs_path_prepare_for_add(p, len, &prepared);
492 read_extent_buffer(eb, prepared, off, len);
498 static int fs_path_copy(struct fs_path *p, struct fs_path *from)
502 p->reversed = from->reversed;
505 ret = fs_path_add_path(p, from);
511 static void fs_path_unreverse(struct fs_path *p)
520 len = p->end - p->start;
522 p->end = p->start + len;
523 memmove(p->start, tmp, len + 1);
527 static struct btrfs_path *alloc_path_for_send(void)
529 struct btrfs_path *path;
531 path = btrfs_alloc_path();
534 path->search_commit_root = 1;
535 path->skip_locking = 1;
536 path->need_commit_sem = 1;
540 static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
546 ret = kernel_write(filp, buf + pos, len - pos, off);
547 /* TODO handle that correctly */
548 /*if (ret == -ERESTARTSYS) {
562 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
564 struct btrfs_tlv_header *hdr;
565 int total_len = sizeof(*hdr) + len;
566 int left = sctx->send_max_size - sctx->send_size;
568 if (unlikely(left < total_len))
571 hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
572 hdr->tlv_type = cpu_to_le16(attr);
573 hdr->tlv_len = cpu_to_le16(len);
574 memcpy(hdr + 1, data, len);
575 sctx->send_size += total_len;
580 #define TLV_PUT_DEFINE_INT(bits) \
581 static int tlv_put_u##bits(struct send_ctx *sctx, \
582 u##bits attr, u##bits value) \
584 __le##bits __tmp = cpu_to_le##bits(value); \
585 return tlv_put(sctx, attr, &__tmp, sizeof(__tmp)); \
588 TLV_PUT_DEFINE_INT(64)
590 static int tlv_put_string(struct send_ctx *sctx, u16 attr,
591 const char *str, int len)
595 return tlv_put(sctx, attr, str, len);
598 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
601 return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
604 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
605 struct extent_buffer *eb,
606 struct btrfs_timespec *ts)
608 struct btrfs_timespec bts;
609 read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
610 return tlv_put(sctx, attr, &bts, sizeof(bts));
614 #define TLV_PUT(sctx, attrtype, attrlen, data) \
616 ret = tlv_put(sctx, attrtype, attrlen, data); \
618 goto tlv_put_failure; \
621 #define TLV_PUT_INT(sctx, attrtype, bits, value) \
623 ret = tlv_put_u##bits(sctx, attrtype, value); \
625 goto tlv_put_failure; \
628 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
629 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
630 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
631 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
632 #define TLV_PUT_STRING(sctx, attrtype, str, len) \
634 ret = tlv_put_string(sctx, attrtype, str, len); \
636 goto tlv_put_failure; \
638 #define TLV_PUT_PATH(sctx, attrtype, p) \
640 ret = tlv_put_string(sctx, attrtype, p->start, \
641 p->end - p->start); \
643 goto tlv_put_failure; \
645 #define TLV_PUT_UUID(sctx, attrtype, uuid) \
647 ret = tlv_put_uuid(sctx, attrtype, uuid); \
649 goto tlv_put_failure; \
651 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
653 ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
655 goto tlv_put_failure; \
658 static int send_header(struct send_ctx *sctx)
660 struct btrfs_stream_header hdr;
662 strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
663 hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION);
665 return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
670 * For each command/item we want to send to userspace, we call this function.
672 static int begin_cmd(struct send_ctx *sctx, int cmd)
674 struct btrfs_cmd_header *hdr;
676 if (WARN_ON(!sctx->send_buf))
679 BUG_ON(sctx->send_size);
681 sctx->send_size += sizeof(*hdr);
682 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
683 hdr->cmd = cpu_to_le16(cmd);
688 static int send_cmd(struct send_ctx *sctx)
691 struct btrfs_cmd_header *hdr;
694 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
695 hdr->len = cpu_to_le32(sctx->send_size - sizeof(*hdr));
698 crc = btrfs_crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
699 hdr->crc = cpu_to_le32(crc);
701 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
704 sctx->total_send_size += sctx->send_size;
705 sctx->cmd_send_size[le16_to_cpu(hdr->cmd)] += sctx->send_size;
712 * Sends a move instruction to user space
714 static int send_rename(struct send_ctx *sctx,
715 struct fs_path *from, struct fs_path *to)
717 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
720 btrfs_debug(fs_info, "send_rename %s -> %s", from->start, to->start);
722 ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
726 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
727 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
729 ret = send_cmd(sctx);
737 * Sends a link instruction to user space
739 static int send_link(struct send_ctx *sctx,
740 struct fs_path *path, struct fs_path *lnk)
742 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
745 btrfs_debug(fs_info, "send_link %s -> %s", path->start, lnk->start);
747 ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
751 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
752 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
754 ret = send_cmd(sctx);
762 * Sends an unlink instruction to user space
764 static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
766 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
769 btrfs_debug(fs_info, "send_unlink %s", path->start);
771 ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
775 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
777 ret = send_cmd(sctx);
785 * Sends a rmdir instruction to user space
787 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
789 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
792 btrfs_debug(fs_info, "send_rmdir %s", path->start);
794 ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
798 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
800 ret = send_cmd(sctx);
808 * Helper function to retrieve some fields from an inode item.
810 static int __get_inode_info(struct btrfs_root *root, struct btrfs_path *path,
811 u64 ino, u64 *size, u64 *gen, u64 *mode, u64 *uid,
815 struct btrfs_inode_item *ii;
816 struct btrfs_key key;
819 key.type = BTRFS_INODE_ITEM_KEY;
821 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
828 ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
829 struct btrfs_inode_item);
831 *size = btrfs_inode_size(path->nodes[0], ii);
833 *gen = btrfs_inode_generation(path->nodes[0], ii);
835 *mode = btrfs_inode_mode(path->nodes[0], ii);
837 *uid = btrfs_inode_uid(path->nodes[0], ii);
839 *gid = btrfs_inode_gid(path->nodes[0], ii);
841 *rdev = btrfs_inode_rdev(path->nodes[0], ii);
846 static int get_inode_info(struct btrfs_root *root,
847 u64 ino, u64 *size, u64 *gen,
848 u64 *mode, u64 *uid, u64 *gid,
851 struct btrfs_path *path;
854 path = alloc_path_for_send();
857 ret = __get_inode_info(root, path, ino, size, gen, mode, uid, gid,
859 btrfs_free_path(path);
863 typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index,
868 * Helper function to iterate the entries in ONE btrfs_inode_ref or
869 * btrfs_inode_extref.
870 * The iterate callback may return a non zero value to stop iteration. This can
871 * be a negative value for error codes or 1 to simply stop it.
873 * path must point to the INODE_REF or INODE_EXTREF when called.
875 static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
876 struct btrfs_key *found_key, int resolve,
877 iterate_inode_ref_t iterate, void *ctx)
879 struct extent_buffer *eb = path->nodes[0];
880 struct btrfs_item *item;
881 struct btrfs_inode_ref *iref;
882 struct btrfs_inode_extref *extref;
883 struct btrfs_path *tmp_path;
887 int slot = path->slots[0];
894 unsigned long name_off;
895 unsigned long elem_size;
898 p = fs_path_alloc_reversed();
902 tmp_path = alloc_path_for_send();
909 if (found_key->type == BTRFS_INODE_REF_KEY) {
910 ptr = (unsigned long)btrfs_item_ptr(eb, slot,
911 struct btrfs_inode_ref);
912 item = btrfs_item_nr(slot);
913 total = btrfs_item_size(eb, item);
914 elem_size = sizeof(*iref);
916 ptr = btrfs_item_ptr_offset(eb, slot);
917 total = btrfs_item_size_nr(eb, slot);
918 elem_size = sizeof(*extref);
921 while (cur < total) {
924 if (found_key->type == BTRFS_INODE_REF_KEY) {
925 iref = (struct btrfs_inode_ref *)(ptr + cur);
926 name_len = btrfs_inode_ref_name_len(eb, iref);
927 name_off = (unsigned long)(iref + 1);
928 index = btrfs_inode_ref_index(eb, iref);
929 dir = found_key->offset;
931 extref = (struct btrfs_inode_extref *)(ptr + cur);
932 name_len = btrfs_inode_extref_name_len(eb, extref);
933 name_off = (unsigned long)&extref->name;
934 index = btrfs_inode_extref_index(eb, extref);
935 dir = btrfs_inode_extref_parent(eb, extref);
939 start = btrfs_ref_to_path(root, tmp_path, name_len,
943 ret = PTR_ERR(start);
946 if (start < p->buf) {
947 /* overflow , try again with larger buffer */
948 ret = fs_path_ensure_buf(p,
949 p->buf_len + p->buf - start);
952 start = btrfs_ref_to_path(root, tmp_path,
957 ret = PTR_ERR(start);
960 BUG_ON(start < p->buf);
964 ret = fs_path_add_from_extent_buffer(p, eb, name_off,
970 cur += elem_size + name_len;
971 ret = iterate(num, dir, index, p, ctx);
978 btrfs_free_path(tmp_path);
983 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
984 const char *name, int name_len,
985 const char *data, int data_len,
989 * Helper function to iterate the entries in ONE btrfs_dir_item.
990 * The iterate callback may return a non zero value to stop iteration. This can
991 * be a negative value for error codes or 1 to simply stop it.
993 * path must point to the dir item when called.
995 static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
996 iterate_dir_item_t iterate, void *ctx)
999 struct extent_buffer *eb;
1000 struct btrfs_item *item;
1001 struct btrfs_dir_item *di;
1002 struct btrfs_key di_key;
1015 * Start with a small buffer (1 page). If later we end up needing more
1016 * space, which can happen for xattrs on a fs with a leaf size greater
1017 * then the page size, attempt to increase the buffer. Typically xattr
1021 buf = kmalloc(buf_len, GFP_KERNEL);
1027 eb = path->nodes[0];
1028 slot = path->slots[0];
1029 item = btrfs_item_nr(slot);
1030 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1033 total = btrfs_item_size(eb, item);
1036 while (cur < total) {
1037 name_len = btrfs_dir_name_len(eb, di);
1038 data_len = btrfs_dir_data_len(eb, di);
1039 type = btrfs_dir_type(eb, di);
1040 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1042 if (type == BTRFS_FT_XATTR) {
1043 if (name_len > XATTR_NAME_MAX) {
1044 ret = -ENAMETOOLONG;
1047 if (name_len + data_len >
1048 BTRFS_MAX_XATTR_SIZE(root->fs_info)) {
1056 if (name_len + data_len > PATH_MAX) {
1057 ret = -ENAMETOOLONG;
1062 ret = btrfs_is_name_len_valid(eb, path->slots[0],
1063 (unsigned long)(di + 1), name_len + data_len);
1068 if (name_len + data_len > buf_len) {
1069 buf_len = name_len + data_len;
1070 if (is_vmalloc_addr(buf)) {
1074 char *tmp = krealloc(buf, buf_len,
1075 GFP_KERNEL | __GFP_NOWARN);
1082 buf = kvmalloc(buf_len, GFP_KERNEL);
1090 read_extent_buffer(eb, buf, (unsigned long)(di + 1),
1091 name_len + data_len);
1093 len = sizeof(*di) + name_len + data_len;
1094 di = (struct btrfs_dir_item *)((char *)di + len);
1097 ret = iterate(num, &di_key, buf, name_len, buf + name_len,
1098 data_len, type, ctx);
1114 static int __copy_first_ref(int num, u64 dir, int index,
1115 struct fs_path *p, void *ctx)
1118 struct fs_path *pt = ctx;
1120 ret = fs_path_copy(pt, p);
1124 /* we want the first only */
1129 * Retrieve the first path of an inode. If an inode has more then one
1130 * ref/hardlink, this is ignored.
1132 static int get_inode_path(struct btrfs_root *root,
1133 u64 ino, struct fs_path *path)
1136 struct btrfs_key key, found_key;
1137 struct btrfs_path *p;
1139 p = alloc_path_for_send();
1143 fs_path_reset(path);
1146 key.type = BTRFS_INODE_REF_KEY;
1149 ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
1156 btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
1157 if (found_key.objectid != ino ||
1158 (found_key.type != BTRFS_INODE_REF_KEY &&
1159 found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1164 ret = iterate_inode_ref(root, p, &found_key, 1,
1165 __copy_first_ref, path);
1175 struct backref_ctx {
1176 struct send_ctx *sctx;
1178 struct btrfs_path *path;
1179 /* number of total found references */
1183 * used for clones found in send_root. clones found behind cur_objectid
1184 * and cur_offset are not considered as allowed clones.
1189 /* may be truncated in case it's the last extent in a file */
1192 /* data offset in the file extent item */
1195 /* Just to check for bugs in backref resolving */
1199 static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1201 u64 root = (u64)(uintptr_t)key;
1202 struct clone_root *cr = (struct clone_root *)elt;
1204 if (root < cr->root->objectid)
1206 if (root > cr->root->objectid)
1211 static int __clone_root_cmp_sort(const void *e1, const void *e2)
1213 struct clone_root *cr1 = (struct clone_root *)e1;
1214 struct clone_root *cr2 = (struct clone_root *)e2;
1216 if (cr1->root->objectid < cr2->root->objectid)
1218 if (cr1->root->objectid > cr2->root->objectid)
1224 * Called for every backref that is found for the current extent.
1225 * Results are collected in sctx->clone_roots->ino/offset/found_refs
1227 static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_)
1229 struct backref_ctx *bctx = ctx_;
1230 struct clone_root *found;
1234 /* First check if the root is in the list of accepted clone sources */
1235 found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots,
1236 bctx->sctx->clone_roots_cnt,
1237 sizeof(struct clone_root),
1238 __clone_root_cmp_bsearch);
1242 if (found->root == bctx->sctx->send_root &&
1243 ino == bctx->cur_objectid &&
1244 offset == bctx->cur_offset) {
1245 bctx->found_itself = 1;
1249 * There are inodes that have extents that lie behind its i_size. Don't
1250 * accept clones from these extents.
1252 ret = __get_inode_info(found->root, bctx->path, ino, &i_size, NULL, NULL,
1254 btrfs_release_path(bctx->path);
1258 if (offset + bctx->data_offset + bctx->extent_len > i_size)
1262 * Make sure we don't consider clones from send_root that are
1263 * behind the current inode/offset.
1265 if (found->root == bctx->sctx->send_root) {
1267 * TODO for the moment we don't accept clones from the inode
1268 * that is currently send. We may change this when
1269 * BTRFS_IOC_CLONE_RANGE supports cloning from and to the same
1272 if (ino >= bctx->cur_objectid)
1277 found->found_refs++;
1278 if (ino < found->ino) {
1280 found->offset = offset;
1281 } else if (found->ino == ino) {
1283 * same extent found more then once in the same file.
1285 if (found->offset > offset + bctx->extent_len)
1286 found->offset = offset;
1293 * Given an inode, offset and extent item, it finds a good clone for a clone
1294 * instruction. Returns -ENOENT when none could be found. The function makes
1295 * sure that the returned clone is usable at the point where sending is at the
1296 * moment. This means, that no clones are accepted which lie behind the current
1299 * path must point to the extent item when called.
1301 static int find_extent_clone(struct send_ctx *sctx,
1302 struct btrfs_path *path,
1303 u64 ino, u64 data_offset,
1305 struct clone_root **found)
1307 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1313 u64 extent_item_pos;
1315 struct btrfs_file_extent_item *fi;
1316 struct extent_buffer *eb = path->nodes[0];
1317 struct backref_ctx *backref_ctx = NULL;
1318 struct clone_root *cur_clone_root;
1319 struct btrfs_key found_key;
1320 struct btrfs_path *tmp_path;
1324 tmp_path = alloc_path_for_send();
1328 /* We only use this path under the commit sem */
1329 tmp_path->need_commit_sem = 0;
1331 backref_ctx = kmalloc(sizeof(*backref_ctx), GFP_KERNEL);
1337 backref_ctx->path = tmp_path;
1339 if (data_offset >= ino_size) {
1341 * There may be extents that lie behind the file's size.
1342 * I at least had this in combination with snapshotting while
1343 * writing large files.
1349 fi = btrfs_item_ptr(eb, path->slots[0],
1350 struct btrfs_file_extent_item);
1351 extent_type = btrfs_file_extent_type(eb, fi);
1352 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1356 compressed = btrfs_file_extent_compression(eb, fi);
1358 num_bytes = btrfs_file_extent_num_bytes(eb, fi);
1359 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1360 if (disk_byte == 0) {
1364 logical = disk_byte + btrfs_file_extent_offset(eb, fi);
1366 down_read(&fs_info->commit_root_sem);
1367 ret = extent_from_logical(fs_info, disk_byte, tmp_path,
1368 &found_key, &flags);
1369 up_read(&fs_info->commit_root_sem);
1370 btrfs_release_path(tmp_path);
1374 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1380 * Setup the clone roots.
1382 for (i = 0; i < sctx->clone_roots_cnt; i++) {
1383 cur_clone_root = sctx->clone_roots + i;
1384 cur_clone_root->ino = (u64)-1;
1385 cur_clone_root->offset = 0;
1386 cur_clone_root->found_refs = 0;
1389 backref_ctx->sctx = sctx;
1390 backref_ctx->found = 0;
1391 backref_ctx->cur_objectid = ino;
1392 backref_ctx->cur_offset = data_offset;
1393 backref_ctx->found_itself = 0;
1394 backref_ctx->extent_len = num_bytes;
1396 * For non-compressed extents iterate_extent_inodes() gives us extent
1397 * offsets that already take into account the data offset, but not for
1398 * compressed extents, since the offset is logical and not relative to
1399 * the physical extent locations. We must take this into account to
1400 * avoid sending clone offsets that go beyond the source file's size,
1401 * which would result in the clone ioctl failing with -EINVAL on the
1404 if (compressed == BTRFS_COMPRESS_NONE)
1405 backref_ctx->data_offset = 0;
1407 backref_ctx->data_offset = btrfs_file_extent_offset(eb, fi);
1410 * The last extent of a file may be too large due to page alignment.
1411 * We need to adjust extent_len in this case so that the checks in
1412 * __iterate_backrefs work.
1414 if (data_offset + num_bytes >= ino_size)
1415 backref_ctx->extent_len = ino_size - data_offset;
1418 * Now collect all backrefs.
1420 if (compressed == BTRFS_COMPRESS_NONE)
1421 extent_item_pos = logical - found_key.objectid;
1423 extent_item_pos = 0;
1424 ret = iterate_extent_inodes(fs_info, found_key.objectid,
1425 extent_item_pos, 1, __iterate_backrefs,
1426 backref_ctx, false);
1431 if (!backref_ctx->found_itself) {
1432 /* found a bug in backref code? */
1435 "did not find backref in send_root. inode=%llu, offset=%llu, disk_byte=%llu found extent=%llu",
1436 ino, data_offset, disk_byte, found_key.objectid);
1440 btrfs_debug(fs_info,
1441 "find_extent_clone: data_offset=%llu, ino=%llu, num_bytes=%llu, logical=%llu",
1442 data_offset, ino, num_bytes, logical);
1444 if (!backref_ctx->found)
1445 btrfs_debug(fs_info, "no clones found");
1447 cur_clone_root = NULL;
1448 for (i = 0; i < sctx->clone_roots_cnt; i++) {
1449 if (sctx->clone_roots[i].found_refs) {
1450 if (!cur_clone_root)
1451 cur_clone_root = sctx->clone_roots + i;
1452 else if (sctx->clone_roots[i].root == sctx->send_root)
1453 /* prefer clones from send_root over others */
1454 cur_clone_root = sctx->clone_roots + i;
1459 if (cur_clone_root) {
1460 *found = cur_clone_root;
1467 btrfs_free_path(tmp_path);
1472 static int read_symlink(struct btrfs_root *root,
1474 struct fs_path *dest)
1477 struct btrfs_path *path;
1478 struct btrfs_key key;
1479 struct btrfs_file_extent_item *ei;
1485 path = alloc_path_for_send();
1490 key.type = BTRFS_EXTENT_DATA_KEY;
1492 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1497 * An empty symlink inode. Can happen in rare error paths when
1498 * creating a symlink (transaction committed before the inode
1499 * eviction handler removed the symlink inode items and a crash
1500 * happened in between or the subvol was snapshoted in between).
1501 * Print an informative message to dmesg/syslog so that the user
1502 * can delete the symlink.
1504 btrfs_err(root->fs_info,
1505 "Found empty symlink inode %llu at root %llu",
1506 ino, root->root_key.objectid);
1511 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1512 struct btrfs_file_extent_item);
1513 type = btrfs_file_extent_type(path->nodes[0], ei);
1514 compression = btrfs_file_extent_compression(path->nodes[0], ei);
1515 BUG_ON(type != BTRFS_FILE_EXTENT_INLINE);
1516 BUG_ON(compression);
1518 off = btrfs_file_extent_inline_start(ei);
1519 len = btrfs_file_extent_inline_len(path->nodes[0], path->slots[0], ei);
1521 ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
1524 btrfs_free_path(path);
1529 * Helper function to generate a file name that is unique in the root of
1530 * send_root and parent_root. This is used to generate names for orphan inodes.
1532 static int gen_unique_name(struct send_ctx *sctx,
1534 struct fs_path *dest)
1537 struct btrfs_path *path;
1538 struct btrfs_dir_item *di;
1543 path = alloc_path_for_send();
1548 len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu",
1550 ASSERT(len < sizeof(tmp));
1552 di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1553 path, BTRFS_FIRST_FREE_OBJECTID,
1554 tmp, strlen(tmp), 0);
1555 btrfs_release_path(path);
1561 /* not unique, try again */
1566 if (!sctx->parent_root) {
1572 di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
1573 path, BTRFS_FIRST_FREE_OBJECTID,
1574 tmp, strlen(tmp), 0);
1575 btrfs_release_path(path);
1581 /* not unique, try again */
1589 ret = fs_path_add(dest, tmp, strlen(tmp));
1592 btrfs_free_path(path);
1597 inode_state_no_change,
1598 inode_state_will_create,
1599 inode_state_did_create,
1600 inode_state_will_delete,
1601 inode_state_did_delete,
1604 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen)
1612 ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL,
1614 if (ret < 0 && ret != -ENOENT)
1618 if (!sctx->parent_root) {
1619 right_ret = -ENOENT;
1621 ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen,
1622 NULL, NULL, NULL, NULL);
1623 if (ret < 0 && ret != -ENOENT)
1628 if (!left_ret && !right_ret) {
1629 if (left_gen == gen && right_gen == gen) {
1630 ret = inode_state_no_change;
1631 } else if (left_gen == gen) {
1632 if (ino < sctx->send_progress)
1633 ret = inode_state_did_create;
1635 ret = inode_state_will_create;
1636 } else if (right_gen == gen) {
1637 if (ino < sctx->send_progress)
1638 ret = inode_state_did_delete;
1640 ret = inode_state_will_delete;
1644 } else if (!left_ret) {
1645 if (left_gen == gen) {
1646 if (ino < sctx->send_progress)
1647 ret = inode_state_did_create;
1649 ret = inode_state_will_create;
1653 } else if (!right_ret) {
1654 if (right_gen == gen) {
1655 if (ino < sctx->send_progress)
1656 ret = inode_state_did_delete;
1658 ret = inode_state_will_delete;
1670 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen)
1674 if (ino == BTRFS_FIRST_FREE_OBJECTID)
1677 ret = get_cur_inode_state(sctx, ino, gen);
1681 if (ret == inode_state_no_change ||
1682 ret == inode_state_did_create ||
1683 ret == inode_state_will_delete)
1693 * Helper function to lookup a dir item in a dir.
1695 static int lookup_dir_item_inode(struct btrfs_root *root,
1696 u64 dir, const char *name, int name_len,
1701 struct btrfs_dir_item *di;
1702 struct btrfs_key key;
1703 struct btrfs_path *path;
1705 path = alloc_path_for_send();
1709 di = btrfs_lookup_dir_item(NULL, root, path,
1710 dir, name, name_len, 0);
1719 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1720 if (key.type == BTRFS_ROOT_ITEM_KEY) {
1724 *found_inode = key.objectid;
1725 *found_type = btrfs_dir_type(path->nodes[0], di);
1728 btrfs_free_path(path);
1733 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
1734 * generation of the parent dir and the name of the dir entry.
1736 static int get_first_ref(struct btrfs_root *root, u64 ino,
1737 u64 *dir, u64 *dir_gen, struct fs_path *name)
1740 struct btrfs_key key;
1741 struct btrfs_key found_key;
1742 struct btrfs_path *path;
1746 path = alloc_path_for_send();
1751 key.type = BTRFS_INODE_REF_KEY;
1754 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
1758 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1760 if (ret || found_key.objectid != ino ||
1761 (found_key.type != BTRFS_INODE_REF_KEY &&
1762 found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1767 if (found_key.type == BTRFS_INODE_REF_KEY) {
1768 struct btrfs_inode_ref *iref;
1769 iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1770 struct btrfs_inode_ref);
1771 len = btrfs_inode_ref_name_len(path->nodes[0], iref);
1772 ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1773 (unsigned long)(iref + 1),
1775 parent_dir = found_key.offset;
1777 struct btrfs_inode_extref *extref;
1778 extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1779 struct btrfs_inode_extref);
1780 len = btrfs_inode_extref_name_len(path->nodes[0], extref);
1781 ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1782 (unsigned long)&extref->name, len);
1783 parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
1787 btrfs_release_path(path);
1790 ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL,
1799 btrfs_free_path(path);
1803 static int is_first_ref(struct btrfs_root *root,
1805 const char *name, int name_len)
1808 struct fs_path *tmp_name;
1811 tmp_name = fs_path_alloc();
1815 ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name);
1819 if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
1824 ret = !memcmp(tmp_name->start, name, name_len);
1827 fs_path_free(tmp_name);
1832 * Used by process_recorded_refs to determine if a new ref would overwrite an
1833 * already existing ref. In case it detects an overwrite, it returns the
1834 * inode/gen in who_ino/who_gen.
1835 * When an overwrite is detected, process_recorded_refs does proper orphanizing
1836 * to make sure later references to the overwritten inode are possible.
1837 * Orphanizing is however only required for the first ref of an inode.
1838 * process_recorded_refs does an additional is_first_ref check to see if
1839 * orphanizing is really required.
1841 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
1842 const char *name, int name_len,
1843 u64 *who_ino, u64 *who_gen, u64 *who_mode)
1847 u64 other_inode = 0;
1850 if (!sctx->parent_root)
1853 ret = is_inode_existent(sctx, dir, dir_gen);
1858 * If we have a parent root we need to verify that the parent dir was
1859 * not deleted and then re-created, if it was then we have no overwrite
1860 * and we can just unlink this entry.
1862 if (sctx->parent_root && dir != BTRFS_FIRST_FREE_OBJECTID) {
1863 ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL,
1865 if (ret < 0 && ret != -ENOENT)
1875 ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
1876 &other_inode, &other_type);
1877 if (ret < 0 && ret != -ENOENT)
1885 * Check if the overwritten ref was already processed. If yes, the ref
1886 * was already unlinked/moved, so we can safely assume that we will not
1887 * overwrite anything at this point in time.
1889 if (other_inode > sctx->send_progress ||
1890 is_waiting_for_move(sctx, other_inode)) {
1891 ret = get_inode_info(sctx->parent_root, other_inode, NULL,
1892 who_gen, who_mode, NULL, NULL, NULL);
1897 *who_ino = other_inode;
1907 * Checks if the ref was overwritten by an already processed inode. This is
1908 * used by __get_cur_name_and_parent to find out if the ref was orphanized and
1909 * thus the orphan name needs be used.
1910 * process_recorded_refs also uses it to avoid unlinking of refs that were
1913 static int did_overwrite_ref(struct send_ctx *sctx,
1914 u64 dir, u64 dir_gen,
1915 u64 ino, u64 ino_gen,
1916 const char *name, int name_len)
1923 if (!sctx->parent_root)
1926 ret = is_inode_existent(sctx, dir, dir_gen);
1930 if (dir != BTRFS_FIRST_FREE_OBJECTID) {
1931 ret = get_inode_info(sctx->send_root, dir, NULL, &gen, NULL,
1933 if (ret < 0 && ret != -ENOENT)
1943 /* check if the ref was overwritten by another ref */
1944 ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
1945 &ow_inode, &other_type);
1946 if (ret < 0 && ret != -ENOENT)
1949 /* was never and will never be overwritten */
1954 ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL,
1959 if (ow_inode == ino && gen == ino_gen) {
1965 * We know that it is or will be overwritten. Check this now.
1966 * The current inode being processed might have been the one that caused
1967 * inode 'ino' to be orphanized, therefore check if ow_inode matches
1968 * the current inode being processed.
1970 if ((ow_inode < sctx->send_progress) ||
1971 (ino != sctx->cur_ino && ow_inode == sctx->cur_ino &&
1972 gen == sctx->cur_inode_gen))
1982 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
1983 * that got overwritten. This is used by process_recorded_refs to determine
1984 * if it has to use the path as returned by get_cur_path or the orphan name.
1986 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
1989 struct fs_path *name = NULL;
1993 if (!sctx->parent_root)
1996 name = fs_path_alloc();
2000 ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name);
2004 ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
2005 name->start, fs_path_len(name));
2013 * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit,
2014 * so we need to do some special handling in case we have clashes. This function
2015 * takes care of this with the help of name_cache_entry::radix_list.
2016 * In case of error, nce is kfreed.
2018 static int name_cache_insert(struct send_ctx *sctx,
2019 struct name_cache_entry *nce)
2022 struct list_head *nce_head;
2024 nce_head = radix_tree_lookup(&sctx->name_cache,
2025 (unsigned long)nce->ino);
2027 nce_head = kmalloc(sizeof(*nce_head), GFP_KERNEL);
2032 INIT_LIST_HEAD(nce_head);
2034 ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head);
2041 list_add_tail(&nce->radix_list, nce_head);
2042 list_add_tail(&nce->list, &sctx->name_cache_list);
2043 sctx->name_cache_size++;
2048 static void name_cache_delete(struct send_ctx *sctx,
2049 struct name_cache_entry *nce)
2051 struct list_head *nce_head;
2053 nce_head = radix_tree_lookup(&sctx->name_cache,
2054 (unsigned long)nce->ino);
2056 btrfs_err(sctx->send_root->fs_info,
2057 "name_cache_delete lookup failed ino %llu cache size %d, leaking memory",
2058 nce->ino, sctx->name_cache_size);
2061 list_del(&nce->radix_list);
2062 list_del(&nce->list);
2063 sctx->name_cache_size--;
2066 * We may not get to the final release of nce_head if the lookup fails
2068 if (nce_head && list_empty(nce_head)) {
2069 radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino);
2074 static struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
2077 struct list_head *nce_head;
2078 struct name_cache_entry *cur;
2080 nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino);
2084 list_for_each_entry(cur, nce_head, radix_list) {
2085 if (cur->ino == ino && cur->gen == gen)
2092 * Removes the entry from the list and adds it back to the end. This marks the
2093 * entry as recently used so that name_cache_clean_unused does not remove it.
2095 static void name_cache_used(struct send_ctx *sctx, struct name_cache_entry *nce)
2097 list_del(&nce->list);
2098 list_add_tail(&nce->list, &sctx->name_cache_list);
2102 * Remove some entries from the beginning of name_cache_list.
2104 static void name_cache_clean_unused(struct send_ctx *sctx)
2106 struct name_cache_entry *nce;
2108 if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE)
2111 while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) {
2112 nce = list_entry(sctx->name_cache_list.next,
2113 struct name_cache_entry, list);
2114 name_cache_delete(sctx, nce);
2119 static void name_cache_free(struct send_ctx *sctx)
2121 struct name_cache_entry *nce;
2123 while (!list_empty(&sctx->name_cache_list)) {
2124 nce = list_entry(sctx->name_cache_list.next,
2125 struct name_cache_entry, list);
2126 name_cache_delete(sctx, nce);
2132 * Used by get_cur_path for each ref up to the root.
2133 * Returns 0 if it succeeded.
2134 * Returns 1 if the inode is not existent or got overwritten. In that case, the
2135 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
2136 * is returned, parent_ino/parent_gen are not guaranteed to be valid.
2137 * Returns <0 in case of error.
2139 static int __get_cur_name_and_parent(struct send_ctx *sctx,
2143 struct fs_path *dest)
2147 struct name_cache_entry *nce = NULL;
2150 * First check if we already did a call to this function with the same
2151 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
2152 * return the cached result.
2154 nce = name_cache_search(sctx, ino, gen);
2156 if (ino < sctx->send_progress && nce->need_later_update) {
2157 name_cache_delete(sctx, nce);
2161 name_cache_used(sctx, nce);
2162 *parent_ino = nce->parent_ino;
2163 *parent_gen = nce->parent_gen;
2164 ret = fs_path_add(dest, nce->name, nce->name_len);
2173 * If the inode is not existent yet, add the orphan name and return 1.
2174 * This should only happen for the parent dir that we determine in
2177 ret = is_inode_existent(sctx, ino, gen);
2182 ret = gen_unique_name(sctx, ino, gen, dest);
2190 * Depending on whether the inode was already processed or not, use
2191 * send_root or parent_root for ref lookup.
2193 if (ino < sctx->send_progress)
2194 ret = get_first_ref(sctx->send_root, ino,
2195 parent_ino, parent_gen, dest);
2197 ret = get_first_ref(sctx->parent_root, ino,
2198 parent_ino, parent_gen, dest);
2203 * Check if the ref was overwritten by an inode's ref that was processed
2204 * earlier. If yes, treat as orphan and return 1.
2206 ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
2207 dest->start, dest->end - dest->start);
2211 fs_path_reset(dest);
2212 ret = gen_unique_name(sctx, ino, gen, dest);
2220 * Store the result of the lookup in the name cache.
2222 nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_KERNEL);
2230 nce->parent_ino = *parent_ino;
2231 nce->parent_gen = *parent_gen;
2232 nce->name_len = fs_path_len(dest);
2234 strcpy(nce->name, dest->start);
2236 if (ino < sctx->send_progress)
2237 nce->need_later_update = 0;
2239 nce->need_later_update = 1;
2241 nce_ret = name_cache_insert(sctx, nce);
2244 name_cache_clean_unused(sctx);
2251 * Magic happens here. This function returns the first ref to an inode as it
2252 * would look like while receiving the stream at this point in time.
2253 * We walk the path up to the root. For every inode in between, we check if it
2254 * was already processed/sent. If yes, we continue with the parent as found
2255 * in send_root. If not, we continue with the parent as found in parent_root.
2256 * If we encounter an inode that was deleted at this point in time, we use the
2257 * inodes "orphan" name instead of the real name and stop. Same with new inodes
2258 * that were not created yet and overwritten inodes/refs.
2260 * When do we have have orphan inodes:
2261 * 1. When an inode is freshly created and thus no valid refs are available yet
2262 * 2. When a directory lost all it's refs (deleted) but still has dir items
2263 * inside which were not processed yet (pending for move/delete). If anyone
2264 * tried to get the path to the dir items, it would get a path inside that
2266 * 3. When an inode is moved around or gets new links, it may overwrite the ref
2267 * of an unprocessed inode. If in that case the first ref would be
2268 * overwritten, the overwritten inode gets "orphanized". Later when we
2269 * process this overwritten inode, it is restored at a new place by moving
2272 * sctx->send_progress tells this function at which point in time receiving
2275 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2276 struct fs_path *dest)
2279 struct fs_path *name = NULL;
2280 u64 parent_inode = 0;
2284 name = fs_path_alloc();
2291 fs_path_reset(dest);
2293 while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
2294 struct waiting_dir_move *wdm;
2296 fs_path_reset(name);
2298 if (is_waiting_for_rm(sctx, ino)) {
2299 ret = gen_unique_name(sctx, ino, gen, name);
2302 ret = fs_path_add_path(dest, name);
2306 wdm = get_waiting_dir_move(sctx, ino);
2307 if (wdm && wdm->orphanized) {
2308 ret = gen_unique_name(sctx, ino, gen, name);
2311 ret = get_first_ref(sctx->parent_root, ino,
2312 &parent_inode, &parent_gen, name);
2314 ret = __get_cur_name_and_parent(sctx, ino, gen,
2324 ret = fs_path_add_path(dest, name);
2335 fs_path_unreverse(dest);
2340 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2342 static int send_subvol_begin(struct send_ctx *sctx)
2345 struct btrfs_root *send_root = sctx->send_root;
2346 struct btrfs_root *parent_root = sctx->parent_root;
2347 struct btrfs_path *path;
2348 struct btrfs_key key;
2349 struct btrfs_root_ref *ref;
2350 struct extent_buffer *leaf;
2354 path = btrfs_alloc_path();
2358 name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL);
2360 btrfs_free_path(path);
2364 key.objectid = send_root->objectid;
2365 key.type = BTRFS_ROOT_BACKREF_KEY;
2368 ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2377 leaf = path->nodes[0];
2378 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2379 if (key.type != BTRFS_ROOT_BACKREF_KEY ||
2380 key.objectid != send_root->objectid) {
2384 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2385 namelen = btrfs_root_ref_name_len(leaf, ref);
2386 read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2387 btrfs_release_path(path);
2390 ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2394 ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2399 TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
2401 if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid))
2402 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2403 sctx->send_root->root_item.received_uuid);
2405 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2406 sctx->send_root->root_item.uuid);
2408 TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
2409 le64_to_cpu(sctx->send_root->root_item.ctransid));
2411 if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid))
2412 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2413 parent_root->root_item.received_uuid);
2415 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2416 parent_root->root_item.uuid);
2417 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
2418 le64_to_cpu(sctx->parent_root->root_item.ctransid));
2421 ret = send_cmd(sctx);
2425 btrfs_free_path(path);
2430 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2432 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2436 btrfs_debug(fs_info, "send_truncate %llu size=%llu", ino, size);
2438 p = fs_path_alloc();
2442 ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2446 ret = get_cur_path(sctx, ino, gen, p);
2449 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2450 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2452 ret = send_cmd(sctx);
2460 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2462 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2466 btrfs_debug(fs_info, "send_chmod %llu mode=%llu", ino, mode);
2468 p = fs_path_alloc();
2472 ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2476 ret = get_cur_path(sctx, ino, gen, p);
2479 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2480 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2482 ret = send_cmd(sctx);
2490 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2492 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2496 btrfs_debug(fs_info, "send_chown %llu uid=%llu, gid=%llu",
2499 p = fs_path_alloc();
2503 ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2507 ret = get_cur_path(sctx, ino, gen, p);
2510 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2511 TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2512 TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2514 ret = send_cmd(sctx);
2522 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2524 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2526 struct fs_path *p = NULL;
2527 struct btrfs_inode_item *ii;
2528 struct btrfs_path *path = NULL;
2529 struct extent_buffer *eb;
2530 struct btrfs_key key;
2533 btrfs_debug(fs_info, "send_utimes %llu", ino);
2535 p = fs_path_alloc();
2539 path = alloc_path_for_send();
2546 key.type = BTRFS_INODE_ITEM_KEY;
2548 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2554 eb = path->nodes[0];
2555 slot = path->slots[0];
2556 ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2558 ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2562 ret = get_cur_path(sctx, ino, gen, p);
2565 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2566 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime);
2567 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime);
2568 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime);
2569 /* TODO Add otime support when the otime patches get into upstream */
2571 ret = send_cmd(sctx);
2576 btrfs_free_path(path);
2581 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2582 * a valid path yet because we did not process the refs yet. So, the inode
2583 * is created as orphan.
2585 static int send_create_inode(struct send_ctx *sctx, u64 ino)
2587 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2595 btrfs_debug(fs_info, "send_create_inode %llu", ino);
2597 p = fs_path_alloc();
2601 if (ino != sctx->cur_ino) {
2602 ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode,
2607 gen = sctx->cur_inode_gen;
2608 mode = sctx->cur_inode_mode;
2609 rdev = sctx->cur_inode_rdev;
2612 if (S_ISREG(mode)) {
2613 cmd = BTRFS_SEND_C_MKFILE;
2614 } else if (S_ISDIR(mode)) {
2615 cmd = BTRFS_SEND_C_MKDIR;
2616 } else if (S_ISLNK(mode)) {
2617 cmd = BTRFS_SEND_C_SYMLINK;
2618 } else if (S_ISCHR(mode) || S_ISBLK(mode)) {
2619 cmd = BTRFS_SEND_C_MKNOD;
2620 } else if (S_ISFIFO(mode)) {
2621 cmd = BTRFS_SEND_C_MKFIFO;
2622 } else if (S_ISSOCK(mode)) {
2623 cmd = BTRFS_SEND_C_MKSOCK;
2625 btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o",
2626 (int)(mode & S_IFMT));
2631 ret = begin_cmd(sctx, cmd);
2635 ret = gen_unique_name(sctx, ino, gen, p);
2639 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2640 TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
2642 if (S_ISLNK(mode)) {
2644 ret = read_symlink(sctx->send_root, ino, p);
2647 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2648 } else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2649 S_ISFIFO(mode) || S_ISSOCK(mode)) {
2650 TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
2651 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
2654 ret = send_cmd(sctx);
2666 * We need some special handling for inodes that get processed before the parent
2667 * directory got created. See process_recorded_refs for details.
2668 * This function does the check if we already created the dir out of order.
2670 static int did_create_dir(struct send_ctx *sctx, u64 dir)
2673 struct btrfs_path *path = NULL;
2674 struct btrfs_key key;
2675 struct btrfs_key found_key;
2676 struct btrfs_key di_key;
2677 struct extent_buffer *eb;
2678 struct btrfs_dir_item *di;
2681 path = alloc_path_for_send();
2688 key.type = BTRFS_DIR_INDEX_KEY;
2690 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2695 eb = path->nodes[0];
2696 slot = path->slots[0];
2697 if (slot >= btrfs_header_nritems(eb)) {
2698 ret = btrfs_next_leaf(sctx->send_root, path);
2701 } else if (ret > 0) {
2708 btrfs_item_key_to_cpu(eb, &found_key, slot);
2709 if (found_key.objectid != key.objectid ||
2710 found_key.type != key.type) {
2715 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2716 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2718 if (di_key.type != BTRFS_ROOT_ITEM_KEY &&
2719 di_key.objectid < sctx->send_progress) {
2728 btrfs_free_path(path);
2733 * Only creates the inode if it is:
2734 * 1. Not a directory
2735 * 2. Or a directory which was not created already due to out of order
2736 * directories. See did_create_dir and process_recorded_refs for details.
2738 static int send_create_inode_if_needed(struct send_ctx *sctx)
2742 if (S_ISDIR(sctx->cur_inode_mode)) {
2743 ret = did_create_dir(sctx, sctx->cur_ino);
2752 ret = send_create_inode(sctx, sctx->cur_ino);
2760 struct recorded_ref {
2761 struct list_head list;
2763 struct fs_path *full_path;
2769 static void set_ref_path(struct recorded_ref *ref, struct fs_path *path)
2771 ref->full_path = path;
2772 ref->name = (char *)kbasename(ref->full_path->start);
2773 ref->name_len = ref->full_path->end - ref->name;
2777 * We need to process new refs before deleted refs, but compare_tree gives us
2778 * everything mixed. So we first record all refs and later process them.
2779 * This function is a helper to record one ref.
2781 static int __record_ref(struct list_head *head, u64 dir,
2782 u64 dir_gen, struct fs_path *path)
2784 struct recorded_ref *ref;
2786 ref = kmalloc(sizeof(*ref), GFP_KERNEL);
2791 ref->dir_gen = dir_gen;
2792 set_ref_path(ref, path);
2793 list_add_tail(&ref->list, head);
2797 static int dup_ref(struct recorded_ref *ref, struct list_head *list)
2799 struct recorded_ref *new;
2801 new = kmalloc(sizeof(*ref), GFP_KERNEL);
2805 new->dir = ref->dir;
2806 new->dir_gen = ref->dir_gen;
2807 new->full_path = NULL;
2808 INIT_LIST_HEAD(&new->list);
2809 list_add_tail(&new->list, list);
2813 static void __free_recorded_refs(struct list_head *head)
2815 struct recorded_ref *cur;
2817 while (!list_empty(head)) {
2818 cur = list_entry(head->next, struct recorded_ref, list);
2819 fs_path_free(cur->full_path);
2820 list_del(&cur->list);
2825 static void free_recorded_refs(struct send_ctx *sctx)
2827 __free_recorded_refs(&sctx->new_refs);
2828 __free_recorded_refs(&sctx->deleted_refs);
2832 * Renames/moves a file/dir to its orphan name. Used when the first
2833 * ref of an unprocessed inode gets overwritten and for all non empty
2836 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
2837 struct fs_path *path)
2840 struct fs_path *orphan;
2842 orphan = fs_path_alloc();
2846 ret = gen_unique_name(sctx, ino, gen, orphan);
2850 ret = send_rename(sctx, path, orphan);
2853 fs_path_free(orphan);
2857 static struct orphan_dir_info *
2858 add_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2860 struct rb_node **p = &sctx->orphan_dirs.rb_node;
2861 struct rb_node *parent = NULL;
2862 struct orphan_dir_info *entry, *odi;
2864 odi = kmalloc(sizeof(*odi), GFP_KERNEL);
2866 return ERR_PTR(-ENOMEM);
2872 entry = rb_entry(parent, struct orphan_dir_info, node);
2873 if (dir_ino < entry->ino) {
2875 } else if (dir_ino > entry->ino) {
2876 p = &(*p)->rb_right;
2883 rb_link_node(&odi->node, parent, p);
2884 rb_insert_color(&odi->node, &sctx->orphan_dirs);
2888 static struct orphan_dir_info *
2889 get_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2891 struct rb_node *n = sctx->orphan_dirs.rb_node;
2892 struct orphan_dir_info *entry;
2895 entry = rb_entry(n, struct orphan_dir_info, node);
2896 if (dir_ino < entry->ino)
2898 else if (dir_ino > entry->ino)
2906 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino)
2908 struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino);
2913 static void free_orphan_dir_info(struct send_ctx *sctx,
2914 struct orphan_dir_info *odi)
2918 rb_erase(&odi->node, &sctx->orphan_dirs);
2923 * Returns 1 if a directory can be removed at this point in time.
2924 * We check this by iterating all dir items and checking if the inode behind
2925 * the dir item was already processed.
2927 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen,
2931 struct btrfs_root *root = sctx->parent_root;
2932 struct btrfs_path *path;
2933 struct btrfs_key key;
2934 struct btrfs_key found_key;
2935 struct btrfs_key loc;
2936 struct btrfs_dir_item *di;
2939 * Don't try to rmdir the top/root subvolume dir.
2941 if (dir == BTRFS_FIRST_FREE_OBJECTID)
2944 path = alloc_path_for_send();
2949 key.type = BTRFS_DIR_INDEX_KEY;
2951 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2956 struct waiting_dir_move *dm;
2958 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2959 ret = btrfs_next_leaf(root, path);
2966 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2968 if (found_key.objectid != key.objectid ||
2969 found_key.type != key.type)
2972 di = btrfs_item_ptr(path->nodes[0], path->slots[0],
2973 struct btrfs_dir_item);
2974 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
2976 dm = get_waiting_dir_move(sctx, loc.objectid);
2978 struct orphan_dir_info *odi;
2980 odi = add_orphan_dir_info(sctx, dir);
2986 dm->rmdir_ino = dir;
2991 if (loc.objectid > send_progress) {
2992 struct orphan_dir_info *odi;
2994 odi = get_orphan_dir_info(sctx, dir);
2995 free_orphan_dir_info(sctx, odi);
3006 btrfs_free_path(path);
3010 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino)
3012 struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino);
3014 return entry != NULL;
3017 static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized)
3019 struct rb_node **p = &sctx->waiting_dir_moves.rb_node;
3020 struct rb_node *parent = NULL;
3021 struct waiting_dir_move *entry, *dm;
3023 dm = kmalloc(sizeof(*dm), GFP_KERNEL);
3028 dm->orphanized = orphanized;
3032 entry = rb_entry(parent, struct waiting_dir_move, node);
3033 if (ino < entry->ino) {
3035 } else if (ino > entry->ino) {
3036 p = &(*p)->rb_right;
3043 rb_link_node(&dm->node, parent, p);
3044 rb_insert_color(&dm->node, &sctx->waiting_dir_moves);
3048 static struct waiting_dir_move *
3049 get_waiting_dir_move(struct send_ctx *sctx, u64 ino)
3051 struct rb_node *n = sctx->waiting_dir_moves.rb_node;
3052 struct waiting_dir_move *entry;
3055 entry = rb_entry(n, struct waiting_dir_move, node);
3056 if (ino < entry->ino)
3058 else if (ino > entry->ino)
3066 static void free_waiting_dir_move(struct send_ctx *sctx,
3067 struct waiting_dir_move *dm)
3071 rb_erase(&dm->node, &sctx->waiting_dir_moves);
3075 static int add_pending_dir_move(struct send_ctx *sctx,
3079 struct list_head *new_refs,
3080 struct list_head *deleted_refs,
3081 const bool is_orphan)
3083 struct rb_node **p = &sctx->pending_dir_moves.rb_node;
3084 struct rb_node *parent = NULL;
3085 struct pending_dir_move *entry = NULL, *pm;
3086 struct recorded_ref *cur;
3090 pm = kmalloc(sizeof(*pm), GFP_KERNEL);
3093 pm->parent_ino = parent_ino;
3096 INIT_LIST_HEAD(&pm->list);
3097 INIT_LIST_HEAD(&pm->update_refs);
3098 RB_CLEAR_NODE(&pm->node);
3102 entry = rb_entry(parent, struct pending_dir_move, node);
3103 if (parent_ino < entry->parent_ino) {
3105 } else if (parent_ino > entry->parent_ino) {
3106 p = &(*p)->rb_right;
3113 list_for_each_entry(cur, deleted_refs, list) {
3114 ret = dup_ref(cur, &pm->update_refs);
3118 list_for_each_entry(cur, new_refs, list) {
3119 ret = dup_ref(cur, &pm->update_refs);
3124 ret = add_waiting_dir_move(sctx, pm->ino, is_orphan);
3129 list_add_tail(&pm->list, &entry->list);
3131 rb_link_node(&pm->node, parent, p);
3132 rb_insert_color(&pm->node, &sctx->pending_dir_moves);
3137 __free_recorded_refs(&pm->update_refs);
3143 static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx,
3146 struct rb_node *n = sctx->pending_dir_moves.rb_node;
3147 struct pending_dir_move *entry;
3150 entry = rb_entry(n, struct pending_dir_move, node);
3151 if (parent_ino < entry->parent_ino)
3153 else if (parent_ino > entry->parent_ino)
3161 static int path_loop(struct send_ctx *sctx, struct fs_path *name,
3162 u64 ino, u64 gen, u64 *ancestor_ino)
3165 u64 parent_inode = 0;
3167 u64 start_ino = ino;
3170 while (ino != BTRFS_FIRST_FREE_OBJECTID) {
3171 fs_path_reset(name);
3173 if (is_waiting_for_rm(sctx, ino))
3175 if (is_waiting_for_move(sctx, ino)) {
3176 if (*ancestor_ino == 0)
3177 *ancestor_ino = ino;
3178 ret = get_first_ref(sctx->parent_root, ino,
3179 &parent_inode, &parent_gen, name);
3181 ret = __get_cur_name_and_parent(sctx, ino, gen,
3191 if (parent_inode == start_ino) {
3193 if (*ancestor_ino == 0)
3194 *ancestor_ino = ino;
3203 static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm)
3205 struct fs_path *from_path = NULL;
3206 struct fs_path *to_path = NULL;
3207 struct fs_path *name = NULL;
3208 u64 orig_progress = sctx->send_progress;
3209 struct recorded_ref *cur;
3210 u64 parent_ino, parent_gen;
3211 struct waiting_dir_move *dm = NULL;
3217 name = fs_path_alloc();
3218 from_path = fs_path_alloc();
3219 if (!name || !from_path) {
3224 dm = get_waiting_dir_move(sctx, pm->ino);
3226 rmdir_ino = dm->rmdir_ino;
3227 is_orphan = dm->orphanized;
3228 free_waiting_dir_move(sctx, dm);
3231 ret = gen_unique_name(sctx, pm->ino,
3232 pm->gen, from_path);
3234 ret = get_first_ref(sctx->parent_root, pm->ino,
3235 &parent_ino, &parent_gen, name);
3238 ret = get_cur_path(sctx, parent_ino, parent_gen,
3242 ret = fs_path_add_path(from_path, name);
3247 sctx->send_progress = sctx->cur_ino + 1;
3248 ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor);
3252 LIST_HEAD(deleted_refs);
3253 ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID);
3254 ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor,
3255 &pm->update_refs, &deleted_refs,
3260 dm = get_waiting_dir_move(sctx, pm->ino);
3262 dm->rmdir_ino = rmdir_ino;
3266 fs_path_reset(name);
3269 ret = get_cur_path(sctx, pm->ino, pm->gen, to_path);
3273 ret = send_rename(sctx, from_path, to_path);
3278 struct orphan_dir_info *odi;
3280 odi = get_orphan_dir_info(sctx, rmdir_ino);
3282 /* already deleted */
3285 ret = can_rmdir(sctx, rmdir_ino, odi->gen, sctx->cur_ino);
3291 name = fs_path_alloc();
3296 ret = get_cur_path(sctx, rmdir_ino, odi->gen, name);
3299 ret = send_rmdir(sctx, name);
3302 free_orphan_dir_info(sctx, odi);
3306 ret = send_utimes(sctx, pm->ino, pm->gen);
3311 * After rename/move, need to update the utimes of both new parent(s)
3312 * and old parent(s).
3314 list_for_each_entry(cur, &pm->update_refs, list) {
3316 * The parent inode might have been deleted in the send snapshot
3318 ret = get_inode_info(sctx->send_root, cur->dir, NULL,
3319 NULL, NULL, NULL, NULL, NULL);
3320 if (ret == -ENOENT) {
3327 ret = send_utimes(sctx, cur->dir, cur->dir_gen);
3334 fs_path_free(from_path);
3335 fs_path_free(to_path);
3336 sctx->send_progress = orig_progress;
3341 static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m)
3343 if (!list_empty(&m->list))
3345 if (!RB_EMPTY_NODE(&m->node))
3346 rb_erase(&m->node, &sctx->pending_dir_moves);
3347 __free_recorded_refs(&m->update_refs);
3351 static void tail_append_pending_moves(struct pending_dir_move *moves,
3352 struct list_head *stack)
3354 if (list_empty(&moves->list)) {
3355 list_add_tail(&moves->list, stack);
3358 list_splice_init(&moves->list, &list);
3359 list_add_tail(&moves->list, stack);
3360 list_splice_tail(&list, stack);
3364 static int apply_children_dir_moves(struct send_ctx *sctx)
3366 struct pending_dir_move *pm;
3367 struct list_head stack;
3368 u64 parent_ino = sctx->cur_ino;
3371 pm = get_pending_dir_moves(sctx, parent_ino);
3375 INIT_LIST_HEAD(&stack);
3376 tail_append_pending_moves(pm, &stack);
3378 while (!list_empty(&stack)) {
3379 pm = list_first_entry(&stack, struct pending_dir_move, list);
3380 parent_ino = pm->ino;
3381 ret = apply_dir_move(sctx, pm);
3382 free_pending_move(sctx, pm);
3385 pm = get_pending_dir_moves(sctx, parent_ino);
3387 tail_append_pending_moves(pm, &stack);
3392 while (!list_empty(&stack)) {
3393 pm = list_first_entry(&stack, struct pending_dir_move, list);
3394 free_pending_move(sctx, pm);
3400 * We might need to delay a directory rename even when no ancestor directory
3401 * (in the send root) with a higher inode number than ours (sctx->cur_ino) was
3402 * renamed. This happens when we rename a directory to the old name (the name
3403 * in the parent root) of some other unrelated directory that got its rename
3404 * delayed due to some ancestor with higher number that got renamed.
3410 * |---- a/ (ino 257)
3411 * | |---- file (ino 260)
3413 * |---- b/ (ino 258)
3414 * |---- c/ (ino 259)
3418 * |---- a/ (ino 258)
3419 * |---- x/ (ino 259)
3420 * |---- y/ (ino 257)
3421 * |----- file (ino 260)
3423 * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257
3424 * from 'a' to 'x/y' happening first, which in turn depends on the rename of
3425 * inode 259 from 'c' to 'x'. So the order of rename commands the send stream
3428 * 1 - rename 259 from 'c' to 'x'
3429 * 2 - rename 257 from 'a' to 'x/y'
3430 * 3 - rename 258 from 'b' to 'a'
3432 * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can
3433 * be done right away and < 0 on error.
3435 static int wait_for_dest_dir_move(struct send_ctx *sctx,
3436 struct recorded_ref *parent_ref,
3437 const bool is_orphan)
3439 struct btrfs_fs_info *fs_info = sctx->parent_root->fs_info;
3440 struct btrfs_path *path;
3441 struct btrfs_key key;
3442 struct btrfs_key di_key;
3443 struct btrfs_dir_item *di;
3447 struct waiting_dir_move *wdm;
3449 if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves))
3452 path = alloc_path_for_send();
3456 key.objectid = parent_ref->dir;
3457 key.type = BTRFS_DIR_ITEM_KEY;
3458 key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len);
3460 ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
3463 } else if (ret > 0) {
3468 di = btrfs_match_dir_item_name(fs_info, path, parent_ref->name,
3469 parent_ref->name_len);
3475 * di_key.objectid has the number of the inode that has a dentry in the
3476 * parent directory with the same name that sctx->cur_ino is being
3477 * renamed to. We need to check if that inode is in the send root as
3478 * well and if it is currently marked as an inode with a pending rename,
3479 * if it is, we need to delay the rename of sctx->cur_ino as well, so
3480 * that it happens after that other inode is renamed.
3482 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key);
3483 if (di_key.type != BTRFS_INODE_ITEM_KEY) {
3488 ret = get_inode_info(sctx->parent_root, di_key.objectid, NULL,
3489 &left_gen, NULL, NULL, NULL, NULL);
3492 ret = get_inode_info(sctx->send_root, di_key.objectid, NULL,
3493 &right_gen, NULL, NULL, NULL, NULL);
3500 /* Different inode, no need to delay the rename of sctx->cur_ino */
3501 if (right_gen != left_gen) {
3506 wdm = get_waiting_dir_move(sctx, di_key.objectid);
3507 if (wdm && !wdm->orphanized) {
3508 ret = add_pending_dir_move(sctx,
3510 sctx->cur_inode_gen,
3513 &sctx->deleted_refs,
3519 btrfs_free_path(path);
3524 * Check if ino ino1 is an ancestor of inode ino2 in the given root.
3525 * Return 1 if true, 0 if false and < 0 on error.
3527 static int is_ancestor(struct btrfs_root *root,
3531 struct fs_path *fs_path)
3534 bool free_path = false;
3538 fs_path = fs_path_alloc();
3544 while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3548 fs_path_reset(fs_path);
3549 ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path);
3551 if (ret == -ENOENT && ino == ino2)
3555 if (parent == ino1) {
3556 ret = parent_gen == ino1_gen ? 1 : 0;
3563 fs_path_free(fs_path);
3567 static int wait_for_parent_move(struct send_ctx *sctx,
3568 struct recorded_ref *parent_ref,
3569 const bool is_orphan)
3572 u64 ino = parent_ref->dir;
3573 u64 ino_gen = parent_ref->dir_gen;
3574 u64 parent_ino_before, parent_ino_after;
3575 struct fs_path *path_before = NULL;
3576 struct fs_path *path_after = NULL;
3579 path_after = fs_path_alloc();
3580 path_before = fs_path_alloc();
3581 if (!path_after || !path_before) {
3587 * Our current directory inode may not yet be renamed/moved because some
3588 * ancestor (immediate or not) has to be renamed/moved first. So find if
3589 * such ancestor exists and make sure our own rename/move happens after
3590 * that ancestor is processed to avoid path build infinite loops (done
3591 * at get_cur_path()).
3593 while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3594 u64 parent_ino_after_gen;
3596 if (is_waiting_for_move(sctx, ino)) {
3598 * If the current inode is an ancestor of ino in the
3599 * parent root, we need to delay the rename of the
3600 * current inode, otherwise don't delayed the rename
3601 * because we can end up with a circular dependency
3602 * of renames, resulting in some directories never
3603 * getting the respective rename operations issued in
3604 * the send stream or getting into infinite path build
3607 ret = is_ancestor(sctx->parent_root,
3608 sctx->cur_ino, sctx->cur_inode_gen,
3614 fs_path_reset(path_before);
3615 fs_path_reset(path_after);
3617 ret = get_first_ref(sctx->send_root, ino, &parent_ino_after,
3618 &parent_ino_after_gen, path_after);
3621 ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before,
3623 if (ret < 0 && ret != -ENOENT) {
3625 } else if (ret == -ENOENT) {
3630 len1 = fs_path_len(path_before);
3631 len2 = fs_path_len(path_after);
3632 if (ino > sctx->cur_ino &&
3633 (parent_ino_before != parent_ino_after || len1 != len2 ||
3634 memcmp(path_before->start, path_after->start, len1))) {
3637 ret = get_inode_info(sctx->parent_root, ino, NULL,
3638 &parent_ino_gen, NULL, NULL, NULL,
3642 if (ino_gen == parent_ino_gen) {
3647 ino = parent_ino_after;
3648 ino_gen = parent_ino_after_gen;
3652 fs_path_free(path_before);
3653 fs_path_free(path_after);
3656 ret = add_pending_dir_move(sctx,
3658 sctx->cur_inode_gen,
3661 &sctx->deleted_refs,
3670 static int update_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)
3673 struct fs_path *new_path;
3676 * Our reference's name member points to its full_path member string, so
3677 * we use here a new path.
3679 new_path = fs_path_alloc();
3683 ret = get_cur_path(sctx, ref->dir, ref->dir_gen, new_path);
3685 fs_path_free(new_path);
3688 ret = fs_path_add(new_path, ref->name, ref->name_len);
3690 fs_path_free(new_path);
3694 fs_path_free(ref->full_path);
3695 set_ref_path(ref, new_path);
3701 * This does all the move/link/unlink/rmdir magic.
3703 static int process_recorded_refs(struct send_ctx *sctx, int *pending_move)
3705 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
3707 struct recorded_ref *cur;
3708 struct recorded_ref *cur2;
3709 struct list_head check_dirs;
3710 struct fs_path *valid_path = NULL;
3714 int did_overwrite = 0;
3716 u64 last_dir_ino_rm = 0;
3717 bool can_rename = true;
3718 bool orphanized_dir = false;
3719 bool orphanized_ancestor = false;
3721 btrfs_debug(fs_info, "process_recorded_refs %llu", sctx->cur_ino);
3724 * This should never happen as the root dir always has the same ref
3725 * which is always '..'
3727 BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID);
3728 INIT_LIST_HEAD(&check_dirs);
3730 valid_path = fs_path_alloc();
3737 * First, check if the first ref of the current inode was overwritten
3738 * before. If yes, we know that the current inode was already orphanized
3739 * and thus use the orphan name. If not, we can use get_cur_path to
3740 * get the path of the first ref as it would like while receiving at
3741 * this point in time.
3742 * New inodes are always orphan at the beginning, so force to use the
3743 * orphan name in this case.
3744 * The first ref is stored in valid_path and will be updated if it
3745 * gets moved around.
3747 if (!sctx->cur_inode_new) {
3748 ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
3749 sctx->cur_inode_gen);
3755 if (sctx->cur_inode_new || did_overwrite) {
3756 ret = gen_unique_name(sctx, sctx->cur_ino,
3757 sctx->cur_inode_gen, valid_path);
3762 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3768 list_for_each_entry(cur, &sctx->new_refs, list) {
3770 * We may have refs where the parent directory does not exist
3771 * yet. This happens if the parent directories inum is higher
3772 * the the current inum. To handle this case, we create the
3773 * parent directory out of order. But we need to check if this
3774 * did already happen before due to other refs in the same dir.
3776 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
3779 if (ret == inode_state_will_create) {
3782 * First check if any of the current inodes refs did
3783 * already create the dir.
3785 list_for_each_entry(cur2, &sctx->new_refs, list) {
3788 if (cur2->dir == cur->dir) {
3795 * If that did not happen, check if a previous inode
3796 * did already create the dir.
3799 ret = did_create_dir(sctx, cur->dir);
3803 ret = send_create_inode(sctx, cur->dir);
3810 * Check if this new ref would overwrite the first ref of
3811 * another unprocessed inode. If yes, orphanize the
3812 * overwritten inode. If we find an overwritten ref that is
3813 * not the first ref, simply unlink it.
3815 ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
3816 cur->name, cur->name_len,
3817 &ow_inode, &ow_gen, &ow_mode);
3821 ret = is_first_ref(sctx->parent_root,
3822 ow_inode, cur->dir, cur->name,
3827 struct name_cache_entry *nce;
3828 struct waiting_dir_move *wdm;
3830 ret = orphanize_inode(sctx, ow_inode, ow_gen,
3834 if (S_ISDIR(ow_mode))
3835 orphanized_dir = true;
3838 * If ow_inode has its rename operation delayed
3839 * make sure that its orphanized name is used in
3840 * the source path when performing its rename
3843 if (is_waiting_for_move(sctx, ow_inode)) {
3844 wdm = get_waiting_dir_move(sctx,
3847 wdm->orphanized = true;
3851 * Make sure we clear our orphanized inode's
3852 * name from the name cache. This is because the
3853 * inode ow_inode might be an ancestor of some
3854 * other inode that will be orphanized as well
3855 * later and has an inode number greater than
3856 * sctx->send_progress. We need to prevent
3857 * future name lookups from using the old name
3858 * and get instead the orphan name.
3860 nce = name_cache_search(sctx, ow_inode, ow_gen);
3862 name_cache_delete(sctx, nce);
3867 * ow_inode might currently be an ancestor of
3868 * cur_ino, therefore compute valid_path (the
3869 * current path of cur_ino) again because it
3870 * might contain the pre-orphanization name of
3871 * ow_inode, which is no longer valid.
3873 ret = is_ancestor(sctx->parent_root,
3875 sctx->cur_ino, NULL);
3877 orphanized_ancestor = true;
3878 fs_path_reset(valid_path);
3879 ret = get_cur_path(sctx, sctx->cur_ino,
3880 sctx->cur_inode_gen,
3886 ret = send_unlink(sctx, cur->full_path);
3892 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) {
3893 ret = wait_for_dest_dir_move(sctx, cur, is_orphan);
3902 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root &&
3904 ret = wait_for_parent_move(sctx, cur, is_orphan);
3914 * link/move the ref to the new place. If we have an orphan
3915 * inode, move it and update valid_path. If not, link or move
3916 * it depending on the inode mode.
3918 if (is_orphan && can_rename) {
3919 ret = send_rename(sctx, valid_path, cur->full_path);
3923 ret = fs_path_copy(valid_path, cur->full_path);
3926 } else if (can_rename) {
3927 if (S_ISDIR(sctx->cur_inode_mode)) {
3929 * Dirs can't be linked, so move it. For moved
3930 * dirs, we always have one new and one deleted
3931 * ref. The deleted ref is ignored later.
3933 ret = send_rename(sctx, valid_path,
3936 ret = fs_path_copy(valid_path,
3942 * We might have previously orphanized an inode
3943 * which is an ancestor of our current inode,
3944 * so our reference's full path, which was
3945 * computed before any such orphanizations, must
3948 if (orphanized_dir) {
3949 ret = update_ref_path(sctx, cur);
3953 ret = send_link(sctx, cur->full_path,
3959 ret = dup_ref(cur, &check_dirs);
3964 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
3966 * Check if we can already rmdir the directory. If not,
3967 * orphanize it. For every dir item inside that gets deleted
3968 * later, we do this check again and rmdir it then if possible.
3969 * See the use of check_dirs for more details.
3971 ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3976 ret = send_rmdir(sctx, valid_path);
3979 } else if (!is_orphan) {
3980 ret = orphanize_inode(sctx, sctx->cur_ino,
3981 sctx->cur_inode_gen, valid_path);
3987 list_for_each_entry(cur, &sctx->deleted_refs, list) {
3988 ret = dup_ref(cur, &check_dirs);
3992 } else if (S_ISDIR(sctx->cur_inode_mode) &&
3993 !list_empty(&sctx->deleted_refs)) {
3995 * We have a moved dir. Add the old parent to check_dirs
3997 cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
3999 ret = dup_ref(cur, &check_dirs);
4002 } else if (!S_ISDIR(sctx->cur_inode_mode)) {
4004 * We have a non dir inode. Go through all deleted refs and
4005 * unlink them if they were not already overwritten by other
4008 list_for_each_entry(cur, &sctx->deleted_refs, list) {
4009 ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
4010 sctx->cur_ino, sctx->cur_inode_gen,
4011 cur->name, cur->name_len);
4016 * If we orphanized any ancestor before, we need
4017 * to recompute the full path for deleted names,
4018 * since any such path was computed before we
4019 * processed any references and orphanized any
4022 if (orphanized_ancestor) {
4023 ret = update_ref_path(sctx, cur);
4027 ret = send_unlink(sctx, cur->full_path);
4031 ret = dup_ref(cur, &check_dirs);
4036 * If the inode is still orphan, unlink the orphan. This may
4037 * happen when a previous inode did overwrite the first ref
4038 * of this inode and no new refs were added for the current
4039 * inode. Unlinking does not mean that the inode is deleted in
4040 * all cases. There may still be links to this inode in other
4044 ret = send_unlink(sctx, valid_path);
4051 * We did collect all parent dirs where cur_inode was once located. We
4052 * now go through all these dirs and check if they are pending for
4053 * deletion and if it's finally possible to perform the rmdir now.
4054 * We also update the inode stats of the parent dirs here.
4056 list_for_each_entry(cur, &check_dirs, list) {
4058 * In case we had refs into dirs that were not processed yet,
4059 * we don't need to do the utime and rmdir logic for these dirs.
4060 * The dir will be processed later.
4062 if (cur->dir > sctx->cur_ino)
4065 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
4069 if (ret == inode_state_did_create ||
4070 ret == inode_state_no_change) {
4071 /* TODO delayed utimes */
4072 ret = send_utimes(sctx, cur->dir, cur->dir_gen);
4075 } else if (ret == inode_state_did_delete &&
4076 cur->dir != last_dir_ino_rm) {
4077 ret = can_rmdir(sctx, cur->dir, cur->dir_gen,
4082 ret = get_cur_path(sctx, cur->dir,
4083 cur->dir_gen, valid_path);
4086 ret = send_rmdir(sctx, valid_path);
4089 last_dir_ino_rm = cur->dir;
4097 __free_recorded_refs(&check_dirs);
4098 free_recorded_refs(sctx);
4099 fs_path_free(valid_path);
4103 static int record_ref(struct btrfs_root *root, u64 dir, struct fs_path *name,
4104 void *ctx, struct list_head *refs)
4107 struct send_ctx *sctx = ctx;
4111 p = fs_path_alloc();
4115 ret = get_inode_info(root, dir, NULL, &gen, NULL, NULL,
4120 ret = get_cur_path(sctx, dir, gen, p);
4123 ret = fs_path_add_path(p, name);
4127 ret = __record_ref(refs, dir, gen, p);
4135 static int __record_new_ref(int num, u64 dir, int index,
4136 struct fs_path *name,
4139 struct send_ctx *sctx = ctx;
4140 return record_ref(sctx->send_root, dir, name, ctx, &sctx->new_refs);
4144 static int __record_deleted_ref(int num, u64 dir, int index,
4145 struct fs_path *name,
4148 struct send_ctx *sctx = ctx;
4149 return record_ref(sctx->parent_root, dir, name, ctx,
4150 &sctx->deleted_refs);
4153 static int record_new_ref(struct send_ctx *sctx)
4157 ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4158 sctx->cmp_key, 0, __record_new_ref, sctx);
4167 static int record_deleted_ref(struct send_ctx *sctx)
4171 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4172 sctx->cmp_key, 0, __record_deleted_ref, sctx);
4181 struct find_ref_ctx {
4184 struct btrfs_root *root;
4185 struct fs_path *name;
4189 static int __find_iref(int num, u64 dir, int index,
4190 struct fs_path *name,
4193 struct find_ref_ctx *ctx = ctx_;
4197 if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) &&
4198 strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) {
4200 * To avoid doing extra lookups we'll only do this if everything
4203 ret = get_inode_info(ctx->root, dir, NULL, &dir_gen, NULL,
4207 if (dir_gen != ctx->dir_gen)
4209 ctx->found_idx = num;
4215 static int find_iref(struct btrfs_root *root,
4216 struct btrfs_path *path,
4217 struct btrfs_key *key,
4218 u64 dir, u64 dir_gen, struct fs_path *name)
4221 struct find_ref_ctx ctx;
4225 ctx.dir_gen = dir_gen;
4229 ret = iterate_inode_ref(root, path, key, 0, __find_iref, &ctx);
4233 if (ctx.found_idx == -1)
4236 return ctx.found_idx;
4239 static int __record_changed_new_ref(int num, u64 dir, int index,
4240 struct fs_path *name,
4245 struct send_ctx *sctx = ctx;
4247 ret = get_inode_info(sctx->send_root, dir, NULL, &dir_gen, NULL,
4252 ret = find_iref(sctx->parent_root, sctx->right_path,
4253 sctx->cmp_key, dir, dir_gen, name);
4255 ret = __record_new_ref(num, dir, index, name, sctx);
4262 static int __record_changed_deleted_ref(int num, u64 dir, int index,
4263 struct fs_path *name,
4268 struct send_ctx *sctx = ctx;
4270 ret = get_inode_info(sctx->parent_root, dir, NULL, &dir_gen, NULL,
4275 ret = find_iref(sctx->send_root, sctx->left_path, sctx->cmp_key,
4276 dir, dir_gen, name);
4278 ret = __record_deleted_ref(num, dir, index, name, sctx);
4285 static int record_changed_ref(struct send_ctx *sctx)
4289 ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4290 sctx->cmp_key, 0, __record_changed_new_ref, sctx);
4293 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4294 sctx->cmp_key, 0, __record_changed_deleted_ref, sctx);
4304 * Record and process all refs at once. Needed when an inode changes the
4305 * generation number, which means that it was deleted and recreated.
4307 static int process_all_refs(struct send_ctx *sctx,
4308 enum btrfs_compare_tree_result cmd)
4311 struct btrfs_root *root;
4312 struct btrfs_path *path;
4313 struct btrfs_key key;
4314 struct btrfs_key found_key;
4315 struct extent_buffer *eb;
4317 iterate_inode_ref_t cb;
4318 int pending_move = 0;
4320 path = alloc_path_for_send();
4324 if (cmd == BTRFS_COMPARE_TREE_NEW) {
4325 root = sctx->send_root;
4326 cb = __record_new_ref;
4327 } else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
4328 root = sctx->parent_root;
4329 cb = __record_deleted_ref;
4331 btrfs_err(sctx->send_root->fs_info,
4332 "Wrong command %d in process_all_refs", cmd);
4337 key.objectid = sctx->cmp_key->objectid;
4338 key.type = BTRFS_INODE_REF_KEY;
4340 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4345 eb = path->nodes[0];
4346 slot = path->slots[0];
4347 if (slot >= btrfs_header_nritems(eb)) {
4348 ret = btrfs_next_leaf(root, path);
4356 btrfs_item_key_to_cpu(eb, &found_key, slot);
4358 if (found_key.objectid != key.objectid ||
4359 (found_key.type != BTRFS_INODE_REF_KEY &&
4360 found_key.type != BTRFS_INODE_EXTREF_KEY))
4363 ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx);
4369 btrfs_release_path(path);
4372 * We don't actually care about pending_move as we are simply
4373 * re-creating this inode and will be rename'ing it into place once we
4374 * rename the parent directory.
4376 ret = process_recorded_refs(sctx, &pending_move);
4378 btrfs_free_path(path);
4382 static int send_set_xattr(struct send_ctx *sctx,
4383 struct fs_path *path,
4384 const char *name, int name_len,
4385 const char *data, int data_len)
4389 ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
4393 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4394 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4395 TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
4397 ret = send_cmd(sctx);
4404 static int send_remove_xattr(struct send_ctx *sctx,
4405 struct fs_path *path,
4406 const char *name, int name_len)
4410 ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
4414 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4415 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4417 ret = send_cmd(sctx);
4424 static int __process_new_xattr(int num, struct btrfs_key *di_key,
4425 const char *name, int name_len,
4426 const char *data, int data_len,
4430 struct send_ctx *sctx = ctx;
4432 struct posix_acl_xattr_header dummy_acl;
4434 p = fs_path_alloc();
4439 * This hack is needed because empty acls are stored as zero byte
4440 * data in xattrs. Problem with that is, that receiving these zero byte
4441 * acls will fail later. To fix this, we send a dummy acl list that
4442 * only contains the version number and no entries.
4444 if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
4445 !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
4446 if (data_len == 0) {
4447 dummy_acl.a_version =
4448 cpu_to_le32(POSIX_ACL_XATTR_VERSION);
4449 data = (char *)&dummy_acl;
4450 data_len = sizeof(dummy_acl);
4454 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4458 ret = send_set_xattr(sctx, p, name, name_len, data, data_len);
4465 static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
4466 const char *name, int name_len,
4467 const char *data, int data_len,
4471 struct send_ctx *sctx = ctx;
4474 p = fs_path_alloc();
4478 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4482 ret = send_remove_xattr(sctx, p, name, name_len);
4489 static int process_new_xattr(struct send_ctx *sctx)
4493 ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4494 __process_new_xattr, sctx);
4499 static int process_deleted_xattr(struct send_ctx *sctx)
4501 return iterate_dir_item(sctx->parent_root, sctx->right_path,
4502 __process_deleted_xattr, sctx);
4505 struct find_xattr_ctx {
4513 static int __find_xattr(int num, struct btrfs_key *di_key,
4514 const char *name, int name_len,
4515 const char *data, int data_len,
4516 u8 type, void *vctx)
4518 struct find_xattr_ctx *ctx = vctx;
4520 if (name_len == ctx->name_len &&
4521 strncmp(name, ctx->name, name_len) == 0) {
4522 ctx->found_idx = num;
4523 ctx->found_data_len = data_len;
4524 ctx->found_data = kmemdup(data, data_len, GFP_KERNEL);
4525 if (!ctx->found_data)
4532 static int find_xattr(struct btrfs_root *root,
4533 struct btrfs_path *path,
4534 struct btrfs_key *key,
4535 const char *name, int name_len,
4536 char **data, int *data_len)
4539 struct find_xattr_ctx ctx;
4542 ctx.name_len = name_len;
4544 ctx.found_data = NULL;
4545 ctx.found_data_len = 0;
4547 ret = iterate_dir_item(root, path, __find_xattr, &ctx);
4551 if (ctx.found_idx == -1)
4554 *data = ctx.found_data;
4555 *data_len = ctx.found_data_len;
4557 kfree(ctx.found_data);
4559 return ctx.found_idx;
4563 static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
4564 const char *name, int name_len,
4565 const char *data, int data_len,
4569 struct send_ctx *sctx = ctx;
4570 char *found_data = NULL;
4571 int found_data_len = 0;
4573 ret = find_xattr(sctx->parent_root, sctx->right_path,
4574 sctx->cmp_key, name, name_len, &found_data,
4576 if (ret == -ENOENT) {
4577 ret = __process_new_xattr(num, di_key, name, name_len, data,
4578 data_len, type, ctx);
4579 } else if (ret >= 0) {
4580 if (data_len != found_data_len ||
4581 memcmp(data, found_data, data_len)) {
4582 ret = __process_new_xattr(num, di_key, name, name_len,
4583 data, data_len, type, ctx);
4593 static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
4594 const char *name, int name_len,
4595 const char *data, int data_len,
4599 struct send_ctx *sctx = ctx;
4601 ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key,
4602 name, name_len, NULL, NULL);
4604 ret = __process_deleted_xattr(num, di_key, name, name_len, data,
4605 data_len, type, ctx);
4612 static int process_changed_xattr(struct send_ctx *sctx)
4616 ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4617 __process_changed_new_xattr, sctx);
4620 ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
4621 __process_changed_deleted_xattr, sctx);
4627 static int process_all_new_xattrs(struct send_ctx *sctx)
4630 struct btrfs_root *root;
4631 struct btrfs_path *path;
4632 struct btrfs_key key;
4633 struct btrfs_key found_key;
4634 struct extent_buffer *eb;
4637 path = alloc_path_for_send();
4641 root = sctx->send_root;
4643 key.objectid = sctx->cmp_key->objectid;
4644 key.type = BTRFS_XATTR_ITEM_KEY;
4646 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4651 eb = path->nodes[0];
4652 slot = path->slots[0];
4653 if (slot >= btrfs_header_nritems(eb)) {
4654 ret = btrfs_next_leaf(root, path);
4657 } else if (ret > 0) {
4664 btrfs_item_key_to_cpu(eb, &found_key, slot);
4665 if (found_key.objectid != key.objectid ||
4666 found_key.type != key.type) {
4671 ret = iterate_dir_item(root, path, __process_new_xattr, sctx);
4679 btrfs_free_path(path);
4683 static ssize_t fill_read_buf(struct send_ctx *sctx, u64 offset, u32 len)
4685 struct btrfs_root *root = sctx->send_root;
4686 struct btrfs_fs_info *fs_info = root->fs_info;
4687 struct inode *inode;
4690 struct btrfs_key key;
4691 pgoff_t index = offset >> PAGE_SHIFT;
4693 unsigned pg_offset = offset & ~PAGE_MASK;
4696 key.objectid = sctx->cur_ino;
4697 key.type = BTRFS_INODE_ITEM_KEY;
4700 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
4702 return PTR_ERR(inode);
4704 if (offset + len > i_size_read(inode)) {
4705 if (offset > i_size_read(inode))
4708 len = offset - i_size_read(inode);
4713 last_index = (offset + len - 1) >> PAGE_SHIFT;
4715 /* initial readahead */
4716 memset(&sctx->ra, 0, sizeof(struct file_ra_state));
4717 file_ra_state_init(&sctx->ra, inode->i_mapping);
4719 while (index <= last_index) {
4720 unsigned cur_len = min_t(unsigned, len,
4721 PAGE_SIZE - pg_offset);
4723 page = find_lock_page(inode->i_mapping, index);
4725 page_cache_sync_readahead(inode->i_mapping, &sctx->ra,
4726 NULL, index, last_index + 1 - index);
4728 page = find_or_create_page(inode->i_mapping, index,
4736 if (PageReadahead(page)) {
4737 page_cache_async_readahead(inode->i_mapping, &sctx->ra,
4738 NULL, page, index, last_index + 1 - index);
4741 if (!PageUptodate(page)) {
4742 btrfs_readpage(NULL, page);
4744 if (!PageUptodate(page)) {
4753 memcpy(sctx->read_buf + ret, addr + pg_offset, cur_len);
4768 * Read some bytes from the current inode/file and send a write command to
4771 static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
4773 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
4776 ssize_t num_read = 0;
4778 p = fs_path_alloc();
4782 btrfs_debug(fs_info, "send_write offset=%llu, len=%d", offset, len);
4784 num_read = fill_read_buf(sctx, offset, len);
4785 if (num_read <= 0) {
4791 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
4795 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4799 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4800 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4801 TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, num_read);
4803 ret = send_cmd(sctx);
4814 * Send a clone command to user space.
4816 static int send_clone(struct send_ctx *sctx,
4817 u64 offset, u32 len,
4818 struct clone_root *clone_root)
4824 btrfs_debug(sctx->send_root->fs_info,
4825 "send_clone offset=%llu, len=%d, clone_root=%llu, clone_inode=%llu, clone_offset=%llu",
4826 offset, len, clone_root->root->objectid, clone_root->ino,
4827 clone_root->offset);
4829 p = fs_path_alloc();
4833 ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
4837 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4841 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4842 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
4843 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4845 if (clone_root->root == sctx->send_root) {
4846 ret = get_inode_info(sctx->send_root, clone_root->ino, NULL,
4847 &gen, NULL, NULL, NULL, NULL);
4850 ret = get_cur_path(sctx, clone_root->ino, gen, p);
4852 ret = get_inode_path(clone_root->root, clone_root->ino, p);
4858 * If the parent we're using has a received_uuid set then use that as
4859 * our clone source as that is what we will look for when doing a
4862 * This covers the case that we create a snapshot off of a received
4863 * subvolume and then use that as the parent and try to receive on a
4866 if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid))
4867 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
4868 clone_root->root->root_item.received_uuid);
4870 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
4871 clone_root->root->root_item.uuid);
4872 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
4873 le64_to_cpu(clone_root->root->root_item.ctransid));
4874 TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
4875 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
4876 clone_root->offset);
4878 ret = send_cmd(sctx);
4887 * Send an update extent command to user space.
4889 static int send_update_extent(struct send_ctx *sctx,
4890 u64 offset, u32 len)
4895 p = fs_path_alloc();
4899 ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT);
4903 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4907 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4908 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4909 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
4911 ret = send_cmd(sctx);
4919 static int send_hole(struct send_ctx *sctx, u64 end)
4921 struct fs_path *p = NULL;
4922 u64 offset = sctx->cur_inode_last_extent;
4926 p = fs_path_alloc();
4929 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4931 goto tlv_put_failure;
4932 memset(sctx->read_buf, 0, BTRFS_SEND_READ_SIZE);
4933 while (offset < end) {
4934 len = min_t(u64, end - offset, BTRFS_SEND_READ_SIZE);
4936 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
4939 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4940 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4941 TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, len);
4942 ret = send_cmd(sctx);
4952 static int send_extent_data(struct send_ctx *sctx,
4958 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
4959 return send_update_extent(sctx, offset, len);
4961 while (sent < len) {
4962 u64 size = len - sent;
4965 if (size > BTRFS_SEND_READ_SIZE)
4966 size = BTRFS_SEND_READ_SIZE;
4967 ret = send_write(sctx, offset + sent, size);
4977 static int clone_range(struct send_ctx *sctx,
4978 struct clone_root *clone_root,
4979 const u64 disk_byte,
4984 struct btrfs_path *path;
4985 struct btrfs_key key;
4989 * Prevent cloning from a zero offset with a length matching the sector
4990 * size because in some scenarios this will make the receiver fail.
4992 * For example, if in the source filesystem the extent at offset 0
4993 * has a length of sectorsize and it was written using direct IO, then
4994 * it can never be an inline extent (even if compression is enabled).
4995 * Then this extent can be cloned in the original filesystem to a non
4996 * zero file offset, but it may not be possible to clone in the
4997 * destination filesystem because it can be inlined due to compression
4998 * on the destination filesystem (as the receiver's write operations are
4999 * always done using buffered IO). The same happens when the original
5000 * filesystem does not have compression enabled but the destination
5003 if (clone_root->offset == 0 &&
5004 len == sctx->send_root->fs_info->sectorsize)
5005 return send_extent_data(sctx, offset, len);
5007 path = alloc_path_for_send();
5012 * We can't send a clone operation for the entire range if we find
5013 * extent items in the respective range in the source file that
5014 * refer to different extents or if we find holes.
5015 * So check for that and do a mix of clone and regular write/copy
5016 * operations if needed.
5020 * mkfs.btrfs -f /dev/sda
5021 * mount /dev/sda /mnt
5022 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo
5023 * cp --reflink=always /mnt/foo /mnt/bar
5024 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo
5025 * btrfs subvolume snapshot -r /mnt /mnt/snap
5027 * If when we send the snapshot and we are processing file bar (which
5028 * has a higher inode number than foo) we blindly send a clone operation
5029 * for the [0, 100K[ range from foo to bar, the receiver ends up getting
5030 * a file bar that matches the content of file foo - iow, doesn't match
5031 * the content from bar in the original filesystem.
5033 key.objectid = clone_root->ino;
5034 key.type = BTRFS_EXTENT_DATA_KEY;
5035 key.offset = clone_root->offset;
5036 ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0);
5039 if (ret > 0 && path->slots[0] > 0) {
5040 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
5041 if (key.objectid == clone_root->ino &&
5042 key.type == BTRFS_EXTENT_DATA_KEY)
5047 struct extent_buffer *leaf = path->nodes[0];
5048 int slot = path->slots[0];
5049 struct btrfs_file_extent_item *ei;
5054 if (slot >= btrfs_header_nritems(leaf)) {
5055 ret = btrfs_next_leaf(clone_root->root, path);
5063 btrfs_item_key_to_cpu(leaf, &key, slot);
5066 * We might have an implicit trailing hole (NO_HOLES feature
5067 * enabled). We deal with it after leaving this loop.
5069 if (key.objectid != clone_root->ino ||
5070 key.type != BTRFS_EXTENT_DATA_KEY)
5073 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5074 type = btrfs_file_extent_type(leaf, ei);
5075 if (type == BTRFS_FILE_EXTENT_INLINE) {
5076 ext_len = btrfs_file_extent_inline_len(leaf, slot, ei);
5077 ext_len = PAGE_ALIGN(ext_len);
5079 ext_len = btrfs_file_extent_num_bytes(leaf, ei);
5082 if (key.offset + ext_len <= clone_root->offset)
5085 if (key.offset > clone_root->offset) {
5086 /* Implicit hole, NO_HOLES feature enabled. */
5087 u64 hole_len = key.offset - clone_root->offset;
5091 ret = send_extent_data(sctx, offset, hole_len);
5099 clone_root->offset += hole_len;
5100 data_offset += hole_len;
5103 if (key.offset >= clone_root->offset + len)
5106 clone_len = min_t(u64, ext_len, len);
5108 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte &&
5109 btrfs_file_extent_offset(leaf, ei) == data_offset)
5110 ret = send_clone(sctx, offset, clone_len, clone_root);
5112 ret = send_extent_data(sctx, offset, clone_len);
5120 offset += clone_len;
5121 clone_root->offset += clone_len;
5122 data_offset += clone_len;
5128 ret = send_extent_data(sctx, offset, len);
5132 btrfs_free_path(path);
5136 static int send_write_or_clone(struct send_ctx *sctx,
5137 struct btrfs_path *path,
5138 struct btrfs_key *key,
5139 struct clone_root *clone_root)
5142 struct btrfs_file_extent_item *ei;
5143 u64 offset = key->offset;
5146 u64 bs = sctx->send_root->fs_info->sb->s_blocksize;
5148 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
5149 struct btrfs_file_extent_item);
5150 type = btrfs_file_extent_type(path->nodes[0], ei);
5151 if (type == BTRFS_FILE_EXTENT_INLINE) {
5152 len = btrfs_file_extent_inline_len(path->nodes[0],
5153 path->slots[0], ei);
5155 * it is possible the inline item won't cover the whole page,
5156 * but there may be items after this page. Make
5157 * sure to send the whole thing
5159 len = PAGE_ALIGN(len);
5161 len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
5164 if (offset + len > sctx->cur_inode_size)
5165 len = sctx->cur_inode_size - offset;
5171 if (clone_root && IS_ALIGNED(offset + len, bs)) {
5175 disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei);
5176 data_offset = btrfs_file_extent_offset(path->nodes[0], ei);
5177 ret = clone_range(sctx, clone_root, disk_byte, data_offset,
5180 ret = send_extent_data(sctx, offset, len);
5186 static int is_extent_unchanged(struct send_ctx *sctx,
5187 struct btrfs_path *left_path,
5188 struct btrfs_key *ekey)
5191 struct btrfs_key key;
5192 struct btrfs_path *path = NULL;
5193 struct extent_buffer *eb;
5195 struct btrfs_key found_key;
5196 struct btrfs_file_extent_item *ei;
5201 u64 left_offset_fixed;
5209 path = alloc_path_for_send();
5213 eb = left_path->nodes[0];
5214 slot = left_path->slots[0];
5215 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
5216 left_type = btrfs_file_extent_type(eb, ei);
5218 if (left_type != BTRFS_FILE_EXTENT_REG) {
5222 left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
5223 left_len = btrfs_file_extent_num_bytes(eb, ei);
5224 left_offset = btrfs_file_extent_offset(eb, ei);
5225 left_gen = btrfs_file_extent_generation(eb, ei);
5228 * Following comments will refer to these graphics. L is the left
5229 * extents which we are checking at the moment. 1-8 are the right
5230 * extents that we iterate.
5233 * |-1-|-2a-|-3-|-4-|-5-|-6-|
5236 * |--1--|-2b-|...(same as above)
5238 * Alternative situation. Happens on files where extents got split.
5240 * |-----------7-----------|-6-|
5242 * Alternative situation. Happens on files which got larger.
5245 * Nothing follows after 8.
5248 key.objectid = ekey->objectid;
5249 key.type = BTRFS_EXTENT_DATA_KEY;
5250 key.offset = ekey->offset;
5251 ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
5260 * Handle special case where the right side has no extents at all.
5262 eb = path->nodes[0];
5263 slot = path->slots[0];
5264 btrfs_item_key_to_cpu(eb, &found_key, slot);
5265 if (found_key.objectid != key.objectid ||
5266 found_key.type != key.type) {
5267 /* If we're a hole then just pretend nothing changed */
5268 ret = (left_disknr) ? 0 : 1;
5273 * We're now on 2a, 2b or 7.
5276 while (key.offset < ekey->offset + left_len) {
5277 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
5278 right_type = btrfs_file_extent_type(eb, ei);
5279 if (right_type != BTRFS_FILE_EXTENT_REG &&
5280 right_type != BTRFS_FILE_EXTENT_INLINE) {
5285 if (right_type == BTRFS_FILE_EXTENT_INLINE) {
5286 right_len = btrfs_file_extent_inline_len(eb, slot, ei);
5287 right_len = PAGE_ALIGN(right_len);
5289 right_len = btrfs_file_extent_num_bytes(eb, ei);
5293 * Are we at extent 8? If yes, we know the extent is changed.
5294 * This may only happen on the first iteration.
5296 if (found_key.offset + right_len <= ekey->offset) {
5297 /* If we're a hole just pretend nothing changed */
5298 ret = (left_disknr) ? 0 : 1;
5303 * We just wanted to see if when we have an inline extent, what
5304 * follows it is a regular extent (wanted to check the above
5305 * condition for inline extents too). This should normally not
5306 * happen but it's possible for example when we have an inline
5307 * compressed extent representing data with a size matching
5308 * the page size (currently the same as sector size).
5310 if (right_type == BTRFS_FILE_EXTENT_INLINE) {
5315 right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
5316 right_offset = btrfs_file_extent_offset(eb, ei);
5317 right_gen = btrfs_file_extent_generation(eb, ei);
5319 left_offset_fixed = left_offset;
5320 if (key.offset < ekey->offset) {
5321 /* Fix the right offset for 2a and 7. */
5322 right_offset += ekey->offset - key.offset;
5324 /* Fix the left offset for all behind 2a and 2b */
5325 left_offset_fixed += key.offset - ekey->offset;
5329 * Check if we have the same extent.
5331 if (left_disknr != right_disknr ||
5332 left_offset_fixed != right_offset ||
5333 left_gen != right_gen) {
5339 * Go to the next extent.
5341 ret = btrfs_next_item(sctx->parent_root, path);
5345 eb = path->nodes[0];
5346 slot = path->slots[0];
5347 btrfs_item_key_to_cpu(eb, &found_key, slot);
5349 if (ret || found_key.objectid != key.objectid ||
5350 found_key.type != key.type) {
5351 key.offset += right_len;
5354 if (found_key.offset != key.offset + right_len) {
5362 * We're now behind the left extent (treat as unchanged) or at the end
5363 * of the right side (treat as changed).
5365 if (key.offset >= ekey->offset + left_len)
5372 btrfs_free_path(path);
5376 static int get_last_extent(struct send_ctx *sctx, u64 offset)
5378 struct btrfs_path *path;
5379 struct btrfs_root *root = sctx->send_root;
5380 struct btrfs_file_extent_item *fi;
5381 struct btrfs_key key;
5386 path = alloc_path_for_send();
5390 sctx->cur_inode_last_extent = 0;
5392 key.objectid = sctx->cur_ino;
5393 key.type = BTRFS_EXTENT_DATA_KEY;
5394 key.offset = offset;
5395 ret = btrfs_search_slot_for_read(root, &key, path, 0, 1);
5399 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
5400 if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY)
5403 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
5404 struct btrfs_file_extent_item);
5405 type = btrfs_file_extent_type(path->nodes[0], fi);
5406 if (type == BTRFS_FILE_EXTENT_INLINE) {
5407 u64 size = btrfs_file_extent_inline_len(path->nodes[0],
5408 path->slots[0], fi);
5409 extent_end = ALIGN(key.offset + size,
5410 sctx->send_root->fs_info->sectorsize);
5412 extent_end = key.offset +
5413 btrfs_file_extent_num_bytes(path->nodes[0], fi);
5415 sctx->cur_inode_last_extent = extent_end;
5417 btrfs_free_path(path);
5421 static int range_is_hole_in_parent(struct send_ctx *sctx,
5425 struct btrfs_path *path;
5426 struct btrfs_key key;
5427 struct btrfs_root *root = sctx->parent_root;
5428 u64 search_start = start;
5431 path = alloc_path_for_send();
5435 key.objectid = sctx->cur_ino;
5436 key.type = BTRFS_EXTENT_DATA_KEY;
5437 key.offset = search_start;
5438 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5441 if (ret > 0 && path->slots[0] > 0)
5444 while (search_start < end) {
5445 struct extent_buffer *leaf = path->nodes[0];
5446 int slot = path->slots[0];
5447 struct btrfs_file_extent_item *fi;
5450 if (slot >= btrfs_header_nritems(leaf)) {
5451 ret = btrfs_next_leaf(root, path);
5459 btrfs_item_key_to_cpu(leaf, &key, slot);
5460 if (key.objectid < sctx->cur_ino ||
5461 key.type < BTRFS_EXTENT_DATA_KEY)
5463 if (key.objectid > sctx->cur_ino ||
5464 key.type > BTRFS_EXTENT_DATA_KEY ||
5468 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5469 if (btrfs_file_extent_type(leaf, fi) ==
5470 BTRFS_FILE_EXTENT_INLINE) {
5471 u64 size = btrfs_file_extent_inline_len(leaf, slot, fi);
5473 extent_end = ALIGN(key.offset + size,
5474 root->fs_info->sectorsize);
5476 extent_end = key.offset +
5477 btrfs_file_extent_num_bytes(leaf, fi);
5479 if (extent_end <= start)
5481 if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) {
5482 search_start = extent_end;
5492 btrfs_free_path(path);
5496 static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path,
5497 struct btrfs_key *key)
5499 struct btrfs_file_extent_item *fi;
5504 if (sctx->cur_ino != key->objectid || !need_send_hole(sctx))
5507 if (sctx->cur_inode_last_extent == (u64)-1) {
5508 ret = get_last_extent(sctx, key->offset - 1);
5513 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
5514 struct btrfs_file_extent_item);
5515 type = btrfs_file_extent_type(path->nodes[0], fi);
5516 if (type == BTRFS_FILE_EXTENT_INLINE) {
5517 u64 size = btrfs_file_extent_inline_len(path->nodes[0],
5518 path->slots[0], fi);
5519 extent_end = ALIGN(key->offset + size,
5520 sctx->send_root->fs_info->sectorsize);
5522 extent_end = key->offset +
5523 btrfs_file_extent_num_bytes(path->nodes[0], fi);
5526 if (path->slots[0] == 0 &&
5527 sctx->cur_inode_last_extent < key->offset) {
5529 * We might have skipped entire leafs that contained only
5530 * file extent items for our current inode. These leafs have
5531 * a generation number smaller (older) than the one in the
5532 * current leaf and the leaf our last extent came from, and
5533 * are located between these 2 leafs.
5535 ret = get_last_extent(sctx, key->offset - 1);
5540 if (sctx->cur_inode_last_extent < key->offset) {
5541 ret = range_is_hole_in_parent(sctx,
5542 sctx->cur_inode_last_extent,
5547 ret = send_hole(sctx, key->offset);
5551 sctx->cur_inode_last_extent = extent_end;
5555 static int process_extent(struct send_ctx *sctx,
5556 struct btrfs_path *path,
5557 struct btrfs_key *key)
5559 struct clone_root *found_clone = NULL;
5562 if (S_ISLNK(sctx->cur_inode_mode))
5565 if (sctx->parent_root && !sctx->cur_inode_new) {
5566 ret = is_extent_unchanged(sctx, path, key);
5574 struct btrfs_file_extent_item *ei;
5577 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
5578 struct btrfs_file_extent_item);
5579 type = btrfs_file_extent_type(path->nodes[0], ei);
5580 if (type == BTRFS_FILE_EXTENT_PREALLOC ||
5581 type == BTRFS_FILE_EXTENT_REG) {
5583 * The send spec does not have a prealloc command yet,
5584 * so just leave a hole for prealloc'ed extents until
5585 * we have enough commands queued up to justify rev'ing
5588 if (type == BTRFS_FILE_EXTENT_PREALLOC) {
5593 /* Have a hole, just skip it. */
5594 if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) {
5601 ret = find_extent_clone(sctx, path, key->objectid, key->offset,
5602 sctx->cur_inode_size, &found_clone);
5603 if (ret != -ENOENT && ret < 0)
5606 ret = send_write_or_clone(sctx, path, key, found_clone);
5610 ret = maybe_send_hole(sctx, path, key);
5615 static int process_all_extents(struct send_ctx *sctx)
5618 struct btrfs_root *root;
5619 struct btrfs_path *path;
5620 struct btrfs_key key;
5621 struct btrfs_key found_key;
5622 struct extent_buffer *eb;
5625 root = sctx->send_root;
5626 path = alloc_path_for_send();
5630 key.objectid = sctx->cmp_key->objectid;
5631 key.type = BTRFS_EXTENT_DATA_KEY;
5633 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5638 eb = path->nodes[0];
5639 slot = path->slots[0];
5641 if (slot >= btrfs_header_nritems(eb)) {
5642 ret = btrfs_next_leaf(root, path);
5645 } else if (ret > 0) {
5652 btrfs_item_key_to_cpu(eb, &found_key, slot);
5654 if (found_key.objectid != key.objectid ||
5655 found_key.type != key.type) {
5660 ret = process_extent(sctx, path, &found_key);
5668 btrfs_free_path(path);
5672 static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end,
5674 int *refs_processed)
5678 if (sctx->cur_ino == 0)
5680 if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
5681 sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
5683 if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
5686 ret = process_recorded_refs(sctx, pending_move);
5690 *refs_processed = 1;
5695 static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
5706 int pending_move = 0;
5707 int refs_processed = 0;
5709 ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move,
5715 * We have processed the refs and thus need to advance send_progress.
5716 * Now, calls to get_cur_xxx will take the updated refs of the current
5717 * inode into account.
5719 * On the other hand, if our current inode is a directory and couldn't
5720 * be moved/renamed because its parent was renamed/moved too and it has
5721 * a higher inode number, we can only move/rename our current inode
5722 * after we moved/renamed its parent. Therefore in this case operate on
5723 * the old path (pre move/rename) of our current inode, and the
5724 * move/rename will be performed later.
5726 if (refs_processed && !pending_move)
5727 sctx->send_progress = sctx->cur_ino + 1;
5729 if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
5731 if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
5734 ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL,
5735 &left_mode, &left_uid, &left_gid, NULL);
5739 if (!sctx->parent_root || sctx->cur_inode_new) {
5741 if (!S_ISLNK(sctx->cur_inode_mode))
5744 ret = get_inode_info(sctx->parent_root, sctx->cur_ino,
5745 NULL, NULL, &right_mode, &right_uid,
5750 if (left_uid != right_uid || left_gid != right_gid)
5752 if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
5756 if (S_ISREG(sctx->cur_inode_mode)) {
5757 if (need_send_hole(sctx)) {
5758 if (sctx->cur_inode_last_extent == (u64)-1 ||
5759 sctx->cur_inode_last_extent <
5760 sctx->cur_inode_size) {
5761 ret = get_last_extent(sctx, (u64)-1);
5765 if (sctx->cur_inode_last_extent <
5766 sctx->cur_inode_size) {
5767 ret = send_hole(sctx, sctx->cur_inode_size);
5772 ret = send_truncate(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5773 sctx->cur_inode_size);
5779 ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5780 left_uid, left_gid);
5785 ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5792 * If other directory inodes depended on our current directory
5793 * inode's move/rename, now do their move/rename operations.
5795 if (!is_waiting_for_move(sctx, sctx->cur_ino)) {
5796 ret = apply_children_dir_moves(sctx);
5800 * Need to send that every time, no matter if it actually
5801 * changed between the two trees as we have done changes to
5802 * the inode before. If our inode is a directory and it's
5803 * waiting to be moved/renamed, we will send its utimes when
5804 * it's moved/renamed, therefore we don't need to do it here.
5806 sctx->send_progress = sctx->cur_ino + 1;
5807 ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
5816 static int changed_inode(struct send_ctx *sctx,
5817 enum btrfs_compare_tree_result result)
5820 struct btrfs_key *key = sctx->cmp_key;
5821 struct btrfs_inode_item *left_ii = NULL;
5822 struct btrfs_inode_item *right_ii = NULL;
5826 sctx->cur_ino = key->objectid;
5827 sctx->cur_inode_new_gen = 0;
5828 sctx->cur_inode_last_extent = (u64)-1;
5831 * Set send_progress to current inode. This will tell all get_cur_xxx
5832 * functions that the current inode's refs are not updated yet. Later,
5833 * when process_recorded_refs is finished, it is set to cur_ino + 1.
5835 sctx->send_progress = sctx->cur_ino;
5837 if (result == BTRFS_COMPARE_TREE_NEW ||
5838 result == BTRFS_COMPARE_TREE_CHANGED) {
5839 left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
5840 sctx->left_path->slots[0],
5841 struct btrfs_inode_item);
5842 left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
5845 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
5846 sctx->right_path->slots[0],
5847 struct btrfs_inode_item);
5848 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
5851 if (result == BTRFS_COMPARE_TREE_CHANGED) {
5852 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
5853 sctx->right_path->slots[0],
5854 struct btrfs_inode_item);
5856 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
5860 * The cur_ino = root dir case is special here. We can't treat
5861 * the inode as deleted+reused because it would generate a
5862 * stream that tries to delete/mkdir the root dir.
5864 if (left_gen != right_gen &&
5865 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
5866 sctx->cur_inode_new_gen = 1;
5869 if (result == BTRFS_COMPARE_TREE_NEW) {
5870 sctx->cur_inode_gen = left_gen;
5871 sctx->cur_inode_new = 1;
5872 sctx->cur_inode_deleted = 0;
5873 sctx->cur_inode_size = btrfs_inode_size(
5874 sctx->left_path->nodes[0], left_ii);
5875 sctx->cur_inode_mode = btrfs_inode_mode(
5876 sctx->left_path->nodes[0], left_ii);
5877 sctx->cur_inode_rdev = btrfs_inode_rdev(
5878 sctx->left_path->nodes[0], left_ii);
5879 if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
5880 ret = send_create_inode_if_needed(sctx);
5881 } else if (result == BTRFS_COMPARE_TREE_DELETED) {
5882 sctx->cur_inode_gen = right_gen;
5883 sctx->cur_inode_new = 0;
5884 sctx->cur_inode_deleted = 1;
5885 sctx->cur_inode_size = btrfs_inode_size(
5886 sctx->right_path->nodes[0], right_ii);
5887 sctx->cur_inode_mode = btrfs_inode_mode(
5888 sctx->right_path->nodes[0], right_ii);
5889 } else if (result == BTRFS_COMPARE_TREE_CHANGED) {
5891 * We need to do some special handling in case the inode was
5892 * reported as changed with a changed generation number. This
5893 * means that the original inode was deleted and new inode
5894 * reused the same inum. So we have to treat the old inode as
5895 * deleted and the new one as new.
5897 if (sctx->cur_inode_new_gen) {
5899 * First, process the inode as if it was deleted.
5901 sctx->cur_inode_gen = right_gen;
5902 sctx->cur_inode_new = 0;
5903 sctx->cur_inode_deleted = 1;
5904 sctx->cur_inode_size = btrfs_inode_size(
5905 sctx->right_path->nodes[0], right_ii);
5906 sctx->cur_inode_mode = btrfs_inode_mode(
5907 sctx->right_path->nodes[0], right_ii);
5908 ret = process_all_refs(sctx,
5909 BTRFS_COMPARE_TREE_DELETED);
5914 * Now process the inode as if it was new.
5916 sctx->cur_inode_gen = left_gen;
5917 sctx->cur_inode_new = 1;
5918 sctx->cur_inode_deleted = 0;
5919 sctx->cur_inode_size = btrfs_inode_size(
5920 sctx->left_path->nodes[0], left_ii);
5921 sctx->cur_inode_mode = btrfs_inode_mode(
5922 sctx->left_path->nodes[0], left_ii);
5923 sctx->cur_inode_rdev = btrfs_inode_rdev(
5924 sctx->left_path->nodes[0], left_ii);
5925 ret = send_create_inode_if_needed(sctx);
5929 ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
5933 * Advance send_progress now as we did not get into
5934 * process_recorded_refs_if_needed in the new_gen case.
5936 sctx->send_progress = sctx->cur_ino + 1;
5939 * Now process all extents and xattrs of the inode as if
5940 * they were all new.
5942 ret = process_all_extents(sctx);
5945 ret = process_all_new_xattrs(sctx);
5949 sctx->cur_inode_gen = left_gen;
5950 sctx->cur_inode_new = 0;
5951 sctx->cur_inode_new_gen = 0;
5952 sctx->cur_inode_deleted = 0;
5953 sctx->cur_inode_size = btrfs_inode_size(
5954 sctx->left_path->nodes[0], left_ii);
5955 sctx->cur_inode_mode = btrfs_inode_mode(
5956 sctx->left_path->nodes[0], left_ii);
5965 * We have to process new refs before deleted refs, but compare_trees gives us
5966 * the new and deleted refs mixed. To fix this, we record the new/deleted refs
5967 * first and later process them in process_recorded_refs.
5968 * For the cur_inode_new_gen case, we skip recording completely because
5969 * changed_inode did already initiate processing of refs. The reason for this is
5970 * that in this case, compare_tree actually compares the refs of 2 different
5971 * inodes. To fix this, process_all_refs is used in changed_inode to handle all
5972 * refs of the right tree as deleted and all refs of the left tree as new.
5974 static int changed_ref(struct send_ctx *sctx,
5975 enum btrfs_compare_tree_result result)
5979 if (sctx->cur_ino != sctx->cmp_key->objectid) {
5980 inconsistent_snapshot_error(sctx, result, "reference");
5984 if (!sctx->cur_inode_new_gen &&
5985 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
5986 if (result == BTRFS_COMPARE_TREE_NEW)
5987 ret = record_new_ref(sctx);
5988 else if (result == BTRFS_COMPARE_TREE_DELETED)
5989 ret = record_deleted_ref(sctx);
5990 else if (result == BTRFS_COMPARE_TREE_CHANGED)
5991 ret = record_changed_ref(sctx);
5998 * Process new/deleted/changed xattrs. We skip processing in the
5999 * cur_inode_new_gen case because changed_inode did already initiate processing
6000 * of xattrs. The reason is the same as in changed_ref
6002 static int changed_xattr(struct send_ctx *sctx,
6003 enum btrfs_compare_tree_result result)
6007 if (sctx->cur_ino != sctx->cmp_key->objectid) {
6008 inconsistent_snapshot_error(sctx, result, "xattr");
6012 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
6013 if (result == BTRFS_COMPARE_TREE_NEW)
6014 ret = process_new_xattr(sctx);
6015 else if (result == BTRFS_COMPARE_TREE_DELETED)
6016 ret = process_deleted_xattr(sctx);
6017 else if (result == BTRFS_COMPARE_TREE_CHANGED)
6018 ret = process_changed_xattr(sctx);
6025 * Process new/deleted/changed extents. We skip processing in the
6026 * cur_inode_new_gen case because changed_inode did already initiate processing
6027 * of extents. The reason is the same as in changed_ref
6029 static int changed_extent(struct send_ctx *sctx,
6030 enum btrfs_compare_tree_result result)
6034 if (sctx->cur_ino != sctx->cmp_key->objectid) {
6036 if (result == BTRFS_COMPARE_TREE_CHANGED) {
6037 struct extent_buffer *leaf_l;
6038 struct extent_buffer *leaf_r;
6039 struct btrfs_file_extent_item *ei_l;
6040 struct btrfs_file_extent_item *ei_r;
6042 leaf_l = sctx->left_path->nodes[0];
6043 leaf_r = sctx->right_path->nodes[0];
6044 ei_l = btrfs_item_ptr(leaf_l,
6045 sctx->left_path->slots[0],
6046 struct btrfs_file_extent_item);
6047 ei_r = btrfs_item_ptr(leaf_r,
6048 sctx->right_path->slots[0],
6049 struct btrfs_file_extent_item);
6052 * We may have found an extent item that has changed
6053 * only its disk_bytenr field and the corresponding
6054 * inode item was not updated. This case happens due to
6055 * very specific timings during relocation when a leaf
6056 * that contains file extent items is COWed while
6057 * relocation is ongoing and its in the stage where it
6058 * updates data pointers. So when this happens we can
6059 * safely ignore it since we know it's the same extent,
6060 * but just at different logical and physical locations
6061 * (when an extent is fully replaced with a new one, we
6062 * know the generation number must have changed too,
6063 * since snapshot creation implies committing the current
6064 * transaction, and the inode item must have been updated
6066 * This replacement of the disk_bytenr happens at
6067 * relocation.c:replace_file_extents() through
6068 * relocation.c:btrfs_reloc_cow_block().
6070 if (btrfs_file_extent_generation(leaf_l, ei_l) ==
6071 btrfs_file_extent_generation(leaf_r, ei_r) &&
6072 btrfs_file_extent_ram_bytes(leaf_l, ei_l) ==
6073 btrfs_file_extent_ram_bytes(leaf_r, ei_r) &&
6074 btrfs_file_extent_compression(leaf_l, ei_l) ==
6075 btrfs_file_extent_compression(leaf_r, ei_r) &&
6076 btrfs_file_extent_encryption(leaf_l, ei_l) ==
6077 btrfs_file_extent_encryption(leaf_r, ei_r) &&
6078 btrfs_file_extent_other_encoding(leaf_l, ei_l) ==
6079 btrfs_file_extent_other_encoding(leaf_r, ei_r) &&
6080 btrfs_file_extent_type(leaf_l, ei_l) ==
6081 btrfs_file_extent_type(leaf_r, ei_r) &&
6082 btrfs_file_extent_disk_bytenr(leaf_l, ei_l) !=
6083 btrfs_file_extent_disk_bytenr(leaf_r, ei_r) &&
6084 btrfs_file_extent_disk_num_bytes(leaf_l, ei_l) ==
6085 btrfs_file_extent_disk_num_bytes(leaf_r, ei_r) &&
6086 btrfs_file_extent_offset(leaf_l, ei_l) ==
6087 btrfs_file_extent_offset(leaf_r, ei_r) &&
6088 btrfs_file_extent_num_bytes(leaf_l, ei_l) ==
6089 btrfs_file_extent_num_bytes(leaf_r, ei_r))
6093 inconsistent_snapshot_error(sctx, result, "extent");
6097 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
6098 if (result != BTRFS_COMPARE_TREE_DELETED)
6099 ret = process_extent(sctx, sctx->left_path,
6106 static int dir_changed(struct send_ctx *sctx, u64 dir)
6108 u64 orig_gen, new_gen;
6111 ret = get_inode_info(sctx->send_root, dir, NULL, &new_gen, NULL, NULL,
6116 ret = get_inode_info(sctx->parent_root, dir, NULL, &orig_gen, NULL,
6121 return (orig_gen != new_gen) ? 1 : 0;
6124 static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path,
6125 struct btrfs_key *key)
6127 struct btrfs_inode_extref *extref;
6128 struct extent_buffer *leaf;
6129 u64 dirid = 0, last_dirid = 0;
6136 /* Easy case, just check this one dirid */
6137 if (key->type == BTRFS_INODE_REF_KEY) {
6138 dirid = key->offset;
6140 ret = dir_changed(sctx, dirid);
6144 leaf = path->nodes[0];
6145 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
6146 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
6147 while (cur_offset < item_size) {
6148 extref = (struct btrfs_inode_extref *)(ptr +
6150 dirid = btrfs_inode_extref_parent(leaf, extref);
6151 ref_name_len = btrfs_inode_extref_name_len(leaf, extref);
6152 cur_offset += ref_name_len + sizeof(*extref);
6153 if (dirid == last_dirid)
6155 ret = dir_changed(sctx, dirid);
6165 * Updates compare related fields in sctx and simply forwards to the actual
6166 * changed_xxx functions.
6168 static int changed_cb(struct btrfs_path *left_path,
6169 struct btrfs_path *right_path,
6170 struct btrfs_key *key,
6171 enum btrfs_compare_tree_result result,
6175 struct send_ctx *sctx = ctx;
6177 if (result == BTRFS_COMPARE_TREE_SAME) {
6178 if (key->type == BTRFS_INODE_REF_KEY ||
6179 key->type == BTRFS_INODE_EXTREF_KEY) {
6180 ret = compare_refs(sctx, left_path, key);
6185 } else if (key->type == BTRFS_EXTENT_DATA_KEY) {
6186 return maybe_send_hole(sctx, left_path, key);
6190 result = BTRFS_COMPARE_TREE_CHANGED;
6194 sctx->left_path = left_path;
6195 sctx->right_path = right_path;
6196 sctx->cmp_key = key;
6198 ret = finish_inode_if_needed(sctx, 0);
6202 /* Ignore non-FS objects */
6203 if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
6204 key->objectid == BTRFS_FREE_SPACE_OBJECTID)
6207 if (key->type == BTRFS_INODE_ITEM_KEY)
6208 ret = changed_inode(sctx, result);
6209 else if (key->type == BTRFS_INODE_REF_KEY ||
6210 key->type == BTRFS_INODE_EXTREF_KEY)
6211 ret = changed_ref(sctx, result);
6212 else if (key->type == BTRFS_XATTR_ITEM_KEY)
6213 ret = changed_xattr(sctx, result);
6214 else if (key->type == BTRFS_EXTENT_DATA_KEY)
6215 ret = changed_extent(sctx, result);
6221 static int full_send_tree(struct send_ctx *sctx)
6224 struct btrfs_root *send_root = sctx->send_root;
6225 struct btrfs_key key;
6226 struct btrfs_key found_key;
6227 struct btrfs_path *path;
6228 struct extent_buffer *eb;
6231 path = alloc_path_for_send();
6235 key.objectid = BTRFS_FIRST_FREE_OBJECTID;
6236 key.type = BTRFS_INODE_ITEM_KEY;
6239 ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
6246 eb = path->nodes[0];
6247 slot = path->slots[0];
6248 btrfs_item_key_to_cpu(eb, &found_key, slot);
6250 ret = changed_cb(path, NULL, &found_key,
6251 BTRFS_COMPARE_TREE_NEW, sctx);
6255 key.objectid = found_key.objectid;
6256 key.type = found_key.type;
6257 key.offset = found_key.offset + 1;
6259 ret = btrfs_next_item(send_root, path);
6269 ret = finish_inode_if_needed(sctx, 1);
6272 btrfs_free_path(path);
6276 static int send_subvol(struct send_ctx *sctx)
6280 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) {
6281 ret = send_header(sctx);
6286 ret = send_subvol_begin(sctx);
6290 if (sctx->parent_root) {
6291 ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root,
6295 ret = finish_inode_if_needed(sctx, 1);
6299 ret = full_send_tree(sctx);
6305 free_recorded_refs(sctx);
6310 * If orphan cleanup did remove any orphans from a root, it means the tree
6311 * was modified and therefore the commit root is not the same as the current
6312 * root anymore. This is a problem, because send uses the commit root and
6313 * therefore can see inode items that don't exist in the current root anymore,
6314 * and for example make calls to btrfs_iget, which will do tree lookups based
6315 * on the current root and not on the commit root. Those lookups will fail,
6316 * returning a -ESTALE error, and making send fail with that error. So make
6317 * sure a send does not see any orphans we have just removed, and that it will
6318 * see the same inodes regardless of whether a transaction commit happened
6319 * before it started (meaning that the commit root will be the same as the
6320 * current root) or not.
6322 static int ensure_commit_roots_uptodate(struct send_ctx *sctx)
6325 struct btrfs_trans_handle *trans = NULL;
6328 if (sctx->parent_root &&
6329 sctx->parent_root->node != sctx->parent_root->commit_root)
6332 for (i = 0; i < sctx->clone_roots_cnt; i++)
6333 if (sctx->clone_roots[i].root->node !=
6334 sctx->clone_roots[i].root->commit_root)
6338 return btrfs_end_transaction(trans);
6343 /* Use any root, all fs roots will get their commit roots updated. */
6345 trans = btrfs_join_transaction(sctx->send_root);
6347 return PTR_ERR(trans);
6351 return btrfs_commit_transaction(trans);
6354 static void btrfs_root_dec_send_in_progress(struct btrfs_root* root)
6356 spin_lock(&root->root_item_lock);
6357 root->send_in_progress--;
6359 * Not much left to do, we don't know why it's unbalanced and
6360 * can't blindly reset it to 0.
6362 if (root->send_in_progress < 0)
6363 btrfs_err(root->fs_info,
6364 "send_in_progres unbalanced %d root %llu",
6365 root->send_in_progress, root->root_key.objectid);
6366 spin_unlock(&root->root_item_lock);
6369 long btrfs_ioctl_send(struct file *mnt_file, struct btrfs_ioctl_send_args *arg)
6372 struct btrfs_root *send_root = BTRFS_I(file_inode(mnt_file))->root;
6373 struct btrfs_fs_info *fs_info = send_root->fs_info;
6374 struct btrfs_root *clone_root;
6375 struct btrfs_key key;
6376 struct send_ctx *sctx = NULL;
6378 u64 *clone_sources_tmp = NULL;
6379 int clone_sources_to_rollback = 0;
6380 unsigned alloc_size;
6381 int sort_clone_roots = 0;
6384 if (!capable(CAP_SYS_ADMIN))
6388 * The subvolume must remain read-only during send, protect against
6389 * making it RW. This also protects against deletion.
6391 spin_lock(&send_root->root_item_lock);
6392 send_root->send_in_progress++;
6393 spin_unlock(&send_root->root_item_lock);
6396 * This is done when we lookup the root, it should already be complete
6397 * by the time we get here.
6399 WARN_ON(send_root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE);
6402 * Userspace tools do the checks and warn the user if it's
6405 if (!btrfs_root_readonly(send_root)) {
6411 * Check that we don't overflow at later allocations, we request
6412 * clone_sources_count + 1 items, and compare to unsigned long inside
6415 if (arg->clone_sources_count >
6416 ULONG_MAX / sizeof(struct clone_root) - 1) {
6421 if (!access_ok(VERIFY_READ, arg->clone_sources,
6422 sizeof(*arg->clone_sources) *
6423 arg->clone_sources_count)) {
6428 if (arg->flags & ~BTRFS_SEND_FLAG_MASK) {
6433 sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL);
6439 INIT_LIST_HEAD(&sctx->new_refs);
6440 INIT_LIST_HEAD(&sctx->deleted_refs);
6441 INIT_RADIX_TREE(&sctx->name_cache, GFP_KERNEL);
6442 INIT_LIST_HEAD(&sctx->name_cache_list);
6444 sctx->flags = arg->flags;
6446 sctx->send_filp = fget(arg->send_fd);
6447 if (!sctx->send_filp) {
6452 sctx->send_root = send_root;
6454 * Unlikely but possible, if the subvolume is marked for deletion but
6455 * is slow to remove the directory entry, send can still be started
6457 if (btrfs_root_dead(sctx->send_root)) {
6462 sctx->clone_roots_cnt = arg->clone_sources_count;
6464 sctx->send_max_size = BTRFS_SEND_BUF_SIZE;
6465 sctx->send_buf = kvmalloc(sctx->send_max_size, GFP_KERNEL);
6466 if (!sctx->send_buf) {
6471 sctx->read_buf = kvmalloc(BTRFS_SEND_READ_SIZE, GFP_KERNEL);
6472 if (!sctx->read_buf) {
6477 sctx->pending_dir_moves = RB_ROOT;
6478 sctx->waiting_dir_moves = RB_ROOT;
6479 sctx->orphan_dirs = RB_ROOT;
6481 alloc_size = sizeof(struct clone_root) * (arg->clone_sources_count + 1);
6483 sctx->clone_roots = kzalloc(alloc_size, GFP_KERNEL);
6484 if (!sctx->clone_roots) {
6489 alloc_size = arg->clone_sources_count * sizeof(*arg->clone_sources);
6491 if (arg->clone_sources_count) {
6492 clone_sources_tmp = kvmalloc(alloc_size, GFP_KERNEL);
6493 if (!clone_sources_tmp) {
6498 ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
6505 for (i = 0; i < arg->clone_sources_count; i++) {
6506 key.objectid = clone_sources_tmp[i];
6507 key.type = BTRFS_ROOT_ITEM_KEY;
6508 key.offset = (u64)-1;
6510 index = srcu_read_lock(&fs_info->subvol_srcu);
6512 clone_root = btrfs_read_fs_root_no_name(fs_info, &key);
6513 if (IS_ERR(clone_root)) {
6514 srcu_read_unlock(&fs_info->subvol_srcu, index);
6515 ret = PTR_ERR(clone_root);
6518 spin_lock(&clone_root->root_item_lock);
6519 if (!btrfs_root_readonly(clone_root) ||
6520 btrfs_root_dead(clone_root)) {
6521 spin_unlock(&clone_root->root_item_lock);
6522 srcu_read_unlock(&fs_info->subvol_srcu, index);
6526 clone_root->send_in_progress++;
6527 spin_unlock(&clone_root->root_item_lock);
6528 srcu_read_unlock(&fs_info->subvol_srcu, index);
6530 sctx->clone_roots[i].root = clone_root;
6531 clone_sources_to_rollback = i + 1;
6533 kvfree(clone_sources_tmp);
6534 clone_sources_tmp = NULL;
6537 if (arg->parent_root) {
6538 key.objectid = arg->parent_root;
6539 key.type = BTRFS_ROOT_ITEM_KEY;
6540 key.offset = (u64)-1;
6542 index = srcu_read_lock(&fs_info->subvol_srcu);
6544 sctx->parent_root = btrfs_read_fs_root_no_name(fs_info, &key);
6545 if (IS_ERR(sctx->parent_root)) {
6546 srcu_read_unlock(&fs_info->subvol_srcu, index);
6547 ret = PTR_ERR(sctx->parent_root);
6551 spin_lock(&sctx->parent_root->root_item_lock);
6552 sctx->parent_root->send_in_progress++;
6553 if (!btrfs_root_readonly(sctx->parent_root) ||
6554 btrfs_root_dead(sctx->parent_root)) {
6555 spin_unlock(&sctx->parent_root->root_item_lock);
6556 srcu_read_unlock(&fs_info->subvol_srcu, index);
6560 spin_unlock(&sctx->parent_root->root_item_lock);
6562 srcu_read_unlock(&fs_info->subvol_srcu, index);
6566 * Clones from send_root are allowed, but only if the clone source
6567 * is behind the current send position. This is checked while searching
6568 * for possible clone sources.
6570 sctx->clone_roots[sctx->clone_roots_cnt++].root = sctx->send_root;
6572 /* We do a bsearch later */
6573 sort(sctx->clone_roots, sctx->clone_roots_cnt,
6574 sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
6576 sort_clone_roots = 1;
6578 ret = ensure_commit_roots_uptodate(sctx);
6582 current->journal_info = BTRFS_SEND_TRANS_STUB;
6583 ret = send_subvol(sctx);
6584 current->journal_info = NULL;
6588 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) {
6589 ret = begin_cmd(sctx, BTRFS_SEND_C_END);
6592 ret = send_cmd(sctx);
6598 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves));
6599 while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) {
6601 struct pending_dir_move *pm;
6603 n = rb_first(&sctx->pending_dir_moves);
6604 pm = rb_entry(n, struct pending_dir_move, node);
6605 while (!list_empty(&pm->list)) {
6606 struct pending_dir_move *pm2;
6608 pm2 = list_first_entry(&pm->list,
6609 struct pending_dir_move, list);
6610 free_pending_move(sctx, pm2);
6612 free_pending_move(sctx, pm);
6615 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves));
6616 while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) {
6618 struct waiting_dir_move *dm;
6620 n = rb_first(&sctx->waiting_dir_moves);
6621 dm = rb_entry(n, struct waiting_dir_move, node);
6622 rb_erase(&dm->node, &sctx->waiting_dir_moves);
6626 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs));
6627 while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) {
6629 struct orphan_dir_info *odi;
6631 n = rb_first(&sctx->orphan_dirs);
6632 odi = rb_entry(n, struct orphan_dir_info, node);
6633 free_orphan_dir_info(sctx, odi);
6636 if (sort_clone_roots) {
6637 for (i = 0; i < sctx->clone_roots_cnt; i++)
6638 btrfs_root_dec_send_in_progress(
6639 sctx->clone_roots[i].root);
6641 for (i = 0; sctx && i < clone_sources_to_rollback; i++)
6642 btrfs_root_dec_send_in_progress(
6643 sctx->clone_roots[i].root);
6645 btrfs_root_dec_send_in_progress(send_root);
6647 if (sctx && !IS_ERR_OR_NULL(sctx->parent_root))
6648 btrfs_root_dec_send_in_progress(sctx->parent_root);
6650 kvfree(clone_sources_tmp);
6653 if (sctx->send_filp)
6654 fput(sctx->send_filp);
6656 kvfree(sctx->clone_roots);
6657 kvfree(sctx->send_buf);
6658 kvfree(sctx->read_buf);
6660 name_cache_free(sctx);