]> Git Repo - linux.git/blob - drivers/md/bcache/super.c
pinctrl: sunxi: Disable strict mode for H5 driver
[linux.git] / drivers / md / bcache / super.c
1 /*
2  * bcache setup/teardown code, and some metadata io - read a superblock and
3  * figure out what to do with it.
4  *
5  * Copyright 2010, 2011 Kent Overstreet <[email protected]>
6  * Copyright 2012 Google, Inc.
7  */
8
9 #include "bcache.h"
10 #include "btree.h"
11 #include "debug.h"
12 #include "extents.h"
13 #include "request.h"
14 #include "writeback.h"
15
16 #include <linux/blkdev.h>
17 #include <linux/buffer_head.h>
18 #include <linux/debugfs.h>
19 #include <linux/genhd.h>
20 #include <linux/idr.h>
21 #include <linux/kthread.h>
22 #include <linux/module.h>
23 #include <linux/random.h>
24 #include <linux/reboot.h>
25 #include <linux/sysfs.h>
26
27 MODULE_LICENSE("GPL");
28 MODULE_AUTHOR("Kent Overstreet <[email protected]>");
29
30 static const char bcache_magic[] = {
31         0xc6, 0x85, 0x73, 0xf6, 0x4e, 0x1a, 0x45, 0xca,
32         0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81
33 };
34
35 static const char invalid_uuid[] = {
36         0xa0, 0x3e, 0xf8, 0xed, 0x3e, 0xe1, 0xb8, 0x78,
37         0xc8, 0x50, 0xfc, 0x5e, 0xcb, 0x16, 0xcd, 0x99
38 };
39
40 /* Default is -1; we skip past it for struct cached_dev's cache mode */
41 const char * const bch_cache_modes[] = {
42         "default",
43         "writethrough",
44         "writeback",
45         "writearound",
46         "none",
47         NULL
48 };
49
50 static struct kobject *bcache_kobj;
51 struct mutex bch_register_lock;
52 LIST_HEAD(bch_cache_sets);
53 static LIST_HEAD(uncached_devices);
54
55 static int bcache_major;
56 static DEFINE_IDA(bcache_device_idx);
57 static wait_queue_head_t unregister_wait;
58 struct workqueue_struct *bcache_wq;
59
60 #define BTREE_MAX_PAGES         (256 * 1024 / PAGE_SIZE)
61 /* limitation of partitions number on single bcache device */
62 #define BCACHE_MINORS           128
63 /* limitation of bcache devices number on single system */
64 #define BCACHE_DEVICE_IDX_MAX   ((1U << MINORBITS)/BCACHE_MINORS)
65
66 /* Superblock */
67
68 static const char *read_super(struct cache_sb *sb, struct block_device *bdev,
69                               struct page **res)
70 {
71         const char *err;
72         struct cache_sb *s;
73         struct buffer_head *bh = __bread(bdev, 1, SB_SIZE);
74         unsigned i;
75
76         if (!bh)
77                 return "IO error";
78
79         s = (struct cache_sb *) bh->b_data;
80
81         sb->offset              = le64_to_cpu(s->offset);
82         sb->version             = le64_to_cpu(s->version);
83
84         memcpy(sb->magic,       s->magic, 16);
85         memcpy(sb->uuid,        s->uuid, 16);
86         memcpy(sb->set_uuid,    s->set_uuid, 16);
87         memcpy(sb->label,       s->label, SB_LABEL_SIZE);
88
89         sb->flags               = le64_to_cpu(s->flags);
90         sb->seq                 = le64_to_cpu(s->seq);
91         sb->last_mount          = le32_to_cpu(s->last_mount);
92         sb->first_bucket        = le16_to_cpu(s->first_bucket);
93         sb->keys                = le16_to_cpu(s->keys);
94
95         for (i = 0; i < SB_JOURNAL_BUCKETS; i++)
96                 sb->d[i] = le64_to_cpu(s->d[i]);
97
98         pr_debug("read sb version %llu, flags %llu, seq %llu, journal size %u",
99                  sb->version, sb->flags, sb->seq, sb->keys);
100
101         err = "Not a bcache superblock";
102         if (sb->offset != SB_SECTOR)
103                 goto err;
104
105         if (memcmp(sb->magic, bcache_magic, 16))
106                 goto err;
107
108         err = "Too many journal buckets";
109         if (sb->keys > SB_JOURNAL_BUCKETS)
110                 goto err;
111
112         err = "Bad checksum";
113         if (s->csum != csum_set(s))
114                 goto err;
115
116         err = "Bad UUID";
117         if (bch_is_zero(sb->uuid, 16))
118                 goto err;
119
120         sb->block_size  = le16_to_cpu(s->block_size);
121
122         err = "Superblock block size smaller than device block size";
123         if (sb->block_size << 9 < bdev_logical_block_size(bdev))
124                 goto err;
125
126         switch (sb->version) {
127         case BCACHE_SB_VERSION_BDEV:
128                 sb->data_offset = BDEV_DATA_START_DEFAULT;
129                 break;
130         case BCACHE_SB_VERSION_BDEV_WITH_OFFSET:
131                 sb->data_offset = le64_to_cpu(s->data_offset);
132
133                 err = "Bad data offset";
134                 if (sb->data_offset < BDEV_DATA_START_DEFAULT)
135                         goto err;
136
137                 break;
138         case BCACHE_SB_VERSION_CDEV:
139         case BCACHE_SB_VERSION_CDEV_WITH_UUID:
140                 sb->nbuckets    = le64_to_cpu(s->nbuckets);
141                 sb->bucket_size = le16_to_cpu(s->bucket_size);
142
143                 sb->nr_in_set   = le16_to_cpu(s->nr_in_set);
144                 sb->nr_this_dev = le16_to_cpu(s->nr_this_dev);
145
146                 err = "Too many buckets";
147                 if (sb->nbuckets > LONG_MAX)
148                         goto err;
149
150                 err = "Not enough buckets";
151                 if (sb->nbuckets < 1 << 7)
152                         goto err;
153
154                 err = "Bad block/bucket size";
155                 if (!is_power_of_2(sb->block_size) ||
156                     sb->block_size > PAGE_SECTORS ||
157                     !is_power_of_2(sb->bucket_size) ||
158                     sb->bucket_size < PAGE_SECTORS)
159                         goto err;
160
161                 err = "Invalid superblock: device too small";
162                 if (get_capacity(bdev->bd_disk) < sb->bucket_size * sb->nbuckets)
163                         goto err;
164
165                 err = "Bad UUID";
166                 if (bch_is_zero(sb->set_uuid, 16))
167                         goto err;
168
169                 err = "Bad cache device number in set";
170                 if (!sb->nr_in_set ||
171                     sb->nr_in_set <= sb->nr_this_dev ||
172                     sb->nr_in_set > MAX_CACHES_PER_SET)
173                         goto err;
174
175                 err = "Journal buckets not sequential";
176                 for (i = 0; i < sb->keys; i++)
177                         if (sb->d[i] != sb->first_bucket + i)
178                                 goto err;
179
180                 err = "Too many journal buckets";
181                 if (sb->first_bucket + sb->keys > sb->nbuckets)
182                         goto err;
183
184                 err = "Invalid superblock: first bucket comes before end of super";
185                 if (sb->first_bucket * sb->bucket_size < 16)
186                         goto err;
187
188                 break;
189         default:
190                 err = "Unsupported superblock version";
191                 goto err;
192         }
193
194         sb->last_mount = get_seconds();
195         err = NULL;
196
197         get_page(bh->b_page);
198         *res = bh->b_page;
199 err:
200         put_bh(bh);
201         return err;
202 }
203
204 static void write_bdev_super_endio(struct bio *bio)
205 {
206         struct cached_dev *dc = bio->bi_private;
207         /* XXX: error checking */
208
209         closure_put(&dc->sb_write);
210 }
211
212 static void __write_super(struct cache_sb *sb, struct bio *bio)
213 {
214         struct cache_sb *out = page_address(bio->bi_io_vec[0].bv_page);
215         unsigned i;
216
217         bio->bi_iter.bi_sector  = SB_SECTOR;
218         bio->bi_iter.bi_size    = SB_SIZE;
219         bio_set_op_attrs(bio, REQ_OP_WRITE, REQ_SYNC|REQ_META);
220         bch_bio_map(bio, NULL);
221
222         out->offset             = cpu_to_le64(sb->offset);
223         out->version            = cpu_to_le64(sb->version);
224
225         memcpy(out->uuid,       sb->uuid, 16);
226         memcpy(out->set_uuid,   sb->set_uuid, 16);
227         memcpy(out->label,      sb->label, SB_LABEL_SIZE);
228
229         out->flags              = cpu_to_le64(sb->flags);
230         out->seq                = cpu_to_le64(sb->seq);
231
232         out->last_mount         = cpu_to_le32(sb->last_mount);
233         out->first_bucket       = cpu_to_le16(sb->first_bucket);
234         out->keys               = cpu_to_le16(sb->keys);
235
236         for (i = 0; i < sb->keys; i++)
237                 out->d[i] = cpu_to_le64(sb->d[i]);
238
239         out->csum = csum_set(out);
240
241         pr_debug("ver %llu, flags %llu, seq %llu",
242                  sb->version, sb->flags, sb->seq);
243
244         submit_bio(bio);
245 }
246
247 static void bch_write_bdev_super_unlock(struct closure *cl)
248 {
249         struct cached_dev *dc = container_of(cl, struct cached_dev, sb_write);
250
251         up(&dc->sb_write_mutex);
252 }
253
254 void bch_write_bdev_super(struct cached_dev *dc, struct closure *parent)
255 {
256         struct closure *cl = &dc->sb_write;
257         struct bio *bio = &dc->sb_bio;
258
259         down(&dc->sb_write_mutex);
260         closure_init(cl, parent);
261
262         bio_reset(bio);
263         bio_set_dev(bio, dc->bdev);
264         bio->bi_end_io  = write_bdev_super_endio;
265         bio->bi_private = dc;
266
267         closure_get(cl);
268         __write_super(&dc->sb, bio);
269
270         closure_return_with_destructor(cl, bch_write_bdev_super_unlock);
271 }
272
273 static void write_super_endio(struct bio *bio)
274 {
275         struct cache *ca = bio->bi_private;
276
277         bch_count_io_errors(ca, bio->bi_status, "writing superblock");
278         closure_put(&ca->set->sb_write);
279 }
280
281 static void bcache_write_super_unlock(struct closure *cl)
282 {
283         struct cache_set *c = container_of(cl, struct cache_set, sb_write);
284
285         up(&c->sb_write_mutex);
286 }
287
288 void bcache_write_super(struct cache_set *c)
289 {
290         struct closure *cl = &c->sb_write;
291         struct cache *ca;
292         unsigned i;
293
294         down(&c->sb_write_mutex);
295         closure_init(cl, &c->cl);
296
297         c->sb.seq++;
298
299         for_each_cache(ca, c, i) {
300                 struct bio *bio = &ca->sb_bio;
301
302                 ca->sb.version          = BCACHE_SB_VERSION_CDEV_WITH_UUID;
303                 ca->sb.seq              = c->sb.seq;
304                 ca->sb.last_mount       = c->sb.last_mount;
305
306                 SET_CACHE_SYNC(&ca->sb, CACHE_SYNC(&c->sb));
307
308                 bio_reset(bio);
309                 bio_set_dev(bio, ca->bdev);
310                 bio->bi_end_io  = write_super_endio;
311                 bio->bi_private = ca;
312
313                 closure_get(cl);
314                 __write_super(&ca->sb, bio);
315         }
316
317         closure_return_with_destructor(cl, bcache_write_super_unlock);
318 }
319
320 /* UUID io */
321
322 static void uuid_endio(struct bio *bio)
323 {
324         struct closure *cl = bio->bi_private;
325         struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
326
327         cache_set_err_on(bio->bi_status, c, "accessing uuids");
328         bch_bbio_free(bio, c);
329         closure_put(cl);
330 }
331
332 static void uuid_io_unlock(struct closure *cl)
333 {
334         struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
335
336         up(&c->uuid_write_mutex);
337 }
338
339 static void uuid_io(struct cache_set *c, int op, unsigned long op_flags,
340                     struct bkey *k, struct closure *parent)
341 {
342         struct closure *cl = &c->uuid_write;
343         struct uuid_entry *u;
344         unsigned i;
345         char buf[80];
346
347         BUG_ON(!parent);
348         down(&c->uuid_write_mutex);
349         closure_init(cl, parent);
350
351         for (i = 0; i < KEY_PTRS(k); i++) {
352                 struct bio *bio = bch_bbio_alloc(c);
353
354                 bio->bi_opf = REQ_SYNC | REQ_META | op_flags;
355                 bio->bi_iter.bi_size = KEY_SIZE(k) << 9;
356
357                 bio->bi_end_io  = uuid_endio;
358                 bio->bi_private = cl;
359                 bio_set_op_attrs(bio, op, REQ_SYNC|REQ_META|op_flags);
360                 bch_bio_map(bio, c->uuids);
361
362                 bch_submit_bbio(bio, c, k, i);
363
364                 if (op != REQ_OP_WRITE)
365                         break;
366         }
367
368         bch_extent_to_text(buf, sizeof(buf), k);
369         pr_debug("%s UUIDs at %s", op == REQ_OP_WRITE ? "wrote" : "read", buf);
370
371         for (u = c->uuids; u < c->uuids + c->nr_uuids; u++)
372                 if (!bch_is_zero(u->uuid, 16))
373                         pr_debug("Slot %zi: %pU: %s: 1st: %u last: %u inv: %u",
374                                  u - c->uuids, u->uuid, u->label,
375                                  u->first_reg, u->last_reg, u->invalidated);
376
377         closure_return_with_destructor(cl, uuid_io_unlock);
378 }
379
380 static char *uuid_read(struct cache_set *c, struct jset *j, struct closure *cl)
381 {
382         struct bkey *k = &j->uuid_bucket;
383
384         if (__bch_btree_ptr_invalid(c, k))
385                 return "bad uuid pointer";
386
387         bkey_copy(&c->uuid_bucket, k);
388         uuid_io(c, REQ_OP_READ, 0, k, cl);
389
390         if (j->version < BCACHE_JSET_VERSION_UUIDv1) {
391                 struct uuid_entry_v0    *u0 = (void *) c->uuids;
392                 struct uuid_entry       *u1 = (void *) c->uuids;
393                 int i;
394
395                 closure_sync(cl);
396
397                 /*
398                  * Since the new uuid entry is bigger than the old, we have to
399                  * convert starting at the highest memory address and work down
400                  * in order to do it in place
401                  */
402
403                 for (i = c->nr_uuids - 1;
404                      i >= 0;
405                      --i) {
406                         memcpy(u1[i].uuid,      u0[i].uuid, 16);
407                         memcpy(u1[i].label,     u0[i].label, 32);
408
409                         u1[i].first_reg         = u0[i].first_reg;
410                         u1[i].last_reg          = u0[i].last_reg;
411                         u1[i].invalidated       = u0[i].invalidated;
412
413                         u1[i].flags     = 0;
414                         u1[i].sectors   = 0;
415                 }
416         }
417
418         return NULL;
419 }
420
421 static int __uuid_write(struct cache_set *c)
422 {
423         BKEY_PADDED(key) k;
424         struct closure cl;
425         closure_init_stack(&cl);
426
427         lockdep_assert_held(&bch_register_lock);
428
429         if (bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, 1, true))
430                 return 1;
431
432         SET_KEY_SIZE(&k.key, c->sb.bucket_size);
433         uuid_io(c, REQ_OP_WRITE, 0, &k.key, &cl);
434         closure_sync(&cl);
435
436         bkey_copy(&c->uuid_bucket, &k.key);
437         bkey_put(c, &k.key);
438         return 0;
439 }
440
441 int bch_uuid_write(struct cache_set *c)
442 {
443         int ret = __uuid_write(c);
444
445         if (!ret)
446                 bch_journal_meta(c, NULL);
447
448         return ret;
449 }
450
451 static struct uuid_entry *uuid_find(struct cache_set *c, const char *uuid)
452 {
453         struct uuid_entry *u;
454
455         for (u = c->uuids;
456              u < c->uuids + c->nr_uuids; u++)
457                 if (!memcmp(u->uuid, uuid, 16))
458                         return u;
459
460         return NULL;
461 }
462
463 static struct uuid_entry *uuid_find_empty(struct cache_set *c)
464 {
465         static const char zero_uuid[16] = "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0";
466         return uuid_find(c, zero_uuid);
467 }
468
469 /*
470  * Bucket priorities/gens:
471  *
472  * For each bucket, we store on disk its
473    * 8 bit gen
474    * 16 bit priority
475  *
476  * See alloc.c for an explanation of the gen. The priority is used to implement
477  * lru (and in the future other) cache replacement policies; for most purposes
478  * it's just an opaque integer.
479  *
480  * The gens and the priorities don't have a whole lot to do with each other, and
481  * it's actually the gens that must be written out at specific times - it's no
482  * big deal if the priorities don't get written, if we lose them we just reuse
483  * buckets in suboptimal order.
484  *
485  * On disk they're stored in a packed array, and in as many buckets are required
486  * to fit them all. The buckets we use to store them form a list; the journal
487  * header points to the first bucket, the first bucket points to the second
488  * bucket, et cetera.
489  *
490  * This code is used by the allocation code; periodically (whenever it runs out
491  * of buckets to allocate from) the allocation code will invalidate some
492  * buckets, but it can't use those buckets until their new gens are safely on
493  * disk.
494  */
495
496 static void prio_endio(struct bio *bio)
497 {
498         struct cache *ca = bio->bi_private;
499
500         cache_set_err_on(bio->bi_status, ca->set, "accessing priorities");
501         bch_bbio_free(bio, ca->set);
502         closure_put(&ca->prio);
503 }
504
505 static void prio_io(struct cache *ca, uint64_t bucket, int op,
506                     unsigned long op_flags)
507 {
508         struct closure *cl = &ca->prio;
509         struct bio *bio = bch_bbio_alloc(ca->set);
510
511         closure_init_stack(cl);
512
513         bio->bi_iter.bi_sector  = bucket * ca->sb.bucket_size;
514         bio_set_dev(bio, ca->bdev);
515         bio->bi_iter.bi_size    = bucket_bytes(ca);
516
517         bio->bi_end_io  = prio_endio;
518         bio->bi_private = ca;
519         bio_set_op_attrs(bio, op, REQ_SYNC|REQ_META|op_flags);
520         bch_bio_map(bio, ca->disk_buckets);
521
522         closure_bio_submit(bio, &ca->prio);
523         closure_sync(cl);
524 }
525
526 void bch_prio_write(struct cache *ca)
527 {
528         int i;
529         struct bucket *b;
530         struct closure cl;
531
532         closure_init_stack(&cl);
533
534         lockdep_assert_held(&ca->set->bucket_lock);
535
536         ca->disk_buckets->seq++;
537
538         atomic_long_add(ca->sb.bucket_size * prio_buckets(ca),
539                         &ca->meta_sectors_written);
540
541         //pr_debug("free %zu, free_inc %zu, unused %zu", fifo_used(&ca->free),
542         //       fifo_used(&ca->free_inc), fifo_used(&ca->unused));
543
544         for (i = prio_buckets(ca) - 1; i >= 0; --i) {
545                 long bucket;
546                 struct prio_set *p = ca->disk_buckets;
547                 struct bucket_disk *d = p->data;
548                 struct bucket_disk *end = d + prios_per_bucket(ca);
549
550                 for (b = ca->buckets + i * prios_per_bucket(ca);
551                      b < ca->buckets + ca->sb.nbuckets && d < end;
552                      b++, d++) {
553                         d->prio = cpu_to_le16(b->prio);
554                         d->gen = b->gen;
555                 }
556
557                 p->next_bucket  = ca->prio_buckets[i + 1];
558                 p->magic        = pset_magic(&ca->sb);
559                 p->csum         = bch_crc64(&p->magic, bucket_bytes(ca) - 8);
560
561                 bucket = bch_bucket_alloc(ca, RESERVE_PRIO, true);
562                 BUG_ON(bucket == -1);
563
564                 mutex_unlock(&ca->set->bucket_lock);
565                 prio_io(ca, bucket, REQ_OP_WRITE, 0);
566                 mutex_lock(&ca->set->bucket_lock);
567
568                 ca->prio_buckets[i] = bucket;
569                 atomic_dec_bug(&ca->buckets[bucket].pin);
570         }
571
572         mutex_unlock(&ca->set->bucket_lock);
573
574         bch_journal_meta(ca->set, &cl);
575         closure_sync(&cl);
576
577         mutex_lock(&ca->set->bucket_lock);
578
579         /*
580          * Don't want the old priorities to get garbage collected until after we
581          * finish writing the new ones, and they're journalled
582          */
583         for (i = 0; i < prio_buckets(ca); i++) {
584                 if (ca->prio_last_buckets[i])
585                         __bch_bucket_free(ca,
586                                 &ca->buckets[ca->prio_last_buckets[i]]);
587
588                 ca->prio_last_buckets[i] = ca->prio_buckets[i];
589         }
590 }
591
592 static void prio_read(struct cache *ca, uint64_t bucket)
593 {
594         struct prio_set *p = ca->disk_buckets;
595         struct bucket_disk *d = p->data + prios_per_bucket(ca), *end = d;
596         struct bucket *b;
597         unsigned bucket_nr = 0;
598
599         for (b = ca->buckets;
600              b < ca->buckets + ca->sb.nbuckets;
601              b++, d++) {
602                 if (d == end) {
603                         ca->prio_buckets[bucket_nr] = bucket;
604                         ca->prio_last_buckets[bucket_nr] = bucket;
605                         bucket_nr++;
606
607                         prio_io(ca, bucket, REQ_OP_READ, 0);
608
609                         if (p->csum != bch_crc64(&p->magic, bucket_bytes(ca) - 8))
610                                 pr_warn("bad csum reading priorities");
611
612                         if (p->magic != pset_magic(&ca->sb))
613                                 pr_warn("bad magic reading priorities");
614
615                         bucket = p->next_bucket;
616                         d = p->data;
617                 }
618
619                 b->prio = le16_to_cpu(d->prio);
620                 b->gen = b->last_gc = d->gen;
621         }
622 }
623
624 /* Bcache device */
625
626 static int open_dev(struct block_device *b, fmode_t mode)
627 {
628         struct bcache_device *d = b->bd_disk->private_data;
629         if (test_bit(BCACHE_DEV_CLOSING, &d->flags))
630                 return -ENXIO;
631
632         closure_get(&d->cl);
633         return 0;
634 }
635
636 static void release_dev(struct gendisk *b, fmode_t mode)
637 {
638         struct bcache_device *d = b->private_data;
639         closure_put(&d->cl);
640 }
641
642 static int ioctl_dev(struct block_device *b, fmode_t mode,
643                      unsigned int cmd, unsigned long arg)
644 {
645         struct bcache_device *d = b->bd_disk->private_data;
646         return d->ioctl(d, mode, cmd, arg);
647 }
648
649 static const struct block_device_operations bcache_ops = {
650         .open           = open_dev,
651         .release        = release_dev,
652         .ioctl          = ioctl_dev,
653         .owner          = THIS_MODULE,
654 };
655
656 void bcache_device_stop(struct bcache_device *d)
657 {
658         if (!test_and_set_bit(BCACHE_DEV_CLOSING, &d->flags))
659                 closure_queue(&d->cl);
660 }
661
662 static void bcache_device_unlink(struct bcache_device *d)
663 {
664         lockdep_assert_held(&bch_register_lock);
665
666         if (d->c && !test_and_set_bit(BCACHE_DEV_UNLINK_DONE, &d->flags)) {
667                 unsigned i;
668                 struct cache *ca;
669
670                 sysfs_remove_link(&d->c->kobj, d->name);
671                 sysfs_remove_link(&d->kobj, "cache");
672
673                 for_each_cache(ca, d->c, i)
674                         bd_unlink_disk_holder(ca->bdev, d->disk);
675         }
676 }
677
678 static void bcache_device_link(struct bcache_device *d, struct cache_set *c,
679                                const char *name)
680 {
681         unsigned i;
682         struct cache *ca;
683
684         for_each_cache(ca, d->c, i)
685                 bd_link_disk_holder(ca->bdev, d->disk);
686
687         snprintf(d->name, BCACHEDEVNAME_SIZE,
688                  "%s%u", name, d->id);
689
690         WARN(sysfs_create_link(&d->kobj, &c->kobj, "cache") ||
691              sysfs_create_link(&c->kobj, &d->kobj, d->name),
692              "Couldn't create device <-> cache set symlinks");
693
694         clear_bit(BCACHE_DEV_UNLINK_DONE, &d->flags);
695 }
696
697 static void bcache_device_detach(struct bcache_device *d)
698 {
699         lockdep_assert_held(&bch_register_lock);
700
701         if (test_bit(BCACHE_DEV_DETACHING, &d->flags)) {
702                 struct uuid_entry *u = d->c->uuids + d->id;
703
704                 SET_UUID_FLASH_ONLY(u, 0);
705                 memcpy(u->uuid, invalid_uuid, 16);
706                 u->invalidated = cpu_to_le32(get_seconds());
707                 bch_uuid_write(d->c);
708         }
709
710         bcache_device_unlink(d);
711
712         d->c->devices[d->id] = NULL;
713         closure_put(&d->c->caching);
714         d->c = NULL;
715 }
716
717 static void bcache_device_attach(struct bcache_device *d, struct cache_set *c,
718                                  unsigned id)
719 {
720         d->id = id;
721         d->c = c;
722         c->devices[id] = d;
723
724         closure_get(&c->caching);
725 }
726
727 static inline int first_minor_to_idx(int first_minor)
728 {
729         return (first_minor/BCACHE_MINORS);
730 }
731
732 static inline int idx_to_first_minor(int idx)
733 {
734         return (idx * BCACHE_MINORS);
735 }
736
737 static void bcache_device_free(struct bcache_device *d)
738 {
739         lockdep_assert_held(&bch_register_lock);
740
741         pr_info("%s stopped", d->disk->disk_name);
742
743         if (d->c)
744                 bcache_device_detach(d);
745         if (d->disk && d->disk->flags & GENHD_FL_UP)
746                 del_gendisk(d->disk);
747         if (d->disk && d->disk->queue)
748                 blk_cleanup_queue(d->disk->queue);
749         if (d->disk) {
750                 ida_simple_remove(&bcache_device_idx,
751                                   first_minor_to_idx(d->disk->first_minor));
752                 put_disk(d->disk);
753         }
754
755         if (d->bio_split)
756                 bioset_free(d->bio_split);
757         kvfree(d->full_dirty_stripes);
758         kvfree(d->stripe_sectors_dirty);
759
760         closure_debug_destroy(&d->cl);
761 }
762
763 static int bcache_device_init(struct bcache_device *d, unsigned block_size,
764                               sector_t sectors)
765 {
766         struct request_queue *q;
767         size_t n;
768         int idx;
769
770         if (!d->stripe_size)
771                 d->stripe_size = 1 << 31;
772
773         d->nr_stripes = DIV_ROUND_UP_ULL(sectors, d->stripe_size);
774
775         if (!d->nr_stripes ||
776             d->nr_stripes > INT_MAX ||
777             d->nr_stripes > SIZE_MAX / sizeof(atomic_t)) {
778                 pr_err("nr_stripes too large or invalid: %u (start sector beyond end of disk?)",
779                         (unsigned)d->nr_stripes);
780                 return -ENOMEM;
781         }
782
783         n = d->nr_stripes * sizeof(atomic_t);
784         d->stripe_sectors_dirty = kvzalloc(n, GFP_KERNEL);
785         if (!d->stripe_sectors_dirty)
786                 return -ENOMEM;
787
788         n = BITS_TO_LONGS(d->nr_stripes) * sizeof(unsigned long);
789         d->full_dirty_stripes = kvzalloc(n, GFP_KERNEL);
790         if (!d->full_dirty_stripes)
791                 return -ENOMEM;
792
793         idx = ida_simple_get(&bcache_device_idx, 0,
794                                 BCACHE_DEVICE_IDX_MAX, GFP_KERNEL);
795         if (idx < 0)
796                 return idx;
797
798         if (!(d->bio_split = bioset_create(4, offsetof(struct bbio, bio),
799                                            BIOSET_NEED_BVECS |
800                                            BIOSET_NEED_RESCUER)) ||
801             !(d->disk = alloc_disk(BCACHE_MINORS))) {
802                 ida_simple_remove(&bcache_device_idx, idx);
803                 return -ENOMEM;
804         }
805
806         set_capacity(d->disk, sectors);
807         snprintf(d->disk->disk_name, DISK_NAME_LEN, "bcache%i", idx);
808
809         d->disk->major          = bcache_major;
810         d->disk->first_minor    = idx_to_first_minor(idx);
811         d->disk->fops           = &bcache_ops;
812         d->disk->private_data   = d;
813
814         q = blk_alloc_queue(GFP_KERNEL);
815         if (!q)
816                 return -ENOMEM;
817
818         blk_queue_make_request(q, NULL);
819         d->disk->queue                  = q;
820         q->queuedata                    = d;
821         q->backing_dev_info->congested_data = d;
822         q->limits.max_hw_sectors        = UINT_MAX;
823         q->limits.max_sectors           = UINT_MAX;
824         q->limits.max_segment_size      = UINT_MAX;
825         q->limits.max_segments          = BIO_MAX_PAGES;
826         blk_queue_max_discard_sectors(q, UINT_MAX);
827         q->limits.discard_granularity   = 512;
828         q->limits.io_min                = block_size;
829         q->limits.logical_block_size    = block_size;
830         q->limits.physical_block_size   = block_size;
831         set_bit(QUEUE_FLAG_NONROT,      &d->disk->queue->queue_flags);
832         clear_bit(QUEUE_FLAG_ADD_RANDOM, &d->disk->queue->queue_flags);
833         set_bit(QUEUE_FLAG_DISCARD,     &d->disk->queue->queue_flags);
834
835         blk_queue_write_cache(q, true, true);
836
837         return 0;
838 }
839
840 /* Cached device */
841
842 static void calc_cached_dev_sectors(struct cache_set *c)
843 {
844         uint64_t sectors = 0;
845         struct cached_dev *dc;
846
847         list_for_each_entry(dc, &c->cached_devs, list)
848                 sectors += bdev_sectors(dc->bdev);
849
850         c->cached_dev_sectors = sectors;
851 }
852
853 void bch_cached_dev_run(struct cached_dev *dc)
854 {
855         struct bcache_device *d = &dc->disk;
856         char buf[SB_LABEL_SIZE + 1];
857         char *env[] = {
858                 "DRIVER=bcache",
859                 kasprintf(GFP_KERNEL, "CACHED_UUID=%pU", dc->sb.uuid),
860                 NULL,
861                 NULL,
862         };
863
864         memcpy(buf, dc->sb.label, SB_LABEL_SIZE);
865         buf[SB_LABEL_SIZE] = '\0';
866         env[2] = kasprintf(GFP_KERNEL, "CACHED_LABEL=%s", buf);
867
868         if (atomic_xchg(&dc->running, 1)) {
869                 kfree(env[1]);
870                 kfree(env[2]);
871                 return;
872         }
873
874         if (!d->c &&
875             BDEV_STATE(&dc->sb) != BDEV_STATE_NONE) {
876                 struct closure cl;
877                 closure_init_stack(&cl);
878
879                 SET_BDEV_STATE(&dc->sb, BDEV_STATE_STALE);
880                 bch_write_bdev_super(dc, &cl);
881                 closure_sync(&cl);
882         }
883
884         add_disk(d->disk);
885         bd_link_disk_holder(dc->bdev, dc->disk.disk);
886         /* won't show up in the uevent file, use udevadm monitor -e instead
887          * only class / kset properties are persistent */
888         kobject_uevent_env(&disk_to_dev(d->disk)->kobj, KOBJ_CHANGE, env);
889         kfree(env[1]);
890         kfree(env[2]);
891
892         if (sysfs_create_link(&d->kobj, &disk_to_dev(d->disk)->kobj, "dev") ||
893             sysfs_create_link(&disk_to_dev(d->disk)->kobj, &d->kobj, "bcache"))
894                 pr_debug("error creating sysfs link");
895 }
896
897 static void cached_dev_detach_finish(struct work_struct *w)
898 {
899         struct cached_dev *dc = container_of(w, struct cached_dev, detach);
900         char buf[BDEVNAME_SIZE];
901         struct closure cl;
902         closure_init_stack(&cl);
903
904         BUG_ON(!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags));
905         BUG_ON(refcount_read(&dc->count));
906
907         mutex_lock(&bch_register_lock);
908
909         memset(&dc->sb.set_uuid, 0, 16);
910         SET_BDEV_STATE(&dc->sb, BDEV_STATE_NONE);
911
912         bch_write_bdev_super(dc, &cl);
913         closure_sync(&cl);
914
915         bcache_device_detach(&dc->disk);
916         list_move(&dc->list, &uncached_devices);
917
918         clear_bit(BCACHE_DEV_DETACHING, &dc->disk.flags);
919         clear_bit(BCACHE_DEV_UNLINK_DONE, &dc->disk.flags);
920
921         mutex_unlock(&bch_register_lock);
922
923         pr_info("Caching disabled for %s", bdevname(dc->bdev, buf));
924
925         /* Drop ref we took in cached_dev_detach() */
926         closure_put(&dc->disk.cl);
927 }
928
929 void bch_cached_dev_detach(struct cached_dev *dc)
930 {
931         lockdep_assert_held(&bch_register_lock);
932
933         if (test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags))
934                 return;
935
936         if (test_and_set_bit(BCACHE_DEV_DETACHING, &dc->disk.flags))
937                 return;
938
939         /*
940          * Block the device from being closed and freed until we're finished
941          * detaching
942          */
943         closure_get(&dc->disk.cl);
944
945         bch_writeback_queue(dc);
946         cached_dev_put(dc);
947 }
948
949 int bch_cached_dev_attach(struct cached_dev *dc, struct cache_set *c)
950 {
951         uint32_t rtime = cpu_to_le32(get_seconds());
952         struct uuid_entry *u;
953         char buf[BDEVNAME_SIZE];
954
955         bdevname(dc->bdev, buf);
956
957         if (memcmp(dc->sb.set_uuid, c->sb.set_uuid, 16))
958                 return -ENOENT;
959
960         if (dc->disk.c) {
961                 pr_err("Can't attach %s: already attached", buf);
962                 return -EINVAL;
963         }
964
965         if (test_bit(CACHE_SET_STOPPING, &c->flags)) {
966                 pr_err("Can't attach %s: shutting down", buf);
967                 return -EINVAL;
968         }
969
970         if (dc->sb.block_size < c->sb.block_size) {
971                 /* Will die */
972                 pr_err("Couldn't attach %s: block size less than set's block size",
973                        buf);
974                 return -EINVAL;
975         }
976
977         u = uuid_find(c, dc->sb.uuid);
978
979         if (u &&
980             (BDEV_STATE(&dc->sb) == BDEV_STATE_STALE ||
981              BDEV_STATE(&dc->sb) == BDEV_STATE_NONE)) {
982                 memcpy(u->uuid, invalid_uuid, 16);
983                 u->invalidated = cpu_to_le32(get_seconds());
984                 u = NULL;
985         }
986
987         if (!u) {
988                 if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
989                         pr_err("Couldn't find uuid for %s in set", buf);
990                         return -ENOENT;
991                 }
992
993                 u = uuid_find_empty(c);
994                 if (!u) {
995                         pr_err("Not caching %s, no room for UUID", buf);
996                         return -EINVAL;
997                 }
998         }
999
1000         /* Deadlocks since we're called via sysfs...
1001         sysfs_remove_file(&dc->kobj, &sysfs_attach);
1002          */
1003
1004         if (bch_is_zero(u->uuid, 16)) {
1005                 struct closure cl;
1006                 closure_init_stack(&cl);
1007
1008                 memcpy(u->uuid, dc->sb.uuid, 16);
1009                 memcpy(u->label, dc->sb.label, SB_LABEL_SIZE);
1010                 u->first_reg = u->last_reg = rtime;
1011                 bch_uuid_write(c);
1012
1013                 memcpy(dc->sb.set_uuid, c->sb.set_uuid, 16);
1014                 SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
1015
1016                 bch_write_bdev_super(dc, &cl);
1017                 closure_sync(&cl);
1018         } else {
1019                 u->last_reg = rtime;
1020                 bch_uuid_write(c);
1021         }
1022
1023         bcache_device_attach(&dc->disk, c, u - c->uuids);
1024         list_move(&dc->list, &c->cached_devs);
1025         calc_cached_dev_sectors(c);
1026
1027         smp_wmb();
1028         /*
1029          * dc->c must be set before dc->count != 0 - paired with the mb in
1030          * cached_dev_get()
1031          */
1032         refcount_set(&dc->count, 1);
1033
1034         /* Block writeback thread, but spawn it */
1035         down_write(&dc->writeback_lock);
1036         if (bch_cached_dev_writeback_start(dc)) {
1037                 up_write(&dc->writeback_lock);
1038                 return -ENOMEM;
1039         }
1040
1041         if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
1042                 bch_sectors_dirty_init(&dc->disk);
1043                 atomic_set(&dc->has_dirty, 1);
1044                 refcount_inc(&dc->count);
1045                 bch_writeback_queue(dc);
1046         }
1047
1048         bch_cached_dev_run(dc);
1049         bcache_device_link(&dc->disk, c, "bdev");
1050
1051         /* Allow the writeback thread to proceed */
1052         up_write(&dc->writeback_lock);
1053
1054         pr_info("Caching %s as %s on set %pU",
1055                 bdevname(dc->bdev, buf), dc->disk.disk->disk_name,
1056                 dc->disk.c->sb.set_uuid);
1057         return 0;
1058 }
1059
1060 void bch_cached_dev_release(struct kobject *kobj)
1061 {
1062         struct cached_dev *dc = container_of(kobj, struct cached_dev,
1063                                              disk.kobj);
1064         kfree(dc);
1065         module_put(THIS_MODULE);
1066 }
1067
1068 static void cached_dev_free(struct closure *cl)
1069 {
1070         struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1071
1072         cancel_delayed_work_sync(&dc->writeback_rate_update);
1073         if (!IS_ERR_OR_NULL(dc->writeback_thread))
1074                 kthread_stop(dc->writeback_thread);
1075         if (dc->writeback_write_wq)
1076                 destroy_workqueue(dc->writeback_write_wq);
1077
1078         mutex_lock(&bch_register_lock);
1079
1080         if (atomic_read(&dc->running))
1081                 bd_unlink_disk_holder(dc->bdev, dc->disk.disk);
1082         bcache_device_free(&dc->disk);
1083         list_del(&dc->list);
1084
1085         mutex_unlock(&bch_register_lock);
1086
1087         if (!IS_ERR_OR_NULL(dc->bdev))
1088                 blkdev_put(dc->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1089
1090         wake_up(&unregister_wait);
1091
1092         kobject_put(&dc->disk.kobj);
1093 }
1094
1095 static void cached_dev_flush(struct closure *cl)
1096 {
1097         struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1098         struct bcache_device *d = &dc->disk;
1099
1100         mutex_lock(&bch_register_lock);
1101         bcache_device_unlink(d);
1102         mutex_unlock(&bch_register_lock);
1103
1104         bch_cache_accounting_destroy(&dc->accounting);
1105         kobject_del(&d->kobj);
1106
1107         continue_at(cl, cached_dev_free, system_wq);
1108 }
1109
1110 static int cached_dev_init(struct cached_dev *dc, unsigned block_size)
1111 {
1112         int ret;
1113         struct io *io;
1114         struct request_queue *q = bdev_get_queue(dc->bdev);
1115
1116         __module_get(THIS_MODULE);
1117         INIT_LIST_HEAD(&dc->list);
1118         closure_init(&dc->disk.cl, NULL);
1119         set_closure_fn(&dc->disk.cl, cached_dev_flush, system_wq);
1120         kobject_init(&dc->disk.kobj, &bch_cached_dev_ktype);
1121         INIT_WORK(&dc->detach, cached_dev_detach_finish);
1122         sema_init(&dc->sb_write_mutex, 1);
1123         INIT_LIST_HEAD(&dc->io_lru);
1124         spin_lock_init(&dc->io_lock);
1125         bch_cache_accounting_init(&dc->accounting, &dc->disk.cl);
1126
1127         dc->sequential_cutoff           = 4 << 20;
1128
1129         for (io = dc->io; io < dc->io + RECENT_IO; io++) {
1130                 list_add(&io->lru, &dc->io_lru);
1131                 hlist_add_head(&io->hash, dc->io_hash + RECENT_IO);
1132         }
1133
1134         dc->disk.stripe_size = q->limits.io_opt >> 9;
1135
1136         if (dc->disk.stripe_size)
1137                 dc->partial_stripes_expensive =
1138                         q->limits.raid_partial_stripes_expensive;
1139
1140         ret = bcache_device_init(&dc->disk, block_size,
1141                          dc->bdev->bd_part->nr_sects - dc->sb.data_offset);
1142         if (ret)
1143                 return ret;
1144
1145         dc->disk.disk->queue->backing_dev_info->ra_pages =
1146                 max(dc->disk.disk->queue->backing_dev_info->ra_pages,
1147                     q->backing_dev_info->ra_pages);
1148
1149         bch_cached_dev_request_init(dc);
1150         bch_cached_dev_writeback_init(dc);
1151         return 0;
1152 }
1153
1154 /* Cached device - bcache superblock */
1155
1156 static void register_bdev(struct cache_sb *sb, struct page *sb_page,
1157                                  struct block_device *bdev,
1158                                  struct cached_dev *dc)
1159 {
1160         char name[BDEVNAME_SIZE];
1161         const char *err = "cannot allocate memory";
1162         struct cache_set *c;
1163
1164         memcpy(&dc->sb, sb, sizeof(struct cache_sb));
1165         dc->bdev = bdev;
1166         dc->bdev->bd_holder = dc;
1167
1168         bio_init(&dc->sb_bio, dc->sb_bio.bi_inline_vecs, 1);
1169         dc->sb_bio.bi_io_vec[0].bv_page = sb_page;
1170         get_page(sb_page);
1171
1172         if (cached_dev_init(dc, sb->block_size << 9))
1173                 goto err;
1174
1175         err = "error creating kobject";
1176         if (kobject_add(&dc->disk.kobj, &part_to_dev(bdev->bd_part)->kobj,
1177                         "bcache"))
1178                 goto err;
1179         if (bch_cache_accounting_add_kobjs(&dc->accounting, &dc->disk.kobj))
1180                 goto err;
1181
1182         pr_info("registered backing device %s", bdevname(bdev, name));
1183
1184         list_add(&dc->list, &uncached_devices);
1185         list_for_each_entry(c, &bch_cache_sets, list)
1186                 bch_cached_dev_attach(dc, c);
1187
1188         if (BDEV_STATE(&dc->sb) == BDEV_STATE_NONE ||
1189             BDEV_STATE(&dc->sb) == BDEV_STATE_STALE)
1190                 bch_cached_dev_run(dc);
1191
1192         return;
1193 err:
1194         pr_notice("error opening %s: %s", bdevname(bdev, name), err);
1195         bcache_device_stop(&dc->disk);
1196 }
1197
1198 /* Flash only volumes */
1199
1200 void bch_flash_dev_release(struct kobject *kobj)
1201 {
1202         struct bcache_device *d = container_of(kobj, struct bcache_device,
1203                                                kobj);
1204         kfree(d);
1205 }
1206
1207 static void flash_dev_free(struct closure *cl)
1208 {
1209         struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1210         mutex_lock(&bch_register_lock);
1211         bcache_device_free(d);
1212         mutex_unlock(&bch_register_lock);
1213         kobject_put(&d->kobj);
1214 }
1215
1216 static void flash_dev_flush(struct closure *cl)
1217 {
1218         struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1219
1220         mutex_lock(&bch_register_lock);
1221         bcache_device_unlink(d);
1222         mutex_unlock(&bch_register_lock);
1223         kobject_del(&d->kobj);
1224         continue_at(cl, flash_dev_free, system_wq);
1225 }
1226
1227 static int flash_dev_run(struct cache_set *c, struct uuid_entry *u)
1228 {
1229         struct bcache_device *d = kzalloc(sizeof(struct bcache_device),
1230                                           GFP_KERNEL);
1231         if (!d)
1232                 return -ENOMEM;
1233
1234         closure_init(&d->cl, NULL);
1235         set_closure_fn(&d->cl, flash_dev_flush, system_wq);
1236
1237         kobject_init(&d->kobj, &bch_flash_dev_ktype);
1238
1239         if (bcache_device_init(d, block_bytes(c), u->sectors))
1240                 goto err;
1241
1242         bcache_device_attach(d, c, u - c->uuids);
1243         bch_sectors_dirty_init(d);
1244         bch_flash_dev_request_init(d);
1245         add_disk(d->disk);
1246
1247         if (kobject_add(&d->kobj, &disk_to_dev(d->disk)->kobj, "bcache"))
1248                 goto err;
1249
1250         bcache_device_link(d, c, "volume");
1251
1252         return 0;
1253 err:
1254         kobject_put(&d->kobj);
1255         return -ENOMEM;
1256 }
1257
1258 static int flash_devs_run(struct cache_set *c)
1259 {
1260         int ret = 0;
1261         struct uuid_entry *u;
1262
1263         for (u = c->uuids;
1264              u < c->uuids + c->nr_uuids && !ret;
1265              u++)
1266                 if (UUID_FLASH_ONLY(u))
1267                         ret = flash_dev_run(c, u);
1268
1269         return ret;
1270 }
1271
1272 int bch_flash_dev_create(struct cache_set *c, uint64_t size)
1273 {
1274         struct uuid_entry *u;
1275
1276         if (test_bit(CACHE_SET_STOPPING, &c->flags))
1277                 return -EINTR;
1278
1279         if (!test_bit(CACHE_SET_RUNNING, &c->flags))
1280                 return -EPERM;
1281
1282         u = uuid_find_empty(c);
1283         if (!u) {
1284                 pr_err("Can't create volume, no room for UUID");
1285                 return -EINVAL;
1286         }
1287
1288         get_random_bytes(u->uuid, 16);
1289         memset(u->label, 0, 32);
1290         u->first_reg = u->last_reg = cpu_to_le32(get_seconds());
1291
1292         SET_UUID_FLASH_ONLY(u, 1);
1293         u->sectors = size >> 9;
1294
1295         bch_uuid_write(c);
1296
1297         return flash_dev_run(c, u);
1298 }
1299
1300 /* Cache set */
1301
1302 __printf(2, 3)
1303 bool bch_cache_set_error(struct cache_set *c, const char *fmt, ...)
1304 {
1305         va_list args;
1306
1307         if (c->on_error != ON_ERROR_PANIC &&
1308             test_bit(CACHE_SET_STOPPING, &c->flags))
1309                 return false;
1310
1311         /* XXX: we can be called from atomic context
1312         acquire_console_sem();
1313         */
1314
1315         printk(KERN_ERR "bcache: error on %pU: ", c->sb.set_uuid);
1316
1317         va_start(args, fmt);
1318         vprintk(fmt, args);
1319         va_end(args);
1320
1321         printk(", disabling caching\n");
1322
1323         if (c->on_error == ON_ERROR_PANIC)
1324                 panic("panic forced after error\n");
1325
1326         bch_cache_set_unregister(c);
1327         return true;
1328 }
1329
1330 void bch_cache_set_release(struct kobject *kobj)
1331 {
1332         struct cache_set *c = container_of(kobj, struct cache_set, kobj);
1333         kfree(c);
1334         module_put(THIS_MODULE);
1335 }
1336
1337 static void cache_set_free(struct closure *cl)
1338 {
1339         struct cache_set *c = container_of(cl, struct cache_set, cl);
1340         struct cache *ca;
1341         unsigned i;
1342
1343         if (!IS_ERR_OR_NULL(c->debug))
1344                 debugfs_remove(c->debug);
1345
1346         bch_open_buckets_free(c);
1347         bch_btree_cache_free(c);
1348         bch_journal_free(c);
1349
1350         for_each_cache(ca, c, i)
1351                 if (ca) {
1352                         ca->set = NULL;
1353                         c->cache[ca->sb.nr_this_dev] = NULL;
1354                         kobject_put(&ca->kobj);
1355                 }
1356
1357         bch_bset_sort_state_free(&c->sort);
1358         free_pages((unsigned long) c->uuids, ilog2(bucket_pages(c)));
1359
1360         if (c->moving_gc_wq)
1361                 destroy_workqueue(c->moving_gc_wq);
1362         if (c->bio_split)
1363                 bioset_free(c->bio_split);
1364         if (c->fill_iter)
1365                 mempool_destroy(c->fill_iter);
1366         if (c->bio_meta)
1367                 mempool_destroy(c->bio_meta);
1368         if (c->search)
1369                 mempool_destroy(c->search);
1370         kfree(c->devices);
1371
1372         mutex_lock(&bch_register_lock);
1373         list_del(&c->list);
1374         mutex_unlock(&bch_register_lock);
1375
1376         pr_info("Cache set %pU unregistered", c->sb.set_uuid);
1377         wake_up(&unregister_wait);
1378
1379         closure_debug_destroy(&c->cl);
1380         kobject_put(&c->kobj);
1381 }
1382
1383 static void cache_set_flush(struct closure *cl)
1384 {
1385         struct cache_set *c = container_of(cl, struct cache_set, caching);
1386         struct cache *ca;
1387         struct btree *b;
1388         unsigned i;
1389
1390         bch_cache_accounting_destroy(&c->accounting);
1391
1392         kobject_put(&c->internal);
1393         kobject_del(&c->kobj);
1394
1395         if (c->gc_thread)
1396                 kthread_stop(c->gc_thread);
1397
1398         if (!IS_ERR_OR_NULL(c->root))
1399                 list_add(&c->root->list, &c->btree_cache);
1400
1401         /* Should skip this if we're unregistering because of an error */
1402         list_for_each_entry(b, &c->btree_cache, list) {
1403                 mutex_lock(&b->write_lock);
1404                 if (btree_node_dirty(b))
1405                         __bch_btree_node_write(b, NULL);
1406                 mutex_unlock(&b->write_lock);
1407         }
1408
1409         for_each_cache(ca, c, i)
1410                 if (ca->alloc_thread)
1411                         kthread_stop(ca->alloc_thread);
1412
1413         if (c->journal.cur) {
1414                 cancel_delayed_work_sync(&c->journal.work);
1415                 /* flush last journal entry if needed */
1416                 c->journal.work.work.func(&c->journal.work.work);
1417         }
1418
1419         closure_return(cl);
1420 }
1421
1422 static void __cache_set_unregister(struct closure *cl)
1423 {
1424         struct cache_set *c = container_of(cl, struct cache_set, caching);
1425         struct cached_dev *dc;
1426         size_t i;
1427
1428         mutex_lock(&bch_register_lock);
1429
1430         for (i = 0; i < c->nr_uuids; i++)
1431                 if (c->devices[i]) {
1432                         if (!UUID_FLASH_ONLY(&c->uuids[i]) &&
1433                             test_bit(CACHE_SET_UNREGISTERING, &c->flags)) {
1434                                 dc = container_of(c->devices[i],
1435                                                   struct cached_dev, disk);
1436                                 bch_cached_dev_detach(dc);
1437                         } else {
1438                                 bcache_device_stop(c->devices[i]);
1439                         }
1440                 }
1441
1442         mutex_unlock(&bch_register_lock);
1443
1444         continue_at(cl, cache_set_flush, system_wq);
1445 }
1446
1447 void bch_cache_set_stop(struct cache_set *c)
1448 {
1449         if (!test_and_set_bit(CACHE_SET_STOPPING, &c->flags))
1450                 closure_queue(&c->caching);
1451 }
1452
1453 void bch_cache_set_unregister(struct cache_set *c)
1454 {
1455         set_bit(CACHE_SET_UNREGISTERING, &c->flags);
1456         bch_cache_set_stop(c);
1457 }
1458
1459 #define alloc_bucket_pages(gfp, c)                      \
1460         ((void *) __get_free_pages(__GFP_ZERO|gfp, ilog2(bucket_pages(c))))
1461
1462 struct cache_set *bch_cache_set_alloc(struct cache_sb *sb)
1463 {
1464         int iter_size;
1465         struct cache_set *c = kzalloc(sizeof(struct cache_set), GFP_KERNEL);
1466         if (!c)
1467                 return NULL;
1468
1469         __module_get(THIS_MODULE);
1470         closure_init(&c->cl, NULL);
1471         set_closure_fn(&c->cl, cache_set_free, system_wq);
1472
1473         closure_init(&c->caching, &c->cl);
1474         set_closure_fn(&c->caching, __cache_set_unregister, system_wq);
1475
1476         /* Maybe create continue_at_noreturn() and use it here? */
1477         closure_set_stopped(&c->cl);
1478         closure_put(&c->cl);
1479
1480         kobject_init(&c->kobj, &bch_cache_set_ktype);
1481         kobject_init(&c->internal, &bch_cache_set_internal_ktype);
1482
1483         bch_cache_accounting_init(&c->accounting, &c->cl);
1484
1485         memcpy(c->sb.set_uuid, sb->set_uuid, 16);
1486         c->sb.block_size        = sb->block_size;
1487         c->sb.bucket_size       = sb->bucket_size;
1488         c->sb.nr_in_set         = sb->nr_in_set;
1489         c->sb.last_mount        = sb->last_mount;
1490         c->bucket_bits          = ilog2(sb->bucket_size);
1491         c->block_bits           = ilog2(sb->block_size);
1492         c->nr_uuids             = bucket_bytes(c) / sizeof(struct uuid_entry);
1493
1494         c->btree_pages          = bucket_pages(c);
1495         if (c->btree_pages > BTREE_MAX_PAGES)
1496                 c->btree_pages = max_t(int, c->btree_pages / 4,
1497                                        BTREE_MAX_PAGES);
1498
1499         sema_init(&c->sb_write_mutex, 1);
1500         mutex_init(&c->bucket_lock);
1501         init_waitqueue_head(&c->btree_cache_wait);
1502         init_waitqueue_head(&c->bucket_wait);
1503         init_waitqueue_head(&c->gc_wait);
1504         sema_init(&c->uuid_write_mutex, 1);
1505
1506         spin_lock_init(&c->btree_gc_time.lock);
1507         spin_lock_init(&c->btree_split_time.lock);
1508         spin_lock_init(&c->btree_read_time.lock);
1509
1510         bch_moving_init_cache_set(c);
1511
1512         INIT_LIST_HEAD(&c->list);
1513         INIT_LIST_HEAD(&c->cached_devs);
1514         INIT_LIST_HEAD(&c->btree_cache);
1515         INIT_LIST_HEAD(&c->btree_cache_freeable);
1516         INIT_LIST_HEAD(&c->btree_cache_freed);
1517         INIT_LIST_HEAD(&c->data_buckets);
1518
1519         c->search = mempool_create_slab_pool(32, bch_search_cache);
1520         if (!c->search)
1521                 goto err;
1522
1523         iter_size = (sb->bucket_size / sb->block_size + 1) *
1524                 sizeof(struct btree_iter_set);
1525
1526         if (!(c->devices = kzalloc(c->nr_uuids * sizeof(void *), GFP_KERNEL)) ||
1527             !(c->bio_meta = mempool_create_kmalloc_pool(2,
1528                                 sizeof(struct bbio) + sizeof(struct bio_vec) *
1529                                 bucket_pages(c))) ||
1530             !(c->fill_iter = mempool_create_kmalloc_pool(1, iter_size)) ||
1531             !(c->bio_split = bioset_create(4, offsetof(struct bbio, bio),
1532                                            BIOSET_NEED_BVECS |
1533                                            BIOSET_NEED_RESCUER)) ||
1534             !(c->uuids = alloc_bucket_pages(GFP_KERNEL, c)) ||
1535             !(c->moving_gc_wq = alloc_workqueue("bcache_gc",
1536                                                 WQ_MEM_RECLAIM, 0)) ||
1537             bch_journal_alloc(c) ||
1538             bch_btree_cache_alloc(c) ||
1539             bch_open_buckets_alloc(c) ||
1540             bch_bset_sort_state_init(&c->sort, ilog2(c->btree_pages)))
1541                 goto err;
1542
1543         c->congested_read_threshold_us  = 2000;
1544         c->congested_write_threshold_us = 20000;
1545         c->error_limit  = 8 << IO_ERROR_SHIFT;
1546
1547         return c;
1548 err:
1549         bch_cache_set_unregister(c);
1550         return NULL;
1551 }
1552
1553 static void run_cache_set(struct cache_set *c)
1554 {
1555         const char *err = "cannot allocate memory";
1556         struct cached_dev *dc, *t;
1557         struct cache *ca;
1558         struct closure cl;
1559         unsigned i;
1560
1561         closure_init_stack(&cl);
1562
1563         for_each_cache(ca, c, i)
1564                 c->nbuckets += ca->sb.nbuckets;
1565         set_gc_sectors(c);
1566
1567         if (CACHE_SYNC(&c->sb)) {
1568                 LIST_HEAD(journal);
1569                 struct bkey *k;
1570                 struct jset *j;
1571
1572                 err = "cannot allocate memory for journal";
1573                 if (bch_journal_read(c, &journal))
1574                         goto err;
1575
1576                 pr_debug("btree_journal_read() done");
1577
1578                 err = "no journal entries found";
1579                 if (list_empty(&journal))
1580                         goto err;
1581
1582                 j = &list_entry(journal.prev, struct journal_replay, list)->j;
1583
1584                 err = "IO error reading priorities";
1585                 for_each_cache(ca, c, i)
1586                         prio_read(ca, j->prio_bucket[ca->sb.nr_this_dev]);
1587
1588                 /*
1589                  * If prio_read() fails it'll call cache_set_error and we'll
1590                  * tear everything down right away, but if we perhaps checked
1591                  * sooner we could avoid journal replay.
1592                  */
1593
1594                 k = &j->btree_root;
1595
1596                 err = "bad btree root";
1597                 if (__bch_btree_ptr_invalid(c, k))
1598                         goto err;
1599
1600                 err = "error reading btree root";
1601                 c->root = bch_btree_node_get(c, NULL, k, j->btree_level, true, NULL);
1602                 if (IS_ERR_OR_NULL(c->root))
1603                         goto err;
1604
1605                 list_del_init(&c->root->list);
1606                 rw_unlock(true, c->root);
1607
1608                 err = uuid_read(c, j, &cl);
1609                 if (err)
1610                         goto err;
1611
1612                 err = "error in recovery";
1613                 if (bch_btree_check(c))
1614                         goto err;
1615
1616                 bch_journal_mark(c, &journal);
1617                 bch_initial_gc_finish(c);
1618                 pr_debug("btree_check() done");
1619
1620                 /*
1621                  * bcache_journal_next() can't happen sooner, or
1622                  * btree_gc_finish() will give spurious errors about last_gc >
1623                  * gc_gen - this is a hack but oh well.
1624                  */
1625                 bch_journal_next(&c->journal);
1626
1627                 err = "error starting allocator thread";
1628                 for_each_cache(ca, c, i)
1629                         if (bch_cache_allocator_start(ca))
1630                                 goto err;
1631
1632                 /*
1633                  * First place it's safe to allocate: btree_check() and
1634                  * btree_gc_finish() have to run before we have buckets to
1635                  * allocate, and bch_bucket_alloc_set() might cause a journal
1636                  * entry to be written so bcache_journal_next() has to be called
1637                  * first.
1638                  *
1639                  * If the uuids were in the old format we have to rewrite them
1640                  * before the next journal entry is written:
1641                  */
1642                 if (j->version < BCACHE_JSET_VERSION_UUID)
1643                         __uuid_write(c);
1644
1645                 bch_journal_replay(c, &journal);
1646         } else {
1647                 pr_notice("invalidating existing data");
1648
1649                 for_each_cache(ca, c, i) {
1650                         unsigned j;
1651
1652                         ca->sb.keys = clamp_t(int, ca->sb.nbuckets >> 7,
1653                                               2, SB_JOURNAL_BUCKETS);
1654
1655                         for (j = 0; j < ca->sb.keys; j++)
1656                                 ca->sb.d[j] = ca->sb.first_bucket + j;
1657                 }
1658
1659                 bch_initial_gc_finish(c);
1660
1661                 err = "error starting allocator thread";
1662                 for_each_cache(ca, c, i)
1663                         if (bch_cache_allocator_start(ca))
1664                                 goto err;
1665
1666                 mutex_lock(&c->bucket_lock);
1667                 for_each_cache(ca, c, i)
1668                         bch_prio_write(ca);
1669                 mutex_unlock(&c->bucket_lock);
1670
1671                 err = "cannot allocate new UUID bucket";
1672                 if (__uuid_write(c))
1673                         goto err;
1674
1675                 err = "cannot allocate new btree root";
1676                 c->root = __bch_btree_node_alloc(c, NULL, 0, true, NULL);
1677                 if (IS_ERR_OR_NULL(c->root))
1678                         goto err;
1679
1680                 mutex_lock(&c->root->write_lock);
1681                 bkey_copy_key(&c->root->key, &MAX_KEY);
1682                 bch_btree_node_write(c->root, &cl);
1683                 mutex_unlock(&c->root->write_lock);
1684
1685                 bch_btree_set_root(c->root);
1686                 rw_unlock(true, c->root);
1687
1688                 /*
1689                  * We don't want to write the first journal entry until
1690                  * everything is set up - fortunately journal entries won't be
1691                  * written until the SET_CACHE_SYNC() here:
1692                  */
1693                 SET_CACHE_SYNC(&c->sb, true);
1694
1695                 bch_journal_next(&c->journal);
1696                 bch_journal_meta(c, &cl);
1697         }
1698
1699         err = "error starting gc thread";
1700         if (bch_gc_thread_start(c))
1701                 goto err;
1702
1703         closure_sync(&cl);
1704         c->sb.last_mount = get_seconds();
1705         bcache_write_super(c);
1706
1707         list_for_each_entry_safe(dc, t, &uncached_devices, list)
1708                 bch_cached_dev_attach(dc, c);
1709
1710         flash_devs_run(c);
1711
1712         set_bit(CACHE_SET_RUNNING, &c->flags);
1713         return;
1714 err:
1715         closure_sync(&cl);
1716         /* XXX: test this, it's broken */
1717         bch_cache_set_error(c, "%s", err);
1718 }
1719
1720 static bool can_attach_cache(struct cache *ca, struct cache_set *c)
1721 {
1722         return ca->sb.block_size        == c->sb.block_size &&
1723                 ca->sb.bucket_size      == c->sb.bucket_size &&
1724                 ca->sb.nr_in_set        == c->sb.nr_in_set;
1725 }
1726
1727 static const char *register_cache_set(struct cache *ca)
1728 {
1729         char buf[12];
1730         const char *err = "cannot allocate memory";
1731         struct cache_set *c;
1732
1733         list_for_each_entry(c, &bch_cache_sets, list)
1734                 if (!memcmp(c->sb.set_uuid, ca->sb.set_uuid, 16)) {
1735                         if (c->cache[ca->sb.nr_this_dev])
1736                                 return "duplicate cache set member";
1737
1738                         if (!can_attach_cache(ca, c))
1739                                 return "cache sb does not match set";
1740
1741                         if (!CACHE_SYNC(&ca->sb))
1742                                 SET_CACHE_SYNC(&c->sb, false);
1743
1744                         goto found;
1745                 }
1746
1747         c = bch_cache_set_alloc(&ca->sb);
1748         if (!c)
1749                 return err;
1750
1751         err = "error creating kobject";
1752         if (kobject_add(&c->kobj, bcache_kobj, "%pU", c->sb.set_uuid) ||
1753             kobject_add(&c->internal, &c->kobj, "internal"))
1754                 goto err;
1755
1756         if (bch_cache_accounting_add_kobjs(&c->accounting, &c->kobj))
1757                 goto err;
1758
1759         bch_debug_init_cache_set(c);
1760
1761         list_add(&c->list, &bch_cache_sets);
1762 found:
1763         sprintf(buf, "cache%i", ca->sb.nr_this_dev);
1764         if (sysfs_create_link(&ca->kobj, &c->kobj, "set") ||
1765             sysfs_create_link(&c->kobj, &ca->kobj, buf))
1766                 goto err;
1767
1768         if (ca->sb.seq > c->sb.seq) {
1769                 c->sb.version           = ca->sb.version;
1770                 memcpy(c->sb.set_uuid, ca->sb.set_uuid, 16);
1771                 c->sb.flags             = ca->sb.flags;
1772                 c->sb.seq               = ca->sb.seq;
1773                 pr_debug("set version = %llu", c->sb.version);
1774         }
1775
1776         kobject_get(&ca->kobj);
1777         ca->set = c;
1778         ca->set->cache[ca->sb.nr_this_dev] = ca;
1779         c->cache_by_alloc[c->caches_loaded++] = ca;
1780
1781         if (c->caches_loaded == c->sb.nr_in_set)
1782                 run_cache_set(c);
1783
1784         return NULL;
1785 err:
1786         bch_cache_set_unregister(c);
1787         return err;
1788 }
1789
1790 /* Cache device */
1791
1792 void bch_cache_release(struct kobject *kobj)
1793 {
1794         struct cache *ca = container_of(kobj, struct cache, kobj);
1795         unsigned i;
1796
1797         if (ca->set) {
1798                 BUG_ON(ca->set->cache[ca->sb.nr_this_dev] != ca);
1799                 ca->set->cache[ca->sb.nr_this_dev] = NULL;
1800         }
1801
1802         free_pages((unsigned long) ca->disk_buckets, ilog2(bucket_pages(ca)));
1803         kfree(ca->prio_buckets);
1804         vfree(ca->buckets);
1805
1806         free_heap(&ca->heap);
1807         free_fifo(&ca->free_inc);
1808
1809         for (i = 0; i < RESERVE_NR; i++)
1810                 free_fifo(&ca->free[i]);
1811
1812         if (ca->sb_bio.bi_inline_vecs[0].bv_page)
1813                 put_page(ca->sb_bio.bi_io_vec[0].bv_page);
1814
1815         if (!IS_ERR_OR_NULL(ca->bdev))
1816                 blkdev_put(ca->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1817
1818         kfree(ca);
1819         module_put(THIS_MODULE);
1820 }
1821
1822 static int cache_alloc(struct cache *ca)
1823 {
1824         size_t free;
1825         struct bucket *b;
1826
1827         __module_get(THIS_MODULE);
1828         kobject_init(&ca->kobj, &bch_cache_ktype);
1829
1830         bio_init(&ca->journal.bio, ca->journal.bio.bi_inline_vecs, 8);
1831
1832         free = roundup_pow_of_two(ca->sb.nbuckets) >> 10;
1833
1834         if (!init_fifo(&ca->free[RESERVE_BTREE], 8, GFP_KERNEL) ||
1835             !init_fifo_exact(&ca->free[RESERVE_PRIO], prio_buckets(ca), GFP_KERNEL) ||
1836             !init_fifo(&ca->free[RESERVE_MOVINGGC], free, GFP_KERNEL) ||
1837             !init_fifo(&ca->free[RESERVE_NONE], free, GFP_KERNEL) ||
1838             !init_fifo(&ca->free_inc,   free << 2, GFP_KERNEL) ||
1839             !init_heap(&ca->heap,       free << 3, GFP_KERNEL) ||
1840             !(ca->buckets       = vzalloc(sizeof(struct bucket) *
1841                                           ca->sb.nbuckets)) ||
1842             !(ca->prio_buckets  = kzalloc(sizeof(uint64_t) * prio_buckets(ca) *
1843                                           2, GFP_KERNEL)) ||
1844             !(ca->disk_buckets  = alloc_bucket_pages(GFP_KERNEL, ca)))
1845                 return -ENOMEM;
1846
1847         ca->prio_last_buckets = ca->prio_buckets + prio_buckets(ca);
1848
1849         for_each_bucket(b, ca)
1850                 atomic_set(&b->pin, 0);
1851
1852         return 0;
1853 }
1854
1855 static int register_cache(struct cache_sb *sb, struct page *sb_page,
1856                                 struct block_device *bdev, struct cache *ca)
1857 {
1858         char name[BDEVNAME_SIZE];
1859         const char *err = NULL; /* must be set for any error case */
1860         int ret = 0;
1861
1862         memcpy(&ca->sb, sb, sizeof(struct cache_sb));
1863         ca->bdev = bdev;
1864         ca->bdev->bd_holder = ca;
1865
1866         bio_init(&ca->sb_bio, ca->sb_bio.bi_inline_vecs, 1);
1867         ca->sb_bio.bi_io_vec[0].bv_page = sb_page;
1868         get_page(sb_page);
1869
1870         if (blk_queue_discard(bdev_get_queue(ca->bdev)))
1871                 ca->discard = CACHE_DISCARD(&ca->sb);
1872
1873         ret = cache_alloc(ca);
1874         if (ret != 0) {
1875                 if (ret == -ENOMEM)
1876                         err = "cache_alloc(): -ENOMEM";
1877                 else
1878                         err = "cache_alloc(): unknown error";
1879                 goto err;
1880         }
1881
1882         if (kobject_add(&ca->kobj, &part_to_dev(bdev->bd_part)->kobj, "bcache")) {
1883                 err = "error calling kobject_add";
1884                 ret = -ENOMEM;
1885                 goto out;
1886         }
1887
1888         mutex_lock(&bch_register_lock);
1889         err = register_cache_set(ca);
1890         mutex_unlock(&bch_register_lock);
1891
1892         if (err) {
1893                 ret = -ENODEV;
1894                 goto out;
1895         }
1896
1897         pr_info("registered cache device %s", bdevname(bdev, name));
1898
1899 out:
1900         kobject_put(&ca->kobj);
1901
1902 err:
1903         if (err)
1904                 pr_notice("error opening %s: %s", bdevname(bdev, name), err);
1905
1906         return ret;
1907 }
1908
1909 /* Global interfaces/init */
1910
1911 static ssize_t register_bcache(struct kobject *, struct kobj_attribute *,
1912                                const char *, size_t);
1913
1914 kobj_attribute_write(register,          register_bcache);
1915 kobj_attribute_write(register_quiet,    register_bcache);
1916
1917 static bool bch_is_open_backing(struct block_device *bdev) {
1918         struct cache_set *c, *tc;
1919         struct cached_dev *dc, *t;
1920
1921         list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
1922                 list_for_each_entry_safe(dc, t, &c->cached_devs, list)
1923                         if (dc->bdev == bdev)
1924                                 return true;
1925         list_for_each_entry_safe(dc, t, &uncached_devices, list)
1926                 if (dc->bdev == bdev)
1927                         return true;
1928         return false;
1929 }
1930
1931 static bool bch_is_open_cache(struct block_device *bdev) {
1932         struct cache_set *c, *tc;
1933         struct cache *ca;
1934         unsigned i;
1935
1936         list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
1937                 for_each_cache(ca, c, i)
1938                         if (ca->bdev == bdev)
1939                                 return true;
1940         return false;
1941 }
1942
1943 static bool bch_is_open(struct block_device *bdev) {
1944         return bch_is_open_cache(bdev) || bch_is_open_backing(bdev);
1945 }
1946
1947 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr,
1948                                const char *buffer, size_t size)
1949 {
1950         ssize_t ret = size;
1951         const char *err = "cannot allocate memory";
1952         char *path = NULL;
1953         struct cache_sb *sb = NULL;
1954         struct block_device *bdev = NULL;
1955         struct page *sb_page = NULL;
1956
1957         if (!try_module_get(THIS_MODULE))
1958                 return -EBUSY;
1959
1960         if (!(path = kstrndup(buffer, size, GFP_KERNEL)) ||
1961             !(sb = kmalloc(sizeof(struct cache_sb), GFP_KERNEL)))
1962                 goto err;
1963
1964         err = "failed to open device";
1965         bdev = blkdev_get_by_path(strim(path),
1966                                   FMODE_READ|FMODE_WRITE|FMODE_EXCL,
1967                                   sb);
1968         if (IS_ERR(bdev)) {
1969                 if (bdev == ERR_PTR(-EBUSY)) {
1970                         bdev = lookup_bdev(strim(path));
1971                         mutex_lock(&bch_register_lock);
1972                         if (!IS_ERR(bdev) && bch_is_open(bdev))
1973                                 err = "device already registered";
1974                         else
1975                                 err = "device busy";
1976                         mutex_unlock(&bch_register_lock);
1977                         if (!IS_ERR(bdev))
1978                                 bdput(bdev);
1979                         if (attr == &ksysfs_register_quiet)
1980                                 goto out;
1981                 }
1982                 goto err;
1983         }
1984
1985         err = "failed to set blocksize";
1986         if (set_blocksize(bdev, 4096))
1987                 goto err_close;
1988
1989         err = read_super(sb, bdev, &sb_page);
1990         if (err)
1991                 goto err_close;
1992
1993         if (SB_IS_BDEV(sb)) {
1994                 struct cached_dev *dc = kzalloc(sizeof(*dc), GFP_KERNEL);
1995                 if (!dc)
1996                         goto err_close;
1997
1998                 mutex_lock(&bch_register_lock);
1999                 register_bdev(sb, sb_page, bdev, dc);
2000                 mutex_unlock(&bch_register_lock);
2001         } else {
2002                 struct cache *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2003                 if (!ca)
2004                         goto err_close;
2005
2006                 if (register_cache(sb, sb_page, bdev, ca) != 0)
2007                         goto err_close;
2008         }
2009 out:
2010         if (sb_page)
2011                 put_page(sb_page);
2012         kfree(sb);
2013         kfree(path);
2014         module_put(THIS_MODULE);
2015         return ret;
2016
2017 err_close:
2018         blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2019 err:
2020         pr_info("error opening %s: %s", path, err);
2021         ret = -EINVAL;
2022         goto out;
2023 }
2024
2025 static int bcache_reboot(struct notifier_block *n, unsigned long code, void *x)
2026 {
2027         if (code == SYS_DOWN ||
2028             code == SYS_HALT ||
2029             code == SYS_POWER_OFF) {
2030                 DEFINE_WAIT(wait);
2031                 unsigned long start = jiffies;
2032                 bool stopped = false;
2033
2034                 struct cache_set *c, *tc;
2035                 struct cached_dev *dc, *tdc;
2036
2037                 mutex_lock(&bch_register_lock);
2038
2039                 if (list_empty(&bch_cache_sets) &&
2040                     list_empty(&uncached_devices))
2041                         goto out;
2042
2043                 pr_info("Stopping all devices:");
2044
2045                 list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
2046                         bch_cache_set_stop(c);
2047
2048                 list_for_each_entry_safe(dc, tdc, &uncached_devices, list)
2049                         bcache_device_stop(&dc->disk);
2050
2051                 /* What's a condition variable? */
2052                 while (1) {
2053                         long timeout = start + 2 * HZ - jiffies;
2054
2055                         stopped = list_empty(&bch_cache_sets) &&
2056                                 list_empty(&uncached_devices);
2057
2058                         if (timeout < 0 || stopped)
2059                                 break;
2060
2061                         prepare_to_wait(&unregister_wait, &wait,
2062                                         TASK_UNINTERRUPTIBLE);
2063
2064                         mutex_unlock(&bch_register_lock);
2065                         schedule_timeout(timeout);
2066                         mutex_lock(&bch_register_lock);
2067                 }
2068
2069                 finish_wait(&unregister_wait, &wait);
2070
2071                 if (stopped)
2072                         pr_info("All devices stopped");
2073                 else
2074                         pr_notice("Timeout waiting for devices to be closed");
2075 out:
2076                 mutex_unlock(&bch_register_lock);
2077         }
2078
2079         return NOTIFY_DONE;
2080 }
2081
2082 static struct notifier_block reboot = {
2083         .notifier_call  = bcache_reboot,
2084         .priority       = INT_MAX, /* before any real devices */
2085 };
2086
2087 static void bcache_exit(void)
2088 {
2089         bch_debug_exit();
2090         bch_request_exit();
2091         if (bcache_kobj)
2092                 kobject_put(bcache_kobj);
2093         if (bcache_wq)
2094                 destroy_workqueue(bcache_wq);
2095         if (bcache_major)
2096                 unregister_blkdev(bcache_major, "bcache");
2097         unregister_reboot_notifier(&reboot);
2098         mutex_destroy(&bch_register_lock);
2099 }
2100
2101 static int __init bcache_init(void)
2102 {
2103         static const struct attribute *files[] = {
2104                 &ksysfs_register.attr,
2105                 &ksysfs_register_quiet.attr,
2106                 NULL
2107         };
2108
2109         mutex_init(&bch_register_lock);
2110         init_waitqueue_head(&unregister_wait);
2111         register_reboot_notifier(&reboot);
2112         closure_debug_init();
2113
2114         bcache_major = register_blkdev(0, "bcache");
2115         if (bcache_major < 0) {
2116                 unregister_reboot_notifier(&reboot);
2117                 mutex_destroy(&bch_register_lock);
2118                 return bcache_major;
2119         }
2120
2121         if (!(bcache_wq = alloc_workqueue("bcache", WQ_MEM_RECLAIM, 0)) ||
2122             !(bcache_kobj = kobject_create_and_add("bcache", fs_kobj)) ||
2123             bch_request_init() ||
2124             bch_debug_init(bcache_kobj) ||
2125             sysfs_create_files(bcache_kobj, files))
2126                 goto err;
2127
2128         return 0;
2129 err:
2130         bcache_exit();
2131         return -ENOMEM;
2132 }
2133
2134 module_exit(bcache_exit);
2135 module_init(bcache_init);
This page took 0.16213 seconds and 4 git commands to generate.