4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/kthread.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/sysctl.h>
61 #include <linux/syscalls.h>
62 #include <linux/times.h>
63 #include <linux/tsacct_kern.h>
64 #include <linux/kprobes.h>
65 #include <linux/delayacct.h>
66 #include <linux/reciprocal_div.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/bootmem.h>
72 #include <linux/debugfs.h>
73 #include <linux/ctype.h>
74 #include <linux/ftrace.h>
75 #include <trace/sched.h>
78 #include <asm/irq_regs.h>
80 #include "sched_cpupri.h"
83 * Convert user-nice values [ -20 ... 0 ... 19 ]
84 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
87 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
88 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
89 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
92 * 'User priority' is the nice value converted to something we
93 * can work with better when scaling various scheduler parameters,
94 * it's a [ 0 ... 39 ] range.
96 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
97 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
98 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
101 * Helpers for converting nanosecond timing to jiffy resolution
103 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
105 #define NICE_0_LOAD SCHED_LOAD_SCALE
106 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
109 * These are the 'tuning knobs' of the scheduler:
111 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
112 * Timeslices get refilled after they expire.
114 #define DEF_TIMESLICE (100 * HZ / 1000)
117 * single value that denotes runtime == period, ie unlimited time.
119 #define RUNTIME_INF ((u64)~0ULL)
123 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
124 * Since cpu_power is a 'constant', we can use a reciprocal divide.
126 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
128 return reciprocal_divide(load, sg->reciprocal_cpu_power);
132 * Each time a sched group cpu_power is changed,
133 * we must compute its reciprocal value
135 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
137 sg->__cpu_power += val;
138 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
142 static inline int rt_policy(int policy)
144 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
149 static inline int task_has_rt_policy(struct task_struct *p)
151 return rt_policy(p->policy);
155 * This is the priority-queue data structure of the RT scheduling class:
157 struct rt_prio_array {
158 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
159 struct list_head queue[MAX_RT_PRIO];
162 struct rt_bandwidth {
163 /* nests inside the rq lock: */
164 spinlock_t rt_runtime_lock;
167 struct hrtimer rt_period_timer;
170 static struct rt_bandwidth def_rt_bandwidth;
172 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
174 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
176 struct rt_bandwidth *rt_b =
177 container_of(timer, struct rt_bandwidth, rt_period_timer);
183 now = hrtimer_cb_get_time(timer);
184 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
189 idle = do_sched_rt_period_timer(rt_b, overrun);
192 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
196 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
198 rt_b->rt_period = ns_to_ktime(period);
199 rt_b->rt_runtime = runtime;
201 spin_lock_init(&rt_b->rt_runtime_lock);
203 hrtimer_init(&rt_b->rt_period_timer,
204 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
205 rt_b->rt_period_timer.function = sched_rt_period_timer;
206 rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_UNLOCKED;
209 static inline int rt_bandwidth_enabled(void)
211 return sysctl_sched_rt_runtime >= 0;
214 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
218 if (rt_bandwidth_enabled() && rt_b->rt_runtime == RUNTIME_INF)
221 if (hrtimer_active(&rt_b->rt_period_timer))
224 spin_lock(&rt_b->rt_runtime_lock);
226 if (hrtimer_active(&rt_b->rt_period_timer))
229 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
230 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
231 hrtimer_start_expires(&rt_b->rt_period_timer,
234 spin_unlock(&rt_b->rt_runtime_lock);
237 #ifdef CONFIG_RT_GROUP_SCHED
238 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
240 hrtimer_cancel(&rt_b->rt_period_timer);
245 * sched_domains_mutex serializes calls to arch_init_sched_domains,
246 * detach_destroy_domains and partition_sched_domains.
248 static DEFINE_MUTEX(sched_domains_mutex);
250 #ifdef CONFIG_GROUP_SCHED
252 #include <linux/cgroup.h>
256 static LIST_HEAD(task_groups);
258 /* task group related information */
260 #ifdef CONFIG_CGROUP_SCHED
261 struct cgroup_subsys_state css;
264 #ifdef CONFIG_FAIR_GROUP_SCHED
265 /* schedulable entities of this group on each cpu */
266 struct sched_entity **se;
267 /* runqueue "owned" by this group on each cpu */
268 struct cfs_rq **cfs_rq;
269 unsigned long shares;
272 #ifdef CONFIG_RT_GROUP_SCHED
273 struct sched_rt_entity **rt_se;
274 struct rt_rq **rt_rq;
276 struct rt_bandwidth rt_bandwidth;
280 struct list_head list;
282 struct task_group *parent;
283 struct list_head siblings;
284 struct list_head children;
287 #ifdef CONFIG_USER_SCHED
291 * Every UID task group (including init_task_group aka UID-0) will
292 * be a child to this group.
294 struct task_group root_task_group;
296 #ifdef CONFIG_FAIR_GROUP_SCHED
297 /* Default task group's sched entity on each cpu */
298 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
299 /* Default task group's cfs_rq on each cpu */
300 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
301 #endif /* CONFIG_FAIR_GROUP_SCHED */
303 #ifdef CONFIG_RT_GROUP_SCHED
304 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
305 static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
306 #endif /* CONFIG_RT_GROUP_SCHED */
307 #else /* !CONFIG_USER_SCHED */
308 #define root_task_group init_task_group
309 #endif /* CONFIG_USER_SCHED */
311 /* task_group_lock serializes add/remove of task groups and also changes to
312 * a task group's cpu shares.
314 static DEFINE_SPINLOCK(task_group_lock);
316 #ifdef CONFIG_FAIR_GROUP_SCHED
317 #ifdef CONFIG_USER_SCHED
318 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
319 #else /* !CONFIG_USER_SCHED */
320 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
321 #endif /* CONFIG_USER_SCHED */
324 * A weight of 0 or 1 can cause arithmetics problems.
325 * A weight of a cfs_rq is the sum of weights of which entities
326 * are queued on this cfs_rq, so a weight of a entity should not be
327 * too large, so as the shares value of a task group.
328 * (The default weight is 1024 - so there's no practical
329 * limitation from this.)
332 #define MAX_SHARES (1UL << 18)
334 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
337 /* Default task group.
338 * Every task in system belong to this group at bootup.
340 struct task_group init_task_group;
342 /* return group to which a task belongs */
343 static inline struct task_group *task_group(struct task_struct *p)
345 struct task_group *tg;
347 #ifdef CONFIG_USER_SCHED
349 #elif defined(CONFIG_CGROUP_SCHED)
350 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
351 struct task_group, css);
353 tg = &init_task_group;
358 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
359 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
361 #ifdef CONFIG_FAIR_GROUP_SCHED
362 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
363 p->se.parent = task_group(p)->se[cpu];
366 #ifdef CONFIG_RT_GROUP_SCHED
367 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
368 p->rt.parent = task_group(p)->rt_se[cpu];
374 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
375 static inline struct task_group *task_group(struct task_struct *p)
380 #endif /* CONFIG_GROUP_SCHED */
382 /* CFS-related fields in a runqueue */
384 struct load_weight load;
385 unsigned long nr_running;
390 struct rb_root tasks_timeline;
391 struct rb_node *rb_leftmost;
393 struct list_head tasks;
394 struct list_head *balance_iterator;
397 * 'curr' points to currently running entity on this cfs_rq.
398 * It is set to NULL otherwise (i.e when none are currently running).
400 struct sched_entity *curr, *next, *last;
402 unsigned int nr_spread_over;
404 #ifdef CONFIG_FAIR_GROUP_SCHED
405 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
408 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
409 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
410 * (like users, containers etc.)
412 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
413 * list is used during load balance.
415 struct list_head leaf_cfs_rq_list;
416 struct task_group *tg; /* group that "owns" this runqueue */
420 * the part of load.weight contributed by tasks
422 unsigned long task_weight;
425 * h_load = weight * f(tg)
427 * Where f(tg) is the recursive weight fraction assigned to
430 unsigned long h_load;
433 * this cpu's part of tg->shares
435 unsigned long shares;
438 * load.weight at the time we set shares
440 unsigned long rq_weight;
445 /* Real-Time classes' related field in a runqueue: */
447 struct rt_prio_array active;
448 unsigned long rt_nr_running;
449 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
450 int highest_prio; /* highest queued rt task prio */
453 unsigned long rt_nr_migratory;
459 /* Nests inside the rq lock: */
460 spinlock_t rt_runtime_lock;
462 #ifdef CONFIG_RT_GROUP_SCHED
463 unsigned long rt_nr_boosted;
466 struct list_head leaf_rt_rq_list;
467 struct task_group *tg;
468 struct sched_rt_entity *rt_se;
475 * We add the notion of a root-domain which will be used to define per-domain
476 * variables. Each exclusive cpuset essentially defines an island domain by
477 * fully partitioning the member cpus from any other cpuset. Whenever a new
478 * exclusive cpuset is created, we also create and attach a new root-domain
488 * The "RT overload" flag: it gets set if a CPU has more than
489 * one runnable RT task.
494 struct cpupri cpupri;
499 * By default the system creates a single root-domain with all cpus as
500 * members (mimicking the global state we have today).
502 static struct root_domain def_root_domain;
507 * This is the main, per-CPU runqueue data structure.
509 * Locking rule: those places that want to lock multiple runqueues
510 * (such as the load balancing or the thread migration code), lock
511 * acquire operations must be ordered by ascending &runqueue.
518 * nr_running and cpu_load should be in the same cacheline because
519 * remote CPUs use both these fields when doing load calculation.
521 unsigned long nr_running;
522 #define CPU_LOAD_IDX_MAX 5
523 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
524 unsigned char idle_at_tick;
526 unsigned long last_tick_seen;
527 unsigned char in_nohz_recently;
529 /* capture load from *all* tasks on this cpu: */
530 struct load_weight load;
531 unsigned long nr_load_updates;
537 #ifdef CONFIG_FAIR_GROUP_SCHED
538 /* list of leaf cfs_rq on this cpu: */
539 struct list_head leaf_cfs_rq_list;
541 #ifdef CONFIG_RT_GROUP_SCHED
542 struct list_head leaf_rt_rq_list;
546 * This is part of a global counter where only the total sum
547 * over all CPUs matters. A task can increase this counter on
548 * one CPU and if it got migrated afterwards it may decrease
549 * it on another CPU. Always updated under the runqueue lock:
551 unsigned long nr_uninterruptible;
553 struct task_struct *curr, *idle;
554 unsigned long next_balance;
555 struct mm_struct *prev_mm;
562 struct root_domain *rd;
563 struct sched_domain *sd;
565 /* For active balancing */
568 /* cpu of this runqueue: */
572 unsigned long avg_load_per_task;
574 struct task_struct *migration_thread;
575 struct list_head migration_queue;
578 #ifdef CONFIG_SCHED_HRTICK
580 int hrtick_csd_pending;
581 struct call_single_data hrtick_csd;
583 struct hrtimer hrtick_timer;
586 #ifdef CONFIG_SCHEDSTATS
588 struct sched_info rq_sched_info;
590 /* sys_sched_yield() stats */
591 unsigned int yld_exp_empty;
592 unsigned int yld_act_empty;
593 unsigned int yld_both_empty;
594 unsigned int yld_count;
596 /* schedule() stats */
597 unsigned int sched_switch;
598 unsigned int sched_count;
599 unsigned int sched_goidle;
601 /* try_to_wake_up() stats */
602 unsigned int ttwu_count;
603 unsigned int ttwu_local;
606 unsigned int bkl_count;
610 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
612 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
614 rq->curr->sched_class->check_preempt_curr(rq, p, sync);
617 static inline int cpu_of(struct rq *rq)
627 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
628 * See detach_destroy_domains: synchronize_sched for details.
630 * The domain tree of any CPU may only be accessed from within
631 * preempt-disabled sections.
633 #define for_each_domain(cpu, __sd) \
634 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
636 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
637 #define this_rq() (&__get_cpu_var(runqueues))
638 #define task_rq(p) cpu_rq(task_cpu(p))
639 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
641 static inline void update_rq_clock(struct rq *rq)
643 rq->clock = sched_clock_cpu(cpu_of(rq));
647 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
649 #ifdef CONFIG_SCHED_DEBUG
650 # define const_debug __read_mostly
652 # define const_debug static const
658 * Returns true if the current cpu runqueue is locked.
659 * This interface allows printk to be called with the runqueue lock
660 * held and know whether or not it is OK to wake up the klogd.
662 int runqueue_is_locked(void)
665 struct rq *rq = cpu_rq(cpu);
668 ret = spin_is_locked(&rq->lock);
674 * Debugging: various feature bits
677 #define SCHED_FEAT(name, enabled) \
678 __SCHED_FEAT_##name ,
681 #include "sched_features.h"
686 #define SCHED_FEAT(name, enabled) \
687 (1UL << __SCHED_FEAT_##name) * enabled |
689 const_debug unsigned int sysctl_sched_features =
690 #include "sched_features.h"
695 #ifdef CONFIG_SCHED_DEBUG
696 #define SCHED_FEAT(name, enabled) \
699 static __read_mostly char *sched_feat_names[] = {
700 #include "sched_features.h"
706 static int sched_feat_open(struct inode *inode, struct file *filp)
708 filp->private_data = inode->i_private;
713 sched_feat_read(struct file *filp, char __user *ubuf,
714 size_t cnt, loff_t *ppos)
721 for (i = 0; sched_feat_names[i]; i++) {
722 len += strlen(sched_feat_names[i]);
726 buf = kmalloc(len + 2, GFP_KERNEL);
730 for (i = 0; sched_feat_names[i]; i++) {
731 if (sysctl_sched_features & (1UL << i))
732 r += sprintf(buf + r, "%s ", sched_feat_names[i]);
734 r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
737 r += sprintf(buf + r, "\n");
738 WARN_ON(r >= len + 2);
740 r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
748 sched_feat_write(struct file *filp, const char __user *ubuf,
749 size_t cnt, loff_t *ppos)
759 if (copy_from_user(&buf, ubuf, cnt))
764 if (strncmp(buf, "NO_", 3) == 0) {
769 for (i = 0; sched_feat_names[i]; i++) {
770 int len = strlen(sched_feat_names[i]);
772 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
774 sysctl_sched_features &= ~(1UL << i);
776 sysctl_sched_features |= (1UL << i);
781 if (!sched_feat_names[i])
789 static struct file_operations sched_feat_fops = {
790 .open = sched_feat_open,
791 .read = sched_feat_read,
792 .write = sched_feat_write,
795 static __init int sched_init_debug(void)
797 debugfs_create_file("sched_features", 0644, NULL, NULL,
802 late_initcall(sched_init_debug);
806 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
809 * Number of tasks to iterate in a single balance run.
810 * Limited because this is done with IRQs disabled.
812 const_debug unsigned int sysctl_sched_nr_migrate = 32;
815 * ratelimit for updating the group shares.
818 unsigned int sysctl_sched_shares_ratelimit = 250000;
821 * Inject some fuzzyness into changing the per-cpu group shares
822 * this avoids remote rq-locks at the expense of fairness.
825 unsigned int sysctl_sched_shares_thresh = 4;
828 * period over which we measure -rt task cpu usage in us.
831 unsigned int sysctl_sched_rt_period = 1000000;
833 static __read_mostly int scheduler_running;
836 * part of the period that we allow rt tasks to run in us.
839 int sysctl_sched_rt_runtime = 950000;
841 static inline u64 global_rt_period(void)
843 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
846 static inline u64 global_rt_runtime(void)
848 if (sysctl_sched_rt_runtime < 0)
851 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
854 #ifndef prepare_arch_switch
855 # define prepare_arch_switch(next) do { } while (0)
857 #ifndef finish_arch_switch
858 # define finish_arch_switch(prev) do { } while (0)
861 static inline int task_current(struct rq *rq, struct task_struct *p)
863 return rq->curr == p;
866 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
867 static inline int task_running(struct rq *rq, struct task_struct *p)
869 return task_current(rq, p);
872 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
876 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
878 #ifdef CONFIG_DEBUG_SPINLOCK
879 /* this is a valid case when another task releases the spinlock */
880 rq->lock.owner = current;
883 * If we are tracking spinlock dependencies then we have to
884 * fix up the runqueue lock - which gets 'carried over' from
887 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
889 spin_unlock_irq(&rq->lock);
892 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
893 static inline int task_running(struct rq *rq, struct task_struct *p)
898 return task_current(rq, p);
902 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
906 * We can optimise this out completely for !SMP, because the
907 * SMP rebalancing from interrupt is the only thing that cares
912 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
913 spin_unlock_irq(&rq->lock);
915 spin_unlock(&rq->lock);
919 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
923 * After ->oncpu is cleared, the task can be moved to a different CPU.
924 * We must ensure this doesn't happen until the switch is completely
930 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
934 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
937 * __task_rq_lock - lock the runqueue a given task resides on.
938 * Must be called interrupts disabled.
940 static inline struct rq *__task_rq_lock(struct task_struct *p)
944 struct rq *rq = task_rq(p);
945 spin_lock(&rq->lock);
946 if (likely(rq == task_rq(p)))
948 spin_unlock(&rq->lock);
953 * task_rq_lock - lock the runqueue a given task resides on and disable
954 * interrupts. Note the ordering: we can safely lookup the task_rq without
955 * explicitly disabling preemption.
957 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
963 local_irq_save(*flags);
965 spin_lock(&rq->lock);
966 if (likely(rq == task_rq(p)))
968 spin_unlock_irqrestore(&rq->lock, *flags);
972 void task_rq_unlock_wait(struct task_struct *p)
974 struct rq *rq = task_rq(p);
976 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
977 spin_unlock_wait(&rq->lock);
980 static void __task_rq_unlock(struct rq *rq)
983 spin_unlock(&rq->lock);
986 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
989 spin_unlock_irqrestore(&rq->lock, *flags);
993 * this_rq_lock - lock this runqueue and disable interrupts.
995 static struct rq *this_rq_lock(void)
1000 local_irq_disable();
1002 spin_lock(&rq->lock);
1007 #ifdef CONFIG_SCHED_HRTICK
1009 * Use HR-timers to deliver accurate preemption points.
1011 * Its all a bit involved since we cannot program an hrt while holding the
1012 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1015 * When we get rescheduled we reprogram the hrtick_timer outside of the
1021 * - enabled by features
1022 * - hrtimer is actually high res
1024 static inline int hrtick_enabled(struct rq *rq)
1026 if (!sched_feat(HRTICK))
1028 if (!cpu_active(cpu_of(rq)))
1030 return hrtimer_is_hres_active(&rq->hrtick_timer);
1033 static void hrtick_clear(struct rq *rq)
1035 if (hrtimer_active(&rq->hrtick_timer))
1036 hrtimer_cancel(&rq->hrtick_timer);
1040 * High-resolution timer tick.
1041 * Runs from hardirq context with interrupts disabled.
1043 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1045 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1047 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1049 spin_lock(&rq->lock);
1050 update_rq_clock(rq);
1051 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1052 spin_unlock(&rq->lock);
1054 return HRTIMER_NORESTART;
1059 * called from hardirq (IPI) context
1061 static void __hrtick_start(void *arg)
1063 struct rq *rq = arg;
1065 spin_lock(&rq->lock);
1066 hrtimer_restart(&rq->hrtick_timer);
1067 rq->hrtick_csd_pending = 0;
1068 spin_unlock(&rq->lock);
1072 * Called to set the hrtick timer state.
1074 * called with rq->lock held and irqs disabled
1076 static void hrtick_start(struct rq *rq, u64 delay)
1078 struct hrtimer *timer = &rq->hrtick_timer;
1079 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1081 hrtimer_set_expires(timer, time);
1083 if (rq == this_rq()) {
1084 hrtimer_restart(timer);
1085 } else if (!rq->hrtick_csd_pending) {
1086 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
1087 rq->hrtick_csd_pending = 1;
1092 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1094 int cpu = (int)(long)hcpu;
1097 case CPU_UP_CANCELED:
1098 case CPU_UP_CANCELED_FROZEN:
1099 case CPU_DOWN_PREPARE:
1100 case CPU_DOWN_PREPARE_FROZEN:
1102 case CPU_DEAD_FROZEN:
1103 hrtick_clear(cpu_rq(cpu));
1110 static __init void init_hrtick(void)
1112 hotcpu_notifier(hotplug_hrtick, 0);
1116 * Called to set the hrtick timer state.
1118 * called with rq->lock held and irqs disabled
1120 static void hrtick_start(struct rq *rq, u64 delay)
1122 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
1125 static inline void init_hrtick(void)
1128 #endif /* CONFIG_SMP */
1130 static void init_rq_hrtick(struct rq *rq)
1133 rq->hrtick_csd_pending = 0;
1135 rq->hrtick_csd.flags = 0;
1136 rq->hrtick_csd.func = __hrtick_start;
1137 rq->hrtick_csd.info = rq;
1140 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1141 rq->hrtick_timer.function = hrtick;
1142 rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_PERCPU;
1144 #else /* CONFIG_SCHED_HRTICK */
1145 static inline void hrtick_clear(struct rq *rq)
1149 static inline void init_rq_hrtick(struct rq *rq)
1153 static inline void init_hrtick(void)
1156 #endif /* CONFIG_SCHED_HRTICK */
1159 * resched_task - mark a task 'to be rescheduled now'.
1161 * On UP this means the setting of the need_resched flag, on SMP it
1162 * might also involve a cross-CPU call to trigger the scheduler on
1167 #ifndef tsk_is_polling
1168 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1171 static void resched_task(struct task_struct *p)
1175 assert_spin_locked(&task_rq(p)->lock);
1177 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
1180 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
1183 if (cpu == smp_processor_id())
1186 /* NEED_RESCHED must be visible before we test polling */
1188 if (!tsk_is_polling(p))
1189 smp_send_reschedule(cpu);
1192 static void resched_cpu(int cpu)
1194 struct rq *rq = cpu_rq(cpu);
1195 unsigned long flags;
1197 if (!spin_trylock_irqsave(&rq->lock, flags))
1199 resched_task(cpu_curr(cpu));
1200 spin_unlock_irqrestore(&rq->lock, flags);
1205 * When add_timer_on() enqueues a timer into the timer wheel of an
1206 * idle CPU then this timer might expire before the next timer event
1207 * which is scheduled to wake up that CPU. In case of a completely
1208 * idle system the next event might even be infinite time into the
1209 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1210 * leaves the inner idle loop so the newly added timer is taken into
1211 * account when the CPU goes back to idle and evaluates the timer
1212 * wheel for the next timer event.
1214 void wake_up_idle_cpu(int cpu)
1216 struct rq *rq = cpu_rq(cpu);
1218 if (cpu == smp_processor_id())
1222 * This is safe, as this function is called with the timer
1223 * wheel base lock of (cpu) held. When the CPU is on the way
1224 * to idle and has not yet set rq->curr to idle then it will
1225 * be serialized on the timer wheel base lock and take the new
1226 * timer into account automatically.
1228 if (rq->curr != rq->idle)
1232 * We can set TIF_RESCHED on the idle task of the other CPU
1233 * lockless. The worst case is that the other CPU runs the
1234 * idle task through an additional NOOP schedule()
1236 set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
1238 /* NEED_RESCHED must be visible before we test polling */
1240 if (!tsk_is_polling(rq->idle))
1241 smp_send_reschedule(cpu);
1243 #endif /* CONFIG_NO_HZ */
1245 #else /* !CONFIG_SMP */
1246 static void resched_task(struct task_struct *p)
1248 assert_spin_locked(&task_rq(p)->lock);
1249 set_tsk_need_resched(p);
1251 #endif /* CONFIG_SMP */
1253 #if BITS_PER_LONG == 32
1254 # define WMULT_CONST (~0UL)
1256 # define WMULT_CONST (1UL << 32)
1259 #define WMULT_SHIFT 32
1262 * Shift right and round:
1264 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1267 * delta *= weight / lw
1269 static unsigned long
1270 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1271 struct load_weight *lw)
1275 if (!lw->inv_weight) {
1276 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1279 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1283 tmp = (u64)delta_exec * weight;
1285 * Check whether we'd overflow the 64-bit multiplication:
1287 if (unlikely(tmp > WMULT_CONST))
1288 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1291 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1293 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1296 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1302 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1309 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1310 * of tasks with abnormal "nice" values across CPUs the contribution that
1311 * each task makes to its run queue's load is weighted according to its
1312 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1313 * scaled version of the new time slice allocation that they receive on time
1317 #define WEIGHT_IDLEPRIO 2
1318 #define WMULT_IDLEPRIO (1 << 31)
1321 * Nice levels are multiplicative, with a gentle 10% change for every
1322 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1323 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1324 * that remained on nice 0.
1326 * The "10% effect" is relative and cumulative: from _any_ nice level,
1327 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1328 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1329 * If a task goes up by ~10% and another task goes down by ~10% then
1330 * the relative distance between them is ~25%.)
1332 static const int prio_to_weight[40] = {
1333 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1334 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1335 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1336 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1337 /* 0 */ 1024, 820, 655, 526, 423,
1338 /* 5 */ 335, 272, 215, 172, 137,
1339 /* 10 */ 110, 87, 70, 56, 45,
1340 /* 15 */ 36, 29, 23, 18, 15,
1344 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1346 * In cases where the weight does not change often, we can use the
1347 * precalculated inverse to speed up arithmetics by turning divisions
1348 * into multiplications:
1350 static const u32 prio_to_wmult[40] = {
1351 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1352 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1353 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1354 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1355 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1356 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1357 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1358 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1361 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1364 * runqueue iterator, to support SMP load-balancing between different
1365 * scheduling classes, without having to expose their internal data
1366 * structures to the load-balancing proper:
1368 struct rq_iterator {
1370 struct task_struct *(*start)(void *);
1371 struct task_struct *(*next)(void *);
1375 static unsigned long
1376 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1377 unsigned long max_load_move, struct sched_domain *sd,
1378 enum cpu_idle_type idle, int *all_pinned,
1379 int *this_best_prio, struct rq_iterator *iterator);
1382 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1383 struct sched_domain *sd, enum cpu_idle_type idle,
1384 struct rq_iterator *iterator);
1387 #ifdef CONFIG_CGROUP_CPUACCT
1388 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1390 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1393 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1395 update_load_add(&rq->load, load);
1398 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1400 update_load_sub(&rq->load, load);
1403 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1404 typedef int (*tg_visitor)(struct task_group *, void *);
1407 * Iterate the full tree, calling @down when first entering a node and @up when
1408 * leaving it for the final time.
1410 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1412 struct task_group *parent, *child;
1416 parent = &root_task_group;
1418 ret = (*down)(parent, data);
1421 list_for_each_entry_rcu(child, &parent->children, siblings) {
1428 ret = (*up)(parent, data);
1433 parent = parent->parent;
1442 static int tg_nop(struct task_group *tg, void *data)
1449 static unsigned long source_load(int cpu, int type);
1450 static unsigned long target_load(int cpu, int type);
1451 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1453 static unsigned long cpu_avg_load_per_task(int cpu)
1455 struct rq *rq = cpu_rq(cpu);
1456 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1459 rq->avg_load_per_task = rq->load.weight / nr_running;
1461 rq->avg_load_per_task = 0;
1463 return rq->avg_load_per_task;
1466 #ifdef CONFIG_FAIR_GROUP_SCHED
1468 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1471 * Calculate and set the cpu's group shares.
1474 update_group_shares_cpu(struct task_group *tg, int cpu,
1475 unsigned long sd_shares, unsigned long sd_rq_weight)
1478 unsigned long shares;
1479 unsigned long rq_weight;
1484 rq_weight = tg->cfs_rq[cpu]->load.weight;
1487 * If there are currently no tasks on the cpu pretend there is one of
1488 * average load so that when a new task gets to run here it will not
1489 * get delayed by group starvation.
1493 rq_weight = NICE_0_LOAD;
1496 if (unlikely(rq_weight > sd_rq_weight))
1497 rq_weight = sd_rq_weight;
1500 * \Sum shares * rq_weight
1501 * shares = -----------------------
1505 shares = (sd_shares * rq_weight) / (sd_rq_weight + 1);
1506 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1508 if (abs(shares - tg->se[cpu]->load.weight) >
1509 sysctl_sched_shares_thresh) {
1510 struct rq *rq = cpu_rq(cpu);
1511 unsigned long flags;
1513 spin_lock_irqsave(&rq->lock, flags);
1515 * record the actual number of shares, not the boosted amount.
1517 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1518 tg->cfs_rq[cpu]->rq_weight = rq_weight;
1520 __set_se_shares(tg->se[cpu], shares);
1521 spin_unlock_irqrestore(&rq->lock, flags);
1526 * Re-compute the task group their per cpu shares over the given domain.
1527 * This needs to be done in a bottom-up fashion because the rq weight of a
1528 * parent group depends on the shares of its child groups.
1530 static int tg_shares_up(struct task_group *tg, void *data)
1532 unsigned long rq_weight = 0;
1533 unsigned long shares = 0;
1534 struct sched_domain *sd = data;
1537 for_each_cpu_mask(i, sd->span) {
1538 rq_weight += tg->cfs_rq[i]->load.weight;
1539 shares += tg->cfs_rq[i]->shares;
1542 if ((!shares && rq_weight) || shares > tg->shares)
1543 shares = tg->shares;
1545 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1546 shares = tg->shares;
1549 rq_weight = cpus_weight(sd->span) * NICE_0_LOAD;
1551 for_each_cpu_mask(i, sd->span)
1552 update_group_shares_cpu(tg, i, shares, rq_weight);
1558 * Compute the cpu's hierarchical load factor for each task group.
1559 * This needs to be done in a top-down fashion because the load of a child
1560 * group is a fraction of its parents load.
1562 static int tg_load_down(struct task_group *tg, void *data)
1565 long cpu = (long)data;
1568 load = cpu_rq(cpu)->load.weight;
1570 load = tg->parent->cfs_rq[cpu]->h_load;
1571 load *= tg->cfs_rq[cpu]->shares;
1572 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1575 tg->cfs_rq[cpu]->h_load = load;
1580 static void update_shares(struct sched_domain *sd)
1582 u64 now = cpu_clock(raw_smp_processor_id());
1583 s64 elapsed = now - sd->last_update;
1585 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1586 sd->last_update = now;
1587 walk_tg_tree(tg_nop, tg_shares_up, sd);
1591 static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1593 spin_unlock(&rq->lock);
1595 spin_lock(&rq->lock);
1598 static void update_h_load(long cpu)
1600 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1605 static inline void update_shares(struct sched_domain *sd)
1609 static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1617 #ifdef CONFIG_FAIR_GROUP_SCHED
1618 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1621 cfs_rq->shares = shares;
1626 #include "sched_stats.h"
1627 #include "sched_idletask.c"
1628 #include "sched_fair.c"
1629 #include "sched_rt.c"
1630 #ifdef CONFIG_SCHED_DEBUG
1631 # include "sched_debug.c"
1634 #define sched_class_highest (&rt_sched_class)
1635 #define for_each_class(class) \
1636 for (class = sched_class_highest; class; class = class->next)
1638 static void inc_nr_running(struct rq *rq)
1643 static void dec_nr_running(struct rq *rq)
1648 static void set_load_weight(struct task_struct *p)
1650 if (task_has_rt_policy(p)) {
1651 p->se.load.weight = prio_to_weight[0] * 2;
1652 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1657 * SCHED_IDLE tasks get minimal weight:
1659 if (p->policy == SCHED_IDLE) {
1660 p->se.load.weight = WEIGHT_IDLEPRIO;
1661 p->se.load.inv_weight = WMULT_IDLEPRIO;
1665 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1666 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1669 static void update_avg(u64 *avg, u64 sample)
1671 s64 diff = sample - *avg;
1675 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1677 sched_info_queued(p);
1678 p->sched_class->enqueue_task(rq, p, wakeup);
1682 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1684 if (sleep && p->se.last_wakeup) {
1685 update_avg(&p->se.avg_overlap,
1686 p->se.sum_exec_runtime - p->se.last_wakeup);
1687 p->se.last_wakeup = 0;
1690 sched_info_dequeued(p);
1691 p->sched_class->dequeue_task(rq, p, sleep);
1696 * __normal_prio - return the priority that is based on the static prio
1698 static inline int __normal_prio(struct task_struct *p)
1700 return p->static_prio;
1704 * Calculate the expected normal priority: i.e. priority
1705 * without taking RT-inheritance into account. Might be
1706 * boosted by interactivity modifiers. Changes upon fork,
1707 * setprio syscalls, and whenever the interactivity
1708 * estimator recalculates.
1710 static inline int normal_prio(struct task_struct *p)
1714 if (task_has_rt_policy(p))
1715 prio = MAX_RT_PRIO-1 - p->rt_priority;
1717 prio = __normal_prio(p);
1722 * Calculate the current priority, i.e. the priority
1723 * taken into account by the scheduler. This value might
1724 * be boosted by RT tasks, or might be boosted by
1725 * interactivity modifiers. Will be RT if the task got
1726 * RT-boosted. If not then it returns p->normal_prio.
1728 static int effective_prio(struct task_struct *p)
1730 p->normal_prio = normal_prio(p);
1732 * If we are RT tasks or we were boosted to RT priority,
1733 * keep the priority unchanged. Otherwise, update priority
1734 * to the normal priority:
1736 if (!rt_prio(p->prio))
1737 return p->normal_prio;
1742 * activate_task - move a task to the runqueue.
1744 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1746 if (task_contributes_to_load(p))
1747 rq->nr_uninterruptible--;
1749 enqueue_task(rq, p, wakeup);
1754 * deactivate_task - remove a task from the runqueue.
1756 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1758 if (task_contributes_to_load(p))
1759 rq->nr_uninterruptible++;
1761 dequeue_task(rq, p, sleep);
1766 * task_curr - is this task currently executing on a CPU?
1767 * @p: the task in question.
1769 inline int task_curr(const struct task_struct *p)
1771 return cpu_curr(task_cpu(p)) == p;
1774 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1776 set_task_rq(p, cpu);
1779 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1780 * successfuly executed on another CPU. We must ensure that updates of
1781 * per-task data have been completed by this moment.
1784 task_thread_info(p)->cpu = cpu;
1788 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1789 const struct sched_class *prev_class,
1790 int oldprio, int running)
1792 if (prev_class != p->sched_class) {
1793 if (prev_class->switched_from)
1794 prev_class->switched_from(rq, p, running);
1795 p->sched_class->switched_to(rq, p, running);
1797 p->sched_class->prio_changed(rq, p, oldprio, running);
1802 /* Used instead of source_load when we know the type == 0 */
1803 static unsigned long weighted_cpuload(const int cpu)
1805 return cpu_rq(cpu)->load.weight;
1809 * Is this task likely cache-hot:
1812 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1817 * Buddy candidates are cache hot:
1819 if (sched_feat(CACHE_HOT_BUDDY) &&
1820 (&p->se == cfs_rq_of(&p->se)->next ||
1821 &p->se == cfs_rq_of(&p->se)->last))
1824 if (p->sched_class != &fair_sched_class)
1827 if (sysctl_sched_migration_cost == -1)
1829 if (sysctl_sched_migration_cost == 0)
1832 delta = now - p->se.exec_start;
1834 return delta < (s64)sysctl_sched_migration_cost;
1838 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1840 int old_cpu = task_cpu(p);
1841 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1842 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1843 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1846 clock_offset = old_rq->clock - new_rq->clock;
1848 #ifdef CONFIG_SCHEDSTATS
1849 if (p->se.wait_start)
1850 p->se.wait_start -= clock_offset;
1851 if (p->se.sleep_start)
1852 p->se.sleep_start -= clock_offset;
1853 if (p->se.block_start)
1854 p->se.block_start -= clock_offset;
1855 if (old_cpu != new_cpu) {
1856 schedstat_inc(p, se.nr_migrations);
1857 if (task_hot(p, old_rq->clock, NULL))
1858 schedstat_inc(p, se.nr_forced2_migrations);
1861 p->se.vruntime -= old_cfsrq->min_vruntime -
1862 new_cfsrq->min_vruntime;
1864 __set_task_cpu(p, new_cpu);
1867 struct migration_req {
1868 struct list_head list;
1870 struct task_struct *task;
1873 struct completion done;
1877 * The task's runqueue lock must be held.
1878 * Returns true if you have to wait for migration thread.
1881 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1883 struct rq *rq = task_rq(p);
1886 * If the task is not on a runqueue (and not running), then
1887 * it is sufficient to simply update the task's cpu field.
1889 if (!p->se.on_rq && !task_running(rq, p)) {
1890 set_task_cpu(p, dest_cpu);
1894 init_completion(&req->done);
1896 req->dest_cpu = dest_cpu;
1897 list_add(&req->list, &rq->migration_queue);
1903 * wait_task_inactive - wait for a thread to unschedule.
1905 * If @match_state is nonzero, it's the @p->state value just checked and
1906 * not expected to change. If it changes, i.e. @p might have woken up,
1907 * then return zero. When we succeed in waiting for @p to be off its CPU,
1908 * we return a positive number (its total switch count). If a second call
1909 * a short while later returns the same number, the caller can be sure that
1910 * @p has remained unscheduled the whole time.
1912 * The caller must ensure that the task *will* unschedule sometime soon,
1913 * else this function might spin for a *long* time. This function can't
1914 * be called with interrupts off, or it may introduce deadlock with
1915 * smp_call_function() if an IPI is sent by the same process we are
1916 * waiting to become inactive.
1918 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1920 unsigned long flags;
1927 * We do the initial early heuristics without holding
1928 * any task-queue locks at all. We'll only try to get
1929 * the runqueue lock when things look like they will
1935 * If the task is actively running on another CPU
1936 * still, just relax and busy-wait without holding
1939 * NOTE! Since we don't hold any locks, it's not
1940 * even sure that "rq" stays as the right runqueue!
1941 * But we don't care, since "task_running()" will
1942 * return false if the runqueue has changed and p
1943 * is actually now running somewhere else!
1945 while (task_running(rq, p)) {
1946 if (match_state && unlikely(p->state != match_state))
1952 * Ok, time to look more closely! We need the rq
1953 * lock now, to be *sure*. If we're wrong, we'll
1954 * just go back and repeat.
1956 rq = task_rq_lock(p, &flags);
1957 trace_sched_wait_task(rq, p);
1958 running = task_running(rq, p);
1959 on_rq = p->se.on_rq;
1961 if (!match_state || p->state == match_state)
1962 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1963 task_rq_unlock(rq, &flags);
1966 * If it changed from the expected state, bail out now.
1968 if (unlikely(!ncsw))
1972 * Was it really running after all now that we
1973 * checked with the proper locks actually held?
1975 * Oops. Go back and try again..
1977 if (unlikely(running)) {
1983 * It's not enough that it's not actively running,
1984 * it must be off the runqueue _entirely_, and not
1987 * So if it wa still runnable (but just not actively
1988 * running right now), it's preempted, and we should
1989 * yield - it could be a while.
1991 if (unlikely(on_rq)) {
1992 schedule_timeout_uninterruptible(1);
1997 * Ahh, all good. It wasn't running, and it wasn't
1998 * runnable, which means that it will never become
1999 * running in the future either. We're all done!
2008 * kick_process - kick a running thread to enter/exit the kernel
2009 * @p: the to-be-kicked thread
2011 * Cause a process which is running on another CPU to enter
2012 * kernel-mode, without any delay. (to get signals handled.)
2014 * NOTE: this function doesnt have to take the runqueue lock,
2015 * because all it wants to ensure is that the remote task enters
2016 * the kernel. If the IPI races and the task has been migrated
2017 * to another CPU then no harm is done and the purpose has been
2020 void kick_process(struct task_struct *p)
2026 if ((cpu != smp_processor_id()) && task_curr(p))
2027 smp_send_reschedule(cpu);
2032 * Return a low guess at the load of a migration-source cpu weighted
2033 * according to the scheduling class and "nice" value.
2035 * We want to under-estimate the load of migration sources, to
2036 * balance conservatively.
2038 static unsigned long source_load(int cpu, int type)
2040 struct rq *rq = cpu_rq(cpu);
2041 unsigned long total = weighted_cpuload(cpu);
2043 if (type == 0 || !sched_feat(LB_BIAS))
2046 return min(rq->cpu_load[type-1], total);
2050 * Return a high guess at the load of a migration-target cpu weighted
2051 * according to the scheduling class and "nice" value.
2053 static unsigned long target_load(int cpu, int type)
2055 struct rq *rq = cpu_rq(cpu);
2056 unsigned long total = weighted_cpuload(cpu);
2058 if (type == 0 || !sched_feat(LB_BIAS))
2061 return max(rq->cpu_load[type-1], total);
2065 * find_idlest_group finds and returns the least busy CPU group within the
2068 static struct sched_group *
2069 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2071 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2072 unsigned long min_load = ULONG_MAX, this_load = 0;
2073 int load_idx = sd->forkexec_idx;
2074 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2077 unsigned long load, avg_load;
2081 /* Skip over this group if it has no CPUs allowed */
2082 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
2085 local_group = cpu_isset(this_cpu, group->cpumask);
2087 /* Tally up the load of all CPUs in the group */
2090 for_each_cpu_mask_nr(i, group->cpumask) {
2091 /* Bias balancing toward cpus of our domain */
2093 load = source_load(i, load_idx);
2095 load = target_load(i, load_idx);
2100 /* Adjust by relative CPU power of the group */
2101 avg_load = sg_div_cpu_power(group,
2102 avg_load * SCHED_LOAD_SCALE);
2105 this_load = avg_load;
2107 } else if (avg_load < min_load) {
2108 min_load = avg_load;
2111 } while (group = group->next, group != sd->groups);
2113 if (!idlest || 100*this_load < imbalance*min_load)
2119 * find_idlest_cpu - find the idlest cpu among the cpus in group.
2122 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
2125 unsigned long load, min_load = ULONG_MAX;
2129 /* Traverse only the allowed CPUs */
2130 cpus_and(*tmp, group->cpumask, p->cpus_allowed);
2132 for_each_cpu_mask_nr(i, *tmp) {
2133 load = weighted_cpuload(i);
2135 if (load < min_load || (load == min_load && i == this_cpu)) {
2145 * sched_balance_self: balance the current task (running on cpu) in domains
2146 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2149 * Balance, ie. select the least loaded group.
2151 * Returns the target CPU number, or the same CPU if no balancing is needed.
2153 * preempt must be disabled.
2155 static int sched_balance_self(int cpu, int flag)
2157 struct task_struct *t = current;
2158 struct sched_domain *tmp, *sd = NULL;
2160 for_each_domain(cpu, tmp) {
2162 * If power savings logic is enabled for a domain, stop there.
2164 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2166 if (tmp->flags & flag)
2174 cpumask_t span, tmpmask;
2175 struct sched_group *group;
2176 int new_cpu, weight;
2178 if (!(sd->flags & flag)) {
2184 group = find_idlest_group(sd, t, cpu);
2190 new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
2191 if (new_cpu == -1 || new_cpu == cpu) {
2192 /* Now try balancing at a lower domain level of cpu */
2197 /* Now try balancing at a lower domain level of new_cpu */
2200 weight = cpus_weight(span);
2201 for_each_domain(cpu, tmp) {
2202 if (weight <= cpus_weight(tmp->span))
2204 if (tmp->flags & flag)
2207 /* while loop will break here if sd == NULL */
2213 #endif /* CONFIG_SMP */
2216 * task_oncpu_function_call - call a function on the cpu on which a task runs
2217 * @p: the task to evaluate
2218 * @func: the function to be called
2219 * @info: the function call argument
2221 * Calls the function @func when the task is currently running. This might
2222 * be on the current CPU, which just calls the function directly
2224 void task_oncpu_function_call(struct task_struct *p,
2225 void (*func) (void *info), void *info)
2232 smp_call_function_single(cpu, func, info, 1);
2237 * try_to_wake_up - wake up a thread
2238 * @p: the to-be-woken-up thread
2239 * @state: the mask of task states that can be woken
2240 * @sync: do a synchronous wakeup?
2242 * Put it on the run-queue if it's not already there. The "current"
2243 * thread is always on the run-queue (except when the actual
2244 * re-schedule is in progress), and as such you're allowed to do
2245 * the simpler "current->state = TASK_RUNNING" to mark yourself
2246 * runnable without the overhead of this.
2248 * returns failure only if the task is already active.
2250 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
2252 int cpu, orig_cpu, this_cpu, success = 0;
2253 unsigned long flags;
2257 if (!sched_feat(SYNC_WAKEUPS))
2261 if (sched_feat(LB_WAKEUP_UPDATE)) {
2262 struct sched_domain *sd;
2264 this_cpu = raw_smp_processor_id();
2267 for_each_domain(this_cpu, sd) {
2268 if (cpu_isset(cpu, sd->span)) {
2277 rq = task_rq_lock(p, &flags);
2278 old_state = p->state;
2279 if (!(old_state & state))
2287 this_cpu = smp_processor_id();
2290 if (unlikely(task_running(rq, p)))
2293 cpu = p->sched_class->select_task_rq(p, sync);
2294 if (cpu != orig_cpu) {
2295 set_task_cpu(p, cpu);
2296 task_rq_unlock(rq, &flags);
2297 /* might preempt at this point */
2298 rq = task_rq_lock(p, &flags);
2299 old_state = p->state;
2300 if (!(old_state & state))
2305 this_cpu = smp_processor_id();
2309 #ifdef CONFIG_SCHEDSTATS
2310 schedstat_inc(rq, ttwu_count);
2311 if (cpu == this_cpu)
2312 schedstat_inc(rq, ttwu_local);
2314 struct sched_domain *sd;
2315 for_each_domain(this_cpu, sd) {
2316 if (cpu_isset(cpu, sd->span)) {
2317 schedstat_inc(sd, ttwu_wake_remote);
2322 #endif /* CONFIG_SCHEDSTATS */
2325 #endif /* CONFIG_SMP */
2326 schedstat_inc(p, se.nr_wakeups);
2328 schedstat_inc(p, se.nr_wakeups_sync);
2329 if (orig_cpu != cpu)
2330 schedstat_inc(p, se.nr_wakeups_migrate);
2331 if (cpu == this_cpu)
2332 schedstat_inc(p, se.nr_wakeups_local);
2334 schedstat_inc(p, se.nr_wakeups_remote);
2335 update_rq_clock(rq);
2336 activate_task(rq, p, 1);
2340 trace_sched_wakeup(rq, p);
2341 check_preempt_curr(rq, p, sync);
2343 p->state = TASK_RUNNING;
2345 if (p->sched_class->task_wake_up)
2346 p->sched_class->task_wake_up(rq, p);
2349 current->se.last_wakeup = current->se.sum_exec_runtime;
2351 task_rq_unlock(rq, &flags);
2356 int wake_up_process(struct task_struct *p)
2358 return try_to_wake_up(p, TASK_ALL, 0);
2360 EXPORT_SYMBOL(wake_up_process);
2362 int wake_up_state(struct task_struct *p, unsigned int state)
2364 return try_to_wake_up(p, state, 0);
2368 * Perform scheduler related setup for a newly forked process p.
2369 * p is forked by current.
2371 * __sched_fork() is basic setup used by init_idle() too:
2373 static void __sched_fork(struct task_struct *p)
2375 p->se.exec_start = 0;
2376 p->se.sum_exec_runtime = 0;
2377 p->se.prev_sum_exec_runtime = 0;
2378 p->se.last_wakeup = 0;
2379 p->se.avg_overlap = 0;
2381 #ifdef CONFIG_SCHEDSTATS
2382 p->se.wait_start = 0;
2383 p->se.sum_sleep_runtime = 0;
2384 p->se.sleep_start = 0;
2385 p->se.block_start = 0;
2386 p->se.sleep_max = 0;
2387 p->se.block_max = 0;
2389 p->se.slice_max = 0;
2393 INIT_LIST_HEAD(&p->rt.run_list);
2395 INIT_LIST_HEAD(&p->se.group_node);
2397 #ifdef CONFIG_PREEMPT_NOTIFIERS
2398 INIT_HLIST_HEAD(&p->preempt_notifiers);
2402 * We mark the process as running here, but have not actually
2403 * inserted it onto the runqueue yet. This guarantees that
2404 * nobody will actually run it, and a signal or other external
2405 * event cannot wake it up and insert it on the runqueue either.
2407 p->state = TASK_RUNNING;
2411 * fork()/clone()-time setup:
2413 void sched_fork(struct task_struct *p, int clone_flags)
2415 int cpu = get_cpu();
2420 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2422 set_task_cpu(p, cpu);
2425 * Make sure we do not leak PI boosting priority to the child:
2427 p->prio = current->normal_prio;
2428 if (!rt_prio(p->prio))
2429 p->sched_class = &fair_sched_class;
2431 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2432 if (likely(sched_info_on()))
2433 memset(&p->sched_info, 0, sizeof(p->sched_info));
2435 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2438 #ifdef CONFIG_PREEMPT
2439 /* Want to start with kernel preemption disabled. */
2440 task_thread_info(p)->preempt_count = 1;
2446 * wake_up_new_task - wake up a newly created task for the first time.
2448 * This function will do some initial scheduler statistics housekeeping
2449 * that must be done for every newly created context, then puts the task
2450 * on the runqueue and wakes it.
2452 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2454 unsigned long flags;
2457 rq = task_rq_lock(p, &flags);
2458 BUG_ON(p->state != TASK_RUNNING);
2459 update_rq_clock(rq);
2461 p->prio = effective_prio(p);
2463 if (!p->sched_class->task_new || !current->se.on_rq) {
2464 activate_task(rq, p, 0);
2467 * Let the scheduling class do new task startup
2468 * management (if any):
2470 p->sched_class->task_new(rq, p);
2473 trace_sched_wakeup_new(rq, p);
2474 check_preempt_curr(rq, p, 0);
2476 if (p->sched_class->task_wake_up)
2477 p->sched_class->task_wake_up(rq, p);
2479 task_rq_unlock(rq, &flags);
2482 #ifdef CONFIG_PREEMPT_NOTIFIERS
2485 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2486 * @notifier: notifier struct to register
2488 void preempt_notifier_register(struct preempt_notifier *notifier)
2490 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers);
2492 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2495 * preempt_notifier_unregister - no longer interested in preemption notifications
2496 * @notifier: notifier struct to unregister
2498 * This is safe to call from within a preemption notifier.
2500 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2502 hlist_del(¬ifier->link);
2504 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2506 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2508 struct preempt_notifier *notifier;
2509 struct hlist_node *node;
2511 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2512 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2516 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2517 struct task_struct *next)
2519 struct preempt_notifier *notifier;
2520 struct hlist_node *node;
2522 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2523 notifier->ops->sched_out(notifier, next);
2526 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2528 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2533 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2534 struct task_struct *next)
2538 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2541 * prepare_task_switch - prepare to switch tasks
2542 * @rq: the runqueue preparing to switch
2543 * @prev: the current task that is being switched out
2544 * @next: the task we are going to switch to.
2546 * This is called with the rq lock held and interrupts off. It must
2547 * be paired with a subsequent finish_task_switch after the context
2550 * prepare_task_switch sets up locking and calls architecture specific
2554 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2555 struct task_struct *next)
2557 fire_sched_out_preempt_notifiers(prev, next);
2558 perf_counter_task_sched_out(prev, cpu_of(rq));
2559 prepare_lock_switch(rq, next);
2560 prepare_arch_switch(next);
2564 * finish_task_switch - clean up after a task-switch
2565 * @rq: runqueue associated with task-switch
2566 * @prev: the thread we just switched away from.
2568 * finish_task_switch must be called after the context switch, paired
2569 * with a prepare_task_switch call before the context switch.
2570 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2571 * and do any other architecture-specific cleanup actions.
2573 * Note that we may have delayed dropping an mm in context_switch(). If
2574 * so, we finish that here outside of the runqueue lock. (Doing it
2575 * with the lock held can cause deadlocks; see schedule() for
2578 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2579 __releases(rq->lock)
2581 struct mm_struct *mm = rq->prev_mm;
2587 * A task struct has one reference for the use as "current".
2588 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2589 * schedule one last time. The schedule call will never return, and
2590 * the scheduled task must drop that reference.
2591 * The test for TASK_DEAD must occur while the runqueue locks are
2592 * still held, otherwise prev could be scheduled on another cpu, die
2593 * there before we look at prev->state, and then the reference would
2597 prev_state = prev->state;
2598 finish_arch_switch(prev);
2599 perf_counter_task_sched_in(current, cpu_of(rq));
2600 finish_lock_switch(rq, prev);
2602 if (current->sched_class->post_schedule)
2603 current->sched_class->post_schedule(rq);
2606 fire_sched_in_preempt_notifiers(current);
2609 if (unlikely(prev_state == TASK_DEAD)) {
2611 * Remove function-return probe instances associated with this
2612 * task and put them back on the free list.
2614 kprobe_flush_task(prev);
2615 put_task_struct(prev);
2620 * schedule_tail - first thing a freshly forked thread must call.
2621 * @prev: the thread we just switched away from.
2623 asmlinkage void schedule_tail(struct task_struct *prev)
2624 __releases(rq->lock)
2626 struct rq *rq = this_rq();
2628 finish_task_switch(rq, prev);
2629 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2630 /* In this case, finish_task_switch does not reenable preemption */
2633 if (current->set_child_tid)
2634 put_user(task_pid_vnr(current), current->set_child_tid);
2638 * context_switch - switch to the new MM and the new
2639 * thread's register state.
2642 context_switch(struct rq *rq, struct task_struct *prev,
2643 struct task_struct *next)
2645 struct mm_struct *mm, *oldmm;
2647 prepare_task_switch(rq, prev, next);
2648 trace_sched_switch(rq, prev, next);
2650 oldmm = prev->active_mm;
2652 * For paravirt, this is coupled with an exit in switch_to to
2653 * combine the page table reload and the switch backend into
2656 arch_enter_lazy_cpu_mode();
2658 if (unlikely(!mm)) {
2659 next->active_mm = oldmm;
2660 atomic_inc(&oldmm->mm_count);
2661 enter_lazy_tlb(oldmm, next);
2663 switch_mm(oldmm, mm, next);
2665 if (unlikely(!prev->mm)) {
2666 prev->active_mm = NULL;
2667 rq->prev_mm = oldmm;
2670 * Since the runqueue lock will be released by the next
2671 * task (which is an invalid locking op but in the case
2672 * of the scheduler it's an obvious special-case), so we
2673 * do an early lockdep release here:
2675 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2676 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2679 /* Here we just switch the register state and the stack. */
2680 switch_to(prev, next, prev);
2684 * this_rq must be evaluated again because prev may have moved
2685 * CPUs since it called schedule(), thus the 'rq' on its stack
2686 * frame will be invalid.
2688 finish_task_switch(this_rq(), prev);
2692 * nr_running, nr_uninterruptible and nr_context_switches:
2694 * externally visible scheduler statistics: current number of runnable
2695 * threads, current number of uninterruptible-sleeping threads, total
2696 * number of context switches performed since bootup.
2698 unsigned long nr_running(void)
2700 unsigned long i, sum = 0;
2702 for_each_online_cpu(i)
2703 sum += cpu_rq(i)->nr_running;
2708 unsigned long nr_uninterruptible(void)
2710 unsigned long i, sum = 0;
2712 for_each_possible_cpu(i)
2713 sum += cpu_rq(i)->nr_uninterruptible;
2716 * Since we read the counters lockless, it might be slightly
2717 * inaccurate. Do not allow it to go below zero though:
2719 if (unlikely((long)sum < 0))
2725 unsigned long long nr_context_switches(void)
2728 unsigned long long sum = 0;
2730 for_each_possible_cpu(i)
2731 sum += cpu_rq(i)->nr_switches;
2736 unsigned long nr_iowait(void)
2738 unsigned long i, sum = 0;
2740 for_each_possible_cpu(i)
2741 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2746 unsigned long nr_active(void)
2748 unsigned long i, running = 0, uninterruptible = 0;
2750 for_each_online_cpu(i) {
2751 running += cpu_rq(i)->nr_running;
2752 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2755 if (unlikely((long)uninterruptible < 0))
2756 uninterruptible = 0;
2758 return running + uninterruptible;
2762 * Update rq->cpu_load[] statistics. This function is usually called every
2763 * scheduler tick (TICK_NSEC).
2765 static void update_cpu_load(struct rq *this_rq)
2767 unsigned long this_load = this_rq->load.weight;
2770 this_rq->nr_load_updates++;
2772 /* Update our load: */
2773 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2774 unsigned long old_load, new_load;
2776 /* scale is effectively 1 << i now, and >> i divides by scale */
2778 old_load = this_rq->cpu_load[i];
2779 new_load = this_load;
2781 * Round up the averaging division if load is increasing. This
2782 * prevents us from getting stuck on 9 if the load is 10, for
2785 if (new_load > old_load)
2786 new_load += scale-1;
2787 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2794 * double_rq_lock - safely lock two runqueues
2796 * Note this does not disable interrupts like task_rq_lock,
2797 * you need to do so manually before calling.
2799 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2800 __acquires(rq1->lock)
2801 __acquires(rq2->lock)
2803 BUG_ON(!irqs_disabled());
2805 spin_lock(&rq1->lock);
2806 __acquire(rq2->lock); /* Fake it out ;) */
2809 spin_lock(&rq1->lock);
2810 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
2812 spin_lock(&rq2->lock);
2813 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
2816 update_rq_clock(rq1);
2817 update_rq_clock(rq2);
2821 * double_rq_unlock - safely unlock two runqueues
2823 * Note this does not restore interrupts like task_rq_unlock,
2824 * you need to do so manually after calling.
2826 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2827 __releases(rq1->lock)
2828 __releases(rq2->lock)
2830 spin_unlock(&rq1->lock);
2832 spin_unlock(&rq2->lock);
2834 __release(rq2->lock);
2838 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2840 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
2841 __releases(this_rq->lock)
2842 __acquires(busiest->lock)
2843 __acquires(this_rq->lock)
2847 if (unlikely(!irqs_disabled())) {
2848 /* printk() doesn't work good under rq->lock */
2849 spin_unlock(&this_rq->lock);
2852 if (unlikely(!spin_trylock(&busiest->lock))) {
2853 if (busiest < this_rq) {
2854 spin_unlock(&this_rq->lock);
2855 spin_lock(&busiest->lock);
2856 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
2859 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
2864 static void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
2865 __releases(busiest->lock)
2867 spin_unlock(&busiest->lock);
2868 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
2872 * If dest_cpu is allowed for this process, migrate the task to it.
2873 * This is accomplished by forcing the cpu_allowed mask to only
2874 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2875 * the cpu_allowed mask is restored.
2877 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2879 struct migration_req req;
2880 unsigned long flags;
2883 rq = task_rq_lock(p, &flags);
2884 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2885 || unlikely(!cpu_active(dest_cpu)))
2888 trace_sched_migrate_task(rq, p, dest_cpu);
2889 /* force the process onto the specified CPU */
2890 if (migrate_task(p, dest_cpu, &req)) {
2891 /* Need to wait for migration thread (might exit: take ref). */
2892 struct task_struct *mt = rq->migration_thread;
2894 get_task_struct(mt);
2895 task_rq_unlock(rq, &flags);
2896 wake_up_process(mt);
2897 put_task_struct(mt);
2898 wait_for_completion(&req.done);
2903 task_rq_unlock(rq, &flags);
2907 * sched_exec - execve() is a valuable balancing opportunity, because at
2908 * this point the task has the smallest effective memory and cache footprint.
2910 void sched_exec(void)
2912 int new_cpu, this_cpu = get_cpu();
2913 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2915 if (new_cpu != this_cpu)
2916 sched_migrate_task(current, new_cpu);
2920 * pull_task - move a task from a remote runqueue to the local runqueue.
2921 * Both runqueues must be locked.
2923 static void pull_task(struct rq *src_rq, struct task_struct *p,
2924 struct rq *this_rq, int this_cpu)
2926 deactivate_task(src_rq, p, 0);
2927 set_task_cpu(p, this_cpu);
2928 activate_task(this_rq, p, 0);
2930 * Note that idle threads have a prio of MAX_PRIO, for this test
2931 * to be always true for them.
2933 check_preempt_curr(this_rq, p, 0);
2937 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2940 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2941 struct sched_domain *sd, enum cpu_idle_type idle,
2945 * We do not migrate tasks that are:
2946 * 1) running (obviously), or
2947 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2948 * 3) are cache-hot on their current CPU.
2950 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2951 schedstat_inc(p, se.nr_failed_migrations_affine);
2956 if (task_running(rq, p)) {
2957 schedstat_inc(p, se.nr_failed_migrations_running);
2962 * Aggressive migration if:
2963 * 1) task is cache cold, or
2964 * 2) too many balance attempts have failed.
2967 if (!task_hot(p, rq->clock, sd) ||
2968 sd->nr_balance_failed > sd->cache_nice_tries) {
2969 #ifdef CONFIG_SCHEDSTATS
2970 if (task_hot(p, rq->clock, sd)) {
2971 schedstat_inc(sd, lb_hot_gained[idle]);
2972 schedstat_inc(p, se.nr_forced_migrations);
2978 if (task_hot(p, rq->clock, sd)) {
2979 schedstat_inc(p, se.nr_failed_migrations_hot);
2985 static unsigned long
2986 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2987 unsigned long max_load_move, struct sched_domain *sd,
2988 enum cpu_idle_type idle, int *all_pinned,
2989 int *this_best_prio, struct rq_iterator *iterator)
2991 int loops = 0, pulled = 0, pinned = 0;
2992 struct task_struct *p;
2993 long rem_load_move = max_load_move;
2995 if (max_load_move == 0)
3001 * Start the load-balancing iterator:
3003 p = iterator->start(iterator->arg);
3005 if (!p || loops++ > sysctl_sched_nr_migrate)
3008 if ((p->se.load.weight >> 1) > rem_load_move ||
3009 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3010 p = iterator->next(iterator->arg);
3014 pull_task(busiest, p, this_rq, this_cpu);
3016 rem_load_move -= p->se.load.weight;
3019 * We only want to steal up to the prescribed amount of weighted load.
3021 if (rem_load_move > 0) {
3022 if (p->prio < *this_best_prio)
3023 *this_best_prio = p->prio;
3024 p = iterator->next(iterator->arg);
3029 * Right now, this is one of only two places pull_task() is called,
3030 * so we can safely collect pull_task() stats here rather than
3031 * inside pull_task().
3033 schedstat_add(sd, lb_gained[idle], pulled);
3036 *all_pinned = pinned;
3038 return max_load_move - rem_load_move;
3042 * move_tasks tries to move up to max_load_move weighted load from busiest to
3043 * this_rq, as part of a balancing operation within domain "sd".
3044 * Returns 1 if successful and 0 otherwise.
3046 * Called with both runqueues locked.
3048 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3049 unsigned long max_load_move,
3050 struct sched_domain *sd, enum cpu_idle_type idle,
3053 const struct sched_class *class = sched_class_highest;
3054 unsigned long total_load_moved = 0;
3055 int this_best_prio = this_rq->curr->prio;
3059 class->load_balance(this_rq, this_cpu, busiest,
3060 max_load_move - total_load_moved,
3061 sd, idle, all_pinned, &this_best_prio);
3062 class = class->next;
3064 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3067 } while (class && max_load_move > total_load_moved);
3069 return total_load_moved > 0;
3073 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3074 struct sched_domain *sd, enum cpu_idle_type idle,
3075 struct rq_iterator *iterator)
3077 struct task_struct *p = iterator->start(iterator->arg);
3081 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3082 pull_task(busiest, p, this_rq, this_cpu);
3084 * Right now, this is only the second place pull_task()
3085 * is called, so we can safely collect pull_task()
3086 * stats here rather than inside pull_task().
3088 schedstat_inc(sd, lb_gained[idle]);
3092 p = iterator->next(iterator->arg);
3099 * move_one_task tries to move exactly one task from busiest to this_rq, as
3100 * part of active balancing operations within "domain".
3101 * Returns 1 if successful and 0 otherwise.
3103 * Called with both runqueues locked.
3105 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3106 struct sched_domain *sd, enum cpu_idle_type idle)
3108 const struct sched_class *class;
3110 for (class = sched_class_highest; class; class = class->next)
3111 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
3118 * find_busiest_group finds and returns the busiest CPU group within the
3119 * domain. It calculates and returns the amount of weighted load which
3120 * should be moved to restore balance via the imbalance parameter.
3122 static struct sched_group *
3123 find_busiest_group(struct sched_domain *sd, int this_cpu,
3124 unsigned long *imbalance, enum cpu_idle_type idle,
3125 int *sd_idle, const cpumask_t *cpus, int *balance)
3127 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
3128 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
3129 unsigned long max_pull;
3130 unsigned long busiest_load_per_task, busiest_nr_running;
3131 unsigned long this_load_per_task, this_nr_running;
3132 int load_idx, group_imb = 0;
3133 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3134 int power_savings_balance = 1;
3135 unsigned long leader_nr_running = 0, min_load_per_task = 0;
3136 unsigned long min_nr_running = ULONG_MAX;
3137 struct sched_group *group_min = NULL, *group_leader = NULL;
3140 max_load = this_load = total_load = total_pwr = 0;
3141 busiest_load_per_task = busiest_nr_running = 0;
3142 this_load_per_task = this_nr_running = 0;
3144 if (idle == CPU_NOT_IDLE)
3145 load_idx = sd->busy_idx;
3146 else if (idle == CPU_NEWLY_IDLE)
3147 load_idx = sd->newidle_idx;
3149 load_idx = sd->idle_idx;
3152 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
3155 int __group_imb = 0;
3156 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3157 unsigned long sum_nr_running, sum_weighted_load;
3158 unsigned long sum_avg_load_per_task;
3159 unsigned long avg_load_per_task;
3161 local_group = cpu_isset(this_cpu, group->cpumask);
3164 balance_cpu = first_cpu(group->cpumask);
3166 /* Tally up the load of all CPUs in the group */
3167 sum_weighted_load = sum_nr_running = avg_load = 0;
3168 sum_avg_load_per_task = avg_load_per_task = 0;
3171 min_cpu_load = ~0UL;
3173 for_each_cpu_mask_nr(i, group->cpumask) {
3176 if (!cpu_isset(i, *cpus))
3181 if (*sd_idle && rq->nr_running)
3184 /* Bias balancing toward cpus of our domain */
3186 if (idle_cpu(i) && !first_idle_cpu) {
3191 load = target_load(i, load_idx);
3193 load = source_load(i, load_idx);
3194 if (load > max_cpu_load)
3195 max_cpu_load = load;
3196 if (min_cpu_load > load)
3197 min_cpu_load = load;
3201 sum_nr_running += rq->nr_running;
3202 sum_weighted_load += weighted_cpuload(i);
3204 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3208 * First idle cpu or the first cpu(busiest) in this sched group
3209 * is eligible for doing load balancing at this and above
3210 * domains. In the newly idle case, we will allow all the cpu's
3211 * to do the newly idle load balance.
3213 if (idle != CPU_NEWLY_IDLE && local_group &&
3214 balance_cpu != this_cpu && balance) {
3219 total_load += avg_load;
3220 total_pwr += group->__cpu_power;
3222 /* Adjust by relative CPU power of the group */
3223 avg_load = sg_div_cpu_power(group,
3224 avg_load * SCHED_LOAD_SCALE);
3228 * Consider the group unbalanced when the imbalance is larger
3229 * than the average weight of two tasks.
3231 * APZ: with cgroup the avg task weight can vary wildly and
3232 * might not be a suitable number - should we keep a
3233 * normalized nr_running number somewhere that negates
3236 avg_load_per_task = sg_div_cpu_power(group,
3237 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3239 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3242 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3245 this_load = avg_load;
3247 this_nr_running = sum_nr_running;
3248 this_load_per_task = sum_weighted_load;
3249 } else if (avg_load > max_load &&
3250 (sum_nr_running > group_capacity || __group_imb)) {
3251 max_load = avg_load;
3253 busiest_nr_running = sum_nr_running;
3254 busiest_load_per_task = sum_weighted_load;
3255 group_imb = __group_imb;
3258 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3260 * Busy processors will not participate in power savings
3263 if (idle == CPU_NOT_IDLE ||
3264 !(sd->flags & SD_POWERSAVINGS_BALANCE))
3268 * If the local group is idle or completely loaded
3269 * no need to do power savings balance at this domain
3271 if (local_group && (this_nr_running >= group_capacity ||
3273 power_savings_balance = 0;
3276 * If a group is already running at full capacity or idle,
3277 * don't include that group in power savings calculations
3279 if (!power_savings_balance || sum_nr_running >= group_capacity
3284 * Calculate the group which has the least non-idle load.
3285 * This is the group from where we need to pick up the load
3288 if ((sum_nr_running < min_nr_running) ||
3289 (sum_nr_running == min_nr_running &&
3290 first_cpu(group->cpumask) <
3291 first_cpu(group_min->cpumask))) {
3293 min_nr_running = sum_nr_running;
3294 min_load_per_task = sum_weighted_load /
3299 * Calculate the group which is almost near its
3300 * capacity but still has some space to pick up some load
3301 * from other group and save more power
3303 if (sum_nr_running <= group_capacity - 1) {
3304 if (sum_nr_running > leader_nr_running ||
3305 (sum_nr_running == leader_nr_running &&
3306 first_cpu(group->cpumask) >
3307 first_cpu(group_leader->cpumask))) {
3308 group_leader = group;
3309 leader_nr_running = sum_nr_running;
3314 group = group->next;
3315 } while (group != sd->groups);
3317 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
3320 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
3322 if (this_load >= avg_load ||
3323 100*max_load <= sd->imbalance_pct*this_load)
3326 busiest_load_per_task /= busiest_nr_running;
3328 busiest_load_per_task = min(busiest_load_per_task, avg_load);
3331 * We're trying to get all the cpus to the average_load, so we don't
3332 * want to push ourselves above the average load, nor do we wish to
3333 * reduce the max loaded cpu below the average load, as either of these
3334 * actions would just result in more rebalancing later, and ping-pong
3335 * tasks around. Thus we look for the minimum possible imbalance.
3336 * Negative imbalances (*we* are more loaded than anyone else) will
3337 * be counted as no imbalance for these purposes -- we can't fix that
3338 * by pulling tasks to us. Be careful of negative numbers as they'll
3339 * appear as very large values with unsigned longs.
3341 if (max_load <= busiest_load_per_task)
3345 * In the presence of smp nice balancing, certain scenarios can have
3346 * max load less than avg load(as we skip the groups at or below
3347 * its cpu_power, while calculating max_load..)
3349 if (max_load < avg_load) {
3351 goto small_imbalance;
3354 /* Don't want to pull so many tasks that a group would go idle */
3355 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
3357 /* How much load to actually move to equalise the imbalance */
3358 *imbalance = min(max_pull * busiest->__cpu_power,
3359 (avg_load - this_load) * this->__cpu_power)
3363 * if *imbalance is less than the average load per runnable task
3364 * there is no gaurantee that any tasks will be moved so we'll have
3365 * a think about bumping its value to force at least one task to be
3368 if (*imbalance < busiest_load_per_task) {
3369 unsigned long tmp, pwr_now, pwr_move;
3373 pwr_move = pwr_now = 0;
3375 if (this_nr_running) {
3376 this_load_per_task /= this_nr_running;
3377 if (busiest_load_per_task > this_load_per_task)
3380 this_load_per_task = cpu_avg_load_per_task(this_cpu);
3382 if (max_load - this_load + busiest_load_per_task >=
3383 busiest_load_per_task * imbn) {
3384 *imbalance = busiest_load_per_task;
3389 * OK, we don't have enough imbalance to justify moving tasks,
3390 * however we may be able to increase total CPU power used by
3394 pwr_now += busiest->__cpu_power *
3395 min(busiest_load_per_task, max_load);
3396 pwr_now += this->__cpu_power *
3397 min(this_load_per_task, this_load);
3398 pwr_now /= SCHED_LOAD_SCALE;
3400 /* Amount of load we'd subtract */
3401 tmp = sg_div_cpu_power(busiest,
3402 busiest_load_per_task * SCHED_LOAD_SCALE);
3404 pwr_move += busiest->__cpu_power *
3405 min(busiest_load_per_task, max_load - tmp);
3407 /* Amount of load we'd add */
3408 if (max_load * busiest->__cpu_power <
3409 busiest_load_per_task * SCHED_LOAD_SCALE)
3410 tmp = sg_div_cpu_power(this,
3411 max_load * busiest->__cpu_power);
3413 tmp = sg_div_cpu_power(this,
3414 busiest_load_per_task * SCHED_LOAD_SCALE);
3415 pwr_move += this->__cpu_power *
3416 min(this_load_per_task, this_load + tmp);
3417 pwr_move /= SCHED_LOAD_SCALE;
3419 /* Move if we gain throughput */
3420 if (pwr_move > pwr_now)
3421 *imbalance = busiest_load_per_task;
3427 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3428 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3431 if (this == group_leader && group_leader != group_min) {
3432 *imbalance = min_load_per_task;
3442 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3445 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3446 unsigned long imbalance, const cpumask_t *cpus)
3448 struct rq *busiest = NULL, *rq;
3449 unsigned long max_load = 0;
3452 for_each_cpu_mask_nr(i, group->cpumask) {
3455 if (!cpu_isset(i, *cpus))
3459 wl = weighted_cpuload(i);
3461 if (rq->nr_running == 1 && wl > imbalance)
3464 if (wl > max_load) {
3474 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3475 * so long as it is large enough.
3477 #define MAX_PINNED_INTERVAL 512
3480 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3481 * tasks if there is an imbalance.
3483 static int load_balance(int this_cpu, struct rq *this_rq,
3484 struct sched_domain *sd, enum cpu_idle_type idle,
3485 int *balance, cpumask_t *cpus)
3487 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
3488 struct sched_group *group;
3489 unsigned long imbalance;
3491 unsigned long flags;
3496 * When power savings policy is enabled for the parent domain, idle
3497 * sibling can pick up load irrespective of busy siblings. In this case,
3498 * let the state of idle sibling percolate up as CPU_IDLE, instead of
3499 * portraying it as CPU_NOT_IDLE.
3501 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3502 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3505 schedstat_inc(sd, lb_count[idle]);
3509 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3516 schedstat_inc(sd, lb_nobusyg[idle]);
3520 busiest = find_busiest_queue(group, idle, imbalance, cpus);
3522 schedstat_inc(sd, lb_nobusyq[idle]);
3526 BUG_ON(busiest == this_rq);
3528 schedstat_add(sd, lb_imbalance[idle], imbalance);
3531 if (busiest->nr_running > 1) {
3533 * Attempt to move tasks. If find_busiest_group has found
3534 * an imbalance but busiest->nr_running <= 1, the group is
3535 * still unbalanced. ld_moved simply stays zero, so it is
3536 * correctly treated as an imbalance.
3538 local_irq_save(flags);
3539 double_rq_lock(this_rq, busiest);
3540 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3541 imbalance, sd, idle, &all_pinned);
3542 double_rq_unlock(this_rq, busiest);
3543 local_irq_restore(flags);
3546 * some other cpu did the load balance for us.
3548 if (ld_moved && this_cpu != smp_processor_id())
3549 resched_cpu(this_cpu);
3551 /* All tasks on this runqueue were pinned by CPU affinity */
3552 if (unlikely(all_pinned)) {
3553 cpu_clear(cpu_of(busiest), *cpus);
3554 if (!cpus_empty(*cpus))
3561 schedstat_inc(sd, lb_failed[idle]);
3562 sd->nr_balance_failed++;
3564 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
3566 spin_lock_irqsave(&busiest->lock, flags);
3568 /* don't kick the migration_thread, if the curr
3569 * task on busiest cpu can't be moved to this_cpu
3571 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
3572 spin_unlock_irqrestore(&busiest->lock, flags);
3574 goto out_one_pinned;
3577 if (!busiest->active_balance) {
3578 busiest->active_balance = 1;
3579 busiest->push_cpu = this_cpu;
3582 spin_unlock_irqrestore(&busiest->lock, flags);
3584 wake_up_process(busiest->migration_thread);
3587 * We've kicked active balancing, reset the failure
3590 sd->nr_balance_failed = sd->cache_nice_tries+1;
3593 sd->nr_balance_failed = 0;
3595 if (likely(!active_balance)) {
3596 /* We were unbalanced, so reset the balancing interval */
3597 sd->balance_interval = sd->min_interval;
3600 * If we've begun active balancing, start to back off. This
3601 * case may not be covered by the all_pinned logic if there
3602 * is only 1 task on the busy runqueue (because we don't call
3605 if (sd->balance_interval < sd->max_interval)
3606 sd->balance_interval *= 2;
3609 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3610 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3616 schedstat_inc(sd, lb_balanced[idle]);
3618 sd->nr_balance_failed = 0;
3621 /* tune up the balancing interval */
3622 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3623 (sd->balance_interval < sd->max_interval))
3624 sd->balance_interval *= 2;
3626 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3627 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3638 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3639 * tasks if there is an imbalance.
3641 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
3642 * this_rq is locked.
3645 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
3648 struct sched_group *group;
3649 struct rq *busiest = NULL;
3650 unsigned long imbalance;
3658 * When power savings policy is enabled for the parent domain, idle
3659 * sibling can pick up load irrespective of busy siblings. In this case,
3660 * let the state of idle sibling percolate up as IDLE, instead of
3661 * portraying it as CPU_NOT_IDLE.
3663 if (sd->flags & SD_SHARE_CPUPOWER &&
3664 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3667 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3669 update_shares_locked(this_rq, sd);
3670 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3671 &sd_idle, cpus, NULL);
3673 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3677 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
3679 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3683 BUG_ON(busiest == this_rq);
3685 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3688 if (busiest->nr_running > 1) {
3689 /* Attempt to move tasks */
3690 double_lock_balance(this_rq, busiest);
3691 /* this_rq->clock is already updated */
3692 update_rq_clock(busiest);
3693 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3694 imbalance, sd, CPU_NEWLY_IDLE,
3696 double_unlock_balance(this_rq, busiest);
3698 if (unlikely(all_pinned)) {
3699 cpu_clear(cpu_of(busiest), *cpus);
3700 if (!cpus_empty(*cpus))
3706 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3707 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3708 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3711 sd->nr_balance_failed = 0;
3713 update_shares_locked(this_rq, sd);
3717 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3718 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3719 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3721 sd->nr_balance_failed = 0;
3727 * idle_balance is called by schedule() if this_cpu is about to become
3728 * idle. Attempts to pull tasks from other CPUs.
3730 static void idle_balance(int this_cpu, struct rq *this_rq)
3732 struct sched_domain *sd;
3733 int pulled_task = -1;
3734 unsigned long next_balance = jiffies + HZ;
3737 for_each_domain(this_cpu, sd) {
3738 unsigned long interval;
3740 if (!(sd->flags & SD_LOAD_BALANCE))
3743 if (sd->flags & SD_BALANCE_NEWIDLE)
3744 /* If we've pulled tasks over stop searching: */
3745 pulled_task = load_balance_newidle(this_cpu, this_rq,
3748 interval = msecs_to_jiffies(sd->balance_interval);
3749 if (time_after(next_balance, sd->last_balance + interval))
3750 next_balance = sd->last_balance + interval;
3754 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3756 * We are going idle. next_balance may be set based on
3757 * a busy processor. So reset next_balance.
3759 this_rq->next_balance = next_balance;
3764 * active_load_balance is run by migration threads. It pushes running tasks
3765 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3766 * running on each physical CPU where possible, and avoids physical /
3767 * logical imbalances.
3769 * Called with busiest_rq locked.
3771 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
3773 int target_cpu = busiest_rq->push_cpu;
3774 struct sched_domain *sd;
3775 struct rq *target_rq;
3777 /* Is there any task to move? */
3778 if (busiest_rq->nr_running <= 1)
3781 target_rq = cpu_rq(target_cpu);
3784 * This condition is "impossible", if it occurs
3785 * we need to fix it. Originally reported by
3786 * Bjorn Helgaas on a 128-cpu setup.
3788 BUG_ON(busiest_rq == target_rq);
3790 /* move a task from busiest_rq to target_rq */
3791 double_lock_balance(busiest_rq, target_rq);
3792 update_rq_clock(busiest_rq);
3793 update_rq_clock(target_rq);
3795 /* Search for an sd spanning us and the target CPU. */
3796 for_each_domain(target_cpu, sd) {
3797 if ((sd->flags & SD_LOAD_BALANCE) &&
3798 cpu_isset(busiest_cpu, sd->span))
3803 schedstat_inc(sd, alb_count);
3805 if (move_one_task(target_rq, target_cpu, busiest_rq,
3807 schedstat_inc(sd, alb_pushed);
3809 schedstat_inc(sd, alb_failed);
3811 double_unlock_balance(busiest_rq, target_rq);
3816 atomic_t load_balancer;
3818 } nohz ____cacheline_aligned = {
3819 .load_balancer = ATOMIC_INIT(-1),
3820 .cpu_mask = CPU_MASK_NONE,
3824 * This routine will try to nominate the ilb (idle load balancing)
3825 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3826 * load balancing on behalf of all those cpus. If all the cpus in the system
3827 * go into this tickless mode, then there will be no ilb owner (as there is
3828 * no need for one) and all the cpus will sleep till the next wakeup event
3831 * For the ilb owner, tick is not stopped. And this tick will be used
3832 * for idle load balancing. ilb owner will still be part of
3835 * While stopping the tick, this cpu will become the ilb owner if there
3836 * is no other owner. And will be the owner till that cpu becomes busy
3837 * or if all cpus in the system stop their ticks at which point
3838 * there is no need for ilb owner.
3840 * When the ilb owner becomes busy, it nominates another owner, during the
3841 * next busy scheduler_tick()
3843 int select_nohz_load_balancer(int stop_tick)
3845 int cpu = smp_processor_id();
3848 cpu_set(cpu, nohz.cpu_mask);
3849 cpu_rq(cpu)->in_nohz_recently = 1;
3852 * If we are going offline and still the leader, give up!
3854 if (!cpu_active(cpu) &&
3855 atomic_read(&nohz.load_balancer) == cpu) {
3856 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3861 /* time for ilb owner also to sleep */
3862 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3863 if (atomic_read(&nohz.load_balancer) == cpu)
3864 atomic_set(&nohz.load_balancer, -1);
3868 if (atomic_read(&nohz.load_balancer) == -1) {
3869 /* make me the ilb owner */
3870 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3872 } else if (atomic_read(&nohz.load_balancer) == cpu)
3875 if (!cpu_isset(cpu, nohz.cpu_mask))
3878 cpu_clear(cpu, nohz.cpu_mask);
3880 if (atomic_read(&nohz.load_balancer) == cpu)
3881 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3888 static DEFINE_SPINLOCK(balancing);
3891 * It checks each scheduling domain to see if it is due to be balanced,
3892 * and initiates a balancing operation if so.
3894 * Balancing parameters are set up in arch_init_sched_domains.
3896 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3899 struct rq *rq = cpu_rq(cpu);
3900 unsigned long interval;
3901 struct sched_domain *sd;
3902 /* Earliest time when we have to do rebalance again */
3903 unsigned long next_balance = jiffies + 60*HZ;
3904 int update_next_balance = 0;
3908 for_each_domain(cpu, sd) {
3909 if (!(sd->flags & SD_LOAD_BALANCE))
3912 interval = sd->balance_interval;
3913 if (idle != CPU_IDLE)
3914 interval *= sd->busy_factor;
3916 /* scale ms to jiffies */
3917 interval = msecs_to_jiffies(interval);
3918 if (unlikely(!interval))
3920 if (interval > HZ*NR_CPUS/10)
3921 interval = HZ*NR_CPUS/10;
3923 need_serialize = sd->flags & SD_SERIALIZE;
3925 if (need_serialize) {
3926 if (!spin_trylock(&balancing))
3930 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3931 if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
3933 * We've pulled tasks over so either we're no
3934 * longer idle, or one of our SMT siblings is
3937 idle = CPU_NOT_IDLE;
3939 sd->last_balance = jiffies;
3942 spin_unlock(&balancing);
3944 if (time_after(next_balance, sd->last_balance + interval)) {
3945 next_balance = sd->last_balance + interval;
3946 update_next_balance = 1;
3950 * Stop the load balance at this level. There is another
3951 * CPU in our sched group which is doing load balancing more
3959 * next_balance will be updated only when there is a need.
3960 * When the cpu is attached to null domain for ex, it will not be
3963 if (likely(update_next_balance))
3964 rq->next_balance = next_balance;
3968 * run_rebalance_domains is triggered when needed from the scheduler tick.
3969 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3970 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3972 static void run_rebalance_domains(struct softirq_action *h)
3974 int this_cpu = smp_processor_id();
3975 struct rq *this_rq = cpu_rq(this_cpu);
3976 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3977 CPU_IDLE : CPU_NOT_IDLE;
3979 rebalance_domains(this_cpu, idle);
3983 * If this cpu is the owner for idle load balancing, then do the
3984 * balancing on behalf of the other idle cpus whose ticks are
3987 if (this_rq->idle_at_tick &&
3988 atomic_read(&nohz.load_balancer) == this_cpu) {
3989 cpumask_t cpus = nohz.cpu_mask;
3993 cpu_clear(this_cpu, cpus);
3994 for_each_cpu_mask_nr(balance_cpu, cpus) {
3996 * If this cpu gets work to do, stop the load balancing
3997 * work being done for other cpus. Next load
3998 * balancing owner will pick it up.
4003 rebalance_domains(balance_cpu, CPU_IDLE);
4005 rq = cpu_rq(balance_cpu);
4006 if (time_after(this_rq->next_balance, rq->next_balance))
4007 this_rq->next_balance = rq->next_balance;
4014 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4016 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4017 * idle load balancing owner or decide to stop the periodic load balancing,
4018 * if the whole system is idle.
4020 static inline void trigger_load_balance(struct rq *rq, int cpu)
4024 * If we were in the nohz mode recently and busy at the current
4025 * scheduler tick, then check if we need to nominate new idle
4028 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4029 rq->in_nohz_recently = 0;
4031 if (atomic_read(&nohz.load_balancer) == cpu) {
4032 cpu_clear(cpu, nohz.cpu_mask);
4033 atomic_set(&nohz.load_balancer, -1);
4036 if (atomic_read(&nohz.load_balancer) == -1) {
4038 * simple selection for now: Nominate the
4039 * first cpu in the nohz list to be the next
4042 * TBD: Traverse the sched domains and nominate
4043 * the nearest cpu in the nohz.cpu_mask.
4045 int ilb = first_cpu(nohz.cpu_mask);
4047 if (ilb < nr_cpu_ids)
4053 * If this cpu is idle and doing idle load balancing for all the
4054 * cpus with ticks stopped, is it time for that to stop?
4056 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4057 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
4063 * If this cpu is idle and the idle load balancing is done by
4064 * someone else, then no need raise the SCHED_SOFTIRQ
4066 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4067 cpu_isset(cpu, nohz.cpu_mask))
4070 if (time_after_eq(jiffies, rq->next_balance))
4071 raise_softirq(SCHED_SOFTIRQ);
4074 #else /* CONFIG_SMP */
4077 * on UP we do not need to balance between CPUs:
4079 static inline void idle_balance(int cpu, struct rq *rq)
4085 DEFINE_PER_CPU(struct kernel_stat, kstat);
4087 EXPORT_PER_CPU_SYMBOL(kstat);
4090 * Return any ns on the sched_clock that have not yet been banked in
4091 * @p in case that task is currently running.
4093 unsigned long long task_delta_exec(struct task_struct *p)
4095 unsigned long flags;
4099 rq = task_rq_lock(p, &flags);
4101 if (task_current(rq, p)) {
4104 update_rq_clock(rq);
4105 delta_exec = rq->clock - p->se.exec_start;
4106 if ((s64)delta_exec > 0)
4110 task_rq_unlock(rq, &flags);
4116 * Account user cpu time to a process.
4117 * @p: the process that the cpu time gets accounted to
4118 * @cputime: the cpu time spent in user space since the last update
4120 void account_user_time(struct task_struct *p, cputime_t cputime)
4122 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4125 p->utime = cputime_add(p->utime, cputime);
4126 account_group_user_time(p, cputime);
4128 /* Add user time to cpustat. */
4129 tmp = cputime_to_cputime64(cputime);
4130 if (TASK_NICE(p) > 0)
4131 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4133 cpustat->user = cputime64_add(cpustat->user, tmp);
4134 /* Account for user time used */
4135 acct_update_integrals(p);
4139 * Account guest cpu time to a process.
4140 * @p: the process that the cpu time gets accounted to
4141 * @cputime: the cpu time spent in virtual machine since the last update
4143 static void account_guest_time(struct task_struct *p, cputime_t cputime)
4146 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4148 tmp = cputime_to_cputime64(cputime);
4150 p->utime = cputime_add(p->utime, cputime);
4151 account_group_user_time(p, cputime);
4152 p->gtime = cputime_add(p->gtime, cputime);
4154 cpustat->user = cputime64_add(cpustat->user, tmp);
4155 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4159 * Account scaled user cpu time to a process.
4160 * @p: the process that the cpu time gets accounted to
4161 * @cputime: the cpu time spent in user space since the last update
4163 void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
4165 p->utimescaled = cputime_add(p->utimescaled, cputime);
4169 * Account system cpu time to a process.
4170 * @p: the process that the cpu time gets accounted to
4171 * @hardirq_offset: the offset to subtract from hardirq_count()
4172 * @cputime: the cpu time spent in kernel space since the last update
4174 void account_system_time(struct task_struct *p, int hardirq_offset,
4177 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4178 struct rq *rq = this_rq();
4181 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
4182 account_guest_time(p, cputime);
4186 p->stime = cputime_add(p->stime, cputime);
4187 account_group_system_time(p, cputime);
4189 /* Add system time to cpustat. */
4190 tmp = cputime_to_cputime64(cputime);
4191 if (hardirq_count() - hardirq_offset)
4192 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4193 else if (softirq_count())
4194 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
4195 else if (p != rq->idle)
4196 cpustat->system = cputime64_add(cpustat->system, tmp);
4197 else if (atomic_read(&rq->nr_iowait) > 0)
4198 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4200 cpustat->idle = cputime64_add(cpustat->idle, tmp);
4201 /* Account for system time used */
4202 acct_update_integrals(p);
4206 * Account scaled system cpu time to a process.
4207 * @p: the process that the cpu time gets accounted to
4208 * @hardirq_offset: the offset to subtract from hardirq_count()
4209 * @cputime: the cpu time spent in kernel space since the last update
4211 void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
4213 p->stimescaled = cputime_add(p->stimescaled, cputime);
4217 * Account for involuntary wait time.
4218 * @p: the process from which the cpu time has been stolen
4219 * @steal: the cpu time spent in involuntary wait
4221 void account_steal_time(struct task_struct *p, cputime_t steal)
4223 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4224 cputime64_t tmp = cputime_to_cputime64(steal);
4225 struct rq *rq = this_rq();
4227 if (p == rq->idle) {
4228 p->stime = cputime_add(p->stime, steal);
4229 account_group_system_time(p, steal);
4230 if (atomic_read(&rq->nr_iowait) > 0)
4231 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4233 cpustat->idle = cputime64_add(cpustat->idle, tmp);
4235 cpustat->steal = cputime64_add(cpustat->steal, tmp);
4239 * Use precise platform statistics if available:
4241 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
4242 cputime_t task_utime(struct task_struct *p)
4247 cputime_t task_stime(struct task_struct *p)
4252 cputime_t task_utime(struct task_struct *p)
4254 clock_t utime = cputime_to_clock_t(p->utime),
4255 total = utime + cputime_to_clock_t(p->stime);
4259 * Use CFS's precise accounting:
4261 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
4265 do_div(temp, total);
4267 utime = (clock_t)temp;
4269 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
4270 return p->prev_utime;
4273 cputime_t task_stime(struct task_struct *p)
4278 * Use CFS's precise accounting. (we subtract utime from
4279 * the total, to make sure the total observed by userspace
4280 * grows monotonically - apps rely on that):
4282 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
4283 cputime_to_clock_t(task_utime(p));
4286 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
4288 return p->prev_stime;
4292 inline cputime_t task_gtime(struct task_struct *p)
4298 * This function gets called by the timer code, with HZ frequency.
4299 * We call it with interrupts disabled.
4301 * It also gets called by the fork code, when changing the parent's
4304 void scheduler_tick(void)
4306 int cpu = smp_processor_id();
4307 struct rq *rq = cpu_rq(cpu);
4308 struct task_struct *curr = rq->curr;
4312 spin_lock(&rq->lock);
4313 update_rq_clock(rq);
4314 update_cpu_load(rq);
4315 curr->sched_class->task_tick(rq, curr, 0);
4316 spin_unlock(&rq->lock);
4319 rq->idle_at_tick = idle_cpu(cpu);
4320 trigger_load_balance(rq, cpu);
4322 perf_counter_task_tick(curr, cpu);
4325 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4326 defined(CONFIG_PREEMPT_TRACER))
4328 static inline unsigned long get_parent_ip(unsigned long addr)
4330 if (in_lock_functions(addr)) {
4331 addr = CALLER_ADDR2;
4332 if (in_lock_functions(addr))
4333 addr = CALLER_ADDR3;
4338 void __kprobes add_preempt_count(int val)
4340 #ifdef CONFIG_DEBUG_PREEMPT
4344 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4347 preempt_count() += val;
4348 #ifdef CONFIG_DEBUG_PREEMPT
4350 * Spinlock count overflowing soon?
4352 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4355 if (preempt_count() == val)
4356 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4358 EXPORT_SYMBOL(add_preempt_count);
4360 void __kprobes sub_preempt_count(int val)
4362 #ifdef CONFIG_DEBUG_PREEMPT
4366 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4369 * Is the spinlock portion underflowing?
4371 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4372 !(preempt_count() & PREEMPT_MASK)))
4376 if (preempt_count() == val)
4377 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4378 preempt_count() -= val;
4380 EXPORT_SYMBOL(sub_preempt_count);
4385 * Print scheduling while atomic bug:
4387 static noinline void __schedule_bug(struct task_struct *prev)
4389 struct pt_regs *regs = get_irq_regs();
4391 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4392 prev->comm, prev->pid, preempt_count());
4394 debug_show_held_locks(prev);
4396 if (irqs_disabled())
4397 print_irqtrace_events(prev);
4406 * Various schedule()-time debugging checks and statistics:
4408 static inline void schedule_debug(struct task_struct *prev)
4411 * Test if we are atomic. Since do_exit() needs to call into
4412 * schedule() atomically, we ignore that path for now.
4413 * Otherwise, whine if we are scheduling when we should not be.
4415 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
4416 __schedule_bug(prev);
4418 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4420 schedstat_inc(this_rq(), sched_count);
4421 #ifdef CONFIG_SCHEDSTATS
4422 if (unlikely(prev->lock_depth >= 0)) {
4423 schedstat_inc(this_rq(), bkl_count);
4424 schedstat_inc(prev, sched_info.bkl_count);
4430 * Pick up the highest-prio task:
4432 static inline struct task_struct *
4433 pick_next_task(struct rq *rq, struct task_struct *prev)
4435 const struct sched_class *class;
4436 struct task_struct *p;
4439 * Optimization: we know that if all tasks are in
4440 * the fair class we can call that function directly:
4442 if (likely(rq->nr_running == rq->cfs.nr_running)) {
4443 p = fair_sched_class.pick_next_task(rq);
4448 class = sched_class_highest;
4450 p = class->pick_next_task(rq);
4454 * Will never be NULL as the idle class always
4455 * returns a non-NULL p:
4457 class = class->next;
4462 * schedule() is the main scheduler function.
4464 asmlinkage void __sched schedule(void)
4466 struct task_struct *prev, *next;
4467 unsigned long *switch_count;
4473 cpu = smp_processor_id();
4477 switch_count = &prev->nivcsw;
4479 release_kernel_lock(prev);
4480 need_resched_nonpreemptible:
4482 schedule_debug(prev);
4484 if (sched_feat(HRTICK))
4487 spin_lock_irq(&rq->lock);
4488 update_rq_clock(rq);
4489 clear_tsk_need_resched(prev);
4491 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
4492 if (unlikely(signal_pending_state(prev->state, prev)))
4493 prev->state = TASK_RUNNING;
4495 deactivate_task(rq, prev, 1);
4496 switch_count = &prev->nvcsw;
4500 if (prev->sched_class->pre_schedule)
4501 prev->sched_class->pre_schedule(rq, prev);
4504 if (unlikely(!rq->nr_running))
4505 idle_balance(cpu, rq);
4507 prev->sched_class->put_prev_task(rq, prev);
4508 next = pick_next_task(rq, prev);
4510 if (likely(prev != next)) {
4511 sched_info_switch(prev, next);
4517 context_switch(rq, prev, next); /* unlocks the rq */
4519 * the context switch might have flipped the stack from under
4520 * us, hence refresh the local variables.
4522 cpu = smp_processor_id();
4525 spin_unlock_irq(&rq->lock);
4527 if (unlikely(reacquire_kernel_lock(current) < 0))
4528 goto need_resched_nonpreemptible;
4530 preempt_enable_no_resched();
4531 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
4534 EXPORT_SYMBOL(schedule);
4536 #ifdef CONFIG_PREEMPT
4538 * this is the entry point to schedule() from in-kernel preemption
4539 * off of preempt_enable. Kernel preemptions off return from interrupt
4540 * occur there and call schedule directly.
4542 asmlinkage void __sched preempt_schedule(void)
4544 struct thread_info *ti = current_thread_info();
4547 * If there is a non-zero preempt_count or interrupts are disabled,
4548 * we do not want to preempt the current task. Just return..
4550 if (likely(ti->preempt_count || irqs_disabled()))
4554 add_preempt_count(PREEMPT_ACTIVE);
4556 sub_preempt_count(PREEMPT_ACTIVE);
4559 * Check again in case we missed a preemption opportunity
4560 * between schedule and now.
4563 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
4565 EXPORT_SYMBOL(preempt_schedule);
4568 * this is the entry point to schedule() from kernel preemption
4569 * off of irq context.
4570 * Note, that this is called and return with irqs disabled. This will
4571 * protect us against recursive calling from irq.
4573 asmlinkage void __sched preempt_schedule_irq(void)
4575 struct thread_info *ti = current_thread_info();
4577 /* Catch callers which need to be fixed */
4578 BUG_ON(ti->preempt_count || !irqs_disabled());
4581 add_preempt_count(PREEMPT_ACTIVE);
4584 local_irq_disable();
4585 sub_preempt_count(PREEMPT_ACTIVE);
4588 * Check again in case we missed a preemption opportunity
4589 * between schedule and now.
4592 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
4595 #endif /* CONFIG_PREEMPT */
4597 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4600 return try_to_wake_up(curr->private, mode, sync);
4602 EXPORT_SYMBOL(default_wake_function);
4605 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4606 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4607 * number) then we wake all the non-exclusive tasks and one exclusive task.
4609 * There are circumstances in which we can try to wake a task which has already
4610 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4611 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4613 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4614 int nr_exclusive, int sync, void *key)
4616 wait_queue_t *curr, *next;
4618 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4619 unsigned flags = curr->flags;
4621 if (curr->func(curr, mode, sync, key) &&
4622 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
4628 * __wake_up - wake up threads blocked on a waitqueue.
4630 * @mode: which threads
4631 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4632 * @key: is directly passed to the wakeup function
4634 void __wake_up(wait_queue_head_t *q, unsigned int mode,
4635 int nr_exclusive, void *key)
4637 unsigned long flags;
4639 spin_lock_irqsave(&q->lock, flags);
4640 __wake_up_common(q, mode, nr_exclusive, 0, key);
4641 spin_unlock_irqrestore(&q->lock, flags);
4643 EXPORT_SYMBOL(__wake_up);
4646 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4648 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
4650 __wake_up_common(q, mode, 1, 0, NULL);
4654 * __wake_up_sync - wake up threads blocked on a waitqueue.
4656 * @mode: which threads
4657 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4659 * The sync wakeup differs that the waker knows that it will schedule
4660 * away soon, so while the target thread will be woken up, it will not
4661 * be migrated to another CPU - ie. the two threads are 'synchronized'
4662 * with each other. This can prevent needless bouncing between CPUs.
4664 * On UP it can prevent extra preemption.
4667 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4669 unsigned long flags;
4675 if (unlikely(!nr_exclusive))
4678 spin_lock_irqsave(&q->lock, flags);
4679 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4680 spin_unlock_irqrestore(&q->lock, flags);
4682 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4685 * complete: - signals a single thread waiting on this completion
4686 * @x: holds the state of this particular completion
4688 * This will wake up a single thread waiting on this completion. Threads will be
4689 * awakened in the same order in which they were queued.
4691 * See also complete_all(), wait_for_completion() and related routines.
4693 void complete(struct completion *x)
4695 unsigned long flags;
4697 spin_lock_irqsave(&x->wait.lock, flags);
4699 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
4700 spin_unlock_irqrestore(&x->wait.lock, flags);
4702 EXPORT_SYMBOL(complete);
4705 * complete_all: - signals all threads waiting on this completion
4706 * @x: holds the state of this particular completion
4708 * This will wake up all threads waiting on this particular completion event.
4710 void complete_all(struct completion *x)
4712 unsigned long flags;
4714 spin_lock_irqsave(&x->wait.lock, flags);
4715 x->done += UINT_MAX/2;
4716 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
4717 spin_unlock_irqrestore(&x->wait.lock, flags);
4719 EXPORT_SYMBOL(complete_all);
4721 static inline long __sched
4722 do_wait_for_common(struct completion *x, long timeout, int state)
4725 DECLARE_WAITQUEUE(wait, current);
4727 wait.flags |= WQ_FLAG_EXCLUSIVE;
4728 __add_wait_queue_tail(&x->wait, &wait);
4730 if (signal_pending_state(state, current)) {
4731 timeout = -ERESTARTSYS;
4734 __set_current_state(state);
4735 spin_unlock_irq(&x->wait.lock);
4736 timeout = schedule_timeout(timeout);
4737 spin_lock_irq(&x->wait.lock);
4738 } while (!x->done && timeout);
4739 __remove_wait_queue(&x->wait, &wait);
4744 return timeout ?: 1;
4748 wait_for_common(struct completion *x, long timeout, int state)
4752 spin_lock_irq(&x->wait.lock);
4753 timeout = do_wait_for_common(x, timeout, state);
4754 spin_unlock_irq(&x->wait.lock);
4759 * wait_for_completion: - waits for completion of a task
4760 * @x: holds the state of this particular completion
4762 * This waits to be signaled for completion of a specific task. It is NOT
4763 * interruptible and there is no timeout.
4765 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4766 * and interrupt capability. Also see complete().
4768 void __sched wait_for_completion(struct completion *x)
4770 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
4772 EXPORT_SYMBOL(wait_for_completion);
4775 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4776 * @x: holds the state of this particular completion
4777 * @timeout: timeout value in jiffies
4779 * This waits for either a completion of a specific task to be signaled or for a
4780 * specified timeout to expire. The timeout is in jiffies. It is not
4783 unsigned long __sched
4784 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4786 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
4788 EXPORT_SYMBOL(wait_for_completion_timeout);
4791 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4792 * @x: holds the state of this particular completion
4794 * This waits for completion of a specific task to be signaled. It is
4797 int __sched wait_for_completion_interruptible(struct completion *x)
4799 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4800 if (t == -ERESTARTSYS)
4804 EXPORT_SYMBOL(wait_for_completion_interruptible);
4807 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4808 * @x: holds the state of this particular completion
4809 * @timeout: timeout value in jiffies
4811 * This waits for either a completion of a specific task to be signaled or for a
4812 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4814 unsigned long __sched
4815 wait_for_completion_interruptible_timeout(struct completion *x,
4816 unsigned long timeout)
4818 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4820 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4823 * wait_for_completion_killable: - waits for completion of a task (killable)
4824 * @x: holds the state of this particular completion
4826 * This waits to be signaled for completion of a specific task. It can be
4827 * interrupted by a kill signal.
4829 int __sched wait_for_completion_killable(struct completion *x)
4831 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4832 if (t == -ERESTARTSYS)
4836 EXPORT_SYMBOL(wait_for_completion_killable);
4839 * try_wait_for_completion - try to decrement a completion without blocking
4840 * @x: completion structure
4842 * Returns: 0 if a decrement cannot be done without blocking
4843 * 1 if a decrement succeeded.
4845 * If a completion is being used as a counting completion,
4846 * attempt to decrement the counter without blocking. This
4847 * enables us to avoid waiting if the resource the completion
4848 * is protecting is not available.
4850 bool try_wait_for_completion(struct completion *x)
4854 spin_lock_irq(&x->wait.lock);
4859 spin_unlock_irq(&x->wait.lock);
4862 EXPORT_SYMBOL(try_wait_for_completion);
4865 * completion_done - Test to see if a completion has any waiters
4866 * @x: completion structure
4868 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4869 * 1 if there are no waiters.
4872 bool completion_done(struct completion *x)
4876 spin_lock_irq(&x->wait.lock);
4879 spin_unlock_irq(&x->wait.lock);
4882 EXPORT_SYMBOL(completion_done);
4885 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
4887 unsigned long flags;
4890 init_waitqueue_entry(&wait, current);
4892 __set_current_state(state);
4894 spin_lock_irqsave(&q->lock, flags);
4895 __add_wait_queue(q, &wait);
4896 spin_unlock(&q->lock);
4897 timeout = schedule_timeout(timeout);
4898 spin_lock_irq(&q->lock);
4899 __remove_wait_queue(q, &wait);
4900 spin_unlock_irqrestore(&q->lock, flags);
4905 void __sched interruptible_sleep_on(wait_queue_head_t *q)
4907 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4909 EXPORT_SYMBOL(interruptible_sleep_on);
4912 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4914 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
4916 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4918 void __sched sleep_on(wait_queue_head_t *q)
4920 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4922 EXPORT_SYMBOL(sleep_on);
4924 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4926 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
4928 EXPORT_SYMBOL(sleep_on_timeout);
4930 #ifdef CONFIG_RT_MUTEXES
4933 * rt_mutex_setprio - set the current priority of a task
4935 * @prio: prio value (kernel-internal form)
4937 * This function changes the 'effective' priority of a task. It does
4938 * not touch ->normal_prio like __setscheduler().
4940 * Used by the rt_mutex code to implement priority inheritance logic.
4942 void rt_mutex_setprio(struct task_struct *p, int prio)
4944 unsigned long flags;
4945 int oldprio, on_rq, running;
4947 const struct sched_class *prev_class = p->sched_class;
4949 BUG_ON(prio < 0 || prio > MAX_PRIO);
4951 rq = task_rq_lock(p, &flags);
4952 update_rq_clock(rq);
4955 on_rq = p->se.on_rq;
4956 running = task_current(rq, p);
4958 dequeue_task(rq, p, 0);
4960 p->sched_class->put_prev_task(rq, p);
4963 p->sched_class = &rt_sched_class;
4965 p->sched_class = &fair_sched_class;
4970 p->sched_class->set_curr_task(rq);
4972 enqueue_task(rq, p, 0);
4974 check_class_changed(rq, p, prev_class, oldprio, running);
4976 task_rq_unlock(rq, &flags);
4981 void set_user_nice(struct task_struct *p, long nice)
4983 int old_prio, delta, on_rq;
4984 unsigned long flags;
4987 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4990 * We have to be careful, if called from sys_setpriority(),
4991 * the task might be in the middle of scheduling on another CPU.
4993 rq = task_rq_lock(p, &flags);
4994 update_rq_clock(rq);
4996 * The RT priorities are set via sched_setscheduler(), but we still
4997 * allow the 'normal' nice value to be set - but as expected
4998 * it wont have any effect on scheduling until the task is
4999 * SCHED_FIFO/SCHED_RR:
5001 if (task_has_rt_policy(p)) {
5002 p->static_prio = NICE_TO_PRIO(nice);
5005 on_rq = p->se.on_rq;
5007 dequeue_task(rq, p, 0);
5009 p->static_prio = NICE_TO_PRIO(nice);
5012 p->prio = effective_prio(p);
5013 delta = p->prio - old_prio;
5016 enqueue_task(rq, p, 0);
5018 * If the task increased its priority or is running and
5019 * lowered its priority, then reschedule its CPU:
5021 if (delta < 0 || (delta > 0 && task_running(rq, p)))
5022 resched_task(rq->curr);
5025 task_rq_unlock(rq, &flags);
5027 EXPORT_SYMBOL(set_user_nice);
5030 * can_nice - check if a task can reduce its nice value
5034 int can_nice(const struct task_struct *p, const int nice)
5036 /* convert nice value [19,-20] to rlimit style value [1,40] */
5037 int nice_rlim = 20 - nice;
5039 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
5040 capable(CAP_SYS_NICE));
5043 #ifdef __ARCH_WANT_SYS_NICE
5046 * sys_nice - change the priority of the current process.
5047 * @increment: priority increment
5049 * sys_setpriority is a more generic, but much slower function that
5050 * does similar things.
5052 asmlinkage long sys_nice(int increment)
5057 * Setpriority might change our priority at the same moment.
5058 * We don't have to worry. Conceptually one call occurs first
5059 * and we have a single winner.
5061 if (increment < -40)
5066 nice = PRIO_TO_NICE(current->static_prio) + increment;
5072 if (increment < 0 && !can_nice(current, nice))
5075 retval = security_task_setnice(current, nice);
5079 set_user_nice(current, nice);
5086 * task_prio - return the priority value of a given task.
5087 * @p: the task in question.
5089 * This is the priority value as seen by users in /proc.
5090 * RT tasks are offset by -200. Normal tasks are centered
5091 * around 0, value goes from -16 to +15.
5093 int task_prio(const struct task_struct *p)
5095 return p->prio - MAX_RT_PRIO;
5099 * task_nice - return the nice value of a given task.
5100 * @p: the task in question.
5102 int task_nice(const struct task_struct *p)
5104 return TASK_NICE(p);
5106 EXPORT_SYMBOL(task_nice);
5109 * idle_cpu - is a given cpu idle currently?
5110 * @cpu: the processor in question.
5112 int idle_cpu(int cpu)
5114 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
5118 * idle_task - return the idle task for a given cpu.
5119 * @cpu: the processor in question.
5121 struct task_struct *idle_task(int cpu)
5123 return cpu_rq(cpu)->idle;
5127 * find_process_by_pid - find a process with a matching PID value.
5128 * @pid: the pid in question.
5130 static struct task_struct *find_process_by_pid(pid_t pid)
5132 return pid ? find_task_by_vpid(pid) : current;
5135 /* Actually do priority change: must hold rq lock. */
5137 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
5139 BUG_ON(p->se.on_rq);
5142 switch (p->policy) {
5146 p->sched_class = &fair_sched_class;
5150 p->sched_class = &rt_sched_class;
5154 p->rt_priority = prio;
5155 p->normal_prio = normal_prio(p);
5156 /* we are holding p->pi_lock already */
5157 p->prio = rt_mutex_getprio(p);
5161 static int __sched_setscheduler(struct task_struct *p, int policy,
5162 struct sched_param *param, bool user)
5164 int retval, oldprio, oldpolicy = -1, on_rq, running;
5165 unsigned long flags;
5166 const struct sched_class *prev_class = p->sched_class;
5169 /* may grab non-irq protected spin_locks */
5170 BUG_ON(in_interrupt());
5172 /* double check policy once rq lock held */
5174 policy = oldpolicy = p->policy;
5175 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
5176 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5177 policy != SCHED_IDLE)
5180 * Valid priorities for SCHED_FIFO and SCHED_RR are
5181 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5182 * SCHED_BATCH and SCHED_IDLE is 0.
5184 if (param->sched_priority < 0 ||
5185 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
5186 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
5188 if (rt_policy(policy) != (param->sched_priority != 0))
5192 * Allow unprivileged RT tasks to decrease priority:
5194 if (user && !capable(CAP_SYS_NICE)) {
5195 if (rt_policy(policy)) {
5196 unsigned long rlim_rtprio;
5198 if (!lock_task_sighand(p, &flags))
5200 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
5201 unlock_task_sighand(p, &flags);
5203 /* can't set/change the rt policy */
5204 if (policy != p->policy && !rlim_rtprio)
5207 /* can't increase priority */
5208 if (param->sched_priority > p->rt_priority &&
5209 param->sched_priority > rlim_rtprio)
5213 * Like positive nice levels, dont allow tasks to
5214 * move out of SCHED_IDLE either:
5216 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
5219 /* can't change other user's priorities */
5220 if ((current->euid != p->euid) &&
5221 (current->euid != p->uid))
5226 #ifdef CONFIG_RT_GROUP_SCHED
5228 * Do not allow realtime tasks into groups that have no runtime
5231 if (rt_bandwidth_enabled() && rt_policy(policy) &&
5232 task_group(p)->rt_bandwidth.rt_runtime == 0)
5236 retval = security_task_setscheduler(p, policy, param);
5242 * make sure no PI-waiters arrive (or leave) while we are
5243 * changing the priority of the task:
5245 spin_lock_irqsave(&p->pi_lock, flags);
5247 * To be able to change p->policy safely, the apropriate
5248 * runqueue lock must be held.
5250 rq = __task_rq_lock(p);
5251 /* recheck policy now with rq lock held */
5252 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5253 policy = oldpolicy = -1;
5254 __task_rq_unlock(rq);
5255 spin_unlock_irqrestore(&p->pi_lock, flags);
5258 update_rq_clock(rq);
5259 on_rq = p->se.on_rq;
5260 running = task_current(rq, p);
5262 deactivate_task(rq, p, 0);
5264 p->sched_class->put_prev_task(rq, p);
5267 __setscheduler(rq, p, policy, param->sched_priority);
5270 p->sched_class->set_curr_task(rq);
5272 activate_task(rq, p, 0);
5274 check_class_changed(rq, p, prev_class, oldprio, running);
5276 __task_rq_unlock(rq);
5277 spin_unlock_irqrestore(&p->pi_lock, flags);
5279 rt_mutex_adjust_pi(p);
5285 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5286 * @p: the task in question.
5287 * @policy: new policy.
5288 * @param: structure containing the new RT priority.
5290 * NOTE that the task may be already dead.
5292 int sched_setscheduler(struct task_struct *p, int policy,
5293 struct sched_param *param)
5295 return __sched_setscheduler(p, policy, param, true);
5297 EXPORT_SYMBOL_GPL(sched_setscheduler);
5300 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5301 * @p: the task in question.
5302 * @policy: new policy.
5303 * @param: structure containing the new RT priority.
5305 * Just like sched_setscheduler, only don't bother checking if the
5306 * current context has permission. For example, this is needed in
5307 * stop_machine(): we create temporary high priority worker threads,
5308 * but our caller might not have that capability.
5310 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5311 struct sched_param *param)
5313 return __sched_setscheduler(p, policy, param, false);
5317 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5319 struct sched_param lparam;
5320 struct task_struct *p;
5323 if (!param || pid < 0)
5325 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5330 p = find_process_by_pid(pid);
5332 retval = sched_setscheduler(p, policy, &lparam);
5339 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5340 * @pid: the pid in question.
5341 * @policy: new policy.
5342 * @param: structure containing the new RT priority.
5345 sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5347 /* negative values for policy are not valid */
5351 return do_sched_setscheduler(pid, policy, param);
5355 * sys_sched_setparam - set/change the RT priority of a thread
5356 * @pid: the pid in question.
5357 * @param: structure containing the new RT priority.
5359 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
5361 return do_sched_setscheduler(pid, -1, param);
5365 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5366 * @pid: the pid in question.
5368 asmlinkage long sys_sched_getscheduler(pid_t pid)
5370 struct task_struct *p;
5377 read_lock(&tasklist_lock);
5378 p = find_process_by_pid(pid);
5380 retval = security_task_getscheduler(p);
5384 read_unlock(&tasklist_lock);
5389 * sys_sched_getscheduler - get the RT priority of a thread
5390 * @pid: the pid in question.
5391 * @param: structure containing the RT priority.
5393 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
5395 struct sched_param lp;
5396 struct task_struct *p;
5399 if (!param || pid < 0)
5402 read_lock(&tasklist_lock);
5403 p = find_process_by_pid(pid);
5408 retval = security_task_getscheduler(p);
5412 lp.sched_priority = p->rt_priority;
5413 read_unlock(&tasklist_lock);
5416 * This one might sleep, we cannot do it with a spinlock held ...
5418 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5423 read_unlock(&tasklist_lock);
5427 long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
5429 cpumask_t cpus_allowed;
5430 cpumask_t new_mask = *in_mask;
5431 struct task_struct *p;
5435 read_lock(&tasklist_lock);
5437 p = find_process_by_pid(pid);
5439 read_unlock(&tasklist_lock);
5445 * It is not safe to call set_cpus_allowed with the
5446 * tasklist_lock held. We will bump the task_struct's
5447 * usage count and then drop tasklist_lock.
5450 read_unlock(&tasklist_lock);
5453 if ((current->euid != p->euid) && (current->euid != p->uid) &&
5454 !capable(CAP_SYS_NICE))
5457 retval = security_task_setscheduler(p, 0, NULL);
5461 cpuset_cpus_allowed(p, &cpus_allowed);
5462 cpus_and(new_mask, new_mask, cpus_allowed);
5464 retval = set_cpus_allowed_ptr(p, &new_mask);
5467 cpuset_cpus_allowed(p, &cpus_allowed);
5468 if (!cpus_subset(new_mask, cpus_allowed)) {
5470 * We must have raced with a concurrent cpuset
5471 * update. Just reset the cpus_allowed to the
5472 * cpuset's cpus_allowed
5474 new_mask = cpus_allowed;
5484 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5485 cpumask_t *new_mask)
5487 if (len < sizeof(cpumask_t)) {
5488 memset(new_mask, 0, sizeof(cpumask_t));
5489 } else if (len > sizeof(cpumask_t)) {
5490 len = sizeof(cpumask_t);
5492 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5496 * sys_sched_setaffinity - set the cpu affinity of a process
5497 * @pid: pid of the process
5498 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5499 * @user_mask_ptr: user-space pointer to the new cpu mask
5501 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
5502 unsigned long __user *user_mask_ptr)
5507 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
5511 return sched_setaffinity(pid, &new_mask);
5514 long sched_getaffinity(pid_t pid, cpumask_t *mask)
5516 struct task_struct *p;
5520 read_lock(&tasklist_lock);
5523 p = find_process_by_pid(pid);
5527 retval = security_task_getscheduler(p);
5531 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
5534 read_unlock(&tasklist_lock);
5541 * sys_sched_getaffinity - get the cpu affinity of a process
5542 * @pid: pid of the process
5543 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5544 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5546 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
5547 unsigned long __user *user_mask_ptr)
5552 if (len < sizeof(cpumask_t))
5555 ret = sched_getaffinity(pid, &mask);
5559 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
5562 return sizeof(cpumask_t);
5566 * sys_sched_yield - yield the current processor to other threads.
5568 * This function yields the current CPU to other tasks. If there are no
5569 * other threads running on this CPU then this function will return.
5571 asmlinkage long sys_sched_yield(void)
5573 struct rq *rq = this_rq_lock();
5575 schedstat_inc(rq, yld_count);
5576 current->sched_class->yield_task(rq);
5579 * Since we are going to call schedule() anyway, there's
5580 * no need to preempt or enable interrupts:
5582 __release(rq->lock);
5583 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
5584 _raw_spin_unlock(&rq->lock);
5585 preempt_enable_no_resched();
5592 static void __cond_resched(void)
5594 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5595 __might_sleep(__FILE__, __LINE__);
5598 * The BKS might be reacquired before we have dropped
5599 * PREEMPT_ACTIVE, which could trigger a second
5600 * cond_resched() call.
5603 add_preempt_count(PREEMPT_ACTIVE);
5605 sub_preempt_count(PREEMPT_ACTIVE);
5606 } while (need_resched());
5609 int __sched _cond_resched(void)
5611 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
5612 system_state == SYSTEM_RUNNING) {
5618 EXPORT_SYMBOL(_cond_resched);
5621 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5622 * call schedule, and on return reacquire the lock.
5624 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5625 * operations here to prevent schedule() from being called twice (once via
5626 * spin_unlock(), once by hand).
5628 int cond_resched_lock(spinlock_t *lock)
5630 int resched = need_resched() && system_state == SYSTEM_RUNNING;
5633 if (spin_needbreak(lock) || resched) {
5635 if (resched && need_resched())
5644 EXPORT_SYMBOL(cond_resched_lock);
5646 int __sched cond_resched_softirq(void)
5648 BUG_ON(!in_softirq());
5650 if (need_resched() && system_state == SYSTEM_RUNNING) {
5658 EXPORT_SYMBOL(cond_resched_softirq);
5661 * yield - yield the current processor to other threads.
5663 * This is a shortcut for kernel-space yielding - it marks the
5664 * thread runnable and calls sys_sched_yield().
5666 void __sched yield(void)
5668 set_current_state(TASK_RUNNING);
5671 EXPORT_SYMBOL(yield);
5674 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5675 * that process accounting knows that this is a task in IO wait state.
5677 * But don't do that if it is a deliberate, throttling IO wait (this task
5678 * has set its backing_dev_info: the queue against which it should throttle)
5680 void __sched io_schedule(void)
5682 struct rq *rq = &__raw_get_cpu_var(runqueues);
5684 delayacct_blkio_start();
5685 atomic_inc(&rq->nr_iowait);
5687 atomic_dec(&rq->nr_iowait);
5688 delayacct_blkio_end();
5690 EXPORT_SYMBOL(io_schedule);
5692 long __sched io_schedule_timeout(long timeout)
5694 struct rq *rq = &__raw_get_cpu_var(runqueues);
5697 delayacct_blkio_start();
5698 atomic_inc(&rq->nr_iowait);
5699 ret = schedule_timeout(timeout);
5700 atomic_dec(&rq->nr_iowait);
5701 delayacct_blkio_end();
5706 * sys_sched_get_priority_max - return maximum RT priority.
5707 * @policy: scheduling class.
5709 * this syscall returns the maximum rt_priority that can be used
5710 * by a given scheduling class.
5712 asmlinkage long sys_sched_get_priority_max(int policy)
5719 ret = MAX_USER_RT_PRIO-1;
5731 * sys_sched_get_priority_min - return minimum RT priority.
5732 * @policy: scheduling class.
5734 * this syscall returns the minimum rt_priority that can be used
5735 * by a given scheduling class.
5737 asmlinkage long sys_sched_get_priority_min(int policy)
5755 * sys_sched_rr_get_interval - return the default timeslice of a process.
5756 * @pid: pid of the process.
5757 * @interval: userspace pointer to the timeslice value.
5759 * this syscall writes the default timeslice value of a given process
5760 * into the user-space timespec buffer. A value of '0' means infinity.
5763 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
5765 struct task_struct *p;
5766 unsigned int time_slice;
5774 read_lock(&tasklist_lock);
5775 p = find_process_by_pid(pid);
5779 retval = security_task_getscheduler(p);
5784 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5785 * tasks that are on an otherwise idle runqueue:
5788 if (p->policy == SCHED_RR) {
5789 time_slice = DEF_TIMESLICE;
5790 } else if (p->policy != SCHED_FIFO) {
5791 struct sched_entity *se = &p->se;
5792 unsigned long flags;
5795 rq = task_rq_lock(p, &flags);
5796 if (rq->cfs.load.weight)
5797 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
5798 task_rq_unlock(rq, &flags);
5800 read_unlock(&tasklist_lock);
5801 jiffies_to_timespec(time_slice, &t);
5802 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5806 read_unlock(&tasklist_lock);
5810 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5812 void sched_show_task(struct task_struct *p)
5814 unsigned long free = 0;
5817 state = p->state ? __ffs(p->state) + 1 : 0;
5818 printk(KERN_INFO "%-13.13s %c", p->comm,
5819 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5820 #if BITS_PER_LONG == 32
5821 if (state == TASK_RUNNING)
5822 printk(KERN_CONT " running ");
5824 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5826 if (state == TASK_RUNNING)
5827 printk(KERN_CONT " running task ");
5829 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5831 #ifdef CONFIG_DEBUG_STACK_USAGE
5833 unsigned long *n = end_of_stack(p);
5836 free = (unsigned long)n - (unsigned long)end_of_stack(p);
5839 printk(KERN_CONT "%5lu %5d %6d\n", free,
5840 task_pid_nr(p), task_pid_nr(p->real_parent));
5842 show_stack(p, NULL);
5845 void show_state_filter(unsigned long state_filter)
5847 struct task_struct *g, *p;
5849 #if BITS_PER_LONG == 32
5851 " task PC stack pid father\n");
5854 " task PC stack pid father\n");
5856 read_lock(&tasklist_lock);
5857 do_each_thread(g, p) {
5859 * reset the NMI-timeout, listing all files on a slow
5860 * console might take alot of time:
5862 touch_nmi_watchdog();
5863 if (!state_filter || (p->state & state_filter))
5865 } while_each_thread(g, p);
5867 touch_all_softlockup_watchdogs();
5869 #ifdef CONFIG_SCHED_DEBUG
5870 sysrq_sched_debug_show();
5872 read_unlock(&tasklist_lock);
5874 * Only show locks if all tasks are dumped:
5876 if (state_filter == -1)
5877 debug_show_all_locks();
5880 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5882 idle->sched_class = &idle_sched_class;
5886 * init_idle - set up an idle thread for a given CPU
5887 * @idle: task in question
5888 * @cpu: cpu the idle task belongs to
5890 * NOTE: this function does not set the idle thread's NEED_RESCHED
5891 * flag, to make booting more robust.
5893 void __cpuinit init_idle(struct task_struct *idle, int cpu)
5895 struct rq *rq = cpu_rq(cpu);
5896 unsigned long flags;
5898 spin_lock_irqsave(&rq->lock, flags);
5901 idle->se.exec_start = sched_clock();
5903 idle->prio = idle->normal_prio = MAX_PRIO;
5904 idle->cpus_allowed = cpumask_of_cpu(cpu);
5905 __set_task_cpu(idle, cpu);
5907 rq->curr = rq->idle = idle;
5908 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5911 spin_unlock_irqrestore(&rq->lock, flags);
5913 /* Set the preempt count _outside_ the spinlocks! */
5914 #if defined(CONFIG_PREEMPT)
5915 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5917 task_thread_info(idle)->preempt_count = 0;
5920 * The idle tasks have their own, simple scheduling class:
5922 idle->sched_class = &idle_sched_class;
5926 * In a system that switches off the HZ timer nohz_cpu_mask
5927 * indicates which cpus entered this state. This is used
5928 * in the rcu update to wait only for active cpus. For system
5929 * which do not switch off the HZ timer nohz_cpu_mask should
5930 * always be CPU_MASK_NONE.
5932 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5935 * Increase the granularity value when there are more CPUs,
5936 * because with more CPUs the 'effective latency' as visible
5937 * to users decreases. But the relationship is not linear,
5938 * so pick a second-best guess by going with the log2 of the
5941 * This idea comes from the SD scheduler of Con Kolivas:
5943 static inline void sched_init_granularity(void)
5945 unsigned int factor = 1 + ilog2(num_online_cpus());
5946 const unsigned long limit = 200000000;
5948 sysctl_sched_min_granularity *= factor;
5949 if (sysctl_sched_min_granularity > limit)
5950 sysctl_sched_min_granularity = limit;
5952 sysctl_sched_latency *= factor;
5953 if (sysctl_sched_latency > limit)
5954 sysctl_sched_latency = limit;
5956 sysctl_sched_wakeup_granularity *= factor;
5958 sysctl_sched_shares_ratelimit *= factor;
5963 * This is how migration works:
5965 * 1) we queue a struct migration_req structure in the source CPU's
5966 * runqueue and wake up that CPU's migration thread.
5967 * 2) we down() the locked semaphore => thread blocks.
5968 * 3) migration thread wakes up (implicitly it forces the migrated
5969 * thread off the CPU)
5970 * 4) it gets the migration request and checks whether the migrated
5971 * task is still in the wrong runqueue.
5972 * 5) if it's in the wrong runqueue then the migration thread removes
5973 * it and puts it into the right queue.
5974 * 6) migration thread up()s the semaphore.
5975 * 7) we wake up and the migration is done.
5979 * Change a given task's CPU affinity. Migrate the thread to a
5980 * proper CPU and schedule it away if the CPU it's executing on
5981 * is removed from the allowed bitmask.
5983 * NOTE: the caller must have a valid reference to the task, the
5984 * task must not exit() & deallocate itself prematurely. The
5985 * call is not atomic; no spinlocks may be held.
5987 int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
5989 struct migration_req req;
5990 unsigned long flags;
5994 rq = task_rq_lock(p, &flags);
5995 if (!cpus_intersects(*new_mask, cpu_online_map)) {
6000 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
6001 !cpus_equal(p->cpus_allowed, *new_mask))) {
6006 if (p->sched_class->set_cpus_allowed)
6007 p->sched_class->set_cpus_allowed(p, new_mask);
6009 p->cpus_allowed = *new_mask;
6010 p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
6013 /* Can the task run on the task's current CPU? If so, we're done */
6014 if (cpu_isset(task_cpu(p), *new_mask))
6017 if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
6018 /* Need help from migration thread: drop lock and wait. */
6019 task_rq_unlock(rq, &flags);
6020 wake_up_process(rq->migration_thread);
6021 wait_for_completion(&req.done);
6022 tlb_migrate_finish(p->mm);
6026 task_rq_unlock(rq, &flags);
6030 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
6033 * Move (not current) task off this cpu, onto dest cpu. We're doing
6034 * this because either it can't run here any more (set_cpus_allowed()
6035 * away from this CPU, or CPU going down), or because we're
6036 * attempting to rebalance this task on exec (sched_exec).
6038 * So we race with normal scheduler movements, but that's OK, as long
6039 * as the task is no longer on this CPU.
6041 * Returns non-zero if task was successfully migrated.
6043 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
6045 struct rq *rq_dest, *rq_src;
6048 if (unlikely(!cpu_active(dest_cpu)))
6051 rq_src = cpu_rq(src_cpu);
6052 rq_dest = cpu_rq(dest_cpu);
6054 double_rq_lock(rq_src, rq_dest);
6055 /* Already moved. */
6056 if (task_cpu(p) != src_cpu)
6058 /* Affinity changed (again). */
6059 if (!cpu_isset(dest_cpu, p->cpus_allowed))
6062 on_rq = p->se.on_rq;
6064 deactivate_task(rq_src, p, 0);
6066 set_task_cpu(p, dest_cpu);
6068 activate_task(rq_dest, p, 0);
6069 check_preempt_curr(rq_dest, p, 0);
6074 double_rq_unlock(rq_src, rq_dest);
6079 * migration_thread - this is a highprio system thread that performs
6080 * thread migration by bumping thread off CPU then 'pushing' onto
6083 static int migration_thread(void *data)
6085 int cpu = (long)data;
6089 BUG_ON(rq->migration_thread != current);
6091 set_current_state(TASK_INTERRUPTIBLE);
6092 while (!kthread_should_stop()) {
6093 struct migration_req *req;
6094 struct list_head *head;
6096 spin_lock_irq(&rq->lock);
6098 if (cpu_is_offline(cpu)) {
6099 spin_unlock_irq(&rq->lock);
6103 if (rq->active_balance) {
6104 active_load_balance(rq, cpu);
6105 rq->active_balance = 0;
6108 head = &rq->migration_queue;
6110 if (list_empty(head)) {
6111 spin_unlock_irq(&rq->lock);
6113 set_current_state(TASK_INTERRUPTIBLE);
6116 req = list_entry(head->next, struct migration_req, list);
6117 list_del_init(head->next);
6119 spin_unlock(&rq->lock);
6120 __migrate_task(req->task, cpu, req->dest_cpu);
6123 complete(&req->done);
6125 __set_current_state(TASK_RUNNING);
6129 /* Wait for kthread_stop */
6130 set_current_state(TASK_INTERRUPTIBLE);
6131 while (!kthread_should_stop()) {
6133 set_current_state(TASK_INTERRUPTIBLE);
6135 __set_current_state(TASK_RUNNING);
6139 #ifdef CONFIG_HOTPLUG_CPU
6141 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
6145 local_irq_disable();
6146 ret = __migrate_task(p, src_cpu, dest_cpu);
6152 * Figure out where task on dead CPU should go, use force if necessary.
6153 * NOTE: interrupts should be disabled by the caller
6155 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
6157 unsigned long flags;
6164 mask = node_to_cpumask(cpu_to_node(dead_cpu));
6165 cpus_and(mask, mask, p->cpus_allowed);
6166 dest_cpu = any_online_cpu(mask);
6168 /* On any allowed CPU? */
6169 if (dest_cpu >= nr_cpu_ids)
6170 dest_cpu = any_online_cpu(p->cpus_allowed);
6172 /* No more Mr. Nice Guy. */
6173 if (dest_cpu >= nr_cpu_ids) {
6174 cpumask_t cpus_allowed;
6176 cpuset_cpus_allowed_locked(p, &cpus_allowed);
6178 * Try to stay on the same cpuset, where the
6179 * current cpuset may be a subset of all cpus.
6180 * The cpuset_cpus_allowed_locked() variant of
6181 * cpuset_cpus_allowed() will not block. It must be
6182 * called within calls to cpuset_lock/cpuset_unlock.
6184 rq = task_rq_lock(p, &flags);
6185 p->cpus_allowed = cpus_allowed;
6186 dest_cpu = any_online_cpu(p->cpus_allowed);
6187 task_rq_unlock(rq, &flags);
6190 * Don't tell them about moving exiting tasks or
6191 * kernel threads (both mm NULL), since they never
6194 if (p->mm && printk_ratelimit()) {
6195 printk(KERN_INFO "process %d (%s) no "
6196 "longer affine to cpu%d\n",
6197 task_pid_nr(p), p->comm, dead_cpu);
6200 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
6204 * While a dead CPU has no uninterruptible tasks queued at this point,
6205 * it might still have a nonzero ->nr_uninterruptible counter, because
6206 * for performance reasons the counter is not stricly tracking tasks to
6207 * their home CPUs. So we just add the counter to another CPU's counter,
6208 * to keep the global sum constant after CPU-down:
6210 static void migrate_nr_uninterruptible(struct rq *rq_src)
6212 struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
6213 unsigned long flags;
6215 local_irq_save(flags);
6216 double_rq_lock(rq_src, rq_dest);
6217 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6218 rq_src->nr_uninterruptible = 0;
6219 double_rq_unlock(rq_src, rq_dest);
6220 local_irq_restore(flags);
6223 /* Run through task list and migrate tasks from the dead cpu. */
6224 static void migrate_live_tasks(int src_cpu)
6226 struct task_struct *p, *t;
6228 read_lock(&tasklist_lock);
6230 do_each_thread(t, p) {
6234 if (task_cpu(p) == src_cpu)
6235 move_task_off_dead_cpu(src_cpu, p);
6236 } while_each_thread(t, p);
6238 read_unlock(&tasklist_lock);
6242 * Schedules idle task to be the next runnable task on current CPU.
6243 * It does so by boosting its priority to highest possible.
6244 * Used by CPU offline code.
6246 void sched_idle_next(void)
6248 int this_cpu = smp_processor_id();
6249 struct rq *rq = cpu_rq(this_cpu);
6250 struct task_struct *p = rq->idle;
6251 unsigned long flags;
6253 /* cpu has to be offline */
6254 BUG_ON(cpu_online(this_cpu));
6257 * Strictly not necessary since rest of the CPUs are stopped by now
6258 * and interrupts disabled on the current cpu.
6260 spin_lock_irqsave(&rq->lock, flags);
6262 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6264 update_rq_clock(rq);
6265 activate_task(rq, p, 0);
6267 spin_unlock_irqrestore(&rq->lock, flags);
6271 * Ensures that the idle task is using init_mm right before its cpu goes
6274 void idle_task_exit(void)
6276 struct mm_struct *mm = current->active_mm;
6278 BUG_ON(cpu_online(smp_processor_id()));
6281 switch_mm(mm, &init_mm, current);
6285 /* called under rq->lock with disabled interrupts */
6286 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
6288 struct rq *rq = cpu_rq(dead_cpu);
6290 /* Must be exiting, otherwise would be on tasklist. */
6291 BUG_ON(!p->exit_state);
6293 /* Cannot have done final schedule yet: would have vanished. */
6294 BUG_ON(p->state == TASK_DEAD);
6299 * Drop lock around migration; if someone else moves it,
6300 * that's OK. No task can be added to this CPU, so iteration is
6303 spin_unlock_irq(&rq->lock);
6304 move_task_off_dead_cpu(dead_cpu, p);
6305 spin_lock_irq(&rq->lock);
6310 /* release_task() removes task from tasklist, so we won't find dead tasks. */
6311 static void migrate_dead_tasks(unsigned int dead_cpu)
6313 struct rq *rq = cpu_rq(dead_cpu);
6314 struct task_struct *next;
6317 if (!rq->nr_running)
6319 update_rq_clock(rq);
6320 next = pick_next_task(rq, rq->curr);
6323 next->sched_class->put_prev_task(rq, next);
6324 migrate_dead(dead_cpu, next);
6328 #endif /* CONFIG_HOTPLUG_CPU */
6330 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6332 static struct ctl_table sd_ctl_dir[] = {
6334 .procname = "sched_domain",
6340 static struct ctl_table sd_ctl_root[] = {
6342 .ctl_name = CTL_KERN,
6343 .procname = "kernel",
6345 .child = sd_ctl_dir,
6350 static struct ctl_table *sd_alloc_ctl_entry(int n)
6352 struct ctl_table *entry =
6353 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6358 static void sd_free_ctl_entry(struct ctl_table **tablep)
6360 struct ctl_table *entry;
6363 * In the intermediate directories, both the child directory and
6364 * procname are dynamically allocated and could fail but the mode
6365 * will always be set. In the lowest directory the names are
6366 * static strings and all have proc handlers.
6368 for (entry = *tablep; entry->mode; entry++) {
6370 sd_free_ctl_entry(&entry->child);
6371 if (entry->proc_handler == NULL)
6372 kfree(entry->procname);
6380 set_table_entry(struct ctl_table *entry,
6381 const char *procname, void *data, int maxlen,
6382 mode_t mode, proc_handler *proc_handler)
6384 entry->procname = procname;
6386 entry->maxlen = maxlen;
6388 entry->proc_handler = proc_handler;
6391 static struct ctl_table *
6392 sd_alloc_ctl_domain_table(struct sched_domain *sd)
6394 struct ctl_table *table = sd_alloc_ctl_entry(13);
6399 set_table_entry(&table[0], "min_interval", &sd->min_interval,
6400 sizeof(long), 0644, proc_doulongvec_minmax);
6401 set_table_entry(&table[1], "max_interval", &sd->max_interval,
6402 sizeof(long), 0644, proc_doulongvec_minmax);
6403 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6404 sizeof(int), 0644, proc_dointvec_minmax);
6405 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6406 sizeof(int), 0644, proc_dointvec_minmax);
6407 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6408 sizeof(int), 0644, proc_dointvec_minmax);
6409 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6410 sizeof(int), 0644, proc_dointvec_minmax);
6411 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6412 sizeof(int), 0644, proc_dointvec_minmax);
6413 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6414 sizeof(int), 0644, proc_dointvec_minmax);
6415 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6416 sizeof(int), 0644, proc_dointvec_minmax);
6417 set_table_entry(&table[9], "cache_nice_tries",
6418 &sd->cache_nice_tries,
6419 sizeof(int), 0644, proc_dointvec_minmax);
6420 set_table_entry(&table[10], "flags", &sd->flags,
6421 sizeof(int), 0644, proc_dointvec_minmax);
6422 set_table_entry(&table[11], "name", sd->name,
6423 CORENAME_MAX_SIZE, 0444, proc_dostring);
6424 /* &table[12] is terminator */
6429 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6431 struct ctl_table *entry, *table;
6432 struct sched_domain *sd;
6433 int domain_num = 0, i;
6436 for_each_domain(cpu, sd)
6438 entry = table = sd_alloc_ctl_entry(domain_num + 1);
6443 for_each_domain(cpu, sd) {
6444 snprintf(buf, 32, "domain%d", i);
6445 entry->procname = kstrdup(buf, GFP_KERNEL);
6447 entry->child = sd_alloc_ctl_domain_table(sd);
6454 static struct ctl_table_header *sd_sysctl_header;
6455 static void register_sched_domain_sysctl(void)
6457 int i, cpu_num = num_online_cpus();
6458 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6461 WARN_ON(sd_ctl_dir[0].child);
6462 sd_ctl_dir[0].child = entry;
6467 for_each_online_cpu(i) {
6468 snprintf(buf, 32, "cpu%d", i);
6469 entry->procname = kstrdup(buf, GFP_KERNEL);
6471 entry->child = sd_alloc_ctl_cpu_table(i);
6475 WARN_ON(sd_sysctl_header);
6476 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6479 /* may be called multiple times per register */
6480 static void unregister_sched_domain_sysctl(void)
6482 if (sd_sysctl_header)
6483 unregister_sysctl_table(sd_sysctl_header);
6484 sd_sysctl_header = NULL;
6485 if (sd_ctl_dir[0].child)
6486 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6489 static void register_sched_domain_sysctl(void)
6492 static void unregister_sched_domain_sysctl(void)
6497 static void set_rq_online(struct rq *rq)
6500 const struct sched_class *class;
6502 cpu_set(rq->cpu, rq->rd->online);
6505 for_each_class(class) {
6506 if (class->rq_online)
6507 class->rq_online(rq);
6512 static void set_rq_offline(struct rq *rq)
6515 const struct sched_class *class;
6517 for_each_class(class) {
6518 if (class->rq_offline)
6519 class->rq_offline(rq);
6522 cpu_clear(rq->cpu, rq->rd->online);
6528 * migration_call - callback that gets triggered when a CPU is added.
6529 * Here we can start up the necessary migration thread for the new CPU.
6531 static int __cpuinit
6532 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
6534 struct task_struct *p;
6535 int cpu = (long)hcpu;
6536 unsigned long flags;
6541 case CPU_UP_PREPARE:
6542 case CPU_UP_PREPARE_FROZEN:
6543 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
6546 kthread_bind(p, cpu);
6547 /* Must be high prio: stop_machine expects to yield to it. */
6548 rq = task_rq_lock(p, &flags);
6549 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6550 task_rq_unlock(rq, &flags);
6551 cpu_rq(cpu)->migration_thread = p;
6555 case CPU_ONLINE_FROZEN:
6556 /* Strictly unnecessary, as first user will wake it. */
6557 wake_up_process(cpu_rq(cpu)->migration_thread);
6559 /* Update our root-domain */
6561 spin_lock_irqsave(&rq->lock, flags);
6563 BUG_ON(!cpu_isset(cpu, rq->rd->span));
6567 spin_unlock_irqrestore(&rq->lock, flags);
6570 #ifdef CONFIG_HOTPLUG_CPU
6571 case CPU_UP_CANCELED:
6572 case CPU_UP_CANCELED_FROZEN:
6573 if (!cpu_rq(cpu)->migration_thread)
6575 /* Unbind it from offline cpu so it can run. Fall thru. */
6576 kthread_bind(cpu_rq(cpu)->migration_thread,
6577 any_online_cpu(cpu_online_map));
6578 kthread_stop(cpu_rq(cpu)->migration_thread);
6579 cpu_rq(cpu)->migration_thread = NULL;
6583 case CPU_DEAD_FROZEN:
6584 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
6585 migrate_live_tasks(cpu);
6587 kthread_stop(rq->migration_thread);
6588 rq->migration_thread = NULL;
6589 /* Idle task back to normal (off runqueue, low prio) */
6590 spin_lock_irq(&rq->lock);
6591 update_rq_clock(rq);
6592 deactivate_task(rq, rq->idle, 0);
6593 rq->idle->static_prio = MAX_PRIO;
6594 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
6595 rq->idle->sched_class = &idle_sched_class;
6596 migrate_dead_tasks(cpu);
6597 spin_unlock_irq(&rq->lock);
6599 migrate_nr_uninterruptible(rq);
6600 BUG_ON(rq->nr_running != 0);
6603 * No need to migrate the tasks: it was best-effort if
6604 * they didn't take sched_hotcpu_mutex. Just wake up
6607 spin_lock_irq(&rq->lock);
6608 while (!list_empty(&rq->migration_queue)) {
6609 struct migration_req *req;
6611 req = list_entry(rq->migration_queue.next,
6612 struct migration_req, list);
6613 list_del_init(&req->list);
6614 complete(&req->done);
6616 spin_unlock_irq(&rq->lock);
6620 case CPU_DYING_FROZEN:
6621 /* Update our root-domain */
6623 spin_lock_irqsave(&rq->lock, flags);
6625 BUG_ON(!cpu_isset(cpu, rq->rd->span));
6628 spin_unlock_irqrestore(&rq->lock, flags);
6635 /* Register at highest priority so that task migration (migrate_all_tasks)
6636 * happens before everything else.
6638 static struct notifier_block __cpuinitdata migration_notifier = {
6639 .notifier_call = migration_call,
6643 static int __init migration_init(void)
6645 void *cpu = (void *)(long)smp_processor_id();
6648 /* Start one for the boot CPU: */
6649 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6650 BUG_ON(err == NOTIFY_BAD);
6651 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6652 register_cpu_notifier(&migration_notifier);
6656 early_initcall(migration_init);
6661 #ifdef CONFIG_SCHED_DEBUG
6663 static inline const char *sd_level_to_string(enum sched_domain_level lvl)
6676 case SD_LV_ALLNODES:
6685 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6686 cpumask_t *groupmask)
6688 struct sched_group *group = sd->groups;
6691 cpulist_scnprintf(str, sizeof(str), sd->span);
6692 cpus_clear(*groupmask);
6694 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6696 if (!(sd->flags & SD_LOAD_BALANCE)) {
6697 printk("does not load-balance\n");
6699 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6704 printk(KERN_CONT "span %s level %s\n",
6705 str, sd_level_to_string(sd->level));
6707 if (!cpu_isset(cpu, sd->span)) {
6708 printk(KERN_ERR "ERROR: domain->span does not contain "
6711 if (!cpu_isset(cpu, group->cpumask)) {
6712 printk(KERN_ERR "ERROR: domain->groups does not contain"
6716 printk(KERN_DEBUG "%*s groups:", level + 1, "");
6720 printk(KERN_ERR "ERROR: group is NULL\n");
6724 if (!group->__cpu_power) {
6725 printk(KERN_CONT "\n");
6726 printk(KERN_ERR "ERROR: domain->cpu_power not "
6731 if (!cpus_weight(group->cpumask)) {
6732 printk(KERN_CONT "\n");
6733 printk(KERN_ERR "ERROR: empty group\n");
6737 if (cpus_intersects(*groupmask, group->cpumask)) {
6738 printk(KERN_CONT "\n");
6739 printk(KERN_ERR "ERROR: repeated CPUs\n");
6743 cpus_or(*groupmask, *groupmask, group->cpumask);
6745 cpulist_scnprintf(str, sizeof(str), group->cpumask);
6746 printk(KERN_CONT " %s", str);
6748 group = group->next;
6749 } while (group != sd->groups);
6750 printk(KERN_CONT "\n");
6752 if (!cpus_equal(sd->span, *groupmask))
6753 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
6755 if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
6756 printk(KERN_ERR "ERROR: parent span is not a superset "
6757 "of domain->span\n");
6761 static void sched_domain_debug(struct sched_domain *sd, int cpu)
6763 cpumask_t *groupmask;
6767 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6771 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6773 groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6775 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6780 if (sched_domain_debug_one(sd, cpu, level, groupmask))
6789 #else /* !CONFIG_SCHED_DEBUG */
6790 # define sched_domain_debug(sd, cpu) do { } while (0)
6791 #endif /* CONFIG_SCHED_DEBUG */
6793 static int sd_degenerate(struct sched_domain *sd)
6795 if (cpus_weight(sd->span) == 1)
6798 /* Following flags need at least 2 groups */
6799 if (sd->flags & (SD_LOAD_BALANCE |
6800 SD_BALANCE_NEWIDLE |
6804 SD_SHARE_PKG_RESOURCES)) {
6805 if (sd->groups != sd->groups->next)
6809 /* Following flags don't use groups */
6810 if (sd->flags & (SD_WAKE_IDLE |
6819 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6821 unsigned long cflags = sd->flags, pflags = parent->flags;
6823 if (sd_degenerate(parent))
6826 if (!cpus_equal(sd->span, parent->span))
6829 /* Does parent contain flags not in child? */
6830 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6831 if (cflags & SD_WAKE_AFFINE)
6832 pflags &= ~SD_WAKE_BALANCE;
6833 /* Flags needing groups don't count if only 1 group in parent */
6834 if (parent->groups == parent->groups->next) {
6835 pflags &= ~(SD_LOAD_BALANCE |
6836 SD_BALANCE_NEWIDLE |
6840 SD_SHARE_PKG_RESOURCES);
6842 if (~cflags & pflags)
6848 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6850 unsigned long flags;
6852 spin_lock_irqsave(&rq->lock, flags);
6855 struct root_domain *old_rd = rq->rd;
6857 if (cpu_isset(rq->cpu, old_rd->online))
6860 cpu_clear(rq->cpu, old_rd->span);
6862 if (atomic_dec_and_test(&old_rd->refcount))
6866 atomic_inc(&rd->refcount);
6869 cpu_set(rq->cpu, rd->span);
6870 if (cpu_isset(rq->cpu, cpu_online_map))
6873 spin_unlock_irqrestore(&rq->lock, flags);
6876 static void init_rootdomain(struct root_domain *rd)
6878 memset(rd, 0, sizeof(*rd));
6880 cpus_clear(rd->span);
6881 cpus_clear(rd->online);
6883 cpupri_init(&rd->cpupri);
6886 static void init_defrootdomain(void)
6888 init_rootdomain(&def_root_domain);
6889 atomic_set(&def_root_domain.refcount, 1);
6892 static struct root_domain *alloc_rootdomain(void)
6894 struct root_domain *rd;
6896 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6900 init_rootdomain(rd);
6906 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6907 * hold the hotplug lock.
6910 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6912 struct rq *rq = cpu_rq(cpu);
6913 struct sched_domain *tmp;
6915 /* Remove the sched domains which do not contribute to scheduling. */
6916 for (tmp = sd; tmp; ) {
6917 struct sched_domain *parent = tmp->parent;
6921 if (sd_parent_degenerate(tmp, parent)) {
6922 tmp->parent = parent->parent;
6924 parent->parent->child = tmp;
6929 if (sd && sd_degenerate(sd)) {
6935 sched_domain_debug(sd, cpu);
6937 rq_attach_root(rq, rd);
6938 rcu_assign_pointer(rq->sd, sd);
6941 /* cpus with isolated domains */
6942 static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
6944 /* Setup the mask of cpus configured for isolated domains */
6945 static int __init isolated_cpu_setup(char *str)
6947 static int __initdata ints[NR_CPUS];
6950 str = get_options(str, ARRAY_SIZE(ints), ints);
6951 cpus_clear(cpu_isolated_map);
6952 for (i = 1; i <= ints[0]; i++)
6953 if (ints[i] < NR_CPUS)
6954 cpu_set(ints[i], cpu_isolated_map);
6958 __setup("isolcpus=", isolated_cpu_setup);
6961 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6962 * to a function which identifies what group(along with sched group) a CPU
6963 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
6964 * (due to the fact that we keep track of groups covered with a cpumask_t).
6966 * init_sched_build_groups will build a circular linked list of the groups
6967 * covered by the given span, and will set each group's ->cpumask correctly,
6968 * and ->cpu_power to 0.
6971 init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
6972 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
6973 struct sched_group **sg,
6974 cpumask_t *tmpmask),
6975 cpumask_t *covered, cpumask_t *tmpmask)
6977 struct sched_group *first = NULL, *last = NULL;
6980 cpus_clear(*covered);
6982 for_each_cpu_mask_nr(i, *span) {
6983 struct sched_group *sg;
6984 int group = group_fn(i, cpu_map, &sg, tmpmask);
6987 if (cpu_isset(i, *covered))
6990 cpus_clear(sg->cpumask);
6991 sg->__cpu_power = 0;
6993 for_each_cpu_mask_nr(j, *span) {
6994 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
6997 cpu_set(j, *covered);
6998 cpu_set(j, sg->cpumask);
7009 #define SD_NODES_PER_DOMAIN 16
7014 * find_next_best_node - find the next node to include in a sched_domain
7015 * @node: node whose sched_domain we're building
7016 * @used_nodes: nodes already in the sched_domain
7018 * Find the next node to include in a given scheduling domain. Simply
7019 * finds the closest node not already in the @used_nodes map.
7021 * Should use nodemask_t.
7023 static int find_next_best_node(int node, nodemask_t *used_nodes)
7025 int i, n, val, min_val, best_node = 0;
7029 for (i = 0; i < nr_node_ids; i++) {
7030 /* Start at @node */
7031 n = (node + i) % nr_node_ids;
7033 if (!nr_cpus_node(n))
7036 /* Skip already used nodes */
7037 if (node_isset(n, *used_nodes))
7040 /* Simple min distance search */
7041 val = node_distance(node, n);
7043 if (val < min_val) {
7049 node_set(best_node, *used_nodes);
7054 * sched_domain_node_span - get a cpumask for a node's sched_domain
7055 * @node: node whose cpumask we're constructing
7056 * @span: resulting cpumask
7058 * Given a node, construct a good cpumask for its sched_domain to span. It
7059 * should be one that prevents unnecessary balancing, but also spreads tasks
7062 static void sched_domain_node_span(int node, cpumask_t *span)
7064 nodemask_t used_nodes;
7065 node_to_cpumask_ptr(nodemask, node);
7069 nodes_clear(used_nodes);
7071 cpus_or(*span, *span, *nodemask);
7072 node_set(node, used_nodes);
7074 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
7075 int next_node = find_next_best_node(node, &used_nodes);
7077 node_to_cpumask_ptr_next(nodemask, next_node);
7078 cpus_or(*span, *span, *nodemask);
7081 #endif /* CONFIG_NUMA */
7083 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
7086 * SMT sched-domains:
7088 #ifdef CONFIG_SCHED_SMT
7089 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
7090 static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
7093 cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7097 *sg = &per_cpu(sched_group_cpus, cpu);
7100 #endif /* CONFIG_SCHED_SMT */
7103 * multi-core sched-domains:
7105 #ifdef CONFIG_SCHED_MC
7106 static DEFINE_PER_CPU(struct sched_domain, core_domains);
7107 static DEFINE_PER_CPU(struct sched_group, sched_group_core);
7108 #endif /* CONFIG_SCHED_MC */
7110 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
7112 cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7117 *mask = per_cpu(cpu_sibling_map, cpu);
7118 cpus_and(*mask, *mask, *cpu_map);
7119 group = first_cpu(*mask);
7121 *sg = &per_cpu(sched_group_core, group);
7124 #elif defined(CONFIG_SCHED_MC)
7126 cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7130 *sg = &per_cpu(sched_group_core, cpu);
7135 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
7136 static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
7139 cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7143 #ifdef CONFIG_SCHED_MC
7144 *mask = cpu_coregroup_map(cpu);
7145 cpus_and(*mask, *mask, *cpu_map);
7146 group = first_cpu(*mask);
7147 #elif defined(CONFIG_SCHED_SMT)
7148 *mask = per_cpu(cpu_sibling_map, cpu);
7149 cpus_and(*mask, *mask, *cpu_map);
7150 group = first_cpu(*mask);
7155 *sg = &per_cpu(sched_group_phys, group);
7161 * The init_sched_build_groups can't handle what we want to do with node
7162 * groups, so roll our own. Now each node has its own list of groups which
7163 * gets dynamically allocated.
7165 static DEFINE_PER_CPU(struct sched_domain, node_domains);
7166 static struct sched_group ***sched_group_nodes_bycpu;
7168 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
7169 static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
7171 static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
7172 struct sched_group **sg, cpumask_t *nodemask)
7176 *nodemask = node_to_cpumask(cpu_to_node(cpu));
7177 cpus_and(*nodemask, *nodemask, *cpu_map);
7178 group = first_cpu(*nodemask);
7181 *sg = &per_cpu(sched_group_allnodes, group);
7185 static void init_numa_sched_groups_power(struct sched_group *group_head)
7187 struct sched_group *sg = group_head;
7193 for_each_cpu_mask_nr(j, sg->cpumask) {
7194 struct sched_domain *sd;
7196 sd = &per_cpu(phys_domains, j);
7197 if (j != first_cpu(sd->groups->cpumask)) {
7199 * Only add "power" once for each
7205 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
7208 } while (sg != group_head);
7210 #endif /* CONFIG_NUMA */
7213 /* Free memory allocated for various sched_group structures */
7214 static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
7218 for_each_cpu_mask_nr(cpu, *cpu_map) {
7219 struct sched_group **sched_group_nodes
7220 = sched_group_nodes_bycpu[cpu];
7222 if (!sched_group_nodes)
7225 for (i = 0; i < nr_node_ids; i++) {
7226 struct sched_group *oldsg, *sg = sched_group_nodes[i];
7228 *nodemask = node_to_cpumask(i);
7229 cpus_and(*nodemask, *nodemask, *cpu_map);
7230 if (cpus_empty(*nodemask))
7240 if (oldsg != sched_group_nodes[i])
7243 kfree(sched_group_nodes);
7244 sched_group_nodes_bycpu[cpu] = NULL;
7247 #else /* !CONFIG_NUMA */
7248 static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
7251 #endif /* CONFIG_NUMA */
7254 * Initialize sched groups cpu_power.
7256 * cpu_power indicates the capacity of sched group, which is used while
7257 * distributing the load between different sched groups in a sched domain.
7258 * Typically cpu_power for all the groups in a sched domain will be same unless
7259 * there are asymmetries in the topology. If there are asymmetries, group
7260 * having more cpu_power will pickup more load compared to the group having
7263 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
7264 * the maximum number of tasks a group can handle in the presence of other idle
7265 * or lightly loaded groups in the same sched domain.
7267 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7269 struct sched_domain *child;
7270 struct sched_group *group;
7272 WARN_ON(!sd || !sd->groups);
7274 if (cpu != first_cpu(sd->groups->cpumask))
7279 sd->groups->__cpu_power = 0;
7282 * For perf policy, if the groups in child domain share resources
7283 * (for example cores sharing some portions of the cache hierarchy
7284 * or SMT), then set this domain groups cpu_power such that each group
7285 * can handle only one task, when there are other idle groups in the
7286 * same sched domain.
7288 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
7290 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
7291 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
7296 * add cpu_power of each child group to this groups cpu_power
7298 group = child->groups;
7300 sg_inc_cpu_power(sd->groups, group->__cpu_power);
7301 group = group->next;
7302 } while (group != child->groups);
7306 * Initializers for schedule domains
7307 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7310 #ifdef CONFIG_SCHED_DEBUG
7311 # define SD_INIT_NAME(sd, type) sd->name = #type
7313 # define SD_INIT_NAME(sd, type) do { } while (0)
7316 #define SD_INIT(sd, type) sd_init_##type(sd)
7318 #define SD_INIT_FUNC(type) \
7319 static noinline void sd_init_##type(struct sched_domain *sd) \
7321 memset(sd, 0, sizeof(*sd)); \
7322 *sd = SD_##type##_INIT; \
7323 sd->level = SD_LV_##type; \
7324 SD_INIT_NAME(sd, type); \
7329 SD_INIT_FUNC(ALLNODES)
7332 #ifdef CONFIG_SCHED_SMT
7333 SD_INIT_FUNC(SIBLING)
7335 #ifdef CONFIG_SCHED_MC
7340 * To minimize stack usage kmalloc room for cpumasks and share the
7341 * space as the usage in build_sched_domains() dictates. Used only
7342 * if the amount of space is significant.
7345 cpumask_t tmpmask; /* make this one first */
7348 cpumask_t this_sibling_map;
7349 cpumask_t this_core_map;
7351 cpumask_t send_covered;
7354 cpumask_t domainspan;
7356 cpumask_t notcovered;
7361 #define SCHED_CPUMASK_ALLOC 1
7362 #define SCHED_CPUMASK_FREE(v) kfree(v)
7363 #define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
7365 #define SCHED_CPUMASK_ALLOC 0
7366 #define SCHED_CPUMASK_FREE(v)
7367 #define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
7370 #define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
7371 ((unsigned long)(a) + offsetof(struct allmasks, v))
7373 static int default_relax_domain_level = -1;
7375 static int __init setup_relax_domain_level(char *str)
7379 val = simple_strtoul(str, NULL, 0);
7380 if (val < SD_LV_MAX)
7381 default_relax_domain_level = val;
7385 __setup("relax_domain_level=", setup_relax_domain_level);
7387 static void set_domain_attribute(struct sched_domain *sd,
7388 struct sched_domain_attr *attr)
7392 if (!attr || attr->relax_domain_level < 0) {
7393 if (default_relax_domain_level < 0)
7396 request = default_relax_domain_level;
7398 request = attr->relax_domain_level;
7399 if (request < sd->level) {
7400 /* turn off idle balance on this domain */
7401 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
7403 /* turn on idle balance on this domain */
7404 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
7409 * Build sched domains for a given set of cpus and attach the sched domains
7410 * to the individual cpus
7412 static int __build_sched_domains(const cpumask_t *cpu_map,
7413 struct sched_domain_attr *attr)
7416 struct root_domain *rd;
7417 SCHED_CPUMASK_DECLARE(allmasks);
7420 struct sched_group **sched_group_nodes = NULL;
7421 int sd_allnodes = 0;
7424 * Allocate the per-node list of sched groups
7426 sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
7428 if (!sched_group_nodes) {
7429 printk(KERN_WARNING "Can not alloc sched group node list\n");
7434 rd = alloc_rootdomain();
7436 printk(KERN_WARNING "Cannot alloc root domain\n");
7438 kfree(sched_group_nodes);
7443 #if SCHED_CPUMASK_ALLOC
7444 /* get space for all scratch cpumask variables */
7445 allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
7447 printk(KERN_WARNING "Cannot alloc cpumask array\n");
7450 kfree(sched_group_nodes);
7455 tmpmask = (cpumask_t *)allmasks;
7459 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
7463 * Set up domains for cpus specified by the cpu_map.
7465 for_each_cpu_mask_nr(i, *cpu_map) {
7466 struct sched_domain *sd = NULL, *p;
7467 SCHED_CPUMASK_VAR(nodemask, allmasks);
7469 *nodemask = node_to_cpumask(cpu_to_node(i));
7470 cpus_and(*nodemask, *nodemask, *cpu_map);
7473 if (cpus_weight(*cpu_map) >
7474 SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
7475 sd = &per_cpu(allnodes_domains, i);
7476 SD_INIT(sd, ALLNODES);
7477 set_domain_attribute(sd, attr);
7478 sd->span = *cpu_map;
7479 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
7485 sd = &per_cpu(node_domains, i);
7487 set_domain_attribute(sd, attr);
7488 sched_domain_node_span(cpu_to_node(i), &sd->span);
7492 cpus_and(sd->span, sd->span, *cpu_map);
7496 sd = &per_cpu(phys_domains, i);
7498 set_domain_attribute(sd, attr);
7499 sd->span = *nodemask;
7503 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
7505 #ifdef CONFIG_SCHED_MC
7507 sd = &per_cpu(core_domains, i);
7509 set_domain_attribute(sd, attr);
7510 sd->span = cpu_coregroup_map(i);
7511 cpus_and(sd->span, sd->span, *cpu_map);
7514 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
7517 #ifdef CONFIG_SCHED_SMT
7519 sd = &per_cpu(cpu_domains, i);
7520 SD_INIT(sd, SIBLING);
7521 set_domain_attribute(sd, attr);
7522 sd->span = per_cpu(cpu_sibling_map, i);
7523 cpus_and(sd->span, sd->span, *cpu_map);
7526 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
7530 #ifdef CONFIG_SCHED_SMT
7531 /* Set up CPU (sibling) groups */
7532 for_each_cpu_mask_nr(i, *cpu_map) {
7533 SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
7534 SCHED_CPUMASK_VAR(send_covered, allmasks);
7536 *this_sibling_map = per_cpu(cpu_sibling_map, i);
7537 cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
7538 if (i != first_cpu(*this_sibling_map))
7541 init_sched_build_groups(this_sibling_map, cpu_map,
7543 send_covered, tmpmask);
7547 #ifdef CONFIG_SCHED_MC
7548 /* Set up multi-core groups */
7549 for_each_cpu_mask_nr(i, *cpu_map) {
7550 SCHED_CPUMASK_VAR(this_core_map, allmasks);
7551 SCHED_CPUMASK_VAR(send_covered, allmasks);
7553 *this_core_map = cpu_coregroup_map(i);
7554 cpus_and(*this_core_map, *this_core_map, *cpu_map);
7555 if (i != first_cpu(*this_core_map))
7558 init_sched_build_groups(this_core_map, cpu_map,
7560 send_covered, tmpmask);
7564 /* Set up physical groups */
7565 for (i = 0; i < nr_node_ids; i++) {
7566 SCHED_CPUMASK_VAR(nodemask, allmasks);
7567 SCHED_CPUMASK_VAR(send_covered, allmasks);
7569 *nodemask = node_to_cpumask(i);
7570 cpus_and(*nodemask, *nodemask, *cpu_map);
7571 if (cpus_empty(*nodemask))
7574 init_sched_build_groups(nodemask, cpu_map,
7576 send_covered, tmpmask);
7580 /* Set up node groups */
7582 SCHED_CPUMASK_VAR(send_covered, allmasks);
7584 init_sched_build_groups(cpu_map, cpu_map,
7585 &cpu_to_allnodes_group,
7586 send_covered, tmpmask);
7589 for (i = 0; i < nr_node_ids; i++) {
7590 /* Set up node groups */
7591 struct sched_group *sg, *prev;
7592 SCHED_CPUMASK_VAR(nodemask, allmasks);
7593 SCHED_CPUMASK_VAR(domainspan, allmasks);
7594 SCHED_CPUMASK_VAR(covered, allmasks);
7597 *nodemask = node_to_cpumask(i);
7598 cpus_clear(*covered);
7600 cpus_and(*nodemask, *nodemask, *cpu_map);
7601 if (cpus_empty(*nodemask)) {
7602 sched_group_nodes[i] = NULL;
7606 sched_domain_node_span(i, domainspan);
7607 cpus_and(*domainspan, *domainspan, *cpu_map);
7609 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
7611 printk(KERN_WARNING "Can not alloc domain group for "
7615 sched_group_nodes[i] = sg;
7616 for_each_cpu_mask_nr(j, *nodemask) {
7617 struct sched_domain *sd;
7619 sd = &per_cpu(node_domains, j);
7622 sg->__cpu_power = 0;
7623 sg->cpumask = *nodemask;
7625 cpus_or(*covered, *covered, *nodemask);
7628 for (j = 0; j < nr_node_ids; j++) {
7629 SCHED_CPUMASK_VAR(notcovered, allmasks);
7630 int n = (i + j) % nr_node_ids;
7631 node_to_cpumask_ptr(pnodemask, n);
7633 cpus_complement(*notcovered, *covered);
7634 cpus_and(*tmpmask, *notcovered, *cpu_map);
7635 cpus_and(*tmpmask, *tmpmask, *domainspan);
7636 if (cpus_empty(*tmpmask))
7639 cpus_and(*tmpmask, *tmpmask, *pnodemask);
7640 if (cpus_empty(*tmpmask))
7643 sg = kmalloc_node(sizeof(struct sched_group),
7647 "Can not alloc domain group for node %d\n", j);
7650 sg->__cpu_power = 0;
7651 sg->cpumask = *tmpmask;
7652 sg->next = prev->next;
7653 cpus_or(*covered, *covered, *tmpmask);
7660 /* Calculate CPU power for physical packages and nodes */
7661 #ifdef CONFIG_SCHED_SMT
7662 for_each_cpu_mask_nr(i, *cpu_map) {
7663 struct sched_domain *sd = &per_cpu(cpu_domains, i);
7665 init_sched_groups_power(i, sd);
7668 #ifdef CONFIG_SCHED_MC
7669 for_each_cpu_mask_nr(i, *cpu_map) {
7670 struct sched_domain *sd = &per_cpu(core_domains, i);
7672 init_sched_groups_power(i, sd);
7676 for_each_cpu_mask_nr(i, *cpu_map) {
7677 struct sched_domain *sd = &per_cpu(phys_domains, i);
7679 init_sched_groups_power(i, sd);
7683 for (i = 0; i < nr_node_ids; i++)
7684 init_numa_sched_groups_power(sched_group_nodes[i]);
7687 struct sched_group *sg;
7689 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
7691 init_numa_sched_groups_power(sg);
7695 /* Attach the domains */
7696 for_each_cpu_mask_nr(i, *cpu_map) {
7697 struct sched_domain *sd;
7698 #ifdef CONFIG_SCHED_SMT
7699 sd = &per_cpu(cpu_domains, i);
7700 #elif defined(CONFIG_SCHED_MC)
7701 sd = &per_cpu(core_domains, i);
7703 sd = &per_cpu(phys_domains, i);
7705 cpu_attach_domain(sd, rd, i);
7708 SCHED_CPUMASK_FREE((void *)allmasks);
7713 free_sched_groups(cpu_map, tmpmask);
7714 SCHED_CPUMASK_FREE((void *)allmasks);
7720 static int build_sched_domains(const cpumask_t *cpu_map)
7722 return __build_sched_domains(cpu_map, NULL);
7725 static cpumask_t *doms_cur; /* current sched domains */
7726 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
7727 static struct sched_domain_attr *dattr_cur;
7728 /* attribues of custom domains in 'doms_cur' */
7731 * Special case: If a kmalloc of a doms_cur partition (array of
7732 * cpumask_t) fails, then fallback to a single sched domain,
7733 * as determined by the single cpumask_t fallback_doms.
7735 static cpumask_t fallback_doms;
7737 void __attribute__((weak)) arch_update_cpu_topology(void)
7742 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7743 * For now this just excludes isolated cpus, but could be used to
7744 * exclude other special cases in the future.
7746 static int arch_init_sched_domains(const cpumask_t *cpu_map)
7750 arch_update_cpu_topology();
7752 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
7754 doms_cur = &fallback_doms;
7755 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
7757 err = build_sched_domains(doms_cur);
7758 register_sched_domain_sysctl();
7763 static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
7766 free_sched_groups(cpu_map, tmpmask);
7770 * Detach sched domains from a group of cpus specified in cpu_map
7771 * These cpus will now be attached to the NULL domain
7773 static void detach_destroy_domains(const cpumask_t *cpu_map)
7778 unregister_sched_domain_sysctl();
7780 for_each_cpu_mask_nr(i, *cpu_map)
7781 cpu_attach_domain(NULL, &def_root_domain, i);
7782 synchronize_sched();
7783 arch_destroy_sched_domains(cpu_map, &tmpmask);
7786 /* handle null as "default" */
7787 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7788 struct sched_domain_attr *new, int idx_new)
7790 struct sched_domain_attr tmp;
7797 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7798 new ? (new + idx_new) : &tmp,
7799 sizeof(struct sched_domain_attr));
7803 * Partition sched domains as specified by the 'ndoms_new'
7804 * cpumasks in the array doms_new[] of cpumasks. This compares
7805 * doms_new[] to the current sched domain partitioning, doms_cur[].
7806 * It destroys each deleted domain and builds each new domain.
7808 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
7809 * The masks don't intersect (don't overlap.) We should setup one
7810 * sched domain for each mask. CPUs not in any of the cpumasks will
7811 * not be load balanced. If the same cpumask appears both in the
7812 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7815 * The passed in 'doms_new' should be kmalloc'd. This routine takes
7816 * ownership of it and will kfree it when done with it. If the caller
7817 * failed the kmalloc call, then it can pass in doms_new == NULL &&
7818 * ndoms_new == 1, and partition_sched_domains() will fallback to
7819 * the single partition 'fallback_doms', it also forces the domains
7822 * If doms_new == NULL it will be replaced with cpu_online_map.
7823 * ndoms_new == 0 is a special case for destroying existing domains,
7824 * and it will not create the default domain.
7826 * Call with hotplug lock held
7828 void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
7829 struct sched_domain_attr *dattr_new)
7833 mutex_lock(&sched_domains_mutex);
7835 /* always unregister in case we don't destroy any domains */
7836 unregister_sched_domain_sysctl();
7838 n = doms_new ? ndoms_new : 0;
7840 /* Destroy deleted domains */
7841 for (i = 0; i < ndoms_cur; i++) {
7842 for (j = 0; j < n; j++) {
7843 if (cpus_equal(doms_cur[i], doms_new[j])
7844 && dattrs_equal(dattr_cur, i, dattr_new, j))
7847 /* no match - a current sched domain not in new doms_new[] */
7848 detach_destroy_domains(doms_cur + i);
7853 if (doms_new == NULL) {
7855 doms_new = &fallback_doms;
7856 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
7860 /* Build new domains */
7861 for (i = 0; i < ndoms_new; i++) {
7862 for (j = 0; j < ndoms_cur; j++) {
7863 if (cpus_equal(doms_new[i], doms_cur[j])
7864 && dattrs_equal(dattr_new, i, dattr_cur, j))
7867 /* no match - add a new doms_new */
7868 __build_sched_domains(doms_new + i,
7869 dattr_new ? dattr_new + i : NULL);
7874 /* Remember the new sched domains */
7875 if (doms_cur != &fallback_doms)
7877 kfree(dattr_cur); /* kfree(NULL) is safe */
7878 doms_cur = doms_new;
7879 dattr_cur = dattr_new;
7880 ndoms_cur = ndoms_new;
7882 register_sched_domain_sysctl();
7884 mutex_unlock(&sched_domains_mutex);
7887 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7888 int arch_reinit_sched_domains(void)
7892 /* Destroy domains first to force the rebuild */
7893 partition_sched_domains(0, NULL, NULL);
7895 rebuild_sched_domains();
7901 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7905 if (buf[0] != '0' && buf[0] != '1')
7909 sched_smt_power_savings = (buf[0] == '1');
7911 sched_mc_power_savings = (buf[0] == '1');
7913 ret = arch_reinit_sched_domains();
7915 return ret ? ret : count;
7918 #ifdef CONFIG_SCHED_MC
7919 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7922 return sprintf(page, "%u\n", sched_mc_power_savings);
7924 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7925 const char *buf, size_t count)
7927 return sched_power_savings_store(buf, count, 0);
7929 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7930 sched_mc_power_savings_show,
7931 sched_mc_power_savings_store);
7934 #ifdef CONFIG_SCHED_SMT
7935 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7938 return sprintf(page, "%u\n", sched_smt_power_savings);
7940 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7941 const char *buf, size_t count)
7943 return sched_power_savings_store(buf, count, 1);
7945 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7946 sched_smt_power_savings_show,
7947 sched_smt_power_savings_store);
7950 int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7954 #ifdef CONFIG_SCHED_SMT
7956 err = sysfs_create_file(&cls->kset.kobj,
7957 &attr_sched_smt_power_savings.attr);
7959 #ifdef CONFIG_SCHED_MC
7960 if (!err && mc_capable())
7961 err = sysfs_create_file(&cls->kset.kobj,
7962 &attr_sched_mc_power_savings.attr);
7966 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7968 #ifndef CONFIG_CPUSETS
7970 * Add online and remove offline CPUs from the scheduler domains.
7971 * When cpusets are enabled they take over this function.
7973 static int update_sched_domains(struct notifier_block *nfb,
7974 unsigned long action, void *hcpu)
7978 case CPU_ONLINE_FROZEN:
7980 case CPU_DEAD_FROZEN:
7981 partition_sched_domains(1, NULL, NULL);
7990 static int update_runtime(struct notifier_block *nfb,
7991 unsigned long action, void *hcpu)
7993 int cpu = (int)(long)hcpu;
7996 case CPU_DOWN_PREPARE:
7997 case CPU_DOWN_PREPARE_FROZEN:
7998 disable_runtime(cpu_rq(cpu));
8001 case CPU_DOWN_FAILED:
8002 case CPU_DOWN_FAILED_FROZEN:
8004 case CPU_ONLINE_FROZEN:
8005 enable_runtime(cpu_rq(cpu));
8013 void __init sched_init_smp(void)
8015 cpumask_t non_isolated_cpus;
8017 #if defined(CONFIG_NUMA)
8018 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
8020 BUG_ON(sched_group_nodes_bycpu == NULL);
8023 mutex_lock(&sched_domains_mutex);
8024 arch_init_sched_domains(&cpu_online_map);
8025 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
8026 if (cpus_empty(non_isolated_cpus))
8027 cpu_set(smp_processor_id(), non_isolated_cpus);
8028 mutex_unlock(&sched_domains_mutex);
8031 #ifndef CONFIG_CPUSETS
8032 /* XXX: Theoretical race here - CPU may be hotplugged now */
8033 hotcpu_notifier(update_sched_domains, 0);
8036 /* RT runtime code needs to handle some hotplug events */
8037 hotcpu_notifier(update_runtime, 0);
8041 /* Move init over to a non-isolated CPU */
8042 if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
8044 sched_init_granularity();
8047 void __init sched_init_smp(void)
8049 sched_init_granularity();
8051 #endif /* CONFIG_SMP */
8053 int in_sched_functions(unsigned long addr)
8055 return in_lock_functions(addr) ||
8056 (addr >= (unsigned long)__sched_text_start
8057 && addr < (unsigned long)__sched_text_end);
8060 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
8062 cfs_rq->tasks_timeline = RB_ROOT;
8063 INIT_LIST_HEAD(&cfs_rq->tasks);
8064 #ifdef CONFIG_FAIR_GROUP_SCHED
8067 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
8070 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
8072 struct rt_prio_array *array;
8075 array = &rt_rq->active;
8076 for (i = 0; i < MAX_RT_PRIO; i++) {
8077 INIT_LIST_HEAD(array->queue + i);
8078 __clear_bit(i, array->bitmap);
8080 /* delimiter for bitsearch: */
8081 __set_bit(MAX_RT_PRIO, array->bitmap);
8083 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
8084 rt_rq->highest_prio = MAX_RT_PRIO;
8087 rt_rq->rt_nr_migratory = 0;
8088 rt_rq->overloaded = 0;
8092 rt_rq->rt_throttled = 0;
8093 rt_rq->rt_runtime = 0;
8094 spin_lock_init(&rt_rq->rt_runtime_lock);
8096 #ifdef CONFIG_RT_GROUP_SCHED
8097 rt_rq->rt_nr_boosted = 0;
8102 #ifdef CONFIG_FAIR_GROUP_SCHED
8103 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8104 struct sched_entity *se, int cpu, int add,
8105 struct sched_entity *parent)
8107 struct rq *rq = cpu_rq(cpu);
8108 tg->cfs_rq[cpu] = cfs_rq;
8109 init_cfs_rq(cfs_rq, rq);
8112 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
8115 /* se could be NULL for init_task_group */
8120 se->cfs_rq = &rq->cfs;
8122 se->cfs_rq = parent->my_q;
8125 se->load.weight = tg->shares;
8126 se->load.inv_weight = 0;
8127 se->parent = parent;
8131 #ifdef CONFIG_RT_GROUP_SCHED
8132 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
8133 struct sched_rt_entity *rt_se, int cpu, int add,
8134 struct sched_rt_entity *parent)
8136 struct rq *rq = cpu_rq(cpu);
8138 tg->rt_rq[cpu] = rt_rq;
8139 init_rt_rq(rt_rq, rq);
8141 rt_rq->rt_se = rt_se;
8142 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
8144 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
8146 tg->rt_se[cpu] = rt_se;
8151 rt_se->rt_rq = &rq->rt;
8153 rt_se->rt_rq = parent->my_q;
8155 rt_se->my_q = rt_rq;
8156 rt_se->parent = parent;
8157 INIT_LIST_HEAD(&rt_se->run_list);
8161 void __init sched_init(void)
8164 unsigned long alloc_size = 0, ptr;
8166 #ifdef CONFIG_FAIR_GROUP_SCHED
8167 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8169 #ifdef CONFIG_RT_GROUP_SCHED
8170 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8172 #ifdef CONFIG_USER_SCHED
8176 * As sched_init() is called before page_alloc is setup,
8177 * we use alloc_bootmem().
8180 ptr = (unsigned long)alloc_bootmem(alloc_size);
8182 #ifdef CONFIG_FAIR_GROUP_SCHED
8183 init_task_group.se = (struct sched_entity **)ptr;
8184 ptr += nr_cpu_ids * sizeof(void **);
8186 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
8187 ptr += nr_cpu_ids * sizeof(void **);
8189 #ifdef CONFIG_USER_SCHED
8190 root_task_group.se = (struct sched_entity **)ptr;
8191 ptr += nr_cpu_ids * sizeof(void **);
8193 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8194 ptr += nr_cpu_ids * sizeof(void **);
8195 #endif /* CONFIG_USER_SCHED */
8196 #endif /* CONFIG_FAIR_GROUP_SCHED */
8197 #ifdef CONFIG_RT_GROUP_SCHED
8198 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
8199 ptr += nr_cpu_ids * sizeof(void **);
8201 init_task_group.rt_rq = (struct rt_rq **)ptr;
8202 ptr += nr_cpu_ids * sizeof(void **);
8204 #ifdef CONFIG_USER_SCHED
8205 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8206 ptr += nr_cpu_ids * sizeof(void **);
8208 root_task_group.rt_rq = (struct rt_rq **)ptr;
8209 ptr += nr_cpu_ids * sizeof(void **);
8210 #endif /* CONFIG_USER_SCHED */
8211 #endif /* CONFIG_RT_GROUP_SCHED */
8215 init_defrootdomain();
8218 init_rt_bandwidth(&def_rt_bandwidth,
8219 global_rt_period(), global_rt_runtime());
8221 #ifdef CONFIG_RT_GROUP_SCHED
8222 init_rt_bandwidth(&init_task_group.rt_bandwidth,
8223 global_rt_period(), global_rt_runtime());
8224 #ifdef CONFIG_USER_SCHED
8225 init_rt_bandwidth(&root_task_group.rt_bandwidth,
8226 global_rt_period(), RUNTIME_INF);
8227 #endif /* CONFIG_USER_SCHED */
8228 #endif /* CONFIG_RT_GROUP_SCHED */
8230 #ifdef CONFIG_GROUP_SCHED
8231 list_add(&init_task_group.list, &task_groups);
8232 INIT_LIST_HEAD(&init_task_group.children);
8234 #ifdef CONFIG_USER_SCHED
8235 INIT_LIST_HEAD(&root_task_group.children);
8236 init_task_group.parent = &root_task_group;
8237 list_add(&init_task_group.siblings, &root_task_group.children);
8238 #endif /* CONFIG_USER_SCHED */
8239 #endif /* CONFIG_GROUP_SCHED */
8241 for_each_possible_cpu(i) {
8245 spin_lock_init(&rq->lock);
8247 init_cfs_rq(&rq->cfs, rq);
8248 init_rt_rq(&rq->rt, rq);
8249 #ifdef CONFIG_FAIR_GROUP_SCHED
8250 init_task_group.shares = init_task_group_load;
8251 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
8252 #ifdef CONFIG_CGROUP_SCHED
8254 * How much cpu bandwidth does init_task_group get?
8256 * In case of task-groups formed thr' the cgroup filesystem, it
8257 * gets 100% of the cpu resources in the system. This overall
8258 * system cpu resource is divided among the tasks of
8259 * init_task_group and its child task-groups in a fair manner,
8260 * based on each entity's (task or task-group's) weight
8261 * (se->load.weight).
8263 * In other words, if init_task_group has 10 tasks of weight
8264 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8265 * then A0's share of the cpu resource is:
8267 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8269 * We achieve this by letting init_task_group's tasks sit
8270 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
8272 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
8273 #elif defined CONFIG_USER_SCHED
8274 root_task_group.shares = NICE_0_LOAD;
8275 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
8277 * In case of task-groups formed thr' the user id of tasks,
8278 * init_task_group represents tasks belonging to root user.
8279 * Hence it forms a sibling of all subsequent groups formed.
8280 * In this case, init_task_group gets only a fraction of overall
8281 * system cpu resource, based on the weight assigned to root
8282 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
8283 * by letting tasks of init_task_group sit in a separate cfs_rq
8284 * (init_cfs_rq) and having one entity represent this group of
8285 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
8287 init_tg_cfs_entry(&init_task_group,
8288 &per_cpu(init_cfs_rq, i),
8289 &per_cpu(init_sched_entity, i), i, 1,
8290 root_task_group.se[i]);
8293 #endif /* CONFIG_FAIR_GROUP_SCHED */
8295 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8296 #ifdef CONFIG_RT_GROUP_SCHED
8297 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
8298 #ifdef CONFIG_CGROUP_SCHED
8299 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
8300 #elif defined CONFIG_USER_SCHED
8301 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
8302 init_tg_rt_entry(&init_task_group,
8303 &per_cpu(init_rt_rq, i),
8304 &per_cpu(init_sched_rt_entity, i), i, 1,
8305 root_task_group.rt_se[i]);
8309 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8310 rq->cpu_load[j] = 0;
8314 rq->active_balance = 0;
8315 rq->next_balance = jiffies;
8319 rq->migration_thread = NULL;
8320 INIT_LIST_HEAD(&rq->migration_queue);
8321 rq_attach_root(rq, &def_root_domain);
8324 atomic_set(&rq->nr_iowait, 0);
8327 set_load_weight(&init_task);
8329 #ifdef CONFIG_PREEMPT_NOTIFIERS
8330 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8334 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8337 #ifdef CONFIG_RT_MUTEXES
8338 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
8342 * The boot idle thread does lazy MMU switching as well:
8344 atomic_inc(&init_mm.mm_count);
8345 enter_lazy_tlb(&init_mm, current);
8348 * Make us the idle thread. Technically, schedule() should not be
8349 * called from this thread, however somewhere below it might be,
8350 * but because we are the idle thread, we just pick up running again
8351 * when this runqueue becomes "idle".
8353 init_idle(current, smp_processor_id());
8355 * During early bootup we pretend to be a normal task:
8357 current->sched_class = &fair_sched_class;
8359 scheduler_running = 1;
8362 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8363 void __might_sleep(char *file, int line)
8366 static unsigned long prev_jiffy; /* ratelimiting */
8368 if ((!in_atomic() && !irqs_disabled()) ||
8369 system_state != SYSTEM_RUNNING || oops_in_progress)
8371 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8373 prev_jiffy = jiffies;
8376 "BUG: sleeping function called from invalid context at %s:%d\n",
8379 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8380 in_atomic(), irqs_disabled(),
8381 current->pid, current->comm);
8383 debug_show_held_locks(current);
8384 if (irqs_disabled())
8385 print_irqtrace_events(current);
8389 EXPORT_SYMBOL(__might_sleep);
8392 #ifdef CONFIG_MAGIC_SYSRQ
8393 static void normalize_task(struct rq *rq, struct task_struct *p)
8397 update_rq_clock(rq);
8398 on_rq = p->se.on_rq;
8400 deactivate_task(rq, p, 0);
8401 __setscheduler(rq, p, SCHED_NORMAL, 0);
8403 activate_task(rq, p, 0);
8404 resched_task(rq->curr);
8408 void normalize_rt_tasks(void)
8410 struct task_struct *g, *p;
8411 unsigned long flags;
8414 read_lock_irqsave(&tasklist_lock, flags);
8415 do_each_thread(g, p) {
8417 * Only normalize user tasks:
8422 p->se.exec_start = 0;
8423 #ifdef CONFIG_SCHEDSTATS
8424 p->se.wait_start = 0;
8425 p->se.sleep_start = 0;
8426 p->se.block_start = 0;
8431 * Renice negative nice level userspace
8434 if (TASK_NICE(p) < 0 && p->mm)
8435 set_user_nice(p, 0);
8439 spin_lock(&p->pi_lock);
8440 rq = __task_rq_lock(p);
8442 normalize_task(rq, p);
8444 __task_rq_unlock(rq);
8445 spin_unlock(&p->pi_lock);
8446 } while_each_thread(g, p);
8448 read_unlock_irqrestore(&tasklist_lock, flags);
8451 #endif /* CONFIG_MAGIC_SYSRQ */
8455 * These functions are only useful for the IA64 MCA handling.
8457 * They can only be called when the whole system has been
8458 * stopped - every CPU needs to be quiescent, and no scheduling
8459 * activity can take place. Using them for anything else would
8460 * be a serious bug, and as a result, they aren't even visible
8461 * under any other configuration.
8465 * curr_task - return the current task for a given cpu.
8466 * @cpu: the processor in question.
8468 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8470 struct task_struct *curr_task(int cpu)
8472 return cpu_curr(cpu);
8476 * set_curr_task - set the current task for a given cpu.
8477 * @cpu: the processor in question.
8478 * @p: the task pointer to set.
8480 * Description: This function must only be used when non-maskable interrupts
8481 * are serviced on a separate stack. It allows the architecture to switch the
8482 * notion of the current task on a cpu in a non-blocking manner. This function
8483 * must be called with all CPU's synchronized, and interrupts disabled, the
8484 * and caller must save the original value of the current task (see
8485 * curr_task() above) and restore that value before reenabling interrupts and
8486 * re-starting the system.
8488 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8490 void set_curr_task(int cpu, struct task_struct *p)
8497 #ifdef CONFIG_FAIR_GROUP_SCHED
8498 static void free_fair_sched_group(struct task_group *tg)
8502 for_each_possible_cpu(i) {
8504 kfree(tg->cfs_rq[i]);
8514 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8516 struct cfs_rq *cfs_rq;
8517 struct sched_entity *se, *parent_se;
8521 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8524 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8528 tg->shares = NICE_0_LOAD;
8530 for_each_possible_cpu(i) {
8533 cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
8534 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8538 se = kmalloc_node(sizeof(struct sched_entity),
8539 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8543 parent_se = parent ? parent->se[i] : NULL;
8544 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
8553 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8555 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8556 &cpu_rq(cpu)->leaf_cfs_rq_list);
8559 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8561 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8563 #else /* !CONFG_FAIR_GROUP_SCHED */
8564 static inline void free_fair_sched_group(struct task_group *tg)
8569 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8574 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8578 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8581 #endif /* CONFIG_FAIR_GROUP_SCHED */
8583 #ifdef CONFIG_RT_GROUP_SCHED
8584 static void free_rt_sched_group(struct task_group *tg)
8588 destroy_rt_bandwidth(&tg->rt_bandwidth);
8590 for_each_possible_cpu(i) {
8592 kfree(tg->rt_rq[i]);
8594 kfree(tg->rt_se[i]);
8602 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8604 struct rt_rq *rt_rq;
8605 struct sched_rt_entity *rt_se, *parent_se;
8609 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8612 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8616 init_rt_bandwidth(&tg->rt_bandwidth,
8617 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8619 for_each_possible_cpu(i) {
8622 rt_rq = kmalloc_node(sizeof(struct rt_rq),
8623 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8627 rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
8628 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8632 parent_se = parent ? parent->rt_se[i] : NULL;
8633 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
8642 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8644 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8645 &cpu_rq(cpu)->leaf_rt_rq_list);
8648 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8650 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8652 #else /* !CONFIG_RT_GROUP_SCHED */
8653 static inline void free_rt_sched_group(struct task_group *tg)
8658 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8663 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8667 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8670 #endif /* CONFIG_RT_GROUP_SCHED */
8672 #ifdef CONFIG_GROUP_SCHED
8673 static void free_sched_group(struct task_group *tg)
8675 free_fair_sched_group(tg);
8676 free_rt_sched_group(tg);
8680 /* allocate runqueue etc for a new task group */
8681 struct task_group *sched_create_group(struct task_group *parent)
8683 struct task_group *tg;
8684 unsigned long flags;
8687 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8689 return ERR_PTR(-ENOMEM);
8691 if (!alloc_fair_sched_group(tg, parent))
8694 if (!alloc_rt_sched_group(tg, parent))
8697 spin_lock_irqsave(&task_group_lock, flags);
8698 for_each_possible_cpu(i) {
8699 register_fair_sched_group(tg, i);
8700 register_rt_sched_group(tg, i);
8702 list_add_rcu(&tg->list, &task_groups);
8704 WARN_ON(!parent); /* root should already exist */
8706 tg->parent = parent;
8707 INIT_LIST_HEAD(&tg->children);
8708 list_add_rcu(&tg->siblings, &parent->children);
8709 spin_unlock_irqrestore(&task_group_lock, flags);
8714 free_sched_group(tg);
8715 return ERR_PTR(-ENOMEM);
8718 /* rcu callback to free various structures associated with a task group */
8719 static void free_sched_group_rcu(struct rcu_head *rhp)
8721 /* now it should be safe to free those cfs_rqs */
8722 free_sched_group(container_of(rhp, struct task_group, rcu));
8725 /* Destroy runqueue etc associated with a task group */
8726 void sched_destroy_group(struct task_group *tg)
8728 unsigned long flags;
8731 spin_lock_irqsave(&task_group_lock, flags);
8732 for_each_possible_cpu(i) {
8733 unregister_fair_sched_group(tg, i);
8734 unregister_rt_sched_group(tg, i);
8736 list_del_rcu(&tg->list);
8737 list_del_rcu(&tg->siblings);
8738 spin_unlock_irqrestore(&task_group_lock, flags);
8740 /* wait for possible concurrent references to cfs_rqs complete */
8741 call_rcu(&tg->rcu, free_sched_group_rcu);
8744 /* change task's runqueue when it moves between groups.
8745 * The caller of this function should have put the task in its new group
8746 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8747 * reflect its new group.
8749 void sched_move_task(struct task_struct *tsk)
8752 unsigned long flags;
8755 rq = task_rq_lock(tsk, &flags);
8757 update_rq_clock(rq);
8759 running = task_current(rq, tsk);
8760 on_rq = tsk->se.on_rq;
8763 dequeue_task(rq, tsk, 0);
8764 if (unlikely(running))
8765 tsk->sched_class->put_prev_task(rq, tsk);
8767 set_task_rq(tsk, task_cpu(tsk));
8769 #ifdef CONFIG_FAIR_GROUP_SCHED
8770 if (tsk->sched_class->moved_group)
8771 tsk->sched_class->moved_group(tsk);
8774 if (unlikely(running))
8775 tsk->sched_class->set_curr_task(rq);
8777 enqueue_task(rq, tsk, 0);
8779 task_rq_unlock(rq, &flags);
8781 #endif /* CONFIG_GROUP_SCHED */
8783 #ifdef CONFIG_FAIR_GROUP_SCHED
8784 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
8786 struct cfs_rq *cfs_rq = se->cfs_rq;
8791 dequeue_entity(cfs_rq, se, 0);
8793 se->load.weight = shares;
8794 se->load.inv_weight = 0;
8797 enqueue_entity(cfs_rq, se, 0);
8800 static void set_se_shares(struct sched_entity *se, unsigned long shares)
8802 struct cfs_rq *cfs_rq = se->cfs_rq;
8803 struct rq *rq = cfs_rq->rq;
8804 unsigned long flags;
8806 spin_lock_irqsave(&rq->lock, flags);
8807 __set_se_shares(se, shares);
8808 spin_unlock_irqrestore(&rq->lock, flags);
8811 static DEFINE_MUTEX(shares_mutex);
8813 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8816 unsigned long flags;
8819 * We can't change the weight of the root cgroup.
8824 if (shares < MIN_SHARES)
8825 shares = MIN_SHARES;
8826 else if (shares > MAX_SHARES)
8827 shares = MAX_SHARES;
8829 mutex_lock(&shares_mutex);
8830 if (tg->shares == shares)
8833 spin_lock_irqsave(&task_group_lock, flags);
8834 for_each_possible_cpu(i)
8835 unregister_fair_sched_group(tg, i);
8836 list_del_rcu(&tg->siblings);
8837 spin_unlock_irqrestore(&task_group_lock, flags);
8839 /* wait for any ongoing reference to this group to finish */
8840 synchronize_sched();
8843 * Now we are free to modify the group's share on each cpu
8844 * w/o tripping rebalance_share or load_balance_fair.
8846 tg->shares = shares;
8847 for_each_possible_cpu(i) {
8851 cfs_rq_set_shares(tg->cfs_rq[i], 0);
8852 set_se_shares(tg->se[i], shares);
8856 * Enable load balance activity on this group, by inserting it back on
8857 * each cpu's rq->leaf_cfs_rq_list.
8859 spin_lock_irqsave(&task_group_lock, flags);
8860 for_each_possible_cpu(i)
8861 register_fair_sched_group(tg, i);
8862 list_add_rcu(&tg->siblings, &tg->parent->children);
8863 spin_unlock_irqrestore(&task_group_lock, flags);
8865 mutex_unlock(&shares_mutex);
8869 unsigned long sched_group_shares(struct task_group *tg)
8875 #ifdef CONFIG_RT_GROUP_SCHED
8877 * Ensure that the real time constraints are schedulable.
8879 static DEFINE_MUTEX(rt_constraints_mutex);
8881 static unsigned long to_ratio(u64 period, u64 runtime)
8883 if (runtime == RUNTIME_INF)
8886 return div64_u64(runtime << 20, period);
8889 /* Must be called with tasklist_lock held */
8890 static inline int tg_has_rt_tasks(struct task_group *tg)
8892 struct task_struct *g, *p;
8894 do_each_thread(g, p) {
8895 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8897 } while_each_thread(g, p);
8902 struct rt_schedulable_data {
8903 struct task_group *tg;
8908 static int tg_schedulable(struct task_group *tg, void *data)
8910 struct rt_schedulable_data *d = data;
8911 struct task_group *child;
8912 unsigned long total, sum = 0;
8913 u64 period, runtime;
8915 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8916 runtime = tg->rt_bandwidth.rt_runtime;
8919 period = d->rt_period;
8920 runtime = d->rt_runtime;
8924 * Cannot have more runtime than the period.
8926 if (runtime > period && runtime != RUNTIME_INF)
8930 * Ensure we don't starve existing RT tasks.
8932 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8935 total = to_ratio(period, runtime);
8938 * Nobody can have more than the global setting allows.
8940 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8944 * The sum of our children's runtime should not exceed our own.
8946 list_for_each_entry_rcu(child, &tg->children, siblings) {
8947 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8948 runtime = child->rt_bandwidth.rt_runtime;
8950 if (child == d->tg) {
8951 period = d->rt_period;
8952 runtime = d->rt_runtime;
8955 sum += to_ratio(period, runtime);
8964 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8966 struct rt_schedulable_data data = {
8968 .rt_period = period,
8969 .rt_runtime = runtime,
8972 return walk_tg_tree(tg_schedulable, tg_nop, &data);
8975 static int tg_set_bandwidth(struct task_group *tg,
8976 u64 rt_period, u64 rt_runtime)
8980 mutex_lock(&rt_constraints_mutex);
8981 read_lock(&tasklist_lock);
8982 err = __rt_schedulable(tg, rt_period, rt_runtime);
8986 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8987 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8988 tg->rt_bandwidth.rt_runtime = rt_runtime;
8990 for_each_possible_cpu(i) {
8991 struct rt_rq *rt_rq = tg->rt_rq[i];
8993 spin_lock(&rt_rq->rt_runtime_lock);
8994 rt_rq->rt_runtime = rt_runtime;
8995 spin_unlock(&rt_rq->rt_runtime_lock);
8997 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8999 read_unlock(&tasklist_lock);
9000 mutex_unlock(&rt_constraints_mutex);
9005 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
9007 u64 rt_runtime, rt_period;
9009 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
9010 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
9011 if (rt_runtime_us < 0)
9012 rt_runtime = RUNTIME_INF;
9014 return tg_set_bandwidth(tg, rt_period, rt_runtime);
9017 long sched_group_rt_runtime(struct task_group *tg)
9021 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9024 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9025 do_div(rt_runtime_us, NSEC_PER_USEC);
9026 return rt_runtime_us;
9029 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
9031 u64 rt_runtime, rt_period;
9033 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
9034 rt_runtime = tg->rt_bandwidth.rt_runtime;
9039 return tg_set_bandwidth(tg, rt_period, rt_runtime);
9042 long sched_group_rt_period(struct task_group *tg)
9046 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
9047 do_div(rt_period_us, NSEC_PER_USEC);
9048 return rt_period_us;
9051 static int sched_rt_global_constraints(void)
9053 u64 runtime, period;
9056 if (sysctl_sched_rt_period <= 0)
9059 runtime = global_rt_runtime();
9060 period = global_rt_period();
9063 * Sanity check on the sysctl variables.
9065 if (runtime > period && runtime != RUNTIME_INF)
9068 mutex_lock(&rt_constraints_mutex);
9069 read_lock(&tasklist_lock);
9070 ret = __rt_schedulable(NULL, 0, 0);
9071 read_unlock(&tasklist_lock);
9072 mutex_unlock(&rt_constraints_mutex);
9076 #else /* !CONFIG_RT_GROUP_SCHED */
9077 static int sched_rt_global_constraints(void)
9079 unsigned long flags;
9082 if (sysctl_sched_rt_period <= 0)
9085 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
9086 for_each_possible_cpu(i) {
9087 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
9089 spin_lock(&rt_rq->rt_runtime_lock);
9090 rt_rq->rt_runtime = global_rt_runtime();
9091 spin_unlock(&rt_rq->rt_runtime_lock);
9093 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
9097 #endif /* CONFIG_RT_GROUP_SCHED */
9099 int sched_rt_handler(struct ctl_table *table, int write,
9100 struct file *filp, void __user *buffer, size_t *lenp,
9104 int old_period, old_runtime;
9105 static DEFINE_MUTEX(mutex);
9108 old_period = sysctl_sched_rt_period;
9109 old_runtime = sysctl_sched_rt_runtime;
9111 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
9113 if (!ret && write) {
9114 ret = sched_rt_global_constraints();
9116 sysctl_sched_rt_period = old_period;
9117 sysctl_sched_rt_runtime = old_runtime;
9119 def_rt_bandwidth.rt_runtime = global_rt_runtime();
9120 def_rt_bandwidth.rt_period =
9121 ns_to_ktime(global_rt_period());
9124 mutex_unlock(&mutex);
9129 #ifdef CONFIG_CGROUP_SCHED
9131 /* return corresponding task_group object of a cgroup */
9132 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
9134 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
9135 struct task_group, css);
9138 static struct cgroup_subsys_state *
9139 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
9141 struct task_group *tg, *parent;
9143 if (!cgrp->parent) {
9144 /* This is early initialization for the top cgroup */
9145 return &init_task_group.css;
9148 parent = cgroup_tg(cgrp->parent);
9149 tg = sched_create_group(parent);
9151 return ERR_PTR(-ENOMEM);
9157 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9159 struct task_group *tg = cgroup_tg(cgrp);
9161 sched_destroy_group(tg);
9165 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9166 struct task_struct *tsk)
9168 #ifdef CONFIG_RT_GROUP_SCHED
9169 /* Don't accept realtime tasks when there is no way for them to run */
9170 if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
9173 /* We don't support RT-tasks being in separate groups */
9174 if (tsk->sched_class != &fair_sched_class)
9182 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9183 struct cgroup *old_cont, struct task_struct *tsk)
9185 sched_move_task(tsk);
9188 #ifdef CONFIG_FAIR_GROUP_SCHED
9189 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
9192 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
9195 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
9197 struct task_group *tg = cgroup_tg(cgrp);
9199 return (u64) tg->shares;
9201 #endif /* CONFIG_FAIR_GROUP_SCHED */
9203 #ifdef CONFIG_RT_GROUP_SCHED
9204 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
9207 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
9210 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
9212 return sched_group_rt_runtime(cgroup_tg(cgrp));
9215 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9218 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9221 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9223 return sched_group_rt_period(cgroup_tg(cgrp));
9225 #endif /* CONFIG_RT_GROUP_SCHED */
9227 static struct cftype cpu_files[] = {
9228 #ifdef CONFIG_FAIR_GROUP_SCHED
9231 .read_u64 = cpu_shares_read_u64,
9232 .write_u64 = cpu_shares_write_u64,
9235 #ifdef CONFIG_RT_GROUP_SCHED
9237 .name = "rt_runtime_us",
9238 .read_s64 = cpu_rt_runtime_read,
9239 .write_s64 = cpu_rt_runtime_write,
9242 .name = "rt_period_us",
9243 .read_u64 = cpu_rt_period_read_uint,
9244 .write_u64 = cpu_rt_period_write_uint,
9249 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9251 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
9254 struct cgroup_subsys cpu_cgroup_subsys = {
9256 .create = cpu_cgroup_create,
9257 .destroy = cpu_cgroup_destroy,
9258 .can_attach = cpu_cgroup_can_attach,
9259 .attach = cpu_cgroup_attach,
9260 .populate = cpu_cgroup_populate,
9261 .subsys_id = cpu_cgroup_subsys_id,
9265 #endif /* CONFIG_CGROUP_SCHED */
9267 #ifdef CONFIG_CGROUP_CPUACCT
9270 * CPU accounting code for task groups.
9276 /* track cpu usage of a group of tasks */
9278 struct cgroup_subsys_state css;
9279 /* cpuusage holds pointer to a u64-type object on every cpu */
9283 struct cgroup_subsys cpuacct_subsys;
9285 /* return cpu accounting group corresponding to this container */
9286 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
9288 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
9289 struct cpuacct, css);
9292 /* return cpu accounting group to which this task belongs */
9293 static inline struct cpuacct *task_ca(struct task_struct *tsk)
9295 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9296 struct cpuacct, css);
9299 /* create a new cpu accounting group */
9300 static struct cgroup_subsys_state *cpuacct_create(
9301 struct cgroup_subsys *ss, struct cgroup *cgrp)
9303 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9306 return ERR_PTR(-ENOMEM);
9308 ca->cpuusage = alloc_percpu(u64);
9309 if (!ca->cpuusage) {
9311 return ERR_PTR(-ENOMEM);
9317 /* destroy an existing cpu accounting group */
9319 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9321 struct cpuacct *ca = cgroup_ca(cgrp);
9323 free_percpu(ca->cpuusage);
9327 /* return total cpu usage (in nanoseconds) of a group */
9328 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9330 struct cpuacct *ca = cgroup_ca(cgrp);
9331 u64 totalcpuusage = 0;
9334 for_each_possible_cpu(i) {
9335 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
9338 * Take rq->lock to make 64-bit addition safe on 32-bit
9341 spin_lock_irq(&cpu_rq(i)->lock);
9342 totalcpuusage += *cpuusage;
9343 spin_unlock_irq(&cpu_rq(i)->lock);
9346 return totalcpuusage;
9349 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9352 struct cpuacct *ca = cgroup_ca(cgrp);
9361 for_each_possible_cpu(i) {
9362 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
9364 spin_lock_irq(&cpu_rq(i)->lock);
9366 spin_unlock_irq(&cpu_rq(i)->lock);
9372 static struct cftype files[] = {
9375 .read_u64 = cpuusage_read,
9376 .write_u64 = cpuusage_write,
9380 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9382 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9386 * charge this task's execution time to its accounting group.
9388 * called with rq->lock held.
9390 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9394 if (!cpuacct_subsys.active)
9399 u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
9401 *cpuusage += cputime;
9405 struct cgroup_subsys cpuacct_subsys = {
9407 .create = cpuacct_create,
9408 .destroy = cpuacct_destroy,
9409 .populate = cpuacct_populate,
9410 .subsys_id = cpuacct_subsys_id,
9412 #endif /* CONFIG_CGROUP_CPUACCT */