1 // SPDX-License-Identifier: GPL-2.0
3 * trace_events_filter - generic event filtering
8 #include <linux/module.h>
9 #include <linux/ctype.h>
10 #include <linux/mutex.h>
11 #include <linux/perf_event.h>
12 #include <linux/slab.h>
15 #include "trace_output.h"
17 #define DEFAULT_SYS_FILTER_MESSAGE \
18 "### global filter ###\n" \
19 "# Use this to set filters for multiple events.\n" \
20 "# Only events with the given fields will be affected.\n" \
21 "# If no events are modified, an error message will be displayed here"
23 /* Due to token parsing '<=' must be before '<' and '>=' must be before '>' */
38 enum filter_op_ids { OPS };
43 static const char * ops[] = { OPS };
46 * pred functions are OP_LE, OP_LT, OP_GE, OP_GT, and OP_BAND
47 * pred_funcs_##type below must match the order of them above.
49 #define PRED_FUNC_START OP_LE
50 #define PRED_FUNC_MAX (OP_BAND - PRED_FUNC_START)
53 C(NONE, "No error"), \
54 C(INVALID_OP, "Invalid operator"), \
55 C(TOO_MANY_OPEN, "Too many '('"), \
56 C(TOO_MANY_CLOSE, "Too few '('"), \
57 C(MISSING_QUOTE, "Missing matching quote"), \
58 C(OPERAND_TOO_LONG, "Operand too long"), \
59 C(EXPECT_STRING, "Expecting string field"), \
60 C(EXPECT_DIGIT, "Expecting numeric field"), \
61 C(ILLEGAL_FIELD_OP, "Illegal operation for field type"), \
62 C(FIELD_NOT_FOUND, "Field not found"), \
63 C(ILLEGAL_INTVAL, "Illegal integer value"), \
64 C(BAD_SUBSYS_FILTER, "Couldn't find or set field in one of a subsystem's events"), \
65 C(TOO_MANY_PREDS, "Too many terms in predicate expression"), \
66 C(INVALID_FILTER, "Meaningless filter expression"), \
67 C(IP_FIELD_ONLY, "Only 'ip' field is supported for function trace"), \
68 C(INVALID_VALUE, "Invalid value (did you forget quotes)?"), \
69 C(NO_FILTER, "No filter found"),
72 #define C(a, b) FILT_ERR_##a
79 static char *err_text[] = { ERRORS };
81 /* Called after a '!' character but "!=" and "!~" are not "not"s */
82 static bool is_not(const char *str)
93 * prog_entry - a singe entry in the filter program
94 * @target: Index to jump to on a branch (actually one minus the index)
95 * @when_to_branch: The value of the result of the predicate to do a branch
96 * @pred: The predicate to execute.
101 struct filter_pred *pred;
105 * update_preds- assign a program entry a label target
106 * @prog: The program array
107 * @N: The index of the current entry in @prog
108 * @when_to_branch: What to assign a program entry for its branch condition
110 * The program entry at @N has a target that points to the index of a program
111 * entry that can have its target and when_to_branch fields updated.
112 * Update the current program entry denoted by index @N target field to be
113 * that of the updated entry. This will denote the entry to update if
114 * we are processing an "||" after an "&&"
116 static void update_preds(struct prog_entry *prog, int N, int invert)
122 prog[t].when_to_branch = invert;
127 struct filter_parse_error {
132 static void parse_error(struct filter_parse_error *pe, int err, int pos)
135 pe->lasterr_pos = pos;
138 typedef int (*parse_pred_fn)(const char *str, void *data, int pos,
139 struct filter_parse_error *pe,
140 struct filter_pred **pred);
149 * Without going into a formal proof, this explains the method that is used in
150 * parsing the logical expressions.
152 * For example, if we have: "a && !(!b || (c && g)) || d || e && !f"
153 * The first pass will convert it into the following program:
155 * n1: r=a; l1: if (!r) goto l4;
156 * n2: r=b; l2: if (!r) goto l4;
157 * n3: r=c; r=!r; l3: if (r) goto l4;
158 * n4: r=g; r=!r; l4: if (r) goto l5;
159 * n5: r=d; l5: if (r) goto T
160 * n6: r=e; l6: if (!r) goto l7;
161 * n7: r=f; r=!r; l7: if (!r) goto F
165 * To do this, we use a data structure to represent each of the above
166 * predicate and conditions that has:
168 * predicate, when_to_branch, invert, target
170 * The "predicate" will hold the function to determine the result "r".
171 * The "when_to_branch" denotes what "r" should be if a branch is to be taken
172 * "&&" would contain "!r" or (0) and "||" would contain "r" or (1).
173 * The "invert" holds whether the value should be reversed before testing.
174 * The "target" contains the label "l#" to jump to.
176 * A stack is created to hold values when parentheses are used.
178 * To simplify the logic, the labels will start at 0 and not 1.
180 * The possible invert values are 1 and 0. The number of "!"s that are in scope
181 * before the predicate determines the invert value, if the number is odd then
182 * the invert value is 1 and 0 otherwise. This means the invert value only
183 * needs to be toggled when a new "!" is introduced compared to what is stored
184 * on the stack, where parentheses were used.
186 * The top of the stack and "invert" are initialized to zero.
190 * #1 A loop through all the tokens is done:
192 * #2 If the token is an "(", the stack is push, and the current stack value
193 * gets the current invert value, and the loop continues to the next token.
194 * The top of the stack saves the "invert" value to keep track of what
195 * the current inversion is. As "!(a && !b || c)" would require all
196 * predicates being affected separately by the "!" before the parentheses.
197 * And that would end up being equivalent to "(!a || b) && !c"
199 * #3 If the token is an "!", the current "invert" value gets inverted, and
200 * the loop continues. Note, if the next token is a predicate, then
201 * this "invert" value is only valid for the current program entry,
202 * and does not affect other predicates later on.
204 * The only other acceptable token is the predicate string.
206 * #4 A new entry into the program is added saving: the predicate and the
207 * current value of "invert". The target is currently assigned to the
208 * previous program index (this will not be its final value).
210 * #5 We now enter another loop and look at the next token. The only valid
211 * tokens are ")", "&&", "||" or end of the input string "\0".
213 * #6 The invert variable is reset to the current value saved on the top of
216 * #7 The top of the stack holds not only the current invert value, but also
217 * if a "&&" or "||" needs to be processed. Note, the "&&" takes higher
218 * precedence than "||". That is "a && b || c && d" is equivalent to
219 * "(a && b) || (c && d)". Thus the first thing to do is to see if "&&" needs
220 * to be processed. This is the case if an "&&" was the last token. If it was
221 * then we call update_preds(). This takes the program, the current index in
222 * the program, and the current value of "invert". More will be described
223 * below about this function.
225 * #8 If the next token is "&&" then we set a flag in the top of the stack
226 * that denotes that "&&" needs to be processed, break out of this loop
227 * and continue with the outer loop.
229 * #9 Otherwise, if a "||" needs to be processed then update_preds() is called.
230 * This is called with the program, the current index in the program, but
231 * this time with an inverted value of "invert" (that is !invert). This is
232 * because the value taken will become the "when_to_branch" value of the
234 * Note, this is called when the next token is not an "&&". As stated before,
235 * "&&" takes higher precedence, and "||" should not be processed yet if the
236 * next logical operation is "&&".
238 * #10 If the next token is "||" then we set a flag in the top of the stack
239 * that denotes that "||" needs to be processed, break out of this loop
240 * and continue with the outer loop.
242 * #11 If this is the end of the input string "\0" then we break out of both
245 * #12 Otherwise, the next token is ")", where we pop the stack and continue
248 * Now to discuss the update_pred() function, as that is key to the setting up
249 * of the program. Remember the "target" of the program is initialized to the
250 * previous index and not the "l" label. The target holds the index into the
251 * program that gets affected by the operand. Thus if we have something like
252 * "a || b && c", when we process "a" the target will be "-1" (undefined).
253 * When we process "b", its target is "0", which is the index of "a", as that's
254 * the predicate that is affected by "||". But because the next token after "b"
255 * is "&&" we don't call update_preds(). Instead continue to "c". As the
256 * next token after "c" is not "&&" but the end of input, we first process the
257 * "&&" by calling update_preds() for the "&&" then we process the "||" by
258 * callin updates_preds() with the values for processing "||".
260 * What does that mean? What update_preds() does is to first save the "target"
261 * of the program entry indexed by the current program entry's "target"
262 * (remember the "target" is initialized to previous program entry), and then
263 * sets that "target" to the current index which represents the label "l#".
264 * That entry's "when_to_branch" is set to the value passed in (the "invert"
265 * or "!invert"). Then it sets the current program entry's target to the saved
266 * "target" value (the old value of the program that had its "target" updated
269 * Looking back at "a || b && c", we have the following steps:
270 * "a" - prog[0] = { "a", X, -1 } // pred, when_to_branch, target
271 * "||" - flag that we need to process "||"; continue outer loop
272 * "b" - prog[1] = { "b", X, 0 }
273 * "&&" - flag that we need to process "&&"; continue outer loop
274 * (Notice we did not process "||")
275 * "c" - prog[2] = { "c", X, 1 }
276 * update_preds(prog, 2, 0); // invert = 0 as we are processing "&&"
277 * t = prog[2].target; // t = 1
278 * s = prog[t].target; // s = 0
279 * prog[t].target = 2; // Set target to "l2"
280 * prog[t].when_to_branch = 0;
281 * prog[2].target = s;
282 * update_preds(prog, 2, 1); // invert = 1 as we are now processing "||"
283 * t = prog[2].target; // t = 0
284 * s = prog[t].target; // s = -1
285 * prog[t].target = 2; // Set target to "l2"
286 * prog[t].when_to_branch = 1;
287 * prog[2].target = s;
289 * #13 Which brings us to the final step of the first pass, which is to set
290 * the last program entry's when_to_branch and target, which will be
291 * when_to_branch = 0; target = N; ( the label after the program entry after
292 * the last program entry processed above).
294 * If we denote "TRUE" to be the entry after the last program entry processed,
295 * and "FALSE" the program entry after that, we are now done with the first
298 * Making the above "a || b && c" have a progam of:
299 * prog[0] = { "a", 1, 2 }
300 * prog[1] = { "b", 0, 2 }
301 * prog[2] = { "c", 0, 3 }
303 * Which translates into:
304 * n0: r = a; l0: if (r) goto l2;
305 * n1: r = b; l1: if (!r) goto l2;
306 * n2: r = c; l2: if (!r) goto l3; // Which is the same as "goto F;"
307 * T: return TRUE; l3:
310 * Although, after the first pass, the program is correct, it is
311 * inefficient. The simple sample of "a || b && c" could be easily been
313 * n0: r = a; if (r) goto T
314 * n1: r = b; if (!r) goto F
315 * n2: r = c; if (!r) goto F
319 * The First Pass is over the input string. The next too passes are over
320 * the program itself.
324 * Which brings us to the second pass. If a jump to a label has the
325 * same condition as that label, it can instead jump to its target.
326 * The original example of "a && !(!b || (c && g)) || d || e && !f"
327 * where the first pass gives us:
329 * n1: r=a; l1: if (!r) goto l4;
330 * n2: r=b; l2: if (!r) goto l4;
331 * n3: r=c; r=!r; l3: if (r) goto l4;
332 * n4: r=g; r=!r; l4: if (r) goto l5;
333 * n5: r=d; l5: if (r) goto T
334 * n6: r=e; l6: if (!r) goto l7;
335 * n7: r=f; r=!r; l7: if (!r) goto F:
339 * We can see that "l3: if (r) goto l4;" and at l4, we have "if (r) goto l5;".
340 * And "l5: if (r) goto T", we could optimize this by converting l3 and l4
341 * to go directly to T. To accomplish this, we start from the last
342 * entry in the program and work our way back. If the target of the entry
343 * has the same "when_to_branch" then we could use that entry's target.
344 * Doing this, the above would end up as:
346 * n1: r=a; l1: if (!r) goto l4;
347 * n2: r=b; l2: if (!r) goto l4;
348 * n3: r=c; r=!r; l3: if (r) goto T;
349 * n4: r=g; r=!r; l4: if (r) goto T;
350 * n5: r=d; l5: if (r) goto T;
351 * n6: r=e; l6: if (!r) goto F;
352 * n7: r=f; r=!r; l7: if (!r) goto F;
356 * In that same pass, if the "when_to_branch" doesn't match, we can simply
357 * go to the program entry after the label. That is, "l2: if (!r) goto l4;"
358 * where "l4: if (r) goto T;", then we can convert l2 to be:
359 * "l2: if (!r) goto n5;".
361 * This will have the second pass give us:
362 * n1: r=a; l1: if (!r) goto n5;
363 * n2: r=b; l2: if (!r) goto n5;
364 * n3: r=c; r=!r; l3: if (r) goto T;
365 * n4: r=g; r=!r; l4: if (r) goto T;
366 * n5: r=d; l5: if (r) goto T
367 * n6: r=e; l6: if (!r) goto F;
368 * n7: r=f; r=!r; l7: if (!r) goto F
372 * Notice, all the "l#" labels are no longer used, and they can now
377 * For the third pass we deal with the inverts. As they simply just
378 * make the "when_to_branch" get inverted, a simple loop over the
379 * program to that does: "when_to_branch ^= invert;" will do the
380 * job, leaving us with:
381 * n1: r=a; if (!r) goto n5;
382 * n2: r=b; if (!r) goto n5;
383 * n3: r=c: if (!r) goto T;
384 * n4: r=g; if (!r) goto T;
385 * n5: r=d; if (r) goto T
386 * n6: r=e; if (!r) goto F;
387 * n7: r=f; if (r) goto F
391 * As "r = a; if (!r) goto n5;" is obviously the same as
392 * "if (!a) goto n5;" without doing anything we can interperate the
394 * n1: if (!a) goto n5;
395 * n2: if (!b) goto n5;
396 * n3: if (!c) goto T;
397 * n4: if (!g) goto T;
399 * n6: if (!e) goto F;
404 * Since the inverts are discarded at the end, there's no reason to store
405 * them in the program array (and waste memory). A separate array to hold
406 * the inverts is used and freed at the end.
408 static struct prog_entry *
409 predicate_parse(const char *str, int nr_parens, int nr_preds,
410 parse_pred_fn parse_pred, void *data,
411 struct filter_parse_error *pe)
413 struct prog_entry *prog_stack;
414 struct prog_entry *prog;
415 const char *ptr = str;
416 char *inverts = NULL;
425 nr_preds += 2; /* For TRUE and FALSE */
427 op_stack = kmalloc_array(nr_parens, sizeof(*op_stack), GFP_KERNEL);
429 return ERR_PTR(-ENOMEM);
430 prog_stack = kmalloc_array(nr_preds, sizeof(*prog_stack), GFP_KERNEL);
432 parse_error(pe, -ENOMEM, 0);
435 inverts = kmalloc_array(nr_preds, sizeof(*inverts), GFP_KERNEL);
437 parse_error(pe, -ENOMEM, 0);
446 while (*ptr) { /* #1 */
447 const char *next = ptr++;
454 if (top - op_stack > nr_parens)
455 return ERR_PTR(-EINVAL);
466 parse_error(pe, FILT_ERR_TOO_MANY_PREDS, next - str);
470 inverts[N] = invert; /* #4 */
471 prog[N].target = N-1;
473 len = parse_pred(next, data, ptr - str, pe, &prog[N].pred);
494 if (next[1] == next[0]) {
499 parse_error(pe, FILT_ERR_TOO_MANY_PREDS,
504 invert = *top & INVERT;
506 if (*top & PROCESS_AND) { /* #7 */
507 update_preds(prog, N - 1, invert);
508 *top &= ~PROCESS_AND;
510 if (*next == '&') { /* #8 */
514 if (*top & PROCESS_OR) { /* #9 */
515 update_preds(prog, N - 1, !invert);
518 if (*next == '|') { /* #10 */
522 if (!*next) /* #11 */
525 if (top == op_stack) {
528 parse_error(pe, FILT_ERR_TOO_MANY_CLOSE, ptr - str);
535 if (top != op_stack) {
537 parse_error(pe, FILT_ERR_TOO_MANY_OPEN, ptr - str);
544 parse_error(pe, FILT_ERR_NO_FILTER, ptr - str);
548 prog[N].pred = NULL; /* #13 */
549 prog[N].target = 1; /* TRUE */
550 prog[N+1].pred = NULL;
551 prog[N+1].target = 0; /* FALSE */
552 prog[N-1].target = N;
553 prog[N-1].when_to_branch = false;
556 for (i = N-1 ; i--; ) {
557 int target = prog[i].target;
558 if (prog[i].when_to_branch == prog[target].when_to_branch)
559 prog[i].target = prog[target].target;
563 for (i = 0; i < N; i++) {
564 invert = inverts[i] ^ prog[i].when_to_branch;
565 prog[i].when_to_branch = invert;
566 /* Make sure the program always moves forward */
567 if (WARN_ON(prog[i].target <= i)) {
583 #define DEFINE_COMPARISON_PRED(type) \
584 static int filter_pred_LT_##type(struct filter_pred *pred, void *event) \
586 type *addr = (type *)(event + pred->offset); \
587 type val = (type)pred->val; \
588 return *addr < val; \
590 static int filter_pred_LE_##type(struct filter_pred *pred, void *event) \
592 type *addr = (type *)(event + pred->offset); \
593 type val = (type)pred->val; \
594 return *addr <= val; \
596 static int filter_pred_GT_##type(struct filter_pred *pred, void *event) \
598 type *addr = (type *)(event + pred->offset); \
599 type val = (type)pred->val; \
600 return *addr > val; \
602 static int filter_pred_GE_##type(struct filter_pred *pred, void *event) \
604 type *addr = (type *)(event + pred->offset); \
605 type val = (type)pred->val; \
606 return *addr >= val; \
608 static int filter_pred_BAND_##type(struct filter_pred *pred, void *event) \
610 type *addr = (type *)(event + pred->offset); \
611 type val = (type)pred->val; \
612 return !!(*addr & val); \
614 static const filter_pred_fn_t pred_funcs_##type[] = { \
615 filter_pred_LE_##type, \
616 filter_pred_LT_##type, \
617 filter_pred_GE_##type, \
618 filter_pred_GT_##type, \
619 filter_pred_BAND_##type, \
622 #define DEFINE_EQUALITY_PRED(size) \
623 static int filter_pred_##size(struct filter_pred *pred, void *event) \
625 u##size *addr = (u##size *)(event + pred->offset); \
626 u##size val = (u##size)pred->val; \
629 match = (val == *addr) ^ pred->not; \
634 DEFINE_COMPARISON_PRED(s64);
635 DEFINE_COMPARISON_PRED(u64);
636 DEFINE_COMPARISON_PRED(s32);
637 DEFINE_COMPARISON_PRED(u32);
638 DEFINE_COMPARISON_PRED(s16);
639 DEFINE_COMPARISON_PRED(u16);
640 DEFINE_COMPARISON_PRED(s8);
641 DEFINE_COMPARISON_PRED(u8);
643 DEFINE_EQUALITY_PRED(64);
644 DEFINE_EQUALITY_PRED(32);
645 DEFINE_EQUALITY_PRED(16);
646 DEFINE_EQUALITY_PRED(8);
648 /* Filter predicate for fixed sized arrays of characters */
649 static int filter_pred_string(struct filter_pred *pred, void *event)
651 char *addr = (char *)(event + pred->offset);
654 cmp = pred->regex.match(addr, &pred->regex, pred->regex.field_len);
656 match = cmp ^ pred->not;
661 /* Filter predicate for char * pointers */
662 static int filter_pred_pchar(struct filter_pred *pred, void *event)
664 char **addr = (char **)(event + pred->offset);
666 int len = strlen(*addr) + 1; /* including tailing '\0' */
668 cmp = pred->regex.match(*addr, &pred->regex, len);
670 match = cmp ^ pred->not;
676 * Filter predicate for dynamic sized arrays of characters.
677 * These are implemented through a list of strings at the end
679 * Also each of these strings have a field in the entry which
680 * contains its offset from the beginning of the entry.
681 * We have then first to get this field, dereference it
682 * and add it to the address of the entry, and at last we have
683 * the address of the string.
685 static int filter_pred_strloc(struct filter_pred *pred, void *event)
687 u32 str_item = *(u32 *)(event + pred->offset);
688 int str_loc = str_item & 0xffff;
689 int str_len = str_item >> 16;
690 char *addr = (char *)(event + str_loc);
693 cmp = pred->regex.match(addr, &pred->regex, str_len);
695 match = cmp ^ pred->not;
700 /* Filter predicate for CPUs. */
701 static int filter_pred_cpu(struct filter_pred *pred, void *event)
705 cpu = raw_smp_processor_id();
726 /* Filter predicate for COMM. */
727 static int filter_pred_comm(struct filter_pred *pred, void *event)
731 cmp = pred->regex.match(current->comm, &pred->regex,
733 return cmp ^ pred->not;
736 static int filter_pred_none(struct filter_pred *pred, void *event)
742 * regex_match_foo - Basic regex callbacks
744 * @str: the string to be searched
745 * @r: the regex structure containing the pattern string
746 * @len: the length of the string to be searched (including '\0')
749 * - @str might not be NULL-terminated if it's of type DYN_STRING
750 * or STATIC_STRING, unless @len is zero.
753 static int regex_match_full(char *str, struct regex *r, int len)
755 /* len of zero means str is dynamic and ends with '\0' */
757 return strcmp(str, r->pattern) == 0;
759 return strncmp(str, r->pattern, len) == 0;
762 static int regex_match_front(char *str, struct regex *r, int len)
764 if (len && len < r->len)
767 return strncmp(str, r->pattern, r->len) == 0;
770 static int regex_match_middle(char *str, struct regex *r, int len)
773 return strstr(str, r->pattern) != NULL;
775 return strnstr(str, r->pattern, len) != NULL;
778 static int regex_match_end(char *str, struct regex *r, int len)
780 int strlen = len - 1;
782 if (strlen >= r->len &&
783 memcmp(str + strlen - r->len, r->pattern, r->len) == 0)
788 static int regex_match_glob(char *str, struct regex *r, int len __maybe_unused)
790 if (glob_match(r->pattern, str))
796 * filter_parse_regex - parse a basic regex
797 * @buff: the raw regex
798 * @len: length of the regex
799 * @search: will point to the beginning of the string to compare
800 * @not: tell whether the match will have to be inverted
802 * This passes in a buffer containing a regex and this function will
803 * set search to point to the search part of the buffer and
804 * return the type of search it is (see enum above).
805 * This does modify buff.
808 * search returns the pointer to use for comparison.
809 * not returns 1 if buff started with a '!'
812 enum regex_type filter_parse_regex(char *buff, int len, char **search, int *not)
814 int type = MATCH_FULL;
817 if (buff[0] == '!') {
826 for (i = 0; i < len; i++) {
827 if (buff[i] == '*') {
829 type = MATCH_END_ONLY;
830 } else if (i == len - 1) {
831 if (type == MATCH_END_ONLY)
832 type = MATCH_MIDDLE_ONLY;
834 type = MATCH_FRONT_ONLY;
837 } else { /* pattern continues, use full glob */
840 } else if (strchr("[?\\", buff[i])) {
850 static void filter_build_regex(struct filter_pred *pred)
852 struct regex *r = &pred->regex;
854 enum regex_type type = MATCH_FULL;
856 if (pred->op == OP_GLOB) {
857 type = filter_parse_regex(r->pattern, r->len, &search, &pred->not);
858 r->len = strlen(search);
859 memmove(r->pattern, search, r->len+1);
864 r->match = regex_match_full;
866 case MATCH_FRONT_ONLY:
867 r->match = regex_match_front;
869 case MATCH_MIDDLE_ONLY:
870 r->match = regex_match_middle;
873 r->match = regex_match_end;
876 r->match = regex_match_glob;
881 /* return 1 if event matches, 0 otherwise (discard) */
882 int filter_match_preds(struct event_filter *filter, void *rec)
884 struct prog_entry *prog;
887 /* no filter is considered a match */
891 /* Protected by either SRCU(tracepoint_srcu) or preempt_disable */
892 prog = rcu_dereference_raw(filter->prog);
896 for (i = 0; prog[i].pred; i++) {
897 struct filter_pred *pred = prog[i].pred;
898 int match = pred->fn(pred, rec);
899 if (match == prog[i].when_to_branch)
902 return prog[i].target;
904 EXPORT_SYMBOL_GPL(filter_match_preds);
906 static void remove_filter_string(struct event_filter *filter)
911 kfree(filter->filter_string);
912 filter->filter_string = NULL;
915 static void append_filter_err(struct filter_parse_error *pe,
916 struct event_filter *filter)
919 int pos = pe->lasterr_pos;
923 if (WARN_ON(!filter->filter_string))
926 s = kmalloc(sizeof(*s), GFP_KERNEL);
931 len = strlen(filter->filter_string);
935 /* indexing is off by one */
939 trace_seq_puts(s, filter->filter_string);
940 if (pe->lasterr > 0) {
941 trace_seq_printf(s, "\n%*s", pos, "^");
942 trace_seq_printf(s, "\nparse_error: %s\n", err_text[pe->lasterr]);
944 trace_seq_printf(s, "\nError: (%d)\n", pe->lasterr);
946 trace_seq_putc(s, 0);
947 buf = kmemdup_nul(s->buffer, s->seq.len, GFP_KERNEL);
949 kfree(filter->filter_string);
950 filter->filter_string = buf;
955 static inline struct event_filter *event_filter(struct trace_event_file *file)
960 /* caller must hold event_mutex */
961 void print_event_filter(struct trace_event_file *file, struct trace_seq *s)
963 struct event_filter *filter = event_filter(file);
965 if (filter && filter->filter_string)
966 trace_seq_printf(s, "%s\n", filter->filter_string);
968 trace_seq_puts(s, "none\n");
971 void print_subsystem_event_filter(struct event_subsystem *system,
974 struct event_filter *filter;
976 mutex_lock(&event_mutex);
977 filter = system->filter;
978 if (filter && filter->filter_string)
979 trace_seq_printf(s, "%s\n", filter->filter_string);
981 trace_seq_puts(s, DEFAULT_SYS_FILTER_MESSAGE "\n");
982 mutex_unlock(&event_mutex);
985 static void free_prog(struct event_filter *filter)
987 struct prog_entry *prog;
990 prog = rcu_access_pointer(filter->prog);
994 for (i = 0; prog[i].pred; i++)
999 static void filter_disable(struct trace_event_file *file)
1001 unsigned long old_flags = file->flags;
1003 file->flags &= ~EVENT_FILE_FL_FILTERED;
1005 if (old_flags != file->flags)
1006 trace_buffered_event_disable();
1009 static void __free_filter(struct event_filter *filter)
1015 kfree(filter->filter_string);
1019 void free_event_filter(struct event_filter *filter)
1021 __free_filter(filter);
1024 static inline void __remove_filter(struct trace_event_file *file)
1026 filter_disable(file);
1027 remove_filter_string(file->filter);
1030 static void filter_free_subsystem_preds(struct trace_subsystem_dir *dir,
1031 struct trace_array *tr)
1033 struct trace_event_file *file;
1035 list_for_each_entry(file, &tr->events, list) {
1036 if (file->system != dir)
1038 __remove_filter(file);
1042 static inline void __free_subsystem_filter(struct trace_event_file *file)
1044 __free_filter(file->filter);
1045 file->filter = NULL;
1048 static void filter_free_subsystem_filters(struct trace_subsystem_dir *dir,
1049 struct trace_array *tr)
1051 struct trace_event_file *file;
1053 list_for_each_entry(file, &tr->events, list) {
1054 if (file->system != dir)
1056 __free_subsystem_filter(file);
1060 int filter_assign_type(const char *type)
1062 if (strstr(type, "__data_loc") && strstr(type, "char"))
1063 return FILTER_DYN_STRING;
1065 if (strchr(type, '[') && strstr(type, "char"))
1066 return FILTER_STATIC_STRING;
1068 return FILTER_OTHER;
1071 static filter_pred_fn_t select_comparison_fn(enum filter_op_ids op,
1072 int field_size, int field_is_signed)
1074 filter_pred_fn_t fn = NULL;
1075 int pred_func_index = -1;
1082 if (WARN_ON_ONCE(op < PRED_FUNC_START))
1084 pred_func_index = op - PRED_FUNC_START;
1085 if (WARN_ON_ONCE(pred_func_index > PRED_FUNC_MAX))
1089 switch (field_size) {
1091 if (pred_func_index < 0)
1092 fn = filter_pred_64;
1093 else if (field_is_signed)
1094 fn = pred_funcs_s64[pred_func_index];
1096 fn = pred_funcs_u64[pred_func_index];
1099 if (pred_func_index < 0)
1100 fn = filter_pred_32;
1101 else if (field_is_signed)
1102 fn = pred_funcs_s32[pred_func_index];
1104 fn = pred_funcs_u32[pred_func_index];
1107 if (pred_func_index < 0)
1108 fn = filter_pred_16;
1109 else if (field_is_signed)
1110 fn = pred_funcs_s16[pred_func_index];
1112 fn = pred_funcs_u16[pred_func_index];
1115 if (pred_func_index < 0)
1117 else if (field_is_signed)
1118 fn = pred_funcs_s8[pred_func_index];
1120 fn = pred_funcs_u8[pred_func_index];
1127 /* Called when a predicate is encountered by predicate_parse() */
1128 static int parse_pred(const char *str, void *data,
1129 int pos, struct filter_parse_error *pe,
1130 struct filter_pred **pred_ptr)
1132 struct trace_event_call *call = data;
1133 struct ftrace_event_field *field;
1134 struct filter_pred *pred = NULL;
1135 char num_buf[24]; /* Big enough to hold an address */
1145 /* First find the field to associate to */
1146 while (isspace(str[i]))
1150 while (isalnum(str[i]) || str[i] == '_')
1158 field_name = kmemdup_nul(str + s, len, GFP_KERNEL);
1162 /* Make sure that the field exists */
1164 field = trace_find_event_field(call, field_name);
1167 parse_error(pe, FILT_ERR_FIELD_NOT_FOUND, pos + i);
1171 while (isspace(str[i]))
1174 /* Make sure this op is supported */
1175 for (op = 0; ops[op]; op++) {
1176 /* This is why '<=' must come before '<' in ops[] */
1177 if (strncmp(str + i, ops[op], strlen(ops[op])) == 0)
1182 parse_error(pe, FILT_ERR_INVALID_OP, pos + i);
1186 i += strlen(ops[op]);
1188 while (isspace(str[i]))
1193 pred = kzalloc(sizeof(*pred), GFP_KERNEL);
1197 pred->field = field;
1198 pred->offset = field->offset;
1201 if (ftrace_event_is_function(call)) {
1203 * Perf does things different with function events.
1204 * It only allows an "ip" field, and expects a string.
1205 * But the string does not need to be surrounded by quotes.
1206 * If it is a string, the assigned function as a nop,
1207 * (perf doesn't use it) and grab everything.
1209 if (strcmp(field->name, "ip") != 0) {
1210 parse_error(pe, FILT_ERR_IP_FIELD_ONLY, pos + i);
1213 pred->fn = filter_pred_none;
1216 * Quotes are not required, but if they exist then we need
1217 * to read them till we hit a matching one.
1219 if (str[i] == '\'' || str[i] == '"')
1224 for (i++; str[i]; i++) {
1225 if (q && str[i] == q)
1227 if (!q && (str[i] == ')' || str[i] == '&' ||
1235 if (len >= MAX_FILTER_STR_VAL) {
1236 parse_error(pe, FILT_ERR_OPERAND_TOO_LONG, pos + i);
1240 pred->regex.len = len;
1241 strncpy(pred->regex.pattern, str + s, len);
1242 pred->regex.pattern[len] = 0;
1244 /* This is either a string, or an integer */
1245 } else if (str[i] == '\'' || str[i] == '"') {
1248 /* Make sure the op is OK for strings */
1257 parse_error(pe, FILT_ERR_ILLEGAL_FIELD_OP, pos + i);
1261 /* Make sure the field is OK for strings */
1262 if (!is_string_field(field)) {
1263 parse_error(pe, FILT_ERR_EXPECT_DIGIT, pos + i);
1267 for (i++; str[i]; i++) {
1272 parse_error(pe, FILT_ERR_MISSING_QUOTE, pos + i);
1279 if (len >= MAX_FILTER_STR_VAL) {
1280 parse_error(pe, FILT_ERR_OPERAND_TOO_LONG, pos + i);
1284 pred->regex.len = len;
1285 strncpy(pred->regex.pattern, str + s, len);
1286 pred->regex.pattern[len] = 0;
1288 filter_build_regex(pred);
1290 if (field->filter_type == FILTER_COMM) {
1291 pred->fn = filter_pred_comm;
1293 } else if (field->filter_type == FILTER_STATIC_STRING) {
1294 pred->fn = filter_pred_string;
1295 pred->regex.field_len = field->size;
1297 } else if (field->filter_type == FILTER_DYN_STRING)
1298 pred->fn = filter_pred_strloc;
1300 pred->fn = filter_pred_pchar;
1301 /* go past the last quote */
1304 } else if (isdigit(str[i])) {
1306 /* Make sure the field is not a string */
1307 if (is_string_field(field)) {
1308 parse_error(pe, FILT_ERR_EXPECT_STRING, pos + i);
1312 if (op == OP_GLOB) {
1313 parse_error(pe, FILT_ERR_ILLEGAL_FIELD_OP, pos + i);
1317 /* We allow 0xDEADBEEF */
1318 while (isalnum(str[i]))
1322 /* 0xfeedfacedeadbeef is 18 chars max */
1323 if (len >= sizeof(num_buf)) {
1324 parse_error(pe, FILT_ERR_OPERAND_TOO_LONG, pos + i);
1328 strncpy(num_buf, str + s, len);
1331 /* Make sure it is a value */
1332 if (field->is_signed)
1333 ret = kstrtoll(num_buf, 0, &val);
1335 ret = kstrtoull(num_buf, 0, &val);
1337 parse_error(pe, FILT_ERR_ILLEGAL_INTVAL, pos + s);
1343 if (field->filter_type == FILTER_CPU)
1344 pred->fn = filter_pred_cpu;
1346 pred->fn = select_comparison_fn(pred->op, field->size,
1348 if (pred->op == OP_NE)
1353 parse_error(pe, FILT_ERR_INVALID_VALUE, pos + i);
1366 TOO_MANY_CLOSE = -1,
1372 * Read the filter string once to calculate the number of predicates
1373 * as well as how deep the parentheses go.
1376 * 0 - everything is fine (err is undefined)
1379 * -3 - No matching quote
1381 static int calc_stack(const char *str, int *parens, int *preds, int *err)
1383 bool is_pred = false;
1385 int open = 1; /* Count the expression as "(E)" */
1393 for (i = 0; str[i]; i++) {
1394 if (isspace(str[i]))
1397 if (str[i] == quote)
1410 if (str[i+1] != str[i])
1417 if (open > max_open)
1424 return TOO_MANY_CLOSE;
1437 return MISSING_QUOTE;
1443 /* find the bad open */
1446 if (str[i] == quote)
1452 if (level == open) {
1454 return TOO_MANY_OPEN;
1467 /* First character is the '(' with missing ')' */
1469 return TOO_MANY_OPEN;
1472 /* Set the size of the required stacks */
1478 static int process_preds(struct trace_event_call *call,
1479 const char *filter_string,
1480 struct event_filter *filter,
1481 struct filter_parse_error *pe)
1483 struct prog_entry *prog;
1489 ret = calc_stack(filter_string, &nr_parens, &nr_preds, &index);
1493 parse_error(pe, FILT_ERR_MISSING_QUOTE, index);
1496 parse_error(pe, FILT_ERR_TOO_MANY_OPEN, index);
1499 parse_error(pe, FILT_ERR_TOO_MANY_CLOSE, index);
1507 prog = predicate_parse(filter_string, nr_parens, nr_preds,
1508 parse_pred, call, pe);
1510 return PTR_ERR(prog);
1512 rcu_assign_pointer(filter->prog, prog);
1516 static inline void event_set_filtered_flag(struct trace_event_file *file)
1518 unsigned long old_flags = file->flags;
1520 file->flags |= EVENT_FILE_FL_FILTERED;
1522 if (old_flags != file->flags)
1523 trace_buffered_event_enable();
1526 static inline void event_set_filter(struct trace_event_file *file,
1527 struct event_filter *filter)
1529 rcu_assign_pointer(file->filter, filter);
1532 static inline void event_clear_filter(struct trace_event_file *file)
1534 RCU_INIT_POINTER(file->filter, NULL);
1538 event_set_no_set_filter_flag(struct trace_event_file *file)
1540 file->flags |= EVENT_FILE_FL_NO_SET_FILTER;
1544 event_clear_no_set_filter_flag(struct trace_event_file *file)
1546 file->flags &= ~EVENT_FILE_FL_NO_SET_FILTER;
1550 event_no_set_filter_flag(struct trace_event_file *file)
1552 if (file->flags & EVENT_FILE_FL_NO_SET_FILTER)
1558 struct filter_list {
1559 struct list_head list;
1560 struct event_filter *filter;
1563 static int process_system_preds(struct trace_subsystem_dir *dir,
1564 struct trace_array *tr,
1565 struct filter_parse_error *pe,
1566 char *filter_string)
1568 struct trace_event_file *file;
1569 struct filter_list *filter_item;
1570 struct event_filter *filter = NULL;
1571 struct filter_list *tmp;
1572 LIST_HEAD(filter_list);
1576 list_for_each_entry(file, &tr->events, list) {
1578 if (file->system != dir)
1581 filter = kzalloc(sizeof(*filter), GFP_KERNEL);
1585 filter->filter_string = kstrdup(filter_string, GFP_KERNEL);
1586 if (!filter->filter_string)
1589 err = process_preds(file->event_call, filter_string, filter, pe);
1591 filter_disable(file);
1592 parse_error(pe, FILT_ERR_BAD_SUBSYS_FILTER, 0);
1593 append_filter_err(pe, filter);
1595 event_set_filtered_flag(file);
1598 filter_item = kzalloc(sizeof(*filter_item), GFP_KERNEL);
1602 list_add_tail(&filter_item->list, &filter_list);
1604 * Regardless of if this returned an error, we still
1605 * replace the filter for the call.
1607 filter_item->filter = event_filter(file);
1608 event_set_filter(file, filter);
1618 * The calls can still be using the old filters.
1619 * Do a synchronize_rcu() and to ensure all calls are
1620 * done with them before we free them.
1622 tracepoint_synchronize_unregister();
1623 list_for_each_entry_safe(filter_item, tmp, &filter_list, list) {
1624 __free_filter(filter_item->filter);
1625 list_del(&filter_item->list);
1630 /* No call succeeded */
1631 list_for_each_entry_safe(filter_item, tmp, &filter_list, list) {
1632 list_del(&filter_item->list);
1635 parse_error(pe, FILT_ERR_BAD_SUBSYS_FILTER, 0);
1639 /* If any call succeeded, we still need to sync */
1641 tracepoint_synchronize_unregister();
1642 list_for_each_entry_safe(filter_item, tmp, &filter_list, list) {
1643 __free_filter(filter_item->filter);
1644 list_del(&filter_item->list);
1650 static int create_filter_start(char *filter_string, bool set_str,
1651 struct filter_parse_error **pse,
1652 struct event_filter **filterp)
1654 struct event_filter *filter;
1655 struct filter_parse_error *pe = NULL;
1658 if (WARN_ON_ONCE(*pse || *filterp))
1661 filter = kzalloc(sizeof(*filter), GFP_KERNEL);
1662 if (filter && set_str) {
1663 filter->filter_string = kstrdup(filter_string, GFP_KERNEL);
1664 if (!filter->filter_string)
1668 pe = kzalloc(sizeof(*pe), GFP_KERNEL);
1670 if (!filter || !pe || err) {
1672 __free_filter(filter);
1676 /* we're committed to creating a new filter */
1683 static void create_filter_finish(struct filter_parse_error *pe)
1689 * create_filter - create a filter for a trace_event_call
1690 * @call: trace_event_call to create a filter for
1691 * @filter_str: filter string
1692 * @set_str: remember @filter_str and enable detailed error in filter
1693 * @filterp: out param for created filter (always updated on return)
1694 * Must be a pointer that references a NULL pointer.
1696 * Creates a filter for @call with @filter_str. If @set_str is %true,
1697 * @filter_str is copied and recorded in the new filter.
1699 * On success, returns 0 and *@filterp points to the new filter. On
1700 * failure, returns -errno and *@filterp may point to %NULL or to a new
1701 * filter. In the latter case, the returned filter contains error
1702 * information if @set_str is %true and the caller is responsible for
1705 static int create_filter(struct trace_event_call *call,
1706 char *filter_string, bool set_str,
1707 struct event_filter **filterp)
1709 struct filter_parse_error *pe = NULL;
1712 /* filterp must point to NULL */
1713 if (WARN_ON(*filterp))
1716 err = create_filter_start(filter_string, set_str, &pe, filterp);
1720 err = process_preds(call, filter_string, *filterp, pe);
1722 append_filter_err(pe, *filterp);
1723 create_filter_finish(pe);
1728 int create_event_filter(struct trace_event_call *call,
1729 char *filter_str, bool set_str,
1730 struct event_filter **filterp)
1732 return create_filter(call, filter_str, set_str, filterp);
1736 * create_system_filter - create a filter for an event_subsystem
1737 * @system: event_subsystem to create a filter for
1738 * @filter_str: filter string
1739 * @filterp: out param for created filter (always updated on return)
1741 * Identical to create_filter() except that it creates a subsystem filter
1742 * and always remembers @filter_str.
1744 static int create_system_filter(struct trace_subsystem_dir *dir,
1745 struct trace_array *tr,
1746 char *filter_str, struct event_filter **filterp)
1748 struct filter_parse_error *pe = NULL;
1751 err = create_filter_start(filter_str, true, &pe, filterp);
1753 err = process_system_preds(dir, tr, pe, filter_str);
1755 /* System filters just show a default message */
1756 kfree((*filterp)->filter_string);
1757 (*filterp)->filter_string = NULL;
1759 append_filter_err(pe, *filterp);
1762 create_filter_finish(pe);
1767 /* caller must hold event_mutex */
1768 int apply_event_filter(struct trace_event_file *file, char *filter_string)
1770 struct trace_event_call *call = file->event_call;
1771 struct event_filter *filter = NULL;
1774 if (!strcmp(strstrip(filter_string), "0")) {
1775 filter_disable(file);
1776 filter = event_filter(file);
1781 event_clear_filter(file);
1783 /* Make sure the filter is not being used */
1784 tracepoint_synchronize_unregister();
1785 __free_filter(filter);
1790 err = create_filter(call, filter_string, true, &filter);
1793 * Always swap the call filter with the new filter
1794 * even if there was an error. If there was an error
1795 * in the filter, we disable the filter and show the error
1799 struct event_filter *tmp;
1801 tmp = event_filter(file);
1803 event_set_filtered_flag(file);
1805 filter_disable(file);
1807 event_set_filter(file, filter);
1810 /* Make sure the call is done with the filter */
1811 tracepoint_synchronize_unregister();
1819 int apply_subsystem_event_filter(struct trace_subsystem_dir *dir,
1820 char *filter_string)
1822 struct event_subsystem *system = dir->subsystem;
1823 struct trace_array *tr = dir->tr;
1824 struct event_filter *filter = NULL;
1827 mutex_lock(&event_mutex);
1829 /* Make sure the system still has events */
1830 if (!dir->nr_events) {
1835 if (!strcmp(strstrip(filter_string), "0")) {
1836 filter_free_subsystem_preds(dir, tr);
1837 remove_filter_string(system->filter);
1838 filter = system->filter;
1839 system->filter = NULL;
1840 /* Ensure all filters are no longer used */
1841 tracepoint_synchronize_unregister();
1842 filter_free_subsystem_filters(dir, tr);
1843 __free_filter(filter);
1847 err = create_system_filter(dir, tr, filter_string, &filter);
1850 * No event actually uses the system filter
1851 * we can free it without synchronize_rcu().
1853 __free_filter(system->filter);
1854 system->filter = filter;
1857 mutex_unlock(&event_mutex);
1862 #ifdef CONFIG_PERF_EVENTS
1864 void ftrace_profile_free_filter(struct perf_event *event)
1866 struct event_filter *filter = event->filter;
1868 event->filter = NULL;
1869 __free_filter(filter);
1872 struct function_filter_data {
1873 struct ftrace_ops *ops;
1878 #ifdef CONFIG_FUNCTION_TRACER
1880 ftrace_function_filter_re(char *buf, int len, int *count)
1884 str = kstrndup(buf, len, GFP_KERNEL);
1889 * The argv_split function takes white space
1890 * as a separator, so convert ',' into spaces.
1892 strreplace(str, ',', ' ');
1894 re = argv_split(GFP_KERNEL, str, count);
1899 static int ftrace_function_set_regexp(struct ftrace_ops *ops, int filter,
1900 int reset, char *re, int len)
1905 ret = ftrace_set_filter(ops, re, len, reset);
1907 ret = ftrace_set_notrace(ops, re, len, reset);
1912 static int __ftrace_function_set_filter(int filter, char *buf, int len,
1913 struct function_filter_data *data)
1915 int i, re_cnt, ret = -EINVAL;
1919 reset = filter ? &data->first_filter : &data->first_notrace;
1922 * The 'ip' field could have multiple filters set, separated
1923 * either by space or comma. We first cut the filter and apply
1924 * all pieces separatelly.
1926 re = ftrace_function_filter_re(buf, len, &re_cnt);
1930 for (i = 0; i < re_cnt; i++) {
1931 ret = ftrace_function_set_regexp(data->ops, filter, *reset,
1932 re[i], strlen(re[i]));
1944 static int ftrace_function_check_pred(struct filter_pred *pred)
1946 struct ftrace_event_field *field = pred->field;
1949 * Check the predicate for function trace, verify:
1950 * - only '==' and '!=' is used
1951 * - the 'ip' field is used
1953 if ((pred->op != OP_EQ) && (pred->op != OP_NE))
1956 if (strcmp(field->name, "ip"))
1962 static int ftrace_function_set_filter_pred(struct filter_pred *pred,
1963 struct function_filter_data *data)
1967 /* Checking the node is valid for function trace. */
1968 ret = ftrace_function_check_pred(pred);
1972 return __ftrace_function_set_filter(pred->op == OP_EQ,
1973 pred->regex.pattern,
1978 static bool is_or(struct prog_entry *prog, int i)
1983 * Only "||" is allowed for function events, thus,
1984 * all true branches should jump to true, and any
1985 * false branch should jump to false.
1987 target = prog[i].target + 1;
1988 /* True and false have NULL preds (all prog entries should jump to one */
1989 if (prog[target].pred)
1992 /* prog[target].target is 1 for TRUE, 0 for FALSE */
1993 return prog[i].when_to_branch == prog[target].target;
1996 static int ftrace_function_set_filter(struct perf_event *event,
1997 struct event_filter *filter)
1999 struct prog_entry *prog = rcu_dereference_protected(filter->prog,
2000 lockdep_is_held(&event_mutex));
2001 struct function_filter_data data = {
2004 .ops = &event->ftrace_ops,
2008 for (i = 0; prog[i].pred; i++) {
2009 struct filter_pred *pred = prog[i].pred;
2011 if (!is_or(prog, i))
2014 if (ftrace_function_set_filter_pred(pred, &data) < 0)
2020 static int ftrace_function_set_filter(struct perf_event *event,
2021 struct event_filter *filter)
2025 #endif /* CONFIG_FUNCTION_TRACER */
2027 int ftrace_profile_set_filter(struct perf_event *event, int event_id,
2031 struct event_filter *filter = NULL;
2032 struct trace_event_call *call;
2034 mutex_lock(&event_mutex);
2036 call = event->tp_event;
2046 err = create_filter(call, filter_str, false, &filter);
2050 if (ftrace_event_is_function(call))
2051 err = ftrace_function_set_filter(event, filter);
2053 event->filter = filter;
2056 if (err || ftrace_event_is_function(call))
2057 __free_filter(filter);
2060 mutex_unlock(&event_mutex);
2065 #endif /* CONFIG_PERF_EVENTS */
2067 #ifdef CONFIG_FTRACE_STARTUP_TEST
2069 #include <linux/types.h>
2070 #include <linux/tracepoint.h>
2072 #define CREATE_TRACE_POINTS
2073 #include "trace_events_filter_test.h"
2075 #define DATA_REC(m, va, vb, vc, vd, ve, vf, vg, vh, nvisit) \
2078 .rec = { .a = va, .b = vb, .c = vc, .d = vd, \
2079 .e = ve, .f = vf, .g = vg, .h = vh }, \
2081 .not_visited = nvisit, \
2086 static struct test_filter_data_t {
2088 struct trace_event_raw_ftrace_test_filter rec;
2091 } test_filter_data[] = {
2092 #define FILTER "a == 1 && b == 1 && c == 1 && d == 1 && " \
2093 "e == 1 && f == 1 && g == 1 && h == 1"
2094 DATA_REC(YES, 1, 1, 1, 1, 1, 1, 1, 1, ""),
2095 DATA_REC(NO, 0, 1, 1, 1, 1, 1, 1, 1, "bcdefgh"),
2096 DATA_REC(NO, 1, 1, 1, 1, 1, 1, 1, 0, ""),
2098 #define FILTER "a == 1 || b == 1 || c == 1 || d == 1 || " \
2099 "e == 1 || f == 1 || g == 1 || h == 1"
2100 DATA_REC(NO, 0, 0, 0, 0, 0, 0, 0, 0, ""),
2101 DATA_REC(YES, 0, 0, 0, 0, 0, 0, 0, 1, ""),
2102 DATA_REC(YES, 1, 0, 0, 0, 0, 0, 0, 0, "bcdefgh"),
2104 #define FILTER "(a == 1 || b == 1) && (c == 1 || d == 1) && " \
2105 "(e == 1 || f == 1) && (g == 1 || h == 1)"
2106 DATA_REC(NO, 0, 0, 1, 1, 1, 1, 1, 1, "dfh"),
2107 DATA_REC(YES, 0, 1, 0, 1, 0, 1, 0, 1, ""),
2108 DATA_REC(YES, 1, 0, 1, 0, 0, 1, 0, 1, "bd"),
2109 DATA_REC(NO, 1, 0, 1, 0, 0, 1, 0, 0, "bd"),
2111 #define FILTER "(a == 1 && b == 1) || (c == 1 && d == 1) || " \
2112 "(e == 1 && f == 1) || (g == 1 && h == 1)"
2113 DATA_REC(YES, 1, 0, 1, 1, 1, 1, 1, 1, "efgh"),
2114 DATA_REC(YES, 0, 0, 0, 0, 0, 0, 1, 1, ""),
2115 DATA_REC(NO, 0, 0, 0, 0, 0, 0, 0, 1, ""),
2117 #define FILTER "(a == 1 && b == 1) && (c == 1 && d == 1) && " \
2118 "(e == 1 && f == 1) || (g == 1 && h == 1)"
2119 DATA_REC(YES, 1, 1, 1, 1, 1, 1, 0, 0, "gh"),
2120 DATA_REC(NO, 0, 0, 0, 0, 0, 0, 0, 1, ""),
2121 DATA_REC(YES, 1, 1, 1, 1, 1, 0, 1, 1, ""),
2123 #define FILTER "((a == 1 || b == 1) || (c == 1 || d == 1) || " \
2124 "(e == 1 || f == 1)) && (g == 1 || h == 1)"
2125 DATA_REC(YES, 1, 1, 1, 1, 1, 1, 0, 1, "bcdef"),
2126 DATA_REC(NO, 0, 0, 0, 0, 0, 0, 0, 0, ""),
2127 DATA_REC(YES, 1, 1, 1, 1, 1, 0, 1, 1, "h"),
2129 #define FILTER "((((((((a == 1) && (b == 1)) || (c == 1)) && (d == 1)) || " \
2130 "(e == 1)) && (f == 1)) || (g == 1)) && (h == 1))"
2131 DATA_REC(YES, 1, 1, 1, 1, 1, 1, 1, 1, "ceg"),
2132 DATA_REC(NO, 0, 1, 0, 1, 0, 1, 0, 1, ""),
2133 DATA_REC(NO, 1, 0, 1, 0, 1, 0, 1, 0, ""),
2135 #define FILTER "((((((((a == 1) || (b == 1)) && (c == 1)) || (d == 1)) && " \
2136 "(e == 1)) || (f == 1)) && (g == 1)) || (h == 1))"
2137 DATA_REC(YES, 1, 1, 1, 1, 1, 1, 1, 1, "bdfh"),
2138 DATA_REC(YES, 0, 1, 0, 1, 0, 1, 0, 1, ""),
2139 DATA_REC(YES, 1, 0, 1, 0, 1, 0, 1, 0, "bdfh"),
2147 #define DATA_CNT ARRAY_SIZE(test_filter_data)
2149 static int test_pred_visited;
2151 static int test_pred_visited_fn(struct filter_pred *pred, void *event)
2153 struct ftrace_event_field *field = pred->field;
2155 test_pred_visited = 1;
2156 printk(KERN_INFO "\npred visited %s\n", field->name);
2160 static void update_pred_fn(struct event_filter *filter, char *fields)
2162 struct prog_entry *prog = rcu_dereference_protected(filter->prog,
2163 lockdep_is_held(&event_mutex));
2166 for (i = 0; prog[i].pred; i++) {
2167 struct filter_pred *pred = prog[i].pred;
2168 struct ftrace_event_field *field = pred->field;
2170 WARN_ON_ONCE(!pred->fn);
2173 WARN_ONCE(1, "all leafs should have field defined %d", i);
2177 if (!strchr(fields, *field->name))
2180 pred->fn = test_pred_visited_fn;
2184 static __init int ftrace_test_event_filter(void)
2188 printk(KERN_INFO "Testing ftrace filter: ");
2190 for (i = 0; i < DATA_CNT; i++) {
2191 struct event_filter *filter = NULL;
2192 struct test_filter_data_t *d = &test_filter_data[i];
2195 err = create_filter(&event_ftrace_test_filter, d->filter,
2199 "Failed to get filter for '%s', err %d\n",
2201 __free_filter(filter);
2205 /* Needed to dereference filter->prog */
2206 mutex_lock(&event_mutex);
2208 * The preemption disabling is not really needed for self
2209 * tests, but the rcu dereference will complain without it.
2212 if (*d->not_visited)
2213 update_pred_fn(filter, d->not_visited);
2215 test_pred_visited = 0;
2216 err = filter_match_preds(filter, &d->rec);
2219 mutex_unlock(&event_mutex);
2221 __free_filter(filter);
2223 if (test_pred_visited) {
2225 "Failed, unwanted pred visited for filter %s\n",
2230 if (err != d->match) {
2232 "Failed to match filter '%s', expected %d\n",
2233 d->filter, d->match);
2239 printk(KERN_CONT "OK\n");
2244 late_initcall(ftrace_test_event_filter);
2246 #endif /* CONFIG_FTRACE_STARTUP_TEST */