]> Git Repo - linux.git/blob - arch/x86/kvm/svm.c
Merge tag 'kvm-4.14-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[linux.git] / arch / x86 / kvm / svm.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * AMD SVM support
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
8  *
9  * Authors:
10  *   Yaniv Kamay  <[email protected]>
11  *   Avi Kivity   <[email protected]>
12  *
13  * This work is licensed under the terms of the GNU GPL, version 2.  See
14  * the COPYING file in the top-level directory.
15  *
16  */
17
18 #define pr_fmt(fmt) "SVM: " fmt
19
20 #include <linux/kvm_host.h>
21
22 #include "irq.h"
23 #include "mmu.h"
24 #include "kvm_cache_regs.h"
25 #include "x86.h"
26 #include "cpuid.h"
27 #include "pmu.h"
28
29 #include <linux/module.h>
30 #include <linux/mod_devicetable.h>
31 #include <linux/kernel.h>
32 #include <linux/vmalloc.h>
33 #include <linux/highmem.h>
34 #include <linux/sched.h>
35 #include <linux/trace_events.h>
36 #include <linux/slab.h>
37 #include <linux/amd-iommu.h>
38 #include <linux/hashtable.h>
39 #include <linux/frame.h>
40
41 #include <asm/apic.h>
42 #include <asm/perf_event.h>
43 #include <asm/tlbflush.h>
44 #include <asm/desc.h>
45 #include <asm/debugreg.h>
46 #include <asm/kvm_para.h>
47 #include <asm/irq_remapping.h>
48
49 #include <asm/virtext.h>
50 #include "trace.h"
51
52 #define __ex(x) __kvm_handle_fault_on_reboot(x)
53
54 MODULE_AUTHOR("Qumranet");
55 MODULE_LICENSE("GPL");
56
57 static const struct x86_cpu_id svm_cpu_id[] = {
58         X86_FEATURE_MATCH(X86_FEATURE_SVM),
59         {}
60 };
61 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
62
63 #define IOPM_ALLOC_ORDER 2
64 #define MSRPM_ALLOC_ORDER 1
65
66 #define SEG_TYPE_LDT 2
67 #define SEG_TYPE_BUSY_TSS16 3
68
69 #define SVM_FEATURE_NPT            (1 <<  0)
70 #define SVM_FEATURE_LBRV           (1 <<  1)
71 #define SVM_FEATURE_SVML           (1 <<  2)
72 #define SVM_FEATURE_NRIP           (1 <<  3)
73 #define SVM_FEATURE_TSC_RATE       (1 <<  4)
74 #define SVM_FEATURE_VMCB_CLEAN     (1 <<  5)
75 #define SVM_FEATURE_FLUSH_ASID     (1 <<  6)
76 #define SVM_FEATURE_DECODE_ASSIST  (1 <<  7)
77 #define SVM_FEATURE_PAUSE_FILTER   (1 << 10)
78
79 #define SVM_AVIC_DOORBELL       0xc001011b
80
81 #define NESTED_EXIT_HOST        0       /* Exit handled on host level */
82 #define NESTED_EXIT_DONE        1       /* Exit caused nested vmexit  */
83 #define NESTED_EXIT_CONTINUE    2       /* Further checks needed      */
84
85 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
86
87 #define TSC_RATIO_RSVD          0xffffff0000000000ULL
88 #define TSC_RATIO_MIN           0x0000000000000001ULL
89 #define TSC_RATIO_MAX           0x000000ffffffffffULL
90
91 #define AVIC_HPA_MASK   ~((0xFFFULL << 52) | 0xFFF)
92
93 /*
94  * 0xff is broadcast, so the max index allowed for physical APIC ID
95  * table is 0xfe.  APIC IDs above 0xff are reserved.
96  */
97 #define AVIC_MAX_PHYSICAL_ID_COUNT      255
98
99 #define AVIC_UNACCEL_ACCESS_WRITE_MASK          1
100 #define AVIC_UNACCEL_ACCESS_OFFSET_MASK         0xFF0
101 #define AVIC_UNACCEL_ACCESS_VECTOR_MASK         0xFFFFFFFF
102
103 /* AVIC GATAG is encoded using VM and VCPU IDs */
104 #define AVIC_VCPU_ID_BITS               8
105 #define AVIC_VCPU_ID_MASK               ((1 << AVIC_VCPU_ID_BITS) - 1)
106
107 #define AVIC_VM_ID_BITS                 24
108 #define AVIC_VM_ID_NR                   (1 << AVIC_VM_ID_BITS)
109 #define AVIC_VM_ID_MASK                 ((1 << AVIC_VM_ID_BITS) - 1)
110
111 #define AVIC_GATAG(x, y)                (((x & AVIC_VM_ID_MASK) << AVIC_VCPU_ID_BITS) | \
112                                                 (y & AVIC_VCPU_ID_MASK))
113 #define AVIC_GATAG_TO_VMID(x)           ((x >> AVIC_VCPU_ID_BITS) & AVIC_VM_ID_MASK)
114 #define AVIC_GATAG_TO_VCPUID(x)         (x & AVIC_VCPU_ID_MASK)
115
116 static bool erratum_383_found __read_mostly;
117
118 static const u32 host_save_user_msrs[] = {
119 #ifdef CONFIG_X86_64
120         MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
121         MSR_FS_BASE,
122 #endif
123         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
124         MSR_TSC_AUX,
125 };
126
127 #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
128
129 struct kvm_vcpu;
130
131 struct nested_state {
132         struct vmcb *hsave;
133         u64 hsave_msr;
134         u64 vm_cr_msr;
135         u64 vmcb;
136
137         /* These are the merged vectors */
138         u32 *msrpm;
139
140         /* gpa pointers to the real vectors */
141         u64 vmcb_msrpm;
142         u64 vmcb_iopm;
143
144         /* A VMEXIT is required but not yet emulated */
145         bool exit_required;
146
147         /* cache for intercepts of the guest */
148         u32 intercept_cr;
149         u32 intercept_dr;
150         u32 intercept_exceptions;
151         u64 intercept;
152
153         /* Nested Paging related state */
154         u64 nested_cr3;
155 };
156
157 #define MSRPM_OFFSETS   16
158 static u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
159
160 /*
161  * Set osvw_len to higher value when updated Revision Guides
162  * are published and we know what the new status bits are
163  */
164 static uint64_t osvw_len = 4, osvw_status;
165
166 struct vcpu_svm {
167         struct kvm_vcpu vcpu;
168         struct vmcb *vmcb;
169         unsigned long vmcb_pa;
170         struct svm_cpu_data *svm_data;
171         uint64_t asid_generation;
172         uint64_t sysenter_esp;
173         uint64_t sysenter_eip;
174         uint64_t tsc_aux;
175
176         u64 next_rip;
177
178         u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
179         struct {
180                 u16 fs;
181                 u16 gs;
182                 u16 ldt;
183                 u64 gs_base;
184         } host;
185
186         u32 *msrpm;
187
188         ulong nmi_iret_rip;
189
190         struct nested_state nested;
191
192         bool nmi_singlestep;
193         u64 nmi_singlestep_guest_rflags;
194
195         unsigned int3_injected;
196         unsigned long int3_rip;
197
198         /* cached guest cpuid flags for faster access */
199         bool nrips_enabled      : 1;
200
201         u32 ldr_reg;
202         struct page *avic_backing_page;
203         u64 *avic_physical_id_cache;
204         bool avic_is_running;
205
206         /*
207          * Per-vcpu list of struct amd_svm_iommu_ir:
208          * This is used mainly to store interrupt remapping information used
209          * when update the vcpu affinity. This avoids the need to scan for
210          * IRTE and try to match ga_tag in the IOMMU driver.
211          */
212         struct list_head ir_list;
213         spinlock_t ir_list_lock;
214 };
215
216 /*
217  * This is a wrapper of struct amd_iommu_ir_data.
218  */
219 struct amd_svm_iommu_ir {
220         struct list_head node;  /* Used by SVM for per-vcpu ir_list */
221         void *data;             /* Storing pointer to struct amd_ir_data */
222 };
223
224 #define AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK    (0xFF)
225 #define AVIC_LOGICAL_ID_ENTRY_VALID_MASK                (1 << 31)
226
227 #define AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK    (0xFFULL)
228 #define AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK        (0xFFFFFFFFFFULL << 12)
229 #define AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK          (1ULL << 62)
230 #define AVIC_PHYSICAL_ID_ENTRY_VALID_MASK               (1ULL << 63)
231
232 static DEFINE_PER_CPU(u64, current_tsc_ratio);
233 #define TSC_RATIO_DEFAULT       0x0100000000ULL
234
235 #define MSR_INVALID                     0xffffffffU
236
237 static const struct svm_direct_access_msrs {
238         u32 index;   /* Index of the MSR */
239         bool always; /* True if intercept is always on */
240 } direct_access_msrs[] = {
241         { .index = MSR_STAR,                            .always = true  },
242         { .index = MSR_IA32_SYSENTER_CS,                .always = true  },
243 #ifdef CONFIG_X86_64
244         { .index = MSR_GS_BASE,                         .always = true  },
245         { .index = MSR_FS_BASE,                         .always = true  },
246         { .index = MSR_KERNEL_GS_BASE,                  .always = true  },
247         { .index = MSR_LSTAR,                           .always = true  },
248         { .index = MSR_CSTAR,                           .always = true  },
249         { .index = MSR_SYSCALL_MASK,                    .always = true  },
250 #endif
251         { .index = MSR_IA32_LASTBRANCHFROMIP,           .always = false },
252         { .index = MSR_IA32_LASTBRANCHTOIP,             .always = false },
253         { .index = MSR_IA32_LASTINTFROMIP,              .always = false },
254         { .index = MSR_IA32_LASTINTTOIP,                .always = false },
255         { .index = MSR_INVALID,                         .always = false },
256 };
257
258 /* enable NPT for AMD64 and X86 with PAE */
259 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
260 static bool npt_enabled = true;
261 #else
262 static bool npt_enabled;
263 #endif
264
265 /* allow nested paging (virtualized MMU) for all guests */
266 static int npt = true;
267 module_param(npt, int, S_IRUGO);
268
269 /* allow nested virtualization in KVM/SVM */
270 static int nested = true;
271 module_param(nested, int, S_IRUGO);
272
273 /* enable / disable AVIC */
274 static int avic;
275 #ifdef CONFIG_X86_LOCAL_APIC
276 module_param(avic, int, S_IRUGO);
277 #endif
278
279 /* enable/disable Virtual VMLOAD VMSAVE */
280 static int vls = true;
281 module_param(vls, int, 0444);
282
283 /* enable/disable Virtual GIF */
284 static int vgif = true;
285 module_param(vgif, int, 0444);
286
287 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
288 static void svm_flush_tlb(struct kvm_vcpu *vcpu);
289 static void svm_complete_interrupts(struct vcpu_svm *svm);
290
291 static int nested_svm_exit_handled(struct vcpu_svm *svm);
292 static int nested_svm_intercept(struct vcpu_svm *svm);
293 static int nested_svm_vmexit(struct vcpu_svm *svm);
294 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
295                                       bool has_error_code, u32 error_code);
296
297 enum {
298         VMCB_INTERCEPTS, /* Intercept vectors, TSC offset,
299                             pause filter count */
300         VMCB_PERM_MAP,   /* IOPM Base and MSRPM Base */
301         VMCB_ASID,       /* ASID */
302         VMCB_INTR,       /* int_ctl, int_vector */
303         VMCB_NPT,        /* npt_en, nCR3, gPAT */
304         VMCB_CR,         /* CR0, CR3, CR4, EFER */
305         VMCB_DR,         /* DR6, DR7 */
306         VMCB_DT,         /* GDT, IDT */
307         VMCB_SEG,        /* CS, DS, SS, ES, CPL */
308         VMCB_CR2,        /* CR2 only */
309         VMCB_LBR,        /* DBGCTL, BR_FROM, BR_TO, LAST_EX_FROM, LAST_EX_TO */
310         VMCB_AVIC,       /* AVIC APIC_BAR, AVIC APIC_BACKING_PAGE,
311                           * AVIC PHYSICAL_TABLE pointer,
312                           * AVIC LOGICAL_TABLE pointer
313                           */
314         VMCB_DIRTY_MAX,
315 };
316
317 /* TPR and CR2 are always written before VMRUN */
318 #define VMCB_ALWAYS_DIRTY_MASK  ((1U << VMCB_INTR) | (1U << VMCB_CR2))
319
320 #define VMCB_AVIC_APIC_BAR_MASK         0xFFFFFFFFFF000ULL
321
322 static inline void mark_all_dirty(struct vmcb *vmcb)
323 {
324         vmcb->control.clean = 0;
325 }
326
327 static inline void mark_all_clean(struct vmcb *vmcb)
328 {
329         vmcb->control.clean = ((1 << VMCB_DIRTY_MAX) - 1)
330                                & ~VMCB_ALWAYS_DIRTY_MASK;
331 }
332
333 static inline void mark_dirty(struct vmcb *vmcb, int bit)
334 {
335         vmcb->control.clean &= ~(1 << bit);
336 }
337
338 static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
339 {
340         return container_of(vcpu, struct vcpu_svm, vcpu);
341 }
342
343 static inline void avic_update_vapic_bar(struct vcpu_svm *svm, u64 data)
344 {
345         svm->vmcb->control.avic_vapic_bar = data & VMCB_AVIC_APIC_BAR_MASK;
346         mark_dirty(svm->vmcb, VMCB_AVIC);
347 }
348
349 static inline bool avic_vcpu_is_running(struct kvm_vcpu *vcpu)
350 {
351         struct vcpu_svm *svm = to_svm(vcpu);
352         u64 *entry = svm->avic_physical_id_cache;
353
354         if (!entry)
355                 return false;
356
357         return (READ_ONCE(*entry) & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK);
358 }
359
360 static void recalc_intercepts(struct vcpu_svm *svm)
361 {
362         struct vmcb_control_area *c, *h;
363         struct nested_state *g;
364
365         mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
366
367         if (!is_guest_mode(&svm->vcpu))
368                 return;
369
370         c = &svm->vmcb->control;
371         h = &svm->nested.hsave->control;
372         g = &svm->nested;
373
374         c->intercept_cr = h->intercept_cr | g->intercept_cr;
375         c->intercept_dr = h->intercept_dr | g->intercept_dr;
376         c->intercept_exceptions = h->intercept_exceptions | g->intercept_exceptions;
377         c->intercept = h->intercept | g->intercept;
378 }
379
380 static inline struct vmcb *get_host_vmcb(struct vcpu_svm *svm)
381 {
382         if (is_guest_mode(&svm->vcpu))
383                 return svm->nested.hsave;
384         else
385                 return svm->vmcb;
386 }
387
388 static inline void set_cr_intercept(struct vcpu_svm *svm, int bit)
389 {
390         struct vmcb *vmcb = get_host_vmcb(svm);
391
392         vmcb->control.intercept_cr |= (1U << bit);
393
394         recalc_intercepts(svm);
395 }
396
397 static inline void clr_cr_intercept(struct vcpu_svm *svm, int bit)
398 {
399         struct vmcb *vmcb = get_host_vmcb(svm);
400
401         vmcb->control.intercept_cr &= ~(1U << bit);
402
403         recalc_intercepts(svm);
404 }
405
406 static inline bool is_cr_intercept(struct vcpu_svm *svm, int bit)
407 {
408         struct vmcb *vmcb = get_host_vmcb(svm);
409
410         return vmcb->control.intercept_cr & (1U << bit);
411 }
412
413 static inline void set_dr_intercepts(struct vcpu_svm *svm)
414 {
415         struct vmcb *vmcb = get_host_vmcb(svm);
416
417         vmcb->control.intercept_dr = (1 << INTERCEPT_DR0_READ)
418                 | (1 << INTERCEPT_DR1_READ)
419                 | (1 << INTERCEPT_DR2_READ)
420                 | (1 << INTERCEPT_DR3_READ)
421                 | (1 << INTERCEPT_DR4_READ)
422                 | (1 << INTERCEPT_DR5_READ)
423                 | (1 << INTERCEPT_DR6_READ)
424                 | (1 << INTERCEPT_DR7_READ)
425                 | (1 << INTERCEPT_DR0_WRITE)
426                 | (1 << INTERCEPT_DR1_WRITE)
427                 | (1 << INTERCEPT_DR2_WRITE)
428                 | (1 << INTERCEPT_DR3_WRITE)
429                 | (1 << INTERCEPT_DR4_WRITE)
430                 | (1 << INTERCEPT_DR5_WRITE)
431                 | (1 << INTERCEPT_DR6_WRITE)
432                 | (1 << INTERCEPT_DR7_WRITE);
433
434         recalc_intercepts(svm);
435 }
436
437 static inline void clr_dr_intercepts(struct vcpu_svm *svm)
438 {
439         struct vmcb *vmcb = get_host_vmcb(svm);
440
441         vmcb->control.intercept_dr = 0;
442
443         recalc_intercepts(svm);
444 }
445
446 static inline void set_exception_intercept(struct vcpu_svm *svm, int bit)
447 {
448         struct vmcb *vmcb = get_host_vmcb(svm);
449
450         vmcb->control.intercept_exceptions |= (1U << bit);
451
452         recalc_intercepts(svm);
453 }
454
455 static inline void clr_exception_intercept(struct vcpu_svm *svm, int bit)
456 {
457         struct vmcb *vmcb = get_host_vmcb(svm);
458
459         vmcb->control.intercept_exceptions &= ~(1U << bit);
460
461         recalc_intercepts(svm);
462 }
463
464 static inline void set_intercept(struct vcpu_svm *svm, int bit)
465 {
466         struct vmcb *vmcb = get_host_vmcb(svm);
467
468         vmcb->control.intercept |= (1ULL << bit);
469
470         recalc_intercepts(svm);
471 }
472
473 static inline void clr_intercept(struct vcpu_svm *svm, int bit)
474 {
475         struct vmcb *vmcb = get_host_vmcb(svm);
476
477         vmcb->control.intercept &= ~(1ULL << bit);
478
479         recalc_intercepts(svm);
480 }
481
482 static inline bool vgif_enabled(struct vcpu_svm *svm)
483 {
484         return !!(svm->vmcb->control.int_ctl & V_GIF_ENABLE_MASK);
485 }
486
487 static inline void enable_gif(struct vcpu_svm *svm)
488 {
489         if (vgif_enabled(svm))
490                 svm->vmcb->control.int_ctl |= V_GIF_MASK;
491         else
492                 svm->vcpu.arch.hflags |= HF_GIF_MASK;
493 }
494
495 static inline void disable_gif(struct vcpu_svm *svm)
496 {
497         if (vgif_enabled(svm))
498                 svm->vmcb->control.int_ctl &= ~V_GIF_MASK;
499         else
500                 svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
501 }
502
503 static inline bool gif_set(struct vcpu_svm *svm)
504 {
505         if (vgif_enabled(svm))
506                 return !!(svm->vmcb->control.int_ctl & V_GIF_MASK);
507         else
508                 return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
509 }
510
511 static unsigned long iopm_base;
512
513 struct kvm_ldttss_desc {
514         u16 limit0;
515         u16 base0;
516         unsigned base1:8, type:5, dpl:2, p:1;
517         unsigned limit1:4, zero0:3, g:1, base2:8;
518         u32 base3;
519         u32 zero1;
520 } __attribute__((packed));
521
522 struct svm_cpu_data {
523         int cpu;
524
525         u64 asid_generation;
526         u32 max_asid;
527         u32 next_asid;
528         struct kvm_ldttss_desc *tss_desc;
529
530         struct page *save_area;
531 };
532
533 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
534
535 struct svm_init_data {
536         int cpu;
537         int r;
538 };
539
540 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
541
542 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
543 #define MSRS_RANGE_SIZE 2048
544 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
545
546 static u32 svm_msrpm_offset(u32 msr)
547 {
548         u32 offset;
549         int i;
550
551         for (i = 0; i < NUM_MSR_MAPS; i++) {
552                 if (msr < msrpm_ranges[i] ||
553                     msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
554                         continue;
555
556                 offset  = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
557                 offset += (i * MSRS_RANGE_SIZE);       /* add range offset */
558
559                 /* Now we have the u8 offset - but need the u32 offset */
560                 return offset / 4;
561         }
562
563         /* MSR not in any range */
564         return MSR_INVALID;
565 }
566
567 #define MAX_INST_SIZE 15
568
569 static inline void clgi(void)
570 {
571         asm volatile (__ex(SVM_CLGI));
572 }
573
574 static inline void stgi(void)
575 {
576         asm volatile (__ex(SVM_STGI));
577 }
578
579 static inline void invlpga(unsigned long addr, u32 asid)
580 {
581         asm volatile (__ex(SVM_INVLPGA) : : "a"(addr), "c"(asid));
582 }
583
584 static int get_npt_level(struct kvm_vcpu *vcpu)
585 {
586 #ifdef CONFIG_X86_64
587         return PT64_ROOT_4LEVEL;
588 #else
589         return PT32E_ROOT_LEVEL;
590 #endif
591 }
592
593 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
594 {
595         vcpu->arch.efer = efer;
596         if (!npt_enabled && !(efer & EFER_LMA))
597                 efer &= ~EFER_LME;
598
599         to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
600         mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
601 }
602
603 static int is_external_interrupt(u32 info)
604 {
605         info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
606         return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
607 }
608
609 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
610 {
611         struct vcpu_svm *svm = to_svm(vcpu);
612         u32 ret = 0;
613
614         if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
615                 ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
616         return ret;
617 }
618
619 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
620 {
621         struct vcpu_svm *svm = to_svm(vcpu);
622
623         if (mask == 0)
624                 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
625         else
626                 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
627
628 }
629
630 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
631 {
632         struct vcpu_svm *svm = to_svm(vcpu);
633
634         if (svm->vmcb->control.next_rip != 0) {
635                 WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
636                 svm->next_rip = svm->vmcb->control.next_rip;
637         }
638
639         if (!svm->next_rip) {
640                 if (emulate_instruction(vcpu, EMULTYPE_SKIP) !=
641                                 EMULATE_DONE)
642                         printk(KERN_DEBUG "%s: NOP\n", __func__);
643                 return;
644         }
645         if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
646                 printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
647                        __func__, kvm_rip_read(vcpu), svm->next_rip);
648
649         kvm_rip_write(vcpu, svm->next_rip);
650         svm_set_interrupt_shadow(vcpu, 0);
651 }
652
653 static void svm_queue_exception(struct kvm_vcpu *vcpu)
654 {
655         struct vcpu_svm *svm = to_svm(vcpu);
656         unsigned nr = vcpu->arch.exception.nr;
657         bool has_error_code = vcpu->arch.exception.has_error_code;
658         bool reinject = vcpu->arch.exception.injected;
659         u32 error_code = vcpu->arch.exception.error_code;
660
661         /*
662          * If we are within a nested VM we'd better #VMEXIT and let the guest
663          * handle the exception
664          */
665         if (!reinject &&
666             nested_svm_check_exception(svm, nr, has_error_code, error_code))
667                 return;
668
669         if (nr == BP_VECTOR && !static_cpu_has(X86_FEATURE_NRIPS)) {
670                 unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
671
672                 /*
673                  * For guest debugging where we have to reinject #BP if some
674                  * INT3 is guest-owned:
675                  * Emulate nRIP by moving RIP forward. Will fail if injection
676                  * raises a fault that is not intercepted. Still better than
677                  * failing in all cases.
678                  */
679                 skip_emulated_instruction(&svm->vcpu);
680                 rip = kvm_rip_read(&svm->vcpu);
681                 svm->int3_rip = rip + svm->vmcb->save.cs.base;
682                 svm->int3_injected = rip - old_rip;
683         }
684
685         svm->vmcb->control.event_inj = nr
686                 | SVM_EVTINJ_VALID
687                 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
688                 | SVM_EVTINJ_TYPE_EXEPT;
689         svm->vmcb->control.event_inj_err = error_code;
690 }
691
692 static void svm_init_erratum_383(void)
693 {
694         u32 low, high;
695         int err;
696         u64 val;
697
698         if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
699                 return;
700
701         /* Use _safe variants to not break nested virtualization */
702         val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
703         if (err)
704                 return;
705
706         val |= (1ULL << 47);
707
708         low  = lower_32_bits(val);
709         high = upper_32_bits(val);
710
711         native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
712
713         erratum_383_found = true;
714 }
715
716 static void svm_init_osvw(struct kvm_vcpu *vcpu)
717 {
718         /*
719          * Guests should see errata 400 and 415 as fixed (assuming that
720          * HLT and IO instructions are intercepted).
721          */
722         vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
723         vcpu->arch.osvw.status = osvw_status & ~(6ULL);
724
725         /*
726          * By increasing VCPU's osvw.length to 3 we are telling the guest that
727          * all osvw.status bits inside that length, including bit 0 (which is
728          * reserved for erratum 298), are valid. However, if host processor's
729          * osvw_len is 0 then osvw_status[0] carries no information. We need to
730          * be conservative here and therefore we tell the guest that erratum 298
731          * is present (because we really don't know).
732          */
733         if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
734                 vcpu->arch.osvw.status |= 1;
735 }
736
737 static int has_svm(void)
738 {
739         const char *msg;
740
741         if (!cpu_has_svm(&msg)) {
742                 printk(KERN_INFO "has_svm: %s\n", msg);
743                 return 0;
744         }
745
746         return 1;
747 }
748
749 static void svm_hardware_disable(void)
750 {
751         /* Make sure we clean up behind us */
752         if (static_cpu_has(X86_FEATURE_TSCRATEMSR))
753                 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
754
755         cpu_svm_disable();
756
757         amd_pmu_disable_virt();
758 }
759
760 static int svm_hardware_enable(void)
761 {
762
763         struct svm_cpu_data *sd;
764         uint64_t efer;
765         struct desc_struct *gdt;
766         int me = raw_smp_processor_id();
767
768         rdmsrl(MSR_EFER, efer);
769         if (efer & EFER_SVME)
770                 return -EBUSY;
771
772         if (!has_svm()) {
773                 pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me);
774                 return -EINVAL;
775         }
776         sd = per_cpu(svm_data, me);
777         if (!sd) {
778                 pr_err("%s: svm_data is NULL on %d\n", __func__, me);
779                 return -EINVAL;
780         }
781
782         sd->asid_generation = 1;
783         sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
784         sd->next_asid = sd->max_asid + 1;
785
786         gdt = get_current_gdt_rw();
787         sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
788
789         wrmsrl(MSR_EFER, efer | EFER_SVME);
790
791         wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
792
793         if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
794                 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
795                 __this_cpu_write(current_tsc_ratio, TSC_RATIO_DEFAULT);
796         }
797
798
799         /*
800          * Get OSVW bits.
801          *
802          * Note that it is possible to have a system with mixed processor
803          * revisions and therefore different OSVW bits. If bits are not the same
804          * on different processors then choose the worst case (i.e. if erratum
805          * is present on one processor and not on another then assume that the
806          * erratum is present everywhere).
807          */
808         if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
809                 uint64_t len, status = 0;
810                 int err;
811
812                 len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
813                 if (!err)
814                         status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
815                                                       &err);
816
817                 if (err)
818                         osvw_status = osvw_len = 0;
819                 else {
820                         if (len < osvw_len)
821                                 osvw_len = len;
822                         osvw_status |= status;
823                         osvw_status &= (1ULL << osvw_len) - 1;
824                 }
825         } else
826                 osvw_status = osvw_len = 0;
827
828         svm_init_erratum_383();
829
830         amd_pmu_enable_virt();
831
832         return 0;
833 }
834
835 static void svm_cpu_uninit(int cpu)
836 {
837         struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
838
839         if (!sd)
840                 return;
841
842         per_cpu(svm_data, raw_smp_processor_id()) = NULL;
843         __free_page(sd->save_area);
844         kfree(sd);
845 }
846
847 static int svm_cpu_init(int cpu)
848 {
849         struct svm_cpu_data *sd;
850         int r;
851
852         sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
853         if (!sd)
854                 return -ENOMEM;
855         sd->cpu = cpu;
856         sd->save_area = alloc_page(GFP_KERNEL);
857         r = -ENOMEM;
858         if (!sd->save_area)
859                 goto err_1;
860
861         per_cpu(svm_data, cpu) = sd;
862
863         return 0;
864
865 err_1:
866         kfree(sd);
867         return r;
868
869 }
870
871 static bool valid_msr_intercept(u32 index)
872 {
873         int i;
874
875         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
876                 if (direct_access_msrs[i].index == index)
877                         return true;
878
879         return false;
880 }
881
882 static void set_msr_interception(u32 *msrpm, unsigned msr,
883                                  int read, int write)
884 {
885         u8 bit_read, bit_write;
886         unsigned long tmp;
887         u32 offset;
888
889         /*
890          * If this warning triggers extend the direct_access_msrs list at the
891          * beginning of the file
892          */
893         WARN_ON(!valid_msr_intercept(msr));
894
895         offset    = svm_msrpm_offset(msr);
896         bit_read  = 2 * (msr & 0x0f);
897         bit_write = 2 * (msr & 0x0f) + 1;
898         tmp       = msrpm[offset];
899
900         BUG_ON(offset == MSR_INVALID);
901
902         read  ? clear_bit(bit_read,  &tmp) : set_bit(bit_read,  &tmp);
903         write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
904
905         msrpm[offset] = tmp;
906 }
907
908 static void svm_vcpu_init_msrpm(u32 *msrpm)
909 {
910         int i;
911
912         memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
913
914         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
915                 if (!direct_access_msrs[i].always)
916                         continue;
917
918                 set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1);
919         }
920 }
921
922 static void add_msr_offset(u32 offset)
923 {
924         int i;
925
926         for (i = 0; i < MSRPM_OFFSETS; ++i) {
927
928                 /* Offset already in list? */
929                 if (msrpm_offsets[i] == offset)
930                         return;
931
932                 /* Slot used by another offset? */
933                 if (msrpm_offsets[i] != MSR_INVALID)
934                         continue;
935
936                 /* Add offset to list */
937                 msrpm_offsets[i] = offset;
938
939                 return;
940         }
941
942         /*
943          * If this BUG triggers the msrpm_offsets table has an overflow. Just
944          * increase MSRPM_OFFSETS in this case.
945          */
946         BUG();
947 }
948
949 static void init_msrpm_offsets(void)
950 {
951         int i;
952
953         memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
954
955         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
956                 u32 offset;
957
958                 offset = svm_msrpm_offset(direct_access_msrs[i].index);
959                 BUG_ON(offset == MSR_INVALID);
960
961                 add_msr_offset(offset);
962         }
963 }
964
965 static void svm_enable_lbrv(struct vcpu_svm *svm)
966 {
967         u32 *msrpm = svm->msrpm;
968
969         svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
970         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
971         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
972         set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
973         set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
974 }
975
976 static void svm_disable_lbrv(struct vcpu_svm *svm)
977 {
978         u32 *msrpm = svm->msrpm;
979
980         svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK;
981         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
982         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
983         set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
984         set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
985 }
986
987 static void disable_nmi_singlestep(struct vcpu_svm *svm)
988 {
989         svm->nmi_singlestep = false;
990
991         if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) {
992                 /* Clear our flags if they were not set by the guest */
993                 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
994                         svm->vmcb->save.rflags &= ~X86_EFLAGS_TF;
995                 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
996                         svm->vmcb->save.rflags &= ~X86_EFLAGS_RF;
997         }
998 }
999
1000 /* Note:
1001  * This hash table is used to map VM_ID to a struct kvm_arch,
1002  * when handling AMD IOMMU GALOG notification to schedule in
1003  * a particular vCPU.
1004  */
1005 #define SVM_VM_DATA_HASH_BITS   8
1006 static DEFINE_HASHTABLE(svm_vm_data_hash, SVM_VM_DATA_HASH_BITS);
1007 static u32 next_vm_id = 0;
1008 static bool next_vm_id_wrapped = 0;
1009 static DEFINE_SPINLOCK(svm_vm_data_hash_lock);
1010
1011 /* Note:
1012  * This function is called from IOMMU driver to notify
1013  * SVM to schedule in a particular vCPU of a particular VM.
1014  */
1015 static int avic_ga_log_notifier(u32 ga_tag)
1016 {
1017         unsigned long flags;
1018         struct kvm_arch *ka = NULL;
1019         struct kvm_vcpu *vcpu = NULL;
1020         u32 vm_id = AVIC_GATAG_TO_VMID(ga_tag);
1021         u32 vcpu_id = AVIC_GATAG_TO_VCPUID(ga_tag);
1022
1023         pr_debug("SVM: %s: vm_id=%#x, vcpu_id=%#x\n", __func__, vm_id, vcpu_id);
1024
1025         spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
1026         hash_for_each_possible(svm_vm_data_hash, ka, hnode, vm_id) {
1027                 struct kvm *kvm = container_of(ka, struct kvm, arch);
1028                 struct kvm_arch *vm_data = &kvm->arch;
1029
1030                 if (vm_data->avic_vm_id != vm_id)
1031                         continue;
1032                 vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
1033                 break;
1034         }
1035         spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
1036
1037         if (!vcpu)
1038                 return 0;
1039
1040         /* Note:
1041          * At this point, the IOMMU should have already set the pending
1042          * bit in the vAPIC backing page. So, we just need to schedule
1043          * in the vcpu.
1044          */
1045         if (vcpu->mode == OUTSIDE_GUEST_MODE)
1046                 kvm_vcpu_wake_up(vcpu);
1047
1048         return 0;
1049 }
1050
1051 static __init int svm_hardware_setup(void)
1052 {
1053         int cpu;
1054         struct page *iopm_pages;
1055         void *iopm_va;
1056         int r;
1057
1058         iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
1059
1060         if (!iopm_pages)
1061                 return -ENOMEM;
1062
1063         iopm_va = page_address(iopm_pages);
1064         memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
1065         iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
1066
1067         init_msrpm_offsets();
1068
1069         if (boot_cpu_has(X86_FEATURE_NX))
1070                 kvm_enable_efer_bits(EFER_NX);
1071
1072         if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
1073                 kvm_enable_efer_bits(EFER_FFXSR);
1074
1075         if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
1076                 kvm_has_tsc_control = true;
1077                 kvm_max_tsc_scaling_ratio = TSC_RATIO_MAX;
1078                 kvm_tsc_scaling_ratio_frac_bits = 32;
1079         }
1080
1081         if (nested) {
1082                 printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
1083                 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
1084         }
1085
1086         for_each_possible_cpu(cpu) {
1087                 r = svm_cpu_init(cpu);
1088                 if (r)
1089                         goto err;
1090         }
1091
1092         if (!boot_cpu_has(X86_FEATURE_NPT))
1093                 npt_enabled = false;
1094
1095         if (npt_enabled && !npt) {
1096                 printk(KERN_INFO "kvm: Nested Paging disabled\n");
1097                 npt_enabled = false;
1098         }
1099
1100         if (npt_enabled) {
1101                 printk(KERN_INFO "kvm: Nested Paging enabled\n");
1102                 kvm_enable_tdp();
1103         } else
1104                 kvm_disable_tdp();
1105
1106         if (avic) {
1107                 if (!npt_enabled ||
1108                     !boot_cpu_has(X86_FEATURE_AVIC) ||
1109                     !IS_ENABLED(CONFIG_X86_LOCAL_APIC)) {
1110                         avic = false;
1111                 } else {
1112                         pr_info("AVIC enabled\n");
1113
1114                         amd_iommu_register_ga_log_notifier(&avic_ga_log_notifier);
1115                 }
1116         }
1117
1118         if (vls) {
1119                 if (!npt_enabled ||
1120                     !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) ||
1121                     !IS_ENABLED(CONFIG_X86_64)) {
1122                         vls = false;
1123                 } else {
1124                         pr_info("Virtual VMLOAD VMSAVE supported\n");
1125                 }
1126         }
1127
1128         if (vgif) {
1129                 if (!boot_cpu_has(X86_FEATURE_VGIF))
1130                         vgif = false;
1131                 else
1132                         pr_info("Virtual GIF supported\n");
1133         }
1134
1135         return 0;
1136
1137 err:
1138         __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
1139         iopm_base = 0;
1140         return r;
1141 }
1142
1143 static __exit void svm_hardware_unsetup(void)
1144 {
1145         int cpu;
1146
1147         for_each_possible_cpu(cpu)
1148                 svm_cpu_uninit(cpu);
1149
1150         __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
1151         iopm_base = 0;
1152 }
1153
1154 static void init_seg(struct vmcb_seg *seg)
1155 {
1156         seg->selector = 0;
1157         seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
1158                       SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
1159         seg->limit = 0xffff;
1160         seg->base = 0;
1161 }
1162
1163 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
1164 {
1165         seg->selector = 0;
1166         seg->attrib = SVM_SELECTOR_P_MASK | type;
1167         seg->limit = 0xffff;
1168         seg->base = 0;
1169 }
1170
1171 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1172 {
1173         struct vcpu_svm *svm = to_svm(vcpu);
1174         u64 g_tsc_offset = 0;
1175
1176         if (is_guest_mode(vcpu)) {
1177                 g_tsc_offset = svm->vmcb->control.tsc_offset -
1178                                svm->nested.hsave->control.tsc_offset;
1179                 svm->nested.hsave->control.tsc_offset = offset;
1180         } else
1181                 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1182                                            svm->vmcb->control.tsc_offset,
1183                                            offset);
1184
1185         svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
1186
1187         mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1188 }
1189
1190 static void avic_init_vmcb(struct vcpu_svm *svm)
1191 {
1192         struct vmcb *vmcb = svm->vmcb;
1193         struct kvm_arch *vm_data = &svm->vcpu.kvm->arch;
1194         phys_addr_t bpa = __sme_set(page_to_phys(svm->avic_backing_page));
1195         phys_addr_t lpa = __sme_set(page_to_phys(vm_data->avic_logical_id_table_page));
1196         phys_addr_t ppa = __sme_set(page_to_phys(vm_data->avic_physical_id_table_page));
1197
1198         vmcb->control.avic_backing_page = bpa & AVIC_HPA_MASK;
1199         vmcb->control.avic_logical_id = lpa & AVIC_HPA_MASK;
1200         vmcb->control.avic_physical_id = ppa & AVIC_HPA_MASK;
1201         vmcb->control.avic_physical_id |= AVIC_MAX_PHYSICAL_ID_COUNT;
1202         vmcb->control.int_ctl |= AVIC_ENABLE_MASK;
1203         svm->vcpu.arch.apicv_active = true;
1204 }
1205
1206 static void init_vmcb(struct vcpu_svm *svm)
1207 {
1208         struct vmcb_control_area *control = &svm->vmcb->control;
1209         struct vmcb_save_area *save = &svm->vmcb->save;
1210
1211         svm->vcpu.arch.hflags = 0;
1212
1213         set_cr_intercept(svm, INTERCEPT_CR0_READ);
1214         set_cr_intercept(svm, INTERCEPT_CR3_READ);
1215         set_cr_intercept(svm, INTERCEPT_CR4_READ);
1216         set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1217         set_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1218         set_cr_intercept(svm, INTERCEPT_CR4_WRITE);
1219         if (!kvm_vcpu_apicv_active(&svm->vcpu))
1220                 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
1221
1222         set_dr_intercepts(svm);
1223
1224         set_exception_intercept(svm, PF_VECTOR);
1225         set_exception_intercept(svm, UD_VECTOR);
1226         set_exception_intercept(svm, MC_VECTOR);
1227         set_exception_intercept(svm, AC_VECTOR);
1228         set_exception_intercept(svm, DB_VECTOR);
1229
1230         set_intercept(svm, INTERCEPT_INTR);
1231         set_intercept(svm, INTERCEPT_NMI);
1232         set_intercept(svm, INTERCEPT_SMI);
1233         set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1234         set_intercept(svm, INTERCEPT_RDPMC);
1235         set_intercept(svm, INTERCEPT_CPUID);
1236         set_intercept(svm, INTERCEPT_INVD);
1237         set_intercept(svm, INTERCEPT_HLT);
1238         set_intercept(svm, INTERCEPT_INVLPG);
1239         set_intercept(svm, INTERCEPT_INVLPGA);
1240         set_intercept(svm, INTERCEPT_IOIO_PROT);
1241         set_intercept(svm, INTERCEPT_MSR_PROT);
1242         set_intercept(svm, INTERCEPT_TASK_SWITCH);
1243         set_intercept(svm, INTERCEPT_SHUTDOWN);
1244         set_intercept(svm, INTERCEPT_VMRUN);
1245         set_intercept(svm, INTERCEPT_VMMCALL);
1246         set_intercept(svm, INTERCEPT_VMLOAD);
1247         set_intercept(svm, INTERCEPT_VMSAVE);
1248         set_intercept(svm, INTERCEPT_STGI);
1249         set_intercept(svm, INTERCEPT_CLGI);
1250         set_intercept(svm, INTERCEPT_SKINIT);
1251         set_intercept(svm, INTERCEPT_WBINVD);
1252         set_intercept(svm, INTERCEPT_XSETBV);
1253
1254         if (!kvm_mwait_in_guest()) {
1255                 set_intercept(svm, INTERCEPT_MONITOR);
1256                 set_intercept(svm, INTERCEPT_MWAIT);
1257         }
1258
1259         control->iopm_base_pa = __sme_set(iopm_base);
1260         control->msrpm_base_pa = __sme_set(__pa(svm->msrpm));
1261         control->int_ctl = V_INTR_MASKING_MASK;
1262
1263         init_seg(&save->es);
1264         init_seg(&save->ss);
1265         init_seg(&save->ds);
1266         init_seg(&save->fs);
1267         init_seg(&save->gs);
1268
1269         save->cs.selector = 0xf000;
1270         save->cs.base = 0xffff0000;
1271         /* Executable/Readable Code Segment */
1272         save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1273                 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1274         save->cs.limit = 0xffff;
1275
1276         save->gdtr.limit = 0xffff;
1277         save->idtr.limit = 0xffff;
1278
1279         init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1280         init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1281
1282         svm_set_efer(&svm->vcpu, 0);
1283         save->dr6 = 0xffff0ff0;
1284         kvm_set_rflags(&svm->vcpu, 2);
1285         save->rip = 0x0000fff0;
1286         svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
1287
1288         /*
1289          * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
1290          * It also updates the guest-visible cr0 value.
1291          */
1292         svm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
1293         kvm_mmu_reset_context(&svm->vcpu);
1294
1295         save->cr4 = X86_CR4_PAE;
1296         /* rdx = ?? */
1297
1298         if (npt_enabled) {
1299                 /* Setup VMCB for Nested Paging */
1300                 control->nested_ctl = 1;
1301                 clr_intercept(svm, INTERCEPT_INVLPG);
1302                 clr_exception_intercept(svm, PF_VECTOR);
1303                 clr_cr_intercept(svm, INTERCEPT_CR3_READ);
1304                 clr_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1305                 save->g_pat = svm->vcpu.arch.pat;
1306                 save->cr3 = 0;
1307                 save->cr4 = 0;
1308         }
1309         svm->asid_generation = 0;
1310
1311         svm->nested.vmcb = 0;
1312         svm->vcpu.arch.hflags = 0;
1313
1314         if (boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
1315                 control->pause_filter_count = 3000;
1316                 set_intercept(svm, INTERCEPT_PAUSE);
1317         }
1318
1319         if (avic)
1320                 avic_init_vmcb(svm);
1321
1322         /*
1323          * If hardware supports Virtual VMLOAD VMSAVE then enable it
1324          * in VMCB and clear intercepts to avoid #VMEXIT.
1325          */
1326         if (vls) {
1327                 clr_intercept(svm, INTERCEPT_VMLOAD);
1328                 clr_intercept(svm, INTERCEPT_VMSAVE);
1329                 svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1330         }
1331
1332         if (vgif) {
1333                 clr_intercept(svm, INTERCEPT_STGI);
1334                 clr_intercept(svm, INTERCEPT_CLGI);
1335                 svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK;
1336         }
1337
1338         mark_all_dirty(svm->vmcb);
1339
1340         enable_gif(svm);
1341
1342 }
1343
1344 static u64 *avic_get_physical_id_entry(struct kvm_vcpu *vcpu,
1345                                        unsigned int index)
1346 {
1347         u64 *avic_physical_id_table;
1348         struct kvm_arch *vm_data = &vcpu->kvm->arch;
1349
1350         if (index >= AVIC_MAX_PHYSICAL_ID_COUNT)
1351                 return NULL;
1352
1353         avic_physical_id_table = page_address(vm_data->avic_physical_id_table_page);
1354
1355         return &avic_physical_id_table[index];
1356 }
1357
1358 /**
1359  * Note:
1360  * AVIC hardware walks the nested page table to check permissions,
1361  * but does not use the SPA address specified in the leaf page
1362  * table entry since it uses  address in the AVIC_BACKING_PAGE pointer
1363  * field of the VMCB. Therefore, we set up the
1364  * APIC_ACCESS_PAGE_PRIVATE_MEMSLOT (4KB) here.
1365  */
1366 static int avic_init_access_page(struct kvm_vcpu *vcpu)
1367 {
1368         struct kvm *kvm = vcpu->kvm;
1369         int ret;
1370
1371         if (kvm->arch.apic_access_page_done)
1372                 return 0;
1373
1374         ret = x86_set_memory_region(kvm,
1375                                     APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
1376                                     APIC_DEFAULT_PHYS_BASE,
1377                                     PAGE_SIZE);
1378         if (ret)
1379                 return ret;
1380
1381         kvm->arch.apic_access_page_done = true;
1382         return 0;
1383 }
1384
1385 static int avic_init_backing_page(struct kvm_vcpu *vcpu)
1386 {
1387         int ret;
1388         u64 *entry, new_entry;
1389         int id = vcpu->vcpu_id;
1390         struct vcpu_svm *svm = to_svm(vcpu);
1391
1392         ret = avic_init_access_page(vcpu);
1393         if (ret)
1394                 return ret;
1395
1396         if (id >= AVIC_MAX_PHYSICAL_ID_COUNT)
1397                 return -EINVAL;
1398
1399         if (!svm->vcpu.arch.apic->regs)
1400                 return -EINVAL;
1401
1402         svm->avic_backing_page = virt_to_page(svm->vcpu.arch.apic->regs);
1403
1404         /* Setting AVIC backing page address in the phy APIC ID table */
1405         entry = avic_get_physical_id_entry(vcpu, id);
1406         if (!entry)
1407                 return -EINVAL;
1408
1409         new_entry = READ_ONCE(*entry);
1410         new_entry = __sme_set((page_to_phys(svm->avic_backing_page) &
1411                               AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK) |
1412                               AVIC_PHYSICAL_ID_ENTRY_VALID_MASK);
1413         WRITE_ONCE(*entry, new_entry);
1414
1415         svm->avic_physical_id_cache = entry;
1416
1417         return 0;
1418 }
1419
1420 static void avic_vm_destroy(struct kvm *kvm)
1421 {
1422         unsigned long flags;
1423         struct kvm_arch *vm_data = &kvm->arch;
1424
1425         if (!avic)
1426                 return;
1427
1428         if (vm_data->avic_logical_id_table_page)
1429                 __free_page(vm_data->avic_logical_id_table_page);
1430         if (vm_data->avic_physical_id_table_page)
1431                 __free_page(vm_data->avic_physical_id_table_page);
1432
1433         spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
1434         hash_del(&vm_data->hnode);
1435         spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
1436 }
1437
1438 static int avic_vm_init(struct kvm *kvm)
1439 {
1440         unsigned long flags;
1441         int err = -ENOMEM;
1442         struct kvm_arch *vm_data = &kvm->arch;
1443         struct page *p_page;
1444         struct page *l_page;
1445         struct kvm_arch *ka;
1446         u32 vm_id;
1447
1448         if (!avic)
1449                 return 0;
1450
1451         /* Allocating physical APIC ID table (4KB) */
1452         p_page = alloc_page(GFP_KERNEL);
1453         if (!p_page)
1454                 goto free_avic;
1455
1456         vm_data->avic_physical_id_table_page = p_page;
1457         clear_page(page_address(p_page));
1458
1459         /* Allocating logical APIC ID table (4KB) */
1460         l_page = alloc_page(GFP_KERNEL);
1461         if (!l_page)
1462                 goto free_avic;
1463
1464         vm_data->avic_logical_id_table_page = l_page;
1465         clear_page(page_address(l_page));
1466
1467         spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
1468  again:
1469         vm_id = next_vm_id = (next_vm_id + 1) & AVIC_VM_ID_MASK;
1470         if (vm_id == 0) { /* id is 1-based, zero is not okay */
1471                 next_vm_id_wrapped = 1;
1472                 goto again;
1473         }
1474         /* Is it still in use? Only possible if wrapped at least once */
1475         if (next_vm_id_wrapped) {
1476                 hash_for_each_possible(svm_vm_data_hash, ka, hnode, vm_id) {
1477                         struct kvm *k2 = container_of(ka, struct kvm, arch);
1478                         struct kvm_arch *vd2 = &k2->arch;
1479                         if (vd2->avic_vm_id == vm_id)
1480                                 goto again;
1481                 }
1482         }
1483         vm_data->avic_vm_id = vm_id;
1484         hash_add(svm_vm_data_hash, &vm_data->hnode, vm_data->avic_vm_id);
1485         spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
1486
1487         return 0;
1488
1489 free_avic:
1490         avic_vm_destroy(kvm);
1491         return err;
1492 }
1493
1494 static inline int
1495 avic_update_iommu_vcpu_affinity(struct kvm_vcpu *vcpu, int cpu, bool r)
1496 {
1497         int ret = 0;
1498         unsigned long flags;
1499         struct amd_svm_iommu_ir *ir;
1500         struct vcpu_svm *svm = to_svm(vcpu);
1501
1502         if (!kvm_arch_has_assigned_device(vcpu->kvm))
1503                 return 0;
1504
1505         /*
1506          * Here, we go through the per-vcpu ir_list to update all existing
1507          * interrupt remapping table entry targeting this vcpu.
1508          */
1509         spin_lock_irqsave(&svm->ir_list_lock, flags);
1510
1511         if (list_empty(&svm->ir_list))
1512                 goto out;
1513
1514         list_for_each_entry(ir, &svm->ir_list, node) {
1515                 ret = amd_iommu_update_ga(cpu, r, ir->data);
1516                 if (ret)
1517                         break;
1518         }
1519 out:
1520         spin_unlock_irqrestore(&svm->ir_list_lock, flags);
1521         return ret;
1522 }
1523
1524 static void avic_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1525 {
1526         u64 entry;
1527         /* ID = 0xff (broadcast), ID > 0xff (reserved) */
1528         int h_physical_id = kvm_cpu_get_apicid(cpu);
1529         struct vcpu_svm *svm = to_svm(vcpu);
1530
1531         if (!kvm_vcpu_apicv_active(vcpu))
1532                 return;
1533
1534         if (WARN_ON(h_physical_id >= AVIC_MAX_PHYSICAL_ID_COUNT))
1535                 return;
1536
1537         entry = READ_ONCE(*(svm->avic_physical_id_cache));
1538         WARN_ON(entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK);
1539
1540         entry &= ~AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK;
1541         entry |= (h_physical_id & AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK);
1542
1543         entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
1544         if (svm->avic_is_running)
1545                 entry |= AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
1546
1547         WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
1548         avic_update_iommu_vcpu_affinity(vcpu, h_physical_id,
1549                                         svm->avic_is_running);
1550 }
1551
1552 static void avic_vcpu_put(struct kvm_vcpu *vcpu)
1553 {
1554         u64 entry;
1555         struct vcpu_svm *svm = to_svm(vcpu);
1556
1557         if (!kvm_vcpu_apicv_active(vcpu))
1558                 return;
1559
1560         entry = READ_ONCE(*(svm->avic_physical_id_cache));
1561         if (entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK)
1562                 avic_update_iommu_vcpu_affinity(vcpu, -1, 0);
1563
1564         entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
1565         WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
1566 }
1567
1568 /**
1569  * This function is called during VCPU halt/unhalt.
1570  */
1571 static void avic_set_running(struct kvm_vcpu *vcpu, bool is_run)
1572 {
1573         struct vcpu_svm *svm = to_svm(vcpu);
1574
1575         svm->avic_is_running = is_run;
1576         if (is_run)
1577                 avic_vcpu_load(vcpu, vcpu->cpu);
1578         else
1579                 avic_vcpu_put(vcpu);
1580 }
1581
1582 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
1583 {
1584         struct vcpu_svm *svm = to_svm(vcpu);
1585         u32 dummy;
1586         u32 eax = 1;
1587
1588         if (!init_event) {
1589                 svm->vcpu.arch.apic_base = APIC_DEFAULT_PHYS_BASE |
1590                                            MSR_IA32_APICBASE_ENABLE;
1591                 if (kvm_vcpu_is_reset_bsp(&svm->vcpu))
1592                         svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
1593         }
1594         init_vmcb(svm);
1595
1596         kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy, true);
1597         kvm_register_write(vcpu, VCPU_REGS_RDX, eax);
1598
1599         if (kvm_vcpu_apicv_active(vcpu) && !init_event)
1600                 avic_update_vapic_bar(svm, APIC_DEFAULT_PHYS_BASE);
1601 }
1602
1603 static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
1604 {
1605         struct vcpu_svm *svm;
1606         struct page *page;
1607         struct page *msrpm_pages;
1608         struct page *hsave_page;
1609         struct page *nested_msrpm_pages;
1610         int err;
1611
1612         svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1613         if (!svm) {
1614                 err = -ENOMEM;
1615                 goto out;
1616         }
1617
1618         err = kvm_vcpu_init(&svm->vcpu, kvm, id);
1619         if (err)
1620                 goto free_svm;
1621
1622         err = -ENOMEM;
1623         page = alloc_page(GFP_KERNEL);
1624         if (!page)
1625                 goto uninit;
1626
1627         msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1628         if (!msrpm_pages)
1629                 goto free_page1;
1630
1631         nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1632         if (!nested_msrpm_pages)
1633                 goto free_page2;
1634
1635         hsave_page = alloc_page(GFP_KERNEL);
1636         if (!hsave_page)
1637                 goto free_page3;
1638
1639         if (avic) {
1640                 err = avic_init_backing_page(&svm->vcpu);
1641                 if (err)
1642                         goto free_page4;
1643
1644                 INIT_LIST_HEAD(&svm->ir_list);
1645                 spin_lock_init(&svm->ir_list_lock);
1646         }
1647
1648         /* We initialize this flag to true to make sure that the is_running
1649          * bit would be set the first time the vcpu is loaded.
1650          */
1651         svm->avic_is_running = true;
1652
1653         svm->nested.hsave = page_address(hsave_page);
1654
1655         svm->msrpm = page_address(msrpm_pages);
1656         svm_vcpu_init_msrpm(svm->msrpm);
1657
1658         svm->nested.msrpm = page_address(nested_msrpm_pages);
1659         svm_vcpu_init_msrpm(svm->nested.msrpm);
1660
1661         svm->vmcb = page_address(page);
1662         clear_page(svm->vmcb);
1663         svm->vmcb_pa = __sme_set(page_to_pfn(page) << PAGE_SHIFT);
1664         svm->asid_generation = 0;
1665         init_vmcb(svm);
1666
1667         svm_init_osvw(&svm->vcpu);
1668
1669         return &svm->vcpu;
1670
1671 free_page4:
1672         __free_page(hsave_page);
1673 free_page3:
1674         __free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
1675 free_page2:
1676         __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
1677 free_page1:
1678         __free_page(page);
1679 uninit:
1680         kvm_vcpu_uninit(&svm->vcpu);
1681 free_svm:
1682         kmem_cache_free(kvm_vcpu_cache, svm);
1683 out:
1684         return ERR_PTR(err);
1685 }
1686
1687 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
1688 {
1689         struct vcpu_svm *svm = to_svm(vcpu);
1690
1691         __free_page(pfn_to_page(__sme_clr(svm->vmcb_pa) >> PAGE_SHIFT));
1692         __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
1693         __free_page(virt_to_page(svm->nested.hsave));
1694         __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
1695         kvm_vcpu_uninit(vcpu);
1696         kmem_cache_free(kvm_vcpu_cache, svm);
1697 }
1698
1699 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1700 {
1701         struct vcpu_svm *svm = to_svm(vcpu);
1702         int i;
1703
1704         if (unlikely(cpu != vcpu->cpu)) {
1705                 svm->asid_generation = 0;
1706                 mark_all_dirty(svm->vmcb);
1707         }
1708
1709 #ifdef CONFIG_X86_64
1710         rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base);
1711 #endif
1712         savesegment(fs, svm->host.fs);
1713         savesegment(gs, svm->host.gs);
1714         svm->host.ldt = kvm_read_ldt();
1715
1716         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1717                 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1718
1719         if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
1720                 u64 tsc_ratio = vcpu->arch.tsc_scaling_ratio;
1721                 if (tsc_ratio != __this_cpu_read(current_tsc_ratio)) {
1722                         __this_cpu_write(current_tsc_ratio, tsc_ratio);
1723                         wrmsrl(MSR_AMD64_TSC_RATIO, tsc_ratio);
1724                 }
1725         }
1726         /* This assumes that the kernel never uses MSR_TSC_AUX */
1727         if (static_cpu_has(X86_FEATURE_RDTSCP))
1728                 wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
1729
1730         avic_vcpu_load(vcpu, cpu);
1731 }
1732
1733 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1734 {
1735         struct vcpu_svm *svm = to_svm(vcpu);
1736         int i;
1737
1738         avic_vcpu_put(vcpu);
1739
1740         ++vcpu->stat.host_state_reload;
1741         kvm_load_ldt(svm->host.ldt);
1742 #ifdef CONFIG_X86_64
1743         loadsegment(fs, svm->host.fs);
1744         wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gsbase);
1745         load_gs_index(svm->host.gs);
1746 #else
1747 #ifdef CONFIG_X86_32_LAZY_GS
1748         loadsegment(gs, svm->host.gs);
1749 #endif
1750 #endif
1751         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1752                 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1753 }
1754
1755 static void svm_vcpu_blocking(struct kvm_vcpu *vcpu)
1756 {
1757         avic_set_running(vcpu, false);
1758 }
1759
1760 static void svm_vcpu_unblocking(struct kvm_vcpu *vcpu)
1761 {
1762         avic_set_running(vcpu, true);
1763 }
1764
1765 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1766 {
1767         struct vcpu_svm *svm = to_svm(vcpu);
1768         unsigned long rflags = svm->vmcb->save.rflags;
1769
1770         if (svm->nmi_singlestep) {
1771                 /* Hide our flags if they were not set by the guest */
1772                 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1773                         rflags &= ~X86_EFLAGS_TF;
1774                 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1775                         rflags &= ~X86_EFLAGS_RF;
1776         }
1777         return rflags;
1778 }
1779
1780 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1781 {
1782         if (to_svm(vcpu)->nmi_singlestep)
1783                 rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
1784
1785        /*
1786         * Any change of EFLAGS.VM is accompanied by a reload of SS
1787         * (caused by either a task switch or an inter-privilege IRET),
1788         * so we do not need to update the CPL here.
1789         */
1790         to_svm(vcpu)->vmcb->save.rflags = rflags;
1791 }
1792
1793 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1794 {
1795         switch (reg) {
1796         case VCPU_EXREG_PDPTR:
1797                 BUG_ON(!npt_enabled);
1798                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
1799                 break;
1800         default:
1801                 BUG();
1802         }
1803 }
1804
1805 static void svm_set_vintr(struct vcpu_svm *svm)
1806 {
1807         set_intercept(svm, INTERCEPT_VINTR);
1808 }
1809
1810 static void svm_clear_vintr(struct vcpu_svm *svm)
1811 {
1812         clr_intercept(svm, INTERCEPT_VINTR);
1813 }
1814
1815 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1816 {
1817         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1818
1819         switch (seg) {
1820         case VCPU_SREG_CS: return &save->cs;
1821         case VCPU_SREG_DS: return &save->ds;
1822         case VCPU_SREG_ES: return &save->es;
1823         case VCPU_SREG_FS: return &save->fs;
1824         case VCPU_SREG_GS: return &save->gs;
1825         case VCPU_SREG_SS: return &save->ss;
1826         case VCPU_SREG_TR: return &save->tr;
1827         case VCPU_SREG_LDTR: return &save->ldtr;
1828         }
1829         BUG();
1830         return NULL;
1831 }
1832
1833 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1834 {
1835         struct vmcb_seg *s = svm_seg(vcpu, seg);
1836
1837         return s->base;
1838 }
1839
1840 static void svm_get_segment(struct kvm_vcpu *vcpu,
1841                             struct kvm_segment *var, int seg)
1842 {
1843         struct vmcb_seg *s = svm_seg(vcpu, seg);
1844
1845         var->base = s->base;
1846         var->limit = s->limit;
1847         var->selector = s->selector;
1848         var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1849         var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1850         var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1851         var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1852         var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1853         var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1854         var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1855
1856         /*
1857          * AMD CPUs circa 2014 track the G bit for all segments except CS.
1858          * However, the SVM spec states that the G bit is not observed by the
1859          * CPU, and some VMware virtual CPUs drop the G bit for all segments.
1860          * So let's synthesize a legal G bit for all segments, this helps
1861          * running KVM nested. It also helps cross-vendor migration, because
1862          * Intel's vmentry has a check on the 'G' bit.
1863          */
1864         var->g = s->limit > 0xfffff;
1865
1866         /*
1867          * AMD's VMCB does not have an explicit unusable field, so emulate it
1868          * for cross vendor migration purposes by "not present"
1869          */
1870         var->unusable = !var->present;
1871
1872         switch (seg) {
1873         case VCPU_SREG_TR:
1874                 /*
1875                  * Work around a bug where the busy flag in the tr selector
1876                  * isn't exposed
1877                  */
1878                 var->type |= 0x2;
1879                 break;
1880         case VCPU_SREG_DS:
1881         case VCPU_SREG_ES:
1882         case VCPU_SREG_FS:
1883         case VCPU_SREG_GS:
1884                 /*
1885                  * The accessed bit must always be set in the segment
1886                  * descriptor cache, although it can be cleared in the
1887                  * descriptor, the cached bit always remains at 1. Since
1888                  * Intel has a check on this, set it here to support
1889                  * cross-vendor migration.
1890                  */
1891                 if (!var->unusable)
1892                         var->type |= 0x1;
1893                 break;
1894         case VCPU_SREG_SS:
1895                 /*
1896                  * On AMD CPUs sometimes the DB bit in the segment
1897                  * descriptor is left as 1, although the whole segment has
1898                  * been made unusable. Clear it here to pass an Intel VMX
1899                  * entry check when cross vendor migrating.
1900                  */
1901                 if (var->unusable)
1902                         var->db = 0;
1903                 /* This is symmetric with svm_set_segment() */
1904                 var->dpl = to_svm(vcpu)->vmcb->save.cpl;
1905                 break;
1906         }
1907 }
1908
1909 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1910 {
1911         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1912
1913         return save->cpl;
1914 }
1915
1916 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1917 {
1918         struct vcpu_svm *svm = to_svm(vcpu);
1919
1920         dt->size = svm->vmcb->save.idtr.limit;
1921         dt->address = svm->vmcb->save.idtr.base;
1922 }
1923
1924 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1925 {
1926         struct vcpu_svm *svm = to_svm(vcpu);
1927
1928         svm->vmcb->save.idtr.limit = dt->size;
1929         svm->vmcb->save.idtr.base = dt->address ;
1930         mark_dirty(svm->vmcb, VMCB_DT);
1931 }
1932
1933 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1934 {
1935         struct vcpu_svm *svm = to_svm(vcpu);
1936
1937         dt->size = svm->vmcb->save.gdtr.limit;
1938         dt->address = svm->vmcb->save.gdtr.base;
1939 }
1940
1941 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1942 {
1943         struct vcpu_svm *svm = to_svm(vcpu);
1944
1945         svm->vmcb->save.gdtr.limit = dt->size;
1946         svm->vmcb->save.gdtr.base = dt->address ;
1947         mark_dirty(svm->vmcb, VMCB_DT);
1948 }
1949
1950 static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
1951 {
1952 }
1953
1954 static void svm_decache_cr3(struct kvm_vcpu *vcpu)
1955 {
1956 }
1957
1958 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1959 {
1960 }
1961
1962 static void update_cr0_intercept(struct vcpu_svm *svm)
1963 {
1964         ulong gcr0 = svm->vcpu.arch.cr0;
1965         u64 *hcr0 = &svm->vmcb->save.cr0;
1966
1967         *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
1968                 | (gcr0 & SVM_CR0_SELECTIVE_MASK);
1969
1970         mark_dirty(svm->vmcb, VMCB_CR);
1971
1972         if (gcr0 == *hcr0) {
1973                 clr_cr_intercept(svm, INTERCEPT_CR0_READ);
1974                 clr_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1975         } else {
1976                 set_cr_intercept(svm, INTERCEPT_CR0_READ);
1977                 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1978         }
1979 }
1980
1981 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1982 {
1983         struct vcpu_svm *svm = to_svm(vcpu);
1984
1985 #ifdef CONFIG_X86_64
1986         if (vcpu->arch.efer & EFER_LME) {
1987                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1988                         vcpu->arch.efer |= EFER_LMA;
1989                         svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1990                 }
1991
1992                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1993                         vcpu->arch.efer &= ~EFER_LMA;
1994                         svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1995                 }
1996         }
1997 #endif
1998         vcpu->arch.cr0 = cr0;
1999
2000         if (!npt_enabled)
2001                 cr0 |= X86_CR0_PG | X86_CR0_WP;
2002
2003         /*
2004          * re-enable caching here because the QEMU bios
2005          * does not do it - this results in some delay at
2006          * reboot
2007          */
2008         if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
2009                 cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
2010         svm->vmcb->save.cr0 = cr0;
2011         mark_dirty(svm->vmcb, VMCB_CR);
2012         update_cr0_intercept(svm);
2013 }
2014
2015 static int svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
2016 {
2017         unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
2018         unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
2019
2020         if (cr4 & X86_CR4_VMXE)
2021                 return 1;
2022
2023         if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
2024                 svm_flush_tlb(vcpu);
2025
2026         vcpu->arch.cr4 = cr4;
2027         if (!npt_enabled)
2028                 cr4 |= X86_CR4_PAE;
2029         cr4 |= host_cr4_mce;
2030         to_svm(vcpu)->vmcb->save.cr4 = cr4;
2031         mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
2032         return 0;
2033 }
2034
2035 static void svm_set_segment(struct kvm_vcpu *vcpu,
2036                             struct kvm_segment *var, int seg)
2037 {
2038         struct vcpu_svm *svm = to_svm(vcpu);
2039         struct vmcb_seg *s = svm_seg(vcpu, seg);
2040
2041         s->base = var->base;
2042         s->limit = var->limit;
2043         s->selector = var->selector;
2044         s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
2045         s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
2046         s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
2047         s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT;
2048         s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
2049         s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
2050         s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
2051         s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
2052
2053         /*
2054          * This is always accurate, except if SYSRET returned to a segment
2055          * with SS.DPL != 3.  Intel does not have this quirk, and always
2056          * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
2057          * would entail passing the CPL to userspace and back.
2058          */
2059         if (seg == VCPU_SREG_SS)
2060                 /* This is symmetric with svm_get_segment() */
2061                 svm->vmcb->save.cpl = (var->dpl & 3);
2062
2063         mark_dirty(svm->vmcb, VMCB_SEG);
2064 }
2065
2066 static void update_bp_intercept(struct kvm_vcpu *vcpu)
2067 {
2068         struct vcpu_svm *svm = to_svm(vcpu);
2069
2070         clr_exception_intercept(svm, BP_VECTOR);
2071
2072         if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
2073                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
2074                         set_exception_intercept(svm, BP_VECTOR);
2075         } else
2076                 vcpu->guest_debug = 0;
2077 }
2078
2079 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
2080 {
2081         if (sd->next_asid > sd->max_asid) {
2082                 ++sd->asid_generation;
2083                 sd->next_asid = 1;
2084                 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
2085         }
2086
2087         svm->asid_generation = sd->asid_generation;
2088         svm->vmcb->control.asid = sd->next_asid++;
2089
2090         mark_dirty(svm->vmcb, VMCB_ASID);
2091 }
2092
2093 static u64 svm_get_dr6(struct kvm_vcpu *vcpu)
2094 {
2095         return to_svm(vcpu)->vmcb->save.dr6;
2096 }
2097
2098 static void svm_set_dr6(struct kvm_vcpu *vcpu, unsigned long value)
2099 {
2100         struct vcpu_svm *svm = to_svm(vcpu);
2101
2102         svm->vmcb->save.dr6 = value;
2103         mark_dirty(svm->vmcb, VMCB_DR);
2104 }
2105
2106 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
2107 {
2108         struct vcpu_svm *svm = to_svm(vcpu);
2109
2110         get_debugreg(vcpu->arch.db[0], 0);
2111         get_debugreg(vcpu->arch.db[1], 1);
2112         get_debugreg(vcpu->arch.db[2], 2);
2113         get_debugreg(vcpu->arch.db[3], 3);
2114         vcpu->arch.dr6 = svm_get_dr6(vcpu);
2115         vcpu->arch.dr7 = svm->vmcb->save.dr7;
2116
2117         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
2118         set_dr_intercepts(svm);
2119 }
2120
2121 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
2122 {
2123         struct vcpu_svm *svm = to_svm(vcpu);
2124
2125         svm->vmcb->save.dr7 = value;
2126         mark_dirty(svm->vmcb, VMCB_DR);
2127 }
2128
2129 static int pf_interception(struct vcpu_svm *svm)
2130 {
2131         u64 fault_address = svm->vmcb->control.exit_info_2;
2132         u64 error_code = svm->vmcb->control.exit_info_1;
2133
2134         return kvm_handle_page_fault(&svm->vcpu, error_code, fault_address,
2135                         svm->vmcb->control.insn_bytes,
2136                         svm->vmcb->control.insn_len, !npt_enabled);
2137 }
2138
2139 static int db_interception(struct vcpu_svm *svm)
2140 {
2141         struct kvm_run *kvm_run = svm->vcpu.run;
2142
2143         if (!(svm->vcpu.guest_debug &
2144               (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
2145                 !svm->nmi_singlestep) {
2146                 kvm_queue_exception(&svm->vcpu, DB_VECTOR);
2147                 return 1;
2148         }
2149
2150         if (svm->nmi_singlestep) {
2151                 disable_nmi_singlestep(svm);
2152         }
2153
2154         if (svm->vcpu.guest_debug &
2155             (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
2156                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
2157                 kvm_run->debug.arch.pc =
2158                         svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2159                 kvm_run->debug.arch.exception = DB_VECTOR;
2160                 return 0;
2161         }
2162
2163         return 1;
2164 }
2165
2166 static int bp_interception(struct vcpu_svm *svm)
2167 {
2168         struct kvm_run *kvm_run = svm->vcpu.run;
2169
2170         kvm_run->exit_reason = KVM_EXIT_DEBUG;
2171         kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2172         kvm_run->debug.arch.exception = BP_VECTOR;
2173         return 0;
2174 }
2175
2176 static int ud_interception(struct vcpu_svm *svm)
2177 {
2178         int er;
2179
2180         er = emulate_instruction(&svm->vcpu, EMULTYPE_TRAP_UD);
2181         if (er != EMULATE_DONE)
2182                 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2183         return 1;
2184 }
2185
2186 static int ac_interception(struct vcpu_svm *svm)
2187 {
2188         kvm_queue_exception_e(&svm->vcpu, AC_VECTOR, 0);
2189         return 1;
2190 }
2191
2192 static bool is_erratum_383(void)
2193 {
2194         int err, i;
2195         u64 value;
2196
2197         if (!erratum_383_found)
2198                 return false;
2199
2200         value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
2201         if (err)
2202                 return false;
2203
2204         /* Bit 62 may or may not be set for this mce */
2205         value &= ~(1ULL << 62);
2206
2207         if (value != 0xb600000000010015ULL)
2208                 return false;
2209
2210         /* Clear MCi_STATUS registers */
2211         for (i = 0; i < 6; ++i)
2212                 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
2213
2214         value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
2215         if (!err) {
2216                 u32 low, high;
2217
2218                 value &= ~(1ULL << 2);
2219                 low    = lower_32_bits(value);
2220                 high   = upper_32_bits(value);
2221
2222                 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
2223         }
2224
2225         /* Flush tlb to evict multi-match entries */
2226         __flush_tlb_all();
2227
2228         return true;
2229 }
2230
2231 static void svm_handle_mce(struct vcpu_svm *svm)
2232 {
2233         if (is_erratum_383()) {
2234                 /*
2235                  * Erratum 383 triggered. Guest state is corrupt so kill the
2236                  * guest.
2237                  */
2238                 pr_err("KVM: Guest triggered AMD Erratum 383\n");
2239
2240                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
2241
2242                 return;
2243         }
2244
2245         /*
2246          * On an #MC intercept the MCE handler is not called automatically in
2247          * the host. So do it by hand here.
2248          */
2249         asm volatile (
2250                 "int $0x12\n");
2251         /* not sure if we ever come back to this point */
2252
2253         return;
2254 }
2255
2256 static int mc_interception(struct vcpu_svm *svm)
2257 {
2258         return 1;
2259 }
2260
2261 static int shutdown_interception(struct vcpu_svm *svm)
2262 {
2263         struct kvm_run *kvm_run = svm->vcpu.run;
2264
2265         /*
2266          * VMCB is undefined after a SHUTDOWN intercept
2267          * so reinitialize it.
2268          */
2269         clear_page(svm->vmcb);
2270         init_vmcb(svm);
2271
2272         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2273         return 0;
2274 }
2275
2276 static int io_interception(struct vcpu_svm *svm)
2277 {
2278         struct kvm_vcpu *vcpu = &svm->vcpu;
2279         u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
2280         int size, in, string, ret;
2281         unsigned port;
2282
2283         ++svm->vcpu.stat.io_exits;
2284         string = (io_info & SVM_IOIO_STR_MASK) != 0;
2285         in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
2286         if (string)
2287                 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
2288
2289         port = io_info >> 16;
2290         size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
2291         svm->next_rip = svm->vmcb->control.exit_info_2;
2292         ret = kvm_skip_emulated_instruction(&svm->vcpu);
2293
2294         /*
2295          * TODO: we might be squashing a KVM_GUESTDBG_SINGLESTEP-triggered
2296          * KVM_EXIT_DEBUG here.
2297          */
2298         if (in)
2299                 return kvm_fast_pio_in(vcpu, size, port) && ret;
2300         else
2301                 return kvm_fast_pio_out(vcpu, size, port) && ret;
2302 }
2303
2304 static int nmi_interception(struct vcpu_svm *svm)
2305 {
2306         return 1;
2307 }
2308
2309 static int intr_interception(struct vcpu_svm *svm)
2310 {
2311         ++svm->vcpu.stat.irq_exits;
2312         return 1;
2313 }
2314
2315 static int nop_on_interception(struct vcpu_svm *svm)
2316 {
2317         return 1;
2318 }
2319
2320 static int halt_interception(struct vcpu_svm *svm)
2321 {
2322         svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
2323         return kvm_emulate_halt(&svm->vcpu);
2324 }
2325
2326 static int vmmcall_interception(struct vcpu_svm *svm)
2327 {
2328         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2329         return kvm_emulate_hypercall(&svm->vcpu);
2330 }
2331
2332 static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu)
2333 {
2334         struct vcpu_svm *svm = to_svm(vcpu);
2335
2336         return svm->nested.nested_cr3;
2337 }
2338
2339 static u64 nested_svm_get_tdp_pdptr(struct kvm_vcpu *vcpu, int index)
2340 {
2341         struct vcpu_svm *svm = to_svm(vcpu);
2342         u64 cr3 = svm->nested.nested_cr3;
2343         u64 pdpte;
2344         int ret;
2345
2346         ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(__sme_clr(cr3)), &pdpte,
2347                                        offset_in_page(cr3) + index * 8, 8);
2348         if (ret)
2349                 return 0;
2350         return pdpte;
2351 }
2352
2353 static void nested_svm_set_tdp_cr3(struct kvm_vcpu *vcpu,
2354                                    unsigned long root)
2355 {
2356         struct vcpu_svm *svm = to_svm(vcpu);
2357
2358         svm->vmcb->control.nested_cr3 = __sme_set(root);
2359         mark_dirty(svm->vmcb, VMCB_NPT);
2360         svm_flush_tlb(vcpu);
2361 }
2362
2363 static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu,
2364                                        struct x86_exception *fault)
2365 {
2366         struct vcpu_svm *svm = to_svm(vcpu);
2367
2368         if (svm->vmcb->control.exit_code != SVM_EXIT_NPF) {
2369                 /*
2370                  * TODO: track the cause of the nested page fault, and
2371                  * correctly fill in the high bits of exit_info_1.
2372                  */
2373                 svm->vmcb->control.exit_code = SVM_EXIT_NPF;
2374                 svm->vmcb->control.exit_code_hi = 0;
2375                 svm->vmcb->control.exit_info_1 = (1ULL << 32);
2376                 svm->vmcb->control.exit_info_2 = fault->address;
2377         }
2378
2379         svm->vmcb->control.exit_info_1 &= ~0xffffffffULL;
2380         svm->vmcb->control.exit_info_1 |= fault->error_code;
2381
2382         /*
2383          * The present bit is always zero for page structure faults on real
2384          * hardware.
2385          */
2386         if (svm->vmcb->control.exit_info_1 & (2ULL << 32))
2387                 svm->vmcb->control.exit_info_1 &= ~1;
2388
2389         nested_svm_vmexit(svm);
2390 }
2391
2392 static void nested_svm_init_mmu_context(struct kvm_vcpu *vcpu)
2393 {
2394         WARN_ON(mmu_is_nested(vcpu));
2395         kvm_init_shadow_mmu(vcpu);
2396         vcpu->arch.mmu.set_cr3           = nested_svm_set_tdp_cr3;
2397         vcpu->arch.mmu.get_cr3           = nested_svm_get_tdp_cr3;
2398         vcpu->arch.mmu.get_pdptr         = nested_svm_get_tdp_pdptr;
2399         vcpu->arch.mmu.inject_page_fault = nested_svm_inject_npf_exit;
2400         vcpu->arch.mmu.shadow_root_level = get_npt_level(vcpu);
2401         reset_shadow_zero_bits_mask(vcpu, &vcpu->arch.mmu);
2402         vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
2403 }
2404
2405 static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu)
2406 {
2407         vcpu->arch.walk_mmu = &vcpu->arch.mmu;
2408 }
2409
2410 static int nested_svm_check_permissions(struct vcpu_svm *svm)
2411 {
2412         if (!(svm->vcpu.arch.efer & EFER_SVME) ||
2413             !is_paging(&svm->vcpu)) {
2414                 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2415                 return 1;
2416         }
2417
2418         if (svm->vmcb->save.cpl) {
2419                 kvm_inject_gp(&svm->vcpu, 0);
2420                 return 1;
2421         }
2422
2423         return 0;
2424 }
2425
2426 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
2427                                       bool has_error_code, u32 error_code)
2428 {
2429         int vmexit;
2430
2431         if (!is_guest_mode(&svm->vcpu))
2432                 return 0;
2433
2434         vmexit = nested_svm_intercept(svm);
2435         if (vmexit != NESTED_EXIT_DONE)
2436                 return 0;
2437
2438         svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
2439         svm->vmcb->control.exit_code_hi = 0;
2440         svm->vmcb->control.exit_info_1 = error_code;
2441
2442         /*
2443          * FIXME: we should not write CR2 when L1 intercepts an L2 #PF exception.
2444          * The fix is to add the ancillary datum (CR2 or DR6) to structs
2445          * kvm_queued_exception and kvm_vcpu_events, so that CR2 and DR6 can be
2446          * written only when inject_pending_event runs (DR6 would written here
2447          * too).  This should be conditional on a new capability---if the
2448          * capability is disabled, kvm_multiple_exception would write the
2449          * ancillary information to CR2 or DR6, for backwards ABI-compatibility.
2450          */
2451         if (svm->vcpu.arch.exception.nested_apf)
2452                 svm->vmcb->control.exit_info_2 = svm->vcpu.arch.apf.nested_apf_token;
2453         else
2454                 svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
2455
2456         svm->nested.exit_required = true;
2457         return vmexit;
2458 }
2459
2460 /* This function returns true if it is save to enable the irq window */
2461 static inline bool nested_svm_intr(struct vcpu_svm *svm)
2462 {
2463         if (!is_guest_mode(&svm->vcpu))
2464                 return true;
2465
2466         if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2467                 return true;
2468
2469         if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
2470                 return false;
2471
2472         /*
2473          * if vmexit was already requested (by intercepted exception
2474          * for instance) do not overwrite it with "external interrupt"
2475          * vmexit.
2476          */
2477         if (svm->nested.exit_required)
2478                 return false;
2479
2480         svm->vmcb->control.exit_code   = SVM_EXIT_INTR;
2481         svm->vmcb->control.exit_info_1 = 0;
2482         svm->vmcb->control.exit_info_2 = 0;
2483
2484         if (svm->nested.intercept & 1ULL) {
2485                 /*
2486                  * The #vmexit can't be emulated here directly because this
2487                  * code path runs with irqs and preemption disabled. A
2488                  * #vmexit emulation might sleep. Only signal request for
2489                  * the #vmexit here.
2490                  */
2491                 svm->nested.exit_required = true;
2492                 trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
2493                 return false;
2494         }
2495
2496         return true;
2497 }
2498
2499 /* This function returns true if it is save to enable the nmi window */
2500 static inline bool nested_svm_nmi(struct vcpu_svm *svm)
2501 {
2502         if (!is_guest_mode(&svm->vcpu))
2503                 return true;
2504
2505         if (!(svm->nested.intercept & (1ULL << INTERCEPT_NMI)))
2506                 return true;
2507
2508         svm->vmcb->control.exit_code = SVM_EXIT_NMI;
2509         svm->nested.exit_required = true;
2510
2511         return false;
2512 }
2513
2514 static void *nested_svm_map(struct vcpu_svm *svm, u64 gpa, struct page **_page)
2515 {
2516         struct page *page;
2517
2518         might_sleep();
2519
2520         page = kvm_vcpu_gfn_to_page(&svm->vcpu, gpa >> PAGE_SHIFT);
2521         if (is_error_page(page))
2522                 goto error;
2523
2524         *_page = page;
2525
2526         return kmap(page);
2527
2528 error:
2529         kvm_inject_gp(&svm->vcpu, 0);
2530
2531         return NULL;
2532 }
2533
2534 static void nested_svm_unmap(struct page *page)
2535 {
2536         kunmap(page);
2537         kvm_release_page_dirty(page);
2538 }
2539
2540 static int nested_svm_intercept_ioio(struct vcpu_svm *svm)
2541 {
2542         unsigned port, size, iopm_len;
2543         u16 val, mask;
2544         u8 start_bit;
2545         u64 gpa;
2546
2547         if (!(svm->nested.intercept & (1ULL << INTERCEPT_IOIO_PROT)))
2548                 return NESTED_EXIT_HOST;
2549
2550         port = svm->vmcb->control.exit_info_1 >> 16;
2551         size = (svm->vmcb->control.exit_info_1 & SVM_IOIO_SIZE_MASK) >>
2552                 SVM_IOIO_SIZE_SHIFT;
2553         gpa  = svm->nested.vmcb_iopm + (port / 8);
2554         start_bit = port % 8;
2555         iopm_len = (start_bit + size > 8) ? 2 : 1;
2556         mask = (0xf >> (4 - size)) << start_bit;
2557         val = 0;
2558
2559         if (kvm_vcpu_read_guest(&svm->vcpu, gpa, &val, iopm_len))
2560                 return NESTED_EXIT_DONE;
2561
2562         return (val & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2563 }
2564
2565 static int nested_svm_exit_handled_msr(struct vcpu_svm *svm)
2566 {
2567         u32 offset, msr, value;
2568         int write, mask;
2569
2570         if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2571                 return NESTED_EXIT_HOST;
2572
2573         msr    = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2574         offset = svm_msrpm_offset(msr);
2575         write  = svm->vmcb->control.exit_info_1 & 1;
2576         mask   = 1 << ((2 * (msr & 0xf)) + write);
2577
2578         if (offset == MSR_INVALID)
2579                 return NESTED_EXIT_DONE;
2580
2581         /* Offset is in 32 bit units but need in 8 bit units */
2582         offset *= 4;
2583
2584         if (kvm_vcpu_read_guest(&svm->vcpu, svm->nested.vmcb_msrpm + offset, &value, 4))
2585                 return NESTED_EXIT_DONE;
2586
2587         return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2588 }
2589
2590 /* DB exceptions for our internal use must not cause vmexit */
2591 static int nested_svm_intercept_db(struct vcpu_svm *svm)
2592 {
2593         unsigned long dr6;
2594
2595         /* if we're not singlestepping, it's not ours */
2596         if (!svm->nmi_singlestep)
2597                 return NESTED_EXIT_DONE;
2598
2599         /* if it's not a singlestep exception, it's not ours */
2600         if (kvm_get_dr(&svm->vcpu, 6, &dr6))
2601                 return NESTED_EXIT_DONE;
2602         if (!(dr6 & DR6_BS))
2603                 return NESTED_EXIT_DONE;
2604
2605         /* if the guest is singlestepping, it should get the vmexit */
2606         if (svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF) {
2607                 disable_nmi_singlestep(svm);
2608                 return NESTED_EXIT_DONE;
2609         }
2610
2611         /* it's ours, the nested hypervisor must not see this one */
2612         return NESTED_EXIT_HOST;
2613 }
2614
2615 static int nested_svm_exit_special(struct vcpu_svm *svm)
2616 {
2617         u32 exit_code = svm->vmcb->control.exit_code;
2618
2619         switch (exit_code) {
2620         case SVM_EXIT_INTR:
2621         case SVM_EXIT_NMI:
2622         case SVM_EXIT_EXCP_BASE + MC_VECTOR:
2623                 return NESTED_EXIT_HOST;
2624         case SVM_EXIT_NPF:
2625                 /* For now we are always handling NPFs when using them */
2626                 if (npt_enabled)
2627                         return NESTED_EXIT_HOST;
2628                 break;
2629         case SVM_EXIT_EXCP_BASE + PF_VECTOR:
2630                 /* When we're shadowing, trap PFs, but not async PF */
2631                 if (!npt_enabled && svm->vcpu.arch.apf.host_apf_reason == 0)
2632                         return NESTED_EXIT_HOST;
2633                 break;
2634         default:
2635                 break;
2636         }
2637
2638         return NESTED_EXIT_CONTINUE;
2639 }
2640
2641 /*
2642  * If this function returns true, this #vmexit was already handled
2643  */
2644 static int nested_svm_intercept(struct vcpu_svm *svm)
2645 {
2646         u32 exit_code = svm->vmcb->control.exit_code;
2647         int vmexit = NESTED_EXIT_HOST;
2648
2649         switch (exit_code) {
2650         case SVM_EXIT_MSR:
2651                 vmexit = nested_svm_exit_handled_msr(svm);
2652                 break;
2653         case SVM_EXIT_IOIO:
2654                 vmexit = nested_svm_intercept_ioio(svm);
2655                 break;
2656         case SVM_EXIT_READ_CR0 ... SVM_EXIT_WRITE_CR8: {
2657                 u32 bit = 1U << (exit_code - SVM_EXIT_READ_CR0);
2658                 if (svm->nested.intercept_cr & bit)
2659                         vmexit = NESTED_EXIT_DONE;
2660                 break;
2661         }
2662         case SVM_EXIT_READ_DR0 ... SVM_EXIT_WRITE_DR7: {
2663                 u32 bit = 1U << (exit_code - SVM_EXIT_READ_DR0);
2664                 if (svm->nested.intercept_dr & bit)
2665                         vmexit = NESTED_EXIT_DONE;
2666                 break;
2667         }
2668         case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
2669                 u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
2670                 if (svm->nested.intercept_exceptions & excp_bits) {
2671                         if (exit_code == SVM_EXIT_EXCP_BASE + DB_VECTOR)
2672                                 vmexit = nested_svm_intercept_db(svm);
2673                         else
2674                                 vmexit = NESTED_EXIT_DONE;
2675                 }
2676                 /* async page fault always cause vmexit */
2677                 else if ((exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) &&
2678                          svm->vcpu.arch.exception.nested_apf != 0)
2679                         vmexit = NESTED_EXIT_DONE;
2680                 break;
2681         }
2682         case SVM_EXIT_ERR: {
2683                 vmexit = NESTED_EXIT_DONE;
2684                 break;
2685         }
2686         default: {
2687                 u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
2688                 if (svm->nested.intercept & exit_bits)
2689                         vmexit = NESTED_EXIT_DONE;
2690         }
2691         }
2692
2693         return vmexit;
2694 }
2695
2696 static int nested_svm_exit_handled(struct vcpu_svm *svm)
2697 {
2698         int vmexit;
2699
2700         vmexit = nested_svm_intercept(svm);
2701
2702         if (vmexit == NESTED_EXIT_DONE)
2703                 nested_svm_vmexit(svm);
2704
2705         return vmexit;
2706 }
2707
2708 static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
2709 {
2710         struct vmcb_control_area *dst  = &dst_vmcb->control;
2711         struct vmcb_control_area *from = &from_vmcb->control;
2712
2713         dst->intercept_cr         = from->intercept_cr;
2714         dst->intercept_dr         = from->intercept_dr;
2715         dst->intercept_exceptions = from->intercept_exceptions;
2716         dst->intercept            = from->intercept;
2717         dst->iopm_base_pa         = from->iopm_base_pa;
2718         dst->msrpm_base_pa        = from->msrpm_base_pa;
2719         dst->tsc_offset           = from->tsc_offset;
2720         dst->asid                 = from->asid;
2721         dst->tlb_ctl              = from->tlb_ctl;
2722         dst->int_ctl              = from->int_ctl;
2723         dst->int_vector           = from->int_vector;
2724         dst->int_state            = from->int_state;
2725         dst->exit_code            = from->exit_code;
2726         dst->exit_code_hi         = from->exit_code_hi;
2727         dst->exit_info_1          = from->exit_info_1;
2728         dst->exit_info_2          = from->exit_info_2;
2729         dst->exit_int_info        = from->exit_int_info;
2730         dst->exit_int_info_err    = from->exit_int_info_err;
2731         dst->nested_ctl           = from->nested_ctl;
2732         dst->event_inj            = from->event_inj;
2733         dst->event_inj_err        = from->event_inj_err;
2734         dst->nested_cr3           = from->nested_cr3;
2735         dst->virt_ext              = from->virt_ext;
2736 }
2737
2738 static int nested_svm_vmexit(struct vcpu_svm *svm)
2739 {
2740         struct vmcb *nested_vmcb;
2741         struct vmcb *hsave = svm->nested.hsave;
2742         struct vmcb *vmcb = svm->vmcb;
2743         struct page *page;
2744
2745         trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
2746                                        vmcb->control.exit_info_1,
2747                                        vmcb->control.exit_info_2,
2748                                        vmcb->control.exit_int_info,
2749                                        vmcb->control.exit_int_info_err,
2750                                        KVM_ISA_SVM);
2751
2752         nested_vmcb = nested_svm_map(svm, svm->nested.vmcb, &page);
2753         if (!nested_vmcb)
2754                 return 1;
2755
2756         /* Exit Guest-Mode */
2757         leave_guest_mode(&svm->vcpu);
2758         svm->nested.vmcb = 0;
2759
2760         /* Give the current vmcb to the guest */
2761         disable_gif(svm);
2762
2763         nested_vmcb->save.es     = vmcb->save.es;
2764         nested_vmcb->save.cs     = vmcb->save.cs;
2765         nested_vmcb->save.ss     = vmcb->save.ss;
2766         nested_vmcb->save.ds     = vmcb->save.ds;
2767         nested_vmcb->save.gdtr   = vmcb->save.gdtr;
2768         nested_vmcb->save.idtr   = vmcb->save.idtr;
2769         nested_vmcb->save.efer   = svm->vcpu.arch.efer;
2770         nested_vmcb->save.cr0    = kvm_read_cr0(&svm->vcpu);
2771         nested_vmcb->save.cr3    = kvm_read_cr3(&svm->vcpu);
2772         nested_vmcb->save.cr2    = vmcb->save.cr2;
2773         nested_vmcb->save.cr4    = svm->vcpu.arch.cr4;
2774         nested_vmcb->save.rflags = kvm_get_rflags(&svm->vcpu);
2775         nested_vmcb->save.rip    = vmcb->save.rip;
2776         nested_vmcb->save.rsp    = vmcb->save.rsp;
2777         nested_vmcb->save.rax    = vmcb->save.rax;
2778         nested_vmcb->save.dr7    = vmcb->save.dr7;
2779         nested_vmcb->save.dr6    = vmcb->save.dr6;
2780         nested_vmcb->save.cpl    = vmcb->save.cpl;
2781
2782         nested_vmcb->control.int_ctl           = vmcb->control.int_ctl;
2783         nested_vmcb->control.int_vector        = vmcb->control.int_vector;
2784         nested_vmcb->control.int_state         = vmcb->control.int_state;
2785         nested_vmcb->control.exit_code         = vmcb->control.exit_code;
2786         nested_vmcb->control.exit_code_hi      = vmcb->control.exit_code_hi;
2787         nested_vmcb->control.exit_info_1       = vmcb->control.exit_info_1;
2788         nested_vmcb->control.exit_info_2       = vmcb->control.exit_info_2;
2789         nested_vmcb->control.exit_int_info     = vmcb->control.exit_int_info;
2790         nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
2791
2792         if (svm->nrips_enabled)
2793                 nested_vmcb->control.next_rip  = vmcb->control.next_rip;
2794
2795         /*
2796          * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
2797          * to make sure that we do not lose injected events. So check event_inj
2798          * here and copy it to exit_int_info if it is valid.
2799          * Exit_int_info and event_inj can't be both valid because the case
2800          * below only happens on a VMRUN instruction intercept which has
2801          * no valid exit_int_info set.
2802          */
2803         if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
2804                 struct vmcb_control_area *nc = &nested_vmcb->control;
2805
2806                 nc->exit_int_info     = vmcb->control.event_inj;
2807                 nc->exit_int_info_err = vmcb->control.event_inj_err;
2808         }
2809
2810         nested_vmcb->control.tlb_ctl           = 0;
2811         nested_vmcb->control.event_inj         = 0;
2812         nested_vmcb->control.event_inj_err     = 0;
2813
2814         /* We always set V_INTR_MASKING and remember the old value in hflags */
2815         if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2816                 nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
2817
2818         /* Restore the original control entries */
2819         copy_vmcb_control_area(vmcb, hsave);
2820
2821         kvm_clear_exception_queue(&svm->vcpu);
2822         kvm_clear_interrupt_queue(&svm->vcpu);
2823
2824         svm->nested.nested_cr3 = 0;
2825
2826         /* Restore selected save entries */
2827         svm->vmcb->save.es = hsave->save.es;
2828         svm->vmcb->save.cs = hsave->save.cs;
2829         svm->vmcb->save.ss = hsave->save.ss;
2830         svm->vmcb->save.ds = hsave->save.ds;
2831         svm->vmcb->save.gdtr = hsave->save.gdtr;
2832         svm->vmcb->save.idtr = hsave->save.idtr;
2833         kvm_set_rflags(&svm->vcpu, hsave->save.rflags);
2834         svm_set_efer(&svm->vcpu, hsave->save.efer);
2835         svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
2836         svm_set_cr4(&svm->vcpu, hsave->save.cr4);
2837         if (npt_enabled) {
2838                 svm->vmcb->save.cr3 = hsave->save.cr3;
2839                 svm->vcpu.arch.cr3 = hsave->save.cr3;
2840         } else {
2841                 (void)kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
2842         }
2843         kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax);
2844         kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp);
2845         kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip);
2846         svm->vmcb->save.dr7 = 0;
2847         svm->vmcb->save.cpl = 0;
2848         svm->vmcb->control.exit_int_info = 0;
2849
2850         mark_all_dirty(svm->vmcb);
2851
2852         nested_svm_unmap(page);
2853
2854         nested_svm_uninit_mmu_context(&svm->vcpu);
2855         kvm_mmu_reset_context(&svm->vcpu);
2856         kvm_mmu_load(&svm->vcpu);
2857
2858         return 0;
2859 }
2860
2861 static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
2862 {
2863         /*
2864          * This function merges the msr permission bitmaps of kvm and the
2865          * nested vmcb. It is optimized in that it only merges the parts where
2866          * the kvm msr permission bitmap may contain zero bits
2867          */
2868         int i;
2869
2870         if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2871                 return true;
2872
2873         for (i = 0; i < MSRPM_OFFSETS; i++) {
2874                 u32 value, p;
2875                 u64 offset;
2876
2877                 if (msrpm_offsets[i] == 0xffffffff)
2878                         break;
2879
2880                 p      = msrpm_offsets[i];
2881                 offset = svm->nested.vmcb_msrpm + (p * 4);
2882
2883                 if (kvm_vcpu_read_guest(&svm->vcpu, offset, &value, 4))
2884                         return false;
2885
2886                 svm->nested.msrpm[p] = svm->msrpm[p] | value;
2887         }
2888
2889         svm->vmcb->control.msrpm_base_pa = __sme_set(__pa(svm->nested.msrpm));
2890
2891         return true;
2892 }
2893
2894 static bool nested_vmcb_checks(struct vmcb *vmcb)
2895 {
2896         if ((vmcb->control.intercept & (1ULL << INTERCEPT_VMRUN)) == 0)
2897                 return false;
2898
2899         if (vmcb->control.asid == 0)
2900                 return false;
2901
2902         if (vmcb->control.nested_ctl && !npt_enabled)
2903                 return false;
2904
2905         return true;
2906 }
2907
2908 static bool nested_svm_vmrun(struct vcpu_svm *svm)
2909 {
2910         struct vmcb *nested_vmcb;
2911         struct vmcb *hsave = svm->nested.hsave;
2912         struct vmcb *vmcb = svm->vmcb;
2913         struct page *page;
2914         u64 vmcb_gpa;
2915
2916         vmcb_gpa = svm->vmcb->save.rax;
2917
2918         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2919         if (!nested_vmcb)
2920                 return false;
2921
2922         if (!nested_vmcb_checks(nested_vmcb)) {
2923                 nested_vmcb->control.exit_code    = SVM_EXIT_ERR;
2924                 nested_vmcb->control.exit_code_hi = 0;
2925                 nested_vmcb->control.exit_info_1  = 0;
2926                 nested_vmcb->control.exit_info_2  = 0;
2927
2928                 nested_svm_unmap(page);
2929
2930                 return false;
2931         }
2932
2933         trace_kvm_nested_vmrun(svm->vmcb->save.rip, vmcb_gpa,
2934                                nested_vmcb->save.rip,
2935                                nested_vmcb->control.int_ctl,
2936                                nested_vmcb->control.event_inj,
2937                                nested_vmcb->control.nested_ctl);
2938
2939         trace_kvm_nested_intercepts(nested_vmcb->control.intercept_cr & 0xffff,
2940                                     nested_vmcb->control.intercept_cr >> 16,
2941                                     nested_vmcb->control.intercept_exceptions,
2942                                     nested_vmcb->control.intercept);
2943
2944         /* Clear internal status */
2945         kvm_clear_exception_queue(&svm->vcpu);
2946         kvm_clear_interrupt_queue(&svm->vcpu);
2947
2948         /*
2949          * Save the old vmcb, so we don't need to pick what we save, but can
2950          * restore everything when a VMEXIT occurs
2951          */
2952         hsave->save.es     = vmcb->save.es;
2953         hsave->save.cs     = vmcb->save.cs;
2954         hsave->save.ss     = vmcb->save.ss;
2955         hsave->save.ds     = vmcb->save.ds;
2956         hsave->save.gdtr   = vmcb->save.gdtr;
2957         hsave->save.idtr   = vmcb->save.idtr;
2958         hsave->save.efer   = svm->vcpu.arch.efer;
2959         hsave->save.cr0    = kvm_read_cr0(&svm->vcpu);
2960         hsave->save.cr4    = svm->vcpu.arch.cr4;
2961         hsave->save.rflags = kvm_get_rflags(&svm->vcpu);
2962         hsave->save.rip    = kvm_rip_read(&svm->vcpu);
2963         hsave->save.rsp    = vmcb->save.rsp;
2964         hsave->save.rax    = vmcb->save.rax;
2965         if (npt_enabled)
2966                 hsave->save.cr3    = vmcb->save.cr3;
2967         else
2968                 hsave->save.cr3    = kvm_read_cr3(&svm->vcpu);
2969
2970         copy_vmcb_control_area(hsave, vmcb);
2971
2972         if (kvm_get_rflags(&svm->vcpu) & X86_EFLAGS_IF)
2973                 svm->vcpu.arch.hflags |= HF_HIF_MASK;
2974         else
2975                 svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
2976
2977         if (nested_vmcb->control.nested_ctl) {
2978                 kvm_mmu_unload(&svm->vcpu);
2979                 svm->nested.nested_cr3 = nested_vmcb->control.nested_cr3;
2980                 nested_svm_init_mmu_context(&svm->vcpu);
2981         }
2982
2983         /* Load the nested guest state */
2984         svm->vmcb->save.es = nested_vmcb->save.es;
2985         svm->vmcb->save.cs = nested_vmcb->save.cs;
2986         svm->vmcb->save.ss = nested_vmcb->save.ss;
2987         svm->vmcb->save.ds = nested_vmcb->save.ds;
2988         svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
2989         svm->vmcb->save.idtr = nested_vmcb->save.idtr;
2990         kvm_set_rflags(&svm->vcpu, nested_vmcb->save.rflags);
2991         svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
2992         svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
2993         svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
2994         if (npt_enabled) {
2995                 svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
2996                 svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
2997         } else
2998                 (void)kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
2999
3000         /* Guest paging mode is active - reset mmu */
3001         kvm_mmu_reset_context(&svm->vcpu);
3002
3003         svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
3004         kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax);
3005         kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp);
3006         kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip);
3007
3008         /* In case we don't even reach vcpu_run, the fields are not updated */
3009         svm->vmcb->save.rax = nested_vmcb->save.rax;
3010         svm->vmcb->save.rsp = nested_vmcb->save.rsp;
3011         svm->vmcb->save.rip = nested_vmcb->save.rip;
3012         svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
3013         svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
3014         svm->vmcb->save.cpl = nested_vmcb->save.cpl;
3015
3016         svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa & ~0x0fffULL;
3017         svm->nested.vmcb_iopm  = nested_vmcb->control.iopm_base_pa  & ~0x0fffULL;
3018
3019         /* cache intercepts */
3020         svm->nested.intercept_cr         = nested_vmcb->control.intercept_cr;
3021         svm->nested.intercept_dr         = nested_vmcb->control.intercept_dr;
3022         svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
3023         svm->nested.intercept            = nested_vmcb->control.intercept;
3024
3025         svm_flush_tlb(&svm->vcpu);
3026         svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
3027         if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
3028                 svm->vcpu.arch.hflags |= HF_VINTR_MASK;
3029         else
3030                 svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
3031
3032         if (svm->vcpu.arch.hflags & HF_VINTR_MASK) {
3033                 /* We only want the cr8 intercept bits of the guest */
3034                 clr_cr_intercept(svm, INTERCEPT_CR8_READ);
3035                 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3036         }
3037
3038         /* We don't want to see VMMCALLs from a nested guest */
3039         clr_intercept(svm, INTERCEPT_VMMCALL);
3040
3041         svm->vmcb->control.virt_ext = nested_vmcb->control.virt_ext;
3042         svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
3043         svm->vmcb->control.int_state = nested_vmcb->control.int_state;
3044         svm->vmcb->control.tsc_offset += nested_vmcb->control.tsc_offset;
3045         svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
3046         svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
3047
3048         nested_svm_unmap(page);
3049
3050         /* Enter Guest-Mode */
3051         enter_guest_mode(&svm->vcpu);
3052
3053         /*
3054          * Merge guest and host intercepts - must be called  with vcpu in
3055          * guest-mode to take affect here
3056          */
3057         recalc_intercepts(svm);
3058
3059         svm->nested.vmcb = vmcb_gpa;
3060
3061         enable_gif(svm);
3062
3063         mark_all_dirty(svm->vmcb);
3064
3065         return true;
3066 }
3067
3068 static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
3069 {
3070         to_vmcb->save.fs = from_vmcb->save.fs;
3071         to_vmcb->save.gs = from_vmcb->save.gs;
3072         to_vmcb->save.tr = from_vmcb->save.tr;
3073         to_vmcb->save.ldtr = from_vmcb->save.ldtr;
3074         to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
3075         to_vmcb->save.star = from_vmcb->save.star;
3076         to_vmcb->save.lstar = from_vmcb->save.lstar;
3077         to_vmcb->save.cstar = from_vmcb->save.cstar;
3078         to_vmcb->save.sfmask = from_vmcb->save.sfmask;
3079         to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
3080         to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
3081         to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
3082 }
3083
3084 static int vmload_interception(struct vcpu_svm *svm)
3085 {
3086         struct vmcb *nested_vmcb;
3087         struct page *page;
3088         int ret;
3089
3090         if (nested_svm_check_permissions(svm))
3091                 return 1;
3092
3093         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
3094         if (!nested_vmcb)
3095                 return 1;
3096
3097         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3098         ret = kvm_skip_emulated_instruction(&svm->vcpu);
3099
3100         nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
3101         nested_svm_unmap(page);
3102
3103         return ret;
3104 }
3105
3106 static int vmsave_interception(struct vcpu_svm *svm)
3107 {
3108         struct vmcb *nested_vmcb;
3109         struct page *page;
3110         int ret;
3111
3112         if (nested_svm_check_permissions(svm))
3113                 return 1;
3114
3115         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
3116         if (!nested_vmcb)
3117                 return 1;
3118
3119         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3120         ret = kvm_skip_emulated_instruction(&svm->vcpu);
3121
3122         nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
3123         nested_svm_unmap(page);
3124
3125         return ret;
3126 }
3127
3128 static int vmrun_interception(struct vcpu_svm *svm)
3129 {
3130         if (nested_svm_check_permissions(svm))
3131                 return 1;
3132
3133         /* Save rip after vmrun instruction */
3134         kvm_rip_write(&svm->vcpu, kvm_rip_read(&svm->vcpu) + 3);
3135
3136         if (!nested_svm_vmrun(svm))
3137                 return 1;
3138
3139         if (!nested_svm_vmrun_msrpm(svm))
3140                 goto failed;
3141
3142         return 1;
3143
3144 failed:
3145
3146         svm->vmcb->control.exit_code    = SVM_EXIT_ERR;
3147         svm->vmcb->control.exit_code_hi = 0;
3148         svm->vmcb->control.exit_info_1  = 0;
3149         svm->vmcb->control.exit_info_2  = 0;
3150
3151         nested_svm_vmexit(svm);
3152
3153         return 1;
3154 }
3155
3156 static int stgi_interception(struct vcpu_svm *svm)
3157 {
3158         int ret;
3159
3160         if (nested_svm_check_permissions(svm))
3161                 return 1;
3162
3163         /*
3164          * If VGIF is enabled, the STGI intercept is only added to
3165          * detect the opening of the NMI window; remove it now.
3166          */
3167         if (vgif_enabled(svm))
3168                 clr_intercept(svm, INTERCEPT_STGI);
3169
3170         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3171         ret = kvm_skip_emulated_instruction(&svm->vcpu);
3172         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3173
3174         enable_gif(svm);
3175
3176         return ret;
3177 }
3178
3179 static int clgi_interception(struct vcpu_svm *svm)
3180 {
3181         int ret;
3182
3183         if (nested_svm_check_permissions(svm))
3184                 return 1;
3185
3186         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3187         ret = kvm_skip_emulated_instruction(&svm->vcpu);
3188
3189         disable_gif(svm);
3190
3191         /* After a CLGI no interrupts should come */
3192         if (!kvm_vcpu_apicv_active(&svm->vcpu)) {
3193                 svm_clear_vintr(svm);
3194                 svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
3195                 mark_dirty(svm->vmcb, VMCB_INTR);
3196         }
3197
3198         return ret;
3199 }
3200
3201 static int invlpga_interception(struct vcpu_svm *svm)
3202 {
3203         struct kvm_vcpu *vcpu = &svm->vcpu;
3204
3205         trace_kvm_invlpga(svm->vmcb->save.rip, kvm_register_read(&svm->vcpu, VCPU_REGS_RCX),
3206                           kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
3207
3208         /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
3209         kvm_mmu_invlpg(vcpu, kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
3210
3211         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3212         return kvm_skip_emulated_instruction(&svm->vcpu);
3213 }
3214
3215 static int skinit_interception(struct vcpu_svm *svm)
3216 {
3217         trace_kvm_skinit(svm->vmcb->save.rip, kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
3218
3219         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3220         return 1;
3221 }
3222
3223 static int wbinvd_interception(struct vcpu_svm *svm)
3224 {
3225         return kvm_emulate_wbinvd(&svm->vcpu);
3226 }
3227
3228 static int xsetbv_interception(struct vcpu_svm *svm)
3229 {
3230         u64 new_bv = kvm_read_edx_eax(&svm->vcpu);
3231         u32 index = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
3232
3233         if (kvm_set_xcr(&svm->vcpu, index, new_bv) == 0) {
3234                 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3235                 return kvm_skip_emulated_instruction(&svm->vcpu);
3236         }
3237
3238         return 1;
3239 }
3240
3241 static int task_switch_interception(struct vcpu_svm *svm)
3242 {
3243         u16 tss_selector;
3244         int reason;
3245         int int_type = svm->vmcb->control.exit_int_info &
3246                 SVM_EXITINTINFO_TYPE_MASK;
3247         int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
3248         uint32_t type =
3249                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
3250         uint32_t idt_v =
3251                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
3252         bool has_error_code = false;
3253         u32 error_code = 0;
3254
3255         tss_selector = (u16)svm->vmcb->control.exit_info_1;
3256
3257         if (svm->vmcb->control.exit_info_2 &
3258             (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
3259                 reason = TASK_SWITCH_IRET;
3260         else if (svm->vmcb->control.exit_info_2 &
3261                  (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
3262                 reason = TASK_SWITCH_JMP;
3263         else if (idt_v)
3264                 reason = TASK_SWITCH_GATE;
3265         else
3266                 reason = TASK_SWITCH_CALL;
3267
3268         if (reason == TASK_SWITCH_GATE) {
3269                 switch (type) {
3270                 case SVM_EXITINTINFO_TYPE_NMI:
3271                         svm->vcpu.arch.nmi_injected = false;
3272                         break;
3273                 case SVM_EXITINTINFO_TYPE_EXEPT:
3274                         if (svm->vmcb->control.exit_info_2 &
3275                             (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
3276                                 has_error_code = true;
3277                                 error_code =
3278                                         (u32)svm->vmcb->control.exit_info_2;
3279                         }
3280                         kvm_clear_exception_queue(&svm->vcpu);
3281                         break;
3282                 case SVM_EXITINTINFO_TYPE_INTR:
3283                         kvm_clear_interrupt_queue(&svm->vcpu);
3284                         break;
3285                 default:
3286                         break;
3287                 }
3288         }
3289
3290         if (reason != TASK_SWITCH_GATE ||
3291             int_type == SVM_EXITINTINFO_TYPE_SOFT ||
3292             (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
3293              (int_vec == OF_VECTOR || int_vec == BP_VECTOR)))
3294                 skip_emulated_instruction(&svm->vcpu);
3295
3296         if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
3297                 int_vec = -1;
3298
3299         if (kvm_task_switch(&svm->vcpu, tss_selector, int_vec, reason,
3300                                 has_error_code, error_code) == EMULATE_FAIL) {
3301                 svm->vcpu.run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3302                 svm->vcpu.run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
3303                 svm->vcpu.run->internal.ndata = 0;
3304                 return 0;
3305         }
3306         return 1;
3307 }
3308
3309 static int cpuid_interception(struct vcpu_svm *svm)
3310 {
3311         svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3312         return kvm_emulate_cpuid(&svm->vcpu);
3313 }
3314
3315 static int iret_interception(struct vcpu_svm *svm)
3316 {
3317         ++svm->vcpu.stat.nmi_window_exits;
3318         clr_intercept(svm, INTERCEPT_IRET);
3319         svm->vcpu.arch.hflags |= HF_IRET_MASK;
3320         svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu);
3321         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3322         return 1;
3323 }
3324
3325 static int invlpg_interception(struct vcpu_svm *svm)
3326 {
3327         if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
3328                 return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
3329
3330         kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1);
3331         return kvm_skip_emulated_instruction(&svm->vcpu);
3332 }
3333
3334 static int emulate_on_interception(struct vcpu_svm *svm)
3335 {
3336         return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
3337 }
3338
3339 static int rdpmc_interception(struct vcpu_svm *svm)
3340 {
3341         int err;
3342
3343         if (!static_cpu_has(X86_FEATURE_NRIPS))
3344                 return emulate_on_interception(svm);
3345
3346         err = kvm_rdpmc(&svm->vcpu);
3347         return kvm_complete_insn_gp(&svm->vcpu, err);
3348 }
3349
3350 static bool check_selective_cr0_intercepted(struct vcpu_svm *svm,
3351                                             unsigned long val)
3352 {
3353         unsigned long cr0 = svm->vcpu.arch.cr0;
3354         bool ret = false;
3355         u64 intercept;
3356
3357         intercept = svm->nested.intercept;
3358
3359         if (!is_guest_mode(&svm->vcpu) ||
3360             (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0))))
3361                 return false;
3362
3363         cr0 &= ~SVM_CR0_SELECTIVE_MASK;
3364         val &= ~SVM_CR0_SELECTIVE_MASK;
3365
3366         if (cr0 ^ val) {
3367                 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
3368                 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
3369         }
3370
3371         return ret;
3372 }
3373
3374 #define CR_VALID (1ULL << 63)
3375
3376 static int cr_interception(struct vcpu_svm *svm)
3377 {
3378         int reg, cr;
3379         unsigned long val;
3380         int err;
3381
3382         if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
3383                 return emulate_on_interception(svm);
3384
3385         if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
3386                 return emulate_on_interception(svm);
3387
3388         reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
3389         if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
3390                 cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
3391         else
3392                 cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
3393
3394         err = 0;
3395         if (cr >= 16) { /* mov to cr */
3396                 cr -= 16;
3397                 val = kvm_register_read(&svm->vcpu, reg);
3398                 switch (cr) {
3399                 case 0:
3400                         if (!check_selective_cr0_intercepted(svm, val))
3401                                 err = kvm_set_cr0(&svm->vcpu, val);
3402                         else
3403                                 return 1;
3404
3405                         break;
3406                 case 3:
3407                         err = kvm_set_cr3(&svm->vcpu, val);
3408                         break;
3409                 case 4:
3410                         err = kvm_set_cr4(&svm->vcpu, val);
3411                         break;
3412                 case 8:
3413                         err = kvm_set_cr8(&svm->vcpu, val);
3414                         break;
3415                 default:
3416                         WARN(1, "unhandled write to CR%d", cr);
3417                         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3418                         return 1;
3419                 }
3420         } else { /* mov from cr */
3421                 switch (cr) {
3422                 case 0:
3423                         val = kvm_read_cr0(&svm->vcpu);
3424                         break;
3425                 case 2:
3426                         val = svm->vcpu.arch.cr2;
3427                         break;
3428                 case 3:
3429                         val = kvm_read_cr3(&svm->vcpu);
3430                         break;
3431                 case 4:
3432                         val = kvm_read_cr4(&svm->vcpu);
3433                         break;
3434                 case 8:
3435                         val = kvm_get_cr8(&svm->vcpu);
3436                         break;
3437                 default:
3438                         WARN(1, "unhandled read from CR%d", cr);
3439                         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3440                         return 1;
3441                 }
3442                 kvm_register_write(&svm->vcpu, reg, val);
3443         }
3444         return kvm_complete_insn_gp(&svm->vcpu, err);
3445 }
3446
3447 static int dr_interception(struct vcpu_svm *svm)
3448 {
3449         int reg, dr;
3450         unsigned long val;
3451
3452         if (svm->vcpu.guest_debug == 0) {
3453                 /*
3454                  * No more DR vmexits; force a reload of the debug registers
3455                  * and reenter on this instruction.  The next vmexit will
3456                  * retrieve the full state of the debug registers.
3457                  */
3458                 clr_dr_intercepts(svm);
3459                 svm->vcpu.arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
3460                 return 1;
3461         }
3462
3463         if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
3464                 return emulate_on_interception(svm);
3465
3466         reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
3467         dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
3468
3469         if (dr >= 16) { /* mov to DRn */
3470                 if (!kvm_require_dr(&svm->vcpu, dr - 16))
3471                         return 1;
3472                 val = kvm_register_read(&svm->vcpu, reg);
3473                 kvm_set_dr(&svm->vcpu, dr - 16, val);
3474         } else {
3475                 if (!kvm_require_dr(&svm->vcpu, dr))
3476                         return 1;
3477                 kvm_get_dr(&svm->vcpu, dr, &val);
3478                 kvm_register_write(&svm->vcpu, reg, val);
3479         }
3480
3481         return kvm_skip_emulated_instruction(&svm->vcpu);
3482 }
3483
3484 static int cr8_write_interception(struct vcpu_svm *svm)
3485 {
3486         struct kvm_run *kvm_run = svm->vcpu.run;
3487         int r;
3488
3489         u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
3490         /* instruction emulation calls kvm_set_cr8() */
3491         r = cr_interception(svm);
3492         if (lapic_in_kernel(&svm->vcpu))
3493                 return r;
3494         if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
3495                 return r;
3496         kvm_run->exit_reason = KVM_EXIT_SET_TPR;
3497         return 0;
3498 }
3499
3500 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3501 {
3502         struct vcpu_svm *svm = to_svm(vcpu);
3503
3504         switch (msr_info->index) {
3505         case MSR_IA32_TSC: {
3506                 msr_info->data = svm->vmcb->control.tsc_offset +
3507                         kvm_scale_tsc(vcpu, rdtsc());
3508
3509                 break;
3510         }
3511         case MSR_STAR:
3512                 msr_info->data = svm->vmcb->save.star;
3513                 break;
3514 #ifdef CONFIG_X86_64
3515         case MSR_LSTAR:
3516                 msr_info->data = svm->vmcb->save.lstar;
3517                 break;
3518         case MSR_CSTAR:
3519                 msr_info->data = svm->vmcb->save.cstar;
3520                 break;
3521         case MSR_KERNEL_GS_BASE:
3522                 msr_info->data = svm->vmcb->save.kernel_gs_base;
3523                 break;
3524         case MSR_SYSCALL_MASK:
3525                 msr_info->data = svm->vmcb->save.sfmask;
3526                 break;
3527 #endif
3528         case MSR_IA32_SYSENTER_CS:
3529                 msr_info->data = svm->vmcb->save.sysenter_cs;
3530                 break;
3531         case MSR_IA32_SYSENTER_EIP:
3532                 msr_info->data = svm->sysenter_eip;
3533                 break;
3534         case MSR_IA32_SYSENTER_ESP:
3535                 msr_info->data = svm->sysenter_esp;
3536                 break;
3537         case MSR_TSC_AUX:
3538                 if (!boot_cpu_has(X86_FEATURE_RDTSCP))
3539                         return 1;
3540                 msr_info->data = svm->tsc_aux;
3541                 break;
3542         /*
3543          * Nobody will change the following 5 values in the VMCB so we can
3544          * safely return them on rdmsr. They will always be 0 until LBRV is
3545          * implemented.
3546          */
3547         case MSR_IA32_DEBUGCTLMSR:
3548                 msr_info->data = svm->vmcb->save.dbgctl;
3549                 break;
3550         case MSR_IA32_LASTBRANCHFROMIP:
3551                 msr_info->data = svm->vmcb->save.br_from;
3552                 break;
3553         case MSR_IA32_LASTBRANCHTOIP:
3554                 msr_info->data = svm->vmcb->save.br_to;
3555                 break;
3556         case MSR_IA32_LASTINTFROMIP:
3557                 msr_info->data = svm->vmcb->save.last_excp_from;
3558                 break;
3559         case MSR_IA32_LASTINTTOIP:
3560                 msr_info->data = svm->vmcb->save.last_excp_to;
3561                 break;
3562         case MSR_VM_HSAVE_PA:
3563                 msr_info->data = svm->nested.hsave_msr;
3564                 break;
3565         case MSR_VM_CR:
3566                 msr_info->data = svm->nested.vm_cr_msr;
3567                 break;
3568         case MSR_IA32_UCODE_REV:
3569                 msr_info->data = 0x01000065;
3570                 break;
3571         case MSR_F15H_IC_CFG: {
3572
3573                 int family, model;
3574
3575                 family = guest_cpuid_family(vcpu);
3576                 model  = guest_cpuid_model(vcpu);
3577
3578                 if (family < 0 || model < 0)
3579                         return kvm_get_msr_common(vcpu, msr_info);
3580
3581                 msr_info->data = 0;
3582
3583                 if (family == 0x15 &&
3584                     (model >= 0x2 && model < 0x20))
3585                         msr_info->data = 0x1E;
3586                 }
3587                 break;
3588         default:
3589                 return kvm_get_msr_common(vcpu, msr_info);
3590         }
3591         return 0;
3592 }
3593
3594 static int rdmsr_interception(struct vcpu_svm *svm)
3595 {
3596         u32 ecx = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
3597         struct msr_data msr_info;
3598
3599         msr_info.index = ecx;
3600         msr_info.host_initiated = false;
3601         if (svm_get_msr(&svm->vcpu, &msr_info)) {
3602                 trace_kvm_msr_read_ex(ecx);
3603                 kvm_inject_gp(&svm->vcpu, 0);
3604                 return 1;
3605         } else {
3606                 trace_kvm_msr_read(ecx, msr_info.data);
3607
3608                 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX,
3609                                    msr_info.data & 0xffffffff);
3610                 kvm_register_write(&svm->vcpu, VCPU_REGS_RDX,
3611                                    msr_info.data >> 32);
3612                 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3613                 return kvm_skip_emulated_instruction(&svm->vcpu);
3614         }
3615 }
3616
3617 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
3618 {
3619         struct vcpu_svm *svm = to_svm(vcpu);
3620         int svm_dis, chg_mask;
3621
3622         if (data & ~SVM_VM_CR_VALID_MASK)
3623                 return 1;
3624
3625         chg_mask = SVM_VM_CR_VALID_MASK;
3626
3627         if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
3628                 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
3629
3630         svm->nested.vm_cr_msr &= ~chg_mask;
3631         svm->nested.vm_cr_msr |= (data & chg_mask);
3632
3633         svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
3634
3635         /* check for svm_disable while efer.svme is set */
3636         if (svm_dis && (vcpu->arch.efer & EFER_SVME))
3637                 return 1;
3638
3639         return 0;
3640 }
3641
3642 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
3643 {
3644         struct vcpu_svm *svm = to_svm(vcpu);
3645
3646         u32 ecx = msr->index;
3647         u64 data = msr->data;
3648         switch (ecx) {
3649         case MSR_IA32_TSC:
3650                 kvm_write_tsc(vcpu, msr);
3651                 break;
3652         case MSR_STAR:
3653                 svm->vmcb->save.star = data;
3654                 break;
3655 #ifdef CONFIG_X86_64
3656         case MSR_LSTAR:
3657                 svm->vmcb->save.lstar = data;
3658                 break;
3659         case MSR_CSTAR:
3660                 svm->vmcb->save.cstar = data;
3661                 break;
3662         case MSR_KERNEL_GS_BASE:
3663                 svm->vmcb->save.kernel_gs_base = data;
3664                 break;
3665         case MSR_SYSCALL_MASK:
3666                 svm->vmcb->save.sfmask = data;
3667                 break;
3668 #endif
3669         case MSR_IA32_SYSENTER_CS:
3670                 svm->vmcb->save.sysenter_cs = data;
3671                 break;
3672         case MSR_IA32_SYSENTER_EIP:
3673                 svm->sysenter_eip = data;
3674                 svm->vmcb->save.sysenter_eip = data;
3675                 break;
3676         case MSR_IA32_SYSENTER_ESP:
3677                 svm->sysenter_esp = data;
3678                 svm->vmcb->save.sysenter_esp = data;
3679                 break;
3680         case MSR_TSC_AUX:
3681                 if (!boot_cpu_has(X86_FEATURE_RDTSCP))
3682                         return 1;
3683
3684                 /*
3685                  * This is rare, so we update the MSR here instead of using
3686                  * direct_access_msrs.  Doing that would require a rdmsr in
3687                  * svm_vcpu_put.
3688                  */
3689                 svm->tsc_aux = data;
3690                 wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
3691                 break;
3692         case MSR_IA32_DEBUGCTLMSR:
3693                 if (!boot_cpu_has(X86_FEATURE_LBRV)) {
3694                         vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
3695                                     __func__, data);
3696                         break;
3697                 }
3698                 if (data & DEBUGCTL_RESERVED_BITS)
3699                         return 1;
3700
3701                 svm->vmcb->save.dbgctl = data;
3702                 mark_dirty(svm->vmcb, VMCB_LBR);
3703                 if (data & (1ULL<<0))
3704                         svm_enable_lbrv(svm);
3705                 else
3706                         svm_disable_lbrv(svm);
3707                 break;
3708         case MSR_VM_HSAVE_PA:
3709                 svm->nested.hsave_msr = data;
3710                 break;
3711         case MSR_VM_CR:
3712                 return svm_set_vm_cr(vcpu, data);
3713         case MSR_VM_IGNNE:
3714                 vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
3715                 break;
3716         case MSR_IA32_APICBASE:
3717                 if (kvm_vcpu_apicv_active(vcpu))
3718                         avic_update_vapic_bar(to_svm(vcpu), data);
3719                 /* Follow through */
3720         default:
3721                 return kvm_set_msr_common(vcpu, msr);
3722         }
3723         return 0;
3724 }
3725
3726 static int wrmsr_interception(struct vcpu_svm *svm)
3727 {
3728         struct msr_data msr;
3729         u32 ecx = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
3730         u64 data = kvm_read_edx_eax(&svm->vcpu);
3731
3732         msr.data = data;
3733         msr.index = ecx;
3734         msr.host_initiated = false;
3735
3736         svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3737         if (kvm_set_msr(&svm->vcpu, &msr)) {
3738                 trace_kvm_msr_write_ex(ecx, data);
3739                 kvm_inject_gp(&svm->vcpu, 0);
3740                 return 1;
3741         } else {
3742                 trace_kvm_msr_write(ecx, data);
3743                 return kvm_skip_emulated_instruction(&svm->vcpu);
3744         }
3745 }
3746
3747 static int msr_interception(struct vcpu_svm *svm)
3748 {
3749         if (svm->vmcb->control.exit_info_1)
3750                 return wrmsr_interception(svm);
3751         else
3752                 return rdmsr_interception(svm);
3753 }
3754
3755 static int interrupt_window_interception(struct vcpu_svm *svm)
3756 {
3757         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3758         svm_clear_vintr(svm);
3759         svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
3760         mark_dirty(svm->vmcb, VMCB_INTR);
3761         ++svm->vcpu.stat.irq_window_exits;
3762         return 1;
3763 }
3764
3765 static int pause_interception(struct vcpu_svm *svm)
3766 {
3767         struct kvm_vcpu *vcpu = &svm->vcpu;
3768         bool in_kernel = (svm_get_cpl(vcpu) == 0);
3769
3770         kvm_vcpu_on_spin(vcpu, in_kernel);
3771         return 1;
3772 }
3773
3774 static int nop_interception(struct vcpu_svm *svm)
3775 {
3776         return kvm_skip_emulated_instruction(&(svm->vcpu));
3777 }
3778
3779 static int monitor_interception(struct vcpu_svm *svm)
3780 {
3781         printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
3782         return nop_interception(svm);
3783 }
3784
3785 static int mwait_interception(struct vcpu_svm *svm)
3786 {
3787         printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
3788         return nop_interception(svm);
3789 }
3790
3791 enum avic_ipi_failure_cause {
3792         AVIC_IPI_FAILURE_INVALID_INT_TYPE,
3793         AVIC_IPI_FAILURE_TARGET_NOT_RUNNING,
3794         AVIC_IPI_FAILURE_INVALID_TARGET,
3795         AVIC_IPI_FAILURE_INVALID_BACKING_PAGE,
3796 };
3797
3798 static int avic_incomplete_ipi_interception(struct vcpu_svm *svm)
3799 {
3800         u32 icrh = svm->vmcb->control.exit_info_1 >> 32;
3801         u32 icrl = svm->vmcb->control.exit_info_1;
3802         u32 id = svm->vmcb->control.exit_info_2 >> 32;
3803         u32 index = svm->vmcb->control.exit_info_2 & 0xFF;
3804         struct kvm_lapic *apic = svm->vcpu.arch.apic;
3805
3806         trace_kvm_avic_incomplete_ipi(svm->vcpu.vcpu_id, icrh, icrl, id, index);
3807
3808         switch (id) {
3809         case AVIC_IPI_FAILURE_INVALID_INT_TYPE:
3810                 /*
3811                  * AVIC hardware handles the generation of
3812                  * IPIs when the specified Message Type is Fixed
3813                  * (also known as fixed delivery mode) and
3814                  * the Trigger Mode is edge-triggered. The hardware
3815                  * also supports self and broadcast delivery modes
3816                  * specified via the Destination Shorthand(DSH)
3817                  * field of the ICRL. Logical and physical APIC ID
3818                  * formats are supported. All other IPI types cause
3819                  * a #VMEXIT, which needs to emulated.
3820                  */
3821                 kvm_lapic_reg_write(apic, APIC_ICR2, icrh);
3822                 kvm_lapic_reg_write(apic, APIC_ICR, icrl);
3823                 break;
3824         case AVIC_IPI_FAILURE_TARGET_NOT_RUNNING: {
3825                 int i;
3826                 struct kvm_vcpu *vcpu;
3827                 struct kvm *kvm = svm->vcpu.kvm;
3828                 struct kvm_lapic *apic = svm->vcpu.arch.apic;
3829
3830                 /*
3831                  * At this point, we expect that the AVIC HW has already
3832                  * set the appropriate IRR bits on the valid target
3833                  * vcpus. So, we just need to kick the appropriate vcpu.
3834                  */
3835                 kvm_for_each_vcpu(i, vcpu, kvm) {
3836                         bool m = kvm_apic_match_dest(vcpu, apic,
3837                                                      icrl & KVM_APIC_SHORT_MASK,
3838                                                      GET_APIC_DEST_FIELD(icrh),
3839                                                      icrl & KVM_APIC_DEST_MASK);
3840
3841                         if (m && !avic_vcpu_is_running(vcpu))
3842                                 kvm_vcpu_wake_up(vcpu);
3843                 }
3844                 break;
3845         }
3846         case AVIC_IPI_FAILURE_INVALID_TARGET:
3847                 break;
3848         case AVIC_IPI_FAILURE_INVALID_BACKING_PAGE:
3849                 WARN_ONCE(1, "Invalid backing page\n");
3850                 break;
3851         default:
3852                 pr_err("Unknown IPI interception\n");
3853         }
3854
3855         return 1;
3856 }
3857
3858 static u32 *avic_get_logical_id_entry(struct kvm_vcpu *vcpu, u32 ldr, bool flat)
3859 {
3860         struct kvm_arch *vm_data = &vcpu->kvm->arch;
3861         int index;
3862         u32 *logical_apic_id_table;
3863         int dlid = GET_APIC_LOGICAL_ID(ldr);
3864
3865         if (!dlid)
3866                 return NULL;
3867
3868         if (flat) { /* flat */
3869                 index = ffs(dlid) - 1;
3870                 if (index > 7)
3871                         return NULL;
3872         } else { /* cluster */
3873                 int cluster = (dlid & 0xf0) >> 4;
3874                 int apic = ffs(dlid & 0x0f) - 1;
3875
3876                 if ((apic < 0) || (apic > 7) ||
3877                     (cluster >= 0xf))
3878                         return NULL;
3879                 index = (cluster << 2) + apic;
3880         }
3881
3882         logical_apic_id_table = (u32 *) page_address(vm_data->avic_logical_id_table_page);
3883
3884         return &logical_apic_id_table[index];
3885 }
3886
3887 static int avic_ldr_write(struct kvm_vcpu *vcpu, u8 g_physical_id, u32 ldr,
3888                           bool valid)
3889 {
3890         bool flat;
3891         u32 *entry, new_entry;
3892
3893         flat = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR) == APIC_DFR_FLAT;
3894         entry = avic_get_logical_id_entry(vcpu, ldr, flat);
3895         if (!entry)
3896                 return -EINVAL;
3897
3898         new_entry = READ_ONCE(*entry);
3899         new_entry &= ~AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK;
3900         new_entry |= (g_physical_id & AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK);
3901         if (valid)
3902                 new_entry |= AVIC_LOGICAL_ID_ENTRY_VALID_MASK;
3903         else
3904                 new_entry &= ~AVIC_LOGICAL_ID_ENTRY_VALID_MASK;
3905         WRITE_ONCE(*entry, new_entry);
3906
3907         return 0;
3908 }
3909
3910 static int avic_handle_ldr_update(struct kvm_vcpu *vcpu)
3911 {
3912         int ret;
3913         struct vcpu_svm *svm = to_svm(vcpu);
3914         u32 ldr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LDR);
3915
3916         if (!ldr)
3917                 return 1;
3918
3919         ret = avic_ldr_write(vcpu, vcpu->vcpu_id, ldr, true);
3920         if (ret && svm->ldr_reg) {
3921                 avic_ldr_write(vcpu, 0, svm->ldr_reg, false);
3922                 svm->ldr_reg = 0;
3923         } else {
3924                 svm->ldr_reg = ldr;
3925         }
3926         return ret;
3927 }
3928
3929 static int avic_handle_apic_id_update(struct kvm_vcpu *vcpu)
3930 {
3931         u64 *old, *new;
3932         struct vcpu_svm *svm = to_svm(vcpu);
3933         u32 apic_id_reg = kvm_lapic_get_reg(vcpu->arch.apic, APIC_ID);
3934         u32 id = (apic_id_reg >> 24) & 0xff;
3935
3936         if (vcpu->vcpu_id == id)
3937                 return 0;
3938
3939         old = avic_get_physical_id_entry(vcpu, vcpu->vcpu_id);
3940         new = avic_get_physical_id_entry(vcpu, id);
3941         if (!new || !old)
3942                 return 1;
3943
3944         /* We need to move physical_id_entry to new offset */
3945         *new = *old;
3946         *old = 0ULL;
3947         to_svm(vcpu)->avic_physical_id_cache = new;
3948
3949         /*
3950          * Also update the guest physical APIC ID in the logical
3951          * APIC ID table entry if already setup the LDR.
3952          */
3953         if (svm->ldr_reg)
3954                 avic_handle_ldr_update(vcpu);
3955
3956         return 0;
3957 }
3958
3959 static int avic_handle_dfr_update(struct kvm_vcpu *vcpu)
3960 {
3961         struct vcpu_svm *svm = to_svm(vcpu);
3962         struct kvm_arch *vm_data = &vcpu->kvm->arch;
3963         u32 dfr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR);
3964         u32 mod = (dfr >> 28) & 0xf;
3965
3966         /*
3967          * We assume that all local APICs are using the same type.
3968          * If this changes, we need to flush the AVIC logical
3969          * APID id table.
3970          */
3971         if (vm_data->ldr_mode == mod)
3972                 return 0;
3973
3974         clear_page(page_address(vm_data->avic_logical_id_table_page));
3975         vm_data->ldr_mode = mod;
3976
3977         if (svm->ldr_reg)
3978                 avic_handle_ldr_update(vcpu);
3979         return 0;
3980 }
3981
3982 static int avic_unaccel_trap_write(struct vcpu_svm *svm)
3983 {
3984         struct kvm_lapic *apic = svm->vcpu.arch.apic;
3985         u32 offset = svm->vmcb->control.exit_info_1 &
3986                                 AVIC_UNACCEL_ACCESS_OFFSET_MASK;
3987
3988         switch (offset) {
3989         case APIC_ID:
3990                 if (avic_handle_apic_id_update(&svm->vcpu))
3991                         return 0;
3992                 break;
3993         case APIC_LDR:
3994                 if (avic_handle_ldr_update(&svm->vcpu))
3995                         return 0;
3996                 break;
3997         case APIC_DFR:
3998                 avic_handle_dfr_update(&svm->vcpu);
3999                 break;
4000         default:
4001                 break;
4002         }
4003
4004         kvm_lapic_reg_write(apic, offset, kvm_lapic_get_reg(apic, offset));
4005
4006         return 1;
4007 }
4008
4009 static bool is_avic_unaccelerated_access_trap(u32 offset)
4010 {
4011         bool ret = false;
4012
4013         switch (offset) {
4014         case APIC_ID:
4015         case APIC_EOI:
4016         case APIC_RRR:
4017         case APIC_LDR:
4018         case APIC_DFR:
4019         case APIC_SPIV:
4020         case APIC_ESR:
4021         case APIC_ICR:
4022         case APIC_LVTT:
4023         case APIC_LVTTHMR:
4024         case APIC_LVTPC:
4025         case APIC_LVT0:
4026         case APIC_LVT1:
4027         case APIC_LVTERR:
4028         case APIC_TMICT:
4029         case APIC_TDCR:
4030                 ret = true;
4031                 break;
4032         default:
4033                 break;
4034         }
4035         return ret;
4036 }
4037
4038 static int avic_unaccelerated_access_interception(struct vcpu_svm *svm)
4039 {
4040         int ret = 0;
4041         u32 offset = svm->vmcb->control.exit_info_1 &
4042                      AVIC_UNACCEL_ACCESS_OFFSET_MASK;
4043         u32 vector = svm->vmcb->control.exit_info_2 &
4044                      AVIC_UNACCEL_ACCESS_VECTOR_MASK;
4045         bool write = (svm->vmcb->control.exit_info_1 >> 32) &
4046                      AVIC_UNACCEL_ACCESS_WRITE_MASK;
4047         bool trap = is_avic_unaccelerated_access_trap(offset);
4048
4049         trace_kvm_avic_unaccelerated_access(svm->vcpu.vcpu_id, offset,
4050                                             trap, write, vector);
4051         if (trap) {
4052                 /* Handling Trap */
4053                 WARN_ONCE(!write, "svm: Handling trap read.\n");
4054                 ret = avic_unaccel_trap_write(svm);
4055         } else {
4056                 /* Handling Fault */
4057                 ret = (emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE);
4058         }
4059
4060         return ret;
4061 }
4062
4063 static int (*const svm_exit_handlers[])(struct vcpu_svm *svm) = {
4064         [SVM_EXIT_READ_CR0]                     = cr_interception,
4065         [SVM_EXIT_READ_CR3]                     = cr_interception,
4066         [SVM_EXIT_READ_CR4]                     = cr_interception,
4067         [SVM_EXIT_READ_CR8]                     = cr_interception,
4068         [SVM_EXIT_CR0_SEL_WRITE]                = cr_interception,
4069         [SVM_EXIT_WRITE_CR0]                    = cr_interception,
4070         [SVM_EXIT_WRITE_CR3]                    = cr_interception,
4071         [SVM_EXIT_WRITE_CR4]                    = cr_interception,
4072         [SVM_EXIT_WRITE_CR8]                    = cr8_write_interception,
4073         [SVM_EXIT_READ_DR0]                     = dr_interception,
4074         [SVM_EXIT_READ_DR1]                     = dr_interception,
4075         [SVM_EXIT_READ_DR2]                     = dr_interception,
4076         [SVM_EXIT_READ_DR3]                     = dr_interception,
4077         [SVM_EXIT_READ_DR4]                     = dr_interception,
4078         [SVM_EXIT_READ_DR5]                     = dr_interception,
4079         [SVM_EXIT_READ_DR6]                     = dr_interception,
4080         [SVM_EXIT_READ_DR7]                     = dr_interception,
4081         [SVM_EXIT_WRITE_DR0]                    = dr_interception,
4082         [SVM_EXIT_WRITE_DR1]                    = dr_interception,
4083         [SVM_EXIT_WRITE_DR2]                    = dr_interception,
4084         [SVM_EXIT_WRITE_DR3]                    = dr_interception,
4085         [SVM_EXIT_WRITE_DR4]                    = dr_interception,
4086         [SVM_EXIT_WRITE_DR5]                    = dr_interception,
4087         [SVM_EXIT_WRITE_DR6]                    = dr_interception,
4088         [SVM_EXIT_WRITE_DR7]                    = dr_interception,
4089         [SVM_EXIT_EXCP_BASE + DB_VECTOR]        = db_interception,
4090         [SVM_EXIT_EXCP_BASE + BP_VECTOR]        = bp_interception,
4091         [SVM_EXIT_EXCP_BASE + UD_VECTOR]        = ud_interception,
4092         [SVM_EXIT_EXCP_BASE + PF_VECTOR]        = pf_interception,
4093         [SVM_EXIT_EXCP_BASE + MC_VECTOR]        = mc_interception,
4094         [SVM_EXIT_EXCP_BASE + AC_VECTOR]        = ac_interception,
4095         [SVM_EXIT_INTR]                         = intr_interception,
4096         [SVM_EXIT_NMI]                          = nmi_interception,
4097         [SVM_EXIT_SMI]                          = nop_on_interception,
4098         [SVM_EXIT_INIT]                         = nop_on_interception,
4099         [SVM_EXIT_VINTR]                        = interrupt_window_interception,
4100         [SVM_EXIT_RDPMC]                        = rdpmc_interception,
4101         [SVM_EXIT_CPUID]                        = cpuid_interception,
4102         [SVM_EXIT_IRET]                         = iret_interception,
4103         [SVM_EXIT_INVD]                         = emulate_on_interception,
4104         [SVM_EXIT_PAUSE]                        = pause_interception,
4105         [SVM_EXIT_HLT]                          = halt_interception,
4106         [SVM_EXIT_INVLPG]                       = invlpg_interception,
4107         [SVM_EXIT_INVLPGA]                      = invlpga_interception,
4108         [SVM_EXIT_IOIO]                         = io_interception,
4109         [SVM_EXIT_MSR]                          = msr_interception,
4110         [SVM_EXIT_TASK_SWITCH]                  = task_switch_interception,
4111         [SVM_EXIT_SHUTDOWN]                     = shutdown_interception,
4112         [SVM_EXIT_VMRUN]                        = vmrun_interception,
4113         [SVM_EXIT_VMMCALL]                      = vmmcall_interception,
4114         [SVM_EXIT_VMLOAD]                       = vmload_interception,
4115         [SVM_EXIT_VMSAVE]                       = vmsave_interception,
4116         [SVM_EXIT_STGI]                         = stgi_interception,
4117         [SVM_EXIT_CLGI]                         = clgi_interception,
4118         [SVM_EXIT_SKINIT]                       = skinit_interception,
4119         [SVM_EXIT_WBINVD]                       = wbinvd_interception,
4120         [SVM_EXIT_MONITOR]                      = monitor_interception,
4121         [SVM_EXIT_MWAIT]                        = mwait_interception,
4122         [SVM_EXIT_XSETBV]                       = xsetbv_interception,
4123         [SVM_EXIT_NPF]                          = pf_interception,
4124         [SVM_EXIT_RSM]                          = emulate_on_interception,
4125         [SVM_EXIT_AVIC_INCOMPLETE_IPI]          = avic_incomplete_ipi_interception,
4126         [SVM_EXIT_AVIC_UNACCELERATED_ACCESS]    = avic_unaccelerated_access_interception,
4127 };
4128
4129 static void dump_vmcb(struct kvm_vcpu *vcpu)
4130 {
4131         struct vcpu_svm *svm = to_svm(vcpu);
4132         struct vmcb_control_area *control = &svm->vmcb->control;
4133         struct vmcb_save_area *save = &svm->vmcb->save;
4134
4135         pr_err("VMCB Control Area:\n");
4136         pr_err("%-20s%04x\n", "cr_read:", control->intercept_cr & 0xffff);
4137         pr_err("%-20s%04x\n", "cr_write:", control->intercept_cr >> 16);
4138         pr_err("%-20s%04x\n", "dr_read:", control->intercept_dr & 0xffff);
4139         pr_err("%-20s%04x\n", "dr_write:", control->intercept_dr >> 16);
4140         pr_err("%-20s%08x\n", "exceptions:", control->intercept_exceptions);
4141         pr_err("%-20s%016llx\n", "intercepts:", control->intercept);
4142         pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
4143         pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
4144         pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
4145         pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
4146         pr_err("%-20s%d\n", "asid:", control->asid);
4147         pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
4148         pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
4149         pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
4150         pr_err("%-20s%08x\n", "int_state:", control->int_state);
4151         pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
4152         pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
4153         pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
4154         pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
4155         pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
4156         pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
4157         pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
4158         pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar);
4159         pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
4160         pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
4161         pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext);
4162         pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
4163         pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page);
4164         pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id);
4165         pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id);
4166         pr_err("VMCB State Save Area:\n");
4167         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4168                "es:",
4169                save->es.selector, save->es.attrib,
4170                save->es.limit, save->es.base);
4171         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4172                "cs:",
4173                save->cs.selector, save->cs.attrib,
4174                save->cs.limit, save->cs.base);
4175         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4176                "ss:",
4177                save->ss.selector, save->ss.attrib,
4178                save->ss.limit, save->ss.base);
4179         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4180                "ds:",
4181                save->ds.selector, save->ds.attrib,
4182                save->ds.limit, save->ds.base);
4183         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4184                "fs:",
4185                save->fs.selector, save->fs.attrib,
4186                save->fs.limit, save->fs.base);
4187         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4188                "gs:",
4189                save->gs.selector, save->gs.attrib,
4190                save->gs.limit, save->gs.base);
4191         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4192                "gdtr:",
4193                save->gdtr.selector, save->gdtr.attrib,
4194                save->gdtr.limit, save->gdtr.base);
4195         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4196                "ldtr:",
4197                save->ldtr.selector, save->ldtr.attrib,
4198                save->ldtr.limit, save->ldtr.base);
4199         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4200                "idtr:",
4201                save->idtr.selector, save->idtr.attrib,
4202                save->idtr.limit, save->idtr.base);
4203         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4204                "tr:",
4205                save->tr.selector, save->tr.attrib,
4206                save->tr.limit, save->tr.base);
4207         pr_err("cpl:            %d                efer:         %016llx\n",
4208                 save->cpl, save->efer);
4209         pr_err("%-15s %016llx %-13s %016llx\n",
4210                "cr0:", save->cr0, "cr2:", save->cr2);
4211         pr_err("%-15s %016llx %-13s %016llx\n",
4212                "cr3:", save->cr3, "cr4:", save->cr4);
4213         pr_err("%-15s %016llx %-13s %016llx\n",
4214                "dr6:", save->dr6, "dr7:", save->dr7);
4215         pr_err("%-15s %016llx %-13s %016llx\n",
4216                "rip:", save->rip, "rflags:", save->rflags);
4217         pr_err("%-15s %016llx %-13s %016llx\n",
4218                "rsp:", save->rsp, "rax:", save->rax);
4219         pr_err("%-15s %016llx %-13s %016llx\n",
4220                "star:", save->star, "lstar:", save->lstar);
4221         pr_err("%-15s %016llx %-13s %016llx\n",
4222                "cstar:", save->cstar, "sfmask:", save->sfmask);
4223         pr_err("%-15s %016llx %-13s %016llx\n",
4224                "kernel_gs_base:", save->kernel_gs_base,
4225                "sysenter_cs:", save->sysenter_cs);
4226         pr_err("%-15s %016llx %-13s %016llx\n",
4227                "sysenter_esp:", save->sysenter_esp,
4228                "sysenter_eip:", save->sysenter_eip);
4229         pr_err("%-15s %016llx %-13s %016llx\n",
4230                "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
4231         pr_err("%-15s %016llx %-13s %016llx\n",
4232                "br_from:", save->br_from, "br_to:", save->br_to);
4233         pr_err("%-15s %016llx %-13s %016llx\n",
4234                "excp_from:", save->last_excp_from,
4235                "excp_to:", save->last_excp_to);
4236 }
4237
4238 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
4239 {
4240         struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
4241
4242         *info1 = control->exit_info_1;
4243         *info2 = control->exit_info_2;
4244 }
4245
4246 static int handle_exit(struct kvm_vcpu *vcpu)
4247 {
4248         struct vcpu_svm *svm = to_svm(vcpu);
4249         struct kvm_run *kvm_run = vcpu->run;
4250         u32 exit_code = svm->vmcb->control.exit_code;
4251
4252         trace_kvm_exit(exit_code, vcpu, KVM_ISA_SVM);
4253
4254         if (!is_cr_intercept(svm, INTERCEPT_CR0_WRITE))
4255                 vcpu->arch.cr0 = svm->vmcb->save.cr0;
4256         if (npt_enabled)
4257                 vcpu->arch.cr3 = svm->vmcb->save.cr3;
4258
4259         if (unlikely(svm->nested.exit_required)) {
4260                 nested_svm_vmexit(svm);
4261                 svm->nested.exit_required = false;
4262
4263                 return 1;
4264         }
4265
4266         if (is_guest_mode(vcpu)) {
4267                 int vmexit;
4268
4269                 trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
4270                                         svm->vmcb->control.exit_info_1,
4271                                         svm->vmcb->control.exit_info_2,
4272                                         svm->vmcb->control.exit_int_info,
4273                                         svm->vmcb->control.exit_int_info_err,
4274                                         KVM_ISA_SVM);
4275
4276                 vmexit = nested_svm_exit_special(svm);
4277
4278                 if (vmexit == NESTED_EXIT_CONTINUE)
4279                         vmexit = nested_svm_exit_handled(svm);
4280
4281                 if (vmexit == NESTED_EXIT_DONE)
4282                         return 1;
4283         }
4284
4285         svm_complete_interrupts(svm);
4286
4287         if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
4288                 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4289                 kvm_run->fail_entry.hardware_entry_failure_reason
4290                         = svm->vmcb->control.exit_code;
4291                 pr_err("KVM: FAILED VMRUN WITH VMCB:\n");
4292                 dump_vmcb(vcpu);
4293                 return 0;
4294         }
4295
4296         if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
4297             exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
4298             exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
4299             exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
4300                 printk(KERN_ERR "%s: unexpected exit_int_info 0x%x "
4301                        "exit_code 0x%x\n",
4302                        __func__, svm->vmcb->control.exit_int_info,
4303                        exit_code);
4304
4305         if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
4306             || !svm_exit_handlers[exit_code]) {
4307                 WARN_ONCE(1, "svm: unexpected exit reason 0x%x\n", exit_code);
4308                 kvm_queue_exception(vcpu, UD_VECTOR);
4309                 return 1;
4310         }
4311
4312         return svm_exit_handlers[exit_code](svm);
4313 }
4314
4315 static void reload_tss(struct kvm_vcpu *vcpu)
4316 {
4317         int cpu = raw_smp_processor_id();
4318
4319         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
4320         sd->tss_desc->type = 9; /* available 32/64-bit TSS */
4321         load_TR_desc();
4322 }
4323
4324 static void pre_svm_run(struct vcpu_svm *svm)
4325 {
4326         int cpu = raw_smp_processor_id();
4327
4328         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
4329
4330         /* FIXME: handle wraparound of asid_generation */
4331         if (svm->asid_generation != sd->asid_generation)
4332                 new_asid(svm, sd);
4333 }
4334
4335 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
4336 {
4337         struct vcpu_svm *svm = to_svm(vcpu);
4338
4339         svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
4340         vcpu->arch.hflags |= HF_NMI_MASK;
4341         set_intercept(svm, INTERCEPT_IRET);
4342         ++vcpu->stat.nmi_injections;
4343 }
4344
4345 static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
4346 {
4347         struct vmcb_control_area *control;
4348
4349         /* The following fields are ignored when AVIC is enabled */
4350         control = &svm->vmcb->control;
4351         control->int_vector = irq;
4352         control->int_ctl &= ~V_INTR_PRIO_MASK;
4353         control->int_ctl |= V_IRQ_MASK |
4354                 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
4355         mark_dirty(svm->vmcb, VMCB_INTR);
4356 }
4357
4358 static void svm_set_irq(struct kvm_vcpu *vcpu)
4359 {
4360         struct vcpu_svm *svm = to_svm(vcpu);
4361
4362         BUG_ON(!(gif_set(svm)));
4363
4364         trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
4365         ++vcpu->stat.irq_injections;
4366
4367         svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
4368                 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
4369 }
4370
4371 static inline bool svm_nested_virtualize_tpr(struct kvm_vcpu *vcpu)
4372 {
4373         return is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK);
4374 }
4375
4376 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
4377 {
4378         struct vcpu_svm *svm = to_svm(vcpu);
4379
4380         if (svm_nested_virtualize_tpr(vcpu) ||
4381             kvm_vcpu_apicv_active(vcpu))
4382                 return;
4383
4384         clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
4385
4386         if (irr == -1)
4387                 return;
4388
4389         if (tpr >= irr)
4390                 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
4391 }
4392
4393 static void svm_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
4394 {
4395         return;
4396 }
4397
4398 static bool svm_get_enable_apicv(void)
4399 {
4400         return avic;
4401 }
4402
4403 static void svm_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
4404 {
4405 }
4406
4407 static void svm_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
4408 {
4409 }
4410
4411 /* Note: Currently only used by Hyper-V. */
4412 static void svm_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
4413 {
4414         struct vcpu_svm *svm = to_svm(vcpu);
4415         struct vmcb *vmcb = svm->vmcb;
4416
4417         if (!avic)
4418                 return;
4419
4420         vmcb->control.int_ctl &= ~AVIC_ENABLE_MASK;
4421         mark_dirty(vmcb, VMCB_INTR);
4422 }
4423
4424 static void svm_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
4425 {
4426         return;
4427 }
4428
4429 static void svm_deliver_avic_intr(struct kvm_vcpu *vcpu, int vec)
4430 {
4431         kvm_lapic_set_irr(vec, vcpu->arch.apic);
4432         smp_mb__after_atomic();
4433
4434         if (avic_vcpu_is_running(vcpu))
4435                 wrmsrl(SVM_AVIC_DOORBELL,
4436                        kvm_cpu_get_apicid(vcpu->cpu));
4437         else
4438                 kvm_vcpu_wake_up(vcpu);
4439 }
4440
4441 static void svm_ir_list_del(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
4442 {
4443         unsigned long flags;
4444         struct amd_svm_iommu_ir *cur;
4445
4446         spin_lock_irqsave(&svm->ir_list_lock, flags);
4447         list_for_each_entry(cur, &svm->ir_list, node) {
4448                 if (cur->data != pi->ir_data)
4449                         continue;
4450                 list_del(&cur->node);
4451                 kfree(cur);
4452                 break;
4453         }
4454         spin_unlock_irqrestore(&svm->ir_list_lock, flags);
4455 }
4456
4457 static int svm_ir_list_add(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
4458 {
4459         int ret = 0;
4460         unsigned long flags;
4461         struct amd_svm_iommu_ir *ir;
4462
4463         /**
4464          * In some cases, the existing irte is updaed and re-set,
4465          * so we need to check here if it's already been * added
4466          * to the ir_list.
4467          */
4468         if (pi->ir_data && (pi->prev_ga_tag != 0)) {
4469                 struct kvm *kvm = svm->vcpu.kvm;
4470                 u32 vcpu_id = AVIC_GATAG_TO_VCPUID(pi->prev_ga_tag);
4471                 struct kvm_vcpu *prev_vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
4472                 struct vcpu_svm *prev_svm;
4473
4474                 if (!prev_vcpu) {
4475                         ret = -EINVAL;
4476                         goto out;
4477                 }
4478
4479                 prev_svm = to_svm(prev_vcpu);
4480                 svm_ir_list_del(prev_svm, pi);
4481         }
4482
4483         /**
4484          * Allocating new amd_iommu_pi_data, which will get
4485          * add to the per-vcpu ir_list.
4486          */
4487         ir = kzalloc(sizeof(struct amd_svm_iommu_ir), GFP_KERNEL);
4488         if (!ir) {
4489                 ret = -ENOMEM;
4490                 goto out;
4491         }
4492         ir->data = pi->ir_data;
4493
4494         spin_lock_irqsave(&svm->ir_list_lock, flags);
4495         list_add(&ir->node, &svm->ir_list);
4496         spin_unlock_irqrestore(&svm->ir_list_lock, flags);
4497 out:
4498         return ret;
4499 }
4500
4501 /**
4502  * Note:
4503  * The HW cannot support posting multicast/broadcast
4504  * interrupts to a vCPU. So, we still use legacy interrupt
4505  * remapping for these kind of interrupts.
4506  *
4507  * For lowest-priority interrupts, we only support
4508  * those with single CPU as the destination, e.g. user
4509  * configures the interrupts via /proc/irq or uses
4510  * irqbalance to make the interrupts single-CPU.
4511  */
4512 static int
4513 get_pi_vcpu_info(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e,
4514                  struct vcpu_data *vcpu_info, struct vcpu_svm **svm)
4515 {
4516         struct kvm_lapic_irq irq;
4517         struct kvm_vcpu *vcpu = NULL;
4518
4519         kvm_set_msi_irq(kvm, e, &irq);
4520
4521         if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu)) {
4522                 pr_debug("SVM: %s: use legacy intr remap mode for irq %u\n",
4523                          __func__, irq.vector);
4524                 return -1;
4525         }
4526
4527         pr_debug("SVM: %s: use GA mode for irq %u\n", __func__,
4528                  irq.vector);
4529         *svm = to_svm(vcpu);
4530         vcpu_info->pi_desc_addr = __sme_set(page_to_phys((*svm)->avic_backing_page));
4531         vcpu_info->vector = irq.vector;
4532
4533         return 0;
4534 }
4535
4536 /*
4537  * svm_update_pi_irte - set IRTE for Posted-Interrupts
4538  *
4539  * @kvm: kvm
4540  * @host_irq: host irq of the interrupt
4541  * @guest_irq: gsi of the interrupt
4542  * @set: set or unset PI
4543  * returns 0 on success, < 0 on failure
4544  */
4545 static int svm_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
4546                               uint32_t guest_irq, bool set)
4547 {
4548         struct kvm_kernel_irq_routing_entry *e;
4549         struct kvm_irq_routing_table *irq_rt;
4550         int idx, ret = -EINVAL;
4551
4552         if (!kvm_arch_has_assigned_device(kvm) ||
4553             !irq_remapping_cap(IRQ_POSTING_CAP))
4554                 return 0;
4555
4556         pr_debug("SVM: %s: host_irq=%#x, guest_irq=%#x, set=%#x\n",
4557                  __func__, host_irq, guest_irq, set);
4558
4559         idx = srcu_read_lock(&kvm->irq_srcu);
4560         irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
4561         WARN_ON(guest_irq >= irq_rt->nr_rt_entries);
4562
4563         hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
4564                 struct vcpu_data vcpu_info;
4565                 struct vcpu_svm *svm = NULL;
4566
4567                 if (e->type != KVM_IRQ_ROUTING_MSI)
4568                         continue;
4569
4570                 /**
4571                  * Here, we setup with legacy mode in the following cases:
4572                  * 1. When cannot target interrupt to a specific vcpu.
4573                  * 2. Unsetting posted interrupt.
4574                  * 3. APIC virtialization is disabled for the vcpu.
4575                  */
4576                 if (!get_pi_vcpu_info(kvm, e, &vcpu_info, &svm) && set &&
4577                     kvm_vcpu_apicv_active(&svm->vcpu)) {
4578                         struct amd_iommu_pi_data pi;
4579
4580                         /* Try to enable guest_mode in IRTE */
4581                         pi.base = __sme_set(page_to_phys(svm->avic_backing_page) &
4582                                             AVIC_HPA_MASK);
4583                         pi.ga_tag = AVIC_GATAG(kvm->arch.avic_vm_id,
4584                                                      svm->vcpu.vcpu_id);
4585                         pi.is_guest_mode = true;
4586                         pi.vcpu_data = &vcpu_info;
4587                         ret = irq_set_vcpu_affinity(host_irq, &pi);
4588
4589                         /**
4590                          * Here, we successfully setting up vcpu affinity in
4591                          * IOMMU guest mode. Now, we need to store the posted
4592                          * interrupt information in a per-vcpu ir_list so that
4593                          * we can reference to them directly when we update vcpu
4594                          * scheduling information in IOMMU irte.
4595                          */
4596                         if (!ret && pi.is_guest_mode)
4597                                 svm_ir_list_add(svm, &pi);
4598                 } else {
4599                         /* Use legacy mode in IRTE */
4600                         struct amd_iommu_pi_data pi;
4601
4602                         /**
4603                          * Here, pi is used to:
4604                          * - Tell IOMMU to use legacy mode for this interrupt.
4605                          * - Retrieve ga_tag of prior interrupt remapping data.
4606                          */
4607                         pi.is_guest_mode = false;
4608                         ret = irq_set_vcpu_affinity(host_irq, &pi);
4609
4610                         /**
4611                          * Check if the posted interrupt was previously
4612                          * setup with the guest_mode by checking if the ga_tag
4613                          * was cached. If so, we need to clean up the per-vcpu
4614                          * ir_list.
4615                          */
4616                         if (!ret && pi.prev_ga_tag) {
4617                                 int id = AVIC_GATAG_TO_VCPUID(pi.prev_ga_tag);
4618                                 struct kvm_vcpu *vcpu;
4619
4620                                 vcpu = kvm_get_vcpu_by_id(kvm, id);
4621                                 if (vcpu)
4622                                         svm_ir_list_del(to_svm(vcpu), &pi);
4623                         }
4624                 }
4625
4626                 if (!ret && svm) {
4627                         trace_kvm_pi_irte_update(svm->vcpu.vcpu_id,
4628                                                  host_irq, e->gsi,
4629                                                  vcpu_info.vector,
4630                                                  vcpu_info.pi_desc_addr, set);
4631                 }
4632
4633                 if (ret < 0) {
4634                         pr_err("%s: failed to update PI IRTE\n", __func__);
4635                         goto out;
4636                 }
4637         }
4638
4639         ret = 0;
4640 out:
4641         srcu_read_unlock(&kvm->irq_srcu, idx);
4642         return ret;
4643 }
4644
4645 static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
4646 {
4647         struct vcpu_svm *svm = to_svm(vcpu);
4648         struct vmcb *vmcb = svm->vmcb;
4649         int ret;
4650         ret = !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
4651               !(svm->vcpu.arch.hflags & HF_NMI_MASK);
4652         ret = ret && gif_set(svm) && nested_svm_nmi(svm);
4653
4654         return ret;
4655 }
4656
4657 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
4658 {
4659         struct vcpu_svm *svm = to_svm(vcpu);
4660
4661         return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
4662 }
4663
4664 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4665 {
4666         struct vcpu_svm *svm = to_svm(vcpu);
4667
4668         if (masked) {
4669                 svm->vcpu.arch.hflags |= HF_NMI_MASK;
4670                 set_intercept(svm, INTERCEPT_IRET);
4671         } else {
4672                 svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
4673                 clr_intercept(svm, INTERCEPT_IRET);
4674         }
4675 }
4676
4677 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
4678 {
4679         struct vcpu_svm *svm = to_svm(vcpu);
4680         struct vmcb *vmcb = svm->vmcb;
4681         int ret;
4682
4683         if (!gif_set(svm) ||
4684              (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
4685                 return 0;
4686
4687         ret = !!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF);
4688
4689         if (is_guest_mode(vcpu))
4690                 return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK);
4691
4692         return ret;
4693 }
4694
4695 static void enable_irq_window(struct kvm_vcpu *vcpu)
4696 {
4697         struct vcpu_svm *svm = to_svm(vcpu);
4698
4699         if (kvm_vcpu_apicv_active(vcpu))
4700                 return;
4701
4702         /*
4703          * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
4704          * 1, because that's a separate STGI/VMRUN intercept.  The next time we
4705          * get that intercept, this function will be called again though and
4706          * we'll get the vintr intercept. However, if the vGIF feature is
4707          * enabled, the STGI interception will not occur. Enable the irq
4708          * window under the assumption that the hardware will set the GIF.
4709          */
4710         if ((vgif_enabled(svm) || gif_set(svm)) && nested_svm_intr(svm)) {
4711                 svm_set_vintr(svm);
4712                 svm_inject_irq(svm, 0x0);
4713         }
4714 }
4715
4716 static void enable_nmi_window(struct kvm_vcpu *vcpu)
4717 {
4718         struct vcpu_svm *svm = to_svm(vcpu);
4719
4720         if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
4721             == HF_NMI_MASK)
4722                 return; /* IRET will cause a vm exit */
4723
4724         if (!gif_set(svm)) {
4725                 if (vgif_enabled(svm))
4726                         set_intercept(svm, INTERCEPT_STGI);
4727                 return; /* STGI will cause a vm exit */
4728         }
4729
4730         if (svm->nested.exit_required)
4731                 return; /* we're not going to run the guest yet */
4732
4733         /*
4734          * Something prevents NMI from been injected. Single step over possible
4735          * problem (IRET or exception injection or interrupt shadow)
4736          */
4737         svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu);
4738         svm->nmi_singlestep = true;
4739         svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
4740 }
4741
4742 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
4743 {
4744         return 0;
4745 }
4746
4747 static void svm_flush_tlb(struct kvm_vcpu *vcpu)
4748 {
4749         struct vcpu_svm *svm = to_svm(vcpu);
4750
4751         if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
4752                 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
4753         else
4754                 svm->asid_generation--;
4755 }
4756
4757 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
4758 {
4759 }
4760
4761 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
4762 {
4763         struct vcpu_svm *svm = to_svm(vcpu);
4764
4765         if (svm_nested_virtualize_tpr(vcpu))
4766                 return;
4767
4768         if (!is_cr_intercept(svm, INTERCEPT_CR8_WRITE)) {
4769                 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
4770                 kvm_set_cr8(vcpu, cr8);
4771         }
4772 }
4773
4774 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
4775 {
4776         struct vcpu_svm *svm = to_svm(vcpu);
4777         u64 cr8;
4778
4779         if (svm_nested_virtualize_tpr(vcpu) ||
4780             kvm_vcpu_apicv_active(vcpu))
4781                 return;
4782
4783         cr8 = kvm_get_cr8(vcpu);
4784         svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
4785         svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
4786 }
4787
4788 static void svm_complete_interrupts(struct vcpu_svm *svm)
4789 {
4790         u8 vector;
4791         int type;
4792         u32 exitintinfo = svm->vmcb->control.exit_int_info;
4793         unsigned int3_injected = svm->int3_injected;
4794
4795         svm->int3_injected = 0;
4796
4797         /*
4798          * If we've made progress since setting HF_IRET_MASK, we've
4799          * executed an IRET and can allow NMI injection.
4800          */
4801         if ((svm->vcpu.arch.hflags & HF_IRET_MASK)
4802             && kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip) {
4803                 svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
4804                 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
4805         }
4806
4807         svm->vcpu.arch.nmi_injected = false;
4808         kvm_clear_exception_queue(&svm->vcpu);
4809         kvm_clear_interrupt_queue(&svm->vcpu);
4810
4811         if (!(exitintinfo & SVM_EXITINTINFO_VALID))
4812                 return;
4813
4814         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
4815
4816         vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
4817         type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
4818
4819         switch (type) {
4820         case SVM_EXITINTINFO_TYPE_NMI:
4821                 svm->vcpu.arch.nmi_injected = true;
4822                 break;
4823         case SVM_EXITINTINFO_TYPE_EXEPT:
4824                 /*
4825                  * In case of software exceptions, do not reinject the vector,
4826                  * but re-execute the instruction instead. Rewind RIP first
4827                  * if we emulated INT3 before.
4828                  */
4829                 if (kvm_exception_is_soft(vector)) {
4830                         if (vector == BP_VECTOR && int3_injected &&
4831                             kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
4832                                 kvm_rip_write(&svm->vcpu,
4833                                               kvm_rip_read(&svm->vcpu) -
4834                                               int3_injected);
4835                         break;
4836                 }
4837                 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
4838                         u32 err = svm->vmcb->control.exit_int_info_err;
4839                         kvm_requeue_exception_e(&svm->vcpu, vector, err);
4840
4841                 } else
4842                         kvm_requeue_exception(&svm->vcpu, vector);
4843                 break;
4844         case SVM_EXITINTINFO_TYPE_INTR:
4845                 kvm_queue_interrupt(&svm->vcpu, vector, false);
4846                 break;
4847         default:
4848                 break;
4849         }
4850 }
4851
4852 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
4853 {
4854         struct vcpu_svm *svm = to_svm(vcpu);
4855         struct vmcb_control_area *control = &svm->vmcb->control;
4856
4857         control->exit_int_info = control->event_inj;
4858         control->exit_int_info_err = control->event_inj_err;
4859         control->event_inj = 0;
4860         svm_complete_interrupts(svm);
4861 }
4862
4863 static void svm_vcpu_run(struct kvm_vcpu *vcpu)
4864 {
4865         struct vcpu_svm *svm = to_svm(vcpu);
4866
4867         svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
4868         svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
4869         svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
4870
4871         /*
4872          * A vmexit emulation is required before the vcpu can be executed
4873          * again.
4874          */
4875         if (unlikely(svm->nested.exit_required))
4876                 return;
4877
4878         /*
4879          * Disable singlestep if we're injecting an interrupt/exception.
4880          * We don't want our modified rflags to be pushed on the stack where
4881          * we might not be able to easily reset them if we disabled NMI
4882          * singlestep later.
4883          */
4884         if (svm->nmi_singlestep && svm->vmcb->control.event_inj) {
4885                 /*
4886                  * Event injection happens before external interrupts cause a
4887                  * vmexit and interrupts are disabled here, so smp_send_reschedule
4888                  * is enough to force an immediate vmexit.
4889                  */
4890                 disable_nmi_singlestep(svm);
4891                 smp_send_reschedule(vcpu->cpu);
4892         }
4893
4894         pre_svm_run(svm);
4895
4896         sync_lapic_to_cr8(vcpu);
4897
4898         svm->vmcb->save.cr2 = vcpu->arch.cr2;
4899
4900         clgi();
4901
4902         local_irq_enable();
4903
4904         asm volatile (
4905                 "push %%" _ASM_BP "; \n\t"
4906                 "mov %c[rbx](%[svm]), %%" _ASM_BX " \n\t"
4907                 "mov %c[rcx](%[svm]), %%" _ASM_CX " \n\t"
4908                 "mov %c[rdx](%[svm]), %%" _ASM_DX " \n\t"
4909                 "mov %c[rsi](%[svm]), %%" _ASM_SI " \n\t"
4910                 "mov %c[rdi](%[svm]), %%" _ASM_DI " \n\t"
4911                 "mov %c[rbp](%[svm]), %%" _ASM_BP " \n\t"
4912 #ifdef CONFIG_X86_64
4913                 "mov %c[r8](%[svm]),  %%r8  \n\t"
4914                 "mov %c[r9](%[svm]),  %%r9  \n\t"
4915                 "mov %c[r10](%[svm]), %%r10 \n\t"
4916                 "mov %c[r11](%[svm]), %%r11 \n\t"
4917                 "mov %c[r12](%[svm]), %%r12 \n\t"
4918                 "mov %c[r13](%[svm]), %%r13 \n\t"
4919                 "mov %c[r14](%[svm]), %%r14 \n\t"
4920                 "mov %c[r15](%[svm]), %%r15 \n\t"
4921 #endif
4922
4923                 /* Enter guest mode */
4924                 "push %%" _ASM_AX " \n\t"
4925                 "mov %c[vmcb](%[svm]), %%" _ASM_AX " \n\t"
4926                 __ex(SVM_VMLOAD) "\n\t"
4927                 __ex(SVM_VMRUN) "\n\t"
4928                 __ex(SVM_VMSAVE) "\n\t"
4929                 "pop %%" _ASM_AX " \n\t"
4930
4931                 /* Save guest registers, load host registers */
4932                 "mov %%" _ASM_BX ", %c[rbx](%[svm]) \n\t"
4933                 "mov %%" _ASM_CX ", %c[rcx](%[svm]) \n\t"
4934                 "mov %%" _ASM_DX ", %c[rdx](%[svm]) \n\t"
4935                 "mov %%" _ASM_SI ", %c[rsi](%[svm]) \n\t"
4936                 "mov %%" _ASM_DI ", %c[rdi](%[svm]) \n\t"
4937                 "mov %%" _ASM_BP ", %c[rbp](%[svm]) \n\t"
4938 #ifdef CONFIG_X86_64
4939                 "mov %%r8,  %c[r8](%[svm]) \n\t"
4940                 "mov %%r9,  %c[r9](%[svm]) \n\t"
4941                 "mov %%r10, %c[r10](%[svm]) \n\t"
4942                 "mov %%r11, %c[r11](%[svm]) \n\t"
4943                 "mov %%r12, %c[r12](%[svm]) \n\t"
4944                 "mov %%r13, %c[r13](%[svm]) \n\t"
4945                 "mov %%r14, %c[r14](%[svm]) \n\t"
4946                 "mov %%r15, %c[r15](%[svm]) \n\t"
4947 #endif
4948                 "pop %%" _ASM_BP
4949                 :
4950                 : [svm]"a"(svm),
4951                   [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
4952                   [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
4953                   [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
4954                   [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
4955                   [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
4956                   [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
4957                   [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
4958 #ifdef CONFIG_X86_64
4959                   , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
4960                   [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
4961                   [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
4962                   [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
4963                   [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
4964                   [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
4965                   [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
4966                   [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
4967 #endif
4968                 : "cc", "memory"
4969 #ifdef CONFIG_X86_64
4970                 , "rbx", "rcx", "rdx", "rsi", "rdi"
4971                 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
4972 #else
4973                 , "ebx", "ecx", "edx", "esi", "edi"
4974 #endif
4975                 );
4976
4977 #ifdef CONFIG_X86_64
4978         wrmsrl(MSR_GS_BASE, svm->host.gs_base);
4979 #else
4980         loadsegment(fs, svm->host.fs);
4981 #ifndef CONFIG_X86_32_LAZY_GS
4982         loadsegment(gs, svm->host.gs);
4983 #endif
4984 #endif
4985
4986         reload_tss(vcpu);
4987
4988         local_irq_disable();
4989
4990         vcpu->arch.cr2 = svm->vmcb->save.cr2;
4991         vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
4992         vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
4993         vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
4994
4995         if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
4996                 kvm_before_handle_nmi(&svm->vcpu);
4997
4998         stgi();
4999
5000         /* Any pending NMI will happen here */
5001
5002         if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
5003                 kvm_after_handle_nmi(&svm->vcpu);
5004
5005         sync_cr8_to_lapic(vcpu);
5006
5007         svm->next_rip = 0;
5008
5009         svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
5010
5011         /* if exit due to PF check for async PF */
5012         if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
5013                 svm->vcpu.arch.apf.host_apf_reason = kvm_read_and_reset_pf_reason();
5014
5015         if (npt_enabled) {
5016                 vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
5017                 vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
5018         }
5019
5020         /*
5021          * We need to handle MC intercepts here before the vcpu has a chance to
5022          * change the physical cpu
5023          */
5024         if (unlikely(svm->vmcb->control.exit_code ==
5025                      SVM_EXIT_EXCP_BASE + MC_VECTOR))
5026                 svm_handle_mce(svm);
5027
5028         mark_all_clean(svm->vmcb);
5029 }
5030 STACK_FRAME_NON_STANDARD(svm_vcpu_run);
5031
5032 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
5033 {
5034         struct vcpu_svm *svm = to_svm(vcpu);
5035
5036         svm->vmcb->save.cr3 = __sme_set(root);
5037         mark_dirty(svm->vmcb, VMCB_CR);
5038         svm_flush_tlb(vcpu);
5039 }
5040
5041 static void set_tdp_cr3(struct kvm_vcpu *vcpu, unsigned long root)
5042 {
5043         struct vcpu_svm *svm = to_svm(vcpu);
5044
5045         svm->vmcb->control.nested_cr3 = __sme_set(root);
5046         mark_dirty(svm->vmcb, VMCB_NPT);
5047
5048         /* Also sync guest cr3 here in case we live migrate */
5049         svm->vmcb->save.cr3 = kvm_read_cr3(vcpu);
5050         mark_dirty(svm->vmcb, VMCB_CR);
5051
5052         svm_flush_tlb(vcpu);
5053 }
5054
5055 static int is_disabled(void)
5056 {
5057         u64 vm_cr;
5058
5059         rdmsrl(MSR_VM_CR, vm_cr);
5060         if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
5061                 return 1;
5062
5063         return 0;
5064 }
5065
5066 static void
5067 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5068 {
5069         /*
5070          * Patch in the VMMCALL instruction:
5071          */
5072         hypercall[0] = 0x0f;
5073         hypercall[1] = 0x01;
5074         hypercall[2] = 0xd9;
5075 }
5076
5077 static void svm_check_processor_compat(void *rtn)
5078 {
5079         *(int *)rtn = 0;
5080 }
5081
5082 static bool svm_cpu_has_accelerated_tpr(void)
5083 {
5084         return false;
5085 }
5086
5087 static bool svm_has_high_real_mode_segbase(void)
5088 {
5089         return true;
5090 }
5091
5092 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
5093 {
5094         return 0;
5095 }
5096
5097 static void svm_cpuid_update(struct kvm_vcpu *vcpu)
5098 {
5099         struct vcpu_svm *svm = to_svm(vcpu);
5100
5101         /* Update nrips enabled cache */
5102         svm->nrips_enabled = !!guest_cpuid_has(&svm->vcpu, X86_FEATURE_NRIPS);
5103
5104         if (!kvm_vcpu_apicv_active(vcpu))
5105                 return;
5106
5107         guest_cpuid_clear(vcpu, X86_FEATURE_X2APIC);
5108 }
5109
5110 static void svm_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
5111 {
5112         switch (func) {
5113         case 0x1:
5114                 if (avic)
5115                         entry->ecx &= ~bit(X86_FEATURE_X2APIC);
5116                 break;
5117         case 0x80000001:
5118                 if (nested)
5119                         entry->ecx |= (1 << 2); /* Set SVM bit */
5120                 break;
5121         case 0x8000000A:
5122                 entry->eax = 1; /* SVM revision 1 */
5123                 entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
5124                                    ASID emulation to nested SVM */
5125                 entry->ecx = 0; /* Reserved */
5126                 entry->edx = 0; /* Per default do not support any
5127                                    additional features */
5128
5129                 /* Support next_rip if host supports it */
5130                 if (boot_cpu_has(X86_FEATURE_NRIPS))
5131                         entry->edx |= SVM_FEATURE_NRIP;
5132
5133                 /* Support NPT for the guest if enabled */
5134                 if (npt_enabled)
5135                         entry->edx |= SVM_FEATURE_NPT;
5136
5137                 break;
5138         }
5139 }
5140
5141 static int svm_get_lpage_level(void)
5142 {
5143         return PT_PDPE_LEVEL;
5144 }
5145
5146 static bool svm_rdtscp_supported(void)
5147 {
5148         return boot_cpu_has(X86_FEATURE_RDTSCP);
5149 }
5150
5151 static bool svm_invpcid_supported(void)
5152 {
5153         return false;
5154 }
5155
5156 static bool svm_mpx_supported(void)
5157 {
5158         return false;
5159 }
5160
5161 static bool svm_xsaves_supported(void)
5162 {
5163         return false;
5164 }
5165
5166 static bool svm_has_wbinvd_exit(void)
5167 {
5168         return true;
5169 }
5170
5171 #define PRE_EX(exit)  { .exit_code = (exit), \
5172                         .stage = X86_ICPT_PRE_EXCEPT, }
5173 #define POST_EX(exit) { .exit_code = (exit), \
5174                         .stage = X86_ICPT_POST_EXCEPT, }
5175 #define POST_MEM(exit) { .exit_code = (exit), \
5176                         .stage = X86_ICPT_POST_MEMACCESS, }
5177
5178 static const struct __x86_intercept {
5179         u32 exit_code;
5180         enum x86_intercept_stage stage;
5181 } x86_intercept_map[] = {
5182         [x86_intercept_cr_read]         = POST_EX(SVM_EXIT_READ_CR0),
5183         [x86_intercept_cr_write]        = POST_EX(SVM_EXIT_WRITE_CR0),
5184         [x86_intercept_clts]            = POST_EX(SVM_EXIT_WRITE_CR0),
5185         [x86_intercept_lmsw]            = POST_EX(SVM_EXIT_WRITE_CR0),
5186         [x86_intercept_smsw]            = POST_EX(SVM_EXIT_READ_CR0),
5187         [x86_intercept_dr_read]         = POST_EX(SVM_EXIT_READ_DR0),
5188         [x86_intercept_dr_write]        = POST_EX(SVM_EXIT_WRITE_DR0),
5189         [x86_intercept_sldt]            = POST_EX(SVM_EXIT_LDTR_READ),
5190         [x86_intercept_str]             = POST_EX(SVM_EXIT_TR_READ),
5191         [x86_intercept_lldt]            = POST_EX(SVM_EXIT_LDTR_WRITE),
5192         [x86_intercept_ltr]             = POST_EX(SVM_EXIT_TR_WRITE),
5193         [x86_intercept_sgdt]            = POST_EX(SVM_EXIT_GDTR_READ),
5194         [x86_intercept_sidt]            = POST_EX(SVM_EXIT_IDTR_READ),
5195         [x86_intercept_lgdt]            = POST_EX(SVM_EXIT_GDTR_WRITE),
5196         [x86_intercept_lidt]            = POST_EX(SVM_EXIT_IDTR_WRITE),
5197         [x86_intercept_vmrun]           = POST_EX(SVM_EXIT_VMRUN),
5198         [x86_intercept_vmmcall]         = POST_EX(SVM_EXIT_VMMCALL),
5199         [x86_intercept_vmload]          = POST_EX(SVM_EXIT_VMLOAD),
5200         [x86_intercept_vmsave]          = POST_EX(SVM_EXIT_VMSAVE),
5201         [x86_intercept_stgi]            = POST_EX(SVM_EXIT_STGI),
5202         [x86_intercept_clgi]            = POST_EX(SVM_EXIT_CLGI),
5203         [x86_intercept_skinit]          = POST_EX(SVM_EXIT_SKINIT),
5204         [x86_intercept_invlpga]         = POST_EX(SVM_EXIT_INVLPGA),
5205         [x86_intercept_rdtscp]          = POST_EX(SVM_EXIT_RDTSCP),
5206         [x86_intercept_monitor]         = POST_MEM(SVM_EXIT_MONITOR),
5207         [x86_intercept_mwait]           = POST_EX(SVM_EXIT_MWAIT),
5208         [x86_intercept_invlpg]          = POST_EX(SVM_EXIT_INVLPG),
5209         [x86_intercept_invd]            = POST_EX(SVM_EXIT_INVD),
5210         [x86_intercept_wbinvd]          = POST_EX(SVM_EXIT_WBINVD),
5211         [x86_intercept_wrmsr]           = POST_EX(SVM_EXIT_MSR),
5212         [x86_intercept_rdtsc]           = POST_EX(SVM_EXIT_RDTSC),
5213         [x86_intercept_rdmsr]           = POST_EX(SVM_EXIT_MSR),
5214         [x86_intercept_rdpmc]           = POST_EX(SVM_EXIT_RDPMC),
5215         [x86_intercept_cpuid]           = PRE_EX(SVM_EXIT_CPUID),
5216         [x86_intercept_rsm]             = PRE_EX(SVM_EXIT_RSM),
5217         [x86_intercept_pause]           = PRE_EX(SVM_EXIT_PAUSE),
5218         [x86_intercept_pushf]           = PRE_EX(SVM_EXIT_PUSHF),
5219         [x86_intercept_popf]            = PRE_EX(SVM_EXIT_POPF),
5220         [x86_intercept_intn]            = PRE_EX(SVM_EXIT_SWINT),
5221         [x86_intercept_iret]            = PRE_EX(SVM_EXIT_IRET),
5222         [x86_intercept_icebp]           = PRE_EX(SVM_EXIT_ICEBP),
5223         [x86_intercept_hlt]             = POST_EX(SVM_EXIT_HLT),
5224         [x86_intercept_in]              = POST_EX(SVM_EXIT_IOIO),
5225         [x86_intercept_ins]             = POST_EX(SVM_EXIT_IOIO),
5226         [x86_intercept_out]             = POST_EX(SVM_EXIT_IOIO),
5227         [x86_intercept_outs]            = POST_EX(SVM_EXIT_IOIO),
5228 };
5229
5230 #undef PRE_EX
5231 #undef POST_EX
5232 #undef POST_MEM
5233
5234 static int svm_check_intercept(struct kvm_vcpu *vcpu,
5235                                struct x86_instruction_info *info,
5236                                enum x86_intercept_stage stage)
5237 {
5238         struct vcpu_svm *svm = to_svm(vcpu);
5239         int vmexit, ret = X86EMUL_CONTINUE;
5240         struct __x86_intercept icpt_info;
5241         struct vmcb *vmcb = svm->vmcb;
5242
5243         if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
5244                 goto out;
5245
5246         icpt_info = x86_intercept_map[info->intercept];
5247
5248         if (stage != icpt_info.stage)
5249                 goto out;
5250
5251         switch (icpt_info.exit_code) {
5252         case SVM_EXIT_READ_CR0:
5253                 if (info->intercept == x86_intercept_cr_read)
5254                         icpt_info.exit_code += info->modrm_reg;
5255                 break;
5256         case SVM_EXIT_WRITE_CR0: {
5257                 unsigned long cr0, val;
5258                 u64 intercept;
5259
5260                 if (info->intercept == x86_intercept_cr_write)
5261                         icpt_info.exit_code += info->modrm_reg;
5262
5263                 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
5264                     info->intercept == x86_intercept_clts)
5265                         break;
5266
5267                 intercept = svm->nested.intercept;
5268
5269                 if (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0)))
5270                         break;
5271
5272                 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
5273                 val = info->src_val  & ~SVM_CR0_SELECTIVE_MASK;
5274
5275                 if (info->intercept == x86_intercept_lmsw) {
5276                         cr0 &= 0xfUL;
5277                         val &= 0xfUL;
5278                         /* lmsw can't clear PE - catch this here */
5279                         if (cr0 & X86_CR0_PE)
5280                                 val |= X86_CR0_PE;
5281                 }
5282
5283                 if (cr0 ^ val)
5284                         icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
5285
5286                 break;
5287         }
5288         case SVM_EXIT_READ_DR0:
5289         case SVM_EXIT_WRITE_DR0:
5290                 icpt_info.exit_code += info->modrm_reg;
5291                 break;
5292         case SVM_EXIT_MSR:
5293                 if (info->intercept == x86_intercept_wrmsr)
5294                         vmcb->control.exit_info_1 = 1;
5295                 else
5296                         vmcb->control.exit_info_1 = 0;
5297                 break;
5298         case SVM_EXIT_PAUSE:
5299                 /*
5300                  * We get this for NOP only, but pause
5301                  * is rep not, check this here
5302                  */
5303                 if (info->rep_prefix != REPE_PREFIX)
5304                         goto out;
5305         case SVM_EXIT_IOIO: {
5306                 u64 exit_info;
5307                 u32 bytes;
5308
5309                 if (info->intercept == x86_intercept_in ||
5310                     info->intercept == x86_intercept_ins) {
5311                         exit_info = ((info->src_val & 0xffff) << 16) |
5312                                 SVM_IOIO_TYPE_MASK;
5313                         bytes = info->dst_bytes;
5314                 } else {
5315                         exit_info = (info->dst_val & 0xffff) << 16;
5316                         bytes = info->src_bytes;
5317                 }
5318
5319                 if (info->intercept == x86_intercept_outs ||
5320                     info->intercept == x86_intercept_ins)
5321                         exit_info |= SVM_IOIO_STR_MASK;
5322
5323                 if (info->rep_prefix)
5324                         exit_info |= SVM_IOIO_REP_MASK;
5325
5326                 bytes = min(bytes, 4u);
5327
5328                 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
5329
5330                 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
5331
5332                 vmcb->control.exit_info_1 = exit_info;
5333                 vmcb->control.exit_info_2 = info->next_rip;
5334
5335                 break;
5336         }
5337         default:
5338                 break;
5339         }
5340
5341         /* TODO: Advertise NRIPS to guest hypervisor unconditionally */
5342         if (static_cpu_has(X86_FEATURE_NRIPS))
5343                 vmcb->control.next_rip  = info->next_rip;
5344         vmcb->control.exit_code = icpt_info.exit_code;
5345         vmexit = nested_svm_exit_handled(svm);
5346
5347         ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
5348                                            : X86EMUL_CONTINUE;
5349
5350 out:
5351         return ret;
5352 }
5353
5354 static void svm_handle_external_intr(struct kvm_vcpu *vcpu)
5355 {
5356         local_irq_enable();
5357         /*
5358          * We must have an instruction with interrupts enabled, so
5359          * the timer interrupt isn't delayed by the interrupt shadow.
5360          */
5361         asm("nop");
5362         local_irq_disable();
5363 }
5364
5365 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
5366 {
5367 }
5368
5369 static inline void avic_post_state_restore(struct kvm_vcpu *vcpu)
5370 {
5371         if (avic_handle_apic_id_update(vcpu) != 0)
5372                 return;
5373         if (avic_handle_dfr_update(vcpu) != 0)
5374                 return;
5375         avic_handle_ldr_update(vcpu);
5376 }
5377
5378 static void svm_setup_mce(struct kvm_vcpu *vcpu)
5379 {
5380         /* [63:9] are reserved. */
5381         vcpu->arch.mcg_cap &= 0x1ff;
5382 }
5383
5384 static struct kvm_x86_ops svm_x86_ops __ro_after_init = {
5385         .cpu_has_kvm_support = has_svm,
5386         .disabled_by_bios = is_disabled,
5387         .hardware_setup = svm_hardware_setup,
5388         .hardware_unsetup = svm_hardware_unsetup,
5389         .check_processor_compatibility = svm_check_processor_compat,
5390         .hardware_enable = svm_hardware_enable,
5391         .hardware_disable = svm_hardware_disable,
5392         .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
5393         .cpu_has_high_real_mode_segbase = svm_has_high_real_mode_segbase,
5394
5395         .vcpu_create = svm_create_vcpu,
5396         .vcpu_free = svm_free_vcpu,
5397         .vcpu_reset = svm_vcpu_reset,
5398
5399         .vm_init = avic_vm_init,
5400         .vm_destroy = avic_vm_destroy,
5401
5402         .prepare_guest_switch = svm_prepare_guest_switch,
5403         .vcpu_load = svm_vcpu_load,
5404         .vcpu_put = svm_vcpu_put,
5405         .vcpu_blocking = svm_vcpu_blocking,
5406         .vcpu_unblocking = svm_vcpu_unblocking,
5407
5408         .update_bp_intercept = update_bp_intercept,
5409         .get_msr = svm_get_msr,
5410         .set_msr = svm_set_msr,
5411         .get_segment_base = svm_get_segment_base,
5412         .get_segment = svm_get_segment,
5413         .set_segment = svm_set_segment,
5414         .get_cpl = svm_get_cpl,
5415         .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
5416         .decache_cr0_guest_bits = svm_decache_cr0_guest_bits,
5417         .decache_cr3 = svm_decache_cr3,
5418         .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
5419         .set_cr0 = svm_set_cr0,
5420         .set_cr3 = svm_set_cr3,
5421         .set_cr4 = svm_set_cr4,
5422         .set_efer = svm_set_efer,
5423         .get_idt = svm_get_idt,
5424         .set_idt = svm_set_idt,
5425         .get_gdt = svm_get_gdt,
5426         .set_gdt = svm_set_gdt,
5427         .get_dr6 = svm_get_dr6,
5428         .set_dr6 = svm_set_dr6,
5429         .set_dr7 = svm_set_dr7,
5430         .sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
5431         .cache_reg = svm_cache_reg,
5432         .get_rflags = svm_get_rflags,
5433         .set_rflags = svm_set_rflags,
5434
5435         .tlb_flush = svm_flush_tlb,
5436
5437         .run = svm_vcpu_run,
5438         .handle_exit = handle_exit,
5439         .skip_emulated_instruction = skip_emulated_instruction,
5440         .set_interrupt_shadow = svm_set_interrupt_shadow,
5441         .get_interrupt_shadow = svm_get_interrupt_shadow,
5442         .patch_hypercall = svm_patch_hypercall,
5443         .set_irq = svm_set_irq,
5444         .set_nmi = svm_inject_nmi,
5445         .queue_exception = svm_queue_exception,
5446         .cancel_injection = svm_cancel_injection,
5447         .interrupt_allowed = svm_interrupt_allowed,
5448         .nmi_allowed = svm_nmi_allowed,
5449         .get_nmi_mask = svm_get_nmi_mask,
5450         .set_nmi_mask = svm_set_nmi_mask,
5451         .enable_nmi_window = enable_nmi_window,
5452         .enable_irq_window = enable_irq_window,
5453         .update_cr8_intercept = update_cr8_intercept,
5454         .set_virtual_x2apic_mode = svm_set_virtual_x2apic_mode,
5455         .get_enable_apicv = svm_get_enable_apicv,
5456         .refresh_apicv_exec_ctrl = svm_refresh_apicv_exec_ctrl,
5457         .load_eoi_exitmap = svm_load_eoi_exitmap,
5458         .hwapic_irr_update = svm_hwapic_irr_update,
5459         .hwapic_isr_update = svm_hwapic_isr_update,
5460         .apicv_post_state_restore = avic_post_state_restore,
5461
5462         .set_tss_addr = svm_set_tss_addr,
5463         .get_tdp_level = get_npt_level,
5464         .get_mt_mask = svm_get_mt_mask,
5465
5466         .get_exit_info = svm_get_exit_info,
5467
5468         .get_lpage_level = svm_get_lpage_level,
5469
5470         .cpuid_update = svm_cpuid_update,
5471
5472         .rdtscp_supported = svm_rdtscp_supported,
5473         .invpcid_supported = svm_invpcid_supported,
5474         .mpx_supported = svm_mpx_supported,
5475         .xsaves_supported = svm_xsaves_supported,
5476
5477         .set_supported_cpuid = svm_set_supported_cpuid,
5478
5479         .has_wbinvd_exit = svm_has_wbinvd_exit,
5480
5481         .write_tsc_offset = svm_write_tsc_offset,
5482
5483         .set_tdp_cr3 = set_tdp_cr3,
5484
5485         .check_intercept = svm_check_intercept,
5486         .handle_external_intr = svm_handle_external_intr,
5487
5488         .sched_in = svm_sched_in,
5489
5490         .pmu_ops = &amd_pmu_ops,
5491         .deliver_posted_interrupt = svm_deliver_avic_intr,
5492         .update_pi_irte = svm_update_pi_irte,
5493         .setup_mce = svm_setup_mce,
5494 };
5495
5496 static int __init svm_init(void)
5497 {
5498         return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
5499                         __alignof__(struct vcpu_svm), THIS_MODULE);
5500 }
5501
5502 static void __exit svm_exit(void)
5503 {
5504         kvm_exit();
5505 }
5506
5507 module_init(svm_init)
5508 module_exit(svm_exit)
This page took 0.358928 seconds and 4 git commands to generate.