2 * Copyright (C) 2010 Red Hat, Inc.
3 * Copyright (c) 2016-2018 Christoph Hellwig.
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 #include <linux/module.h>
15 #include <linux/compiler.h>
17 #include <linux/iomap.h>
18 #include <linux/uaccess.h>
19 #include <linux/gfp.h>
20 #include <linux/migrate.h>
22 #include <linux/mm_inline.h>
23 #include <linux/swap.h>
24 #include <linux/pagemap.h>
25 #include <linux/pagevec.h>
26 #include <linux/file.h>
27 #include <linux/uio.h>
28 #include <linux/backing-dev.h>
29 #include <linux/buffer_head.h>
30 #include <linux/task_io_accounting_ops.h>
31 #include <linux/dax.h>
32 #include <linux/sched/signal.h>
37 * Execute a iomap write on a segment of the mapping that spans a
38 * contiguous range of pages that have identical block mapping state.
40 * This avoids the need to map pages individually, do individual allocations
41 * for each page and most importantly avoid the need for filesystem specific
42 * locking per page. Instead, all the operations are amortised over the entire
43 * range of pages. It is assumed that the filesystems will lock whatever
44 * resources they require in the iomap_begin call, and release them in the
48 iomap_apply(struct inode *inode, loff_t pos, loff_t length, unsigned flags,
49 const struct iomap_ops *ops, void *data, iomap_actor_t actor)
51 struct iomap iomap = { 0 };
52 loff_t written = 0, ret;
55 * Need to map a range from start position for length bytes. This can
56 * span multiple pages - it is only guaranteed to return a range of a
57 * single type of pages (e.g. all into a hole, all mapped or all
58 * unwritten). Failure at this point has nothing to undo.
60 * If allocation is required for this range, reserve the space now so
61 * that the allocation is guaranteed to succeed later on. Once we copy
62 * the data into the page cache pages, then we cannot fail otherwise we
63 * expose transient stale data. If the reserve fails, we can safely
64 * back out at this point as there is nothing to undo.
66 ret = ops->iomap_begin(inode, pos, length, flags, &iomap);
69 if (WARN_ON(iomap.offset > pos))
71 if (WARN_ON(iomap.length == 0))
75 * Cut down the length to the one actually provided by the filesystem,
76 * as it might not be able to give us the whole size that we requested.
78 if (iomap.offset + iomap.length < pos + length)
79 length = iomap.offset + iomap.length - pos;
82 * Now that we have guaranteed that the space allocation will succeed.
83 * we can do the copy-in page by page without having to worry about
84 * failures exposing transient data.
86 written = actor(inode, pos, length, data, &iomap);
89 * Now the data has been copied, commit the range we've copied. This
90 * should not fail unless the filesystem has had a fatal error.
93 ret = ops->iomap_end(inode, pos, length,
94 written > 0 ? written : 0,
98 return written ? written : ret;
102 iomap_sector(struct iomap *iomap, loff_t pos)
104 return (iomap->addr + pos - iomap->offset) >> SECTOR_SHIFT;
107 static struct iomap_page *
108 iomap_page_create(struct inode *inode, struct page *page)
110 struct iomap_page *iop = to_iomap_page(page);
112 if (iop || i_blocksize(inode) == PAGE_SIZE)
115 iop = kmalloc(sizeof(*iop), GFP_NOFS | __GFP_NOFAIL);
116 atomic_set(&iop->read_count, 0);
117 atomic_set(&iop->write_count, 0);
118 bitmap_zero(iop->uptodate, PAGE_SIZE / SECTOR_SIZE);
119 set_page_private(page, (unsigned long)iop);
120 SetPagePrivate(page);
125 iomap_page_release(struct page *page)
127 struct iomap_page *iop = to_iomap_page(page);
131 WARN_ON_ONCE(atomic_read(&iop->read_count));
132 WARN_ON_ONCE(atomic_read(&iop->write_count));
133 ClearPagePrivate(page);
134 set_page_private(page, 0);
139 * Calculate the range inside the page that we actually need to read.
142 iomap_adjust_read_range(struct inode *inode, struct iomap_page *iop,
143 loff_t *pos, loff_t length, unsigned *offp, unsigned *lenp)
145 loff_t orig_pos = *pos;
146 loff_t isize = i_size_read(inode);
147 unsigned block_bits = inode->i_blkbits;
148 unsigned block_size = (1 << block_bits);
149 unsigned poff = offset_in_page(*pos);
150 unsigned plen = min_t(loff_t, PAGE_SIZE - poff, length);
151 unsigned first = poff >> block_bits;
152 unsigned last = (poff + plen - 1) >> block_bits;
155 * If the block size is smaller than the page size we need to check the
156 * per-block uptodate status and adjust the offset and length if needed
157 * to avoid reading in already uptodate ranges.
162 /* move forward for each leading block marked uptodate */
163 for (i = first; i <= last; i++) {
164 if (!test_bit(i, iop->uptodate))
172 /* truncate len if we find any trailing uptodate block(s) */
173 for ( ; i <= last; i++) {
174 if (test_bit(i, iop->uptodate)) {
175 plen -= (last - i + 1) * block_size;
183 * If the extent spans the block that contains the i_size we need to
184 * handle both halves separately so that we properly zero data in the
185 * page cache for blocks that are entirely outside of i_size.
187 if (orig_pos <= isize && orig_pos + length > isize) {
188 unsigned end = offset_in_page(isize - 1) >> block_bits;
190 if (first <= end && last > end)
191 plen -= (last - end) * block_size;
199 iomap_set_range_uptodate(struct page *page, unsigned off, unsigned len)
201 struct iomap_page *iop = to_iomap_page(page);
202 struct inode *inode = page->mapping->host;
203 unsigned first = off >> inode->i_blkbits;
204 unsigned last = (off + len - 1) >> inode->i_blkbits;
206 bool uptodate = true;
209 for (i = 0; i < PAGE_SIZE / i_blocksize(inode); i++) {
210 if (i >= first && i <= last)
211 set_bit(i, iop->uptodate);
212 else if (!test_bit(i, iop->uptodate))
217 if (uptodate && !PageError(page))
218 SetPageUptodate(page);
222 iomap_read_finish(struct iomap_page *iop, struct page *page)
224 if (!iop || atomic_dec_and_test(&iop->read_count))
229 iomap_read_page_end_io(struct bio_vec *bvec, int error)
231 struct page *page = bvec->bv_page;
232 struct iomap_page *iop = to_iomap_page(page);
234 if (unlikely(error)) {
235 ClearPageUptodate(page);
238 iomap_set_range_uptodate(page, bvec->bv_offset, bvec->bv_len);
241 iomap_read_finish(iop, page);
245 iomap_read_inline_data(struct inode *inode, struct page *page,
248 size_t size = i_size_read(inode);
251 if (PageUptodate(page))
255 BUG_ON(size > PAGE_SIZE - offset_in_page(iomap->inline_data));
257 addr = kmap_atomic(page);
258 memcpy(addr, iomap->inline_data, size);
259 memset(addr + size, 0, PAGE_SIZE - size);
261 SetPageUptodate(page);
265 iomap_read_end_io(struct bio *bio)
267 int error = blk_status_to_errno(bio->bi_status);
268 struct bio_vec *bvec;
270 struct bvec_iter_all iter_all;
272 bio_for_each_segment_all(bvec, bio, i, iter_all)
273 iomap_read_page_end_io(bvec, error);
277 struct iomap_readpage_ctx {
278 struct page *cur_page;
279 bool cur_page_in_bio;
282 struct list_head *pages;
286 iomap_readpage_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
289 struct iomap_readpage_ctx *ctx = data;
290 struct page *page = ctx->cur_page;
291 struct iomap_page *iop = iomap_page_create(inode, page);
292 bool is_contig = false;
293 loff_t orig_pos = pos;
297 if (iomap->type == IOMAP_INLINE) {
299 iomap_read_inline_data(inode, page, iomap);
303 /* zero post-eof blocks as the page may be mapped */
304 iomap_adjust_read_range(inode, iop, &pos, length, &poff, &plen);
308 if (iomap->type != IOMAP_MAPPED || pos >= i_size_read(inode)) {
309 zero_user(page, poff, plen);
310 iomap_set_range_uptodate(page, poff, plen);
314 ctx->cur_page_in_bio = true;
317 * Try to merge into a previous segment if we can.
319 sector = iomap_sector(iomap, pos);
320 if (ctx->bio && bio_end_sector(ctx->bio) == sector) {
321 if (__bio_try_merge_page(ctx->bio, page, plen, poff, true))
327 * If we start a new segment we need to increase the read count, and we
328 * need to do so before submitting any previous full bio to make sure
329 * that we don't prematurely unlock the page.
332 atomic_inc(&iop->read_count);
334 if (!ctx->bio || !is_contig || bio_full(ctx->bio)) {
335 gfp_t gfp = mapping_gfp_constraint(page->mapping, GFP_KERNEL);
336 int nr_vecs = (length + PAGE_SIZE - 1) >> PAGE_SHIFT;
339 submit_bio(ctx->bio);
341 if (ctx->is_readahead) /* same as readahead_gfp_mask */
342 gfp |= __GFP_NORETRY | __GFP_NOWARN;
343 ctx->bio = bio_alloc(gfp, min(BIO_MAX_PAGES, nr_vecs));
344 ctx->bio->bi_opf = REQ_OP_READ;
345 if (ctx->is_readahead)
346 ctx->bio->bi_opf |= REQ_RAHEAD;
347 ctx->bio->bi_iter.bi_sector = sector;
348 bio_set_dev(ctx->bio, iomap->bdev);
349 ctx->bio->bi_end_io = iomap_read_end_io;
352 bio_add_page(ctx->bio, page, plen, poff);
355 * Move the caller beyond our range so that it keeps making progress.
356 * For that we have to include any leading non-uptodate ranges, but
357 * we can skip trailing ones as they will be handled in the next
360 return pos - orig_pos + plen;
364 iomap_readpage(struct page *page, const struct iomap_ops *ops)
366 struct iomap_readpage_ctx ctx = { .cur_page = page };
367 struct inode *inode = page->mapping->host;
371 for (poff = 0; poff < PAGE_SIZE; poff += ret) {
372 ret = iomap_apply(inode, page_offset(page) + poff,
373 PAGE_SIZE - poff, 0, ops, &ctx,
374 iomap_readpage_actor);
376 WARN_ON_ONCE(ret == 0);
384 WARN_ON_ONCE(!ctx.cur_page_in_bio);
386 WARN_ON_ONCE(ctx.cur_page_in_bio);
391 * Just like mpage_readpages and block_read_full_page we always
392 * return 0 and just mark the page as PageError on errors. This
393 * should be cleaned up all through the stack eventually.
397 EXPORT_SYMBOL_GPL(iomap_readpage);
400 iomap_next_page(struct inode *inode, struct list_head *pages, loff_t pos,
401 loff_t length, loff_t *done)
403 while (!list_empty(pages)) {
404 struct page *page = lru_to_page(pages);
406 if (page_offset(page) >= (u64)pos + length)
409 list_del(&page->lru);
410 if (!add_to_page_cache_lru(page, inode->i_mapping, page->index,
415 * If we already have a page in the page cache at index we are
416 * done. Upper layers don't care if it is uptodate after the
417 * readpages call itself as every page gets checked again once
428 iomap_readpages_actor(struct inode *inode, loff_t pos, loff_t length,
429 void *data, struct iomap *iomap)
431 struct iomap_readpage_ctx *ctx = data;
434 for (done = 0; done < length; done += ret) {
435 if (ctx->cur_page && offset_in_page(pos + done) == 0) {
436 if (!ctx->cur_page_in_bio)
437 unlock_page(ctx->cur_page);
438 put_page(ctx->cur_page);
439 ctx->cur_page = NULL;
441 if (!ctx->cur_page) {
442 ctx->cur_page = iomap_next_page(inode, ctx->pages,
446 ctx->cur_page_in_bio = false;
448 ret = iomap_readpage_actor(inode, pos + done, length - done,
456 iomap_readpages(struct address_space *mapping, struct list_head *pages,
457 unsigned nr_pages, const struct iomap_ops *ops)
459 struct iomap_readpage_ctx ctx = {
461 .is_readahead = true,
463 loff_t pos = page_offset(list_entry(pages->prev, struct page, lru));
464 loff_t last = page_offset(list_entry(pages->next, struct page, lru));
465 loff_t length = last - pos + PAGE_SIZE, ret = 0;
468 ret = iomap_apply(mapping->host, pos, length, 0, ops,
469 &ctx, iomap_readpages_actor);
471 WARN_ON_ONCE(ret == 0);
482 if (!ctx.cur_page_in_bio)
483 unlock_page(ctx.cur_page);
484 put_page(ctx.cur_page);
488 * Check that we didn't lose a page due to the arcance calling
491 WARN_ON_ONCE(!ret && !list_empty(ctx.pages));
494 EXPORT_SYMBOL_GPL(iomap_readpages);
497 * iomap_is_partially_uptodate checks whether blocks within a page are
500 * Returns true if all blocks which correspond to a file portion
501 * we want to read within the page are uptodate.
504 iomap_is_partially_uptodate(struct page *page, unsigned long from,
507 struct iomap_page *iop = to_iomap_page(page);
508 struct inode *inode = page->mapping->host;
509 unsigned len, first, last;
512 /* Limit range to one page */
513 len = min_t(unsigned, PAGE_SIZE - from, count);
515 /* First and last blocks in range within page */
516 first = from >> inode->i_blkbits;
517 last = (from + len - 1) >> inode->i_blkbits;
520 for (i = first; i <= last; i++)
521 if (!test_bit(i, iop->uptodate))
528 EXPORT_SYMBOL_GPL(iomap_is_partially_uptodate);
531 iomap_releasepage(struct page *page, gfp_t gfp_mask)
534 * mm accommodates an old ext3 case where clean pages might not have had
535 * the dirty bit cleared. Thus, it can send actual dirty pages to
536 * ->releasepage() via shrink_active_list(), skip those here.
538 if (PageDirty(page) || PageWriteback(page))
540 iomap_page_release(page);
543 EXPORT_SYMBOL_GPL(iomap_releasepage);
546 iomap_invalidatepage(struct page *page, unsigned int offset, unsigned int len)
549 * If we are invalidating the entire page, clear the dirty state from it
550 * and release it to avoid unnecessary buildup of the LRU.
552 if (offset == 0 && len == PAGE_SIZE) {
553 WARN_ON_ONCE(PageWriteback(page));
554 cancel_dirty_page(page);
555 iomap_page_release(page);
558 EXPORT_SYMBOL_GPL(iomap_invalidatepage);
560 #ifdef CONFIG_MIGRATION
562 iomap_migrate_page(struct address_space *mapping, struct page *newpage,
563 struct page *page, enum migrate_mode mode)
567 ret = migrate_page_move_mapping(mapping, newpage, page, mode, 0);
568 if (ret != MIGRATEPAGE_SUCCESS)
571 if (page_has_private(page)) {
572 ClearPagePrivate(page);
573 set_page_private(newpage, page_private(page));
574 set_page_private(page, 0);
575 SetPagePrivate(newpage);
578 if (mode != MIGRATE_SYNC_NO_COPY)
579 migrate_page_copy(newpage, page);
581 migrate_page_states(newpage, page);
582 return MIGRATEPAGE_SUCCESS;
584 EXPORT_SYMBOL_GPL(iomap_migrate_page);
585 #endif /* CONFIG_MIGRATION */
588 iomap_write_failed(struct inode *inode, loff_t pos, unsigned len)
590 loff_t i_size = i_size_read(inode);
593 * Only truncate newly allocated pages beyoned EOF, even if the
594 * write started inside the existing inode size.
596 if (pos + len > i_size)
597 truncate_pagecache_range(inode, max(pos, i_size), pos + len);
601 iomap_read_page_sync(struct inode *inode, loff_t block_start, struct page *page,
602 unsigned poff, unsigned plen, unsigned from, unsigned to,
608 if (iomap->type != IOMAP_MAPPED || block_start >= i_size_read(inode)) {
609 zero_user_segments(page, poff, from, to, poff + plen);
610 iomap_set_range_uptodate(page, poff, plen);
614 bio_init(&bio, &bvec, 1);
615 bio.bi_opf = REQ_OP_READ;
616 bio.bi_iter.bi_sector = iomap_sector(iomap, block_start);
617 bio_set_dev(&bio, iomap->bdev);
618 __bio_add_page(&bio, page, plen, poff);
619 return submit_bio_wait(&bio);
623 __iomap_write_begin(struct inode *inode, loff_t pos, unsigned len,
624 struct page *page, struct iomap *iomap)
626 struct iomap_page *iop = iomap_page_create(inode, page);
627 loff_t block_size = i_blocksize(inode);
628 loff_t block_start = pos & ~(block_size - 1);
629 loff_t block_end = (pos + len + block_size - 1) & ~(block_size - 1);
630 unsigned from = offset_in_page(pos), to = from + len, poff, plen;
633 if (PageUptodate(page))
637 iomap_adjust_read_range(inode, iop, &block_start,
638 block_end - block_start, &poff, &plen);
642 if ((from > poff && from < poff + plen) ||
643 (to > poff && to < poff + plen)) {
644 status = iomap_read_page_sync(inode, block_start, page,
645 poff, plen, from, to, iomap);
650 } while ((block_start += plen) < block_end);
656 iomap_write_begin(struct inode *inode, loff_t pos, unsigned len, unsigned flags,
657 struct page **pagep, struct iomap *iomap)
659 pgoff_t index = pos >> PAGE_SHIFT;
663 BUG_ON(pos + len > iomap->offset + iomap->length);
665 if (fatal_signal_pending(current))
668 page = grab_cache_page_write_begin(inode->i_mapping, index, flags);
672 if (iomap->type == IOMAP_INLINE)
673 iomap_read_inline_data(inode, page, iomap);
674 else if (iomap->flags & IOMAP_F_BUFFER_HEAD)
675 status = __block_write_begin_int(page, pos, len, NULL, iomap);
677 status = __iomap_write_begin(inode, pos, len, page, iomap);
678 if (unlikely(status)) {
683 iomap_write_failed(inode, pos, len);
691 iomap_set_page_dirty(struct page *page)
693 struct address_space *mapping = page_mapping(page);
696 if (unlikely(!mapping))
697 return !TestSetPageDirty(page);
700 * Lock out page->mem_cgroup migration to keep PageDirty
701 * synchronized with per-memcg dirty page counters.
703 lock_page_memcg(page);
704 newly_dirty = !TestSetPageDirty(page);
706 __set_page_dirty(page, mapping, 0);
707 unlock_page_memcg(page);
710 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
713 EXPORT_SYMBOL_GPL(iomap_set_page_dirty);
716 __iomap_write_end(struct inode *inode, loff_t pos, unsigned len,
717 unsigned copied, struct page *page, struct iomap *iomap)
719 flush_dcache_page(page);
722 * The blocks that were entirely written will now be uptodate, so we
723 * don't have to worry about a readpage reading them and overwriting a
724 * partial write. However if we have encountered a short write and only
725 * partially written into a block, it will not be marked uptodate, so a
726 * readpage might come in and destroy our partial write.
728 * Do the simplest thing, and just treat any short write to a non
729 * uptodate page as a zero-length write, and force the caller to redo
732 if (unlikely(copied < len && !PageUptodate(page))) {
735 iomap_set_range_uptodate(page, offset_in_page(pos), len);
736 iomap_set_page_dirty(page);
738 return __generic_write_end(inode, pos, copied, page);
742 iomap_write_end_inline(struct inode *inode, struct page *page,
743 struct iomap *iomap, loff_t pos, unsigned copied)
747 WARN_ON_ONCE(!PageUptodate(page));
748 BUG_ON(pos + copied > PAGE_SIZE - offset_in_page(iomap->inline_data));
750 addr = kmap_atomic(page);
751 memcpy(iomap->inline_data + pos, addr + pos, copied);
754 mark_inode_dirty(inode);
755 __generic_write_end(inode, pos, copied, page);
760 iomap_write_end(struct inode *inode, loff_t pos, unsigned len,
761 unsigned copied, struct page *page, struct iomap *iomap)
765 if (iomap->type == IOMAP_INLINE) {
766 ret = iomap_write_end_inline(inode, page, iomap, pos, copied);
767 } else if (iomap->flags & IOMAP_F_BUFFER_HEAD) {
768 ret = generic_write_end(NULL, inode->i_mapping, pos, len,
771 ret = __iomap_write_end(inode, pos, len, copied, page, iomap);
774 if (iomap->page_done)
775 iomap->page_done(inode, pos, copied, page, iomap);
778 iomap_write_failed(inode, pos, len);
783 iomap_write_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
786 struct iov_iter *i = data;
789 unsigned int flags = AOP_FLAG_NOFS;
793 unsigned long offset; /* Offset into pagecache page */
794 unsigned long bytes; /* Bytes to write to page */
795 size_t copied; /* Bytes copied from user */
797 offset = offset_in_page(pos);
798 bytes = min_t(unsigned long, PAGE_SIZE - offset,
805 * Bring in the user page that we will copy from _first_.
806 * Otherwise there's a nasty deadlock on copying from the
807 * same page as we're writing to, without it being marked
810 * Not only is this an optimisation, but it is also required
811 * to check that the address is actually valid, when atomic
812 * usercopies are used, below.
814 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
819 status = iomap_write_begin(inode, pos, bytes, flags, &page,
821 if (unlikely(status))
824 if (mapping_writably_mapped(inode->i_mapping))
825 flush_dcache_page(page);
827 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
829 flush_dcache_page(page);
831 status = iomap_write_end(inode, pos, bytes, copied, page,
833 if (unlikely(status < 0))
839 iov_iter_advance(i, copied);
840 if (unlikely(copied == 0)) {
842 * If we were unable to copy any data at all, we must
843 * fall back to a single segment length write.
845 * If we didn't fallback here, we could livelock
846 * because not all segments in the iov can be copied at
847 * once without a pagefault.
849 bytes = min_t(unsigned long, PAGE_SIZE - offset,
850 iov_iter_single_seg_count(i));
857 balance_dirty_pages_ratelimited(inode->i_mapping);
858 } while (iov_iter_count(i) && length);
860 return written ? written : status;
864 iomap_file_buffered_write(struct kiocb *iocb, struct iov_iter *iter,
865 const struct iomap_ops *ops)
867 struct inode *inode = iocb->ki_filp->f_mapping->host;
868 loff_t pos = iocb->ki_pos, ret = 0, written = 0;
870 while (iov_iter_count(iter)) {
871 ret = iomap_apply(inode, pos, iov_iter_count(iter),
872 IOMAP_WRITE, ops, iter, iomap_write_actor);
879 return written ? written : ret;
881 EXPORT_SYMBOL_GPL(iomap_file_buffered_write);
884 __iomap_read_page(struct inode *inode, loff_t offset)
886 struct address_space *mapping = inode->i_mapping;
889 page = read_mapping_page(mapping, offset >> PAGE_SHIFT, NULL);
892 if (!PageUptodate(page)) {
894 return ERR_PTR(-EIO);
900 iomap_dirty_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
907 struct page *page, *rpage;
908 unsigned long offset; /* Offset into pagecache page */
909 unsigned long bytes; /* Bytes to write to page */
911 offset = offset_in_page(pos);
912 bytes = min_t(loff_t, PAGE_SIZE - offset, length);
914 rpage = __iomap_read_page(inode, pos);
916 return PTR_ERR(rpage);
918 status = iomap_write_begin(inode, pos, bytes,
919 AOP_FLAG_NOFS, &page, iomap);
921 if (unlikely(status))
924 WARN_ON_ONCE(!PageUptodate(page));
926 status = iomap_write_end(inode, pos, bytes, bytes, page, iomap);
927 if (unlikely(status <= 0)) {
928 if (WARN_ON_ONCE(status == 0))
939 balance_dirty_pages_ratelimited(inode->i_mapping);
946 iomap_file_dirty(struct inode *inode, loff_t pos, loff_t len,
947 const struct iomap_ops *ops)
952 ret = iomap_apply(inode, pos, len, IOMAP_WRITE, ops, NULL,
962 EXPORT_SYMBOL_GPL(iomap_file_dirty);
964 static int iomap_zero(struct inode *inode, loff_t pos, unsigned offset,
965 unsigned bytes, struct iomap *iomap)
970 status = iomap_write_begin(inode, pos, bytes, AOP_FLAG_NOFS, &page,
975 zero_user(page, offset, bytes);
976 mark_page_accessed(page);
978 return iomap_write_end(inode, pos, bytes, bytes, page, iomap);
981 static int iomap_dax_zero(loff_t pos, unsigned offset, unsigned bytes,
984 return __dax_zero_page_range(iomap->bdev, iomap->dax_dev,
985 iomap_sector(iomap, pos & PAGE_MASK), offset, bytes);
989 iomap_zero_range_actor(struct inode *inode, loff_t pos, loff_t count,
990 void *data, struct iomap *iomap)
992 bool *did_zero = data;
996 /* already zeroed? we're done. */
997 if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
1001 unsigned offset, bytes;
1003 offset = offset_in_page(pos);
1004 bytes = min_t(loff_t, PAGE_SIZE - offset, count);
1007 status = iomap_dax_zero(pos, offset, bytes, iomap);
1009 status = iomap_zero(inode, pos, offset, bytes, iomap);
1018 } while (count > 0);
1024 iomap_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero,
1025 const struct iomap_ops *ops)
1030 ret = iomap_apply(inode, pos, len, IOMAP_ZERO,
1031 ops, did_zero, iomap_zero_range_actor);
1041 EXPORT_SYMBOL_GPL(iomap_zero_range);
1044 iomap_truncate_page(struct inode *inode, loff_t pos, bool *did_zero,
1045 const struct iomap_ops *ops)
1047 unsigned int blocksize = i_blocksize(inode);
1048 unsigned int off = pos & (blocksize - 1);
1050 /* Block boundary? Nothing to do */
1053 return iomap_zero_range(inode, pos, blocksize - off, did_zero, ops);
1055 EXPORT_SYMBOL_GPL(iomap_truncate_page);
1058 iomap_page_mkwrite_actor(struct inode *inode, loff_t pos, loff_t length,
1059 void *data, struct iomap *iomap)
1061 struct page *page = data;
1064 if (iomap->flags & IOMAP_F_BUFFER_HEAD) {
1065 ret = __block_write_begin_int(page, pos, length, NULL, iomap);
1068 block_commit_write(page, 0, length);
1070 WARN_ON_ONCE(!PageUptodate(page));
1071 iomap_page_create(inode, page);
1072 set_page_dirty(page);
1078 vm_fault_t iomap_page_mkwrite(struct vm_fault *vmf, const struct iomap_ops *ops)
1080 struct page *page = vmf->page;
1081 struct inode *inode = file_inode(vmf->vma->vm_file);
1082 unsigned long length;
1083 loff_t offset, size;
1087 size = i_size_read(inode);
1088 if ((page->mapping != inode->i_mapping) ||
1089 (page_offset(page) > size)) {
1090 /* We overload EFAULT to mean page got truncated */
1095 /* page is wholly or partially inside EOF */
1096 if (((page->index + 1) << PAGE_SHIFT) > size)
1097 length = offset_in_page(size);
1101 offset = page_offset(page);
1102 while (length > 0) {
1103 ret = iomap_apply(inode, offset, length,
1104 IOMAP_WRITE | IOMAP_FAULT, ops, page,
1105 iomap_page_mkwrite_actor);
1106 if (unlikely(ret <= 0))
1112 wait_for_stable_page(page);
1113 return VM_FAULT_LOCKED;
1116 return block_page_mkwrite_return(ret);
1118 EXPORT_SYMBOL_GPL(iomap_page_mkwrite);
1121 struct fiemap_extent_info *fi;
1125 static int iomap_to_fiemap(struct fiemap_extent_info *fi,
1126 struct iomap *iomap, u32 flags)
1128 switch (iomap->type) {
1132 case IOMAP_DELALLOC:
1133 flags |= FIEMAP_EXTENT_DELALLOC | FIEMAP_EXTENT_UNKNOWN;
1137 case IOMAP_UNWRITTEN:
1138 flags |= FIEMAP_EXTENT_UNWRITTEN;
1141 flags |= FIEMAP_EXTENT_DATA_INLINE;
1145 if (iomap->flags & IOMAP_F_MERGED)
1146 flags |= FIEMAP_EXTENT_MERGED;
1147 if (iomap->flags & IOMAP_F_SHARED)
1148 flags |= FIEMAP_EXTENT_SHARED;
1150 return fiemap_fill_next_extent(fi, iomap->offset,
1151 iomap->addr != IOMAP_NULL_ADDR ? iomap->addr : 0,
1152 iomap->length, flags);
1156 iomap_fiemap_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
1157 struct iomap *iomap)
1159 struct fiemap_ctx *ctx = data;
1160 loff_t ret = length;
1162 if (iomap->type == IOMAP_HOLE)
1165 ret = iomap_to_fiemap(ctx->fi, &ctx->prev, 0);
1168 case 0: /* success */
1170 case 1: /* extent array full */
1177 int iomap_fiemap(struct inode *inode, struct fiemap_extent_info *fi,
1178 loff_t start, loff_t len, const struct iomap_ops *ops)
1180 struct fiemap_ctx ctx;
1183 memset(&ctx, 0, sizeof(ctx));
1185 ctx.prev.type = IOMAP_HOLE;
1187 ret = fiemap_check_flags(fi, FIEMAP_FLAG_SYNC);
1191 if (fi->fi_flags & FIEMAP_FLAG_SYNC) {
1192 ret = filemap_write_and_wait(inode->i_mapping);
1198 ret = iomap_apply(inode, start, len, IOMAP_REPORT, ops, &ctx,
1199 iomap_fiemap_actor);
1200 /* inode with no (attribute) mapping will give ENOENT */
1212 if (ctx.prev.type != IOMAP_HOLE) {
1213 ret = iomap_to_fiemap(fi, &ctx.prev, FIEMAP_EXTENT_LAST);
1220 EXPORT_SYMBOL_GPL(iomap_fiemap);
1223 * Seek for SEEK_DATA / SEEK_HOLE within @page, starting at @lastoff.
1224 * Returns true if found and updates @lastoff to the offset in file.
1227 page_seek_hole_data(struct inode *inode, struct page *page, loff_t *lastoff,
1230 const struct address_space_operations *ops = inode->i_mapping->a_ops;
1231 unsigned int bsize = i_blocksize(inode), off;
1232 bool seek_data = whence == SEEK_DATA;
1233 loff_t poff = page_offset(page);
1235 if (WARN_ON_ONCE(*lastoff >= poff + PAGE_SIZE))
1238 if (*lastoff < poff) {
1240 * Last offset smaller than the start of the page means we found
1243 if (whence == SEEK_HOLE)
1249 * Just check the page unless we can and should check block ranges:
1251 if (bsize == PAGE_SIZE || !ops->is_partially_uptodate)
1252 return PageUptodate(page) == seek_data;
1255 if (unlikely(page->mapping != inode->i_mapping))
1256 goto out_unlock_not_found;
1258 for (off = 0; off < PAGE_SIZE; off += bsize) {
1259 if (offset_in_page(*lastoff) >= off + bsize)
1261 if (ops->is_partially_uptodate(page, off, bsize) == seek_data) {
1265 *lastoff = poff + off + bsize;
1268 out_unlock_not_found:
1274 * Seek for SEEK_DATA / SEEK_HOLE in the page cache.
1276 * Within unwritten extents, the page cache determines which parts are holes
1277 * and which are data: uptodate buffer heads count as data; everything else
1280 * Returns the resulting offset on successs, and -ENOENT otherwise.
1283 page_cache_seek_hole_data(struct inode *inode, loff_t offset, loff_t length,
1286 pgoff_t index = offset >> PAGE_SHIFT;
1287 pgoff_t end = DIV_ROUND_UP(offset + length, PAGE_SIZE);
1288 loff_t lastoff = offset;
1289 struct pagevec pvec;
1294 pagevec_init(&pvec);
1297 unsigned nr_pages, i;
1299 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping, &index,
1304 for (i = 0; i < nr_pages; i++) {
1305 struct page *page = pvec.pages[i];
1307 if (page_seek_hole_data(inode, page, &lastoff, whence))
1309 lastoff = page_offset(page) + PAGE_SIZE;
1311 pagevec_release(&pvec);
1312 } while (index < end);
1314 /* When no page at lastoff and we are not done, we found a hole. */
1315 if (whence != SEEK_HOLE)
1319 if (lastoff < offset + length)
1324 pagevec_release(&pvec);
1330 iomap_seek_hole_actor(struct inode *inode, loff_t offset, loff_t length,
1331 void *data, struct iomap *iomap)
1333 switch (iomap->type) {
1334 case IOMAP_UNWRITTEN:
1335 offset = page_cache_seek_hole_data(inode, offset, length,
1341 *(loff_t *)data = offset;
1349 iomap_seek_hole(struct inode *inode, loff_t offset, const struct iomap_ops *ops)
1351 loff_t size = i_size_read(inode);
1352 loff_t length = size - offset;
1355 /* Nothing to be found before or beyond the end of the file. */
1356 if (offset < 0 || offset >= size)
1359 while (length > 0) {
1360 ret = iomap_apply(inode, offset, length, IOMAP_REPORT, ops,
1361 &offset, iomap_seek_hole_actor);
1373 EXPORT_SYMBOL_GPL(iomap_seek_hole);
1376 iomap_seek_data_actor(struct inode *inode, loff_t offset, loff_t length,
1377 void *data, struct iomap *iomap)
1379 switch (iomap->type) {
1382 case IOMAP_UNWRITTEN:
1383 offset = page_cache_seek_hole_data(inode, offset, length,
1389 *(loff_t *)data = offset;
1395 iomap_seek_data(struct inode *inode, loff_t offset, const struct iomap_ops *ops)
1397 loff_t size = i_size_read(inode);
1398 loff_t length = size - offset;
1401 /* Nothing to be found before or beyond the end of the file. */
1402 if (offset < 0 || offset >= size)
1405 while (length > 0) {
1406 ret = iomap_apply(inode, offset, length, IOMAP_REPORT, ops,
1407 &offset, iomap_seek_data_actor);
1421 EXPORT_SYMBOL_GPL(iomap_seek_data);
1424 * Private flags for iomap_dio, must not overlap with the public ones in
1427 #define IOMAP_DIO_WRITE_FUA (1 << 28)
1428 #define IOMAP_DIO_NEED_SYNC (1 << 29)
1429 #define IOMAP_DIO_WRITE (1 << 30)
1430 #define IOMAP_DIO_DIRTY (1 << 31)
1434 iomap_dio_end_io_t *end_io;
1440 bool wait_for_completion;
1443 /* used during submission and for synchronous completion: */
1445 struct iov_iter *iter;
1446 struct task_struct *waiter;
1447 struct request_queue *last_queue;
1451 /* used for aio completion: */
1453 struct work_struct work;
1458 static ssize_t iomap_dio_complete(struct iomap_dio *dio)
1460 struct kiocb *iocb = dio->iocb;
1461 struct inode *inode = file_inode(iocb->ki_filp);
1462 loff_t offset = iocb->ki_pos;
1466 ret = dio->end_io(iocb,
1467 dio->error ? dio->error : dio->size,
1475 /* check for short read */
1476 if (offset + ret > dio->i_size &&
1477 !(dio->flags & IOMAP_DIO_WRITE))
1478 ret = dio->i_size - offset;
1479 iocb->ki_pos += ret;
1483 * Try again to invalidate clean pages which might have been cached by
1484 * non-direct readahead, or faulted in by get_user_pages() if the source
1485 * of the write was an mmap'ed region of the file we're writing. Either
1486 * one is a pretty crazy thing to do, so we don't support it 100%. If
1487 * this invalidation fails, tough, the write still worked...
1489 * And this page cache invalidation has to be after dio->end_io(), as
1490 * some filesystems convert unwritten extents to real allocations in
1491 * end_io() when necessary, otherwise a racing buffer read would cache
1492 * zeros from unwritten extents.
1495 (dio->flags & IOMAP_DIO_WRITE) && inode->i_mapping->nrpages) {
1497 err = invalidate_inode_pages2_range(inode->i_mapping,
1498 offset >> PAGE_SHIFT,
1499 (offset + dio->size - 1) >> PAGE_SHIFT);
1501 dio_warn_stale_pagecache(iocb->ki_filp);
1505 * If this is a DSYNC write, make sure we push it to stable storage now
1506 * that we've written data.
1508 if (ret > 0 && (dio->flags & IOMAP_DIO_NEED_SYNC))
1509 ret = generic_write_sync(iocb, ret);
1511 inode_dio_end(file_inode(iocb->ki_filp));
1517 static void iomap_dio_complete_work(struct work_struct *work)
1519 struct iomap_dio *dio = container_of(work, struct iomap_dio, aio.work);
1520 struct kiocb *iocb = dio->iocb;
1522 iocb->ki_complete(iocb, iomap_dio_complete(dio), 0);
1526 * Set an error in the dio if none is set yet. We have to use cmpxchg
1527 * as the submission context and the completion context(s) can race to
1530 static inline void iomap_dio_set_error(struct iomap_dio *dio, int ret)
1532 cmpxchg(&dio->error, 0, ret);
1535 static void iomap_dio_bio_end_io(struct bio *bio)
1537 struct iomap_dio *dio = bio->bi_private;
1538 bool should_dirty = (dio->flags & IOMAP_DIO_DIRTY);
1541 iomap_dio_set_error(dio, blk_status_to_errno(bio->bi_status));
1543 if (atomic_dec_and_test(&dio->ref)) {
1544 if (dio->wait_for_completion) {
1545 struct task_struct *waiter = dio->submit.waiter;
1546 WRITE_ONCE(dio->submit.waiter, NULL);
1547 blk_wake_io_task(waiter);
1548 } else if (dio->flags & IOMAP_DIO_WRITE) {
1549 struct inode *inode = file_inode(dio->iocb->ki_filp);
1551 INIT_WORK(&dio->aio.work, iomap_dio_complete_work);
1552 queue_work(inode->i_sb->s_dio_done_wq, &dio->aio.work);
1554 iomap_dio_complete_work(&dio->aio.work);
1559 bio_check_pages_dirty(bio);
1561 struct bio_vec *bvec;
1563 struct bvec_iter_all iter_all;
1565 bio_for_each_segment_all(bvec, bio, i, iter_all)
1566 put_page(bvec->bv_page);
1572 iomap_dio_zero(struct iomap_dio *dio, struct iomap *iomap, loff_t pos,
1575 struct page *page = ZERO_PAGE(0);
1576 int flags = REQ_SYNC | REQ_IDLE;
1579 bio = bio_alloc(GFP_KERNEL, 1);
1580 bio_set_dev(bio, iomap->bdev);
1581 bio->bi_iter.bi_sector = iomap_sector(iomap, pos);
1582 bio->bi_private = dio;
1583 bio->bi_end_io = iomap_dio_bio_end_io;
1585 if (dio->iocb->ki_flags & IOCB_HIPRI)
1589 __bio_add_page(bio, page, len, 0);
1590 bio_set_op_attrs(bio, REQ_OP_WRITE, flags);
1592 atomic_inc(&dio->ref);
1593 return submit_bio(bio);
1597 iomap_dio_bio_actor(struct inode *inode, loff_t pos, loff_t length,
1598 struct iomap_dio *dio, struct iomap *iomap)
1600 unsigned int blkbits = blksize_bits(bdev_logical_block_size(iomap->bdev));
1601 unsigned int fs_block_size = i_blocksize(inode), pad;
1602 unsigned int align = iov_iter_alignment(dio->submit.iter);
1603 struct iov_iter iter;
1605 bool need_zeroout = false;
1606 bool use_fua = false;
1607 int nr_pages, ret = 0;
1610 if ((pos | length | align) & ((1 << blkbits) - 1))
1613 if (iomap->type == IOMAP_UNWRITTEN) {
1614 dio->flags |= IOMAP_DIO_UNWRITTEN;
1615 need_zeroout = true;
1618 if (iomap->flags & IOMAP_F_SHARED)
1619 dio->flags |= IOMAP_DIO_COW;
1621 if (iomap->flags & IOMAP_F_NEW) {
1622 need_zeroout = true;
1623 } else if (iomap->type == IOMAP_MAPPED) {
1625 * Use a FUA write if we need datasync semantics, this is a pure
1626 * data IO that doesn't require any metadata updates (including
1627 * after IO completion such as unwritten extent conversion) and
1628 * the underlying device supports FUA. This allows us to avoid
1629 * cache flushes on IO completion.
1631 if (!(iomap->flags & (IOMAP_F_SHARED|IOMAP_F_DIRTY)) &&
1632 (dio->flags & IOMAP_DIO_WRITE_FUA) &&
1633 blk_queue_fua(bdev_get_queue(iomap->bdev)))
1638 * Operate on a partial iter trimmed to the extent we were called for.
1639 * We'll update the iter in the dio once we're done with this extent.
1641 iter = *dio->submit.iter;
1642 iov_iter_truncate(&iter, length);
1644 nr_pages = iov_iter_npages(&iter, BIO_MAX_PAGES);
1649 /* zero out from the start of the block to the write offset */
1650 pad = pos & (fs_block_size - 1);
1652 iomap_dio_zero(dio, iomap, pos - pad, pad);
1658 iov_iter_revert(dio->submit.iter, copied);
1662 bio = bio_alloc(GFP_KERNEL, nr_pages);
1663 bio_set_dev(bio, iomap->bdev);
1664 bio->bi_iter.bi_sector = iomap_sector(iomap, pos);
1665 bio->bi_write_hint = dio->iocb->ki_hint;
1666 bio->bi_ioprio = dio->iocb->ki_ioprio;
1667 bio->bi_private = dio;
1668 bio->bi_end_io = iomap_dio_bio_end_io;
1670 ret = bio_iov_iter_get_pages(bio, &iter);
1671 if (unlikely(ret)) {
1673 * We have to stop part way through an IO. We must fall
1674 * through to the sub-block tail zeroing here, otherwise
1675 * this short IO may expose stale data in the tail of
1676 * the block we haven't written data to.
1682 n = bio->bi_iter.bi_size;
1683 if (dio->flags & IOMAP_DIO_WRITE) {
1684 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_IDLE;
1686 bio->bi_opf |= REQ_FUA;
1688 dio->flags &= ~IOMAP_DIO_WRITE_FUA;
1689 task_io_account_write(n);
1691 bio->bi_opf = REQ_OP_READ;
1692 if (dio->flags & IOMAP_DIO_DIRTY)
1693 bio_set_pages_dirty(bio);
1696 if (dio->iocb->ki_flags & IOCB_HIPRI)
1697 bio->bi_opf |= REQ_HIPRI;
1699 iov_iter_advance(dio->submit.iter, n);
1705 nr_pages = iov_iter_npages(&iter, BIO_MAX_PAGES);
1707 atomic_inc(&dio->ref);
1709 dio->submit.last_queue = bdev_get_queue(iomap->bdev);
1710 dio->submit.cookie = submit_bio(bio);
1714 * We need to zeroout the tail of a sub-block write if the extent type
1715 * requires zeroing or the write extends beyond EOF. If we don't zero
1716 * the block tail in the latter case, we can expose stale data via mmap
1717 * reads of the EOF block.
1721 ((dio->flags & IOMAP_DIO_WRITE) && pos >= i_size_read(inode))) {
1722 /* zero out from the end of the write to the end of the block */
1723 pad = pos & (fs_block_size - 1);
1725 iomap_dio_zero(dio, iomap, pos, fs_block_size - pad);
1727 return copied ? copied : ret;
1731 iomap_dio_hole_actor(loff_t length, struct iomap_dio *dio)
1733 length = iov_iter_zero(length, dio->submit.iter);
1734 dio->size += length;
1739 iomap_dio_inline_actor(struct inode *inode, loff_t pos, loff_t length,
1740 struct iomap_dio *dio, struct iomap *iomap)
1742 struct iov_iter *iter = dio->submit.iter;
1745 BUG_ON(pos + length > PAGE_SIZE - offset_in_page(iomap->inline_data));
1747 if (dio->flags & IOMAP_DIO_WRITE) {
1748 loff_t size = inode->i_size;
1751 memset(iomap->inline_data + size, 0, pos - size);
1752 copied = copy_from_iter(iomap->inline_data + pos, length, iter);
1754 if (pos + copied > size)
1755 i_size_write(inode, pos + copied);
1756 mark_inode_dirty(inode);
1759 copied = copy_to_iter(iomap->inline_data + pos, length, iter);
1761 dio->size += copied;
1766 iomap_dio_actor(struct inode *inode, loff_t pos, loff_t length,
1767 void *data, struct iomap *iomap)
1769 struct iomap_dio *dio = data;
1771 switch (iomap->type) {
1773 if (WARN_ON_ONCE(dio->flags & IOMAP_DIO_WRITE))
1775 return iomap_dio_hole_actor(length, dio);
1776 case IOMAP_UNWRITTEN:
1777 if (!(dio->flags & IOMAP_DIO_WRITE))
1778 return iomap_dio_hole_actor(length, dio);
1779 return iomap_dio_bio_actor(inode, pos, length, dio, iomap);
1781 return iomap_dio_bio_actor(inode, pos, length, dio, iomap);
1783 return iomap_dio_inline_actor(inode, pos, length, dio, iomap);
1791 * iomap_dio_rw() always completes O_[D]SYNC writes regardless of whether the IO
1792 * is being issued as AIO or not. This allows us to optimise pure data writes
1793 * to use REQ_FUA rather than requiring generic_write_sync() to issue a
1794 * REQ_FLUSH post write. This is slightly tricky because a single request here
1795 * can be mapped into multiple disjoint IOs and only a subset of the IOs issued
1796 * may be pure data writes. In that case, we still need to do a full data sync
1800 iomap_dio_rw(struct kiocb *iocb, struct iov_iter *iter,
1801 const struct iomap_ops *ops, iomap_dio_end_io_t end_io)
1803 struct address_space *mapping = iocb->ki_filp->f_mapping;
1804 struct inode *inode = file_inode(iocb->ki_filp);
1805 size_t count = iov_iter_count(iter);
1806 loff_t pos = iocb->ki_pos, start = pos;
1807 loff_t end = iocb->ki_pos + count - 1, ret = 0;
1808 unsigned int flags = IOMAP_DIRECT;
1809 struct blk_plug plug;
1810 struct iomap_dio *dio;
1812 lockdep_assert_held(&inode->i_rwsem);
1817 dio = kmalloc(sizeof(*dio), GFP_KERNEL);
1822 atomic_set(&dio->ref, 1);
1824 dio->i_size = i_size_read(inode);
1825 dio->end_io = end_io;
1828 dio->wait_for_completion = is_sync_kiocb(iocb);
1830 dio->submit.iter = iter;
1831 dio->submit.waiter = current;
1832 dio->submit.cookie = BLK_QC_T_NONE;
1833 dio->submit.last_queue = NULL;
1835 if (iov_iter_rw(iter) == READ) {
1836 if (pos >= dio->i_size)
1839 if (iter_is_iovec(iter) && iov_iter_rw(iter) == READ)
1840 dio->flags |= IOMAP_DIO_DIRTY;
1842 flags |= IOMAP_WRITE;
1843 dio->flags |= IOMAP_DIO_WRITE;
1845 /* for data sync or sync, we need sync completion processing */
1846 if (iocb->ki_flags & IOCB_DSYNC)
1847 dio->flags |= IOMAP_DIO_NEED_SYNC;
1850 * For datasync only writes, we optimistically try using FUA for
1851 * this IO. Any non-FUA write that occurs will clear this flag,
1852 * hence we know before completion whether a cache flush is
1855 if ((iocb->ki_flags & (IOCB_DSYNC | IOCB_SYNC)) == IOCB_DSYNC)
1856 dio->flags |= IOMAP_DIO_WRITE_FUA;
1859 if (iocb->ki_flags & IOCB_NOWAIT) {
1860 if (filemap_range_has_page(mapping, start, end)) {
1864 flags |= IOMAP_NOWAIT;
1867 ret = filemap_write_and_wait_range(mapping, start, end);
1872 * Try to invalidate cache pages for the range we're direct
1873 * writing. If this invalidation fails, tough, the write will
1874 * still work, but racing two incompatible write paths is a
1875 * pretty crazy thing to do, so we don't support it 100%.
1877 ret = invalidate_inode_pages2_range(mapping,
1878 start >> PAGE_SHIFT, end >> PAGE_SHIFT);
1880 dio_warn_stale_pagecache(iocb->ki_filp);
1883 if (iov_iter_rw(iter) == WRITE && !dio->wait_for_completion &&
1884 !inode->i_sb->s_dio_done_wq) {
1885 ret = sb_init_dio_done_wq(inode->i_sb);
1890 inode_dio_begin(inode);
1892 blk_start_plug(&plug);
1894 ret = iomap_apply(inode, pos, count, flags, ops, dio,
1897 /* magic error code to fall back to buffered I/O */
1898 if (ret == -ENOTBLK) {
1899 dio->wait_for_completion = true;
1906 if (iov_iter_rw(iter) == READ && pos >= dio->i_size)
1908 } while ((count = iov_iter_count(iter)) > 0);
1909 blk_finish_plug(&plug);
1912 iomap_dio_set_error(dio, ret);
1915 * If all the writes we issued were FUA, we don't need to flush the
1916 * cache on IO completion. Clear the sync flag for this case.
1918 if (dio->flags & IOMAP_DIO_WRITE_FUA)
1919 dio->flags &= ~IOMAP_DIO_NEED_SYNC;
1921 if (!atomic_dec_and_test(&dio->ref)) {
1922 if (!dio->wait_for_completion)
1923 return -EIOCBQUEUED;
1926 set_current_state(TASK_UNINTERRUPTIBLE);
1927 if (!READ_ONCE(dio->submit.waiter))
1930 if (!(iocb->ki_flags & IOCB_HIPRI) ||
1931 !dio->submit.last_queue ||
1932 !blk_poll(dio->submit.last_queue,
1933 dio->submit.cookie, true))
1936 __set_current_state(TASK_RUNNING);
1939 ret = iomap_dio_complete(dio);
1947 EXPORT_SYMBOL_GPL(iomap_dio_rw);
1949 /* Swapfile activation */
1952 struct iomap_swapfile_info {
1953 struct iomap iomap; /* accumulated iomap */
1954 struct swap_info_struct *sis;
1955 uint64_t lowest_ppage; /* lowest physical addr seen (pages) */
1956 uint64_t highest_ppage; /* highest physical addr seen (pages) */
1957 unsigned long nr_pages; /* number of pages collected */
1958 int nr_extents; /* extent count */
1962 * Collect physical extents for this swap file. Physical extents reported to
1963 * the swap code must be trimmed to align to a page boundary. The logical
1964 * offset within the file is irrelevant since the swapfile code maps logical
1965 * page numbers of the swap device to the physical page-aligned extents.
1967 static int iomap_swapfile_add_extent(struct iomap_swapfile_info *isi)
1969 struct iomap *iomap = &isi->iomap;
1970 unsigned long nr_pages;
1971 uint64_t first_ppage;
1972 uint64_t first_ppage_reported;
1973 uint64_t next_ppage;
1977 * Round the start up and the end down so that the physical
1978 * extent aligns to a page boundary.
1980 first_ppage = ALIGN(iomap->addr, PAGE_SIZE) >> PAGE_SHIFT;
1981 next_ppage = ALIGN_DOWN(iomap->addr + iomap->length, PAGE_SIZE) >>
1984 /* Skip too-short physical extents. */
1985 if (first_ppage >= next_ppage)
1987 nr_pages = next_ppage - first_ppage;
1990 * Calculate how much swap space we're adding; the first page contains
1991 * the swap header and doesn't count. The mm still wants that first
1992 * page fed to add_swap_extent, however.
1994 first_ppage_reported = first_ppage;
1995 if (iomap->offset == 0)
1996 first_ppage_reported++;
1997 if (isi->lowest_ppage > first_ppage_reported)
1998 isi->lowest_ppage = first_ppage_reported;
1999 if (isi->highest_ppage < (next_ppage - 1))
2000 isi->highest_ppage = next_ppage - 1;
2002 /* Add extent, set up for the next call. */
2003 error = add_swap_extent(isi->sis, isi->nr_pages, nr_pages, first_ppage);
2006 isi->nr_extents += error;
2007 isi->nr_pages += nr_pages;
2012 * Accumulate iomaps for this swap file. We have to accumulate iomaps because
2013 * swap only cares about contiguous page-aligned physical extents and makes no
2014 * distinction between written and unwritten extents.
2016 static loff_t iomap_swapfile_activate_actor(struct inode *inode, loff_t pos,
2017 loff_t count, void *data, struct iomap *iomap)
2019 struct iomap_swapfile_info *isi = data;
2022 switch (iomap->type) {
2024 case IOMAP_UNWRITTEN:
2025 /* Only real or unwritten extents. */
2028 /* No inline data. */
2029 pr_err("swapon: file is inline\n");
2032 pr_err("swapon: file has unallocated extents\n");
2036 /* No uncommitted metadata or shared blocks. */
2037 if (iomap->flags & IOMAP_F_DIRTY) {
2038 pr_err("swapon: file is not committed\n");
2041 if (iomap->flags & IOMAP_F_SHARED) {
2042 pr_err("swapon: file has shared extents\n");
2046 /* Only one bdev per swap file. */
2047 if (iomap->bdev != isi->sis->bdev) {
2048 pr_err("swapon: file is on multiple devices\n");
2052 if (isi->iomap.length == 0) {
2053 /* No accumulated extent, so just store it. */
2054 memcpy(&isi->iomap, iomap, sizeof(isi->iomap));
2055 } else if (isi->iomap.addr + isi->iomap.length == iomap->addr) {
2056 /* Append this to the accumulated extent. */
2057 isi->iomap.length += iomap->length;
2059 /* Otherwise, add the retained iomap and store this one. */
2060 error = iomap_swapfile_add_extent(isi);
2063 memcpy(&isi->iomap, iomap, sizeof(isi->iomap));
2069 * Iterate a swap file's iomaps to construct physical extents that can be
2070 * passed to the swapfile subsystem.
2072 int iomap_swapfile_activate(struct swap_info_struct *sis,
2073 struct file *swap_file, sector_t *pagespan,
2074 const struct iomap_ops *ops)
2076 struct iomap_swapfile_info isi = {
2078 .lowest_ppage = (sector_t)-1ULL,
2080 struct address_space *mapping = swap_file->f_mapping;
2081 struct inode *inode = mapping->host;
2083 loff_t len = ALIGN_DOWN(i_size_read(inode), PAGE_SIZE);
2087 * Persist all file mapping metadata so that we won't have any
2088 * IOMAP_F_DIRTY iomaps.
2090 ret = vfs_fsync(swap_file, 1);
2095 ret = iomap_apply(inode, pos, len, IOMAP_REPORT,
2096 ops, &isi, iomap_swapfile_activate_actor);
2104 if (isi.iomap.length) {
2105 ret = iomap_swapfile_add_extent(&isi);
2110 *pagespan = 1 + isi.highest_ppage - isi.lowest_ppage;
2111 sis->max = isi.nr_pages;
2112 sis->pages = isi.nr_pages - 1;
2113 sis->highest_bit = isi.nr_pages - 1;
2114 return isi.nr_extents;
2116 EXPORT_SYMBOL_GPL(iomap_swapfile_activate);
2117 #endif /* CONFIG_SWAP */
2120 iomap_bmap_actor(struct inode *inode, loff_t pos, loff_t length,
2121 void *data, struct iomap *iomap)
2123 sector_t *bno = data, addr;
2125 if (iomap->type == IOMAP_MAPPED) {
2126 addr = (pos - iomap->offset + iomap->addr) >> inode->i_blkbits;
2128 WARN(1, "would truncate bmap result\n");
2135 /* legacy ->bmap interface. 0 is the error return (!) */
2137 iomap_bmap(struct address_space *mapping, sector_t bno,
2138 const struct iomap_ops *ops)
2140 struct inode *inode = mapping->host;
2141 loff_t pos = bno << inode->i_blkbits;
2142 unsigned blocksize = i_blocksize(inode);
2144 if (filemap_write_and_wait(mapping))
2148 iomap_apply(inode, pos, blocksize, 0, ops, &bno, iomap_bmap_actor);
2151 EXPORT_SYMBOL_GPL(iomap_bmap);