1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 1991, 1992 Linus Torvalds
9 * #!-checking implemented by tytso.
12 * Demand-loading implemented 01.12.91 - no need to read anything but
13 * the header into memory. The inode of the executable is put into
14 * "current->executable", and page faults do the actual loading. Clean.
16 * Once more I can proudly say that linux stood up to being changed: it
17 * was less than 2 hours work to get demand-loading completely implemented.
19 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
20 * current->executable is only used by the procfs. This allows a dispatch
21 * table to check for several different types of binary formats. We keep
22 * trying until we recognize the file or we run out of supported binary
26 #include <linux/kernel_read_file.h>
27 #include <linux/slab.h>
28 #include <linux/file.h>
29 #include <linux/fdtable.h>
31 #include <linux/stat.h>
32 #include <linux/fcntl.h>
33 #include <linux/swap.h>
34 #include <linux/string.h>
35 #include <linux/init.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/coredump.h>
38 #include <linux/sched/signal.h>
39 #include <linux/sched/numa_balancing.h>
40 #include <linux/sched/task.h>
41 #include <linux/pagemap.h>
42 #include <linux/perf_event.h>
43 #include <linux/highmem.h>
44 #include <linux/spinlock.h>
45 #include <linux/key.h>
46 #include <linux/personality.h>
47 #include <linux/binfmts.h>
48 #include <linux/utsname.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/module.h>
51 #include <linux/namei.h>
52 #include <linux/mount.h>
53 #include <linux/security.h>
54 #include <linux/syscalls.h>
55 #include <linux/tsacct_kern.h>
56 #include <linux/cn_proc.h>
57 #include <linux/audit.h>
58 #include <linux/kmod.h>
59 #include <linux/fsnotify.h>
60 #include <linux/fs_struct.h>
61 #include <linux/oom.h>
62 #include <linux/compat.h>
63 #include <linux/vmalloc.h>
64 #include <linux/io_uring.h>
65 #include <linux/syscall_user_dispatch.h>
66 #include <linux/coredump.h>
67 #include <linux/time_namespace.h>
68 #include <linux/user_events.h>
69 #include <linux/rseq.h>
70 #include <linux/ksm.h>
72 #include <linux/uaccess.h>
73 #include <asm/mmu_context.h>
76 #include <trace/events/task.h>
79 #include <trace/events/sched.h>
81 static int bprm_creds_from_file(struct linux_binprm *bprm);
83 int suid_dumpable = 0;
85 static LIST_HEAD(formats);
86 static DEFINE_RWLOCK(binfmt_lock);
88 void __register_binfmt(struct linux_binfmt * fmt, int insert)
90 write_lock(&binfmt_lock);
91 insert ? list_add(&fmt->lh, &formats) :
92 list_add_tail(&fmt->lh, &formats);
93 write_unlock(&binfmt_lock);
96 EXPORT_SYMBOL(__register_binfmt);
98 void unregister_binfmt(struct linux_binfmt * fmt)
100 write_lock(&binfmt_lock);
102 write_unlock(&binfmt_lock);
105 EXPORT_SYMBOL(unregister_binfmt);
107 static inline void put_binfmt(struct linux_binfmt * fmt)
109 module_put(fmt->module);
112 bool path_noexec(const struct path *path)
114 return (path->mnt->mnt_flags & MNT_NOEXEC) ||
115 (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
120 * Note that a shared library must be both readable and executable due to
123 * Also note that we take the address to load from the file itself.
125 SYSCALL_DEFINE1(uselib, const char __user *, library)
127 struct linux_binfmt *fmt;
129 struct filename *tmp = getname(library);
130 int error = PTR_ERR(tmp);
131 static const struct open_flags uselib_flags = {
132 .open_flag = O_LARGEFILE | O_RDONLY,
133 .acc_mode = MAY_READ | MAY_EXEC,
134 .intent = LOOKUP_OPEN,
135 .lookup_flags = LOOKUP_FOLLOW,
141 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
143 error = PTR_ERR(file);
148 * Check do_open_execat() for an explanation.
151 if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode)) ||
152 path_noexec(&file->f_path))
157 read_lock(&binfmt_lock);
158 list_for_each_entry(fmt, &formats, lh) {
159 if (!fmt->load_shlib)
161 if (!try_module_get(fmt->module))
163 read_unlock(&binfmt_lock);
164 error = fmt->load_shlib(file);
165 read_lock(&binfmt_lock);
167 if (error != -ENOEXEC)
170 read_unlock(&binfmt_lock);
176 #endif /* #ifdef CONFIG_USELIB */
180 * The nascent bprm->mm is not visible until exec_mmap() but it can
181 * use a lot of memory, account these pages in current->mm temporary
182 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
183 * change the counter back via acct_arg_size(0).
185 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
187 struct mm_struct *mm = current->mm;
188 long diff = (long)(pages - bprm->vma_pages);
193 bprm->vma_pages = pages;
194 add_mm_counter(mm, MM_ANONPAGES, diff);
197 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
201 struct vm_area_struct *vma = bprm->vma;
202 struct mm_struct *mm = bprm->mm;
206 * Avoid relying on expanding the stack down in GUP (which
207 * does not work for STACK_GROWSUP anyway), and just do it
208 * by hand ahead of time.
210 if (write && pos < vma->vm_start) {
212 ret = expand_downwards(vma, pos);
213 if (unlikely(ret < 0)) {
214 mmap_write_unlock(mm);
217 mmap_write_downgrade(mm);
222 * We are doing an exec(). 'current' is the process
223 * doing the exec and 'mm' is the new process's mm.
225 ret = get_user_pages_remote(mm, pos, 1,
226 write ? FOLL_WRITE : 0,
228 mmap_read_unlock(mm);
233 acct_arg_size(bprm, vma_pages(vma));
238 static void put_arg_page(struct page *page)
243 static void free_arg_pages(struct linux_binprm *bprm)
247 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
250 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
253 static int __bprm_mm_init(struct linux_binprm *bprm)
256 struct vm_area_struct *vma = NULL;
257 struct mm_struct *mm = bprm->mm;
259 bprm->vma = vma = vm_area_alloc(mm);
262 vma_set_anonymous(vma);
264 if (mmap_write_lock_killable(mm)) {
270 * Need to be called with mmap write lock
271 * held, to avoid race with ksmd.
273 err = ksm_execve(mm);
278 * Place the stack at the largest stack address the architecture
279 * supports. Later, we'll move this to an appropriate place. We don't
280 * use STACK_TOP because that can depend on attributes which aren't
283 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
284 vma->vm_end = STACK_TOP_MAX;
285 vma->vm_start = vma->vm_end - PAGE_SIZE;
286 vm_flags_init(vma, VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP);
287 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
289 err = insert_vm_struct(mm, vma);
293 mm->stack_vm = mm->total_vm = 1;
294 mmap_write_unlock(mm);
295 bprm->p = vma->vm_end - sizeof(void *);
300 mmap_write_unlock(mm);
307 static bool valid_arg_len(struct linux_binprm *bprm, long len)
309 return len <= MAX_ARG_STRLEN;
314 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
318 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
323 page = bprm->page[pos / PAGE_SIZE];
324 if (!page && write) {
325 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
328 bprm->page[pos / PAGE_SIZE] = page;
334 static void put_arg_page(struct page *page)
338 static void free_arg_page(struct linux_binprm *bprm, int i)
341 __free_page(bprm->page[i]);
342 bprm->page[i] = NULL;
346 static void free_arg_pages(struct linux_binprm *bprm)
350 for (i = 0; i < MAX_ARG_PAGES; i++)
351 free_arg_page(bprm, i);
354 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
359 static int __bprm_mm_init(struct linux_binprm *bprm)
361 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
365 static bool valid_arg_len(struct linux_binprm *bprm, long len)
367 return len <= bprm->p;
370 #endif /* CONFIG_MMU */
373 * Create a new mm_struct and populate it with a temporary stack
374 * vm_area_struct. We don't have enough context at this point to set the stack
375 * flags, permissions, and offset, so we use temporary values. We'll update
376 * them later in setup_arg_pages().
378 static int bprm_mm_init(struct linux_binprm *bprm)
381 struct mm_struct *mm = NULL;
383 bprm->mm = mm = mm_alloc();
388 /* Save current stack limit for all calculations made during exec. */
389 task_lock(current->group_leader);
390 bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK];
391 task_unlock(current->group_leader);
393 err = __bprm_mm_init(bprm);
408 struct user_arg_ptr {
413 const char __user *const __user *native;
415 const compat_uptr_t __user *compat;
420 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
422 const char __user *native;
425 if (unlikely(argv.is_compat)) {
426 compat_uptr_t compat;
428 if (get_user(compat, argv.ptr.compat + nr))
429 return ERR_PTR(-EFAULT);
431 return compat_ptr(compat);
435 if (get_user(native, argv.ptr.native + nr))
436 return ERR_PTR(-EFAULT);
442 * count() counts the number of strings in array ARGV.
444 static int count(struct user_arg_ptr argv, int max)
448 if (argv.ptr.native != NULL) {
450 const char __user *p = get_user_arg_ptr(argv, i);
462 if (fatal_signal_pending(current))
463 return -ERESTARTNOHAND;
470 static int count_strings_kernel(const char *const *argv)
477 for (i = 0; argv[i]; ++i) {
478 if (i >= MAX_ARG_STRINGS)
480 if (fatal_signal_pending(current))
481 return -ERESTARTNOHAND;
487 static inline int bprm_set_stack_limit(struct linux_binprm *bprm,
491 /* Avoid a pathological bprm->p. */
494 bprm->argmin = bprm->p - limit;
498 static inline bool bprm_hit_stack_limit(struct linux_binprm *bprm)
501 return bprm->p < bprm->argmin;
508 * Calculate bprm->argmin from:
511 * - bprm->rlim_stack.rlim_cur
516 static int bprm_stack_limits(struct linux_binprm *bprm)
518 unsigned long limit, ptr_size;
521 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
522 * (whichever is smaller) for the argv+env strings.
524 * - the remaining binfmt code will not run out of stack space,
525 * - the program will have a reasonable amount of stack left
528 limit = _STK_LIM / 4 * 3;
529 limit = min(limit, bprm->rlim_stack.rlim_cur / 4);
531 * We've historically supported up to 32 pages (ARG_MAX)
532 * of argument strings even with small stacks
534 limit = max_t(unsigned long, limit, ARG_MAX);
535 /* Reject totally pathological counts. */
536 if (bprm->argc < 0 || bprm->envc < 0)
539 * We must account for the size of all the argv and envp pointers to
540 * the argv and envp strings, since they will also take up space in
541 * the stack. They aren't stored until much later when we can't
542 * signal to the parent that the child has run out of stack space.
543 * Instead, calculate it here so it's possible to fail gracefully.
545 * In the case of argc = 0, make sure there is space for adding a
546 * empty string (which will bump argc to 1), to ensure confused
547 * userspace programs don't start processing from argv[1], thinking
548 * argc can never be 0, to keep them from walking envp by accident.
549 * See do_execveat_common().
551 if (check_add_overflow(max(bprm->argc, 1), bprm->envc, &ptr_size) ||
552 check_mul_overflow(ptr_size, sizeof(void *), &ptr_size))
554 if (limit <= ptr_size)
558 return bprm_set_stack_limit(bprm, limit);
562 * 'copy_strings()' copies argument/environment strings from the old
563 * processes's memory to the new process's stack. The call to get_user_pages()
564 * ensures the destination page is created and not swapped out.
566 static int copy_strings(int argc, struct user_arg_ptr argv,
567 struct linux_binprm *bprm)
569 struct page *kmapped_page = NULL;
571 unsigned long kpos = 0;
575 const char __user *str;
580 str = get_user_arg_ptr(argv, argc);
584 len = strnlen_user(str, MAX_ARG_STRLEN);
589 if (!valid_arg_len(bprm, len))
592 /* We're going to work our way backwards. */
596 if (bprm_hit_stack_limit(bprm))
600 int offset, bytes_to_copy;
602 if (fatal_signal_pending(current)) {
603 ret = -ERESTARTNOHAND;
608 offset = pos % PAGE_SIZE;
612 bytes_to_copy = offset;
613 if (bytes_to_copy > len)
616 offset -= bytes_to_copy;
617 pos -= bytes_to_copy;
618 str -= bytes_to_copy;
619 len -= bytes_to_copy;
621 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
624 page = get_arg_page(bprm, pos, 1);
631 flush_dcache_page(kmapped_page);
633 put_arg_page(kmapped_page);
636 kaddr = kmap_local_page(kmapped_page);
637 kpos = pos & PAGE_MASK;
638 flush_arg_page(bprm, kpos, kmapped_page);
640 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
649 flush_dcache_page(kmapped_page);
651 put_arg_page(kmapped_page);
657 * Copy and argument/environment string from the kernel to the processes stack.
659 int copy_string_kernel(const char *arg, struct linux_binprm *bprm)
661 int len = strnlen(arg, MAX_ARG_STRLEN) + 1 /* terminating NUL */;
662 unsigned long pos = bprm->p;
666 if (!valid_arg_len(bprm, len))
669 /* We're going to work our way backwards. */
672 if (bprm_hit_stack_limit(bprm))
676 unsigned int bytes_to_copy = min_t(unsigned int, len,
677 min_not_zero(offset_in_page(pos), PAGE_SIZE));
680 pos -= bytes_to_copy;
681 arg -= bytes_to_copy;
682 len -= bytes_to_copy;
684 page = get_arg_page(bprm, pos, 1);
687 flush_arg_page(bprm, pos & PAGE_MASK, page);
688 memcpy_to_page(page, offset_in_page(pos), arg, bytes_to_copy);
694 EXPORT_SYMBOL(copy_string_kernel);
696 static int copy_strings_kernel(int argc, const char *const *argv,
697 struct linux_binprm *bprm)
700 int ret = copy_string_kernel(argv[argc], bprm);
703 if (fatal_signal_pending(current))
704 return -ERESTARTNOHAND;
713 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
714 * the stack is optionally relocated, and some extra space is added.
716 int setup_arg_pages(struct linux_binprm *bprm,
717 unsigned long stack_top,
718 int executable_stack)
721 unsigned long stack_shift;
722 struct mm_struct *mm = current->mm;
723 struct vm_area_struct *vma = bprm->vma;
724 struct vm_area_struct *prev = NULL;
725 unsigned long vm_flags;
726 unsigned long stack_base;
727 unsigned long stack_size;
728 unsigned long stack_expand;
729 unsigned long rlim_stack;
730 struct mmu_gather tlb;
731 struct vma_iterator vmi;
733 #ifdef CONFIG_STACK_GROWSUP
734 /* Limit stack size */
735 stack_base = bprm->rlim_stack.rlim_max;
737 stack_base = calc_max_stack_size(stack_base);
739 /* Add space for stack randomization. */
740 if (current->flags & PF_RANDOMIZE)
741 stack_base += (STACK_RND_MASK << PAGE_SHIFT);
743 /* Make sure we didn't let the argument array grow too large. */
744 if (vma->vm_end - vma->vm_start > stack_base)
747 stack_base = PAGE_ALIGN(stack_top - stack_base);
749 stack_shift = vma->vm_start - stack_base;
750 mm->arg_start = bprm->p - stack_shift;
751 bprm->p = vma->vm_end - stack_shift;
753 stack_top = arch_align_stack(stack_top);
754 stack_top = PAGE_ALIGN(stack_top);
756 if (unlikely(stack_top < mmap_min_addr) ||
757 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
760 stack_shift = vma->vm_end - stack_top;
762 bprm->p -= stack_shift;
763 mm->arg_start = bprm->p;
767 bprm->loader -= stack_shift;
768 bprm->exec -= stack_shift;
770 if (mmap_write_lock_killable(mm))
773 vm_flags = VM_STACK_FLAGS;
776 * Adjust stack execute permissions; explicitly enable for
777 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
778 * (arch default) otherwise.
780 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
782 else if (executable_stack == EXSTACK_DISABLE_X)
783 vm_flags &= ~VM_EXEC;
784 vm_flags |= mm->def_flags;
785 vm_flags |= VM_STACK_INCOMPLETE_SETUP;
787 vma_iter_init(&vmi, mm, vma->vm_start);
789 tlb_gather_mmu(&tlb, mm);
790 ret = mprotect_fixup(&vmi, &tlb, vma, &prev, vma->vm_start, vma->vm_end,
792 tlb_finish_mmu(&tlb);
798 if (unlikely(vm_flags & VM_EXEC)) {
799 pr_warn_once("process '%pD4' started with executable stack\n",
803 /* Move stack pages down in memory. */
806 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
807 * the binfmt code determines where the new stack should reside, we shift it to
808 * its final location.
810 ret = relocate_vma_down(vma, stack_shift);
815 /* mprotect_fixup is overkill to remove the temporary stack flags */
816 vm_flags_clear(vma, VM_STACK_INCOMPLETE_SETUP);
818 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
819 stack_size = vma->vm_end - vma->vm_start;
821 * Align this down to a page boundary as expand_stack
824 rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK;
826 stack_expand = min(rlim_stack, stack_size + stack_expand);
828 #ifdef CONFIG_STACK_GROWSUP
829 stack_base = vma->vm_start + stack_expand;
831 stack_base = vma->vm_end - stack_expand;
833 current->mm->start_stack = bprm->p;
834 ret = expand_stack_locked(vma, stack_base);
839 mmap_write_unlock(mm);
842 EXPORT_SYMBOL(setup_arg_pages);
847 * Transfer the program arguments and environment from the holding pages
848 * onto the stack. The provided stack pointer is adjusted accordingly.
850 int transfer_args_to_stack(struct linux_binprm *bprm,
851 unsigned long *sp_location)
853 unsigned long index, stop, sp;
856 stop = bprm->p >> PAGE_SHIFT;
859 for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
860 unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
861 char *src = kmap_local_page(bprm->page[index]) + offset;
862 sp -= PAGE_SIZE - offset;
863 if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
870 bprm->exec += *sp_location - MAX_ARG_PAGES * PAGE_SIZE;
876 EXPORT_SYMBOL(transfer_args_to_stack);
878 #endif /* CONFIG_MMU */
881 * On success, caller must call do_close_execat() on the returned
882 * struct file to close it.
884 static struct file *do_open_execat(int fd, struct filename *name, int flags)
887 struct open_flags open_exec_flags = {
888 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
889 .acc_mode = MAY_EXEC,
890 .intent = LOOKUP_OPEN,
891 .lookup_flags = LOOKUP_FOLLOW,
894 if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
895 return ERR_PTR(-EINVAL);
896 if (flags & AT_SYMLINK_NOFOLLOW)
897 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
898 if (flags & AT_EMPTY_PATH)
899 open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
901 file = do_filp_open(fd, name, &open_exec_flags);
906 * In the past the regular type check was here. It moved to may_open() in
907 * 633fb6ac3980 ("exec: move S_ISREG() check earlier"). Since then it is
908 * an invariant that all non-regular files error out before we get here.
910 if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode)) ||
911 path_noexec(&file->f_path)) {
913 return ERR_PTR(-EACCES);
920 * open_exec - Open a path name for execution
922 * @name: path name to open with the intent of executing it.
924 * Returns ERR_PTR on failure or allocated struct file on success.
926 * As this is a wrapper for the internal do_open_execat(). Also see
929 struct file *open_exec(const char *name)
931 struct filename *filename = getname_kernel(name);
932 struct file *f = ERR_CAST(filename);
934 if (!IS_ERR(filename)) {
935 f = do_open_execat(AT_FDCWD, filename, 0);
940 EXPORT_SYMBOL(open_exec);
942 #if defined(CONFIG_BINFMT_FLAT) || defined(CONFIG_BINFMT_ELF_FDPIC)
943 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
945 ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
947 flush_icache_user_range(addr, addr + len);
950 EXPORT_SYMBOL(read_code);
954 * Maps the mm_struct mm into the current task struct.
955 * On success, this function returns with exec_update_lock
958 static int exec_mmap(struct mm_struct *mm)
960 struct task_struct *tsk;
961 struct mm_struct *old_mm, *active_mm;
964 /* Notify parent that we're no longer interested in the old VM */
966 old_mm = current->mm;
967 exec_mm_release(tsk, old_mm);
969 ret = down_write_killable(&tsk->signal->exec_update_lock);
975 * If there is a pending fatal signal perhaps a signal
976 * whose default action is to create a coredump get
977 * out and die instead of going through with the exec.
979 ret = mmap_read_lock_killable(old_mm);
981 up_write(&tsk->signal->exec_update_lock);
987 membarrier_exec_mmap(mm);
990 active_mm = tsk->active_mm;
993 mm_init_cid(mm, tsk);
995 * This prevents preemption while active_mm is being loaded and
996 * it and mm are being updated, which could cause problems for
997 * lazy tlb mm refcounting when these are updated by context
998 * switches. Not all architectures can handle irqs off over
1001 if (!IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1003 activate_mm(active_mm, mm);
1004 if (IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1010 mmap_read_unlock(old_mm);
1011 BUG_ON(active_mm != old_mm);
1012 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1013 mm_update_next_owner(old_mm);
1017 mmdrop_lazy_tlb(active_mm);
1021 static int de_thread(struct task_struct *tsk)
1023 struct signal_struct *sig = tsk->signal;
1024 struct sighand_struct *oldsighand = tsk->sighand;
1025 spinlock_t *lock = &oldsighand->siglock;
1027 if (thread_group_empty(tsk))
1028 goto no_thread_group;
1031 * Kill all other threads in the thread group.
1033 spin_lock_irq(lock);
1034 if ((sig->flags & SIGNAL_GROUP_EXIT) || sig->group_exec_task) {
1036 * Another group action in progress, just
1037 * return so that the signal is processed.
1039 spin_unlock_irq(lock);
1043 sig->group_exec_task = tsk;
1044 sig->notify_count = zap_other_threads(tsk);
1045 if (!thread_group_leader(tsk))
1046 sig->notify_count--;
1048 while (sig->notify_count) {
1049 __set_current_state(TASK_KILLABLE);
1050 spin_unlock_irq(lock);
1052 if (__fatal_signal_pending(tsk))
1054 spin_lock_irq(lock);
1056 spin_unlock_irq(lock);
1059 * At this point all other threads have exited, all we have to
1060 * do is to wait for the thread group leader to become inactive,
1061 * and to assume its PID:
1063 if (!thread_group_leader(tsk)) {
1064 struct task_struct *leader = tsk->group_leader;
1067 cgroup_threadgroup_change_begin(tsk);
1068 write_lock_irq(&tasklist_lock);
1070 * Do this under tasklist_lock to ensure that
1071 * exit_notify() can't miss ->group_exec_task
1073 sig->notify_count = -1;
1074 if (likely(leader->exit_state))
1076 __set_current_state(TASK_KILLABLE);
1077 write_unlock_irq(&tasklist_lock);
1078 cgroup_threadgroup_change_end(tsk);
1080 if (__fatal_signal_pending(tsk))
1085 * The only record we have of the real-time age of a
1086 * process, regardless of execs it's done, is start_time.
1087 * All the past CPU time is accumulated in signal_struct
1088 * from sister threads now dead. But in this non-leader
1089 * exec, nothing survives from the original leader thread,
1090 * whose birth marks the true age of this process now.
1091 * When we take on its identity by switching to its PID, we
1092 * also take its birthdate (always earlier than our own).
1094 tsk->start_time = leader->start_time;
1095 tsk->start_boottime = leader->start_boottime;
1097 BUG_ON(!same_thread_group(leader, tsk));
1099 * An exec() starts a new thread group with the
1100 * TGID of the previous thread group. Rehash the
1101 * two threads with a switched PID, and release
1102 * the former thread group leader:
1105 /* Become a process group leader with the old leader's pid.
1106 * The old leader becomes a thread of the this thread group.
1108 exchange_tids(tsk, leader);
1109 transfer_pid(leader, tsk, PIDTYPE_TGID);
1110 transfer_pid(leader, tsk, PIDTYPE_PGID);
1111 transfer_pid(leader, tsk, PIDTYPE_SID);
1113 list_replace_rcu(&leader->tasks, &tsk->tasks);
1114 list_replace_init(&leader->sibling, &tsk->sibling);
1116 tsk->group_leader = tsk;
1117 leader->group_leader = tsk;
1119 tsk->exit_signal = SIGCHLD;
1120 leader->exit_signal = -1;
1122 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1123 leader->exit_state = EXIT_DEAD;
1125 * We are going to release_task()->ptrace_unlink() silently,
1126 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1127 * the tracer won't block again waiting for this thread.
1129 if (unlikely(leader->ptrace))
1130 __wake_up_parent(leader, leader->parent);
1131 write_unlock_irq(&tasklist_lock);
1132 cgroup_threadgroup_change_end(tsk);
1134 release_task(leader);
1137 sig->group_exec_task = NULL;
1138 sig->notify_count = 0;
1141 /* we have changed execution domain */
1142 tsk->exit_signal = SIGCHLD;
1144 BUG_ON(!thread_group_leader(tsk));
1148 /* protects against exit_notify() and __exit_signal() */
1149 read_lock(&tasklist_lock);
1150 sig->group_exec_task = NULL;
1151 sig->notify_count = 0;
1152 read_unlock(&tasklist_lock);
1158 * This function makes sure the current process has its own signal table,
1159 * so that flush_signal_handlers can later reset the handlers without
1160 * disturbing other processes. (Other processes might share the signal
1161 * table via the CLONE_SIGHAND option to clone().)
1163 static int unshare_sighand(struct task_struct *me)
1165 struct sighand_struct *oldsighand = me->sighand;
1167 if (refcount_read(&oldsighand->count) != 1) {
1168 struct sighand_struct *newsighand;
1170 * This ->sighand is shared with the CLONE_SIGHAND
1171 * but not CLONE_THREAD task, switch to the new one.
1173 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1177 refcount_set(&newsighand->count, 1);
1179 write_lock_irq(&tasklist_lock);
1180 spin_lock(&oldsighand->siglock);
1181 memcpy(newsighand->action, oldsighand->action,
1182 sizeof(newsighand->action));
1183 rcu_assign_pointer(me->sighand, newsighand);
1184 spin_unlock(&oldsighand->siglock);
1185 write_unlock_irq(&tasklist_lock);
1187 __cleanup_sighand(oldsighand);
1192 char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk)
1195 /* Always NUL terminated and zero-padded */
1196 strscpy_pad(buf, tsk->comm, buf_size);
1200 EXPORT_SYMBOL_GPL(__get_task_comm);
1203 * These functions flushes out all traces of the currently running executable
1204 * so that a new one can be started
1207 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1210 trace_task_rename(tsk, buf);
1211 strscpy_pad(tsk->comm, buf, sizeof(tsk->comm));
1213 perf_event_comm(tsk, exec);
1217 * Calling this is the point of no return. None of the failures will be
1218 * seen by userspace since either the process is already taking a fatal
1219 * signal (via de_thread() or coredump), or will have SEGV raised
1220 * (after exec_mmap()) by search_binary_handler (see below).
1222 int begin_new_exec(struct linux_binprm * bprm)
1224 struct task_struct *me = current;
1227 /* Once we are committed compute the creds */
1228 retval = bprm_creds_from_file(bprm);
1233 * This tracepoint marks the point before flushing the old exec where
1234 * the current task is still unchanged, but errors are fatal (point of
1235 * no return). The later "sched_process_exec" tracepoint is called after
1236 * the current task has successfully switched to the new exec.
1238 trace_sched_prepare_exec(current, bprm);
1241 * Ensure all future errors are fatal.
1243 bprm->point_of_no_return = true;
1246 * Make this the only thread in the thread group.
1248 retval = de_thread(me);
1253 * Cancel any io_uring activity across execve
1255 io_uring_task_cancel();
1257 /* Ensure the files table is not shared. */
1258 retval = unshare_files();
1263 * Must be called _before_ exec_mmap() as bprm->mm is
1264 * not visible until then. Doing it here also ensures
1265 * we don't race against replace_mm_exe_file().
1267 retval = set_mm_exe_file(bprm->mm, bprm->file);
1271 /* If the binary is not readable then enforce mm->dumpable=0 */
1272 would_dump(bprm, bprm->file);
1273 if (bprm->have_execfd)
1274 would_dump(bprm, bprm->executable);
1277 * Release all of the old mmap stuff
1279 acct_arg_size(bprm, 0);
1280 retval = exec_mmap(bprm->mm);
1286 retval = exec_task_namespaces();
1290 #ifdef CONFIG_POSIX_TIMERS
1291 spin_lock_irq(&me->sighand->siglock);
1292 posix_cpu_timers_exit(me);
1293 spin_unlock_irq(&me->sighand->siglock);
1295 flush_itimer_signals();
1299 * Make the signal table private.
1301 retval = unshare_sighand(me);
1305 me->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC |
1306 PF_NOFREEZE | PF_NO_SETAFFINITY);
1308 me->personality &= ~bprm->per_clear;
1310 clear_syscall_work_syscall_user_dispatch(me);
1313 * We have to apply CLOEXEC before we change whether the process is
1314 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1315 * trying to access the should-be-closed file descriptors of a process
1316 * undergoing exec(2).
1318 do_close_on_exec(me->files);
1320 if (bprm->secureexec) {
1321 /* Make sure parent cannot signal privileged process. */
1322 me->pdeath_signal = 0;
1325 * For secureexec, reset the stack limit to sane default to
1326 * avoid bad behavior from the prior rlimits. This has to
1327 * happen before arch_pick_mmap_layout(), which examines
1328 * RLIMIT_STACK, but after the point of no return to avoid
1329 * needing to clean up the change on failure.
1331 if (bprm->rlim_stack.rlim_cur > _STK_LIM)
1332 bprm->rlim_stack.rlim_cur = _STK_LIM;
1335 me->sas_ss_sp = me->sas_ss_size = 0;
1338 * Figure out dumpability. Note that this checking only of current
1339 * is wrong, but userspace depends on it. This should be testing
1340 * bprm->secureexec instead.
1342 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP ||
1343 !(uid_eq(current_euid(), current_uid()) &&
1344 gid_eq(current_egid(), current_gid())))
1345 set_dumpable(current->mm, suid_dumpable);
1347 set_dumpable(current->mm, SUID_DUMP_USER);
1350 __set_task_comm(me, kbasename(bprm->filename), true);
1352 /* An exec changes our domain. We are no longer part of the thread
1354 WRITE_ONCE(me->self_exec_id, me->self_exec_id + 1);
1355 flush_signal_handlers(me, 0);
1357 retval = set_cred_ucounts(bprm->cred);
1362 * install the new credentials for this executable
1364 security_bprm_committing_creds(bprm);
1366 commit_creds(bprm->cred);
1370 * Disable monitoring for regular users
1371 * when executing setuid binaries. Must
1372 * wait until new credentials are committed
1373 * by commit_creds() above
1375 if (get_dumpable(me->mm) != SUID_DUMP_USER)
1376 perf_event_exit_task(me);
1378 * cred_guard_mutex must be held at least to this point to prevent
1379 * ptrace_attach() from altering our determination of the task's
1380 * credentials; any time after this it may be unlocked.
1382 security_bprm_committed_creds(bprm);
1384 /* Pass the opened binary to the interpreter. */
1385 if (bprm->have_execfd) {
1386 retval = get_unused_fd_flags(0);
1389 fd_install(retval, bprm->executable);
1390 bprm->executable = NULL;
1391 bprm->execfd = retval;
1396 up_write(&me->signal->exec_update_lock);
1398 mutex_unlock(&me->signal->cred_guard_mutex);
1403 EXPORT_SYMBOL(begin_new_exec);
1405 void would_dump(struct linux_binprm *bprm, struct file *file)
1407 struct inode *inode = file_inode(file);
1408 struct mnt_idmap *idmap = file_mnt_idmap(file);
1409 if (inode_permission(idmap, inode, MAY_READ) < 0) {
1410 struct user_namespace *old, *user_ns;
1411 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1413 /* Ensure mm->user_ns contains the executable */
1414 user_ns = old = bprm->mm->user_ns;
1415 while ((user_ns != &init_user_ns) &&
1416 !privileged_wrt_inode_uidgid(user_ns, idmap, inode))
1417 user_ns = user_ns->parent;
1419 if (old != user_ns) {
1420 bprm->mm->user_ns = get_user_ns(user_ns);
1425 EXPORT_SYMBOL(would_dump);
1427 void setup_new_exec(struct linux_binprm * bprm)
1429 /* Setup things that can depend upon the personality */
1430 struct task_struct *me = current;
1432 arch_pick_mmap_layout(me->mm, &bprm->rlim_stack);
1434 arch_setup_new_exec();
1436 /* Set the new mm task size. We have to do that late because it may
1437 * depend on TIF_32BIT which is only updated in flush_thread() on
1438 * some architectures like powerpc
1440 me->mm->task_size = TASK_SIZE;
1441 up_write(&me->signal->exec_update_lock);
1442 mutex_unlock(&me->signal->cred_guard_mutex);
1444 EXPORT_SYMBOL(setup_new_exec);
1446 /* Runs immediately before start_thread() takes over. */
1447 void finalize_exec(struct linux_binprm *bprm)
1449 /* Store any stack rlimit changes before starting thread. */
1450 task_lock(current->group_leader);
1451 current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack;
1452 task_unlock(current->group_leader);
1454 EXPORT_SYMBOL(finalize_exec);
1457 * Prepare credentials and lock ->cred_guard_mutex.
1458 * setup_new_exec() commits the new creds and drops the lock.
1459 * Or, if exec fails before, free_bprm() should release ->cred
1462 static int prepare_bprm_creds(struct linux_binprm *bprm)
1464 if (mutex_lock_interruptible(¤t->signal->cred_guard_mutex))
1465 return -ERESTARTNOINTR;
1467 bprm->cred = prepare_exec_creds();
1468 if (likely(bprm->cred))
1471 mutex_unlock(¤t->signal->cred_guard_mutex);
1475 /* Matches do_open_execat() */
1476 static void do_close_execat(struct file *file)
1482 static void free_bprm(struct linux_binprm *bprm)
1485 acct_arg_size(bprm, 0);
1488 free_arg_pages(bprm);
1490 mutex_unlock(¤t->signal->cred_guard_mutex);
1491 abort_creds(bprm->cred);
1493 do_close_execat(bprm->file);
1494 if (bprm->executable)
1495 fput(bprm->executable);
1496 /* If a binfmt changed the interp, free it. */
1497 if (bprm->interp != bprm->filename)
1498 kfree(bprm->interp);
1499 kfree(bprm->fdpath);
1503 static struct linux_binprm *alloc_bprm(int fd, struct filename *filename, int flags)
1505 struct linux_binprm *bprm;
1507 int retval = -ENOMEM;
1509 file = do_open_execat(fd, filename, flags);
1511 return ERR_CAST(file);
1513 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1515 do_close_execat(file);
1516 return ERR_PTR(-ENOMEM);
1521 if (fd == AT_FDCWD || filename->name[0] == '/') {
1522 bprm->filename = filename->name;
1524 if (filename->name[0] == '\0')
1525 bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd);
1527 bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s",
1528 fd, filename->name);
1533 * Record that a name derived from an O_CLOEXEC fd will be
1534 * inaccessible after exec. This allows the code in exec to
1535 * choose to fail when the executable is not mmaped into the
1536 * interpreter and an open file descriptor is not passed to
1537 * the interpreter. This makes for a better user experience
1538 * than having the interpreter start and then immediately fail
1539 * when it finds the executable is inaccessible.
1541 if (get_close_on_exec(fd))
1542 bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1544 bprm->filename = bprm->fdpath;
1546 bprm->interp = bprm->filename;
1548 retval = bprm_mm_init(bprm);
1554 return ERR_PTR(retval);
1557 int bprm_change_interp(const char *interp, struct linux_binprm *bprm)
1559 /* If a binfmt changed the interp, free it first. */
1560 if (bprm->interp != bprm->filename)
1561 kfree(bprm->interp);
1562 bprm->interp = kstrdup(interp, GFP_KERNEL);
1567 EXPORT_SYMBOL(bprm_change_interp);
1570 * determine how safe it is to execute the proposed program
1571 * - the caller must hold ->cred_guard_mutex to protect against
1572 * PTRACE_ATTACH or seccomp thread-sync
1574 static void check_unsafe_exec(struct linux_binprm *bprm)
1576 struct task_struct *p = current, *t;
1580 bprm->unsafe |= LSM_UNSAFE_PTRACE;
1583 * This isn't strictly necessary, but it makes it harder for LSMs to
1586 if (task_no_new_privs(current))
1587 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1590 * If another task is sharing our fs, we cannot safely
1591 * suid exec because the differently privileged task
1592 * will be able to manipulate the current directory, etc.
1593 * It would be nice to force an unshare instead...
1596 spin_lock(&p->fs->lock);
1598 for_other_threads(p, t) {
1604 /* "users" and "in_exec" locked for copy_fs() */
1605 if (p->fs->users > n_fs)
1606 bprm->unsafe |= LSM_UNSAFE_SHARE;
1609 spin_unlock(&p->fs->lock);
1612 static void bprm_fill_uid(struct linux_binprm *bprm, struct file *file)
1614 /* Handle suid and sgid on files */
1615 struct mnt_idmap *idmap;
1616 struct inode *inode = file_inode(file);
1622 if (!mnt_may_suid(file->f_path.mnt))
1625 if (task_no_new_privs(current))
1628 mode = READ_ONCE(inode->i_mode);
1629 if (!(mode & (S_ISUID|S_ISGID)))
1632 idmap = file_mnt_idmap(file);
1634 /* Be careful if suid/sgid is set */
1637 /* Atomically reload and check mode/uid/gid now that lock held. */
1638 mode = inode->i_mode;
1639 vfsuid = i_uid_into_vfsuid(idmap, inode);
1640 vfsgid = i_gid_into_vfsgid(idmap, inode);
1641 err = inode_permission(idmap, inode, MAY_EXEC);
1642 inode_unlock(inode);
1644 /* Did the exec bit vanish out from under us? Give up. */
1648 /* We ignore suid/sgid if there are no mappings for them in the ns */
1649 if (!vfsuid_has_mapping(bprm->cred->user_ns, vfsuid) ||
1650 !vfsgid_has_mapping(bprm->cred->user_ns, vfsgid))
1653 if (mode & S_ISUID) {
1654 bprm->per_clear |= PER_CLEAR_ON_SETID;
1655 bprm->cred->euid = vfsuid_into_kuid(vfsuid);
1658 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1659 bprm->per_clear |= PER_CLEAR_ON_SETID;
1660 bprm->cred->egid = vfsgid_into_kgid(vfsgid);
1665 * Compute brpm->cred based upon the final binary.
1667 static int bprm_creds_from_file(struct linux_binprm *bprm)
1669 /* Compute creds based on which file? */
1670 struct file *file = bprm->execfd_creds ? bprm->executable : bprm->file;
1672 bprm_fill_uid(bprm, file);
1673 return security_bprm_creds_from_file(bprm, file);
1677 * Fill the binprm structure from the inode.
1678 * Read the first BINPRM_BUF_SIZE bytes
1680 * This may be called multiple times for binary chains (scripts for example).
1682 static int prepare_binprm(struct linux_binprm *bprm)
1686 memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1687 return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos);
1691 * Arguments are '\0' separated strings found at the location bprm->p
1692 * points to; chop off the first by relocating brpm->p to right after
1693 * the first '\0' encountered.
1695 int remove_arg_zero(struct linux_binprm *bprm)
1697 unsigned long offset;
1705 offset = bprm->p & ~PAGE_MASK;
1706 page = get_arg_page(bprm, bprm->p, 0);
1709 kaddr = kmap_local_page(page);
1711 for (; offset < PAGE_SIZE && kaddr[offset];
1712 offset++, bprm->p++)
1715 kunmap_local(kaddr);
1717 } while (offset == PAGE_SIZE);
1724 EXPORT_SYMBOL(remove_arg_zero);
1726 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1728 * cycle the list of binary formats handler, until one recognizes the image
1730 static int search_binary_handler(struct linux_binprm *bprm)
1732 bool need_retry = IS_ENABLED(CONFIG_MODULES);
1733 struct linux_binfmt *fmt;
1736 retval = prepare_binprm(bprm);
1740 retval = security_bprm_check(bprm);
1746 read_lock(&binfmt_lock);
1747 list_for_each_entry(fmt, &formats, lh) {
1748 if (!try_module_get(fmt->module))
1750 read_unlock(&binfmt_lock);
1752 retval = fmt->load_binary(bprm);
1754 read_lock(&binfmt_lock);
1756 if (bprm->point_of_no_return || (retval != -ENOEXEC)) {
1757 read_unlock(&binfmt_lock);
1761 read_unlock(&binfmt_lock);
1764 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1765 printable(bprm->buf[2]) && printable(bprm->buf[3]))
1767 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1776 /* binfmt handlers will call back into begin_new_exec() on success. */
1777 static int exec_binprm(struct linux_binprm *bprm)
1779 pid_t old_pid, old_vpid;
1782 /* Need to fetch pid before load_binary changes it */
1783 old_pid = current->pid;
1785 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1788 /* This allows 4 levels of binfmt rewrites before failing hard. */
1789 for (depth = 0;; depth++) {
1794 ret = search_binary_handler(bprm);
1797 if (!bprm->interpreter)
1801 bprm->file = bprm->interpreter;
1802 bprm->interpreter = NULL;
1804 if (unlikely(bprm->have_execfd)) {
1805 if (bprm->executable) {
1809 bprm->executable = exec;
1815 trace_sched_process_exec(current, old_pid, bprm);
1816 ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1817 proc_exec_connector(current);
1821 static int bprm_execve(struct linux_binprm *bprm)
1825 retval = prepare_bprm_creds(bprm);
1830 * Check for unsafe execution states before exec_binprm(), which
1831 * will call back into begin_new_exec(), into bprm_creds_from_file(),
1832 * where setuid-ness is evaluated.
1834 check_unsafe_exec(bprm);
1835 current->in_execve = 1;
1836 sched_mm_cid_before_execve(current);
1840 /* Set the unchanging part of bprm->cred */
1841 retval = security_bprm_creds_for_exec(bprm);
1845 retval = exec_binprm(bprm);
1849 sched_mm_cid_after_execve(current);
1850 /* execve succeeded */
1851 current->fs->in_exec = 0;
1852 current->in_execve = 0;
1853 rseq_execve(current);
1854 user_events_execve(current);
1855 acct_update_integrals(current);
1856 task_numa_free(current, false);
1861 * If past the point of no return ensure the code never
1862 * returns to the userspace process. Use an existing fatal
1863 * signal if present otherwise terminate the process with
1866 if (bprm->point_of_no_return && !fatal_signal_pending(current))
1867 force_fatal_sig(SIGSEGV);
1869 sched_mm_cid_after_execve(current);
1870 current->fs->in_exec = 0;
1871 current->in_execve = 0;
1876 static int do_execveat_common(int fd, struct filename *filename,
1877 struct user_arg_ptr argv,
1878 struct user_arg_ptr envp,
1881 struct linux_binprm *bprm;
1884 if (IS_ERR(filename))
1885 return PTR_ERR(filename);
1888 * We move the actual failure in case of RLIMIT_NPROC excess from
1889 * set*uid() to execve() because too many poorly written programs
1890 * don't check setuid() return code. Here we additionally recheck
1891 * whether NPROC limit is still exceeded.
1893 if ((current->flags & PF_NPROC_EXCEEDED) &&
1894 is_rlimit_overlimit(current_ucounts(), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
1899 /* We're below the limit (still or again), so we don't want to make
1900 * further execve() calls fail. */
1901 current->flags &= ~PF_NPROC_EXCEEDED;
1903 bprm = alloc_bprm(fd, filename, flags);
1905 retval = PTR_ERR(bprm);
1909 retval = count(argv, MAX_ARG_STRINGS);
1911 pr_warn_once("process '%s' launched '%s' with NULL argv: empty string added\n",
1912 current->comm, bprm->filename);
1915 bprm->argc = retval;
1917 retval = count(envp, MAX_ARG_STRINGS);
1920 bprm->envc = retval;
1922 retval = bprm_stack_limits(bprm);
1926 retval = copy_string_kernel(bprm->filename, bprm);
1929 bprm->exec = bprm->p;
1931 retval = copy_strings(bprm->envc, envp, bprm);
1935 retval = copy_strings(bprm->argc, argv, bprm);
1940 * When argv is empty, add an empty string ("") as argv[0] to
1941 * ensure confused userspace programs that start processing
1942 * from argv[1] won't end up walking envp. See also
1943 * bprm_stack_limits().
1945 if (bprm->argc == 0) {
1946 retval = copy_string_kernel("", bprm);
1952 retval = bprm_execve(bprm);
1961 int kernel_execve(const char *kernel_filename,
1962 const char *const *argv, const char *const *envp)
1964 struct filename *filename;
1965 struct linux_binprm *bprm;
1969 /* It is non-sense for kernel threads to call execve */
1970 if (WARN_ON_ONCE(current->flags & PF_KTHREAD))
1973 filename = getname_kernel(kernel_filename);
1974 if (IS_ERR(filename))
1975 return PTR_ERR(filename);
1977 bprm = alloc_bprm(fd, filename, 0);
1979 retval = PTR_ERR(bprm);
1983 retval = count_strings_kernel(argv);
1984 if (WARN_ON_ONCE(retval == 0))
1988 bprm->argc = retval;
1990 retval = count_strings_kernel(envp);
1993 bprm->envc = retval;
1995 retval = bprm_stack_limits(bprm);
1999 retval = copy_string_kernel(bprm->filename, bprm);
2002 bprm->exec = bprm->p;
2004 retval = copy_strings_kernel(bprm->envc, envp, bprm);
2008 retval = copy_strings_kernel(bprm->argc, argv, bprm);
2012 retval = bprm_execve(bprm);
2020 static int do_execve(struct filename *filename,
2021 const char __user *const __user *__argv,
2022 const char __user *const __user *__envp)
2024 struct user_arg_ptr argv = { .ptr.native = __argv };
2025 struct user_arg_ptr envp = { .ptr.native = __envp };
2026 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2029 static int do_execveat(int fd, struct filename *filename,
2030 const char __user *const __user *__argv,
2031 const char __user *const __user *__envp,
2034 struct user_arg_ptr argv = { .ptr.native = __argv };
2035 struct user_arg_ptr envp = { .ptr.native = __envp };
2037 return do_execveat_common(fd, filename, argv, envp, flags);
2040 #ifdef CONFIG_COMPAT
2041 static int compat_do_execve(struct filename *filename,
2042 const compat_uptr_t __user *__argv,
2043 const compat_uptr_t __user *__envp)
2045 struct user_arg_ptr argv = {
2047 .ptr.compat = __argv,
2049 struct user_arg_ptr envp = {
2051 .ptr.compat = __envp,
2053 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2056 static int compat_do_execveat(int fd, struct filename *filename,
2057 const compat_uptr_t __user *__argv,
2058 const compat_uptr_t __user *__envp,
2061 struct user_arg_ptr argv = {
2063 .ptr.compat = __argv,
2065 struct user_arg_ptr envp = {
2067 .ptr.compat = __envp,
2069 return do_execveat_common(fd, filename, argv, envp, flags);
2073 void set_binfmt(struct linux_binfmt *new)
2075 struct mm_struct *mm = current->mm;
2078 module_put(mm->binfmt->module);
2082 __module_get(new->module);
2084 EXPORT_SYMBOL(set_binfmt);
2087 * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
2089 void set_dumpable(struct mm_struct *mm, int value)
2091 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
2094 set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value);
2097 SYSCALL_DEFINE3(execve,
2098 const char __user *, filename,
2099 const char __user *const __user *, argv,
2100 const char __user *const __user *, envp)
2102 return do_execve(getname(filename), argv, envp);
2105 SYSCALL_DEFINE5(execveat,
2106 int, fd, const char __user *, filename,
2107 const char __user *const __user *, argv,
2108 const char __user *const __user *, envp,
2111 return do_execveat(fd,
2112 getname_uflags(filename, flags),
2116 #ifdef CONFIG_COMPAT
2117 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
2118 const compat_uptr_t __user *, argv,
2119 const compat_uptr_t __user *, envp)
2121 return compat_do_execve(getname(filename), argv, envp);
2124 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
2125 const char __user *, filename,
2126 const compat_uptr_t __user *, argv,
2127 const compat_uptr_t __user *, envp,
2130 return compat_do_execveat(fd,
2131 getname_uflags(filename, flags),
2136 #ifdef CONFIG_SYSCTL
2138 static int proc_dointvec_minmax_coredump(const struct ctl_table *table, int write,
2139 void *buffer, size_t *lenp, loff_t *ppos)
2141 int error = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2144 validate_coredump_safety();
2148 static struct ctl_table fs_exec_sysctls[] = {
2150 .procname = "suid_dumpable",
2151 .data = &suid_dumpable,
2152 .maxlen = sizeof(int),
2154 .proc_handler = proc_dointvec_minmax_coredump,
2155 .extra1 = SYSCTL_ZERO,
2156 .extra2 = SYSCTL_TWO,
2160 static int __init init_fs_exec_sysctls(void)
2162 register_sysctl_init("fs", fs_exec_sysctls);
2166 fs_initcall(init_fs_exec_sysctls);
2167 #endif /* CONFIG_SYSCTL */
2169 #ifdef CONFIG_EXEC_KUNIT_TEST
2170 #include "tests/exec_kunit.c"