1 // SPDX-License-Identifier: GPL-2.0
3 * linux/fs/ext4/super.c
5 * Copyright (C) 1992, 1993, 1994, 1995
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
12 * linux/fs/minix/inode.c
14 * Copyright (C) 1991, 1992 Linus Torvalds
16 * Big-endian to little-endian byte-swapping/bitmaps by
20 #include <linux/module.h>
21 #include <linux/string.h>
23 #include <linux/time.h>
24 #include <linux/vmalloc.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/parser.h>
30 #include <linux/buffer_head.h>
31 #include <linux/exportfs.h>
32 #include <linux/vfs.h>
33 #include <linux/random.h>
34 #include <linux/mount.h>
35 #include <linux/namei.h>
36 #include <linux/quotaops.h>
37 #include <linux/seq_file.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <linux/dax.h>
42 #include <linux/cleancache.h>
43 #include <linux/uaccess.h>
44 #include <linux/iversion.h>
45 #include <linux/unicode.h>
46 #include <linux/part_stat.h>
47 #include <linux/kthread.h>
48 #include <linux/freezer.h>
51 #include "ext4_extents.h" /* Needed for trace points definition */
52 #include "ext4_jbd2.h"
58 #define CREATE_TRACE_POINTS
59 #include <trace/events/ext4.h>
61 static struct ext4_lazy_init *ext4_li_info;
62 static struct mutex ext4_li_mtx;
63 static struct ratelimit_state ext4_mount_msg_ratelimit;
65 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
66 unsigned long journal_devnum);
67 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
68 static int ext4_commit_super(struct super_block *sb, int sync);
69 static int ext4_mark_recovery_complete(struct super_block *sb,
70 struct ext4_super_block *es);
71 static int ext4_clear_journal_err(struct super_block *sb,
72 struct ext4_super_block *es);
73 static int ext4_sync_fs(struct super_block *sb, int wait);
74 static int ext4_remount(struct super_block *sb, int *flags, char *data);
75 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
76 static int ext4_unfreeze(struct super_block *sb);
77 static int ext4_freeze(struct super_block *sb);
78 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
79 const char *dev_name, void *data);
80 static inline int ext2_feature_set_ok(struct super_block *sb);
81 static inline int ext3_feature_set_ok(struct super_block *sb);
82 static int ext4_feature_set_ok(struct super_block *sb, int readonly);
83 static void ext4_destroy_lazyinit_thread(void);
84 static void ext4_unregister_li_request(struct super_block *sb);
85 static void ext4_clear_request_list(void);
86 static struct inode *ext4_get_journal_inode(struct super_block *sb,
87 unsigned int journal_inum);
92 * Note the difference between i_mmap_sem (EXT4_I(inode)->i_mmap_sem) and
93 * i_mmap_rwsem (inode->i_mmap_rwsem)!
96 * mmap_lock -> sb_start_pagefault -> i_mmap_sem (r) -> transaction start ->
97 * page lock -> i_data_sem (rw)
99 * buffered write path:
100 * sb_start_write -> i_mutex -> mmap_lock
101 * sb_start_write -> i_mutex -> transaction start -> page lock ->
105 * sb_start_write -> i_mutex -> i_mmap_sem (w) -> i_mmap_rwsem (w) -> page lock
106 * sb_start_write -> i_mutex -> i_mmap_sem (w) -> transaction start ->
110 * sb_start_write -> i_mutex -> mmap_lock
111 * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw)
114 * transaction start -> page lock(s) -> i_data_sem (rw)
117 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
118 static struct file_system_type ext2_fs_type = {
119 .owner = THIS_MODULE,
122 .kill_sb = kill_block_super,
123 .fs_flags = FS_REQUIRES_DEV,
125 MODULE_ALIAS_FS("ext2");
126 MODULE_ALIAS("ext2");
127 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
129 #define IS_EXT2_SB(sb) (0)
133 static struct file_system_type ext3_fs_type = {
134 .owner = THIS_MODULE,
137 .kill_sb = kill_block_super,
138 .fs_flags = FS_REQUIRES_DEV,
140 MODULE_ALIAS_FS("ext3");
141 MODULE_ALIAS("ext3");
142 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
145 * This works like sb_bread() except it uses ERR_PTR for error
146 * returns. Currently with sb_bread it's impossible to distinguish
147 * between ENOMEM and EIO situations (since both result in a NULL
151 ext4_sb_bread(struct super_block *sb, sector_t block, int op_flags)
153 struct buffer_head *bh = sb_getblk(sb, block);
156 return ERR_PTR(-ENOMEM);
157 if (ext4_buffer_uptodate(bh))
159 ll_rw_block(REQ_OP_READ, REQ_META | op_flags, 1, &bh);
161 if (buffer_uptodate(bh))
164 return ERR_PTR(-EIO);
167 static int ext4_verify_csum_type(struct super_block *sb,
168 struct ext4_super_block *es)
170 if (!ext4_has_feature_metadata_csum(sb))
173 return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
176 static __le32 ext4_superblock_csum(struct super_block *sb,
177 struct ext4_super_block *es)
179 struct ext4_sb_info *sbi = EXT4_SB(sb);
180 int offset = offsetof(struct ext4_super_block, s_checksum);
183 csum = ext4_chksum(sbi, ~0, (char *)es, offset);
185 return cpu_to_le32(csum);
188 static int ext4_superblock_csum_verify(struct super_block *sb,
189 struct ext4_super_block *es)
191 if (!ext4_has_metadata_csum(sb))
194 return es->s_checksum == ext4_superblock_csum(sb, es);
197 void ext4_superblock_csum_set(struct super_block *sb)
199 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
201 if (!ext4_has_metadata_csum(sb))
204 es->s_checksum = ext4_superblock_csum(sb, es);
207 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
208 struct ext4_group_desc *bg)
210 return le32_to_cpu(bg->bg_block_bitmap_lo) |
211 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
212 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
215 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
216 struct ext4_group_desc *bg)
218 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
219 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
220 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
223 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
224 struct ext4_group_desc *bg)
226 return le32_to_cpu(bg->bg_inode_table_lo) |
227 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
228 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
231 __u32 ext4_free_group_clusters(struct super_block *sb,
232 struct ext4_group_desc *bg)
234 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
235 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
236 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
239 __u32 ext4_free_inodes_count(struct super_block *sb,
240 struct ext4_group_desc *bg)
242 return le16_to_cpu(bg->bg_free_inodes_count_lo) |
243 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
244 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
247 __u32 ext4_used_dirs_count(struct super_block *sb,
248 struct ext4_group_desc *bg)
250 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
251 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
252 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
255 __u32 ext4_itable_unused_count(struct super_block *sb,
256 struct ext4_group_desc *bg)
258 return le16_to_cpu(bg->bg_itable_unused_lo) |
259 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
260 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
263 void ext4_block_bitmap_set(struct super_block *sb,
264 struct ext4_group_desc *bg, ext4_fsblk_t blk)
266 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
267 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
268 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
271 void ext4_inode_bitmap_set(struct super_block *sb,
272 struct ext4_group_desc *bg, ext4_fsblk_t blk)
274 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
275 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
276 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
279 void ext4_inode_table_set(struct super_block *sb,
280 struct ext4_group_desc *bg, ext4_fsblk_t blk)
282 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
283 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
284 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
287 void ext4_free_group_clusters_set(struct super_block *sb,
288 struct ext4_group_desc *bg, __u32 count)
290 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
291 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
292 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
295 void ext4_free_inodes_set(struct super_block *sb,
296 struct ext4_group_desc *bg, __u32 count)
298 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
299 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
300 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
303 void ext4_used_dirs_set(struct super_block *sb,
304 struct ext4_group_desc *bg, __u32 count)
306 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
307 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
308 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
311 void ext4_itable_unused_set(struct super_block *sb,
312 struct ext4_group_desc *bg, __u32 count)
314 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
315 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
316 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
319 static void __ext4_update_tstamp(__le32 *lo, __u8 *hi)
321 time64_t now = ktime_get_real_seconds();
323 now = clamp_val(now, 0, (1ull << 40) - 1);
325 *lo = cpu_to_le32(lower_32_bits(now));
326 *hi = upper_32_bits(now);
329 static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi)
331 return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo);
333 #define ext4_update_tstamp(es, tstamp) \
334 __ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi)
335 #define ext4_get_tstamp(es, tstamp) \
336 __ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi)
338 static void __save_error_info(struct super_block *sb, int error,
339 __u32 ino, __u64 block,
340 const char *func, unsigned int line)
342 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
345 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
346 if (bdev_read_only(sb->s_bdev))
348 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
349 ext4_update_tstamp(es, s_last_error_time);
350 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
351 es->s_last_error_line = cpu_to_le32(line);
352 es->s_last_error_ino = cpu_to_le32(ino);
353 es->s_last_error_block = cpu_to_le64(block);
359 err = EXT4_ERR_ENOMEM;
362 err = EXT4_ERR_EFSBADCRC;
366 err = EXT4_ERR_EFSCORRUPTED;
369 err = EXT4_ERR_ENOSPC;
372 err = EXT4_ERR_ENOKEY;
375 err = EXT4_ERR_EROFS;
378 err = EXT4_ERR_EFBIG;
381 err = EXT4_ERR_EEXIST;
384 err = EXT4_ERR_ERANGE;
387 err = EXT4_ERR_EOVERFLOW;
390 err = EXT4_ERR_EBUSY;
393 err = EXT4_ERR_ENOTDIR;
396 err = EXT4_ERR_ENOTEMPTY;
399 err = EXT4_ERR_ESHUTDOWN;
402 err = EXT4_ERR_EFAULT;
405 err = EXT4_ERR_UNKNOWN;
407 es->s_last_error_errcode = err;
408 if (!es->s_first_error_time) {
409 es->s_first_error_time = es->s_last_error_time;
410 es->s_first_error_time_hi = es->s_last_error_time_hi;
411 strncpy(es->s_first_error_func, func,
412 sizeof(es->s_first_error_func));
413 es->s_first_error_line = cpu_to_le32(line);
414 es->s_first_error_ino = es->s_last_error_ino;
415 es->s_first_error_block = es->s_last_error_block;
416 es->s_first_error_errcode = es->s_last_error_errcode;
419 * Start the daily error reporting function if it hasn't been
422 if (!es->s_error_count)
423 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
424 le32_add_cpu(&es->s_error_count, 1);
427 static void save_error_info(struct super_block *sb, int error,
428 __u32 ino, __u64 block,
429 const char *func, unsigned int line)
431 __save_error_info(sb, error, ino, block, func, line);
432 if (!bdev_read_only(sb->s_bdev))
433 ext4_commit_super(sb, 1);
437 * The del_gendisk() function uninitializes the disk-specific data
438 * structures, including the bdi structure, without telling anyone
439 * else. Once this happens, any attempt to call mark_buffer_dirty()
440 * (for example, by ext4_commit_super), will cause a kernel OOPS.
441 * This is a kludge to prevent these oops until we can put in a proper
442 * hook in del_gendisk() to inform the VFS and file system layers.
444 static int block_device_ejected(struct super_block *sb)
446 struct inode *bd_inode = sb->s_bdev->bd_inode;
447 struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
449 return bdi->dev == NULL;
452 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
454 struct super_block *sb = journal->j_private;
455 struct ext4_sb_info *sbi = EXT4_SB(sb);
456 int error = is_journal_aborted(journal);
457 struct ext4_journal_cb_entry *jce;
459 BUG_ON(txn->t_state == T_FINISHED);
461 ext4_process_freed_data(sb, txn->t_tid);
463 spin_lock(&sbi->s_md_lock);
464 while (!list_empty(&txn->t_private_list)) {
465 jce = list_entry(txn->t_private_list.next,
466 struct ext4_journal_cb_entry, jce_list);
467 list_del_init(&jce->jce_list);
468 spin_unlock(&sbi->s_md_lock);
469 jce->jce_func(sb, jce, error);
470 spin_lock(&sbi->s_md_lock);
472 spin_unlock(&sbi->s_md_lock);
475 static bool system_going_down(void)
477 return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF
478 || system_state == SYSTEM_RESTART;
481 /* Deal with the reporting of failure conditions on a filesystem such as
482 * inconsistencies detected or read IO failures.
484 * On ext2, we can store the error state of the filesystem in the
485 * superblock. That is not possible on ext4, because we may have other
486 * write ordering constraints on the superblock which prevent us from
487 * writing it out straight away; and given that the journal is about to
488 * be aborted, we can't rely on the current, or future, transactions to
489 * write out the superblock safely.
491 * We'll just use the jbd2_journal_abort() error code to record an error in
492 * the journal instead. On recovery, the journal will complain about
493 * that error until we've noted it down and cleared it.
496 static void ext4_handle_error(struct super_block *sb)
498 if (test_opt(sb, WARN_ON_ERROR))
504 if (!test_opt(sb, ERRORS_CONT)) {
505 journal_t *journal = EXT4_SB(sb)->s_journal;
507 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
509 jbd2_journal_abort(journal, -EIO);
512 * We force ERRORS_RO behavior when system is rebooting. Otherwise we
513 * could panic during 'reboot -f' as the underlying device got already
516 if (test_opt(sb, ERRORS_RO) || system_going_down()) {
517 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
519 * Make sure updated value of ->s_mount_flags will be visible
520 * before ->s_flags update
523 sb->s_flags |= SB_RDONLY;
524 } else if (test_opt(sb, ERRORS_PANIC)) {
525 panic("EXT4-fs (device %s): panic forced after error\n",
530 #define ext4_error_ratelimit(sb) \
531 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \
534 void __ext4_error(struct super_block *sb, const char *function,
535 unsigned int line, int error, __u64 block,
536 const char *fmt, ...)
538 struct va_format vaf;
541 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
544 trace_ext4_error(sb, function, line);
545 if (ext4_error_ratelimit(sb)) {
550 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
551 sb->s_id, function, line, current->comm, &vaf);
554 save_error_info(sb, error, 0, block, function, line);
555 ext4_handle_error(sb);
558 void __ext4_error_inode(struct inode *inode, const char *function,
559 unsigned int line, ext4_fsblk_t block, int error,
560 const char *fmt, ...)
563 struct va_format vaf;
565 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
568 trace_ext4_error(inode->i_sb, function, line);
569 if (ext4_error_ratelimit(inode->i_sb)) {
574 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
575 "inode #%lu: block %llu: comm %s: %pV\n",
576 inode->i_sb->s_id, function, line, inode->i_ino,
577 block, current->comm, &vaf);
579 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
580 "inode #%lu: comm %s: %pV\n",
581 inode->i_sb->s_id, function, line, inode->i_ino,
582 current->comm, &vaf);
585 save_error_info(inode->i_sb, error, inode->i_ino, block,
587 ext4_handle_error(inode->i_sb);
590 void __ext4_error_file(struct file *file, const char *function,
591 unsigned int line, ext4_fsblk_t block,
592 const char *fmt, ...)
595 struct va_format vaf;
596 struct inode *inode = file_inode(file);
597 char pathname[80], *path;
599 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
602 trace_ext4_error(inode->i_sb, function, line);
603 if (ext4_error_ratelimit(inode->i_sb)) {
604 path = file_path(file, pathname, sizeof(pathname));
612 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
613 "block %llu: comm %s: path %s: %pV\n",
614 inode->i_sb->s_id, function, line, inode->i_ino,
615 block, current->comm, path, &vaf);
618 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
619 "comm %s: path %s: %pV\n",
620 inode->i_sb->s_id, function, line, inode->i_ino,
621 current->comm, path, &vaf);
624 save_error_info(inode->i_sb, EFSCORRUPTED, inode->i_ino, block,
626 ext4_handle_error(inode->i_sb);
629 const char *ext4_decode_error(struct super_block *sb, int errno,
636 errstr = "Corrupt filesystem";
639 errstr = "Filesystem failed CRC";
642 errstr = "IO failure";
645 errstr = "Out of memory";
648 if (!sb || (EXT4_SB(sb)->s_journal &&
649 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
650 errstr = "Journal has aborted";
652 errstr = "Readonly filesystem";
655 /* If the caller passed in an extra buffer for unknown
656 * errors, textualise them now. Else we just return
659 /* Check for truncated error codes... */
660 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
669 /* __ext4_std_error decodes expected errors from journaling functions
670 * automatically and invokes the appropriate error response. */
672 void __ext4_std_error(struct super_block *sb, const char *function,
673 unsigned int line, int errno)
678 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
681 /* Special case: if the error is EROFS, and we're not already
682 * inside a transaction, then there's really no point in logging
684 if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb))
687 if (ext4_error_ratelimit(sb)) {
688 errstr = ext4_decode_error(sb, errno, nbuf);
689 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
690 sb->s_id, function, line, errstr);
693 save_error_info(sb, -errno, 0, 0, function, line);
694 ext4_handle_error(sb);
698 * ext4_abort is a much stronger failure handler than ext4_error. The
699 * abort function may be used to deal with unrecoverable failures such
700 * as journal IO errors or ENOMEM at a critical moment in log management.
702 * We unconditionally force the filesystem into an ABORT|READONLY state,
703 * unless the error response on the fs has been set to panic in which
704 * case we take the easy way out and panic immediately.
707 void __ext4_abort(struct super_block *sb, const char *function,
708 unsigned int line, int error, const char *fmt, ...)
710 struct va_format vaf;
713 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
716 save_error_info(sb, error, 0, 0, function, line);
720 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: %pV\n",
721 sb->s_id, function, line, &vaf);
724 if (sb_rdonly(sb) == 0) {
725 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
726 if (EXT4_SB(sb)->s_journal)
727 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
729 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
731 * Make sure updated value of ->s_mount_flags will be visible
732 * before ->s_flags update
735 sb->s_flags |= SB_RDONLY;
737 if (test_opt(sb, ERRORS_PANIC) && !system_going_down())
738 panic("EXT4-fs panic from previous error\n");
741 void __ext4_msg(struct super_block *sb,
742 const char *prefix, const char *fmt, ...)
744 struct va_format vaf;
747 atomic_inc(&EXT4_SB(sb)->s_msg_count);
748 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs"))
754 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
758 static int ext4_warning_ratelimit(struct super_block *sb)
760 atomic_inc(&EXT4_SB(sb)->s_warning_count);
761 return ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state),
765 void __ext4_warning(struct super_block *sb, const char *function,
766 unsigned int line, const char *fmt, ...)
768 struct va_format vaf;
771 if (!ext4_warning_ratelimit(sb))
777 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
778 sb->s_id, function, line, &vaf);
782 void __ext4_warning_inode(const struct inode *inode, const char *function,
783 unsigned int line, const char *fmt, ...)
785 struct va_format vaf;
788 if (!ext4_warning_ratelimit(inode->i_sb))
794 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
795 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
796 function, line, inode->i_ino, current->comm, &vaf);
800 void __ext4_grp_locked_error(const char *function, unsigned int line,
801 struct super_block *sb, ext4_group_t grp,
802 unsigned long ino, ext4_fsblk_t block,
803 const char *fmt, ...)
807 struct va_format vaf;
810 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
813 trace_ext4_error(sb, function, line);
814 __save_error_info(sb, EFSCORRUPTED, ino, block, function, line);
816 if (ext4_error_ratelimit(sb)) {
820 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
821 sb->s_id, function, line, grp);
823 printk(KERN_CONT "inode %lu: ", ino);
825 printk(KERN_CONT "block %llu:",
826 (unsigned long long) block);
827 printk(KERN_CONT "%pV\n", &vaf);
831 if (test_opt(sb, WARN_ON_ERROR))
834 if (test_opt(sb, ERRORS_CONT)) {
835 ext4_commit_super(sb, 0);
839 ext4_unlock_group(sb, grp);
840 ext4_commit_super(sb, 1);
841 ext4_handle_error(sb);
843 * We only get here in the ERRORS_RO case; relocking the group
844 * may be dangerous, but nothing bad will happen since the
845 * filesystem will have already been marked read/only and the
846 * journal has been aborted. We return 1 as a hint to callers
847 * who might what to use the return value from
848 * ext4_grp_locked_error() to distinguish between the
849 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
850 * aggressively from the ext4 function in question, with a
851 * more appropriate error code.
853 ext4_lock_group(sb, grp);
857 void ext4_mark_group_bitmap_corrupted(struct super_block *sb,
861 struct ext4_sb_info *sbi = EXT4_SB(sb);
862 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
863 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL);
866 if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) {
867 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
870 percpu_counter_sub(&sbi->s_freeclusters_counter,
874 if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) {
875 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT,
880 count = ext4_free_inodes_count(sb, gdp);
881 percpu_counter_sub(&sbi->s_freeinodes_counter,
887 void ext4_update_dynamic_rev(struct super_block *sb)
889 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
891 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
895 "updating to rev %d because of new feature flag, "
896 "running e2fsck is recommended",
899 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
900 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
901 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
902 /* leave es->s_feature_*compat flags alone */
903 /* es->s_uuid will be set by e2fsck if empty */
906 * The rest of the superblock fields should be zero, and if not it
907 * means they are likely already in use, so leave them alone. We
908 * can leave it up to e2fsck to clean up any inconsistencies there.
913 * Open the external journal device
915 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
917 struct block_device *bdev;
919 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
925 ext4_msg(sb, KERN_ERR,
926 "failed to open journal device unknown-block(%u,%u) %ld",
927 MAJOR(dev), MINOR(dev), PTR_ERR(bdev));
932 * Release the journal device
934 static void ext4_blkdev_put(struct block_device *bdev)
936 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
939 static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
941 struct block_device *bdev;
942 bdev = sbi->journal_bdev;
944 ext4_blkdev_put(bdev);
945 sbi->journal_bdev = NULL;
949 static inline struct inode *orphan_list_entry(struct list_head *l)
951 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
954 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
958 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
959 le32_to_cpu(sbi->s_es->s_last_orphan));
961 printk(KERN_ERR "sb_info orphan list:\n");
962 list_for_each(l, &sbi->s_orphan) {
963 struct inode *inode = orphan_list_entry(l);
965 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
966 inode->i_sb->s_id, inode->i_ino, inode,
967 inode->i_mode, inode->i_nlink,
973 static int ext4_quota_off(struct super_block *sb, int type);
975 static inline void ext4_quota_off_umount(struct super_block *sb)
979 /* Use our quota_off function to clear inode flags etc. */
980 for (type = 0; type < EXT4_MAXQUOTAS; type++)
981 ext4_quota_off(sb, type);
985 * This is a helper function which is used in the mount/remount
986 * codepaths (which holds s_umount) to fetch the quota file name.
988 static inline char *get_qf_name(struct super_block *sb,
989 struct ext4_sb_info *sbi,
992 return rcu_dereference_protected(sbi->s_qf_names[type],
993 lockdep_is_held(&sb->s_umount));
996 static inline void ext4_quota_off_umount(struct super_block *sb)
1001 static void ext4_put_super(struct super_block *sb)
1003 struct ext4_sb_info *sbi = EXT4_SB(sb);
1004 struct ext4_super_block *es = sbi->s_es;
1005 struct buffer_head **group_desc;
1006 struct flex_groups **flex_groups;
1010 ext4_unregister_li_request(sb);
1011 ext4_quota_off_umount(sb);
1013 destroy_workqueue(sbi->rsv_conversion_wq);
1016 * Unregister sysfs before destroying jbd2 journal.
1017 * Since we could still access attr_journal_task attribute via sysfs
1018 * path which could have sbi->s_journal->j_task as NULL
1020 ext4_unregister_sysfs(sb);
1022 if (sbi->s_journal) {
1023 aborted = is_journal_aborted(sbi->s_journal);
1024 err = jbd2_journal_destroy(sbi->s_journal);
1025 sbi->s_journal = NULL;
1026 if ((err < 0) && !aborted) {
1027 ext4_abort(sb, -err, "Couldn't clean up the journal");
1031 ext4_es_unregister_shrinker(sbi);
1032 del_timer_sync(&sbi->s_err_report);
1033 ext4_release_system_zone(sb);
1034 ext4_mb_release(sb);
1035 ext4_ext_release(sb);
1037 if (!sb_rdonly(sb) && !aborted) {
1038 ext4_clear_feature_journal_needs_recovery(sb);
1039 es->s_state = cpu_to_le16(sbi->s_mount_state);
1042 ext4_commit_super(sb, 1);
1045 group_desc = rcu_dereference(sbi->s_group_desc);
1046 for (i = 0; i < sbi->s_gdb_count; i++)
1047 brelse(group_desc[i]);
1049 flex_groups = rcu_dereference(sbi->s_flex_groups);
1051 for (i = 0; i < sbi->s_flex_groups_allocated; i++)
1052 kvfree(flex_groups[i]);
1053 kvfree(flex_groups);
1056 percpu_counter_destroy(&sbi->s_freeclusters_counter);
1057 percpu_counter_destroy(&sbi->s_freeinodes_counter);
1058 percpu_counter_destroy(&sbi->s_dirs_counter);
1059 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
1060 percpu_free_rwsem(&sbi->s_writepages_rwsem);
1062 for (i = 0; i < EXT4_MAXQUOTAS; i++)
1063 kfree(get_qf_name(sb, sbi, i));
1066 /* Debugging code just in case the in-memory inode orphan list
1067 * isn't empty. The on-disk one can be non-empty if we've
1068 * detected an error and taken the fs readonly, but the
1069 * in-memory list had better be clean by this point. */
1070 if (!list_empty(&sbi->s_orphan))
1071 dump_orphan_list(sb, sbi);
1072 J_ASSERT(list_empty(&sbi->s_orphan));
1074 sync_blockdev(sb->s_bdev);
1075 invalidate_bdev(sb->s_bdev);
1076 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
1078 * Invalidate the journal device's buffers. We don't want them
1079 * floating about in memory - the physical journal device may
1080 * hotswapped, and it breaks the `ro-after' testing code.
1082 sync_blockdev(sbi->journal_bdev);
1083 invalidate_bdev(sbi->journal_bdev);
1084 ext4_blkdev_remove(sbi);
1087 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
1088 sbi->s_ea_inode_cache = NULL;
1090 ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
1091 sbi->s_ea_block_cache = NULL;
1094 kthread_stop(sbi->s_mmp_tsk);
1096 sb->s_fs_info = NULL;
1098 * Now that we are completely done shutting down the
1099 * superblock, we need to actually destroy the kobject.
1101 kobject_put(&sbi->s_kobj);
1102 wait_for_completion(&sbi->s_kobj_unregister);
1103 if (sbi->s_chksum_driver)
1104 crypto_free_shash(sbi->s_chksum_driver);
1105 kfree(sbi->s_blockgroup_lock);
1106 fs_put_dax(sbi->s_daxdev);
1107 fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
1108 #ifdef CONFIG_UNICODE
1109 utf8_unload(sbi->s_encoding);
1114 static struct kmem_cache *ext4_inode_cachep;
1117 * Called inside transaction, so use GFP_NOFS
1119 static struct inode *ext4_alloc_inode(struct super_block *sb)
1121 struct ext4_inode_info *ei;
1123 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
1127 inode_set_iversion(&ei->vfs_inode, 1);
1128 spin_lock_init(&ei->i_raw_lock);
1129 INIT_LIST_HEAD(&ei->i_prealloc_list);
1130 atomic_set(&ei->i_prealloc_active, 0);
1131 spin_lock_init(&ei->i_prealloc_lock);
1132 ext4_es_init_tree(&ei->i_es_tree);
1133 rwlock_init(&ei->i_es_lock);
1134 INIT_LIST_HEAD(&ei->i_es_list);
1135 ei->i_es_all_nr = 0;
1136 ei->i_es_shk_nr = 0;
1137 ei->i_es_shrink_lblk = 0;
1138 ei->i_reserved_data_blocks = 0;
1139 spin_lock_init(&(ei->i_block_reservation_lock));
1140 ext4_init_pending_tree(&ei->i_pending_tree);
1142 ei->i_reserved_quota = 0;
1143 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
1146 INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
1147 spin_lock_init(&ei->i_completed_io_lock);
1149 ei->i_datasync_tid = 0;
1150 atomic_set(&ei->i_unwritten, 0);
1151 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
1152 return &ei->vfs_inode;
1155 static int ext4_drop_inode(struct inode *inode)
1157 int drop = generic_drop_inode(inode);
1160 drop = fscrypt_drop_inode(inode);
1162 trace_ext4_drop_inode(inode, drop);
1166 static void ext4_free_in_core_inode(struct inode *inode)
1168 fscrypt_free_inode(inode);
1169 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
1172 static void ext4_destroy_inode(struct inode *inode)
1174 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
1175 ext4_msg(inode->i_sb, KERN_ERR,
1176 "Inode %lu (%p): orphan list check failed!",
1177 inode->i_ino, EXT4_I(inode));
1178 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
1179 EXT4_I(inode), sizeof(struct ext4_inode_info),
1185 static void init_once(void *foo)
1187 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
1189 INIT_LIST_HEAD(&ei->i_orphan);
1190 init_rwsem(&ei->xattr_sem);
1191 init_rwsem(&ei->i_data_sem);
1192 init_rwsem(&ei->i_mmap_sem);
1193 inode_init_once(&ei->vfs_inode);
1196 static int __init init_inodecache(void)
1198 ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache",
1199 sizeof(struct ext4_inode_info), 0,
1200 (SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD|
1202 offsetof(struct ext4_inode_info, i_data),
1203 sizeof_field(struct ext4_inode_info, i_data),
1205 if (ext4_inode_cachep == NULL)
1210 static void destroy_inodecache(void)
1213 * Make sure all delayed rcu free inodes are flushed before we
1217 kmem_cache_destroy(ext4_inode_cachep);
1220 void ext4_clear_inode(struct inode *inode)
1222 invalidate_inode_buffers(inode);
1224 ext4_discard_preallocations(inode, 0);
1225 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1227 if (EXT4_I(inode)->jinode) {
1228 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1229 EXT4_I(inode)->jinode);
1230 jbd2_free_inode(EXT4_I(inode)->jinode);
1231 EXT4_I(inode)->jinode = NULL;
1233 fscrypt_put_encryption_info(inode);
1234 fsverity_cleanup_inode(inode);
1237 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1238 u64 ino, u32 generation)
1240 struct inode *inode;
1243 * Currently we don't know the generation for parent directory, so
1244 * a generation of 0 means "accept any"
1246 inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE);
1248 return ERR_CAST(inode);
1249 if (generation && inode->i_generation != generation) {
1251 return ERR_PTR(-ESTALE);
1257 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1258 int fh_len, int fh_type)
1260 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1261 ext4_nfs_get_inode);
1264 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1265 int fh_len, int fh_type)
1267 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1268 ext4_nfs_get_inode);
1271 static int ext4_nfs_commit_metadata(struct inode *inode)
1273 struct writeback_control wbc = {
1274 .sync_mode = WB_SYNC_ALL
1277 trace_ext4_nfs_commit_metadata(inode);
1278 return ext4_write_inode(inode, &wbc);
1282 * Try to release metadata pages (indirect blocks, directories) which are
1283 * mapped via the block device. Since these pages could have journal heads
1284 * which would prevent try_to_free_buffers() from freeing them, we must use
1285 * jbd2 layer's try_to_free_buffers() function to release them.
1287 static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1290 journal_t *journal = EXT4_SB(sb)->s_journal;
1292 WARN_ON(PageChecked(page));
1293 if (!page_has_buffers(page))
1296 return jbd2_journal_try_to_free_buffers(journal, page);
1298 return try_to_free_buffers(page);
1301 #ifdef CONFIG_FS_ENCRYPTION
1302 static int ext4_get_context(struct inode *inode, void *ctx, size_t len)
1304 return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION,
1305 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len);
1308 static int ext4_set_context(struct inode *inode, const void *ctx, size_t len,
1311 handle_t *handle = fs_data;
1312 int res, res2, credits, retries = 0;
1315 * Encrypting the root directory is not allowed because e2fsck expects
1316 * lost+found to exist and be unencrypted, and encrypting the root
1317 * directory would imply encrypting the lost+found directory as well as
1318 * the filename "lost+found" itself.
1320 if (inode->i_ino == EXT4_ROOT_INO)
1323 if (WARN_ON_ONCE(IS_DAX(inode) && i_size_read(inode)))
1326 if (ext4_test_inode_flag(inode, EXT4_INODE_DAX))
1329 res = ext4_convert_inline_data(inode);
1334 * If a journal handle was specified, then the encryption context is
1335 * being set on a new inode via inheritance and is part of a larger
1336 * transaction to create the inode. Otherwise the encryption context is
1337 * being set on an existing inode in its own transaction. Only in the
1338 * latter case should the "retry on ENOSPC" logic be used.
1342 res = ext4_xattr_set_handle(handle, inode,
1343 EXT4_XATTR_INDEX_ENCRYPTION,
1344 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1347 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1348 ext4_clear_inode_state(inode,
1349 EXT4_STATE_MAY_INLINE_DATA);
1351 * Update inode->i_flags - S_ENCRYPTED will be enabled,
1352 * S_DAX may be disabled
1354 ext4_set_inode_flags(inode, false);
1359 res = dquot_initialize(inode);
1363 res = ext4_xattr_set_credits(inode, len, false /* is_create */,
1368 handle = ext4_journal_start(inode, EXT4_HT_MISC, credits);
1370 return PTR_ERR(handle);
1372 res = ext4_xattr_set_handle(handle, inode, EXT4_XATTR_INDEX_ENCRYPTION,
1373 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1376 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1378 * Update inode->i_flags - S_ENCRYPTED will be enabled,
1379 * S_DAX may be disabled
1381 ext4_set_inode_flags(inode, false);
1382 res = ext4_mark_inode_dirty(handle, inode);
1384 EXT4_ERROR_INODE(inode, "Failed to mark inode dirty");
1386 res2 = ext4_journal_stop(handle);
1388 if (res == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1395 static const union fscrypt_policy *ext4_get_dummy_policy(struct super_block *sb)
1397 return EXT4_SB(sb)->s_dummy_enc_policy.policy;
1400 static bool ext4_has_stable_inodes(struct super_block *sb)
1402 return ext4_has_feature_stable_inodes(sb);
1405 static void ext4_get_ino_and_lblk_bits(struct super_block *sb,
1406 int *ino_bits_ret, int *lblk_bits_ret)
1408 *ino_bits_ret = 8 * sizeof(EXT4_SB(sb)->s_es->s_inodes_count);
1409 *lblk_bits_ret = 8 * sizeof(ext4_lblk_t);
1412 static const struct fscrypt_operations ext4_cryptops = {
1413 .key_prefix = "ext4:",
1414 .get_context = ext4_get_context,
1415 .set_context = ext4_set_context,
1416 .get_dummy_policy = ext4_get_dummy_policy,
1417 .empty_dir = ext4_empty_dir,
1418 .max_namelen = EXT4_NAME_LEN,
1419 .has_stable_inodes = ext4_has_stable_inodes,
1420 .get_ino_and_lblk_bits = ext4_get_ino_and_lblk_bits,
1425 static const char * const quotatypes[] = INITQFNAMES;
1426 #define QTYPE2NAME(t) (quotatypes[t])
1428 static int ext4_write_dquot(struct dquot *dquot);
1429 static int ext4_acquire_dquot(struct dquot *dquot);
1430 static int ext4_release_dquot(struct dquot *dquot);
1431 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1432 static int ext4_write_info(struct super_block *sb, int type);
1433 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1434 const struct path *path);
1435 static int ext4_quota_on_mount(struct super_block *sb, int type);
1436 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1437 size_t len, loff_t off);
1438 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1439 const char *data, size_t len, loff_t off);
1440 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1441 unsigned int flags);
1442 static int ext4_enable_quotas(struct super_block *sb);
1444 static struct dquot **ext4_get_dquots(struct inode *inode)
1446 return EXT4_I(inode)->i_dquot;
1449 static const struct dquot_operations ext4_quota_operations = {
1450 .get_reserved_space = ext4_get_reserved_space,
1451 .write_dquot = ext4_write_dquot,
1452 .acquire_dquot = ext4_acquire_dquot,
1453 .release_dquot = ext4_release_dquot,
1454 .mark_dirty = ext4_mark_dquot_dirty,
1455 .write_info = ext4_write_info,
1456 .alloc_dquot = dquot_alloc,
1457 .destroy_dquot = dquot_destroy,
1458 .get_projid = ext4_get_projid,
1459 .get_inode_usage = ext4_get_inode_usage,
1460 .get_next_id = dquot_get_next_id,
1463 static const struct quotactl_ops ext4_qctl_operations = {
1464 .quota_on = ext4_quota_on,
1465 .quota_off = ext4_quota_off,
1466 .quota_sync = dquot_quota_sync,
1467 .get_state = dquot_get_state,
1468 .set_info = dquot_set_dqinfo,
1469 .get_dqblk = dquot_get_dqblk,
1470 .set_dqblk = dquot_set_dqblk,
1471 .get_nextdqblk = dquot_get_next_dqblk,
1475 static const struct super_operations ext4_sops = {
1476 .alloc_inode = ext4_alloc_inode,
1477 .free_inode = ext4_free_in_core_inode,
1478 .destroy_inode = ext4_destroy_inode,
1479 .write_inode = ext4_write_inode,
1480 .dirty_inode = ext4_dirty_inode,
1481 .drop_inode = ext4_drop_inode,
1482 .evict_inode = ext4_evict_inode,
1483 .put_super = ext4_put_super,
1484 .sync_fs = ext4_sync_fs,
1485 .freeze_fs = ext4_freeze,
1486 .unfreeze_fs = ext4_unfreeze,
1487 .statfs = ext4_statfs,
1488 .remount_fs = ext4_remount,
1489 .show_options = ext4_show_options,
1491 .quota_read = ext4_quota_read,
1492 .quota_write = ext4_quota_write,
1493 .get_dquots = ext4_get_dquots,
1495 .bdev_try_to_free_page = bdev_try_to_free_page,
1498 static const struct export_operations ext4_export_ops = {
1499 .fh_to_dentry = ext4_fh_to_dentry,
1500 .fh_to_parent = ext4_fh_to_parent,
1501 .get_parent = ext4_get_parent,
1502 .commit_metadata = ext4_nfs_commit_metadata,
1506 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1507 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1508 Opt_nouid32, Opt_debug, Opt_removed,
1509 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1510 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1511 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1512 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1513 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1514 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1516 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1517 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1518 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1519 Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version,
1520 Opt_dax, Opt_dax_always, Opt_dax_inode, Opt_dax_never,
1521 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error,
1522 Opt_nowarn_on_error, Opt_mblk_io_submit,
1523 Opt_lazytime, Opt_nolazytime, Opt_debug_want_extra_isize,
1524 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1525 Opt_inode_readahead_blks, Opt_journal_ioprio,
1526 Opt_dioread_nolock, Opt_dioread_lock,
1527 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1528 Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache,
1529 Opt_prefetch_block_bitmaps,
1532 static const match_table_t tokens = {
1533 {Opt_bsd_df, "bsddf"},
1534 {Opt_minix_df, "minixdf"},
1535 {Opt_grpid, "grpid"},
1536 {Opt_grpid, "bsdgroups"},
1537 {Opt_nogrpid, "nogrpid"},
1538 {Opt_nogrpid, "sysvgroups"},
1539 {Opt_resgid, "resgid=%u"},
1540 {Opt_resuid, "resuid=%u"},
1542 {Opt_err_cont, "errors=continue"},
1543 {Opt_err_panic, "errors=panic"},
1544 {Opt_err_ro, "errors=remount-ro"},
1545 {Opt_nouid32, "nouid32"},
1546 {Opt_debug, "debug"},
1547 {Opt_removed, "oldalloc"},
1548 {Opt_removed, "orlov"},
1549 {Opt_user_xattr, "user_xattr"},
1550 {Opt_nouser_xattr, "nouser_xattr"},
1552 {Opt_noacl, "noacl"},
1553 {Opt_noload, "norecovery"},
1554 {Opt_noload, "noload"},
1555 {Opt_removed, "nobh"},
1556 {Opt_removed, "bh"},
1557 {Opt_commit, "commit=%u"},
1558 {Opt_min_batch_time, "min_batch_time=%u"},
1559 {Opt_max_batch_time, "max_batch_time=%u"},
1560 {Opt_journal_dev, "journal_dev=%u"},
1561 {Opt_journal_path, "journal_path=%s"},
1562 {Opt_journal_checksum, "journal_checksum"},
1563 {Opt_nojournal_checksum, "nojournal_checksum"},
1564 {Opt_journal_async_commit, "journal_async_commit"},
1565 {Opt_abort, "abort"},
1566 {Opt_data_journal, "data=journal"},
1567 {Opt_data_ordered, "data=ordered"},
1568 {Opt_data_writeback, "data=writeback"},
1569 {Opt_data_err_abort, "data_err=abort"},
1570 {Opt_data_err_ignore, "data_err=ignore"},
1571 {Opt_offusrjquota, "usrjquota="},
1572 {Opt_usrjquota, "usrjquota=%s"},
1573 {Opt_offgrpjquota, "grpjquota="},
1574 {Opt_grpjquota, "grpjquota=%s"},
1575 {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1576 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1577 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1578 {Opt_grpquota, "grpquota"},
1579 {Opt_noquota, "noquota"},
1580 {Opt_quota, "quota"},
1581 {Opt_usrquota, "usrquota"},
1582 {Opt_prjquota, "prjquota"},
1583 {Opt_barrier, "barrier=%u"},
1584 {Opt_barrier, "barrier"},
1585 {Opt_nobarrier, "nobarrier"},
1586 {Opt_i_version, "i_version"},
1588 {Opt_dax_always, "dax=always"},
1589 {Opt_dax_inode, "dax=inode"},
1590 {Opt_dax_never, "dax=never"},
1591 {Opt_stripe, "stripe=%u"},
1592 {Opt_delalloc, "delalloc"},
1593 {Opt_warn_on_error, "warn_on_error"},
1594 {Opt_nowarn_on_error, "nowarn_on_error"},
1595 {Opt_lazytime, "lazytime"},
1596 {Opt_nolazytime, "nolazytime"},
1597 {Opt_debug_want_extra_isize, "debug_want_extra_isize=%u"},
1598 {Opt_nodelalloc, "nodelalloc"},
1599 {Opt_removed, "mblk_io_submit"},
1600 {Opt_removed, "nomblk_io_submit"},
1601 {Opt_block_validity, "block_validity"},
1602 {Opt_noblock_validity, "noblock_validity"},
1603 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1604 {Opt_journal_ioprio, "journal_ioprio=%u"},
1605 {Opt_auto_da_alloc, "auto_da_alloc=%u"},
1606 {Opt_auto_da_alloc, "auto_da_alloc"},
1607 {Opt_noauto_da_alloc, "noauto_da_alloc"},
1608 {Opt_dioread_nolock, "dioread_nolock"},
1609 {Opt_dioread_lock, "nodioread_nolock"},
1610 {Opt_dioread_lock, "dioread_lock"},
1611 {Opt_discard, "discard"},
1612 {Opt_nodiscard, "nodiscard"},
1613 {Opt_init_itable, "init_itable=%u"},
1614 {Opt_init_itable, "init_itable"},
1615 {Opt_noinit_itable, "noinit_itable"},
1616 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1617 {Opt_test_dummy_encryption, "test_dummy_encryption=%s"},
1618 {Opt_test_dummy_encryption, "test_dummy_encryption"},
1619 {Opt_inlinecrypt, "inlinecrypt"},
1620 {Opt_nombcache, "nombcache"},
1621 {Opt_nombcache, "no_mbcache"}, /* for backward compatibility */
1622 {Opt_prefetch_block_bitmaps, "prefetch_block_bitmaps"},
1623 {Opt_removed, "check=none"}, /* mount option from ext2/3 */
1624 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */
1625 {Opt_removed, "reservation"}, /* mount option from ext2/3 */
1626 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1627 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */
1631 static ext4_fsblk_t get_sb_block(void **data)
1633 ext4_fsblk_t sb_block;
1634 char *options = (char *) *data;
1636 if (!options || strncmp(options, "sb=", 3) != 0)
1637 return 1; /* Default location */
1640 /* TODO: use simple_strtoll with >32bit ext4 */
1641 sb_block = simple_strtoul(options, &options, 0);
1642 if (*options && *options != ',') {
1643 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1647 if (*options == ',')
1649 *data = (void *) options;
1654 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1655 static const char deprecated_msg[] =
1656 "Mount option \"%s\" will be removed by %s\n"
1660 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1662 struct ext4_sb_info *sbi = EXT4_SB(sb);
1663 char *qname, *old_qname = get_qf_name(sb, sbi, qtype);
1666 if (sb_any_quota_loaded(sb) && !old_qname) {
1667 ext4_msg(sb, KERN_ERR,
1668 "Cannot change journaled "
1669 "quota options when quota turned on");
1672 if (ext4_has_feature_quota(sb)) {
1673 ext4_msg(sb, KERN_INFO, "Journaled quota options "
1674 "ignored when QUOTA feature is enabled");
1677 qname = match_strdup(args);
1679 ext4_msg(sb, KERN_ERR,
1680 "Not enough memory for storing quotafile name");
1684 if (strcmp(old_qname, qname) == 0)
1687 ext4_msg(sb, KERN_ERR,
1688 "%s quota file already specified",
1692 if (strchr(qname, '/')) {
1693 ext4_msg(sb, KERN_ERR,
1694 "quotafile must be on filesystem root");
1697 rcu_assign_pointer(sbi->s_qf_names[qtype], qname);
1705 static int clear_qf_name(struct super_block *sb, int qtype)
1708 struct ext4_sb_info *sbi = EXT4_SB(sb);
1709 char *old_qname = get_qf_name(sb, sbi, qtype);
1711 if (sb_any_quota_loaded(sb) && old_qname) {
1712 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1713 " when quota turned on");
1716 rcu_assign_pointer(sbi->s_qf_names[qtype], NULL);
1723 #define MOPT_SET 0x0001
1724 #define MOPT_CLEAR 0x0002
1725 #define MOPT_NOSUPPORT 0x0004
1726 #define MOPT_EXPLICIT 0x0008
1727 #define MOPT_CLEAR_ERR 0x0010
1728 #define MOPT_GTE0 0x0020
1731 #define MOPT_QFMT 0x0040
1733 #define MOPT_Q MOPT_NOSUPPORT
1734 #define MOPT_QFMT MOPT_NOSUPPORT
1736 #define MOPT_DATAJ 0x0080
1737 #define MOPT_NO_EXT2 0x0100
1738 #define MOPT_NO_EXT3 0x0200
1739 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3)
1740 #define MOPT_STRING 0x0400
1741 #define MOPT_SKIP 0x0800
1743 static const struct mount_opts {
1747 } ext4_mount_opts[] = {
1748 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1749 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1750 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1751 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1752 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1753 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1754 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1755 MOPT_EXT4_ONLY | MOPT_SET},
1756 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1757 MOPT_EXT4_ONLY | MOPT_CLEAR},
1758 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1759 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1760 {Opt_delalloc, EXT4_MOUNT_DELALLOC,
1761 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1762 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1763 MOPT_EXT4_ONLY | MOPT_CLEAR},
1764 {Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET},
1765 {Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR},
1766 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1767 MOPT_EXT4_ONLY | MOPT_CLEAR},
1768 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1769 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1770 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1771 EXT4_MOUNT_JOURNAL_CHECKSUM),
1772 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1773 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1774 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1775 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1776 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1777 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1779 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1781 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1782 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1783 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1784 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1785 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1786 {Opt_commit, 0, MOPT_GTE0},
1787 {Opt_max_batch_time, 0, MOPT_GTE0},
1788 {Opt_min_batch_time, 0, MOPT_GTE0},
1789 {Opt_inode_readahead_blks, 0, MOPT_GTE0},
1790 {Opt_init_itable, 0, MOPT_GTE0},
1791 {Opt_dax, EXT4_MOUNT_DAX_ALWAYS, MOPT_SET | MOPT_SKIP},
1792 {Opt_dax_always, EXT4_MOUNT_DAX_ALWAYS,
1793 MOPT_EXT4_ONLY | MOPT_SET | MOPT_SKIP},
1794 {Opt_dax_inode, EXT4_MOUNT2_DAX_INODE,
1795 MOPT_EXT4_ONLY | MOPT_SET | MOPT_SKIP},
1796 {Opt_dax_never, EXT4_MOUNT2_DAX_NEVER,
1797 MOPT_EXT4_ONLY | MOPT_SET | MOPT_SKIP},
1798 {Opt_stripe, 0, MOPT_GTE0},
1799 {Opt_resuid, 0, MOPT_GTE0},
1800 {Opt_resgid, 0, MOPT_GTE0},
1801 {Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1802 {Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING},
1803 {Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1804 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1805 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1806 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
1807 MOPT_NO_EXT2 | MOPT_DATAJ},
1808 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1809 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1810 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1811 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1812 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1814 {Opt_acl, 0, MOPT_NOSUPPORT},
1815 {Opt_noacl, 0, MOPT_NOSUPPORT},
1817 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1818 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1819 {Opt_debug_want_extra_isize, 0, MOPT_GTE0},
1820 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1821 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1823 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1825 {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA,
1827 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1828 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA),
1829 MOPT_CLEAR | MOPT_Q},
1830 {Opt_usrjquota, 0, MOPT_Q},
1831 {Opt_grpjquota, 0, MOPT_Q},
1832 {Opt_offusrjquota, 0, MOPT_Q},
1833 {Opt_offgrpjquota, 0, MOPT_Q},
1834 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
1835 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
1836 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
1837 {Opt_max_dir_size_kb, 0, MOPT_GTE0},
1838 {Opt_test_dummy_encryption, 0, MOPT_STRING},
1839 {Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET},
1840 {Opt_prefetch_block_bitmaps, EXT4_MOUNT_PREFETCH_BLOCK_BITMAPS,
1845 #ifdef CONFIG_UNICODE
1846 static const struct ext4_sb_encodings {
1850 } ext4_sb_encoding_map[] = {
1851 {EXT4_ENC_UTF8_12_1, "utf8", "12.1.0"},
1854 static int ext4_sb_read_encoding(const struct ext4_super_block *es,
1855 const struct ext4_sb_encodings **encoding,
1858 __u16 magic = le16_to_cpu(es->s_encoding);
1861 for (i = 0; i < ARRAY_SIZE(ext4_sb_encoding_map); i++)
1862 if (magic == ext4_sb_encoding_map[i].magic)
1865 if (i >= ARRAY_SIZE(ext4_sb_encoding_map))
1868 *encoding = &ext4_sb_encoding_map[i];
1869 *flags = le16_to_cpu(es->s_encoding_flags);
1875 static int ext4_set_test_dummy_encryption(struct super_block *sb,
1877 const substring_t *arg,
1880 #ifdef CONFIG_FS_ENCRYPTION
1881 struct ext4_sb_info *sbi = EXT4_SB(sb);
1885 * This mount option is just for testing, and it's not worthwhile to
1886 * implement the extra complexity (e.g. RCU protection) that would be
1887 * needed to allow it to be set or changed during remount. We do allow
1888 * it to be specified during remount, but only if there is no change.
1890 if (is_remount && !sbi->s_dummy_enc_policy.policy) {
1891 ext4_msg(sb, KERN_WARNING,
1892 "Can't set test_dummy_encryption on remount");
1895 err = fscrypt_set_test_dummy_encryption(sb, arg->from,
1896 &sbi->s_dummy_enc_policy);
1899 ext4_msg(sb, KERN_WARNING,
1900 "Can't change test_dummy_encryption on remount");
1901 else if (err == -EINVAL)
1902 ext4_msg(sb, KERN_WARNING,
1903 "Value of option \"%s\" is unrecognized", opt);
1905 ext4_msg(sb, KERN_WARNING,
1906 "Error processing option \"%s\" [%d]",
1910 ext4_msg(sb, KERN_WARNING, "Test dummy encryption mode enabled");
1912 ext4_msg(sb, KERN_WARNING,
1913 "Test dummy encryption mount option ignored");
1918 static int handle_mount_opt(struct super_block *sb, char *opt, int token,
1919 substring_t *args, unsigned long *journal_devnum,
1920 unsigned int *journal_ioprio, int is_remount)
1922 struct ext4_sb_info *sbi = EXT4_SB(sb);
1923 const struct mount_opts *m;
1929 if (token == Opt_usrjquota)
1930 return set_qf_name(sb, USRQUOTA, &args[0]);
1931 else if (token == Opt_grpjquota)
1932 return set_qf_name(sb, GRPQUOTA, &args[0]);
1933 else if (token == Opt_offusrjquota)
1934 return clear_qf_name(sb, USRQUOTA);
1935 else if (token == Opt_offgrpjquota)
1936 return clear_qf_name(sb, GRPQUOTA);
1940 case Opt_nouser_xattr:
1941 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
1944 return 1; /* handled by get_sb_block() */
1946 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
1949 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1952 sb->s_flags |= SB_I_VERSION;
1955 sb->s_flags |= SB_LAZYTIME;
1957 case Opt_nolazytime:
1958 sb->s_flags &= ~SB_LAZYTIME;
1960 case Opt_inlinecrypt:
1961 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
1962 sb->s_flags |= SB_INLINECRYPT;
1964 ext4_msg(sb, KERN_ERR, "inline encryption not supported");
1969 for (m = ext4_mount_opts; m->token != Opt_err; m++)
1970 if (token == m->token)
1973 if (m->token == Opt_err) {
1974 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
1975 "or missing value", opt);
1979 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
1980 ext4_msg(sb, KERN_ERR,
1981 "Mount option \"%s\" incompatible with ext2", opt);
1984 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
1985 ext4_msg(sb, KERN_ERR,
1986 "Mount option \"%s\" incompatible with ext3", opt);
1990 if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg))
1992 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
1994 if (m->flags & MOPT_EXPLICIT) {
1995 if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
1996 set_opt2(sb, EXPLICIT_DELALLOC);
1997 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
1998 set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM);
2002 if (m->flags & MOPT_CLEAR_ERR)
2003 clear_opt(sb, ERRORS_MASK);
2004 if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
2005 ext4_msg(sb, KERN_ERR, "Cannot change quota "
2006 "options when quota turned on");
2010 if (m->flags & MOPT_NOSUPPORT) {
2011 ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
2012 } else if (token == Opt_commit) {
2014 arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
2015 else if (arg > INT_MAX / HZ) {
2016 ext4_msg(sb, KERN_ERR,
2017 "Invalid commit interval %d, "
2018 "must be smaller than %d",
2022 sbi->s_commit_interval = HZ * arg;
2023 } else if (token == Opt_debug_want_extra_isize) {
2026 (arg > (sbi->s_inode_size - EXT4_GOOD_OLD_INODE_SIZE))) {
2027 ext4_msg(sb, KERN_ERR,
2028 "Invalid want_extra_isize %d", arg);
2031 sbi->s_want_extra_isize = arg;
2032 } else if (token == Opt_max_batch_time) {
2033 sbi->s_max_batch_time = arg;
2034 } else if (token == Opt_min_batch_time) {
2035 sbi->s_min_batch_time = arg;
2036 } else if (token == Opt_inode_readahead_blks) {
2037 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
2038 ext4_msg(sb, KERN_ERR,
2039 "EXT4-fs: inode_readahead_blks must be "
2040 "0 or a power of 2 smaller than 2^31");
2043 sbi->s_inode_readahead_blks = arg;
2044 } else if (token == Opt_init_itable) {
2045 set_opt(sb, INIT_INODE_TABLE);
2047 arg = EXT4_DEF_LI_WAIT_MULT;
2048 sbi->s_li_wait_mult = arg;
2049 } else if (token == Opt_max_dir_size_kb) {
2050 sbi->s_max_dir_size_kb = arg;
2051 } else if (token == Opt_stripe) {
2052 sbi->s_stripe = arg;
2053 } else if (token == Opt_resuid) {
2054 uid = make_kuid(current_user_ns(), arg);
2055 if (!uid_valid(uid)) {
2056 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
2059 sbi->s_resuid = uid;
2060 } else if (token == Opt_resgid) {
2061 gid = make_kgid(current_user_ns(), arg);
2062 if (!gid_valid(gid)) {
2063 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
2066 sbi->s_resgid = gid;
2067 } else if (token == Opt_journal_dev) {
2069 ext4_msg(sb, KERN_ERR,
2070 "Cannot specify journal on remount");
2073 *journal_devnum = arg;
2074 } else if (token == Opt_journal_path) {
2076 struct inode *journal_inode;
2081 ext4_msg(sb, KERN_ERR,
2082 "Cannot specify journal on remount");
2085 journal_path = match_strdup(&args[0]);
2086 if (!journal_path) {
2087 ext4_msg(sb, KERN_ERR, "error: could not dup "
2088 "journal device string");
2092 error = kern_path(journal_path, LOOKUP_FOLLOW, &path);
2094 ext4_msg(sb, KERN_ERR, "error: could not find "
2095 "journal device path: error %d", error);
2096 kfree(journal_path);
2100 journal_inode = d_inode(path.dentry);
2101 if (!S_ISBLK(journal_inode->i_mode)) {
2102 ext4_msg(sb, KERN_ERR, "error: journal path %s "
2103 "is not a block device", journal_path);
2105 kfree(journal_path);
2109 *journal_devnum = new_encode_dev(journal_inode->i_rdev);
2111 kfree(journal_path);
2112 } else if (token == Opt_journal_ioprio) {
2114 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
2119 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
2120 } else if (token == Opt_test_dummy_encryption) {
2121 return ext4_set_test_dummy_encryption(sb, opt, &args[0],
2123 } else if (m->flags & MOPT_DATAJ) {
2125 if (!sbi->s_journal)
2126 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
2127 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
2128 ext4_msg(sb, KERN_ERR,
2129 "Cannot change data mode on remount");
2133 clear_opt(sb, DATA_FLAGS);
2134 sbi->s_mount_opt |= m->mount_opt;
2137 } else if (m->flags & MOPT_QFMT) {
2138 if (sb_any_quota_loaded(sb) &&
2139 sbi->s_jquota_fmt != m->mount_opt) {
2140 ext4_msg(sb, KERN_ERR, "Cannot change journaled "
2141 "quota options when quota turned on");
2144 if (ext4_has_feature_quota(sb)) {
2145 ext4_msg(sb, KERN_INFO,
2146 "Quota format mount options ignored "
2147 "when QUOTA feature is enabled");
2150 sbi->s_jquota_fmt = m->mount_opt;
2152 } else if (token == Opt_dax || token == Opt_dax_always ||
2153 token == Opt_dax_inode || token == Opt_dax_never) {
2154 #ifdef CONFIG_FS_DAX
2157 case Opt_dax_always:
2159 (!(sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2160 (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER))) {
2161 fail_dax_change_remount:
2162 ext4_msg(sb, KERN_ERR, "can't change "
2163 "dax mount option while remounting");
2167 (test_opt(sb, DATA_FLAGS) ==
2168 EXT4_MOUNT_JOURNAL_DATA)) {
2169 ext4_msg(sb, KERN_ERR, "can't mount with "
2170 "both data=journal and dax");
2173 ext4_msg(sb, KERN_WARNING,
2174 "DAX enabled. Warning: EXPERIMENTAL, use at your own risk");
2175 sbi->s_mount_opt |= EXT4_MOUNT_DAX_ALWAYS;
2176 sbi->s_mount_opt2 &= ~EXT4_MOUNT2_DAX_NEVER;
2180 (!(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2181 (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS)))
2182 goto fail_dax_change_remount;
2183 sbi->s_mount_opt2 |= EXT4_MOUNT2_DAX_NEVER;
2184 sbi->s_mount_opt &= ~EXT4_MOUNT_DAX_ALWAYS;
2188 ((sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2189 (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2190 !(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_INODE)))
2191 goto fail_dax_change_remount;
2192 sbi->s_mount_opt &= ~EXT4_MOUNT_DAX_ALWAYS;
2193 sbi->s_mount_opt2 &= ~EXT4_MOUNT2_DAX_NEVER;
2194 /* Strictly for printing options */
2195 sbi->s_mount_opt2 |= EXT4_MOUNT2_DAX_INODE;
2199 ext4_msg(sb, KERN_INFO, "dax option not supported");
2200 sbi->s_mount_opt2 |= EXT4_MOUNT2_DAX_NEVER;
2201 sbi->s_mount_opt &= ~EXT4_MOUNT_DAX_ALWAYS;
2204 } else if (token == Opt_data_err_abort) {
2205 sbi->s_mount_opt |= m->mount_opt;
2206 } else if (token == Opt_data_err_ignore) {
2207 sbi->s_mount_opt &= ~m->mount_opt;
2211 if (m->flags & MOPT_CLEAR)
2213 else if (unlikely(!(m->flags & MOPT_SET))) {
2214 ext4_msg(sb, KERN_WARNING,
2215 "buggy handling of option %s", opt);
2220 sbi->s_mount_opt |= m->mount_opt;
2222 sbi->s_mount_opt &= ~m->mount_opt;
2227 static int parse_options(char *options, struct super_block *sb,
2228 unsigned long *journal_devnum,
2229 unsigned int *journal_ioprio,
2232 struct ext4_sb_info __maybe_unused *sbi = EXT4_SB(sb);
2233 char *p, __maybe_unused *usr_qf_name, __maybe_unused *grp_qf_name;
2234 substring_t args[MAX_OPT_ARGS];
2240 while ((p = strsep(&options, ",")) != NULL) {
2244 * Initialize args struct so we know whether arg was
2245 * found; some options take optional arguments.
2247 args[0].to = args[0].from = NULL;
2248 token = match_token(p, tokens, args);
2249 if (handle_mount_opt(sb, p, token, args, journal_devnum,
2250 journal_ioprio, is_remount) < 0)
2255 * We do the test below only for project quotas. 'usrquota' and
2256 * 'grpquota' mount options are allowed even without quota feature
2257 * to support legacy quotas in quota files.
2259 if (test_opt(sb, PRJQUOTA) && !ext4_has_feature_project(sb)) {
2260 ext4_msg(sb, KERN_ERR, "Project quota feature not enabled. "
2261 "Cannot enable project quota enforcement.");
2264 usr_qf_name = get_qf_name(sb, sbi, USRQUOTA);
2265 grp_qf_name = get_qf_name(sb, sbi, GRPQUOTA);
2266 if (usr_qf_name || grp_qf_name) {
2267 if (test_opt(sb, USRQUOTA) && usr_qf_name)
2268 clear_opt(sb, USRQUOTA);
2270 if (test_opt(sb, GRPQUOTA) && grp_qf_name)
2271 clear_opt(sb, GRPQUOTA);
2273 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
2274 ext4_msg(sb, KERN_ERR, "old and new quota "
2279 if (!sbi->s_jquota_fmt) {
2280 ext4_msg(sb, KERN_ERR, "journaled quota format "
2286 if (test_opt(sb, DIOREAD_NOLOCK)) {
2288 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
2289 if (blocksize < PAGE_SIZE)
2290 ext4_msg(sb, KERN_WARNING, "Warning: mounting with an "
2291 "experimental mount option 'dioread_nolock' "
2292 "for blocksize < PAGE_SIZE");
2297 static inline void ext4_show_quota_options(struct seq_file *seq,
2298 struct super_block *sb)
2300 #if defined(CONFIG_QUOTA)
2301 struct ext4_sb_info *sbi = EXT4_SB(sb);
2302 char *usr_qf_name, *grp_qf_name;
2304 if (sbi->s_jquota_fmt) {
2307 switch (sbi->s_jquota_fmt) {
2318 seq_printf(seq, ",jqfmt=%s", fmtname);
2322 usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]);
2323 grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]);
2325 seq_show_option(seq, "usrjquota", usr_qf_name);
2327 seq_show_option(seq, "grpjquota", grp_qf_name);
2332 static const char *token2str(int token)
2334 const struct match_token *t;
2336 for (t = tokens; t->token != Opt_err; t++)
2337 if (t->token == token && !strchr(t->pattern, '='))
2344 * - it's set to a non-default value OR
2345 * - if the per-sb default is different from the global default
2347 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
2350 struct ext4_sb_info *sbi = EXT4_SB(sb);
2351 struct ext4_super_block *es = sbi->s_es;
2352 int def_errors, def_mount_opt = sbi->s_def_mount_opt;
2353 const struct mount_opts *m;
2354 char sep = nodefs ? '\n' : ',';
2356 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
2357 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
2359 if (sbi->s_sb_block != 1)
2360 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
2362 for (m = ext4_mount_opts; m->token != Opt_err; m++) {
2363 int want_set = m->flags & MOPT_SET;
2364 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
2365 (m->flags & MOPT_CLEAR_ERR) || m->flags & MOPT_SKIP)
2367 if (!nodefs && !(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
2368 continue; /* skip if same as the default */
2370 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
2371 (!want_set && (sbi->s_mount_opt & m->mount_opt)))
2372 continue; /* select Opt_noFoo vs Opt_Foo */
2373 SEQ_OPTS_PRINT("%s", token2str(m->token));
2376 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
2377 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
2378 SEQ_OPTS_PRINT("resuid=%u",
2379 from_kuid_munged(&init_user_ns, sbi->s_resuid));
2380 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
2381 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
2382 SEQ_OPTS_PRINT("resgid=%u",
2383 from_kgid_munged(&init_user_ns, sbi->s_resgid));
2384 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
2385 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
2386 SEQ_OPTS_PUTS("errors=remount-ro");
2387 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
2388 SEQ_OPTS_PUTS("errors=continue");
2389 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
2390 SEQ_OPTS_PUTS("errors=panic");
2391 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
2392 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
2393 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
2394 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
2395 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
2396 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
2397 if (sb->s_flags & SB_I_VERSION)
2398 SEQ_OPTS_PUTS("i_version");
2399 if (nodefs || sbi->s_stripe)
2400 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
2401 if (nodefs || EXT4_MOUNT_DATA_FLAGS &
2402 (sbi->s_mount_opt ^ def_mount_opt)) {
2403 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
2404 SEQ_OPTS_PUTS("data=journal");
2405 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
2406 SEQ_OPTS_PUTS("data=ordered");
2407 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
2408 SEQ_OPTS_PUTS("data=writeback");
2411 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
2412 SEQ_OPTS_PRINT("inode_readahead_blks=%u",
2413 sbi->s_inode_readahead_blks);
2415 if (test_opt(sb, INIT_INODE_TABLE) && (nodefs ||
2416 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
2417 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
2418 if (nodefs || sbi->s_max_dir_size_kb)
2419 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
2420 if (test_opt(sb, DATA_ERR_ABORT))
2421 SEQ_OPTS_PUTS("data_err=abort");
2423 fscrypt_show_test_dummy_encryption(seq, sep, sb);
2425 if (sb->s_flags & SB_INLINECRYPT)
2426 SEQ_OPTS_PUTS("inlinecrypt");
2428 if (test_opt(sb, DAX_ALWAYS)) {
2430 SEQ_OPTS_PUTS("dax");
2432 SEQ_OPTS_PUTS("dax=always");
2433 } else if (test_opt2(sb, DAX_NEVER)) {
2434 SEQ_OPTS_PUTS("dax=never");
2435 } else if (test_opt2(sb, DAX_INODE)) {
2436 SEQ_OPTS_PUTS("dax=inode");
2439 ext4_show_quota_options(seq, sb);
2443 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
2445 return _ext4_show_options(seq, root->d_sb, 0);
2448 int ext4_seq_options_show(struct seq_file *seq, void *offset)
2450 struct super_block *sb = seq->private;
2453 seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw");
2454 rc = _ext4_show_options(seq, sb, 1);
2455 seq_puts(seq, "\n");
2459 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
2462 struct ext4_sb_info *sbi = EXT4_SB(sb);
2465 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
2466 ext4_msg(sb, KERN_ERR, "revision level too high, "
2467 "forcing read-only mode");
2473 if (!(sbi->s_mount_state & EXT4_VALID_FS))
2474 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
2475 "running e2fsck is recommended");
2476 else if (sbi->s_mount_state & EXT4_ERROR_FS)
2477 ext4_msg(sb, KERN_WARNING,
2478 "warning: mounting fs with errors, "
2479 "running e2fsck is recommended");
2480 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
2481 le16_to_cpu(es->s_mnt_count) >=
2482 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
2483 ext4_msg(sb, KERN_WARNING,
2484 "warning: maximal mount count reached, "
2485 "running e2fsck is recommended");
2486 else if (le32_to_cpu(es->s_checkinterval) &&
2487 (ext4_get_tstamp(es, s_lastcheck) +
2488 le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds()))
2489 ext4_msg(sb, KERN_WARNING,
2490 "warning: checktime reached, "
2491 "running e2fsck is recommended");
2492 if (!sbi->s_journal)
2493 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
2494 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
2495 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
2496 le16_add_cpu(&es->s_mnt_count, 1);
2497 ext4_update_tstamp(es, s_mtime);
2499 ext4_set_feature_journal_needs_recovery(sb);
2501 err = ext4_commit_super(sb, 1);
2503 if (test_opt(sb, DEBUG))
2504 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
2505 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
2507 sbi->s_groups_count,
2508 EXT4_BLOCKS_PER_GROUP(sb),
2509 EXT4_INODES_PER_GROUP(sb),
2510 sbi->s_mount_opt, sbi->s_mount_opt2);
2512 cleancache_init_fs(sb);
2516 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
2518 struct ext4_sb_info *sbi = EXT4_SB(sb);
2519 struct flex_groups **old_groups, **new_groups;
2522 if (!sbi->s_log_groups_per_flex)
2525 size = ext4_flex_group(sbi, ngroup - 1) + 1;
2526 if (size <= sbi->s_flex_groups_allocated)
2529 new_groups = kvzalloc(roundup_pow_of_two(size *
2530 sizeof(*sbi->s_flex_groups)), GFP_KERNEL);
2532 ext4_msg(sb, KERN_ERR,
2533 "not enough memory for %d flex group pointers", size);
2536 for (i = sbi->s_flex_groups_allocated; i < size; i++) {
2537 new_groups[i] = kvzalloc(roundup_pow_of_two(
2538 sizeof(struct flex_groups)),
2540 if (!new_groups[i]) {
2541 for (j = sbi->s_flex_groups_allocated; j < i; j++)
2542 kvfree(new_groups[j]);
2544 ext4_msg(sb, KERN_ERR,
2545 "not enough memory for %d flex groups", size);
2550 old_groups = rcu_dereference(sbi->s_flex_groups);
2552 memcpy(new_groups, old_groups,
2553 (sbi->s_flex_groups_allocated *
2554 sizeof(struct flex_groups *)));
2556 rcu_assign_pointer(sbi->s_flex_groups, new_groups);
2557 sbi->s_flex_groups_allocated = size;
2559 ext4_kvfree_array_rcu(old_groups);
2563 static int ext4_fill_flex_info(struct super_block *sb)
2565 struct ext4_sb_info *sbi = EXT4_SB(sb);
2566 struct ext4_group_desc *gdp = NULL;
2567 struct flex_groups *fg;
2568 ext4_group_t flex_group;
2571 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
2572 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
2573 sbi->s_log_groups_per_flex = 0;
2577 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
2581 for (i = 0; i < sbi->s_groups_count; i++) {
2582 gdp = ext4_get_group_desc(sb, i, NULL);
2584 flex_group = ext4_flex_group(sbi, i);
2585 fg = sbi_array_rcu_deref(sbi, s_flex_groups, flex_group);
2586 atomic_add(ext4_free_inodes_count(sb, gdp), &fg->free_inodes);
2587 atomic64_add(ext4_free_group_clusters(sb, gdp),
2588 &fg->free_clusters);
2589 atomic_add(ext4_used_dirs_count(sb, gdp), &fg->used_dirs);
2597 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
2598 struct ext4_group_desc *gdp)
2600 int offset = offsetof(struct ext4_group_desc, bg_checksum);
2602 __le32 le_group = cpu_to_le32(block_group);
2603 struct ext4_sb_info *sbi = EXT4_SB(sb);
2605 if (ext4_has_metadata_csum(sbi->s_sb)) {
2606 /* Use new metadata_csum algorithm */
2608 __u16 dummy_csum = 0;
2610 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
2612 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset);
2613 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum,
2614 sizeof(dummy_csum));
2615 offset += sizeof(dummy_csum);
2616 if (offset < sbi->s_desc_size)
2617 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset,
2618 sbi->s_desc_size - offset);
2620 crc = csum32 & 0xFFFF;
2624 /* old crc16 code */
2625 if (!ext4_has_feature_gdt_csum(sb))
2628 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2629 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2630 crc = crc16(crc, (__u8 *)gdp, offset);
2631 offset += sizeof(gdp->bg_checksum); /* skip checksum */
2632 /* for checksum of struct ext4_group_desc do the rest...*/
2633 if (ext4_has_feature_64bit(sb) &&
2634 offset < le16_to_cpu(sbi->s_es->s_desc_size))
2635 crc = crc16(crc, (__u8 *)gdp + offset,
2636 le16_to_cpu(sbi->s_es->s_desc_size) -
2640 return cpu_to_le16(crc);
2643 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
2644 struct ext4_group_desc *gdp)
2646 if (ext4_has_group_desc_csum(sb) &&
2647 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
2653 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
2654 struct ext4_group_desc *gdp)
2656 if (!ext4_has_group_desc_csum(sb))
2658 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
2661 /* Called at mount-time, super-block is locked */
2662 static int ext4_check_descriptors(struct super_block *sb,
2663 ext4_fsblk_t sb_block,
2664 ext4_group_t *first_not_zeroed)
2666 struct ext4_sb_info *sbi = EXT4_SB(sb);
2667 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2668 ext4_fsblk_t last_block;
2669 ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0);
2670 ext4_fsblk_t block_bitmap;
2671 ext4_fsblk_t inode_bitmap;
2672 ext4_fsblk_t inode_table;
2673 int flexbg_flag = 0;
2674 ext4_group_t i, grp = sbi->s_groups_count;
2676 if (ext4_has_feature_flex_bg(sb))
2679 ext4_debug("Checking group descriptors");
2681 for (i = 0; i < sbi->s_groups_count; i++) {
2682 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2684 if (i == sbi->s_groups_count - 1 || flexbg_flag)
2685 last_block = ext4_blocks_count(sbi->s_es) - 1;
2687 last_block = first_block +
2688 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
2690 if ((grp == sbi->s_groups_count) &&
2691 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2694 block_bitmap = ext4_block_bitmap(sb, gdp);
2695 if (block_bitmap == sb_block) {
2696 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2697 "Block bitmap for group %u overlaps "
2702 if (block_bitmap >= sb_block + 1 &&
2703 block_bitmap <= last_bg_block) {
2704 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2705 "Block bitmap for group %u overlaps "
2706 "block group descriptors", i);
2710 if (block_bitmap < first_block || block_bitmap > last_block) {
2711 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2712 "Block bitmap for group %u not in group "
2713 "(block %llu)!", i, block_bitmap);
2716 inode_bitmap = ext4_inode_bitmap(sb, gdp);
2717 if (inode_bitmap == sb_block) {
2718 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2719 "Inode bitmap for group %u overlaps "
2724 if (inode_bitmap >= sb_block + 1 &&
2725 inode_bitmap <= last_bg_block) {
2726 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2727 "Inode bitmap for group %u overlaps "
2728 "block group descriptors", i);
2732 if (inode_bitmap < first_block || inode_bitmap > last_block) {
2733 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2734 "Inode bitmap for group %u not in group "
2735 "(block %llu)!", i, inode_bitmap);
2738 inode_table = ext4_inode_table(sb, gdp);
2739 if (inode_table == sb_block) {
2740 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2741 "Inode table for group %u overlaps "
2746 if (inode_table >= sb_block + 1 &&
2747 inode_table <= last_bg_block) {
2748 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2749 "Inode table for group %u overlaps "
2750 "block group descriptors", i);
2754 if (inode_table < first_block ||
2755 inode_table + sbi->s_itb_per_group - 1 > last_block) {
2756 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2757 "Inode table for group %u not in group "
2758 "(block %llu)!", i, inode_table);
2761 ext4_lock_group(sb, i);
2762 if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2763 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2764 "Checksum for group %u failed (%u!=%u)",
2765 i, le16_to_cpu(ext4_group_desc_csum(sb, i,
2766 gdp)), le16_to_cpu(gdp->bg_checksum));
2767 if (!sb_rdonly(sb)) {
2768 ext4_unlock_group(sb, i);
2772 ext4_unlock_group(sb, i);
2774 first_block += EXT4_BLOCKS_PER_GROUP(sb);
2776 if (NULL != first_not_zeroed)
2777 *first_not_zeroed = grp;
2781 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2782 * the superblock) which were deleted from all directories, but held open by
2783 * a process at the time of a crash. We walk the list and try to delete these
2784 * inodes at recovery time (only with a read-write filesystem).
2786 * In order to keep the orphan inode chain consistent during traversal (in
2787 * case of crash during recovery), we link each inode into the superblock
2788 * orphan list_head and handle it the same way as an inode deletion during
2789 * normal operation (which journals the operations for us).
2791 * We only do an iget() and an iput() on each inode, which is very safe if we
2792 * accidentally point at an in-use or already deleted inode. The worst that
2793 * can happen in this case is that we get a "bit already cleared" message from
2794 * ext4_free_inode(). The only reason we would point at a wrong inode is if
2795 * e2fsck was run on this filesystem, and it must have already done the orphan
2796 * inode cleanup for us, so we can safely abort without any further action.
2798 static void ext4_orphan_cleanup(struct super_block *sb,
2799 struct ext4_super_block *es)
2801 unsigned int s_flags = sb->s_flags;
2802 int ret, nr_orphans = 0, nr_truncates = 0;
2804 int quota_update = 0;
2807 if (!es->s_last_orphan) {
2808 jbd_debug(4, "no orphan inodes to clean up\n");
2812 if (bdev_read_only(sb->s_bdev)) {
2813 ext4_msg(sb, KERN_ERR, "write access "
2814 "unavailable, skipping orphan cleanup");
2818 /* Check if feature set would not allow a r/w mount */
2819 if (!ext4_feature_set_ok(sb, 0)) {
2820 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2821 "unknown ROCOMPAT features");
2825 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2826 /* don't clear list on RO mount w/ errors */
2827 if (es->s_last_orphan && !(s_flags & SB_RDONLY)) {
2828 ext4_msg(sb, KERN_INFO, "Errors on filesystem, "
2829 "clearing orphan list.\n");
2830 es->s_last_orphan = 0;
2832 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2836 if (s_flags & SB_RDONLY) {
2837 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2838 sb->s_flags &= ~SB_RDONLY;
2841 /* Needed for iput() to work correctly and not trash data */
2842 sb->s_flags |= SB_ACTIVE;
2845 * Turn on quotas which were not enabled for read-only mounts if
2846 * filesystem has quota feature, so that they are updated correctly.
2848 if (ext4_has_feature_quota(sb) && (s_flags & SB_RDONLY)) {
2849 int ret = ext4_enable_quotas(sb);
2854 ext4_msg(sb, KERN_ERR,
2855 "Cannot turn on quotas: error %d", ret);
2858 /* Turn on journaled quotas used for old sytle */
2859 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2860 if (EXT4_SB(sb)->s_qf_names[i]) {
2861 int ret = ext4_quota_on_mount(sb, i);
2866 ext4_msg(sb, KERN_ERR,
2867 "Cannot turn on journaled "
2868 "quota: type %d: error %d", i, ret);
2873 while (es->s_last_orphan) {
2874 struct inode *inode;
2877 * We may have encountered an error during cleanup; if
2878 * so, skip the rest.
2880 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2881 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2882 es->s_last_orphan = 0;
2886 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2887 if (IS_ERR(inode)) {
2888 es->s_last_orphan = 0;
2892 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2893 dquot_initialize(inode);
2894 if (inode->i_nlink) {
2895 if (test_opt(sb, DEBUG))
2896 ext4_msg(sb, KERN_DEBUG,
2897 "%s: truncating inode %lu to %lld bytes",
2898 __func__, inode->i_ino, inode->i_size);
2899 jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2900 inode->i_ino, inode->i_size);
2902 truncate_inode_pages(inode->i_mapping, inode->i_size);
2903 ret = ext4_truncate(inode);
2905 ext4_std_error(inode->i_sb, ret);
2906 inode_unlock(inode);
2909 if (test_opt(sb, DEBUG))
2910 ext4_msg(sb, KERN_DEBUG,
2911 "%s: deleting unreferenced inode %lu",
2912 __func__, inode->i_ino);
2913 jbd_debug(2, "deleting unreferenced inode %lu\n",
2917 iput(inode); /* The delete magic happens here! */
2920 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2923 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2924 PLURAL(nr_orphans));
2926 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2927 PLURAL(nr_truncates));
2929 /* Turn off quotas if they were enabled for orphan cleanup */
2931 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2932 if (sb_dqopt(sb)->files[i])
2933 dquot_quota_off(sb, i);
2937 sb->s_flags = s_flags; /* Restore SB_RDONLY status */
2941 * Maximal extent format file size.
2942 * Resulting logical blkno at s_maxbytes must fit in our on-disk
2943 * extent format containers, within a sector_t, and within i_blocks
2944 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
2945 * so that won't be a limiting factor.
2947 * However there is other limiting factor. We do store extents in the form
2948 * of starting block and length, hence the resulting length of the extent
2949 * covering maximum file size must fit into on-disk format containers as
2950 * well. Given that length is always by 1 unit bigger than max unit (because
2951 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2953 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2955 static loff_t ext4_max_size(int blkbits, int has_huge_files)
2958 loff_t upper_limit = MAX_LFS_FILESIZE;
2960 BUILD_BUG_ON(sizeof(blkcnt_t) < sizeof(u64));
2962 if (!has_huge_files) {
2963 upper_limit = (1LL << 32) - 1;
2965 /* total blocks in file system block size */
2966 upper_limit >>= (blkbits - 9);
2967 upper_limit <<= blkbits;
2971 * 32-bit extent-start container, ee_block. We lower the maxbytes
2972 * by one fs block, so ee_len can cover the extent of maximum file
2975 res = (1LL << 32) - 1;
2978 /* Sanity check against vm- & vfs- imposed limits */
2979 if (res > upper_limit)
2986 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
2987 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2988 * We need to be 1 filesystem block less than the 2^48 sector limit.
2990 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2992 loff_t res = EXT4_NDIR_BLOCKS;
2995 /* This is calculated to be the largest file size for a dense, block
2996 * mapped file such that the file's total number of 512-byte sectors,
2997 * including data and all indirect blocks, does not exceed (2^48 - 1).
2999 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
3000 * number of 512-byte sectors of the file.
3003 if (!has_huge_files) {
3005 * !has_huge_files or implies that the inode i_block field
3006 * represents total file blocks in 2^32 512-byte sectors ==
3007 * size of vfs inode i_blocks * 8
3009 upper_limit = (1LL << 32) - 1;
3011 /* total blocks in file system block size */
3012 upper_limit >>= (bits - 9);
3016 * We use 48 bit ext4_inode i_blocks
3017 * With EXT4_HUGE_FILE_FL set the i_blocks
3018 * represent total number of blocks in
3019 * file system block size
3021 upper_limit = (1LL << 48) - 1;
3025 /* indirect blocks */
3027 /* double indirect blocks */
3028 meta_blocks += 1 + (1LL << (bits-2));
3029 /* tripple indirect blocks */
3030 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
3032 upper_limit -= meta_blocks;
3033 upper_limit <<= bits;
3035 res += 1LL << (bits-2);
3036 res += 1LL << (2*(bits-2));
3037 res += 1LL << (3*(bits-2));
3039 if (res > upper_limit)
3042 if (res > MAX_LFS_FILESIZE)
3043 res = MAX_LFS_FILESIZE;
3048 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
3049 ext4_fsblk_t logical_sb_block, int nr)
3051 struct ext4_sb_info *sbi = EXT4_SB(sb);
3052 ext4_group_t bg, first_meta_bg;
3055 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
3057 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
3058 return logical_sb_block + nr + 1;
3059 bg = sbi->s_desc_per_block * nr;
3060 if (ext4_bg_has_super(sb, bg))
3064 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
3065 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled
3066 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
3069 if (sb->s_blocksize == 1024 && nr == 0 &&
3070 le32_to_cpu(sbi->s_es->s_first_data_block) == 0)
3073 return (has_super + ext4_group_first_block_no(sb, bg));
3077 * ext4_get_stripe_size: Get the stripe size.
3078 * @sbi: In memory super block info
3080 * If we have specified it via mount option, then
3081 * use the mount option value. If the value specified at mount time is
3082 * greater than the blocks per group use the super block value.
3083 * If the super block value is greater than blocks per group return 0.
3084 * Allocator needs it be less than blocks per group.
3087 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
3089 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
3090 unsigned long stripe_width =
3091 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
3094 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
3095 ret = sbi->s_stripe;
3096 else if (stripe_width && stripe_width <= sbi->s_blocks_per_group)
3098 else if (stride && stride <= sbi->s_blocks_per_group)
3104 * If the stripe width is 1, this makes no sense and
3105 * we set it to 0 to turn off stripe handling code.
3114 * Check whether this filesystem can be mounted based on
3115 * the features present and the RDONLY/RDWR mount requested.
3116 * Returns 1 if this filesystem can be mounted as requested,
3117 * 0 if it cannot be.
3119 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
3121 if (ext4_has_unknown_ext4_incompat_features(sb)) {
3122 ext4_msg(sb, KERN_ERR,
3123 "Couldn't mount because of "
3124 "unsupported optional features (%x)",
3125 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
3126 ~EXT4_FEATURE_INCOMPAT_SUPP));
3130 #ifndef CONFIG_UNICODE
3131 if (ext4_has_feature_casefold(sb)) {
3132 ext4_msg(sb, KERN_ERR,
3133 "Filesystem with casefold feature cannot be "
3134 "mounted without CONFIG_UNICODE");
3142 if (ext4_has_feature_readonly(sb)) {
3143 ext4_msg(sb, KERN_INFO, "filesystem is read-only");
3144 sb->s_flags |= SB_RDONLY;
3148 /* Check that feature set is OK for a read-write mount */
3149 if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
3150 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
3151 "unsupported optional features (%x)",
3152 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
3153 ~EXT4_FEATURE_RO_COMPAT_SUPP));
3156 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
3157 ext4_msg(sb, KERN_ERR,
3158 "Can't support bigalloc feature without "
3159 "extents feature\n");
3163 #if !IS_ENABLED(CONFIG_QUOTA) || !IS_ENABLED(CONFIG_QFMT_V2)
3164 if (!readonly && (ext4_has_feature_quota(sb) ||
3165 ext4_has_feature_project(sb))) {
3166 ext4_msg(sb, KERN_ERR,
3167 "The kernel was not built with CONFIG_QUOTA and CONFIG_QFMT_V2");
3170 #endif /* CONFIG_QUOTA */
3175 * This function is called once a day if we have errors logged
3176 * on the file system
3178 static void print_daily_error_info(struct timer_list *t)
3180 struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report);
3181 struct super_block *sb = sbi->s_sb;
3182 struct ext4_super_block *es = sbi->s_es;
3184 if (es->s_error_count)
3185 /* fsck newer than v1.41.13 is needed to clean this condition. */
3186 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
3187 le32_to_cpu(es->s_error_count));
3188 if (es->s_first_error_time) {
3189 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d",
3191 ext4_get_tstamp(es, s_first_error_time),
3192 (int) sizeof(es->s_first_error_func),
3193 es->s_first_error_func,
3194 le32_to_cpu(es->s_first_error_line));
3195 if (es->s_first_error_ino)
3196 printk(KERN_CONT ": inode %u",
3197 le32_to_cpu(es->s_first_error_ino));
3198 if (es->s_first_error_block)
3199 printk(KERN_CONT ": block %llu", (unsigned long long)
3200 le64_to_cpu(es->s_first_error_block));
3201 printk(KERN_CONT "\n");
3203 if (es->s_last_error_time) {
3204 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d",
3206 ext4_get_tstamp(es, s_last_error_time),
3207 (int) sizeof(es->s_last_error_func),
3208 es->s_last_error_func,
3209 le32_to_cpu(es->s_last_error_line));
3210 if (es->s_last_error_ino)
3211 printk(KERN_CONT ": inode %u",
3212 le32_to_cpu(es->s_last_error_ino));
3213 if (es->s_last_error_block)
3214 printk(KERN_CONT ": block %llu", (unsigned long long)
3215 le64_to_cpu(es->s_last_error_block));
3216 printk(KERN_CONT "\n");
3218 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
3221 /* Find next suitable group and run ext4_init_inode_table */
3222 static int ext4_run_li_request(struct ext4_li_request *elr)
3224 struct ext4_group_desc *gdp = NULL;
3225 struct super_block *sb = elr->lr_super;
3226 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
3227 ext4_group_t group = elr->lr_next_group;
3228 unsigned long timeout = 0;
3229 unsigned int prefetch_ios = 0;
3232 if (elr->lr_mode == EXT4_LI_MODE_PREFETCH_BBITMAP) {
3233 elr->lr_next_group = ext4_mb_prefetch(sb, group,
3234 EXT4_SB(sb)->s_mb_prefetch, &prefetch_ios);
3236 ext4_mb_prefetch_fini(sb, elr->lr_next_group,
3238 trace_ext4_prefetch_bitmaps(sb, group, elr->lr_next_group,
3240 if (group >= elr->lr_next_group) {
3242 if (elr->lr_first_not_zeroed != ngroups &&
3243 !sb_rdonly(sb) && test_opt(sb, INIT_INODE_TABLE)) {
3244 elr->lr_next_group = elr->lr_first_not_zeroed;
3245 elr->lr_mode = EXT4_LI_MODE_ITABLE;
3252 for (; group < ngroups; group++) {
3253 gdp = ext4_get_group_desc(sb, group, NULL);
3259 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3263 if (group >= ngroups)
3268 ret = ext4_init_inode_table(sb, group,
3269 elr->lr_timeout ? 0 : 1);
3270 trace_ext4_lazy_itable_init(sb, group);
3271 if (elr->lr_timeout == 0) {
3272 timeout = (jiffies - timeout) *
3273 EXT4_SB(elr->lr_super)->s_li_wait_mult;
3274 elr->lr_timeout = timeout;
3276 elr->lr_next_sched = jiffies + elr->lr_timeout;
3277 elr->lr_next_group = group + 1;
3283 * Remove lr_request from the list_request and free the
3284 * request structure. Should be called with li_list_mtx held
3286 static void ext4_remove_li_request(struct ext4_li_request *elr)
3291 list_del(&elr->lr_request);
3292 EXT4_SB(elr->lr_super)->s_li_request = NULL;
3296 static void ext4_unregister_li_request(struct super_block *sb)
3298 mutex_lock(&ext4_li_mtx);
3299 if (!ext4_li_info) {
3300 mutex_unlock(&ext4_li_mtx);
3304 mutex_lock(&ext4_li_info->li_list_mtx);
3305 ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
3306 mutex_unlock(&ext4_li_info->li_list_mtx);
3307 mutex_unlock(&ext4_li_mtx);
3310 static struct task_struct *ext4_lazyinit_task;
3313 * This is the function where ext4lazyinit thread lives. It walks
3314 * through the request list searching for next scheduled filesystem.
3315 * When such a fs is found, run the lazy initialization request
3316 * (ext4_rn_li_request) and keep track of the time spend in this
3317 * function. Based on that time we compute next schedule time of
3318 * the request. When walking through the list is complete, compute
3319 * next waking time and put itself into sleep.
3321 static int ext4_lazyinit_thread(void *arg)
3323 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
3324 struct list_head *pos, *n;
3325 struct ext4_li_request *elr;
3326 unsigned long next_wakeup, cur;
3328 BUG_ON(NULL == eli);
3332 next_wakeup = MAX_JIFFY_OFFSET;
3334 mutex_lock(&eli->li_list_mtx);
3335 if (list_empty(&eli->li_request_list)) {
3336 mutex_unlock(&eli->li_list_mtx);
3339 list_for_each_safe(pos, n, &eli->li_request_list) {
3342 elr = list_entry(pos, struct ext4_li_request,
3345 if (time_before(jiffies, elr->lr_next_sched)) {
3346 if (time_before(elr->lr_next_sched, next_wakeup))
3347 next_wakeup = elr->lr_next_sched;
3350 if (down_read_trylock(&elr->lr_super->s_umount)) {
3351 if (sb_start_write_trylock(elr->lr_super)) {
3354 * We hold sb->s_umount, sb can not
3355 * be removed from the list, it is
3356 * now safe to drop li_list_mtx
3358 mutex_unlock(&eli->li_list_mtx);
3359 err = ext4_run_li_request(elr);
3360 sb_end_write(elr->lr_super);
3361 mutex_lock(&eli->li_list_mtx);
3364 up_read((&elr->lr_super->s_umount));
3366 /* error, remove the lazy_init job */
3368 ext4_remove_li_request(elr);
3372 elr->lr_next_sched = jiffies +
3374 % (EXT4_DEF_LI_MAX_START_DELAY * HZ));
3376 if (time_before(elr->lr_next_sched, next_wakeup))
3377 next_wakeup = elr->lr_next_sched;
3379 mutex_unlock(&eli->li_list_mtx);
3384 if ((time_after_eq(cur, next_wakeup)) ||
3385 (MAX_JIFFY_OFFSET == next_wakeup)) {
3390 schedule_timeout_interruptible(next_wakeup - cur);
3392 if (kthread_should_stop()) {
3393 ext4_clear_request_list();
3400 * It looks like the request list is empty, but we need
3401 * to check it under the li_list_mtx lock, to prevent any
3402 * additions into it, and of course we should lock ext4_li_mtx
3403 * to atomically free the list and ext4_li_info, because at
3404 * this point another ext4 filesystem could be registering
3407 mutex_lock(&ext4_li_mtx);
3408 mutex_lock(&eli->li_list_mtx);
3409 if (!list_empty(&eli->li_request_list)) {
3410 mutex_unlock(&eli->li_list_mtx);
3411 mutex_unlock(&ext4_li_mtx);
3414 mutex_unlock(&eli->li_list_mtx);
3415 kfree(ext4_li_info);
3416 ext4_li_info = NULL;
3417 mutex_unlock(&ext4_li_mtx);
3422 static void ext4_clear_request_list(void)
3424 struct list_head *pos, *n;
3425 struct ext4_li_request *elr;
3427 mutex_lock(&ext4_li_info->li_list_mtx);
3428 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3429 elr = list_entry(pos, struct ext4_li_request,
3431 ext4_remove_li_request(elr);
3433 mutex_unlock(&ext4_li_info->li_list_mtx);
3436 static int ext4_run_lazyinit_thread(void)
3438 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3439 ext4_li_info, "ext4lazyinit");
3440 if (IS_ERR(ext4_lazyinit_task)) {
3441 int err = PTR_ERR(ext4_lazyinit_task);
3442 ext4_clear_request_list();
3443 kfree(ext4_li_info);
3444 ext4_li_info = NULL;
3445 printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3446 "initialization thread\n",
3450 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3455 * Check whether it make sense to run itable init. thread or not.
3456 * If there is at least one uninitialized inode table, return
3457 * corresponding group number, else the loop goes through all
3458 * groups and return total number of groups.
3460 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3462 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3463 struct ext4_group_desc *gdp = NULL;
3465 if (!ext4_has_group_desc_csum(sb))
3468 for (group = 0; group < ngroups; group++) {
3469 gdp = ext4_get_group_desc(sb, group, NULL);
3473 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3480 static int ext4_li_info_new(void)
3482 struct ext4_lazy_init *eli = NULL;
3484 eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3488 INIT_LIST_HEAD(&eli->li_request_list);
3489 mutex_init(&eli->li_list_mtx);
3491 eli->li_state |= EXT4_LAZYINIT_QUIT;
3498 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3501 struct ext4_li_request *elr;
3503 elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3508 elr->lr_first_not_zeroed = start;
3509 if (test_opt(sb, PREFETCH_BLOCK_BITMAPS))
3510 elr->lr_mode = EXT4_LI_MODE_PREFETCH_BBITMAP;
3512 elr->lr_mode = EXT4_LI_MODE_ITABLE;
3513 elr->lr_next_group = start;
3517 * Randomize first schedule time of the request to
3518 * spread the inode table initialization requests
3521 elr->lr_next_sched = jiffies + (prandom_u32() %
3522 (EXT4_DEF_LI_MAX_START_DELAY * HZ));
3526 int ext4_register_li_request(struct super_block *sb,
3527 ext4_group_t first_not_zeroed)
3529 struct ext4_sb_info *sbi = EXT4_SB(sb);
3530 struct ext4_li_request *elr = NULL;
3531 ext4_group_t ngroups = sbi->s_groups_count;
3534 mutex_lock(&ext4_li_mtx);
3535 if (sbi->s_li_request != NULL) {
3537 * Reset timeout so it can be computed again, because
3538 * s_li_wait_mult might have changed.
3540 sbi->s_li_request->lr_timeout = 0;
3544 if (!test_opt(sb, PREFETCH_BLOCK_BITMAPS) &&
3545 (first_not_zeroed == ngroups || sb_rdonly(sb) ||
3546 !test_opt(sb, INIT_INODE_TABLE)))
3549 elr = ext4_li_request_new(sb, first_not_zeroed);
3555 if (NULL == ext4_li_info) {
3556 ret = ext4_li_info_new();
3561 mutex_lock(&ext4_li_info->li_list_mtx);
3562 list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3563 mutex_unlock(&ext4_li_info->li_list_mtx);
3565 sbi->s_li_request = elr;
3567 * set elr to NULL here since it has been inserted to
3568 * the request_list and the removal and free of it is
3569 * handled by ext4_clear_request_list from now on.
3573 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3574 ret = ext4_run_lazyinit_thread();
3579 mutex_unlock(&ext4_li_mtx);
3586 * We do not need to lock anything since this is called on
3589 static void ext4_destroy_lazyinit_thread(void)
3592 * If thread exited earlier
3593 * there's nothing to be done.
3595 if (!ext4_li_info || !ext4_lazyinit_task)
3598 kthread_stop(ext4_lazyinit_task);
3601 static int set_journal_csum_feature_set(struct super_block *sb)
3604 int compat, incompat;
3605 struct ext4_sb_info *sbi = EXT4_SB(sb);
3607 if (ext4_has_metadata_csum(sb)) {
3608 /* journal checksum v3 */
3610 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
3612 /* journal checksum v1 */
3613 compat = JBD2_FEATURE_COMPAT_CHECKSUM;
3617 jbd2_journal_clear_features(sbi->s_journal,
3618 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3619 JBD2_FEATURE_INCOMPAT_CSUM_V3 |
3620 JBD2_FEATURE_INCOMPAT_CSUM_V2);
3621 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3622 ret = jbd2_journal_set_features(sbi->s_journal,
3624 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3626 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3627 ret = jbd2_journal_set_features(sbi->s_journal,
3630 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3631 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3633 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3634 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3641 * Note: calculating the overhead so we can be compatible with
3642 * historical BSD practice is quite difficult in the face of
3643 * clusters/bigalloc. This is because multiple metadata blocks from
3644 * different block group can end up in the same allocation cluster.
3645 * Calculating the exact overhead in the face of clustered allocation
3646 * requires either O(all block bitmaps) in memory or O(number of block
3647 * groups**2) in time. We will still calculate the superblock for
3648 * older file systems --- and if we come across with a bigalloc file
3649 * system with zero in s_overhead_clusters the estimate will be close to
3650 * correct especially for very large cluster sizes --- but for newer
3651 * file systems, it's better to calculate this figure once at mkfs
3652 * time, and store it in the superblock. If the superblock value is
3653 * present (even for non-bigalloc file systems), we will use it.
3655 static int count_overhead(struct super_block *sb, ext4_group_t grp,
3658 struct ext4_sb_info *sbi = EXT4_SB(sb);
3659 struct ext4_group_desc *gdp;
3660 ext4_fsblk_t first_block, last_block, b;
3661 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3662 int s, j, count = 0;
3664 if (!ext4_has_feature_bigalloc(sb))
3665 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
3666 sbi->s_itb_per_group + 2);
3668 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3669 (grp * EXT4_BLOCKS_PER_GROUP(sb));
3670 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3671 for (i = 0; i < ngroups; i++) {
3672 gdp = ext4_get_group_desc(sb, i, NULL);
3673 b = ext4_block_bitmap(sb, gdp);
3674 if (b >= first_block && b <= last_block) {
3675 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3678 b = ext4_inode_bitmap(sb, gdp);
3679 if (b >= first_block && b <= last_block) {
3680 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3683 b = ext4_inode_table(sb, gdp);
3684 if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3685 for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3686 int c = EXT4_B2C(sbi, b - first_block);
3687 ext4_set_bit(c, buf);
3693 if (ext4_bg_has_super(sb, grp)) {
3694 ext4_set_bit(s++, buf);
3697 j = ext4_bg_num_gdb(sb, grp);
3698 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) {
3699 ext4_error(sb, "Invalid number of block group "
3700 "descriptor blocks: %d", j);
3701 j = EXT4_BLOCKS_PER_GROUP(sb) - s;
3705 ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3709 return EXT4_CLUSTERS_PER_GROUP(sb) -
3710 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3714 * Compute the overhead and stash it in sbi->s_overhead
3716 int ext4_calculate_overhead(struct super_block *sb)
3718 struct ext4_sb_info *sbi = EXT4_SB(sb);
3719 struct ext4_super_block *es = sbi->s_es;
3720 struct inode *j_inode;
3721 unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum);
3722 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3723 ext4_fsblk_t overhead = 0;
3724 char *buf = (char *) get_zeroed_page(GFP_NOFS);
3730 * Compute the overhead (FS structures). This is constant
3731 * for a given filesystem unless the number of block groups
3732 * changes so we cache the previous value until it does.
3736 * All of the blocks before first_data_block are overhead
3738 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3741 * Add the overhead found in each block group
3743 for (i = 0; i < ngroups; i++) {
3746 blks = count_overhead(sb, i, buf);
3749 memset(buf, 0, PAGE_SIZE);
3754 * Add the internal journal blocks whether the journal has been
3757 if (sbi->s_journal && !sbi->journal_bdev)
3758 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen);
3759 else if (ext4_has_feature_journal(sb) && !sbi->s_journal && j_inum) {
3760 /* j_inum for internal journal is non-zero */
3761 j_inode = ext4_get_journal_inode(sb, j_inum);
3763 j_blocks = j_inode->i_size >> sb->s_blocksize_bits;
3764 overhead += EXT4_NUM_B2C(sbi, j_blocks);
3767 ext4_msg(sb, KERN_ERR, "can't get journal size");
3770 sbi->s_overhead = overhead;
3772 free_page((unsigned long) buf);
3776 static void ext4_set_resv_clusters(struct super_block *sb)
3778 ext4_fsblk_t resv_clusters;
3779 struct ext4_sb_info *sbi = EXT4_SB(sb);
3782 * There's no need to reserve anything when we aren't using extents.
3783 * The space estimates are exact, there are no unwritten extents,
3784 * hole punching doesn't need new metadata... This is needed especially
3785 * to keep ext2/3 backward compatibility.
3787 if (!ext4_has_feature_extents(sb))
3790 * By default we reserve 2% or 4096 clusters, whichever is smaller.
3791 * This should cover the situations where we can not afford to run
3792 * out of space like for example punch hole, or converting
3793 * unwritten extents in delalloc path. In most cases such
3794 * allocation would require 1, or 2 blocks, higher numbers are
3797 resv_clusters = (ext4_blocks_count(sbi->s_es) >>
3798 sbi->s_cluster_bits);
3800 do_div(resv_clusters, 50);
3801 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
3803 atomic64_set(&sbi->s_resv_clusters, resv_clusters);
3806 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3808 struct dax_device *dax_dev = fs_dax_get_by_bdev(sb->s_bdev);
3809 char *orig_data = kstrdup(data, GFP_KERNEL);
3810 struct buffer_head *bh, **group_desc;
3811 struct ext4_super_block *es = NULL;
3812 struct ext4_sb_info *sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3813 struct flex_groups **flex_groups;
3815 ext4_fsblk_t sb_block = get_sb_block(&data);
3816 ext4_fsblk_t logical_sb_block;
3817 unsigned long offset = 0;
3818 unsigned long journal_devnum = 0;
3819 unsigned long def_mount_opts;
3823 int blocksize, clustersize;
3824 unsigned int db_count;
3826 int needs_recovery, has_huge_files;
3829 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3830 ext4_group_t first_not_zeroed;
3832 if ((data && !orig_data) || !sbi)
3835 sbi->s_daxdev = dax_dev;
3836 sbi->s_blockgroup_lock =
3837 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3838 if (!sbi->s_blockgroup_lock)
3841 sb->s_fs_info = sbi;
3843 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3844 sbi->s_sb_block = sb_block;
3845 if (sb->s_bdev->bd_part)
3846 sbi->s_sectors_written_start =
3847 part_stat_read(sb->s_bdev->bd_part, sectors[STAT_WRITE]);
3849 /* Cleanup superblock name */
3850 strreplace(sb->s_id, '/', '!');
3852 /* -EINVAL is default */
3854 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3856 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3861 * The ext4 superblock will not be buffer aligned for other than 1kB
3862 * block sizes. We need to calculate the offset from buffer start.
3864 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3865 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3866 offset = do_div(logical_sb_block, blocksize);
3868 logical_sb_block = sb_block;
3871 if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) {
3872 ext4_msg(sb, KERN_ERR, "unable to read superblock");
3876 * Note: s_es must be initialized as soon as possible because
3877 * some ext4 macro-instructions depend on its value
3879 es = (struct ext4_super_block *) (bh->b_data + offset);
3881 sb->s_magic = le16_to_cpu(es->s_magic);
3882 if (sb->s_magic != EXT4_SUPER_MAGIC)
3884 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3886 /* Warn if metadata_csum and gdt_csum are both set. */
3887 if (ext4_has_feature_metadata_csum(sb) &&
3888 ext4_has_feature_gdt_csum(sb))
3889 ext4_warning(sb, "metadata_csum and uninit_bg are "
3890 "redundant flags; please run fsck.");
3892 /* Check for a known checksum algorithm */
3893 if (!ext4_verify_csum_type(sb, es)) {
3894 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3895 "unknown checksum algorithm.");
3900 /* Load the checksum driver */
3901 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
3902 if (IS_ERR(sbi->s_chksum_driver)) {
3903 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
3904 ret = PTR_ERR(sbi->s_chksum_driver);
3905 sbi->s_chksum_driver = NULL;
3909 /* Check superblock checksum */
3910 if (!ext4_superblock_csum_verify(sb, es)) {
3911 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3912 "invalid superblock checksum. Run e2fsck?");
3918 /* Precompute checksum seed for all metadata */
3919 if (ext4_has_feature_csum_seed(sb))
3920 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
3921 else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb))
3922 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
3923 sizeof(es->s_uuid));
3925 /* Set defaults before we parse the mount options */
3926 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3927 set_opt(sb, INIT_INODE_TABLE);
3928 if (def_mount_opts & EXT4_DEFM_DEBUG)
3930 if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
3932 if (def_mount_opts & EXT4_DEFM_UID16)
3933 set_opt(sb, NO_UID32);
3934 /* xattr user namespace & acls are now defaulted on */
3935 set_opt(sb, XATTR_USER);
3936 #ifdef CONFIG_EXT4_FS_POSIX_ACL
3937 set_opt(sb, POSIX_ACL);
3939 /* don't forget to enable journal_csum when metadata_csum is enabled. */
3940 if (ext4_has_metadata_csum(sb))
3941 set_opt(sb, JOURNAL_CHECKSUM);
3943 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3944 set_opt(sb, JOURNAL_DATA);
3945 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3946 set_opt(sb, ORDERED_DATA);
3947 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3948 set_opt(sb, WRITEBACK_DATA);
3950 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3951 set_opt(sb, ERRORS_PANIC);
3952 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3953 set_opt(sb, ERRORS_CONT);
3955 set_opt(sb, ERRORS_RO);
3956 /* block_validity enabled by default; disable with noblock_validity */
3957 set_opt(sb, BLOCK_VALIDITY);
3958 if (def_mount_opts & EXT4_DEFM_DISCARD)
3959 set_opt(sb, DISCARD);
3961 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
3962 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
3963 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3964 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3965 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3967 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3968 set_opt(sb, BARRIER);
3971 * enable delayed allocation by default
3972 * Use -o nodelalloc to turn it off
3974 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
3975 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3976 set_opt(sb, DELALLOC);
3979 * set default s_li_wait_mult for lazyinit, for the case there is
3980 * no mount option specified.
3982 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
3984 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3986 if (blocksize == PAGE_SIZE)
3987 set_opt(sb, DIOREAD_NOLOCK);
3989 if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3990 blocksize > EXT4_MAX_BLOCK_SIZE) {
3991 ext4_msg(sb, KERN_ERR,
3992 "Unsupported filesystem blocksize %d (%d log_block_size)",
3993 blocksize, le32_to_cpu(es->s_log_block_size));
3997 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3998 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3999 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
4001 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
4002 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
4003 if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) {
4004 ext4_msg(sb, KERN_ERR, "invalid first ino: %u",
4008 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
4009 (!is_power_of_2(sbi->s_inode_size)) ||
4010 (sbi->s_inode_size > blocksize)) {
4011 ext4_msg(sb, KERN_ERR,
4012 "unsupported inode size: %d",
4014 ext4_msg(sb, KERN_ERR, "blocksize: %d", blocksize);
4018 * i_atime_extra is the last extra field available for
4019 * [acm]times in struct ext4_inode. Checking for that
4020 * field should suffice to ensure we have extra space
4023 if (sbi->s_inode_size >= offsetof(struct ext4_inode, i_atime_extra) +
4024 sizeof(((struct ext4_inode *)0)->i_atime_extra)) {
4025 sb->s_time_gran = 1;
4026 sb->s_time_max = EXT4_EXTRA_TIMESTAMP_MAX;
4028 sb->s_time_gran = NSEC_PER_SEC;
4029 sb->s_time_max = EXT4_NON_EXTRA_TIMESTAMP_MAX;
4031 sb->s_time_min = EXT4_TIMESTAMP_MIN;
4033 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
4034 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4035 EXT4_GOOD_OLD_INODE_SIZE;
4036 if (ext4_has_feature_extra_isize(sb)) {
4037 unsigned v, max = (sbi->s_inode_size -
4038 EXT4_GOOD_OLD_INODE_SIZE);
4040 v = le16_to_cpu(es->s_want_extra_isize);
4042 ext4_msg(sb, KERN_ERR,
4043 "bad s_want_extra_isize: %d", v);
4046 if (sbi->s_want_extra_isize < v)
4047 sbi->s_want_extra_isize = v;
4049 v = le16_to_cpu(es->s_min_extra_isize);
4051 ext4_msg(sb, KERN_ERR,
4052 "bad s_min_extra_isize: %d", v);
4055 if (sbi->s_want_extra_isize < v)
4056 sbi->s_want_extra_isize = v;
4060 if (sbi->s_es->s_mount_opts[0]) {
4061 char *s_mount_opts = kstrndup(sbi->s_es->s_mount_opts,
4062 sizeof(sbi->s_es->s_mount_opts),
4066 if (!parse_options(s_mount_opts, sb, &journal_devnum,
4067 &journal_ioprio, 0)) {
4068 ext4_msg(sb, KERN_WARNING,
4069 "failed to parse options in superblock: %s",
4072 kfree(s_mount_opts);
4074 sbi->s_def_mount_opt = sbi->s_mount_opt;
4075 if (!parse_options((char *) data, sb, &journal_devnum,
4076 &journal_ioprio, 0))
4079 #ifdef CONFIG_UNICODE
4080 if (ext4_has_feature_casefold(sb) && !sbi->s_encoding) {
4081 const struct ext4_sb_encodings *encoding_info;
4082 struct unicode_map *encoding;
4083 __u16 encoding_flags;
4085 if (ext4_has_feature_encrypt(sb)) {
4086 ext4_msg(sb, KERN_ERR,
4087 "Can't mount with encoding and encryption");
4091 if (ext4_sb_read_encoding(es, &encoding_info,
4093 ext4_msg(sb, KERN_ERR,
4094 "Encoding requested by superblock is unknown");
4098 encoding = utf8_load(encoding_info->version);
4099 if (IS_ERR(encoding)) {
4100 ext4_msg(sb, KERN_ERR,
4101 "can't mount with superblock charset: %s-%s "
4102 "not supported by the kernel. flags: 0x%x.",
4103 encoding_info->name, encoding_info->version,
4107 ext4_msg(sb, KERN_INFO,"Using encoding defined by superblock: "
4108 "%s-%s with flags 0x%hx", encoding_info->name,
4109 encoding_info->version?:"\b", encoding_flags);
4111 sbi->s_encoding = encoding;
4112 sbi->s_encoding_flags = encoding_flags;
4116 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
4117 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting with data=journal disables delayed allocation, dioread_nolock, and O_DIRECT support!\n");
4118 /* can't mount with both data=journal and dioread_nolock. */
4119 clear_opt(sb, DIOREAD_NOLOCK);
4120 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
4121 ext4_msg(sb, KERN_ERR, "can't mount with "
4122 "both data=journal and delalloc");
4125 if (test_opt(sb, DAX_ALWAYS)) {
4126 ext4_msg(sb, KERN_ERR, "can't mount with "
4127 "both data=journal and dax");
4130 if (ext4_has_feature_encrypt(sb)) {
4131 ext4_msg(sb, KERN_WARNING,
4132 "encrypted files will use data=ordered "
4133 "instead of data journaling mode");
4135 if (test_opt(sb, DELALLOC))
4136 clear_opt(sb, DELALLOC);
4138 sb->s_iflags |= SB_I_CGROUPWB;
4141 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
4142 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
4144 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
4145 (ext4_has_compat_features(sb) ||
4146 ext4_has_ro_compat_features(sb) ||
4147 ext4_has_incompat_features(sb)))
4148 ext4_msg(sb, KERN_WARNING,
4149 "feature flags set on rev 0 fs, "
4150 "running e2fsck is recommended");
4152 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
4153 set_opt2(sb, HURD_COMPAT);
4154 if (ext4_has_feature_64bit(sb)) {
4155 ext4_msg(sb, KERN_ERR,
4156 "The Hurd can't support 64-bit file systems");
4161 * ea_inode feature uses l_i_version field which is not
4162 * available in HURD_COMPAT mode.
4164 if (ext4_has_feature_ea_inode(sb)) {
4165 ext4_msg(sb, KERN_ERR,
4166 "ea_inode feature is not supported for Hurd");
4171 if (IS_EXT2_SB(sb)) {
4172 if (ext2_feature_set_ok(sb))
4173 ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
4174 "using the ext4 subsystem");
4177 * If we're probing be silent, if this looks like
4178 * it's actually an ext[34] filesystem.
4180 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4182 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
4183 "to feature incompatibilities");
4188 if (IS_EXT3_SB(sb)) {
4189 if (ext3_feature_set_ok(sb))
4190 ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
4191 "using the ext4 subsystem");
4194 * If we're probing be silent, if this looks like
4195 * it's actually an ext4 filesystem.
4197 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4199 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
4200 "to feature incompatibilities");
4206 * Check feature flags regardless of the revision level, since we
4207 * previously didn't change the revision level when setting the flags,
4208 * so there is a chance incompat flags are set on a rev 0 filesystem.
4210 if (!ext4_feature_set_ok(sb, (sb_rdonly(sb))))
4213 if (le32_to_cpu(es->s_log_block_size) >
4214 (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
4215 ext4_msg(sb, KERN_ERR,
4216 "Invalid log block size: %u",
4217 le32_to_cpu(es->s_log_block_size));
4220 if (le32_to_cpu(es->s_log_cluster_size) >
4221 (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
4222 ext4_msg(sb, KERN_ERR,
4223 "Invalid log cluster size: %u",
4224 le32_to_cpu(es->s_log_cluster_size));
4228 if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) {
4229 ext4_msg(sb, KERN_ERR,
4230 "Number of reserved GDT blocks insanely large: %d",
4231 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
4235 if (bdev_dax_supported(sb->s_bdev, blocksize))
4236 set_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags);
4238 if (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) {
4239 if (ext4_has_feature_inline_data(sb)) {
4240 ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem"
4241 " that may contain inline data");
4244 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) {
4245 ext4_msg(sb, KERN_ERR,
4246 "DAX unsupported by block device.");
4251 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
4252 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
4253 es->s_encryption_level);
4257 if (sb->s_blocksize != blocksize) {
4258 /* Validate the filesystem blocksize */
4259 if (!sb_set_blocksize(sb, blocksize)) {
4260 ext4_msg(sb, KERN_ERR, "bad block size %d",
4266 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
4267 offset = do_div(logical_sb_block, blocksize);
4268 bh = sb_bread_unmovable(sb, logical_sb_block);
4270 ext4_msg(sb, KERN_ERR,
4271 "Can't read superblock on 2nd try");
4274 es = (struct ext4_super_block *)(bh->b_data + offset);
4276 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
4277 ext4_msg(sb, KERN_ERR,
4278 "Magic mismatch, very weird!");
4283 has_huge_files = ext4_has_feature_huge_file(sb);
4284 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
4286 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
4288 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
4289 if (ext4_has_feature_64bit(sb)) {
4290 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
4291 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
4292 !is_power_of_2(sbi->s_desc_size)) {
4293 ext4_msg(sb, KERN_ERR,
4294 "unsupported descriptor size %lu",
4299 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
4301 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
4302 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
4304 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
4305 if (sbi->s_inodes_per_block == 0)
4307 if (sbi->s_inodes_per_group < sbi->s_inodes_per_block ||
4308 sbi->s_inodes_per_group > blocksize * 8) {
4309 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n",
4310 sbi->s_inodes_per_group);
4313 sbi->s_itb_per_group = sbi->s_inodes_per_group /
4314 sbi->s_inodes_per_block;
4315 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
4317 sbi->s_mount_state = le16_to_cpu(es->s_state);
4318 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
4319 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
4321 for (i = 0; i < 4; i++)
4322 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
4323 sbi->s_def_hash_version = es->s_def_hash_version;
4324 if (ext4_has_feature_dir_index(sb)) {
4325 i = le32_to_cpu(es->s_flags);
4326 if (i & EXT2_FLAGS_UNSIGNED_HASH)
4327 sbi->s_hash_unsigned = 3;
4328 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
4329 #ifdef __CHAR_UNSIGNED__
4332 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
4333 sbi->s_hash_unsigned = 3;
4337 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
4342 /* Handle clustersize */
4343 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
4344 if (ext4_has_feature_bigalloc(sb)) {
4345 if (clustersize < blocksize) {
4346 ext4_msg(sb, KERN_ERR,
4347 "cluster size (%d) smaller than "
4348 "block size (%d)", clustersize, blocksize);
4351 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
4352 le32_to_cpu(es->s_log_block_size);
4353 sbi->s_clusters_per_group =
4354 le32_to_cpu(es->s_clusters_per_group);
4355 if (sbi->s_clusters_per_group > blocksize * 8) {
4356 ext4_msg(sb, KERN_ERR,
4357 "#clusters per group too big: %lu",
4358 sbi->s_clusters_per_group);
4361 if (sbi->s_blocks_per_group !=
4362 (sbi->s_clusters_per_group * (clustersize / blocksize))) {
4363 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
4364 "clusters per group (%lu) inconsistent",
4365 sbi->s_blocks_per_group,
4366 sbi->s_clusters_per_group);
4370 if (clustersize != blocksize) {
4371 ext4_msg(sb, KERN_ERR,
4372 "fragment/cluster size (%d) != "
4373 "block size (%d)", clustersize, blocksize);
4376 if (sbi->s_blocks_per_group > blocksize * 8) {
4377 ext4_msg(sb, KERN_ERR,
4378 "#blocks per group too big: %lu",
4379 sbi->s_blocks_per_group);
4382 sbi->s_clusters_per_group = sbi->s_blocks_per_group;
4383 sbi->s_cluster_bits = 0;
4385 sbi->s_cluster_ratio = clustersize / blocksize;
4387 /* Do we have standard group size of clustersize * 8 blocks ? */
4388 if (sbi->s_blocks_per_group == clustersize << 3)
4389 set_opt2(sb, STD_GROUP_SIZE);
4392 * Test whether we have more sectors than will fit in sector_t,
4393 * and whether the max offset is addressable by the page cache.
4395 err = generic_check_addressable(sb->s_blocksize_bits,
4396 ext4_blocks_count(es));
4398 ext4_msg(sb, KERN_ERR, "filesystem"
4399 " too large to mount safely on this system");
4403 if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
4406 /* check blocks count against device size */
4407 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
4408 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
4409 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
4410 "exceeds size of device (%llu blocks)",
4411 ext4_blocks_count(es), blocks_count);
4416 * It makes no sense for the first data block to be beyond the end
4417 * of the filesystem.
4419 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
4420 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4421 "block %u is beyond end of filesystem (%llu)",
4422 le32_to_cpu(es->s_first_data_block),
4423 ext4_blocks_count(es));
4426 if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) &&
4427 (sbi->s_cluster_ratio == 1)) {
4428 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4429 "block is 0 with a 1k block and cluster size");
4433 blocks_count = (ext4_blocks_count(es) -
4434 le32_to_cpu(es->s_first_data_block) +
4435 EXT4_BLOCKS_PER_GROUP(sb) - 1);
4436 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
4437 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
4438 ext4_msg(sb, KERN_WARNING, "groups count too large: %llu "
4439 "(block count %llu, first data block %u, "
4440 "blocks per group %lu)", blocks_count,
4441 ext4_blocks_count(es),
4442 le32_to_cpu(es->s_first_data_block),
4443 EXT4_BLOCKS_PER_GROUP(sb));
4446 sbi->s_groups_count = blocks_count;
4447 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
4448 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
4449 if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) !=
4450 le32_to_cpu(es->s_inodes_count)) {
4451 ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu",
4452 le32_to_cpu(es->s_inodes_count),
4453 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group));
4457 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
4458 EXT4_DESC_PER_BLOCK(sb);
4459 if (ext4_has_feature_meta_bg(sb)) {
4460 if (le32_to_cpu(es->s_first_meta_bg) > db_count) {
4461 ext4_msg(sb, KERN_WARNING,
4462 "first meta block group too large: %u "
4463 "(group descriptor block count %u)",
4464 le32_to_cpu(es->s_first_meta_bg), db_count);
4468 rcu_assign_pointer(sbi->s_group_desc,
4469 kvmalloc_array(db_count,
4470 sizeof(struct buffer_head *),
4472 if (sbi->s_group_desc == NULL) {
4473 ext4_msg(sb, KERN_ERR, "not enough memory");
4478 bgl_lock_init(sbi->s_blockgroup_lock);
4480 /* Pre-read the descriptors into the buffer cache */
4481 for (i = 0; i < db_count; i++) {
4482 block = descriptor_loc(sb, logical_sb_block, i);
4483 sb_breadahead_unmovable(sb, block);
4486 for (i = 0; i < db_count; i++) {
4487 struct buffer_head *bh;
4489 block = descriptor_loc(sb, logical_sb_block, i);
4490 bh = sb_bread_unmovable(sb, block);
4492 ext4_msg(sb, KERN_ERR,
4493 "can't read group descriptor %d", i);
4498 rcu_dereference(sbi->s_group_desc)[i] = bh;
4501 sbi->s_gdb_count = db_count;
4502 if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) {
4503 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
4504 ret = -EFSCORRUPTED;
4508 timer_setup(&sbi->s_err_report, print_daily_error_info, 0);
4510 /* Register extent status tree shrinker */
4511 if (ext4_es_register_shrinker(sbi))
4514 sbi->s_stripe = ext4_get_stripe_size(sbi);
4515 sbi->s_extent_max_zeroout_kb = 32;
4518 * set up enough so that it can read an inode
4520 sb->s_op = &ext4_sops;
4521 sb->s_export_op = &ext4_export_ops;
4522 sb->s_xattr = ext4_xattr_handlers;
4523 #ifdef CONFIG_FS_ENCRYPTION
4524 sb->s_cop = &ext4_cryptops;
4526 #ifdef CONFIG_FS_VERITY
4527 sb->s_vop = &ext4_verityops;
4530 sb->dq_op = &ext4_quota_operations;
4531 if (ext4_has_feature_quota(sb))
4532 sb->s_qcop = &dquot_quotactl_sysfile_ops;
4534 sb->s_qcop = &ext4_qctl_operations;
4535 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
4537 memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
4539 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
4540 mutex_init(&sbi->s_orphan_lock);
4544 needs_recovery = (es->s_last_orphan != 0 ||
4545 ext4_has_feature_journal_needs_recovery(sb));
4547 if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb))
4548 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
4549 goto failed_mount3a;
4552 * The first inode we look at is the journal inode. Don't try
4553 * root first: it may be modified in the journal!
4555 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
4556 err = ext4_load_journal(sb, es, journal_devnum);
4558 goto failed_mount3a;
4559 } else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) &&
4560 ext4_has_feature_journal_needs_recovery(sb)) {
4561 ext4_msg(sb, KERN_ERR, "required journal recovery "
4562 "suppressed and not mounted read-only");
4563 goto failed_mount_wq;
4565 /* Nojournal mode, all journal mount options are illegal */
4566 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
4567 ext4_msg(sb, KERN_ERR, "can't mount with "
4568 "journal_checksum, fs mounted w/o journal");
4569 goto failed_mount_wq;
4571 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4572 ext4_msg(sb, KERN_ERR, "can't mount with "
4573 "journal_async_commit, fs mounted w/o journal");
4574 goto failed_mount_wq;
4576 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
4577 ext4_msg(sb, KERN_ERR, "can't mount with "
4578 "commit=%lu, fs mounted w/o journal",
4579 sbi->s_commit_interval / HZ);
4580 goto failed_mount_wq;
4582 if (EXT4_MOUNT_DATA_FLAGS &
4583 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
4584 ext4_msg(sb, KERN_ERR, "can't mount with "
4585 "data=, fs mounted w/o journal");
4586 goto failed_mount_wq;
4588 sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM;
4589 clear_opt(sb, JOURNAL_CHECKSUM);
4590 clear_opt(sb, DATA_FLAGS);
4591 sbi->s_journal = NULL;
4596 if (ext4_has_feature_64bit(sb) &&
4597 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4598 JBD2_FEATURE_INCOMPAT_64BIT)) {
4599 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
4600 goto failed_mount_wq;
4603 if (!set_journal_csum_feature_set(sb)) {
4604 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
4606 goto failed_mount_wq;
4609 /* We have now updated the journal if required, so we can
4610 * validate the data journaling mode. */
4611 switch (test_opt(sb, DATA_FLAGS)) {
4613 /* No mode set, assume a default based on the journal
4614 * capabilities: ORDERED_DATA if the journal can
4615 * cope, else JOURNAL_DATA
4617 if (jbd2_journal_check_available_features
4618 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4619 set_opt(sb, ORDERED_DATA);
4620 sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA;
4622 set_opt(sb, JOURNAL_DATA);
4623 sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA;
4627 case EXT4_MOUNT_ORDERED_DATA:
4628 case EXT4_MOUNT_WRITEBACK_DATA:
4629 if (!jbd2_journal_check_available_features
4630 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4631 ext4_msg(sb, KERN_ERR, "Journal does not support "
4632 "requested data journaling mode");
4633 goto failed_mount_wq;
4639 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
4640 test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4641 ext4_msg(sb, KERN_ERR, "can't mount with "
4642 "journal_async_commit in data=ordered mode");
4643 goto failed_mount_wq;
4646 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4648 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback;
4651 if (!test_opt(sb, NO_MBCACHE)) {
4652 sbi->s_ea_block_cache = ext4_xattr_create_cache();
4653 if (!sbi->s_ea_block_cache) {
4654 ext4_msg(sb, KERN_ERR,
4655 "Failed to create ea_block_cache");
4656 goto failed_mount_wq;
4659 if (ext4_has_feature_ea_inode(sb)) {
4660 sbi->s_ea_inode_cache = ext4_xattr_create_cache();
4661 if (!sbi->s_ea_inode_cache) {
4662 ext4_msg(sb, KERN_ERR,
4663 "Failed to create ea_inode_cache");
4664 goto failed_mount_wq;
4669 if (ext4_has_feature_verity(sb) && blocksize != PAGE_SIZE) {
4670 ext4_msg(sb, KERN_ERR, "Unsupported blocksize for fs-verity");
4671 goto failed_mount_wq;
4674 if (DUMMY_ENCRYPTION_ENABLED(sbi) && !sb_rdonly(sb) &&
4675 !ext4_has_feature_encrypt(sb)) {
4676 ext4_set_feature_encrypt(sb);
4677 ext4_commit_super(sb, 1);
4681 * Get the # of file system overhead blocks from the
4682 * superblock if present.
4684 if (es->s_overhead_clusters)
4685 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
4687 err = ext4_calculate_overhead(sb);
4689 goto failed_mount_wq;
4693 * The maximum number of concurrent works can be high and
4694 * concurrency isn't really necessary. Limit it to 1.
4696 EXT4_SB(sb)->rsv_conversion_wq =
4697 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
4698 if (!EXT4_SB(sb)->rsv_conversion_wq) {
4699 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
4705 * The jbd2_journal_load will have done any necessary log recovery,
4706 * so we can safely mount the rest of the filesystem now.
4709 root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL);
4711 ext4_msg(sb, KERN_ERR, "get root inode failed");
4712 ret = PTR_ERR(root);
4716 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
4717 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
4722 #ifdef CONFIG_UNICODE
4723 if (sbi->s_encoding)
4724 sb->s_d_op = &ext4_dentry_ops;
4727 sb->s_root = d_make_root(root);
4729 ext4_msg(sb, KERN_ERR, "get root dentry failed");
4734 ret = ext4_setup_super(sb, es, sb_rdonly(sb));
4735 if (ret == -EROFS) {
4736 sb->s_flags |= SB_RDONLY;
4739 goto failed_mount4a;
4741 ext4_set_resv_clusters(sb);
4743 if (test_opt(sb, BLOCK_VALIDITY)) {
4744 err = ext4_setup_system_zone(sb);
4746 ext4_msg(sb, KERN_ERR, "failed to initialize system "
4748 goto failed_mount4a;
4753 err = ext4_mb_init(sb);
4755 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
4760 block = ext4_count_free_clusters(sb);
4761 ext4_free_blocks_count_set(sbi->s_es,
4762 EXT4_C2B(sbi, block));
4763 ext4_superblock_csum_set(sb);
4764 err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
4767 unsigned long freei = ext4_count_free_inodes(sb);
4768 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
4769 ext4_superblock_csum_set(sb);
4770 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
4774 err = percpu_counter_init(&sbi->s_dirs_counter,
4775 ext4_count_dirs(sb), GFP_KERNEL);
4777 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
4780 err = percpu_init_rwsem(&sbi->s_writepages_rwsem);
4783 ext4_msg(sb, KERN_ERR, "insufficient memory");
4787 if (ext4_has_feature_flex_bg(sb))
4788 if (!ext4_fill_flex_info(sb)) {
4789 ext4_msg(sb, KERN_ERR,
4790 "unable to initialize "
4791 "flex_bg meta info!");
4795 err = ext4_register_li_request(sb, first_not_zeroed);
4799 err = ext4_register_sysfs(sb);
4804 /* Enable quota usage during mount. */
4805 if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) {
4806 err = ext4_enable_quotas(sb);
4810 #endif /* CONFIG_QUOTA */
4813 * Save the original bdev mapping's wb_err value which could be
4814 * used to detect the metadata async write error.
4816 spin_lock_init(&sbi->s_bdev_wb_lock);
4818 errseq_check_and_advance(&sb->s_bdev->bd_inode->i_mapping->wb_err,
4819 &sbi->s_bdev_wb_err);
4820 sb->s_bdev->bd_super = sb;
4821 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
4822 ext4_orphan_cleanup(sb, es);
4823 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
4824 if (needs_recovery) {
4825 ext4_msg(sb, KERN_INFO, "recovery complete");
4826 err = ext4_mark_recovery_complete(sb, es);
4830 if (EXT4_SB(sb)->s_journal) {
4831 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
4832 descr = " journalled data mode";
4833 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
4834 descr = " ordered data mode";
4836 descr = " writeback data mode";
4838 descr = "out journal";
4840 if (test_opt(sb, DISCARD)) {
4841 struct request_queue *q = bdev_get_queue(sb->s_bdev);
4842 if (!blk_queue_discard(q))
4843 ext4_msg(sb, KERN_WARNING,
4844 "mounting with \"discard\" option, but "
4845 "the device does not support discard");
4848 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
4849 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
4850 "Opts: %.*s%s%s", descr,
4851 (int) sizeof(sbi->s_es->s_mount_opts),
4852 sbi->s_es->s_mount_opts,
4853 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
4855 if (es->s_error_count)
4856 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
4858 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */
4859 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
4860 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
4861 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
4862 atomic_set(&sbi->s_warning_count, 0);
4863 atomic_set(&sbi->s_msg_count, 0);
4870 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
4874 ext4_unregister_sysfs(sb);
4876 ext4_unregister_li_request(sb);
4878 ext4_mb_release(sb);
4880 flex_groups = rcu_dereference(sbi->s_flex_groups);
4882 for (i = 0; i < sbi->s_flex_groups_allocated; i++)
4883 kvfree(flex_groups[i]);
4884 kvfree(flex_groups);
4887 percpu_counter_destroy(&sbi->s_freeclusters_counter);
4888 percpu_counter_destroy(&sbi->s_freeinodes_counter);
4889 percpu_counter_destroy(&sbi->s_dirs_counter);
4890 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
4891 percpu_free_rwsem(&sbi->s_writepages_rwsem);
4893 ext4_ext_release(sb);
4894 ext4_release_system_zone(sb);
4899 ext4_msg(sb, KERN_ERR, "mount failed");
4900 if (EXT4_SB(sb)->rsv_conversion_wq)
4901 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
4903 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
4904 sbi->s_ea_inode_cache = NULL;
4906 ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
4907 sbi->s_ea_block_cache = NULL;
4909 if (sbi->s_journal) {
4910 jbd2_journal_destroy(sbi->s_journal);
4911 sbi->s_journal = NULL;
4914 ext4_es_unregister_shrinker(sbi);
4916 del_timer_sync(&sbi->s_err_report);
4918 kthread_stop(sbi->s_mmp_tsk);
4921 group_desc = rcu_dereference(sbi->s_group_desc);
4922 for (i = 0; i < db_count; i++)
4923 brelse(group_desc[i]);
4927 if (sbi->s_chksum_driver)
4928 crypto_free_shash(sbi->s_chksum_driver);
4930 #ifdef CONFIG_UNICODE
4931 utf8_unload(sbi->s_encoding);
4935 for (i = 0; i < EXT4_MAXQUOTAS; i++)
4936 kfree(get_qf_name(sb, sbi, i));
4938 fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
4939 ext4_blkdev_remove(sbi);
4942 sb->s_fs_info = NULL;
4943 kfree(sbi->s_blockgroup_lock);
4947 fs_put_dax(dax_dev);
4948 return err ? err : ret;
4952 * Setup any per-fs journal parameters now. We'll do this both on
4953 * initial mount, once the journal has been initialised but before we've
4954 * done any recovery; and again on any subsequent remount.
4956 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
4958 struct ext4_sb_info *sbi = EXT4_SB(sb);
4960 journal->j_commit_interval = sbi->s_commit_interval;
4961 journal->j_min_batch_time = sbi->s_min_batch_time;
4962 journal->j_max_batch_time = sbi->s_max_batch_time;
4964 write_lock(&journal->j_state_lock);
4965 if (test_opt(sb, BARRIER))
4966 journal->j_flags |= JBD2_BARRIER;
4968 journal->j_flags &= ~JBD2_BARRIER;
4969 if (test_opt(sb, DATA_ERR_ABORT))
4970 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
4972 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
4973 write_unlock(&journal->j_state_lock);
4976 static struct inode *ext4_get_journal_inode(struct super_block *sb,
4977 unsigned int journal_inum)
4979 struct inode *journal_inode;
4982 * Test for the existence of a valid inode on disk. Bad things
4983 * happen if we iget() an unused inode, as the subsequent iput()
4984 * will try to delete it.
4986 journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL);
4987 if (IS_ERR(journal_inode)) {
4988 ext4_msg(sb, KERN_ERR, "no journal found");
4991 if (!journal_inode->i_nlink) {
4992 make_bad_inode(journal_inode);
4993 iput(journal_inode);
4994 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
4998 jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
4999 journal_inode, journal_inode->i_size);
5000 if (!S_ISREG(journal_inode->i_mode)) {
5001 ext4_msg(sb, KERN_ERR, "invalid journal inode");
5002 iput(journal_inode);
5005 return journal_inode;
5008 static journal_t *ext4_get_journal(struct super_block *sb,
5009 unsigned int journal_inum)
5011 struct inode *journal_inode;
5014 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5017 journal_inode = ext4_get_journal_inode(sb, journal_inum);
5021 journal = jbd2_journal_init_inode(journal_inode);
5023 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
5024 iput(journal_inode);
5027 journal->j_private = sb;
5028 ext4_init_journal_params(sb, journal);
5032 static journal_t *ext4_get_dev_journal(struct super_block *sb,
5035 struct buffer_head *bh;
5039 int hblock, blocksize;
5040 ext4_fsblk_t sb_block;
5041 unsigned long offset;
5042 struct ext4_super_block *es;
5043 struct block_device *bdev;
5045 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5048 bdev = ext4_blkdev_get(j_dev, sb);
5052 blocksize = sb->s_blocksize;
5053 hblock = bdev_logical_block_size(bdev);
5054 if (blocksize < hblock) {
5055 ext4_msg(sb, KERN_ERR,
5056 "blocksize too small for journal device");
5060 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
5061 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
5062 set_blocksize(bdev, blocksize);
5063 if (!(bh = __bread(bdev, sb_block, blocksize))) {
5064 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
5065 "external journal");
5069 es = (struct ext4_super_block *) (bh->b_data + offset);
5070 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
5071 !(le32_to_cpu(es->s_feature_incompat) &
5072 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
5073 ext4_msg(sb, KERN_ERR, "external journal has "
5079 if ((le32_to_cpu(es->s_feature_ro_compat) &
5080 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
5081 es->s_checksum != ext4_superblock_csum(sb, es)) {
5082 ext4_msg(sb, KERN_ERR, "external journal has "
5083 "corrupt superblock");
5088 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
5089 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
5094 len = ext4_blocks_count(es);
5095 start = sb_block + 1;
5096 brelse(bh); /* we're done with the superblock */
5098 journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
5099 start, len, blocksize);
5101 ext4_msg(sb, KERN_ERR, "failed to create device journal");
5104 journal->j_private = sb;
5105 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer);
5106 wait_on_buffer(journal->j_sb_buffer);
5107 if (!buffer_uptodate(journal->j_sb_buffer)) {
5108 ext4_msg(sb, KERN_ERR, "I/O error on journal device");
5111 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
5112 ext4_msg(sb, KERN_ERR, "External journal has more than one "
5113 "user (unsupported) - %d",
5114 be32_to_cpu(journal->j_superblock->s_nr_users));
5117 EXT4_SB(sb)->journal_bdev = bdev;
5118 ext4_init_journal_params(sb, journal);
5122 jbd2_journal_destroy(journal);
5124 ext4_blkdev_put(bdev);
5128 static int ext4_load_journal(struct super_block *sb,
5129 struct ext4_super_block *es,
5130 unsigned long journal_devnum)
5133 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
5136 int really_read_only;
5139 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5140 return -EFSCORRUPTED;
5142 if (journal_devnum &&
5143 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
5144 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
5145 "numbers have changed");
5146 journal_dev = new_decode_dev(journal_devnum);
5148 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
5150 if (journal_inum && journal_dev) {
5151 ext4_msg(sb, KERN_ERR,
5152 "filesystem has both journal inode and journal device!");
5157 journal = ext4_get_journal(sb, journal_inum);
5161 journal = ext4_get_dev_journal(sb, journal_dev);
5166 journal_dev_ro = bdev_read_only(journal->j_dev);
5167 really_read_only = bdev_read_only(sb->s_bdev) | journal_dev_ro;
5169 if (journal_dev_ro && !sb_rdonly(sb)) {
5170 ext4_msg(sb, KERN_ERR,
5171 "journal device read-only, try mounting with '-o ro'");
5177 * Are we loading a blank journal or performing recovery after a
5178 * crash? For recovery, we need to check in advance whether we
5179 * can get read-write access to the device.
5181 if (ext4_has_feature_journal_needs_recovery(sb)) {
5182 if (sb_rdonly(sb)) {
5183 ext4_msg(sb, KERN_INFO, "INFO: recovery "
5184 "required on readonly filesystem");
5185 if (really_read_only) {
5186 ext4_msg(sb, KERN_ERR, "write access "
5187 "unavailable, cannot proceed "
5188 "(try mounting with noload)");
5192 ext4_msg(sb, KERN_INFO, "write access will "
5193 "be enabled during recovery");
5197 if (!(journal->j_flags & JBD2_BARRIER))
5198 ext4_msg(sb, KERN_INFO, "barriers disabled");
5200 if (!ext4_has_feature_journal_needs_recovery(sb))
5201 err = jbd2_journal_wipe(journal, !really_read_only);
5203 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
5205 memcpy(save, ((char *) es) +
5206 EXT4_S_ERR_START, EXT4_S_ERR_LEN);
5207 err = jbd2_journal_load(journal);
5209 memcpy(((char *) es) + EXT4_S_ERR_START,
5210 save, EXT4_S_ERR_LEN);
5215 ext4_msg(sb, KERN_ERR, "error loading journal");
5219 EXT4_SB(sb)->s_journal = journal;
5220 err = ext4_clear_journal_err(sb, es);
5222 EXT4_SB(sb)->s_journal = NULL;
5223 jbd2_journal_destroy(journal);
5227 if (!really_read_only && journal_devnum &&
5228 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
5229 es->s_journal_dev = cpu_to_le32(journal_devnum);
5231 /* Make sure we flush the recovery flag to disk. */
5232 ext4_commit_super(sb, 1);
5238 jbd2_journal_destroy(journal);
5242 static int ext4_commit_super(struct super_block *sb, int sync)
5244 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
5245 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
5248 if (!sbh || block_device_ejected(sb))
5252 * If the file system is mounted read-only, don't update the
5253 * superblock write time. This avoids updating the superblock
5254 * write time when we are mounting the root file system
5255 * read/only but we need to replay the journal; at that point,
5256 * for people who are east of GMT and who make their clock
5257 * tick in localtime for Windows bug-for-bug compatibility,
5258 * the clock is set in the future, and this will cause e2fsck
5259 * to complain and force a full file system check.
5261 if (!(sb->s_flags & SB_RDONLY))
5262 ext4_update_tstamp(es, s_wtime);
5263 if (sb->s_bdev->bd_part)
5264 es->s_kbytes_written =
5265 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
5266 ((part_stat_read(sb->s_bdev->bd_part,
5267 sectors[STAT_WRITE]) -
5268 EXT4_SB(sb)->s_sectors_written_start) >> 1));
5270 es->s_kbytes_written =
5271 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
5272 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter))
5273 ext4_free_blocks_count_set(es,
5274 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive(
5275 &EXT4_SB(sb)->s_freeclusters_counter)));
5276 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter))
5277 es->s_free_inodes_count =
5278 cpu_to_le32(percpu_counter_sum_positive(
5279 &EXT4_SB(sb)->s_freeinodes_counter));
5280 BUFFER_TRACE(sbh, "marking dirty");
5281 ext4_superblock_csum_set(sb);
5284 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
5286 * Oh, dear. A previous attempt to write the
5287 * superblock failed. This could happen because the
5288 * USB device was yanked out. Or it could happen to
5289 * be a transient write error and maybe the block will
5290 * be remapped. Nothing we can do but to retry the
5291 * write and hope for the best.
5293 ext4_msg(sb, KERN_ERR, "previous I/O error to "
5294 "superblock detected");
5295 clear_buffer_write_io_error(sbh);
5296 set_buffer_uptodate(sbh);
5298 mark_buffer_dirty(sbh);
5301 error = __sync_dirty_buffer(sbh,
5302 REQ_SYNC | (test_opt(sb, BARRIER) ? REQ_FUA : 0));
5303 if (buffer_write_io_error(sbh)) {
5304 ext4_msg(sb, KERN_ERR, "I/O error while writing "
5306 clear_buffer_write_io_error(sbh);
5307 set_buffer_uptodate(sbh);
5314 * Have we just finished recovery? If so, and if we are mounting (or
5315 * remounting) the filesystem readonly, then we will end up with a
5316 * consistent fs on disk. Record that fact.
5318 static int ext4_mark_recovery_complete(struct super_block *sb,
5319 struct ext4_super_block *es)
5322 journal_t *journal = EXT4_SB(sb)->s_journal;
5324 if (!ext4_has_feature_journal(sb)) {
5325 if (journal != NULL) {
5326 ext4_error(sb, "Journal got removed while the fs was "
5328 return -EFSCORRUPTED;
5332 jbd2_journal_lock_updates(journal);
5333 err = jbd2_journal_flush(journal);
5337 if (ext4_has_feature_journal_needs_recovery(sb) && sb_rdonly(sb)) {
5338 ext4_clear_feature_journal_needs_recovery(sb);
5339 ext4_commit_super(sb, 1);
5342 jbd2_journal_unlock_updates(journal);
5347 * If we are mounting (or read-write remounting) a filesystem whose journal
5348 * has recorded an error from a previous lifetime, move that error to the
5349 * main filesystem now.
5351 static int ext4_clear_journal_err(struct super_block *sb,
5352 struct ext4_super_block *es)
5358 if (!ext4_has_feature_journal(sb)) {
5359 ext4_error(sb, "Journal got removed while the fs was mounted!");
5360 return -EFSCORRUPTED;
5363 journal = EXT4_SB(sb)->s_journal;
5366 * Now check for any error status which may have been recorded in the
5367 * journal by a prior ext4_error() or ext4_abort()
5370 j_errno = jbd2_journal_errno(journal);
5374 errstr = ext4_decode_error(sb, j_errno, nbuf);
5375 ext4_warning(sb, "Filesystem error recorded "
5376 "from previous mount: %s", errstr);
5377 ext4_warning(sb, "Marking fs in need of filesystem check.");
5379 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
5380 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
5381 ext4_commit_super(sb, 1);
5383 jbd2_journal_clear_err(journal);
5384 jbd2_journal_update_sb_errno(journal);
5390 * Force the running and committing transactions to commit,
5391 * and wait on the commit.
5393 int ext4_force_commit(struct super_block *sb)
5400 journal = EXT4_SB(sb)->s_journal;
5401 return ext4_journal_force_commit(journal);
5404 static int ext4_sync_fs(struct super_block *sb, int wait)
5408 bool needs_barrier = false;
5409 struct ext4_sb_info *sbi = EXT4_SB(sb);
5411 if (unlikely(ext4_forced_shutdown(sbi)))
5414 trace_ext4_sync_fs(sb, wait);
5415 flush_workqueue(sbi->rsv_conversion_wq);
5417 * Writeback quota in non-journalled quota case - journalled quota has
5420 dquot_writeback_dquots(sb, -1);
5422 * Data writeback is possible w/o journal transaction, so barrier must
5423 * being sent at the end of the function. But we can skip it if
5424 * transaction_commit will do it for us.
5426 if (sbi->s_journal) {
5427 target = jbd2_get_latest_transaction(sbi->s_journal);
5428 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
5429 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
5430 needs_barrier = true;
5432 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
5434 ret = jbd2_log_wait_commit(sbi->s_journal,
5437 } else if (wait && test_opt(sb, BARRIER))
5438 needs_barrier = true;
5439 if (needs_barrier) {
5441 err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL);
5450 * LVM calls this function before a (read-only) snapshot is created. This
5451 * gives us a chance to flush the journal completely and mark the fs clean.
5453 * Note that only this function cannot bring a filesystem to be in a clean
5454 * state independently. It relies on upper layer to stop all data & metadata
5457 static int ext4_freeze(struct super_block *sb)
5465 journal = EXT4_SB(sb)->s_journal;
5468 /* Now we set up the journal barrier. */
5469 jbd2_journal_lock_updates(journal);
5472 * Don't clear the needs_recovery flag if we failed to
5473 * flush the journal.
5475 error = jbd2_journal_flush(journal);
5479 /* Journal blocked and flushed, clear needs_recovery flag. */
5480 ext4_clear_feature_journal_needs_recovery(sb);
5483 error = ext4_commit_super(sb, 1);
5486 /* we rely on upper layer to stop further updates */
5487 jbd2_journal_unlock_updates(journal);
5492 * Called by LVM after the snapshot is done. We need to reset the RECOVER
5493 * flag here, even though the filesystem is not technically dirty yet.
5495 static int ext4_unfreeze(struct super_block *sb)
5497 if (sb_rdonly(sb) || ext4_forced_shutdown(EXT4_SB(sb)))
5500 if (EXT4_SB(sb)->s_journal) {
5501 /* Reset the needs_recovery flag before the fs is unlocked. */
5502 ext4_set_feature_journal_needs_recovery(sb);
5505 ext4_commit_super(sb, 1);
5510 * Structure to save mount options for ext4_remount's benefit
5512 struct ext4_mount_options {
5513 unsigned long s_mount_opt;
5514 unsigned long s_mount_opt2;
5517 unsigned long s_commit_interval;
5518 u32 s_min_batch_time, s_max_batch_time;
5521 char *s_qf_names[EXT4_MAXQUOTAS];
5525 static int ext4_remount(struct super_block *sb, int *flags, char *data)
5527 struct ext4_super_block *es;
5528 struct ext4_sb_info *sbi = EXT4_SB(sb);
5529 unsigned long old_sb_flags, vfs_flags;
5530 struct ext4_mount_options old_opts;
5531 int enable_quota = 0;
5533 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
5537 char *to_free[EXT4_MAXQUOTAS];
5539 char *orig_data = kstrdup(data, GFP_KERNEL);
5541 if (data && !orig_data)
5544 /* Store the original options */
5545 old_sb_flags = sb->s_flags;
5546 old_opts.s_mount_opt = sbi->s_mount_opt;
5547 old_opts.s_mount_opt2 = sbi->s_mount_opt2;
5548 old_opts.s_resuid = sbi->s_resuid;
5549 old_opts.s_resgid = sbi->s_resgid;
5550 old_opts.s_commit_interval = sbi->s_commit_interval;
5551 old_opts.s_min_batch_time = sbi->s_min_batch_time;
5552 old_opts.s_max_batch_time = sbi->s_max_batch_time;
5554 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
5555 for (i = 0; i < EXT4_MAXQUOTAS; i++)
5556 if (sbi->s_qf_names[i]) {
5557 char *qf_name = get_qf_name(sb, sbi, i);
5559 old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL);
5560 if (!old_opts.s_qf_names[i]) {
5561 for (j = 0; j < i; j++)
5562 kfree(old_opts.s_qf_names[j]);
5567 old_opts.s_qf_names[i] = NULL;
5569 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
5570 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
5573 * Some options can be enabled by ext4 and/or by VFS mount flag
5574 * either way we need to make sure it matches in both *flags and
5575 * s_flags. Copy those selected flags from *flags to s_flags
5577 vfs_flags = SB_LAZYTIME | SB_I_VERSION;
5578 sb->s_flags = (sb->s_flags & ~vfs_flags) | (*flags & vfs_flags);
5580 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
5585 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
5586 test_opt(sb, JOURNAL_CHECKSUM)) {
5587 ext4_msg(sb, KERN_ERR, "changing journal_checksum "
5588 "during remount not supported; ignoring");
5589 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
5592 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
5593 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
5594 ext4_msg(sb, KERN_ERR, "can't mount with "
5595 "both data=journal and delalloc");
5599 if (test_opt(sb, DIOREAD_NOLOCK)) {
5600 ext4_msg(sb, KERN_ERR, "can't mount with "
5601 "both data=journal and dioread_nolock");
5605 } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) {
5606 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
5607 ext4_msg(sb, KERN_ERR, "can't mount with "
5608 "journal_async_commit in data=ordered mode");
5614 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) {
5615 ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount");
5620 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
5621 ext4_abort(sb, EXT4_ERR_ESHUTDOWN, "Abort forced by user");
5623 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
5624 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
5628 if (sbi->s_journal) {
5629 ext4_init_journal_params(sb, sbi->s_journal);
5630 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
5633 if ((bool)(*flags & SB_RDONLY) != sb_rdonly(sb)) {
5634 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
5639 if (*flags & SB_RDONLY) {
5640 err = sync_filesystem(sb);
5643 err = dquot_suspend(sb, -1);
5648 * First of all, the unconditional stuff we have to do
5649 * to disable replay of the journal when we next remount
5651 sb->s_flags |= SB_RDONLY;
5654 * OK, test if we are remounting a valid rw partition
5655 * readonly, and if so set the rdonly flag and then
5656 * mark the partition as valid again.
5658 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
5659 (sbi->s_mount_state & EXT4_VALID_FS))
5660 es->s_state = cpu_to_le16(sbi->s_mount_state);
5662 if (sbi->s_journal) {
5664 * We let remount-ro finish even if marking fs
5665 * as clean failed...
5667 ext4_mark_recovery_complete(sb, es);
5670 kthread_stop(sbi->s_mmp_tsk);
5672 /* Make sure we can mount this feature set readwrite */
5673 if (ext4_has_feature_readonly(sb) ||
5674 !ext4_feature_set_ok(sb, 0)) {
5679 * Make sure the group descriptor checksums
5680 * are sane. If they aren't, refuse to remount r/w.
5682 for (g = 0; g < sbi->s_groups_count; g++) {
5683 struct ext4_group_desc *gdp =
5684 ext4_get_group_desc(sb, g, NULL);
5686 if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
5687 ext4_msg(sb, KERN_ERR,
5688 "ext4_remount: Checksum for group %u failed (%u!=%u)",
5689 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
5690 le16_to_cpu(gdp->bg_checksum));
5697 * If we have an unprocessed orphan list hanging
5698 * around from a previously readonly bdev mount,
5699 * require a full umount/remount for now.
5701 if (es->s_last_orphan) {
5702 ext4_msg(sb, KERN_WARNING, "Couldn't "
5703 "remount RDWR because of unprocessed "
5704 "orphan inode list. Please "
5705 "umount/remount instead");
5711 * Update the original bdev mapping's wb_err value
5712 * which could be used to detect the metadata async
5715 errseq_check_and_advance(&sb->s_bdev->bd_inode->i_mapping->wb_err,
5716 &sbi->s_bdev_wb_err);
5719 * Mounting a RDONLY partition read-write, so reread
5720 * and store the current valid flag. (It may have
5721 * been changed by e2fsck since we originally mounted
5724 if (sbi->s_journal) {
5725 err = ext4_clear_journal_err(sb, es);
5729 sbi->s_mount_state = le16_to_cpu(es->s_state);
5731 err = ext4_setup_super(sb, es, 0);
5735 sb->s_flags &= ~SB_RDONLY;
5736 if (ext4_has_feature_mmp(sb))
5737 if (ext4_multi_mount_protect(sb,
5738 le64_to_cpu(es->s_mmp_block))) {
5747 * Reinitialize lazy itable initialization thread based on
5750 if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE))
5751 ext4_unregister_li_request(sb);
5753 ext4_group_t first_not_zeroed;
5754 first_not_zeroed = ext4_has_uninit_itable(sb);
5755 ext4_register_li_request(sb, first_not_zeroed);
5759 * Handle creation of system zone data early because it can fail.
5760 * Releasing of existing data is done when we are sure remount will
5763 if (test_opt(sb, BLOCK_VALIDITY) && !sbi->system_blks) {
5764 err = ext4_setup_system_zone(sb);
5769 if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) {
5770 err = ext4_commit_super(sb, 1);
5776 /* Release old quota file names */
5777 for (i = 0; i < EXT4_MAXQUOTAS; i++)
5778 kfree(old_opts.s_qf_names[i]);
5780 if (sb_any_quota_suspended(sb))
5781 dquot_resume(sb, -1);
5782 else if (ext4_has_feature_quota(sb)) {
5783 err = ext4_enable_quotas(sb);
5789 if (!test_opt(sb, BLOCK_VALIDITY) && sbi->system_blks)
5790 ext4_release_system_zone(sb);
5793 * Some options can be enabled by ext4 and/or by VFS mount flag
5794 * either way we need to make sure it matches in both *flags and
5795 * s_flags. Copy those selected flags from s_flags to *flags
5797 *flags = (*flags & ~vfs_flags) | (sb->s_flags & vfs_flags);
5799 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
5804 sb->s_flags = old_sb_flags;
5805 sbi->s_mount_opt = old_opts.s_mount_opt;
5806 sbi->s_mount_opt2 = old_opts.s_mount_opt2;
5807 sbi->s_resuid = old_opts.s_resuid;
5808 sbi->s_resgid = old_opts.s_resgid;
5809 sbi->s_commit_interval = old_opts.s_commit_interval;
5810 sbi->s_min_batch_time = old_opts.s_min_batch_time;
5811 sbi->s_max_batch_time = old_opts.s_max_batch_time;
5812 if (!test_opt(sb, BLOCK_VALIDITY) && sbi->system_blks)
5813 ext4_release_system_zone(sb);
5815 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
5816 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
5817 to_free[i] = get_qf_name(sb, sbi, i);
5818 rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]);
5821 for (i = 0; i < EXT4_MAXQUOTAS; i++)
5829 static int ext4_statfs_project(struct super_block *sb,
5830 kprojid_t projid, struct kstatfs *buf)
5833 struct dquot *dquot;
5837 qid = make_kqid_projid(projid);
5838 dquot = dqget(sb, qid);
5840 return PTR_ERR(dquot);
5841 spin_lock(&dquot->dq_dqb_lock);
5843 limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit,
5844 dquot->dq_dqb.dqb_bhardlimit);
5845 limit >>= sb->s_blocksize_bits;
5847 if (limit && buf->f_blocks > limit) {
5848 curblock = (dquot->dq_dqb.dqb_curspace +
5849 dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
5850 buf->f_blocks = limit;
5851 buf->f_bfree = buf->f_bavail =
5852 (buf->f_blocks > curblock) ?
5853 (buf->f_blocks - curblock) : 0;
5856 limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit,
5857 dquot->dq_dqb.dqb_ihardlimit);
5858 if (limit && buf->f_files > limit) {
5859 buf->f_files = limit;
5861 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
5862 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
5865 spin_unlock(&dquot->dq_dqb_lock);
5871 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
5873 struct super_block *sb = dentry->d_sb;
5874 struct ext4_sb_info *sbi = EXT4_SB(sb);
5875 struct ext4_super_block *es = sbi->s_es;
5876 ext4_fsblk_t overhead = 0, resv_blocks;
5879 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
5881 if (!test_opt(sb, MINIX_DF))
5882 overhead = sbi->s_overhead;
5884 buf->f_type = EXT4_SUPER_MAGIC;
5885 buf->f_bsize = sb->s_blocksize;
5886 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
5887 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
5888 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
5889 /* prevent underflow in case that few free space is available */
5890 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
5891 buf->f_bavail = buf->f_bfree -
5892 (ext4_r_blocks_count(es) + resv_blocks);
5893 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
5895 buf->f_files = le32_to_cpu(es->s_inodes_count);
5896 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
5897 buf->f_namelen = EXT4_NAME_LEN;
5898 fsid = le64_to_cpup((void *)es->s_uuid) ^
5899 le64_to_cpup((void *)es->s_uuid + sizeof(u64));
5900 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
5901 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
5904 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
5905 sb_has_quota_limits_enabled(sb, PRJQUOTA))
5906 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
5915 * Helper functions so that transaction is started before we acquire dqio_sem
5916 * to keep correct lock ordering of transaction > dqio_sem
5918 static inline struct inode *dquot_to_inode(struct dquot *dquot)
5920 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
5923 static int ext4_write_dquot(struct dquot *dquot)
5927 struct inode *inode;
5929 inode = dquot_to_inode(dquot);
5930 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5931 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
5933 return PTR_ERR(handle);
5934 ret = dquot_commit(dquot);
5935 err = ext4_journal_stop(handle);
5941 static int ext4_acquire_dquot(struct dquot *dquot)
5946 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5947 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
5949 return PTR_ERR(handle);
5950 ret = dquot_acquire(dquot);
5951 err = ext4_journal_stop(handle);
5957 static int ext4_release_dquot(struct dquot *dquot)
5962 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5963 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
5964 if (IS_ERR(handle)) {
5965 /* Release dquot anyway to avoid endless cycle in dqput() */
5966 dquot_release(dquot);
5967 return PTR_ERR(handle);
5969 ret = dquot_release(dquot);
5970 err = ext4_journal_stop(handle);
5976 static int ext4_mark_dquot_dirty(struct dquot *dquot)
5978 struct super_block *sb = dquot->dq_sb;
5979 struct ext4_sb_info *sbi = EXT4_SB(sb);
5981 /* Are we journaling quotas? */
5982 if (ext4_has_feature_quota(sb) ||
5983 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
5984 dquot_mark_dquot_dirty(dquot);
5985 return ext4_write_dquot(dquot);
5987 return dquot_mark_dquot_dirty(dquot);
5991 static int ext4_write_info(struct super_block *sb, int type)
5996 /* Data block + inode block */
5997 handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2);
5999 return PTR_ERR(handle);
6000 ret = dquot_commit_info(sb, type);
6001 err = ext4_journal_stop(handle);
6008 * Turn on quotas during mount time - we need to find
6009 * the quota file and such...
6011 static int ext4_quota_on_mount(struct super_block *sb, int type)
6013 return dquot_quota_on_mount(sb, get_qf_name(sb, EXT4_SB(sb), type),
6014 EXT4_SB(sb)->s_jquota_fmt, type);
6017 static void lockdep_set_quota_inode(struct inode *inode, int subclass)
6019 struct ext4_inode_info *ei = EXT4_I(inode);
6021 /* The first argument of lockdep_set_subclass has to be
6022 * *exactly* the same as the argument to init_rwsem() --- in
6023 * this case, in init_once() --- or lockdep gets unhappy
6024 * because the name of the lock is set using the
6025 * stringification of the argument to init_rwsem().
6027 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */
6028 lockdep_set_subclass(&ei->i_data_sem, subclass);
6032 * Standard function to be called on quota_on
6034 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
6035 const struct path *path)
6039 if (!test_opt(sb, QUOTA))
6042 /* Quotafile not on the same filesystem? */
6043 if (path->dentry->d_sb != sb)
6045 /* Journaling quota? */
6046 if (EXT4_SB(sb)->s_qf_names[type]) {
6047 /* Quotafile not in fs root? */
6048 if (path->dentry->d_parent != sb->s_root)
6049 ext4_msg(sb, KERN_WARNING,
6050 "Quota file not on filesystem root. "
6051 "Journaled quota will not work");
6052 sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY;
6055 * Clear the flag just in case mount options changed since
6058 sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY;
6062 * When we journal data on quota file, we have to flush journal to see
6063 * all updates to the file when we bypass pagecache...
6065 if (EXT4_SB(sb)->s_journal &&
6066 ext4_should_journal_data(d_inode(path->dentry))) {
6068 * We don't need to lock updates but journal_flush() could
6069 * otherwise be livelocked...
6071 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
6072 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
6073 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
6078 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
6079 err = dquot_quota_on(sb, type, format_id, path);
6081 lockdep_set_quota_inode(path->dentry->d_inode,
6084 struct inode *inode = d_inode(path->dentry);
6088 * Set inode flags to prevent userspace from messing with quota
6089 * files. If this fails, we return success anyway since quotas
6090 * are already enabled and this is not a hard failure.
6093 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
6096 EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL;
6097 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
6098 S_NOATIME | S_IMMUTABLE);
6099 err = ext4_mark_inode_dirty(handle, inode);
6100 ext4_journal_stop(handle);
6102 inode_unlock(inode);
6107 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
6111 struct inode *qf_inode;
6112 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
6113 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
6114 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
6115 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
6118 BUG_ON(!ext4_has_feature_quota(sb));
6120 if (!qf_inums[type])
6123 qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL);
6124 if (IS_ERR(qf_inode)) {
6125 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]);
6126 return PTR_ERR(qf_inode);
6129 /* Don't account quota for quota files to avoid recursion */
6130 qf_inode->i_flags |= S_NOQUOTA;
6131 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
6132 err = dquot_load_quota_inode(qf_inode, type, format_id, flags);
6134 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
6140 /* Enable usage tracking for all quota types. */
6141 static int ext4_enable_quotas(struct super_block *sb)
6144 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
6145 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
6146 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
6147 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
6149 bool quota_mopt[EXT4_MAXQUOTAS] = {
6150 test_opt(sb, USRQUOTA),
6151 test_opt(sb, GRPQUOTA),
6152 test_opt(sb, PRJQUOTA),
6155 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
6156 for (type = 0; type < EXT4_MAXQUOTAS; type++) {
6157 if (qf_inums[type]) {
6158 err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
6159 DQUOT_USAGE_ENABLED |
6160 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
6163 "Failed to enable quota tracking "
6164 "(type=%d, err=%d). Please run "
6165 "e2fsck to fix.", type, err);
6166 for (type--; type >= 0; type--)
6167 dquot_quota_off(sb, type);
6176 static int ext4_quota_off(struct super_block *sb, int type)
6178 struct inode *inode = sb_dqopt(sb)->files[type];
6182 /* Force all delayed allocation blocks to be allocated.
6183 * Caller already holds s_umount sem */
6184 if (test_opt(sb, DELALLOC))
6185 sync_filesystem(sb);
6187 if (!inode || !igrab(inode))
6190 err = dquot_quota_off(sb, type);
6191 if (err || ext4_has_feature_quota(sb))
6196 * Update modification times of quota files when userspace can
6197 * start looking at them. If we fail, we return success anyway since
6198 * this is not a hard failure and quotas are already disabled.
6200 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
6201 if (IS_ERR(handle)) {
6202 err = PTR_ERR(handle);
6205 EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL);
6206 inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
6207 inode->i_mtime = inode->i_ctime = current_time(inode);
6208 err = ext4_mark_inode_dirty(handle, inode);
6209 ext4_journal_stop(handle);
6211 inode_unlock(inode);
6213 lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL);
6217 return dquot_quota_off(sb, type);
6220 /* Read data from quotafile - avoid pagecache and such because we cannot afford
6221 * acquiring the locks... As quota files are never truncated and quota code
6222 * itself serializes the operations (and no one else should touch the files)
6223 * we don't have to be afraid of races */
6224 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
6225 size_t len, loff_t off)
6227 struct inode *inode = sb_dqopt(sb)->files[type];
6228 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
6229 int offset = off & (sb->s_blocksize - 1);
6232 struct buffer_head *bh;
6233 loff_t i_size = i_size_read(inode);
6237 if (off+len > i_size)
6240 while (toread > 0) {
6241 tocopy = sb->s_blocksize - offset < toread ?
6242 sb->s_blocksize - offset : toread;
6243 bh = ext4_bread(NULL, inode, blk, 0);
6246 if (!bh) /* A hole? */
6247 memset(data, 0, tocopy);
6249 memcpy(data, bh->b_data+offset, tocopy);
6259 /* Write to quotafile (we know the transaction is already started and has
6260 * enough credits) */
6261 static ssize_t ext4_quota_write(struct super_block *sb, int type,
6262 const char *data, size_t len, loff_t off)
6264 struct inode *inode = sb_dqopt(sb)->files[type];
6265 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
6266 int err = 0, err2 = 0, offset = off & (sb->s_blocksize - 1);
6268 struct buffer_head *bh;
6269 handle_t *handle = journal_current_handle();
6271 if (EXT4_SB(sb)->s_journal && !handle) {
6272 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
6273 " cancelled because transaction is not started",
6274 (unsigned long long)off, (unsigned long long)len);
6278 * Since we account only one data block in transaction credits,
6279 * then it is impossible to cross a block boundary.
6281 if (sb->s_blocksize - offset < len) {
6282 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
6283 " cancelled because not block aligned",
6284 (unsigned long long)off, (unsigned long long)len);
6289 bh = ext4_bread(handle, inode, blk,
6290 EXT4_GET_BLOCKS_CREATE |
6291 EXT4_GET_BLOCKS_METADATA_NOFAIL);
6292 } while (PTR_ERR(bh) == -ENOSPC &&
6293 ext4_should_retry_alloc(inode->i_sb, &retries));
6298 BUFFER_TRACE(bh, "get write access");
6299 err = ext4_journal_get_write_access(handle, bh);
6305 memcpy(bh->b_data+offset, data, len);
6306 flush_dcache_page(bh->b_page);
6308 err = ext4_handle_dirty_metadata(handle, NULL, bh);
6311 if (inode->i_size < off + len) {
6312 i_size_write(inode, off + len);
6313 EXT4_I(inode)->i_disksize = inode->i_size;
6314 err2 = ext4_mark_inode_dirty(handle, inode);
6315 if (unlikely(err2 && !err))
6318 return err ? err : len;
6322 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
6323 const char *dev_name, void *data)
6325 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
6328 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
6329 static inline void register_as_ext2(void)
6331 int err = register_filesystem(&ext2_fs_type);
6334 "EXT4-fs: Unable to register as ext2 (%d)\n", err);
6337 static inline void unregister_as_ext2(void)
6339 unregister_filesystem(&ext2_fs_type);
6342 static inline int ext2_feature_set_ok(struct super_block *sb)
6344 if (ext4_has_unknown_ext2_incompat_features(sb))
6348 if (ext4_has_unknown_ext2_ro_compat_features(sb))
6353 static inline void register_as_ext2(void) { }
6354 static inline void unregister_as_ext2(void) { }
6355 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
6358 static inline void register_as_ext3(void)
6360 int err = register_filesystem(&ext3_fs_type);
6363 "EXT4-fs: Unable to register as ext3 (%d)\n", err);
6366 static inline void unregister_as_ext3(void)
6368 unregister_filesystem(&ext3_fs_type);
6371 static inline int ext3_feature_set_ok(struct super_block *sb)
6373 if (ext4_has_unknown_ext3_incompat_features(sb))
6375 if (!ext4_has_feature_journal(sb))
6379 if (ext4_has_unknown_ext3_ro_compat_features(sb))
6384 static struct file_system_type ext4_fs_type = {
6385 .owner = THIS_MODULE,
6387 .mount = ext4_mount,
6388 .kill_sb = kill_block_super,
6389 .fs_flags = FS_REQUIRES_DEV,
6391 MODULE_ALIAS_FS("ext4");
6393 /* Shared across all ext4 file systems */
6394 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
6396 static int __init ext4_init_fs(void)
6400 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
6401 ext4_li_info = NULL;
6402 mutex_init(&ext4_li_mtx);
6404 /* Build-time check for flags consistency */
6405 ext4_check_flag_values();
6407 for (i = 0; i < EXT4_WQ_HASH_SZ; i++)
6408 init_waitqueue_head(&ext4__ioend_wq[i]);
6410 err = ext4_init_es();
6414 err = ext4_init_pending();
6418 err = ext4_init_post_read_processing();
6422 err = ext4_init_pageio();
6426 err = ext4_init_system_zone();
6430 err = ext4_init_sysfs();
6434 err = ext4_init_mballoc();
6437 err = init_inodecache();
6442 err = register_filesystem(&ext4_fs_type);
6448 unregister_as_ext2();
6449 unregister_as_ext3();
6450 destroy_inodecache();
6452 ext4_exit_mballoc();
6456 ext4_exit_system_zone();
6460 ext4_exit_post_read_processing();
6462 ext4_exit_pending();
6469 static void __exit ext4_exit_fs(void)
6471 ext4_destroy_lazyinit_thread();
6472 unregister_as_ext2();
6473 unregister_as_ext3();
6474 unregister_filesystem(&ext4_fs_type);
6475 destroy_inodecache();
6476 ext4_exit_mballoc();
6478 ext4_exit_system_zone();
6480 ext4_exit_post_read_processing();
6482 ext4_exit_pending();
6485 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
6486 MODULE_DESCRIPTION("Fourth Extended Filesystem");
6487 MODULE_LICENSE("GPL");
6488 MODULE_SOFTDEP("pre: crc32c");
6489 module_init(ext4_init_fs)
6490 module_exit(ext4_exit_fs)