1 // SPDX-License-Identifier: GPL-2.0-only
3 * VFIO PCI Intel Graphics support
5 * Copyright (C) 2016 Red Hat, Inc. All rights reserved.
8 * Register a device specific region through which to provide read-only
9 * access to the Intel IGD opregion. The register defining the opregion
10 * address is also virtualized to prevent user modification.
14 #include <linux/pci.h>
15 #include <linux/uaccess.h>
16 #include <linux/vfio.h>
18 #include "vfio_pci_priv.h"
20 #define OPREGION_SIGNATURE "IntelGraphicsMem"
21 #define OPREGION_SIZE (8 * 1024)
22 #define OPREGION_PCI_ADDR 0xfc
24 #define OPREGION_RVDA 0x3ba
25 #define OPREGION_RVDS 0x3c2
26 #define OPREGION_VERSION 0x16
28 struct igd_opregion_vbt {
34 * igd_opregion_shift_copy() - Copy OpRegion to user buffer and shift position.
35 * @dst: User buffer ptr to copy to.
36 * @off: Offset to user buffer ptr. Increased by bytes on return.
37 * @src: Source buffer to copy from.
38 * @pos: Increased by bytes on return.
39 * @remaining: Decreased by bytes on return.
40 * @bytes: Bytes to copy and adjust off, pos and remaining.
42 * Copy OpRegion to offset from specific source ptr and shift the offset.
44 * Return: 0 on success, -EFAULT otherwise.
47 static inline unsigned long igd_opregion_shift_copy(char __user *dst,
54 if (copy_to_user(dst + (*off), src, bytes))
64 static ssize_t vfio_pci_igd_rw(struct vfio_pci_core_device *vdev,
65 char __user *buf, size_t count, loff_t *ppos,
68 unsigned int i = VFIO_PCI_OFFSET_TO_INDEX(*ppos) - VFIO_PCI_NUM_REGIONS;
69 struct igd_opregion_vbt *opregionvbt = vdev->region[i].data;
70 loff_t pos = *ppos & VFIO_PCI_OFFSET_MASK, off = 0;
73 if (pos >= vdev->region[i].size || iswrite)
76 count = min_t(size_t, count, vdev->region[i].size - pos);
79 /* Copy until OpRegion version */
80 if (remaining && pos < OPREGION_VERSION) {
81 size_t bytes = min_t(size_t, remaining, OPREGION_VERSION - pos);
83 if (igd_opregion_shift_copy(buf, &off,
84 opregionvbt->opregion + pos, &pos,
89 /* Copy patched (if necessary) OpRegion version */
90 if (remaining && pos < OPREGION_VERSION + sizeof(__le16)) {
91 size_t bytes = min_t(size_t, remaining,
92 OPREGION_VERSION + sizeof(__le16) - pos);
93 __le16 version = *(__le16 *)(opregionvbt->opregion +
96 /* Patch to 2.1 if OpRegion 2.0 has extended VBT */
97 if (le16_to_cpu(version) == 0x0200 && opregionvbt->vbt_ex)
98 version = cpu_to_le16(0x0201);
100 if (igd_opregion_shift_copy(buf, &off,
102 (pos - OPREGION_VERSION),
103 &pos, &remaining, bytes))
107 /* Copy until RVDA */
108 if (remaining && pos < OPREGION_RVDA) {
109 size_t bytes = min_t(size_t, remaining, OPREGION_RVDA - pos);
111 if (igd_opregion_shift_copy(buf, &off,
112 opregionvbt->opregion + pos, &pos,
117 /* Copy modified (if necessary) RVDA */
118 if (remaining && pos < OPREGION_RVDA + sizeof(__le64)) {
119 size_t bytes = min_t(size_t, remaining,
120 OPREGION_RVDA + sizeof(__le64) - pos);
121 __le64 rvda = cpu_to_le64(opregionvbt->vbt_ex ?
124 if (igd_opregion_shift_copy(buf, &off,
125 (u8 *)&rvda + (pos - OPREGION_RVDA),
126 &pos, &remaining, bytes))
130 /* Copy the rest of OpRegion */
131 if (remaining && pos < OPREGION_SIZE) {
132 size_t bytes = min_t(size_t, remaining, OPREGION_SIZE - pos);
134 if (igd_opregion_shift_copy(buf, &off,
135 opregionvbt->opregion + pos, &pos,
140 /* Copy extended VBT if exists */
142 copy_to_user(buf + off, opregionvbt->vbt_ex + (pos - OPREGION_SIZE),
151 static void vfio_pci_igd_release(struct vfio_pci_core_device *vdev,
152 struct vfio_pci_region *region)
154 struct igd_opregion_vbt *opregionvbt = region->data;
156 if (opregionvbt->vbt_ex)
157 memunmap(opregionvbt->vbt_ex);
159 memunmap(opregionvbt->opregion);
163 static const struct vfio_pci_regops vfio_pci_igd_regops = {
164 .rw = vfio_pci_igd_rw,
165 .release = vfio_pci_igd_release,
168 static int vfio_pci_igd_opregion_init(struct vfio_pci_core_device *vdev)
170 __le32 *dwordp = (__le32 *)(vdev->vconfig + OPREGION_PCI_ADDR);
172 struct igd_opregion_vbt *opregionvbt;
176 ret = pci_read_config_dword(vdev->pdev, OPREGION_PCI_ADDR, &addr);
180 if (!addr || !(~addr))
183 opregionvbt = kzalloc(sizeof(*opregionvbt), GFP_KERNEL_ACCOUNT);
187 opregionvbt->opregion = memremap(addr, OPREGION_SIZE, MEMREMAP_WB);
188 if (!opregionvbt->opregion) {
193 if (memcmp(opregionvbt->opregion, OPREGION_SIGNATURE, 16)) {
194 memunmap(opregionvbt->opregion);
199 size = le32_to_cpu(*(__le32 *)(opregionvbt->opregion + 16));
201 memunmap(opregionvbt->opregion);
206 size *= 1024; /* In KB */
210 * When VBT data doesn't exceed 6KB, it's stored in Mailbox #4.
211 * When VBT data exceeds 6KB size, Mailbox #4 is no longer large enough
212 * to hold the VBT data, the Extended VBT region is introduced since
213 * OpRegion 2.0 to hold the VBT data. Since OpRegion 2.0, RVDA/RVDS are
214 * introduced to define the extended VBT data location and size.
215 * OpRegion 2.0: RVDA defines the absolute physical address of the
216 * extended VBT data, RVDS defines the VBT data size.
217 * OpRegion 2.1 and above: RVDA defines the relative address of the
218 * extended VBT data to OpRegion base, RVDS defines the VBT data size.
220 * Due to the RVDA definition diff in OpRegion VBT (also the only diff
221 * between 2.0 and 2.1), exposing OpRegion and VBT as a contiguous range
222 * for OpRegion 2.0 and above makes it possible to support the
223 * non-contiguous VBT through a single vfio region. From r/w ops view,
224 * only contiguous VBT after OpRegion with version 2.1+ is exposed,
225 * regardless the host OpRegion is 2.0 or non-contiguous 2.1+. The r/w
226 * ops will on-the-fly shift the actural offset into VBT so that data at
227 * correct position can be returned to the requester.
229 version = le16_to_cpu(*(__le16 *)(opregionvbt->opregion +
231 if (version >= 0x0200) {
232 u64 rvda = le64_to_cpu(*(__le64 *)(opregionvbt->opregion +
234 u32 rvds = le32_to_cpu(*(__le32 *)(opregionvbt->opregion +
237 /* The extended VBT is valid only when RVDA/RVDS are non-zero */
242 * Extended VBT location by RVDA:
243 * Absolute physical addr for 2.0.
244 * Relative addr to OpRegion header for 2.1+.
246 if (version == 0x0200)
251 opregionvbt->vbt_ex = memremap(addr, rvds, MEMREMAP_WB);
252 if (!opregionvbt->vbt_ex) {
253 memunmap(opregionvbt->opregion);
260 ret = vfio_pci_core_register_dev_region(vdev,
261 PCI_VENDOR_ID_INTEL | VFIO_REGION_TYPE_PCI_VENDOR_TYPE,
262 VFIO_REGION_SUBTYPE_INTEL_IGD_OPREGION, &vfio_pci_igd_regops,
263 size, VFIO_REGION_INFO_FLAG_READ, opregionvbt);
265 if (opregionvbt->vbt_ex)
266 memunmap(opregionvbt->vbt_ex);
268 memunmap(opregionvbt->opregion);
273 /* Fill vconfig with the hw value and virtualize register */
274 *dwordp = cpu_to_le32(addr);
275 memset(vdev->pci_config_map + OPREGION_PCI_ADDR,
276 PCI_CAP_ID_INVALID_VIRT, 4);
281 static ssize_t vfio_pci_igd_cfg_rw(struct vfio_pci_core_device *vdev,
282 char __user *buf, size_t count, loff_t *ppos,
285 unsigned int i = VFIO_PCI_OFFSET_TO_INDEX(*ppos) - VFIO_PCI_NUM_REGIONS;
286 struct pci_dev *pdev = vdev->region[i].data;
287 loff_t pos = *ppos & VFIO_PCI_OFFSET_MASK;
291 if (pos >= vdev->region[i].size || iswrite)
294 size = count = min(count, (size_t)(vdev->region[i].size - pos));
296 if ((pos & 1) && size) {
299 ret = pci_user_read_config_byte(pdev, pos, &val);
303 if (copy_to_user(buf + count - size, &val, 1))
310 if ((pos & 3) && size > 2) {
314 ret = pci_user_read_config_word(pdev, pos, &val);
318 lval = cpu_to_le16(val);
319 if (copy_to_user(buf + count - size, &lval, 2))
330 ret = pci_user_read_config_dword(pdev, pos, &val);
334 lval = cpu_to_le32(val);
335 if (copy_to_user(buf + count - size, &lval, 4))
346 ret = pci_user_read_config_word(pdev, pos, &val);
350 lval = cpu_to_le16(val);
351 if (copy_to_user(buf + count - size, &lval, 2))
361 ret = pci_user_read_config_byte(pdev, pos, &val);
365 if (copy_to_user(buf + count - size, &val, 1))
377 static void vfio_pci_igd_cfg_release(struct vfio_pci_core_device *vdev,
378 struct vfio_pci_region *region)
380 struct pci_dev *pdev = region->data;
385 static const struct vfio_pci_regops vfio_pci_igd_cfg_regops = {
386 .rw = vfio_pci_igd_cfg_rw,
387 .release = vfio_pci_igd_cfg_release,
390 static int vfio_pci_igd_cfg_init(struct vfio_pci_core_device *vdev)
392 struct pci_dev *host_bridge, *lpc_bridge;
395 host_bridge = pci_get_domain_bus_and_slot(0, 0, PCI_DEVFN(0, 0));
399 if (host_bridge->vendor != PCI_VENDOR_ID_INTEL ||
400 host_bridge->class != (PCI_CLASS_BRIDGE_HOST << 8)) {
401 pci_dev_put(host_bridge);
405 ret = vfio_pci_core_register_dev_region(vdev,
406 PCI_VENDOR_ID_INTEL | VFIO_REGION_TYPE_PCI_VENDOR_TYPE,
407 VFIO_REGION_SUBTYPE_INTEL_IGD_HOST_CFG,
408 &vfio_pci_igd_cfg_regops, host_bridge->cfg_size,
409 VFIO_REGION_INFO_FLAG_READ, host_bridge);
411 pci_dev_put(host_bridge);
415 lpc_bridge = pci_get_domain_bus_and_slot(0, 0, PCI_DEVFN(0x1f, 0));
419 if (lpc_bridge->vendor != PCI_VENDOR_ID_INTEL ||
420 lpc_bridge->class != (PCI_CLASS_BRIDGE_ISA << 8)) {
421 pci_dev_put(lpc_bridge);
425 ret = vfio_pci_core_register_dev_region(vdev,
426 PCI_VENDOR_ID_INTEL | VFIO_REGION_TYPE_PCI_VENDOR_TYPE,
427 VFIO_REGION_SUBTYPE_INTEL_IGD_LPC_CFG,
428 &vfio_pci_igd_cfg_regops, lpc_bridge->cfg_size,
429 VFIO_REGION_INFO_FLAG_READ, lpc_bridge);
431 pci_dev_put(lpc_bridge);
438 int vfio_pci_igd_init(struct vfio_pci_core_device *vdev)
442 ret = vfio_pci_igd_opregion_init(vdev);
446 ret = vfio_pci_igd_cfg_init(vdev);