1 // SPDX-License-Identifier: GPL-2.0
5 * Support for ATMEL AES HW acceleration.
7 * Copyright (c) 2012 Eukréa Electromatique - ATMEL
10 * Some ideas are from omap-aes.c driver.
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/err.h>
18 #include <linux/clk.h>
20 #include <linux/hw_random.h>
21 #include <linux/platform_device.h>
23 #include <linux/device.h>
24 #include <linux/dmaengine.h>
25 #include <linux/init.h>
26 #include <linux/errno.h>
27 #include <linux/interrupt.h>
28 #include <linux/irq.h>
29 #include <linux/scatterlist.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/mod_devicetable.h>
32 #include <linux/delay.h>
33 #include <linux/crypto.h>
34 #include <crypto/scatterwalk.h>
35 #include <crypto/algapi.h>
36 #include <crypto/aes.h>
37 #include <crypto/gcm.h>
38 #include <crypto/xts.h>
39 #include <crypto/internal/aead.h>
40 #include <crypto/internal/skcipher.h>
41 #include "atmel-aes-regs.h"
42 #include "atmel-authenc.h"
44 #define ATMEL_AES_PRIORITY 300
46 #define ATMEL_AES_BUFFER_ORDER 2
47 #define ATMEL_AES_BUFFER_SIZE (PAGE_SIZE << ATMEL_AES_BUFFER_ORDER)
49 #define CFB8_BLOCK_SIZE 1
50 #define CFB16_BLOCK_SIZE 2
51 #define CFB32_BLOCK_SIZE 4
52 #define CFB64_BLOCK_SIZE 8
54 #define SIZE_IN_WORDS(x) ((x) >> 2)
57 /* Reserve bits [18:16] [14:12] [1:0] for mode (same as for AES_MR) */
58 #define AES_FLAGS_ENCRYPT AES_MR_CYPHER_ENC
59 #define AES_FLAGS_GTAGEN AES_MR_GTAGEN
60 #define AES_FLAGS_OPMODE_MASK (AES_MR_OPMOD_MASK | AES_MR_CFBS_MASK)
61 #define AES_FLAGS_ECB AES_MR_OPMOD_ECB
62 #define AES_FLAGS_CBC AES_MR_OPMOD_CBC
63 #define AES_FLAGS_OFB AES_MR_OPMOD_OFB
64 #define AES_FLAGS_CFB128 (AES_MR_OPMOD_CFB | AES_MR_CFBS_128b)
65 #define AES_FLAGS_CFB64 (AES_MR_OPMOD_CFB | AES_MR_CFBS_64b)
66 #define AES_FLAGS_CFB32 (AES_MR_OPMOD_CFB | AES_MR_CFBS_32b)
67 #define AES_FLAGS_CFB16 (AES_MR_OPMOD_CFB | AES_MR_CFBS_16b)
68 #define AES_FLAGS_CFB8 (AES_MR_OPMOD_CFB | AES_MR_CFBS_8b)
69 #define AES_FLAGS_CTR AES_MR_OPMOD_CTR
70 #define AES_FLAGS_GCM AES_MR_OPMOD_GCM
71 #define AES_FLAGS_XTS AES_MR_OPMOD_XTS
73 #define AES_FLAGS_MODE_MASK (AES_FLAGS_OPMODE_MASK | \
77 #define AES_FLAGS_BUSY BIT(3)
78 #define AES_FLAGS_DUMP_REG BIT(4)
79 #define AES_FLAGS_OWN_SHA BIT(5)
81 #define AES_FLAGS_PERSISTENT AES_FLAGS_BUSY
83 #define ATMEL_AES_QUEUE_LENGTH 50
85 #define ATMEL_AES_DMA_THRESHOLD 256
88 struct atmel_aes_caps {
100 typedef int (*atmel_aes_fn_t)(struct atmel_aes_dev *);
103 struct atmel_aes_base_ctx {
104 struct atmel_aes_dev *dd;
105 atmel_aes_fn_t start;
107 u32 key[AES_KEYSIZE_256 / sizeof(u32)];
112 struct atmel_aes_ctx {
113 struct atmel_aes_base_ctx base;
116 struct atmel_aes_ctr_ctx {
117 struct atmel_aes_base_ctx base;
119 __be32 iv[AES_BLOCK_SIZE / sizeof(u32)];
121 struct scatterlist src[2];
122 struct scatterlist dst[2];
126 struct atmel_aes_gcm_ctx {
127 struct atmel_aes_base_ctx base;
129 struct scatterlist src[2];
130 struct scatterlist dst[2];
132 __be32 j0[AES_BLOCK_SIZE / sizeof(u32)];
133 u32 tag[AES_BLOCK_SIZE / sizeof(u32)];
134 __be32 ghash[AES_BLOCK_SIZE / sizeof(u32)];
137 const __be32 *ghash_in;
139 atmel_aes_fn_t ghash_resume;
142 struct atmel_aes_xts_ctx {
143 struct atmel_aes_base_ctx base;
145 u32 key2[AES_KEYSIZE_256 / sizeof(u32)];
146 struct crypto_skcipher *fallback_tfm;
149 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
150 struct atmel_aes_authenc_ctx {
151 struct atmel_aes_base_ctx base;
152 struct atmel_sha_authenc_ctx *auth;
156 struct atmel_aes_reqctx {
158 u8 lastc[AES_BLOCK_SIZE];
159 struct skcipher_request fallback_req;
162 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
163 struct atmel_aes_authenc_reqctx {
164 struct atmel_aes_reqctx base;
166 struct scatterlist src[2];
167 struct scatterlist dst[2];
169 u32 digest[SHA512_DIGEST_SIZE / sizeof(u32)];
171 /* auth_req MUST be place last. */
172 struct ahash_request auth_req;
176 struct atmel_aes_dma {
177 struct dma_chan *chan;
178 struct scatterlist *sg;
180 unsigned int remainder;
184 struct atmel_aes_dev {
185 struct list_head list;
186 unsigned long phys_base;
187 void __iomem *io_base;
189 struct crypto_async_request *areq;
190 struct atmel_aes_base_ctx *ctx;
193 atmel_aes_fn_t resume;
194 atmel_aes_fn_t cpu_transfer_complete;
203 struct crypto_queue queue;
205 struct tasklet_struct done_task;
206 struct tasklet_struct queue_task;
212 struct atmel_aes_dma src;
213 struct atmel_aes_dma dst;
217 struct scatterlist aligned_sg;
218 struct scatterlist *real_dst;
220 struct atmel_aes_caps caps;
225 struct atmel_aes_drv {
226 struct list_head dev_list;
230 static struct atmel_aes_drv atmel_aes = {
231 .dev_list = LIST_HEAD_INIT(atmel_aes.dev_list),
232 .lock = __SPIN_LOCK_UNLOCKED(atmel_aes.lock),
236 static const char *atmel_aes_reg_name(u32 offset, char *tmp, size_t sz)
265 snprintf(tmp, sz, "KEYWR[%u]", (offset - AES_KEYWR(0)) >> 2);
272 snprintf(tmp, sz, "IDATAR[%u]", (offset - AES_IDATAR(0)) >> 2);
279 snprintf(tmp, sz, "ODATAR[%u]", (offset - AES_ODATAR(0)) >> 2);
286 snprintf(tmp, sz, "IVR[%u]", (offset - AES_IVR(0)) >> 2);
299 snprintf(tmp, sz, "GHASHR[%u]", (offset - AES_GHASHR(0)) >> 2);
306 snprintf(tmp, sz, "TAGR[%u]", (offset - AES_TAGR(0)) >> 2);
316 snprintf(tmp, sz, "GCMHR[%u]", (offset - AES_GCMHR(0)) >> 2);
326 snprintf(tmp, sz, "TWR[%u]", (offset - AES_TWR(0)) >> 2);
333 snprintf(tmp, sz, "ALPHAR[%u]", (offset - AES_ALPHAR(0)) >> 2);
337 snprintf(tmp, sz, "0x%02x", offset);
343 #endif /* VERBOSE_DEBUG */
345 /* Shared functions */
347 static inline u32 atmel_aes_read(struct atmel_aes_dev *dd, u32 offset)
349 u32 value = readl_relaxed(dd->io_base + offset);
352 if (dd->flags & AES_FLAGS_DUMP_REG) {
355 dev_vdbg(dd->dev, "read 0x%08x from %s\n", value,
356 atmel_aes_reg_name(offset, tmp, sizeof(tmp)));
358 #endif /* VERBOSE_DEBUG */
363 static inline void atmel_aes_write(struct atmel_aes_dev *dd,
364 u32 offset, u32 value)
367 if (dd->flags & AES_FLAGS_DUMP_REG) {
370 dev_vdbg(dd->dev, "write 0x%08x into %s\n", value,
371 atmel_aes_reg_name(offset, tmp, sizeof(tmp)));
373 #endif /* VERBOSE_DEBUG */
375 writel_relaxed(value, dd->io_base + offset);
378 static void atmel_aes_read_n(struct atmel_aes_dev *dd, u32 offset,
379 u32 *value, int count)
381 for (; count--; value++, offset += 4)
382 *value = atmel_aes_read(dd, offset);
385 static void atmel_aes_write_n(struct atmel_aes_dev *dd, u32 offset,
386 const u32 *value, int count)
388 for (; count--; value++, offset += 4)
389 atmel_aes_write(dd, offset, *value);
392 static inline void atmel_aes_read_block(struct atmel_aes_dev *dd, u32 offset,
395 atmel_aes_read_n(dd, offset, value, SIZE_IN_WORDS(AES_BLOCK_SIZE));
398 static inline void atmel_aes_write_block(struct atmel_aes_dev *dd, u32 offset,
401 atmel_aes_write_n(dd, offset, value, SIZE_IN_WORDS(AES_BLOCK_SIZE));
404 static inline int atmel_aes_wait_for_data_ready(struct atmel_aes_dev *dd,
405 atmel_aes_fn_t resume)
407 u32 isr = atmel_aes_read(dd, AES_ISR);
409 if (unlikely(isr & AES_INT_DATARDY))
413 atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
417 static inline size_t atmel_aes_padlen(size_t len, size_t block_size)
419 len &= block_size - 1;
420 return len ? block_size - len : 0;
423 static struct atmel_aes_dev *atmel_aes_dev_alloc(struct atmel_aes_base_ctx *ctx)
425 struct atmel_aes_dev *aes_dd;
427 spin_lock_bh(&atmel_aes.lock);
428 /* One AES IP per SoC. */
429 aes_dd = list_first_entry_or_null(&atmel_aes.dev_list,
430 struct atmel_aes_dev, list);
431 spin_unlock_bh(&atmel_aes.lock);
435 static int atmel_aes_hw_init(struct atmel_aes_dev *dd)
439 err = clk_enable(dd->iclk);
443 atmel_aes_write(dd, AES_CR, AES_CR_SWRST);
444 atmel_aes_write(dd, AES_MR, 0xE << AES_MR_CKEY_OFFSET);
449 static inline unsigned int atmel_aes_get_version(struct atmel_aes_dev *dd)
451 return atmel_aes_read(dd, AES_HW_VERSION) & 0x00000fff;
454 static int atmel_aes_hw_version_init(struct atmel_aes_dev *dd)
458 err = atmel_aes_hw_init(dd);
462 dd->hw_version = atmel_aes_get_version(dd);
464 dev_info(dd->dev, "version: 0x%x\n", dd->hw_version);
466 clk_disable(dd->iclk);
470 static inline void atmel_aes_set_mode(struct atmel_aes_dev *dd,
471 const struct atmel_aes_reqctx *rctx)
473 /* Clear all but persistent flags and set request flags. */
474 dd->flags = (dd->flags & AES_FLAGS_PERSISTENT) | rctx->mode;
477 static inline bool atmel_aes_is_encrypt(const struct atmel_aes_dev *dd)
479 return (dd->flags & AES_FLAGS_ENCRYPT);
482 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
483 static void atmel_aes_authenc_complete(struct atmel_aes_dev *dd, int err);
486 static void atmel_aes_set_iv_as_last_ciphertext_block(struct atmel_aes_dev *dd)
488 struct skcipher_request *req = skcipher_request_cast(dd->areq);
489 struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
490 struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
491 unsigned int ivsize = crypto_skcipher_ivsize(skcipher);
493 if (req->cryptlen < ivsize)
496 if (rctx->mode & AES_FLAGS_ENCRYPT)
497 scatterwalk_map_and_copy(req->iv, req->dst,
498 req->cryptlen - ivsize, ivsize, 0);
500 memcpy(req->iv, rctx->lastc, ivsize);
503 static inline struct atmel_aes_ctr_ctx *
504 atmel_aes_ctr_ctx_cast(struct atmel_aes_base_ctx *ctx)
506 return container_of(ctx, struct atmel_aes_ctr_ctx, base);
509 static void atmel_aes_ctr_update_req_iv(struct atmel_aes_dev *dd)
511 struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
512 struct skcipher_request *req = skcipher_request_cast(dd->areq);
513 struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
514 unsigned int ivsize = crypto_skcipher_ivsize(skcipher);
518 * The CTR transfer works in fragments of data of maximum 1 MByte
519 * because of the 16 bit CTR counter embedded in the IP. When reaching
520 * here, ctx->blocks contains the number of blocks of the last fragment
521 * processed, there is no need to explicit cast it to u16.
523 for (i = 0; i < ctx->blocks; i++)
524 crypto_inc((u8 *)ctx->iv, AES_BLOCK_SIZE);
526 memcpy(req->iv, ctx->iv, ivsize);
529 static inline int atmel_aes_complete(struct atmel_aes_dev *dd, int err)
531 struct skcipher_request *req = skcipher_request_cast(dd->areq);
532 struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
534 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
535 if (dd->ctx->is_aead)
536 atmel_aes_authenc_complete(dd, err);
539 clk_disable(dd->iclk);
540 dd->flags &= ~AES_FLAGS_BUSY;
542 if (!err && !dd->ctx->is_aead &&
543 (rctx->mode & AES_FLAGS_OPMODE_MASK) != AES_FLAGS_ECB) {
544 if ((rctx->mode & AES_FLAGS_OPMODE_MASK) != AES_FLAGS_CTR)
545 atmel_aes_set_iv_as_last_ciphertext_block(dd);
547 atmel_aes_ctr_update_req_iv(dd);
551 crypto_request_complete(dd->areq, err);
553 tasklet_schedule(&dd->queue_task);
558 static void atmel_aes_write_ctrl_key(struct atmel_aes_dev *dd, bool use_dma,
559 const __be32 *iv, const u32 *key, int keylen)
563 /* MR register must be set before IV registers */
564 if (keylen == AES_KEYSIZE_128)
565 valmr |= AES_MR_KEYSIZE_128;
566 else if (keylen == AES_KEYSIZE_192)
567 valmr |= AES_MR_KEYSIZE_192;
569 valmr |= AES_MR_KEYSIZE_256;
571 valmr |= dd->flags & AES_FLAGS_MODE_MASK;
574 valmr |= AES_MR_SMOD_IDATAR0;
575 if (dd->caps.has_dualbuff)
576 valmr |= AES_MR_DUALBUFF;
578 valmr |= AES_MR_SMOD_AUTO;
581 atmel_aes_write(dd, AES_MR, valmr);
583 atmel_aes_write_n(dd, AES_KEYWR(0), key, SIZE_IN_WORDS(keylen));
585 if (iv && (valmr & AES_MR_OPMOD_MASK) != AES_MR_OPMOD_ECB)
586 atmel_aes_write_block(dd, AES_IVR(0), iv);
589 static inline void atmel_aes_write_ctrl(struct atmel_aes_dev *dd, bool use_dma,
593 atmel_aes_write_ctrl_key(dd, use_dma, iv,
594 dd->ctx->key, dd->ctx->keylen);
599 static int atmel_aes_cpu_transfer(struct atmel_aes_dev *dd)
605 atmel_aes_read_block(dd, AES_ODATAR(0), dd->data);
607 dd->datalen -= AES_BLOCK_SIZE;
609 if (dd->datalen < AES_BLOCK_SIZE)
612 atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
614 isr = atmel_aes_read(dd, AES_ISR);
615 if (!(isr & AES_INT_DATARDY)) {
616 dd->resume = atmel_aes_cpu_transfer;
617 atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
622 if (!sg_copy_from_buffer(dd->real_dst, sg_nents(dd->real_dst),
627 return atmel_aes_complete(dd, err);
629 return dd->cpu_transfer_complete(dd);
632 static int atmel_aes_cpu_start(struct atmel_aes_dev *dd,
633 struct scatterlist *src,
634 struct scatterlist *dst,
636 atmel_aes_fn_t resume)
638 size_t padlen = atmel_aes_padlen(len, AES_BLOCK_SIZE);
640 if (unlikely(len == 0))
643 sg_copy_to_buffer(src, sg_nents(src), dd->buf, len);
647 dd->cpu_transfer_complete = resume;
648 dd->datalen = len + padlen;
649 dd->data = (u32 *)dd->buf;
650 atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
651 return atmel_aes_wait_for_data_ready(dd, atmel_aes_cpu_transfer);
657 static void atmel_aes_dma_callback(void *data);
659 static bool atmel_aes_check_aligned(struct atmel_aes_dev *dd,
660 struct scatterlist *sg,
662 struct atmel_aes_dma *dma)
666 if (!IS_ALIGNED(len, dd->ctx->block_size))
669 for (nents = 0; sg; sg = sg_next(sg), ++nents) {
670 if (!IS_ALIGNED(sg->offset, sizeof(u32)))
673 if (len <= sg->length) {
674 if (!IS_ALIGNED(len, dd->ctx->block_size))
677 dma->nents = nents+1;
678 dma->remainder = sg->length - len;
683 if (!IS_ALIGNED(sg->length, dd->ctx->block_size))
692 static inline void atmel_aes_restore_sg(const struct atmel_aes_dma *dma)
694 struct scatterlist *sg = dma->sg;
695 int nents = dma->nents;
700 while (--nents > 0 && sg)
706 sg->length += dma->remainder;
709 static int atmel_aes_map(struct atmel_aes_dev *dd,
710 struct scatterlist *src,
711 struct scatterlist *dst,
714 bool src_aligned, dst_aligned;
722 src_aligned = atmel_aes_check_aligned(dd, src, len, &dd->src);
724 dst_aligned = src_aligned;
726 dst_aligned = atmel_aes_check_aligned(dd, dst, len, &dd->dst);
727 if (!src_aligned || !dst_aligned) {
728 padlen = atmel_aes_padlen(len, dd->ctx->block_size);
730 if (dd->buflen < len + padlen)
734 sg_copy_to_buffer(src, sg_nents(src), dd->buf, len);
735 dd->src.sg = &dd->aligned_sg;
737 dd->src.remainder = 0;
741 dd->dst.sg = &dd->aligned_sg;
743 dd->dst.remainder = 0;
746 sg_init_table(&dd->aligned_sg, 1);
747 sg_set_buf(&dd->aligned_sg, dd->buf, len + padlen);
750 if (dd->src.sg == dd->dst.sg) {
751 dd->src.sg_len = dma_map_sg(dd->dev, dd->src.sg, dd->src.nents,
753 dd->dst.sg_len = dd->src.sg_len;
757 dd->src.sg_len = dma_map_sg(dd->dev, dd->src.sg, dd->src.nents,
762 dd->dst.sg_len = dma_map_sg(dd->dev, dd->dst.sg, dd->dst.nents,
764 if (!dd->dst.sg_len) {
765 dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
774 static void atmel_aes_unmap(struct atmel_aes_dev *dd)
776 if (dd->src.sg == dd->dst.sg) {
777 dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
780 if (dd->src.sg != &dd->aligned_sg)
781 atmel_aes_restore_sg(&dd->src);
783 dma_unmap_sg(dd->dev, dd->dst.sg, dd->dst.nents,
786 if (dd->dst.sg != &dd->aligned_sg)
787 atmel_aes_restore_sg(&dd->dst);
789 dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
792 if (dd->src.sg != &dd->aligned_sg)
793 atmel_aes_restore_sg(&dd->src);
796 if (dd->dst.sg == &dd->aligned_sg)
797 sg_copy_from_buffer(dd->real_dst, sg_nents(dd->real_dst),
801 static int atmel_aes_dma_transfer_start(struct atmel_aes_dev *dd,
802 enum dma_slave_buswidth addr_width,
803 enum dma_transfer_direction dir,
806 struct dma_async_tx_descriptor *desc;
807 struct dma_slave_config config;
808 dma_async_tx_callback callback;
809 struct atmel_aes_dma *dma;
812 memset(&config, 0, sizeof(config));
813 config.src_addr_width = addr_width;
814 config.dst_addr_width = addr_width;
815 config.src_maxburst = maxburst;
816 config.dst_maxburst = maxburst;
822 config.dst_addr = dd->phys_base + AES_IDATAR(0);
827 callback = atmel_aes_dma_callback;
828 config.src_addr = dd->phys_base + AES_ODATAR(0);
835 err = dmaengine_slave_config(dma->chan, &config);
839 desc = dmaengine_prep_slave_sg(dma->chan, dma->sg, dma->sg_len, dir,
840 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
844 desc->callback = callback;
845 desc->callback_param = dd;
846 dmaengine_submit(desc);
847 dma_async_issue_pending(dma->chan);
852 static int atmel_aes_dma_start(struct atmel_aes_dev *dd,
853 struct scatterlist *src,
854 struct scatterlist *dst,
856 atmel_aes_fn_t resume)
858 enum dma_slave_buswidth addr_width;
862 switch (dd->ctx->block_size) {
863 case CFB8_BLOCK_SIZE:
864 addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
868 case CFB16_BLOCK_SIZE:
869 addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
873 case CFB32_BLOCK_SIZE:
874 case CFB64_BLOCK_SIZE:
875 addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
880 addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
881 maxburst = dd->caps.max_burst_size;
889 err = atmel_aes_map(dd, src, dst, len);
895 /* Set output DMA transfer first */
896 err = atmel_aes_dma_transfer_start(dd, addr_width, DMA_DEV_TO_MEM,
901 /* Then set input DMA transfer */
902 err = atmel_aes_dma_transfer_start(dd, addr_width, DMA_MEM_TO_DEV,
905 goto output_transfer_stop;
909 output_transfer_stop:
910 dmaengine_terminate_sync(dd->dst.chan);
914 return atmel_aes_complete(dd, err);
917 static void atmel_aes_dma_callback(void *data)
919 struct atmel_aes_dev *dd = data;
923 (void)dd->resume(dd);
926 static int atmel_aes_handle_queue(struct atmel_aes_dev *dd,
927 struct crypto_async_request *new_areq)
929 struct crypto_async_request *areq, *backlog;
930 struct atmel_aes_base_ctx *ctx;
935 spin_lock_irqsave(&dd->lock, flags);
937 ret = crypto_enqueue_request(&dd->queue, new_areq);
938 if (dd->flags & AES_FLAGS_BUSY) {
939 spin_unlock_irqrestore(&dd->lock, flags);
942 backlog = crypto_get_backlog(&dd->queue);
943 areq = crypto_dequeue_request(&dd->queue);
945 dd->flags |= AES_FLAGS_BUSY;
946 spin_unlock_irqrestore(&dd->lock, flags);
952 crypto_request_complete(backlog, -EINPROGRESS);
954 ctx = crypto_tfm_ctx(areq->tfm);
958 start_async = (areq != new_areq);
959 dd->is_async = start_async;
961 /* WARNING: ctx->start() MAY change dd->is_async. */
962 err = ctx->start(dd);
963 return (start_async) ? ret : err;
967 /* AES async block ciphers */
969 static int atmel_aes_transfer_complete(struct atmel_aes_dev *dd)
971 return atmel_aes_complete(dd, 0);
974 static int atmel_aes_start(struct atmel_aes_dev *dd)
976 struct skcipher_request *req = skcipher_request_cast(dd->areq);
977 struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
978 bool use_dma = (req->cryptlen >= ATMEL_AES_DMA_THRESHOLD ||
979 dd->ctx->block_size != AES_BLOCK_SIZE);
982 atmel_aes_set_mode(dd, rctx);
984 err = atmel_aes_hw_init(dd);
986 return atmel_aes_complete(dd, err);
988 atmel_aes_write_ctrl(dd, use_dma, (void *)req->iv);
990 return atmel_aes_dma_start(dd, req->src, req->dst,
992 atmel_aes_transfer_complete);
994 return atmel_aes_cpu_start(dd, req->src, req->dst, req->cryptlen,
995 atmel_aes_transfer_complete);
998 static int atmel_aes_ctr_transfer(struct atmel_aes_dev *dd)
1000 struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
1001 struct skcipher_request *req = skcipher_request_cast(dd->areq);
1002 struct scatterlist *src, *dst;
1006 bool use_dma, fragmented = false;
1008 /* Check for transfer completion. */
1009 ctx->offset += dd->total;
1010 if (ctx->offset >= req->cryptlen)
1011 return atmel_aes_transfer_complete(dd);
1013 /* Compute data length. */
1014 datalen = req->cryptlen - ctx->offset;
1015 ctx->blocks = DIV_ROUND_UP(datalen, AES_BLOCK_SIZE);
1016 ctr = be32_to_cpu(ctx->iv[3]);
1018 /* Check 16bit counter overflow. */
1019 start = ctr & 0xffff;
1020 end = start + ctx->blocks - 1;
1022 if (ctx->blocks >> 16 || end < start) {
1024 datalen = AES_BLOCK_SIZE * (0x10000 - start);
1028 use_dma = (datalen >= ATMEL_AES_DMA_THRESHOLD);
1030 /* Jump to offset. */
1031 src = scatterwalk_ffwd(ctx->src, req->src, ctx->offset);
1032 dst = ((req->src == req->dst) ? src :
1033 scatterwalk_ffwd(ctx->dst, req->dst, ctx->offset));
1035 /* Configure hardware. */
1036 atmel_aes_write_ctrl(dd, use_dma, ctx->iv);
1037 if (unlikely(fragmented)) {
1039 * Increment the counter manually to cope with the hardware
1042 ctx->iv[3] = cpu_to_be32(ctr);
1043 crypto_inc((u8 *)ctx->iv, AES_BLOCK_SIZE);
1047 return atmel_aes_dma_start(dd, src, dst, datalen,
1048 atmel_aes_ctr_transfer);
1050 return atmel_aes_cpu_start(dd, src, dst, datalen,
1051 atmel_aes_ctr_transfer);
1054 static int atmel_aes_ctr_start(struct atmel_aes_dev *dd)
1056 struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
1057 struct skcipher_request *req = skcipher_request_cast(dd->areq);
1058 struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
1061 atmel_aes_set_mode(dd, rctx);
1063 err = atmel_aes_hw_init(dd);
1065 return atmel_aes_complete(dd, err);
1067 memcpy(ctx->iv, req->iv, AES_BLOCK_SIZE);
1070 return atmel_aes_ctr_transfer(dd);
1073 static int atmel_aes_xts_fallback(struct skcipher_request *req, bool enc)
1075 struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
1076 struct atmel_aes_xts_ctx *ctx = crypto_skcipher_ctx(
1077 crypto_skcipher_reqtfm(req));
1079 skcipher_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
1080 skcipher_request_set_callback(&rctx->fallback_req, req->base.flags,
1081 req->base.complete, req->base.data);
1082 skcipher_request_set_crypt(&rctx->fallback_req, req->src, req->dst,
1083 req->cryptlen, req->iv);
1085 return enc ? crypto_skcipher_encrypt(&rctx->fallback_req) :
1086 crypto_skcipher_decrypt(&rctx->fallback_req);
1089 static int atmel_aes_crypt(struct skcipher_request *req, unsigned long mode)
1091 struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
1092 struct atmel_aes_base_ctx *ctx = crypto_skcipher_ctx(skcipher);
1093 struct atmel_aes_reqctx *rctx;
1094 u32 opmode = mode & AES_FLAGS_OPMODE_MASK;
1096 if (opmode == AES_FLAGS_XTS) {
1097 if (req->cryptlen < XTS_BLOCK_SIZE)
1100 if (!IS_ALIGNED(req->cryptlen, XTS_BLOCK_SIZE))
1101 return atmel_aes_xts_fallback(req,
1102 mode & AES_FLAGS_ENCRYPT);
1106 * ECB, CBC, CFB, OFB or CTR mode require the plaintext and ciphertext
1107 * to have a positve integer length.
1109 if (!req->cryptlen && opmode != AES_FLAGS_XTS)
1112 if ((opmode == AES_FLAGS_ECB || opmode == AES_FLAGS_CBC) &&
1113 !IS_ALIGNED(req->cryptlen, crypto_skcipher_blocksize(skcipher)))
1116 switch (mode & AES_FLAGS_OPMODE_MASK) {
1117 case AES_FLAGS_CFB8:
1118 ctx->block_size = CFB8_BLOCK_SIZE;
1121 case AES_FLAGS_CFB16:
1122 ctx->block_size = CFB16_BLOCK_SIZE;
1125 case AES_FLAGS_CFB32:
1126 ctx->block_size = CFB32_BLOCK_SIZE;
1129 case AES_FLAGS_CFB64:
1130 ctx->block_size = CFB64_BLOCK_SIZE;
1134 ctx->block_size = AES_BLOCK_SIZE;
1137 ctx->is_aead = false;
1139 rctx = skcipher_request_ctx(req);
1142 if (opmode != AES_FLAGS_ECB &&
1143 !(mode & AES_FLAGS_ENCRYPT)) {
1144 unsigned int ivsize = crypto_skcipher_ivsize(skcipher);
1146 if (req->cryptlen >= ivsize)
1147 scatterwalk_map_and_copy(rctx->lastc, req->src,
1148 req->cryptlen - ivsize,
1152 return atmel_aes_handle_queue(ctx->dd, &req->base);
1155 static int atmel_aes_setkey(struct crypto_skcipher *tfm, const u8 *key,
1156 unsigned int keylen)
1158 struct atmel_aes_base_ctx *ctx = crypto_skcipher_ctx(tfm);
1160 if (keylen != AES_KEYSIZE_128 &&
1161 keylen != AES_KEYSIZE_192 &&
1162 keylen != AES_KEYSIZE_256)
1165 memcpy(ctx->key, key, keylen);
1166 ctx->keylen = keylen;
1171 static int atmel_aes_ecb_encrypt(struct skcipher_request *req)
1173 return atmel_aes_crypt(req, AES_FLAGS_ECB | AES_FLAGS_ENCRYPT);
1176 static int atmel_aes_ecb_decrypt(struct skcipher_request *req)
1178 return atmel_aes_crypt(req, AES_FLAGS_ECB);
1181 static int atmel_aes_cbc_encrypt(struct skcipher_request *req)
1183 return atmel_aes_crypt(req, AES_FLAGS_CBC | AES_FLAGS_ENCRYPT);
1186 static int atmel_aes_cbc_decrypt(struct skcipher_request *req)
1188 return atmel_aes_crypt(req, AES_FLAGS_CBC);
1191 static int atmel_aes_ofb_encrypt(struct skcipher_request *req)
1193 return atmel_aes_crypt(req, AES_FLAGS_OFB | AES_FLAGS_ENCRYPT);
1196 static int atmel_aes_ofb_decrypt(struct skcipher_request *req)
1198 return atmel_aes_crypt(req, AES_FLAGS_OFB);
1201 static int atmel_aes_cfb_encrypt(struct skcipher_request *req)
1203 return atmel_aes_crypt(req, AES_FLAGS_CFB128 | AES_FLAGS_ENCRYPT);
1206 static int atmel_aes_cfb_decrypt(struct skcipher_request *req)
1208 return atmel_aes_crypt(req, AES_FLAGS_CFB128);
1211 static int atmel_aes_cfb64_encrypt(struct skcipher_request *req)
1213 return atmel_aes_crypt(req, AES_FLAGS_CFB64 | AES_FLAGS_ENCRYPT);
1216 static int atmel_aes_cfb64_decrypt(struct skcipher_request *req)
1218 return atmel_aes_crypt(req, AES_FLAGS_CFB64);
1221 static int atmel_aes_cfb32_encrypt(struct skcipher_request *req)
1223 return atmel_aes_crypt(req, AES_FLAGS_CFB32 | AES_FLAGS_ENCRYPT);
1226 static int atmel_aes_cfb32_decrypt(struct skcipher_request *req)
1228 return atmel_aes_crypt(req, AES_FLAGS_CFB32);
1231 static int atmel_aes_cfb16_encrypt(struct skcipher_request *req)
1233 return atmel_aes_crypt(req, AES_FLAGS_CFB16 | AES_FLAGS_ENCRYPT);
1236 static int atmel_aes_cfb16_decrypt(struct skcipher_request *req)
1238 return atmel_aes_crypt(req, AES_FLAGS_CFB16);
1241 static int atmel_aes_cfb8_encrypt(struct skcipher_request *req)
1243 return atmel_aes_crypt(req, AES_FLAGS_CFB8 | AES_FLAGS_ENCRYPT);
1246 static int atmel_aes_cfb8_decrypt(struct skcipher_request *req)
1248 return atmel_aes_crypt(req, AES_FLAGS_CFB8);
1251 static int atmel_aes_ctr_encrypt(struct skcipher_request *req)
1253 return atmel_aes_crypt(req, AES_FLAGS_CTR | AES_FLAGS_ENCRYPT);
1256 static int atmel_aes_ctr_decrypt(struct skcipher_request *req)
1258 return atmel_aes_crypt(req, AES_FLAGS_CTR);
1261 static int atmel_aes_init_tfm(struct crypto_skcipher *tfm)
1263 struct atmel_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
1264 struct atmel_aes_dev *dd;
1266 dd = atmel_aes_dev_alloc(&ctx->base);
1270 crypto_skcipher_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx));
1272 ctx->base.start = atmel_aes_start;
1277 static int atmel_aes_ctr_init_tfm(struct crypto_skcipher *tfm)
1279 struct atmel_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
1280 struct atmel_aes_dev *dd;
1282 dd = atmel_aes_dev_alloc(&ctx->base);
1286 crypto_skcipher_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx));
1288 ctx->base.start = atmel_aes_ctr_start;
1293 static struct skcipher_alg aes_algs[] = {
1295 .base.cra_name = "ecb(aes)",
1296 .base.cra_driver_name = "atmel-ecb-aes",
1297 .base.cra_blocksize = AES_BLOCK_SIZE,
1298 .base.cra_ctxsize = sizeof(struct atmel_aes_ctx),
1300 .init = atmel_aes_init_tfm,
1301 .min_keysize = AES_MIN_KEY_SIZE,
1302 .max_keysize = AES_MAX_KEY_SIZE,
1303 .setkey = atmel_aes_setkey,
1304 .encrypt = atmel_aes_ecb_encrypt,
1305 .decrypt = atmel_aes_ecb_decrypt,
1308 .base.cra_name = "cbc(aes)",
1309 .base.cra_driver_name = "atmel-cbc-aes",
1310 .base.cra_blocksize = AES_BLOCK_SIZE,
1311 .base.cra_ctxsize = sizeof(struct atmel_aes_ctx),
1313 .init = atmel_aes_init_tfm,
1314 .min_keysize = AES_MIN_KEY_SIZE,
1315 .max_keysize = AES_MAX_KEY_SIZE,
1316 .setkey = atmel_aes_setkey,
1317 .encrypt = atmel_aes_cbc_encrypt,
1318 .decrypt = atmel_aes_cbc_decrypt,
1319 .ivsize = AES_BLOCK_SIZE,
1322 .base.cra_name = "ofb(aes)",
1323 .base.cra_driver_name = "atmel-ofb-aes",
1324 .base.cra_blocksize = 1,
1325 .base.cra_ctxsize = sizeof(struct atmel_aes_ctx),
1327 .init = atmel_aes_init_tfm,
1328 .min_keysize = AES_MIN_KEY_SIZE,
1329 .max_keysize = AES_MAX_KEY_SIZE,
1330 .setkey = atmel_aes_setkey,
1331 .encrypt = atmel_aes_ofb_encrypt,
1332 .decrypt = atmel_aes_ofb_decrypt,
1333 .ivsize = AES_BLOCK_SIZE,
1336 .base.cra_name = "cfb(aes)",
1337 .base.cra_driver_name = "atmel-cfb-aes",
1338 .base.cra_blocksize = 1,
1339 .base.cra_ctxsize = sizeof(struct atmel_aes_ctx),
1341 .init = atmel_aes_init_tfm,
1342 .min_keysize = AES_MIN_KEY_SIZE,
1343 .max_keysize = AES_MAX_KEY_SIZE,
1344 .setkey = atmel_aes_setkey,
1345 .encrypt = atmel_aes_cfb_encrypt,
1346 .decrypt = atmel_aes_cfb_decrypt,
1347 .ivsize = AES_BLOCK_SIZE,
1350 .base.cra_name = "cfb32(aes)",
1351 .base.cra_driver_name = "atmel-cfb32-aes",
1352 .base.cra_blocksize = CFB32_BLOCK_SIZE,
1353 .base.cra_ctxsize = sizeof(struct atmel_aes_ctx),
1355 .init = atmel_aes_init_tfm,
1356 .min_keysize = AES_MIN_KEY_SIZE,
1357 .max_keysize = AES_MAX_KEY_SIZE,
1358 .setkey = atmel_aes_setkey,
1359 .encrypt = atmel_aes_cfb32_encrypt,
1360 .decrypt = atmel_aes_cfb32_decrypt,
1361 .ivsize = AES_BLOCK_SIZE,
1364 .base.cra_name = "cfb16(aes)",
1365 .base.cra_driver_name = "atmel-cfb16-aes",
1366 .base.cra_blocksize = CFB16_BLOCK_SIZE,
1367 .base.cra_ctxsize = sizeof(struct atmel_aes_ctx),
1369 .init = atmel_aes_init_tfm,
1370 .min_keysize = AES_MIN_KEY_SIZE,
1371 .max_keysize = AES_MAX_KEY_SIZE,
1372 .setkey = atmel_aes_setkey,
1373 .encrypt = atmel_aes_cfb16_encrypt,
1374 .decrypt = atmel_aes_cfb16_decrypt,
1375 .ivsize = AES_BLOCK_SIZE,
1378 .base.cra_name = "cfb8(aes)",
1379 .base.cra_driver_name = "atmel-cfb8-aes",
1380 .base.cra_blocksize = CFB8_BLOCK_SIZE,
1381 .base.cra_ctxsize = sizeof(struct atmel_aes_ctx),
1383 .init = atmel_aes_init_tfm,
1384 .min_keysize = AES_MIN_KEY_SIZE,
1385 .max_keysize = AES_MAX_KEY_SIZE,
1386 .setkey = atmel_aes_setkey,
1387 .encrypt = atmel_aes_cfb8_encrypt,
1388 .decrypt = atmel_aes_cfb8_decrypt,
1389 .ivsize = AES_BLOCK_SIZE,
1392 .base.cra_name = "ctr(aes)",
1393 .base.cra_driver_name = "atmel-ctr-aes",
1394 .base.cra_blocksize = 1,
1395 .base.cra_ctxsize = sizeof(struct atmel_aes_ctr_ctx),
1397 .init = atmel_aes_ctr_init_tfm,
1398 .min_keysize = AES_MIN_KEY_SIZE,
1399 .max_keysize = AES_MAX_KEY_SIZE,
1400 .setkey = atmel_aes_setkey,
1401 .encrypt = atmel_aes_ctr_encrypt,
1402 .decrypt = atmel_aes_ctr_decrypt,
1403 .ivsize = AES_BLOCK_SIZE,
1407 static struct skcipher_alg aes_cfb64_alg = {
1408 .base.cra_name = "cfb64(aes)",
1409 .base.cra_driver_name = "atmel-cfb64-aes",
1410 .base.cra_blocksize = CFB64_BLOCK_SIZE,
1411 .base.cra_ctxsize = sizeof(struct atmel_aes_ctx),
1413 .init = atmel_aes_init_tfm,
1414 .min_keysize = AES_MIN_KEY_SIZE,
1415 .max_keysize = AES_MAX_KEY_SIZE,
1416 .setkey = atmel_aes_setkey,
1417 .encrypt = atmel_aes_cfb64_encrypt,
1418 .decrypt = atmel_aes_cfb64_decrypt,
1419 .ivsize = AES_BLOCK_SIZE,
1423 /* gcm aead functions */
1425 static int atmel_aes_gcm_ghash(struct atmel_aes_dev *dd,
1426 const u32 *data, size_t datalen,
1427 const __be32 *ghash_in, __be32 *ghash_out,
1428 atmel_aes_fn_t resume);
1429 static int atmel_aes_gcm_ghash_init(struct atmel_aes_dev *dd);
1430 static int atmel_aes_gcm_ghash_finalize(struct atmel_aes_dev *dd);
1432 static int atmel_aes_gcm_start(struct atmel_aes_dev *dd);
1433 static int atmel_aes_gcm_process(struct atmel_aes_dev *dd);
1434 static int atmel_aes_gcm_length(struct atmel_aes_dev *dd);
1435 static int atmel_aes_gcm_data(struct atmel_aes_dev *dd);
1436 static int atmel_aes_gcm_tag_init(struct atmel_aes_dev *dd);
1437 static int atmel_aes_gcm_tag(struct atmel_aes_dev *dd);
1438 static int atmel_aes_gcm_finalize(struct atmel_aes_dev *dd);
1440 static inline struct atmel_aes_gcm_ctx *
1441 atmel_aes_gcm_ctx_cast(struct atmel_aes_base_ctx *ctx)
1443 return container_of(ctx, struct atmel_aes_gcm_ctx, base);
1446 static int atmel_aes_gcm_ghash(struct atmel_aes_dev *dd,
1447 const u32 *data, size_t datalen,
1448 const __be32 *ghash_in, __be32 *ghash_out,
1449 atmel_aes_fn_t resume)
1451 struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1453 dd->data = (u32 *)data;
1454 dd->datalen = datalen;
1455 ctx->ghash_in = ghash_in;
1456 ctx->ghash_out = ghash_out;
1457 ctx->ghash_resume = resume;
1459 atmel_aes_write_ctrl(dd, false, NULL);
1460 return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_ghash_init);
1463 static int atmel_aes_gcm_ghash_init(struct atmel_aes_dev *dd)
1465 struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1467 /* Set the data length. */
1468 atmel_aes_write(dd, AES_AADLENR, dd->total);
1469 atmel_aes_write(dd, AES_CLENR, 0);
1471 /* If needed, overwrite the GCM Intermediate Hash Word Registers */
1473 atmel_aes_write_block(dd, AES_GHASHR(0), ctx->ghash_in);
1475 return atmel_aes_gcm_ghash_finalize(dd);
1478 static int atmel_aes_gcm_ghash_finalize(struct atmel_aes_dev *dd)
1480 struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1483 /* Write data into the Input Data Registers. */
1484 while (dd->datalen > 0) {
1485 atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
1487 dd->datalen -= AES_BLOCK_SIZE;
1489 isr = atmel_aes_read(dd, AES_ISR);
1490 if (!(isr & AES_INT_DATARDY)) {
1491 dd->resume = atmel_aes_gcm_ghash_finalize;
1492 atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
1493 return -EINPROGRESS;
1497 /* Read the computed hash from GHASHRx. */
1498 atmel_aes_read_block(dd, AES_GHASHR(0), ctx->ghash_out);
1500 return ctx->ghash_resume(dd);
1504 static int atmel_aes_gcm_start(struct atmel_aes_dev *dd)
1506 struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1507 struct aead_request *req = aead_request_cast(dd->areq);
1508 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1509 struct atmel_aes_reqctx *rctx = aead_request_ctx(req);
1510 size_t ivsize = crypto_aead_ivsize(tfm);
1511 size_t datalen, padlen;
1512 const void *iv = req->iv;
1516 atmel_aes_set_mode(dd, rctx);
1518 err = atmel_aes_hw_init(dd);
1520 return atmel_aes_complete(dd, err);
1522 if (likely(ivsize == GCM_AES_IV_SIZE)) {
1523 memcpy(ctx->j0, iv, ivsize);
1524 ctx->j0[3] = cpu_to_be32(1);
1525 return atmel_aes_gcm_process(dd);
1528 padlen = atmel_aes_padlen(ivsize, AES_BLOCK_SIZE);
1529 datalen = ivsize + padlen + AES_BLOCK_SIZE;
1530 if (datalen > dd->buflen)
1531 return atmel_aes_complete(dd, -EINVAL);
1533 memcpy(data, iv, ivsize);
1534 memset(data + ivsize, 0, padlen + sizeof(u64));
1535 ((__be64 *)(data + datalen))[-1] = cpu_to_be64(ivsize * 8);
1537 return atmel_aes_gcm_ghash(dd, (const u32 *)data, datalen,
1538 NULL, ctx->j0, atmel_aes_gcm_process);
1541 static int atmel_aes_gcm_process(struct atmel_aes_dev *dd)
1543 struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1544 struct aead_request *req = aead_request_cast(dd->areq);
1545 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1546 bool enc = atmel_aes_is_encrypt(dd);
1549 /* Compute text length. */
1550 authsize = crypto_aead_authsize(tfm);
1551 ctx->textlen = req->cryptlen - (enc ? 0 : authsize);
1554 * According to tcrypt test suite, the GCM Automatic Tag Generation
1555 * fails when both the message and its associated data are empty.
1557 if (likely(req->assoclen != 0 || ctx->textlen != 0))
1558 dd->flags |= AES_FLAGS_GTAGEN;
1560 atmel_aes_write_ctrl(dd, false, NULL);
1561 return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_length);
1564 static int atmel_aes_gcm_length(struct atmel_aes_dev *dd)
1566 struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1567 struct aead_request *req = aead_request_cast(dd->areq);
1568 __be32 j0_lsw, *j0 = ctx->j0;
1571 /* Write incr32(J0) into IV. */
1573 be32_add_cpu(&j0[3], 1);
1574 atmel_aes_write_block(dd, AES_IVR(0), j0);
1577 /* Set aad and text lengths. */
1578 atmel_aes_write(dd, AES_AADLENR, req->assoclen);
1579 atmel_aes_write(dd, AES_CLENR, ctx->textlen);
1581 /* Check whether AAD are present. */
1582 if (unlikely(req->assoclen == 0)) {
1584 return atmel_aes_gcm_data(dd);
1587 /* Copy assoc data and add padding. */
1588 padlen = atmel_aes_padlen(req->assoclen, AES_BLOCK_SIZE);
1589 if (unlikely(req->assoclen + padlen > dd->buflen))
1590 return atmel_aes_complete(dd, -EINVAL);
1591 sg_copy_to_buffer(req->src, sg_nents(req->src), dd->buf, req->assoclen);
1593 /* Write assoc data into the Input Data register. */
1594 dd->data = (u32 *)dd->buf;
1595 dd->datalen = req->assoclen + padlen;
1596 return atmel_aes_gcm_data(dd);
1599 static int atmel_aes_gcm_data(struct atmel_aes_dev *dd)
1601 struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1602 struct aead_request *req = aead_request_cast(dd->areq);
1603 bool use_dma = (ctx->textlen >= ATMEL_AES_DMA_THRESHOLD);
1604 struct scatterlist *src, *dst;
1607 /* Write AAD first. */
1608 while (dd->datalen > 0) {
1609 atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
1611 dd->datalen -= AES_BLOCK_SIZE;
1613 isr = atmel_aes_read(dd, AES_ISR);
1614 if (!(isr & AES_INT_DATARDY)) {
1615 dd->resume = atmel_aes_gcm_data;
1616 atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
1617 return -EINPROGRESS;
1622 if (unlikely(ctx->textlen == 0))
1623 return atmel_aes_gcm_tag_init(dd);
1625 /* Prepare src and dst scatter lists to transfer cipher/plain texts */
1626 src = scatterwalk_ffwd(ctx->src, req->src, req->assoclen);
1627 dst = ((req->src == req->dst) ? src :
1628 scatterwalk_ffwd(ctx->dst, req->dst, req->assoclen));
1631 /* Update the Mode Register for DMA transfers. */
1632 mr = atmel_aes_read(dd, AES_MR);
1633 mr &= ~(AES_MR_SMOD_MASK | AES_MR_DUALBUFF);
1634 mr |= AES_MR_SMOD_IDATAR0;
1635 if (dd->caps.has_dualbuff)
1636 mr |= AES_MR_DUALBUFF;
1637 atmel_aes_write(dd, AES_MR, mr);
1639 return atmel_aes_dma_start(dd, src, dst, ctx->textlen,
1640 atmel_aes_gcm_tag_init);
1643 return atmel_aes_cpu_start(dd, src, dst, ctx->textlen,
1644 atmel_aes_gcm_tag_init);
1647 static int atmel_aes_gcm_tag_init(struct atmel_aes_dev *dd)
1649 struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1650 struct aead_request *req = aead_request_cast(dd->areq);
1651 __be64 *data = dd->buf;
1653 if (likely(dd->flags & AES_FLAGS_GTAGEN)) {
1654 if (!(atmel_aes_read(dd, AES_ISR) & AES_INT_TAGRDY)) {
1655 dd->resume = atmel_aes_gcm_tag_init;
1656 atmel_aes_write(dd, AES_IER, AES_INT_TAGRDY);
1657 return -EINPROGRESS;
1660 return atmel_aes_gcm_finalize(dd);
1663 /* Read the GCM Intermediate Hash Word Registers. */
1664 atmel_aes_read_block(dd, AES_GHASHR(0), ctx->ghash);
1666 data[0] = cpu_to_be64(req->assoclen * 8);
1667 data[1] = cpu_to_be64(ctx->textlen * 8);
1669 return atmel_aes_gcm_ghash(dd, (const u32 *)data, AES_BLOCK_SIZE,
1670 ctx->ghash, ctx->ghash, atmel_aes_gcm_tag);
1673 static int atmel_aes_gcm_tag(struct atmel_aes_dev *dd)
1675 struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1676 unsigned long flags;
1679 * Change mode to CTR to complete the tag generation.
1680 * Use J0 as Initialization Vector.
1683 dd->flags &= ~(AES_FLAGS_OPMODE_MASK | AES_FLAGS_GTAGEN);
1684 dd->flags |= AES_FLAGS_CTR;
1685 atmel_aes_write_ctrl(dd, false, ctx->j0);
1688 atmel_aes_write_block(dd, AES_IDATAR(0), ctx->ghash);
1689 return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_finalize);
1692 static int atmel_aes_gcm_finalize(struct atmel_aes_dev *dd)
1694 struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1695 struct aead_request *req = aead_request_cast(dd->areq);
1696 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1697 bool enc = atmel_aes_is_encrypt(dd);
1698 u32 offset, authsize, itag[4], *otag = ctx->tag;
1701 /* Read the computed tag. */
1702 if (likely(dd->flags & AES_FLAGS_GTAGEN))
1703 atmel_aes_read_block(dd, AES_TAGR(0), ctx->tag);
1705 atmel_aes_read_block(dd, AES_ODATAR(0), ctx->tag);
1707 offset = req->assoclen + ctx->textlen;
1708 authsize = crypto_aead_authsize(tfm);
1710 scatterwalk_map_and_copy(otag, req->dst, offset, authsize, 1);
1713 scatterwalk_map_and_copy(itag, req->src, offset, authsize, 0);
1714 err = crypto_memneq(itag, otag, authsize) ? -EBADMSG : 0;
1717 return atmel_aes_complete(dd, err);
1720 static int atmel_aes_gcm_crypt(struct aead_request *req,
1723 struct atmel_aes_base_ctx *ctx;
1724 struct atmel_aes_reqctx *rctx;
1726 ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
1727 ctx->block_size = AES_BLOCK_SIZE;
1728 ctx->is_aead = true;
1730 rctx = aead_request_ctx(req);
1731 rctx->mode = AES_FLAGS_GCM | mode;
1733 return atmel_aes_handle_queue(ctx->dd, &req->base);
1736 static int atmel_aes_gcm_setkey(struct crypto_aead *tfm, const u8 *key,
1737 unsigned int keylen)
1739 struct atmel_aes_base_ctx *ctx = crypto_aead_ctx(tfm);
1741 if (keylen != AES_KEYSIZE_256 &&
1742 keylen != AES_KEYSIZE_192 &&
1743 keylen != AES_KEYSIZE_128)
1746 memcpy(ctx->key, key, keylen);
1747 ctx->keylen = keylen;
1752 static int atmel_aes_gcm_setauthsize(struct crypto_aead *tfm,
1753 unsigned int authsize)
1755 return crypto_gcm_check_authsize(authsize);
1758 static int atmel_aes_gcm_encrypt(struct aead_request *req)
1760 return atmel_aes_gcm_crypt(req, AES_FLAGS_ENCRYPT);
1763 static int atmel_aes_gcm_decrypt(struct aead_request *req)
1765 return atmel_aes_gcm_crypt(req, 0);
1768 static int atmel_aes_gcm_init(struct crypto_aead *tfm)
1770 struct atmel_aes_gcm_ctx *ctx = crypto_aead_ctx(tfm);
1771 struct atmel_aes_dev *dd;
1773 dd = atmel_aes_dev_alloc(&ctx->base);
1777 crypto_aead_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx));
1779 ctx->base.start = atmel_aes_gcm_start;
1784 static struct aead_alg aes_gcm_alg = {
1785 .setkey = atmel_aes_gcm_setkey,
1786 .setauthsize = atmel_aes_gcm_setauthsize,
1787 .encrypt = atmel_aes_gcm_encrypt,
1788 .decrypt = atmel_aes_gcm_decrypt,
1789 .init = atmel_aes_gcm_init,
1790 .ivsize = GCM_AES_IV_SIZE,
1791 .maxauthsize = AES_BLOCK_SIZE,
1794 .cra_name = "gcm(aes)",
1795 .cra_driver_name = "atmel-gcm-aes",
1797 .cra_ctxsize = sizeof(struct atmel_aes_gcm_ctx),
1804 static inline struct atmel_aes_xts_ctx *
1805 atmel_aes_xts_ctx_cast(struct atmel_aes_base_ctx *ctx)
1807 return container_of(ctx, struct atmel_aes_xts_ctx, base);
1810 static int atmel_aes_xts_process_data(struct atmel_aes_dev *dd);
1812 static int atmel_aes_xts_start(struct atmel_aes_dev *dd)
1814 struct atmel_aes_xts_ctx *ctx = atmel_aes_xts_ctx_cast(dd->ctx);
1815 struct skcipher_request *req = skcipher_request_cast(dd->areq);
1816 struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
1817 unsigned long flags;
1820 atmel_aes_set_mode(dd, rctx);
1822 err = atmel_aes_hw_init(dd);
1824 return atmel_aes_complete(dd, err);
1826 /* Compute the tweak value from req->iv with ecb(aes). */
1828 dd->flags &= ~AES_FLAGS_MODE_MASK;
1829 dd->flags |= (AES_FLAGS_ECB | AES_FLAGS_ENCRYPT);
1830 atmel_aes_write_ctrl_key(dd, false, NULL,
1831 ctx->key2, ctx->base.keylen);
1834 atmel_aes_write_block(dd, AES_IDATAR(0), req->iv);
1835 return atmel_aes_wait_for_data_ready(dd, atmel_aes_xts_process_data);
1838 static int atmel_aes_xts_process_data(struct atmel_aes_dev *dd)
1840 struct skcipher_request *req = skcipher_request_cast(dd->areq);
1841 bool use_dma = (req->cryptlen >= ATMEL_AES_DMA_THRESHOLD);
1842 u32 tweak[AES_BLOCK_SIZE / sizeof(u32)];
1843 static const __le32 one[AES_BLOCK_SIZE / sizeof(u32)] = {cpu_to_le32(1), };
1844 u8 *tweak_bytes = (u8 *)tweak;
1847 /* Read the computed ciphered tweak value. */
1848 atmel_aes_read_block(dd, AES_ODATAR(0), tweak);
1851 * the order of the ciphered tweak bytes need to be reversed before
1852 * writing them into the ODATARx registers.
1854 for (i = 0; i < AES_BLOCK_SIZE/2; ++i)
1855 swap(tweak_bytes[i], tweak_bytes[AES_BLOCK_SIZE - 1 - i]);
1857 /* Process the data. */
1858 atmel_aes_write_ctrl(dd, use_dma, NULL);
1859 atmel_aes_write_block(dd, AES_TWR(0), tweak);
1860 atmel_aes_write_block(dd, AES_ALPHAR(0), one);
1862 return atmel_aes_dma_start(dd, req->src, req->dst,
1864 atmel_aes_transfer_complete);
1866 return atmel_aes_cpu_start(dd, req->src, req->dst, req->cryptlen,
1867 atmel_aes_transfer_complete);
1870 static int atmel_aes_xts_setkey(struct crypto_skcipher *tfm, const u8 *key,
1871 unsigned int keylen)
1873 struct atmel_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
1876 err = xts_verify_key(tfm, key, keylen);
1880 crypto_skcipher_clear_flags(ctx->fallback_tfm, CRYPTO_TFM_REQ_MASK);
1881 crypto_skcipher_set_flags(ctx->fallback_tfm, tfm->base.crt_flags &
1882 CRYPTO_TFM_REQ_MASK);
1883 err = crypto_skcipher_setkey(ctx->fallback_tfm, key, keylen);
1887 memcpy(ctx->base.key, key, keylen/2);
1888 memcpy(ctx->key2, key + keylen/2, keylen/2);
1889 ctx->base.keylen = keylen/2;
1894 static int atmel_aes_xts_encrypt(struct skcipher_request *req)
1896 return atmel_aes_crypt(req, AES_FLAGS_XTS | AES_FLAGS_ENCRYPT);
1899 static int atmel_aes_xts_decrypt(struct skcipher_request *req)
1901 return atmel_aes_crypt(req, AES_FLAGS_XTS);
1904 static int atmel_aes_xts_init_tfm(struct crypto_skcipher *tfm)
1906 struct atmel_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
1907 struct atmel_aes_dev *dd;
1908 const char *tfm_name = crypto_tfm_alg_name(&tfm->base);
1910 dd = atmel_aes_dev_alloc(&ctx->base);
1914 ctx->fallback_tfm = crypto_alloc_skcipher(tfm_name, 0,
1915 CRYPTO_ALG_NEED_FALLBACK);
1916 if (IS_ERR(ctx->fallback_tfm))
1917 return PTR_ERR(ctx->fallback_tfm);
1919 crypto_skcipher_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx) +
1920 crypto_skcipher_reqsize(ctx->fallback_tfm));
1922 ctx->base.start = atmel_aes_xts_start;
1927 static void atmel_aes_xts_exit_tfm(struct crypto_skcipher *tfm)
1929 struct atmel_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
1931 crypto_free_skcipher(ctx->fallback_tfm);
1934 static struct skcipher_alg aes_xts_alg = {
1935 .base.cra_name = "xts(aes)",
1936 .base.cra_driver_name = "atmel-xts-aes",
1937 .base.cra_blocksize = AES_BLOCK_SIZE,
1938 .base.cra_ctxsize = sizeof(struct atmel_aes_xts_ctx),
1939 .base.cra_flags = CRYPTO_ALG_NEED_FALLBACK,
1941 .min_keysize = 2 * AES_MIN_KEY_SIZE,
1942 .max_keysize = 2 * AES_MAX_KEY_SIZE,
1943 .ivsize = AES_BLOCK_SIZE,
1944 .setkey = atmel_aes_xts_setkey,
1945 .encrypt = atmel_aes_xts_encrypt,
1946 .decrypt = atmel_aes_xts_decrypt,
1947 .init = atmel_aes_xts_init_tfm,
1948 .exit = atmel_aes_xts_exit_tfm,
1951 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
1952 /* authenc aead functions */
1954 static int atmel_aes_authenc_start(struct atmel_aes_dev *dd);
1955 static int atmel_aes_authenc_init(struct atmel_aes_dev *dd, int err,
1957 static int atmel_aes_authenc_transfer(struct atmel_aes_dev *dd, int err,
1959 static int atmel_aes_authenc_digest(struct atmel_aes_dev *dd);
1960 static int atmel_aes_authenc_final(struct atmel_aes_dev *dd, int err,
1963 static void atmel_aes_authenc_complete(struct atmel_aes_dev *dd, int err)
1965 struct aead_request *req = aead_request_cast(dd->areq);
1966 struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
1968 if (err && (dd->flags & AES_FLAGS_OWN_SHA))
1969 atmel_sha_authenc_abort(&rctx->auth_req);
1970 dd->flags &= ~AES_FLAGS_OWN_SHA;
1973 static int atmel_aes_authenc_start(struct atmel_aes_dev *dd)
1975 struct aead_request *req = aead_request_cast(dd->areq);
1976 struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
1977 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1978 struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
1981 atmel_aes_set_mode(dd, &rctx->base);
1983 err = atmel_aes_hw_init(dd);
1985 return atmel_aes_complete(dd, err);
1987 return atmel_sha_authenc_schedule(&rctx->auth_req, ctx->auth,
1988 atmel_aes_authenc_init, dd);
1991 static int atmel_aes_authenc_init(struct atmel_aes_dev *dd, int err,
1994 struct aead_request *req = aead_request_cast(dd->areq);
1995 struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
1998 dd->is_async = true;
2000 return atmel_aes_complete(dd, err);
2002 /* If here, we've got the ownership of the SHA device. */
2003 dd->flags |= AES_FLAGS_OWN_SHA;
2005 /* Configure the SHA device. */
2006 return atmel_sha_authenc_init(&rctx->auth_req,
2007 req->src, req->assoclen,
2009 atmel_aes_authenc_transfer, dd);
2012 static int atmel_aes_authenc_transfer(struct atmel_aes_dev *dd, int err,
2015 struct aead_request *req = aead_request_cast(dd->areq);
2016 struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2017 bool enc = atmel_aes_is_encrypt(dd);
2018 struct scatterlist *src, *dst;
2019 __be32 iv[AES_BLOCK_SIZE / sizeof(u32)];
2023 dd->is_async = true;
2025 return atmel_aes_complete(dd, err);
2027 /* Prepare src and dst scatter-lists to transfer cipher/plain texts. */
2028 src = scatterwalk_ffwd(rctx->src, req->src, req->assoclen);
2031 if (req->src != req->dst)
2032 dst = scatterwalk_ffwd(rctx->dst, req->dst, req->assoclen);
2034 /* Configure the AES device. */
2035 memcpy(iv, req->iv, sizeof(iv));
2038 * Here we always set the 2nd parameter of atmel_aes_write_ctrl() to
2039 * 'true' even if the data transfer is actually performed by the CPU (so
2040 * not by the DMA) because we must force the AES_MR_SMOD bitfield to the
2041 * value AES_MR_SMOD_IDATAR0. Indeed, both AES_MR_SMOD and SHA_MR_SMOD
2042 * must be set to *_MR_SMOD_IDATAR0.
2044 atmel_aes_write_ctrl(dd, true, iv);
2045 emr = AES_EMR_PLIPEN;
2047 emr |= AES_EMR_PLIPD;
2048 atmel_aes_write(dd, AES_EMR, emr);
2050 /* Transfer data. */
2051 return atmel_aes_dma_start(dd, src, dst, rctx->textlen,
2052 atmel_aes_authenc_digest);
2055 static int atmel_aes_authenc_digest(struct atmel_aes_dev *dd)
2057 struct aead_request *req = aead_request_cast(dd->areq);
2058 struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2060 /* atmel_sha_authenc_final() releases the SHA device. */
2061 dd->flags &= ~AES_FLAGS_OWN_SHA;
2062 return atmel_sha_authenc_final(&rctx->auth_req,
2063 rctx->digest, sizeof(rctx->digest),
2064 atmel_aes_authenc_final, dd);
2067 static int atmel_aes_authenc_final(struct atmel_aes_dev *dd, int err,
2070 struct aead_request *req = aead_request_cast(dd->areq);
2071 struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2072 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
2073 bool enc = atmel_aes_is_encrypt(dd);
2074 u32 idigest[SHA512_DIGEST_SIZE / sizeof(u32)], *odigest = rctx->digest;
2078 dd->is_async = true;
2082 offs = req->assoclen + rctx->textlen;
2083 authsize = crypto_aead_authsize(tfm);
2085 scatterwalk_map_and_copy(odigest, req->dst, offs, authsize, 1);
2087 scatterwalk_map_and_copy(idigest, req->src, offs, authsize, 0);
2088 if (crypto_memneq(idigest, odigest, authsize))
2093 return atmel_aes_complete(dd, err);
2096 static int atmel_aes_authenc_setkey(struct crypto_aead *tfm, const u8 *key,
2097 unsigned int keylen)
2099 struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
2100 struct crypto_authenc_keys keys;
2103 if (crypto_authenc_extractkeys(&keys, key, keylen) != 0)
2106 if (keys.enckeylen > sizeof(ctx->base.key))
2109 /* Save auth key. */
2110 err = atmel_sha_authenc_setkey(ctx->auth,
2111 keys.authkey, keys.authkeylen,
2112 crypto_aead_get_flags(tfm));
2114 memzero_explicit(&keys, sizeof(keys));
2119 ctx->base.keylen = keys.enckeylen;
2120 memcpy(ctx->base.key, keys.enckey, keys.enckeylen);
2122 memzero_explicit(&keys, sizeof(keys));
2126 memzero_explicit(&keys, sizeof(keys));
2130 static int atmel_aes_authenc_init_tfm(struct crypto_aead *tfm,
2131 unsigned long auth_mode)
2133 struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
2134 unsigned int auth_reqsize = atmel_sha_authenc_get_reqsize();
2135 struct atmel_aes_dev *dd;
2137 dd = atmel_aes_dev_alloc(&ctx->base);
2141 ctx->auth = atmel_sha_authenc_spawn(auth_mode);
2142 if (IS_ERR(ctx->auth))
2143 return PTR_ERR(ctx->auth);
2145 crypto_aead_set_reqsize(tfm, (sizeof(struct atmel_aes_authenc_reqctx) +
2148 ctx->base.start = atmel_aes_authenc_start;
2153 static int atmel_aes_authenc_hmac_sha1_init_tfm(struct crypto_aead *tfm)
2155 return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA1);
2158 static int atmel_aes_authenc_hmac_sha224_init_tfm(struct crypto_aead *tfm)
2160 return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA224);
2163 static int atmel_aes_authenc_hmac_sha256_init_tfm(struct crypto_aead *tfm)
2165 return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA256);
2168 static int atmel_aes_authenc_hmac_sha384_init_tfm(struct crypto_aead *tfm)
2170 return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA384);
2173 static int atmel_aes_authenc_hmac_sha512_init_tfm(struct crypto_aead *tfm)
2175 return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA512);
2178 static void atmel_aes_authenc_exit_tfm(struct crypto_aead *tfm)
2180 struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
2182 atmel_sha_authenc_free(ctx->auth);
2185 static int atmel_aes_authenc_crypt(struct aead_request *req,
2188 struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2189 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
2190 struct atmel_aes_base_ctx *ctx = crypto_aead_ctx(tfm);
2191 u32 authsize = crypto_aead_authsize(tfm);
2192 bool enc = (mode & AES_FLAGS_ENCRYPT);
2194 /* Compute text length. */
2195 if (!enc && req->cryptlen < authsize)
2197 rctx->textlen = req->cryptlen - (enc ? 0 : authsize);
2200 * Currently, empty messages are not supported yet:
2201 * the SHA auto-padding can be used only on non-empty messages.
2202 * Hence a special case needs to be implemented for empty message.
2204 if (!rctx->textlen && !req->assoclen)
2207 rctx->base.mode = mode;
2208 ctx->block_size = AES_BLOCK_SIZE;
2209 ctx->is_aead = true;
2211 return atmel_aes_handle_queue(ctx->dd, &req->base);
2214 static int atmel_aes_authenc_cbc_aes_encrypt(struct aead_request *req)
2216 return atmel_aes_authenc_crypt(req, AES_FLAGS_CBC | AES_FLAGS_ENCRYPT);
2219 static int atmel_aes_authenc_cbc_aes_decrypt(struct aead_request *req)
2221 return atmel_aes_authenc_crypt(req, AES_FLAGS_CBC);
2224 static struct aead_alg aes_authenc_algs[] = {
2226 .setkey = atmel_aes_authenc_setkey,
2227 .encrypt = atmel_aes_authenc_cbc_aes_encrypt,
2228 .decrypt = atmel_aes_authenc_cbc_aes_decrypt,
2229 .init = atmel_aes_authenc_hmac_sha1_init_tfm,
2230 .exit = atmel_aes_authenc_exit_tfm,
2231 .ivsize = AES_BLOCK_SIZE,
2232 .maxauthsize = SHA1_DIGEST_SIZE,
2235 .cra_name = "authenc(hmac(sha1),cbc(aes))",
2236 .cra_driver_name = "atmel-authenc-hmac-sha1-cbc-aes",
2237 .cra_blocksize = AES_BLOCK_SIZE,
2238 .cra_ctxsize = sizeof(struct atmel_aes_authenc_ctx),
2242 .setkey = atmel_aes_authenc_setkey,
2243 .encrypt = atmel_aes_authenc_cbc_aes_encrypt,
2244 .decrypt = atmel_aes_authenc_cbc_aes_decrypt,
2245 .init = atmel_aes_authenc_hmac_sha224_init_tfm,
2246 .exit = atmel_aes_authenc_exit_tfm,
2247 .ivsize = AES_BLOCK_SIZE,
2248 .maxauthsize = SHA224_DIGEST_SIZE,
2251 .cra_name = "authenc(hmac(sha224),cbc(aes))",
2252 .cra_driver_name = "atmel-authenc-hmac-sha224-cbc-aes",
2253 .cra_blocksize = AES_BLOCK_SIZE,
2254 .cra_ctxsize = sizeof(struct atmel_aes_authenc_ctx),
2258 .setkey = atmel_aes_authenc_setkey,
2259 .encrypt = atmel_aes_authenc_cbc_aes_encrypt,
2260 .decrypt = atmel_aes_authenc_cbc_aes_decrypt,
2261 .init = atmel_aes_authenc_hmac_sha256_init_tfm,
2262 .exit = atmel_aes_authenc_exit_tfm,
2263 .ivsize = AES_BLOCK_SIZE,
2264 .maxauthsize = SHA256_DIGEST_SIZE,
2267 .cra_name = "authenc(hmac(sha256),cbc(aes))",
2268 .cra_driver_name = "atmel-authenc-hmac-sha256-cbc-aes",
2269 .cra_blocksize = AES_BLOCK_SIZE,
2270 .cra_ctxsize = sizeof(struct atmel_aes_authenc_ctx),
2274 .setkey = atmel_aes_authenc_setkey,
2275 .encrypt = atmel_aes_authenc_cbc_aes_encrypt,
2276 .decrypt = atmel_aes_authenc_cbc_aes_decrypt,
2277 .init = atmel_aes_authenc_hmac_sha384_init_tfm,
2278 .exit = atmel_aes_authenc_exit_tfm,
2279 .ivsize = AES_BLOCK_SIZE,
2280 .maxauthsize = SHA384_DIGEST_SIZE,
2283 .cra_name = "authenc(hmac(sha384),cbc(aes))",
2284 .cra_driver_name = "atmel-authenc-hmac-sha384-cbc-aes",
2285 .cra_blocksize = AES_BLOCK_SIZE,
2286 .cra_ctxsize = sizeof(struct atmel_aes_authenc_ctx),
2290 .setkey = atmel_aes_authenc_setkey,
2291 .encrypt = atmel_aes_authenc_cbc_aes_encrypt,
2292 .decrypt = atmel_aes_authenc_cbc_aes_decrypt,
2293 .init = atmel_aes_authenc_hmac_sha512_init_tfm,
2294 .exit = atmel_aes_authenc_exit_tfm,
2295 .ivsize = AES_BLOCK_SIZE,
2296 .maxauthsize = SHA512_DIGEST_SIZE,
2299 .cra_name = "authenc(hmac(sha512),cbc(aes))",
2300 .cra_driver_name = "atmel-authenc-hmac-sha512-cbc-aes",
2301 .cra_blocksize = AES_BLOCK_SIZE,
2302 .cra_ctxsize = sizeof(struct atmel_aes_authenc_ctx),
2306 #endif /* CONFIG_CRYPTO_DEV_ATMEL_AUTHENC */
2308 /* Probe functions */
2310 static int atmel_aes_buff_init(struct atmel_aes_dev *dd)
2312 dd->buf = (void *)__get_free_pages(GFP_KERNEL, ATMEL_AES_BUFFER_ORDER);
2313 dd->buflen = ATMEL_AES_BUFFER_SIZE;
2314 dd->buflen &= ~(AES_BLOCK_SIZE - 1);
2317 dev_err(dd->dev, "unable to alloc pages.\n");
2324 static void atmel_aes_buff_cleanup(struct atmel_aes_dev *dd)
2326 free_page((unsigned long)dd->buf);
2329 static int atmel_aes_dma_init(struct atmel_aes_dev *dd)
2333 /* Try to grab 2 DMA channels */
2334 dd->src.chan = dma_request_chan(dd->dev, "tx");
2335 if (IS_ERR(dd->src.chan)) {
2336 ret = PTR_ERR(dd->src.chan);
2340 dd->dst.chan = dma_request_chan(dd->dev, "rx");
2341 if (IS_ERR(dd->dst.chan)) {
2342 ret = PTR_ERR(dd->dst.chan);
2349 dma_release_channel(dd->src.chan);
2351 dev_err(dd->dev, "no DMA channel available\n");
2355 static void atmel_aes_dma_cleanup(struct atmel_aes_dev *dd)
2357 dma_release_channel(dd->dst.chan);
2358 dma_release_channel(dd->src.chan);
2361 static void atmel_aes_queue_task(unsigned long data)
2363 struct atmel_aes_dev *dd = (struct atmel_aes_dev *)data;
2365 atmel_aes_handle_queue(dd, NULL);
2368 static void atmel_aes_done_task(unsigned long data)
2370 struct atmel_aes_dev *dd = (struct atmel_aes_dev *)data;
2372 dd->is_async = true;
2373 (void)dd->resume(dd);
2376 static irqreturn_t atmel_aes_irq(int irq, void *dev_id)
2378 struct atmel_aes_dev *aes_dd = dev_id;
2381 reg = atmel_aes_read(aes_dd, AES_ISR);
2382 if (reg & atmel_aes_read(aes_dd, AES_IMR)) {
2383 atmel_aes_write(aes_dd, AES_IDR, reg);
2384 if (AES_FLAGS_BUSY & aes_dd->flags)
2385 tasklet_schedule(&aes_dd->done_task);
2387 dev_warn(aes_dd->dev, "AES interrupt when no active requests.\n");
2394 static void atmel_aes_unregister_algs(struct atmel_aes_dev *dd)
2398 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2399 if (dd->caps.has_authenc)
2400 for (i = 0; i < ARRAY_SIZE(aes_authenc_algs); i++)
2401 crypto_unregister_aead(&aes_authenc_algs[i]);
2404 if (dd->caps.has_xts)
2405 crypto_unregister_skcipher(&aes_xts_alg);
2407 if (dd->caps.has_gcm)
2408 crypto_unregister_aead(&aes_gcm_alg);
2410 if (dd->caps.has_cfb64)
2411 crypto_unregister_skcipher(&aes_cfb64_alg);
2413 for (i = 0; i < ARRAY_SIZE(aes_algs); i++)
2414 crypto_unregister_skcipher(&aes_algs[i]);
2417 static void atmel_aes_crypto_alg_init(struct crypto_alg *alg)
2419 alg->cra_flags |= CRYPTO_ALG_ASYNC;
2420 alg->cra_alignmask = 0xf;
2421 alg->cra_priority = ATMEL_AES_PRIORITY;
2422 alg->cra_module = THIS_MODULE;
2425 static int atmel_aes_register_algs(struct atmel_aes_dev *dd)
2429 for (i = 0; i < ARRAY_SIZE(aes_algs); i++) {
2430 atmel_aes_crypto_alg_init(&aes_algs[i].base);
2432 err = crypto_register_skcipher(&aes_algs[i]);
2437 if (dd->caps.has_cfb64) {
2438 atmel_aes_crypto_alg_init(&aes_cfb64_alg.base);
2440 err = crypto_register_skcipher(&aes_cfb64_alg);
2442 goto err_aes_cfb64_alg;
2445 if (dd->caps.has_gcm) {
2446 atmel_aes_crypto_alg_init(&aes_gcm_alg.base);
2448 err = crypto_register_aead(&aes_gcm_alg);
2450 goto err_aes_gcm_alg;
2453 if (dd->caps.has_xts) {
2454 atmel_aes_crypto_alg_init(&aes_xts_alg.base);
2456 err = crypto_register_skcipher(&aes_xts_alg);
2458 goto err_aes_xts_alg;
2461 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2462 if (dd->caps.has_authenc) {
2463 for (i = 0; i < ARRAY_SIZE(aes_authenc_algs); i++) {
2464 atmel_aes_crypto_alg_init(&aes_authenc_algs[i].base);
2466 err = crypto_register_aead(&aes_authenc_algs[i]);
2468 goto err_aes_authenc_alg;
2475 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2476 /* i = ARRAY_SIZE(aes_authenc_algs); */
2477 err_aes_authenc_alg:
2478 for (j = 0; j < i; j++)
2479 crypto_unregister_aead(&aes_authenc_algs[j]);
2480 crypto_unregister_skcipher(&aes_xts_alg);
2483 crypto_unregister_aead(&aes_gcm_alg);
2485 crypto_unregister_skcipher(&aes_cfb64_alg);
2487 i = ARRAY_SIZE(aes_algs);
2489 for (j = 0; j < i; j++)
2490 crypto_unregister_skcipher(&aes_algs[j]);
2495 static void atmel_aes_get_cap(struct atmel_aes_dev *dd)
2497 dd->caps.has_dualbuff = 0;
2498 dd->caps.has_cfb64 = 0;
2499 dd->caps.has_gcm = 0;
2500 dd->caps.has_xts = 0;
2501 dd->caps.has_authenc = 0;
2502 dd->caps.max_burst_size = 1;
2504 /* keep only major version number */
2505 switch (dd->hw_version & 0xff0) {
2509 dd->caps.has_dualbuff = 1;
2510 dd->caps.has_cfb64 = 1;
2511 dd->caps.has_gcm = 1;
2512 dd->caps.has_xts = 1;
2513 dd->caps.has_authenc = 1;
2514 dd->caps.max_burst_size = 4;
2517 dd->caps.has_dualbuff = 1;
2518 dd->caps.has_cfb64 = 1;
2519 dd->caps.has_gcm = 1;
2520 dd->caps.max_burst_size = 4;
2523 dd->caps.has_dualbuff = 1;
2524 dd->caps.has_cfb64 = 1;
2525 dd->caps.max_burst_size = 4;
2531 "Unmanaged aes version, set minimum capabilities\n");
2536 static const struct of_device_id atmel_aes_dt_ids[] = {
2537 { .compatible = "atmel,at91sam9g46-aes" },
2540 MODULE_DEVICE_TABLE(of, atmel_aes_dt_ids);
2542 static int atmel_aes_probe(struct platform_device *pdev)
2544 struct atmel_aes_dev *aes_dd;
2545 struct device *dev = &pdev->dev;
2546 struct resource *aes_res;
2549 aes_dd = devm_kzalloc(&pdev->dev, sizeof(*aes_dd), GFP_KERNEL);
2555 platform_set_drvdata(pdev, aes_dd);
2557 INIT_LIST_HEAD(&aes_dd->list);
2558 spin_lock_init(&aes_dd->lock);
2560 tasklet_init(&aes_dd->done_task, atmel_aes_done_task,
2561 (unsigned long)aes_dd);
2562 tasklet_init(&aes_dd->queue_task, atmel_aes_queue_task,
2563 (unsigned long)aes_dd);
2565 crypto_init_queue(&aes_dd->queue, ATMEL_AES_QUEUE_LENGTH);
2567 aes_dd->io_base = devm_platform_get_and_ioremap_resource(pdev, 0, &aes_res);
2568 if (IS_ERR(aes_dd->io_base)) {
2569 err = PTR_ERR(aes_dd->io_base);
2570 goto err_tasklet_kill;
2572 aes_dd->phys_base = aes_res->start;
2575 aes_dd->irq = platform_get_irq(pdev, 0);
2576 if (aes_dd->irq < 0) {
2578 goto err_tasklet_kill;
2581 err = devm_request_irq(&pdev->dev, aes_dd->irq, atmel_aes_irq,
2582 IRQF_SHARED, "atmel-aes", aes_dd);
2584 dev_err(dev, "unable to request aes irq.\n");
2585 goto err_tasklet_kill;
2588 /* Initializing the clock */
2589 aes_dd->iclk = devm_clk_get(&pdev->dev, "aes_clk");
2590 if (IS_ERR(aes_dd->iclk)) {
2591 dev_err(dev, "clock initialization failed.\n");
2592 err = PTR_ERR(aes_dd->iclk);
2593 goto err_tasklet_kill;
2596 err = clk_prepare(aes_dd->iclk);
2598 goto err_tasklet_kill;
2600 err = atmel_aes_hw_version_init(aes_dd);
2602 goto err_iclk_unprepare;
2604 atmel_aes_get_cap(aes_dd);
2606 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2607 if (aes_dd->caps.has_authenc && !atmel_sha_authenc_is_ready()) {
2608 err = -EPROBE_DEFER;
2609 goto err_iclk_unprepare;
2613 err = atmel_aes_buff_init(aes_dd);
2615 goto err_iclk_unprepare;
2617 err = atmel_aes_dma_init(aes_dd);
2619 goto err_buff_cleanup;
2621 spin_lock(&atmel_aes.lock);
2622 list_add_tail(&aes_dd->list, &atmel_aes.dev_list);
2623 spin_unlock(&atmel_aes.lock);
2625 err = atmel_aes_register_algs(aes_dd);
2629 dev_info(dev, "Atmel AES - Using %s, %s for DMA transfers\n",
2630 dma_chan_name(aes_dd->src.chan),
2631 dma_chan_name(aes_dd->dst.chan));
2636 spin_lock(&atmel_aes.lock);
2637 list_del(&aes_dd->list);
2638 spin_unlock(&atmel_aes.lock);
2639 atmel_aes_dma_cleanup(aes_dd);
2641 atmel_aes_buff_cleanup(aes_dd);
2643 clk_unprepare(aes_dd->iclk);
2645 tasklet_kill(&aes_dd->done_task);
2646 tasklet_kill(&aes_dd->queue_task);
2651 static int atmel_aes_remove(struct platform_device *pdev)
2653 struct atmel_aes_dev *aes_dd;
2655 aes_dd = platform_get_drvdata(pdev);
2657 spin_lock(&atmel_aes.lock);
2658 list_del(&aes_dd->list);
2659 spin_unlock(&atmel_aes.lock);
2661 atmel_aes_unregister_algs(aes_dd);
2663 tasklet_kill(&aes_dd->done_task);
2664 tasklet_kill(&aes_dd->queue_task);
2666 atmel_aes_dma_cleanup(aes_dd);
2667 atmel_aes_buff_cleanup(aes_dd);
2669 clk_unprepare(aes_dd->iclk);
2674 static struct platform_driver atmel_aes_driver = {
2675 .probe = atmel_aes_probe,
2676 .remove = atmel_aes_remove,
2678 .name = "atmel_aes",
2679 .of_match_table = atmel_aes_dt_ids,
2683 module_platform_driver(atmel_aes_driver);
2685 MODULE_DESCRIPTION("Atmel AES hw acceleration support.");
2686 MODULE_LICENSE("GPL v2");
2687 MODULE_AUTHOR("Nicolas Royer - Eukréa Electromatique");