1 // SPDX-License-Identifier: GPL-2.0-only
3 * kernel/workqueue.c - generic async execution with shared worker pool
5 * Copyright (C) 2002 Ingo Molnar
7 * Derived from the taskqueue/keventd code by:
13 * Made to use alloc_percpu by Christoph Lameter.
15 * Copyright (C) 2010 SUSE Linux Products GmbH
18 * This is the generic async execution mechanism. Work items as are
19 * executed in process context. The worker pool is shared and
20 * automatically managed. There are two worker pools for each CPU (one for
21 * normal work items and the other for high priority ones) and some extra
22 * pools for workqueues which are not bound to any specific CPU - the
23 * number of these backing pools is dynamic.
25 * Please read Documentation/core-api/workqueue.rst for details.
28 #include <linux/export.h>
29 #include <linux/kernel.h>
30 #include <linux/sched.h>
31 #include <linux/init.h>
32 #include <linux/signal.h>
33 #include <linux/completion.h>
34 #include <linux/workqueue.h>
35 #include <linux/slab.h>
36 #include <linux/cpu.h>
37 #include <linux/notifier.h>
38 #include <linux/kthread.h>
39 #include <linux/hardirq.h>
40 #include <linux/mempolicy.h>
41 #include <linux/freezer.h>
42 #include <linux/debug_locks.h>
43 #include <linux/lockdep.h>
44 #include <linux/idr.h>
45 #include <linux/jhash.h>
46 #include <linux/hashtable.h>
47 #include <linux/rculist.h>
48 #include <linux/nodemask.h>
49 #include <linux/moduleparam.h>
50 #include <linux/uaccess.h>
51 #include <linux/sched/isolation.h>
52 #include <linux/nmi.h>
53 #include <linux/kvm_para.h>
55 #include "workqueue_internal.h"
61 * A bound pool is either associated or disassociated with its CPU.
62 * While associated (!DISASSOCIATED), all workers are bound to the
63 * CPU and none has %WORKER_UNBOUND set and concurrency management
66 * While DISASSOCIATED, the cpu may be offline and all workers have
67 * %WORKER_UNBOUND set and concurrency management disabled, and may
68 * be executing on any CPU. The pool behaves as an unbound one.
70 * Note that DISASSOCIATED should be flipped only while holding
71 * wq_pool_attach_mutex to avoid changing binding state while
72 * worker_attach_to_pool() is in progress.
74 POOL_MANAGER_ACTIVE = 1 << 0, /* being managed */
75 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
78 WORKER_DIE = 1 << 1, /* die die die */
79 WORKER_IDLE = 1 << 2, /* is idle */
80 WORKER_PREP = 1 << 3, /* preparing to run works */
81 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
82 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
83 WORKER_REBOUND = 1 << 8, /* worker was rebound */
85 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
86 WORKER_UNBOUND | WORKER_REBOUND,
88 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
90 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
91 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
93 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
94 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
96 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
97 /* call for help after 10ms
99 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
100 CREATE_COOLDOWN = HZ, /* time to breath after fail */
103 * Rescue workers are used only on emergencies and shared by
104 * all cpus. Give MIN_NICE.
106 RESCUER_NICE_LEVEL = MIN_NICE,
107 HIGHPRI_NICE_LEVEL = MIN_NICE,
113 * Structure fields follow one of the following exclusion rules.
115 * I: Modifiable by initialization/destruction paths and read-only for
118 * P: Preemption protected. Disabling preemption is enough and should
119 * only be modified and accessed from the local cpu.
121 * L: pool->lock protected. Access with pool->lock held.
123 * X: During normal operation, modification requires pool->lock and should
124 * be done only from local cpu. Either disabling preemption on local
125 * cpu or grabbing pool->lock is enough for read access. If
126 * POOL_DISASSOCIATED is set, it's identical to L.
128 * A: wq_pool_attach_mutex protected.
130 * PL: wq_pool_mutex protected.
132 * PR: wq_pool_mutex protected for writes. RCU protected for reads.
134 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads.
136 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or
139 * WQ: wq->mutex protected.
141 * WR: wq->mutex protected for writes. RCU protected for reads.
143 * MD: wq_mayday_lock protected.
146 /* struct worker is defined in workqueue_internal.h */
149 raw_spinlock_t lock; /* the pool lock */
150 int cpu; /* I: the associated cpu */
151 int node; /* I: the associated node ID */
152 int id; /* I: pool ID */
153 unsigned int flags; /* X: flags */
155 unsigned long watchdog_ts; /* L: watchdog timestamp */
158 * The counter is incremented in a process context on the associated CPU
159 * w/ preemption disabled, and decremented or reset in the same context
160 * but w/ pool->lock held. The readers grab pool->lock and are
161 * guaranteed to see if the counter reached zero.
165 struct list_head worklist; /* L: list of pending works */
167 int nr_workers; /* L: total number of workers */
168 int nr_idle; /* L: currently idle workers */
170 struct list_head idle_list; /* L: list of idle workers */
171 struct timer_list idle_timer; /* L: worker idle timeout */
172 struct work_struct idle_cull_work; /* L: worker idle cleanup */
174 struct timer_list mayday_timer; /* L: SOS timer for workers */
176 /* a workers is either on busy_hash or idle_list, or the manager */
177 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
178 /* L: hash of busy workers */
180 struct worker *manager; /* L: purely informational */
181 struct list_head workers; /* A: attached workers */
182 struct list_head dying_workers; /* A: workers about to die */
183 struct completion *detach_completion; /* all workers detached */
185 struct ida worker_ida; /* worker IDs for task name */
187 struct workqueue_attrs *attrs; /* I: worker attributes */
188 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
189 int refcnt; /* PL: refcnt for unbound pools */
192 * Destruction of pool is RCU protected to allow dereferences
193 * from get_work_pool().
199 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
200 * of work_struct->data are used for flags and the remaining high bits
201 * point to the pwq; thus, pwqs need to be aligned at two's power of the
202 * number of flag bits.
204 struct pool_workqueue {
205 struct worker_pool *pool; /* I: the associated pool */
206 struct workqueue_struct *wq; /* I: the owning workqueue */
207 int work_color; /* L: current color */
208 int flush_color; /* L: flushing color */
209 int refcnt; /* L: reference count */
210 int nr_in_flight[WORK_NR_COLORS];
211 /* L: nr of in_flight works */
214 * nr_active management and WORK_STRUCT_INACTIVE:
216 * When pwq->nr_active >= max_active, new work item is queued to
217 * pwq->inactive_works instead of pool->worklist and marked with
218 * WORK_STRUCT_INACTIVE.
220 * All work items marked with WORK_STRUCT_INACTIVE do not participate
221 * in pwq->nr_active and all work items in pwq->inactive_works are
222 * marked with WORK_STRUCT_INACTIVE. But not all WORK_STRUCT_INACTIVE
223 * work items are in pwq->inactive_works. Some of them are ready to
224 * run in pool->worklist or worker->scheduled. Those work itmes are
225 * only struct wq_barrier which is used for flush_work() and should
226 * not participate in pwq->nr_active. For non-barrier work item, it
227 * is marked with WORK_STRUCT_INACTIVE iff it is in pwq->inactive_works.
229 int nr_active; /* L: nr of active works */
230 int max_active; /* L: max active works */
231 struct list_head inactive_works; /* L: inactive works */
232 struct list_head pwqs_node; /* WR: node on wq->pwqs */
233 struct list_head mayday_node; /* MD: node on wq->maydays */
236 * Release of unbound pwq is punted to system_wq. See put_pwq()
237 * and pwq_unbound_release_workfn() for details. pool_workqueue
238 * itself is also RCU protected so that the first pwq can be
239 * determined without grabbing wq->mutex.
241 struct work_struct unbound_release_work;
243 } __aligned(1 << WORK_STRUCT_FLAG_BITS);
246 * Structure used to wait for workqueue flush.
249 struct list_head list; /* WQ: list of flushers */
250 int flush_color; /* WQ: flush color waiting for */
251 struct completion done; /* flush completion */
257 * The externally visible workqueue. It relays the issued work items to
258 * the appropriate worker_pool through its pool_workqueues.
260 struct workqueue_struct {
261 struct list_head pwqs; /* WR: all pwqs of this wq */
262 struct list_head list; /* PR: list of all workqueues */
264 struct mutex mutex; /* protects this wq */
265 int work_color; /* WQ: current work color */
266 int flush_color; /* WQ: current flush color */
267 atomic_t nr_pwqs_to_flush; /* flush in progress */
268 struct wq_flusher *first_flusher; /* WQ: first flusher */
269 struct list_head flusher_queue; /* WQ: flush waiters */
270 struct list_head flusher_overflow; /* WQ: flush overflow list */
272 struct list_head maydays; /* MD: pwqs requesting rescue */
273 struct worker *rescuer; /* MD: rescue worker */
275 int nr_drainers; /* WQ: drain in progress */
276 int saved_max_active; /* WQ: saved pwq max_active */
278 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */
279 struct pool_workqueue *dfl_pwq; /* PW: only for unbound wqs */
282 struct wq_device *wq_dev; /* I: for sysfs interface */
284 #ifdef CONFIG_LOCKDEP
286 struct lock_class_key key;
287 struct lockdep_map lockdep_map;
289 char name[WQ_NAME_LEN]; /* I: workqueue name */
292 * Destruction of workqueue_struct is RCU protected to allow walking
293 * the workqueues list without grabbing wq_pool_mutex.
294 * This is used to dump all workqueues from sysrq.
298 /* hot fields used during command issue, aligned to cacheline */
299 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
300 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
301 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
304 static struct kmem_cache *pwq_cache;
306 static cpumask_var_t *wq_numa_possible_cpumask;
307 /* possible CPUs of each node */
309 static bool wq_disable_numa;
310 module_param_named(disable_numa, wq_disable_numa, bool, 0444);
312 /* see the comment above the definition of WQ_POWER_EFFICIENT */
313 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
314 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
316 static bool wq_online; /* can kworkers be created yet? */
318 static bool wq_numa_enabled; /* unbound NUMA affinity enabled */
320 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
321 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
323 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
324 static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
325 static DEFINE_RAW_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
326 /* wait for manager to go away */
327 static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait);
329 static LIST_HEAD(workqueues); /* PR: list of all workqueues */
330 static bool workqueue_freezing; /* PL: have wqs started freezing? */
332 /* PL&A: allowable cpus for unbound wqs and work items */
333 static cpumask_var_t wq_unbound_cpumask;
335 /* CPU where unbound work was last round robin scheduled from this CPU */
336 static DEFINE_PER_CPU(int, wq_rr_cpu_last);
339 * Local execution of unbound work items is no longer guaranteed. The
340 * following always forces round-robin CPU selection on unbound work items
341 * to uncover usages which depend on it.
343 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
344 static bool wq_debug_force_rr_cpu = true;
346 static bool wq_debug_force_rr_cpu = false;
348 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
350 /* the per-cpu worker pools */
351 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
353 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
355 /* PL: hash of all unbound pools keyed by pool->attrs */
356 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
358 /* I: attributes used when instantiating standard unbound pools on demand */
359 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
361 /* I: attributes used when instantiating ordered pools on demand */
362 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
364 struct workqueue_struct *system_wq __read_mostly;
365 EXPORT_SYMBOL(system_wq);
366 struct workqueue_struct *system_highpri_wq __read_mostly;
367 EXPORT_SYMBOL_GPL(system_highpri_wq);
368 struct workqueue_struct *system_long_wq __read_mostly;
369 EXPORT_SYMBOL_GPL(system_long_wq);
370 struct workqueue_struct *system_unbound_wq __read_mostly;
371 EXPORT_SYMBOL_GPL(system_unbound_wq);
372 struct workqueue_struct *system_freezable_wq __read_mostly;
373 EXPORT_SYMBOL_GPL(system_freezable_wq);
374 struct workqueue_struct *system_power_efficient_wq __read_mostly;
375 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
376 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
377 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
379 static int worker_thread(void *__worker);
380 static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
381 static void show_pwq(struct pool_workqueue *pwq);
382 static void show_one_worker_pool(struct worker_pool *pool);
384 #define CREATE_TRACE_POINTS
385 #include <trace/events/workqueue.h>
387 #define assert_rcu_or_pool_mutex() \
388 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
389 !lockdep_is_held(&wq_pool_mutex), \
390 "RCU or wq_pool_mutex should be held")
392 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \
393 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
394 !lockdep_is_held(&wq->mutex) && \
395 !lockdep_is_held(&wq_pool_mutex), \
396 "RCU, wq->mutex or wq_pool_mutex should be held")
398 #define for_each_cpu_worker_pool(pool, cpu) \
399 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
400 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
404 * for_each_pool - iterate through all worker_pools in the system
405 * @pool: iteration cursor
406 * @pi: integer used for iteration
408 * This must be called either with wq_pool_mutex held or RCU read
409 * locked. If the pool needs to be used beyond the locking in effect, the
410 * caller is responsible for guaranteeing that the pool stays online.
412 * The if/else clause exists only for the lockdep assertion and can be
415 #define for_each_pool(pool, pi) \
416 idr_for_each_entry(&worker_pool_idr, pool, pi) \
417 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
421 * for_each_pool_worker - iterate through all workers of a worker_pool
422 * @worker: iteration cursor
423 * @pool: worker_pool to iterate workers of
425 * This must be called with wq_pool_attach_mutex.
427 * The if/else clause exists only for the lockdep assertion and can be
430 #define for_each_pool_worker(worker, pool) \
431 list_for_each_entry((worker), &(pool)->workers, node) \
432 if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
436 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
437 * @pwq: iteration cursor
438 * @wq: the target workqueue
440 * This must be called either with wq->mutex held or RCU read locked.
441 * If the pwq needs to be used beyond the locking in effect, the caller is
442 * responsible for guaranteeing that the pwq stays online.
444 * The if/else clause exists only for the lockdep assertion and can be
447 #define for_each_pwq(pwq, wq) \
448 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node, \
449 lockdep_is_held(&(wq->mutex)))
451 #ifdef CONFIG_DEBUG_OBJECTS_WORK
453 static const struct debug_obj_descr work_debug_descr;
455 static void *work_debug_hint(void *addr)
457 return ((struct work_struct *) addr)->func;
460 static bool work_is_static_object(void *addr)
462 struct work_struct *work = addr;
464 return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
468 * fixup_init is called when:
469 * - an active object is initialized
471 static bool work_fixup_init(void *addr, enum debug_obj_state state)
473 struct work_struct *work = addr;
476 case ODEBUG_STATE_ACTIVE:
477 cancel_work_sync(work);
478 debug_object_init(work, &work_debug_descr);
486 * fixup_free is called when:
487 * - an active object is freed
489 static bool work_fixup_free(void *addr, enum debug_obj_state state)
491 struct work_struct *work = addr;
494 case ODEBUG_STATE_ACTIVE:
495 cancel_work_sync(work);
496 debug_object_free(work, &work_debug_descr);
503 static const struct debug_obj_descr work_debug_descr = {
504 .name = "work_struct",
505 .debug_hint = work_debug_hint,
506 .is_static_object = work_is_static_object,
507 .fixup_init = work_fixup_init,
508 .fixup_free = work_fixup_free,
511 static inline void debug_work_activate(struct work_struct *work)
513 debug_object_activate(work, &work_debug_descr);
516 static inline void debug_work_deactivate(struct work_struct *work)
518 debug_object_deactivate(work, &work_debug_descr);
521 void __init_work(struct work_struct *work, int onstack)
524 debug_object_init_on_stack(work, &work_debug_descr);
526 debug_object_init(work, &work_debug_descr);
528 EXPORT_SYMBOL_GPL(__init_work);
530 void destroy_work_on_stack(struct work_struct *work)
532 debug_object_free(work, &work_debug_descr);
534 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
536 void destroy_delayed_work_on_stack(struct delayed_work *work)
538 destroy_timer_on_stack(&work->timer);
539 debug_object_free(&work->work, &work_debug_descr);
541 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
544 static inline void debug_work_activate(struct work_struct *work) { }
545 static inline void debug_work_deactivate(struct work_struct *work) { }
549 * worker_pool_assign_id - allocate ID and assign it to @pool
550 * @pool: the pool pointer of interest
552 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
553 * successfully, -errno on failure.
555 static int worker_pool_assign_id(struct worker_pool *pool)
559 lockdep_assert_held(&wq_pool_mutex);
561 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
571 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
572 * @wq: the target workqueue
575 * This must be called with any of wq_pool_mutex, wq->mutex or RCU
577 * If the pwq needs to be used beyond the locking in effect, the caller is
578 * responsible for guaranteeing that the pwq stays online.
580 * Return: The unbound pool_workqueue for @node.
582 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
585 assert_rcu_or_wq_mutex_or_pool_mutex(wq);
588 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
589 * delayed item is pending. The plan is to keep CPU -> NODE
590 * mapping valid and stable across CPU on/offlines. Once that
591 * happens, this workaround can be removed.
593 if (unlikely(node == NUMA_NO_NODE))
596 return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
599 static unsigned int work_color_to_flags(int color)
601 return color << WORK_STRUCT_COLOR_SHIFT;
604 static int get_work_color(unsigned long work_data)
606 return (work_data >> WORK_STRUCT_COLOR_SHIFT) &
607 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
610 static int work_next_color(int color)
612 return (color + 1) % WORK_NR_COLORS;
616 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
617 * contain the pointer to the queued pwq. Once execution starts, the flag
618 * is cleared and the high bits contain OFFQ flags and pool ID.
620 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
621 * and clear_work_data() can be used to set the pwq, pool or clear
622 * work->data. These functions should only be called while the work is
623 * owned - ie. while the PENDING bit is set.
625 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
626 * corresponding to a work. Pool is available once the work has been
627 * queued anywhere after initialization until it is sync canceled. pwq is
628 * available only while the work item is queued.
630 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
631 * canceled. While being canceled, a work item may have its PENDING set
632 * but stay off timer and worklist for arbitrarily long and nobody should
633 * try to steal the PENDING bit.
635 static inline void set_work_data(struct work_struct *work, unsigned long data,
638 WARN_ON_ONCE(!work_pending(work));
639 atomic_long_set(&work->data, data | flags | work_static(work));
642 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
643 unsigned long extra_flags)
645 set_work_data(work, (unsigned long)pwq,
646 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
649 static void set_work_pool_and_keep_pending(struct work_struct *work,
652 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
653 WORK_STRUCT_PENDING);
656 static void set_work_pool_and_clear_pending(struct work_struct *work,
660 * The following wmb is paired with the implied mb in
661 * test_and_set_bit(PENDING) and ensures all updates to @work made
662 * here are visible to and precede any updates by the next PENDING
666 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
668 * The following mb guarantees that previous clear of a PENDING bit
669 * will not be reordered with any speculative LOADS or STORES from
670 * work->current_func, which is executed afterwards. This possible
671 * reordering can lead to a missed execution on attempt to queue
672 * the same @work. E.g. consider this case:
675 * ---------------------------- --------------------------------
677 * 1 STORE event_indicated
678 * 2 queue_work_on() {
679 * 3 test_and_set_bit(PENDING)
680 * 4 } set_..._and_clear_pending() {
681 * 5 set_work_data() # clear bit
683 * 7 work->current_func() {
684 * 8 LOAD event_indicated
687 * Without an explicit full barrier speculative LOAD on line 8 can
688 * be executed before CPU#0 does STORE on line 1. If that happens,
689 * CPU#0 observes the PENDING bit is still set and new execution of
690 * a @work is not queued in a hope, that CPU#1 will eventually
691 * finish the queued @work. Meanwhile CPU#1 does not see
692 * event_indicated is set, because speculative LOAD was executed
693 * before actual STORE.
698 static void clear_work_data(struct work_struct *work)
700 smp_wmb(); /* see set_work_pool_and_clear_pending() */
701 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
704 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
706 unsigned long data = atomic_long_read(&work->data);
708 if (data & WORK_STRUCT_PWQ)
709 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
715 * get_work_pool - return the worker_pool a given work was associated with
716 * @work: the work item of interest
718 * Pools are created and destroyed under wq_pool_mutex, and allows read
719 * access under RCU read lock. As such, this function should be
720 * called under wq_pool_mutex or inside of a rcu_read_lock() region.
722 * All fields of the returned pool are accessible as long as the above
723 * mentioned locking is in effect. If the returned pool needs to be used
724 * beyond the critical section, the caller is responsible for ensuring the
725 * returned pool is and stays online.
727 * Return: The worker_pool @work was last associated with. %NULL if none.
729 static struct worker_pool *get_work_pool(struct work_struct *work)
731 unsigned long data = atomic_long_read(&work->data);
734 assert_rcu_or_pool_mutex();
736 if (data & WORK_STRUCT_PWQ)
737 return ((struct pool_workqueue *)
738 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
740 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
741 if (pool_id == WORK_OFFQ_POOL_NONE)
744 return idr_find(&worker_pool_idr, pool_id);
748 * get_work_pool_id - return the worker pool ID a given work is associated with
749 * @work: the work item of interest
751 * Return: The worker_pool ID @work was last associated with.
752 * %WORK_OFFQ_POOL_NONE if none.
754 static int get_work_pool_id(struct work_struct *work)
756 unsigned long data = atomic_long_read(&work->data);
758 if (data & WORK_STRUCT_PWQ)
759 return ((struct pool_workqueue *)
760 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
762 return data >> WORK_OFFQ_POOL_SHIFT;
765 static void mark_work_canceling(struct work_struct *work)
767 unsigned long pool_id = get_work_pool_id(work);
769 pool_id <<= WORK_OFFQ_POOL_SHIFT;
770 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
773 static bool work_is_canceling(struct work_struct *work)
775 unsigned long data = atomic_long_read(&work->data);
777 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
781 * Policy functions. These define the policies on how the global worker
782 * pools are managed. Unless noted otherwise, these functions assume that
783 * they're being called with pool->lock held.
786 static bool __need_more_worker(struct worker_pool *pool)
788 return !pool->nr_running;
792 * Need to wake up a worker? Called from anything but currently
795 * Note that, because unbound workers never contribute to nr_running, this
796 * function will always return %true for unbound pools as long as the
797 * worklist isn't empty.
799 static bool need_more_worker(struct worker_pool *pool)
801 return !list_empty(&pool->worklist) && __need_more_worker(pool);
804 /* Can I start working? Called from busy but !running workers. */
805 static bool may_start_working(struct worker_pool *pool)
807 return pool->nr_idle;
810 /* Do I need to keep working? Called from currently running workers. */
811 static bool keep_working(struct worker_pool *pool)
813 return !list_empty(&pool->worklist) && (pool->nr_running <= 1);
816 /* Do we need a new worker? Called from manager. */
817 static bool need_to_create_worker(struct worker_pool *pool)
819 return need_more_worker(pool) && !may_start_working(pool);
822 /* Do we have too many workers and should some go away? */
823 static bool too_many_workers(struct worker_pool *pool)
825 bool managing = pool->flags & POOL_MANAGER_ACTIVE;
826 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
827 int nr_busy = pool->nr_workers - nr_idle;
829 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
836 /* Return the first idle worker. Called with pool->lock held. */
837 static struct worker *first_idle_worker(struct worker_pool *pool)
839 if (unlikely(list_empty(&pool->idle_list)))
842 return list_first_entry(&pool->idle_list, struct worker, entry);
846 * wake_up_worker - wake up an idle worker
847 * @pool: worker pool to wake worker from
849 * Wake up the first idle worker of @pool.
852 * raw_spin_lock_irq(pool->lock).
854 static void wake_up_worker(struct worker_pool *pool)
856 struct worker *worker = first_idle_worker(pool);
859 wake_up_process(worker->task);
863 * wq_worker_running - a worker is running again
864 * @task: task waking up
866 * This function is called when a worker returns from schedule()
868 void wq_worker_running(struct task_struct *task)
870 struct worker *worker = kthread_data(task);
872 if (!worker->sleeping)
876 * If preempted by unbind_workers() between the WORKER_NOT_RUNNING check
877 * and the nr_running increment below, we may ruin the nr_running reset
878 * and leave with an unexpected pool->nr_running == 1 on the newly unbound
879 * pool. Protect against such race.
882 if (!(worker->flags & WORKER_NOT_RUNNING))
883 worker->pool->nr_running++;
885 worker->sleeping = 0;
889 * wq_worker_sleeping - a worker is going to sleep
890 * @task: task going to sleep
892 * This function is called from schedule() when a busy worker is
895 void wq_worker_sleeping(struct task_struct *task)
897 struct worker *worker = kthread_data(task);
898 struct worker_pool *pool;
901 * Rescuers, which may not have all the fields set up like normal
902 * workers, also reach here, let's not access anything before
903 * checking NOT_RUNNING.
905 if (worker->flags & WORKER_NOT_RUNNING)
910 /* Return if preempted before wq_worker_running() was reached */
911 if (worker->sleeping)
914 worker->sleeping = 1;
915 raw_spin_lock_irq(&pool->lock);
918 * Recheck in case unbind_workers() preempted us. We don't
919 * want to decrement nr_running after the worker is unbound
920 * and nr_running has been reset.
922 if (worker->flags & WORKER_NOT_RUNNING) {
923 raw_spin_unlock_irq(&pool->lock);
928 if (need_more_worker(pool))
929 wake_up_worker(pool);
930 raw_spin_unlock_irq(&pool->lock);
934 * wq_worker_last_func - retrieve worker's last work function
935 * @task: Task to retrieve last work function of.
937 * Determine the last function a worker executed. This is called from
938 * the scheduler to get a worker's last known identity.
941 * raw_spin_lock_irq(rq->lock)
943 * This function is called during schedule() when a kworker is going
944 * to sleep. It's used by psi to identify aggregation workers during
945 * dequeuing, to allow periodic aggregation to shut-off when that
946 * worker is the last task in the system or cgroup to go to sleep.
948 * As this function doesn't involve any workqueue-related locking, it
949 * only returns stable values when called from inside the scheduler's
950 * queuing and dequeuing paths, when @task, which must be a kworker,
951 * is guaranteed to not be processing any works.
954 * The last work function %current executed as a worker, NULL if it
955 * hasn't executed any work yet.
957 work_func_t wq_worker_last_func(struct task_struct *task)
959 struct worker *worker = kthread_data(task);
961 return worker->last_func;
965 * worker_set_flags - set worker flags and adjust nr_running accordingly
967 * @flags: flags to set
969 * Set @flags in @worker->flags and adjust nr_running accordingly.
972 * raw_spin_lock_irq(pool->lock)
974 static inline void worker_set_flags(struct worker *worker, unsigned int flags)
976 struct worker_pool *pool = worker->pool;
978 WARN_ON_ONCE(worker->task != current);
980 /* If transitioning into NOT_RUNNING, adjust nr_running. */
981 if ((flags & WORKER_NOT_RUNNING) &&
982 !(worker->flags & WORKER_NOT_RUNNING)) {
986 worker->flags |= flags;
990 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
992 * @flags: flags to clear
994 * Clear @flags in @worker->flags and adjust nr_running accordingly.
997 * raw_spin_lock_irq(pool->lock)
999 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
1001 struct worker_pool *pool = worker->pool;
1002 unsigned int oflags = worker->flags;
1004 WARN_ON_ONCE(worker->task != current);
1006 worker->flags &= ~flags;
1009 * If transitioning out of NOT_RUNNING, increment nr_running. Note
1010 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
1011 * of multiple flags, not a single flag.
1013 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
1014 if (!(worker->flags & WORKER_NOT_RUNNING))
1019 * find_worker_executing_work - find worker which is executing a work
1020 * @pool: pool of interest
1021 * @work: work to find worker for
1023 * Find a worker which is executing @work on @pool by searching
1024 * @pool->busy_hash which is keyed by the address of @work. For a worker
1025 * to match, its current execution should match the address of @work and
1026 * its work function. This is to avoid unwanted dependency between
1027 * unrelated work executions through a work item being recycled while still
1030 * This is a bit tricky. A work item may be freed once its execution
1031 * starts and nothing prevents the freed area from being recycled for
1032 * another work item. If the same work item address ends up being reused
1033 * before the original execution finishes, workqueue will identify the
1034 * recycled work item as currently executing and make it wait until the
1035 * current execution finishes, introducing an unwanted dependency.
1037 * This function checks the work item address and work function to avoid
1038 * false positives. Note that this isn't complete as one may construct a
1039 * work function which can introduce dependency onto itself through a
1040 * recycled work item. Well, if somebody wants to shoot oneself in the
1041 * foot that badly, there's only so much we can do, and if such deadlock
1042 * actually occurs, it should be easy to locate the culprit work function.
1045 * raw_spin_lock_irq(pool->lock).
1048 * Pointer to worker which is executing @work if found, %NULL
1051 static struct worker *find_worker_executing_work(struct worker_pool *pool,
1052 struct work_struct *work)
1054 struct worker *worker;
1056 hash_for_each_possible(pool->busy_hash, worker, hentry,
1057 (unsigned long)work)
1058 if (worker->current_work == work &&
1059 worker->current_func == work->func)
1066 * move_linked_works - move linked works to a list
1067 * @work: start of series of works to be scheduled
1068 * @head: target list to append @work to
1069 * @nextp: out parameter for nested worklist walking
1071 * Schedule linked works starting from @work to @head. Work series to
1072 * be scheduled starts at @work and includes any consecutive work with
1073 * WORK_STRUCT_LINKED set in its predecessor.
1075 * If @nextp is not NULL, it's updated to point to the next work of
1076 * the last scheduled work. This allows move_linked_works() to be
1077 * nested inside outer list_for_each_entry_safe().
1080 * raw_spin_lock_irq(pool->lock).
1082 static void move_linked_works(struct work_struct *work, struct list_head *head,
1083 struct work_struct **nextp)
1085 struct work_struct *n;
1088 * Linked worklist will always end before the end of the list,
1089 * use NULL for list head.
1091 list_for_each_entry_safe_from(work, n, NULL, entry) {
1092 list_move_tail(&work->entry, head);
1093 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1098 * If we're already inside safe list traversal and have moved
1099 * multiple works to the scheduled queue, the next position
1100 * needs to be updated.
1107 * get_pwq - get an extra reference on the specified pool_workqueue
1108 * @pwq: pool_workqueue to get
1110 * Obtain an extra reference on @pwq. The caller should guarantee that
1111 * @pwq has positive refcnt and be holding the matching pool->lock.
1113 static void get_pwq(struct pool_workqueue *pwq)
1115 lockdep_assert_held(&pwq->pool->lock);
1116 WARN_ON_ONCE(pwq->refcnt <= 0);
1121 * put_pwq - put a pool_workqueue reference
1122 * @pwq: pool_workqueue to put
1124 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1125 * destruction. The caller should be holding the matching pool->lock.
1127 static void put_pwq(struct pool_workqueue *pwq)
1129 lockdep_assert_held(&pwq->pool->lock);
1130 if (likely(--pwq->refcnt))
1132 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1135 * @pwq can't be released under pool->lock, bounce to
1136 * pwq_unbound_release_workfn(). This never recurses on the same
1137 * pool->lock as this path is taken only for unbound workqueues and
1138 * the release work item is scheduled on a per-cpu workqueue. To
1139 * avoid lockdep warning, unbound pool->locks are given lockdep
1140 * subclass of 1 in get_unbound_pool().
1142 schedule_work(&pwq->unbound_release_work);
1146 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1147 * @pwq: pool_workqueue to put (can be %NULL)
1149 * put_pwq() with locking. This function also allows %NULL @pwq.
1151 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1155 * As both pwqs and pools are RCU protected, the
1156 * following lock operations are safe.
1158 raw_spin_lock_irq(&pwq->pool->lock);
1160 raw_spin_unlock_irq(&pwq->pool->lock);
1164 static void pwq_activate_inactive_work(struct work_struct *work)
1166 struct pool_workqueue *pwq = get_work_pwq(work);
1168 trace_workqueue_activate_work(work);
1169 if (list_empty(&pwq->pool->worklist))
1170 pwq->pool->watchdog_ts = jiffies;
1171 move_linked_works(work, &pwq->pool->worklist, NULL);
1172 __clear_bit(WORK_STRUCT_INACTIVE_BIT, work_data_bits(work));
1176 static void pwq_activate_first_inactive(struct pool_workqueue *pwq)
1178 struct work_struct *work = list_first_entry(&pwq->inactive_works,
1179 struct work_struct, entry);
1181 pwq_activate_inactive_work(work);
1185 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1186 * @pwq: pwq of interest
1187 * @work_data: work_data of work which left the queue
1189 * A work either has completed or is removed from pending queue,
1190 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1193 * raw_spin_lock_irq(pool->lock).
1195 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, unsigned long work_data)
1197 int color = get_work_color(work_data);
1199 if (!(work_data & WORK_STRUCT_INACTIVE)) {
1201 if (!list_empty(&pwq->inactive_works)) {
1202 /* one down, submit an inactive one */
1203 if (pwq->nr_active < pwq->max_active)
1204 pwq_activate_first_inactive(pwq);
1208 pwq->nr_in_flight[color]--;
1210 /* is flush in progress and are we at the flushing tip? */
1211 if (likely(pwq->flush_color != color))
1214 /* are there still in-flight works? */
1215 if (pwq->nr_in_flight[color])
1218 /* this pwq is done, clear flush_color */
1219 pwq->flush_color = -1;
1222 * If this was the last pwq, wake up the first flusher. It
1223 * will handle the rest.
1225 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1226 complete(&pwq->wq->first_flusher->done);
1232 * try_to_grab_pending - steal work item from worklist and disable irq
1233 * @work: work item to steal
1234 * @is_dwork: @work is a delayed_work
1235 * @flags: place to store irq state
1237 * Try to grab PENDING bit of @work. This function can handle @work in any
1238 * stable state - idle, on timer or on worklist.
1242 * ======== ================================================================
1243 * 1 if @work was pending and we successfully stole PENDING
1244 * 0 if @work was idle and we claimed PENDING
1245 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
1246 * -ENOENT if someone else is canceling @work, this state may persist
1247 * for arbitrarily long
1248 * ======== ================================================================
1251 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
1252 * interrupted while holding PENDING and @work off queue, irq must be
1253 * disabled on entry. This, combined with delayed_work->timer being
1254 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1256 * On successful return, >= 0, irq is disabled and the caller is
1257 * responsible for releasing it using local_irq_restore(*@flags).
1259 * This function is safe to call from any context including IRQ handler.
1261 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1262 unsigned long *flags)
1264 struct worker_pool *pool;
1265 struct pool_workqueue *pwq;
1267 local_irq_save(*flags);
1269 /* try to steal the timer if it exists */
1271 struct delayed_work *dwork = to_delayed_work(work);
1274 * dwork->timer is irqsafe. If del_timer() fails, it's
1275 * guaranteed that the timer is not queued anywhere and not
1276 * running on the local CPU.
1278 if (likely(del_timer(&dwork->timer)))
1282 /* try to claim PENDING the normal way */
1283 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1288 * The queueing is in progress, or it is already queued. Try to
1289 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1291 pool = get_work_pool(work);
1295 raw_spin_lock(&pool->lock);
1297 * work->data is guaranteed to point to pwq only while the work
1298 * item is queued on pwq->wq, and both updating work->data to point
1299 * to pwq on queueing and to pool on dequeueing are done under
1300 * pwq->pool->lock. This in turn guarantees that, if work->data
1301 * points to pwq which is associated with a locked pool, the work
1302 * item is currently queued on that pool.
1304 pwq = get_work_pwq(work);
1305 if (pwq && pwq->pool == pool) {
1306 debug_work_deactivate(work);
1309 * A cancelable inactive work item must be in the
1310 * pwq->inactive_works since a queued barrier can't be
1311 * canceled (see the comments in insert_wq_barrier()).
1313 * An inactive work item cannot be grabbed directly because
1314 * it might have linked barrier work items which, if left
1315 * on the inactive_works list, will confuse pwq->nr_active
1316 * management later on and cause stall. Make sure the work
1317 * item is activated before grabbing.
1319 if (*work_data_bits(work) & WORK_STRUCT_INACTIVE)
1320 pwq_activate_inactive_work(work);
1322 list_del_init(&work->entry);
1323 pwq_dec_nr_in_flight(pwq, *work_data_bits(work));
1325 /* work->data points to pwq iff queued, point to pool */
1326 set_work_pool_and_keep_pending(work, pool->id);
1328 raw_spin_unlock(&pool->lock);
1332 raw_spin_unlock(&pool->lock);
1335 local_irq_restore(*flags);
1336 if (work_is_canceling(work))
1343 * insert_work - insert a work into a pool
1344 * @pwq: pwq @work belongs to
1345 * @work: work to insert
1346 * @head: insertion point
1347 * @extra_flags: extra WORK_STRUCT_* flags to set
1349 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
1350 * work_struct flags.
1353 * raw_spin_lock_irq(pool->lock).
1355 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1356 struct list_head *head, unsigned int extra_flags)
1358 struct worker_pool *pool = pwq->pool;
1360 /* record the work call stack in order to print it in KASAN reports */
1361 kasan_record_aux_stack_noalloc(work);
1363 /* we own @work, set data and link */
1364 set_work_pwq(work, pwq, extra_flags);
1365 list_add_tail(&work->entry, head);
1368 if (__need_more_worker(pool))
1369 wake_up_worker(pool);
1373 * Test whether @work is being queued from another work executing on the
1376 static bool is_chained_work(struct workqueue_struct *wq)
1378 struct worker *worker;
1380 worker = current_wq_worker();
1382 * Return %true iff I'm a worker executing a work item on @wq. If
1383 * I'm @worker, it's safe to dereference it without locking.
1385 return worker && worker->current_pwq->wq == wq;
1389 * When queueing an unbound work item to a wq, prefer local CPU if allowed
1390 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to
1391 * avoid perturbing sensitive tasks.
1393 static int wq_select_unbound_cpu(int cpu)
1395 static bool printed_dbg_warning;
1398 if (likely(!wq_debug_force_rr_cpu)) {
1399 if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1401 } else if (!printed_dbg_warning) {
1402 pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
1403 printed_dbg_warning = true;
1406 if (cpumask_empty(wq_unbound_cpumask))
1409 new_cpu = __this_cpu_read(wq_rr_cpu_last);
1410 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1411 if (unlikely(new_cpu >= nr_cpu_ids)) {
1412 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1413 if (unlikely(new_cpu >= nr_cpu_ids))
1416 __this_cpu_write(wq_rr_cpu_last, new_cpu);
1421 static void __queue_work(int cpu, struct workqueue_struct *wq,
1422 struct work_struct *work)
1424 struct pool_workqueue *pwq;
1425 struct worker_pool *last_pool;
1426 struct list_head *worklist;
1427 unsigned int work_flags;
1428 unsigned int req_cpu = cpu;
1431 * While a work item is PENDING && off queue, a task trying to
1432 * steal the PENDING will busy-loop waiting for it to either get
1433 * queued or lose PENDING. Grabbing PENDING and queueing should
1434 * happen with IRQ disabled.
1436 lockdep_assert_irqs_disabled();
1440 * For a draining wq, only works from the same workqueue are
1441 * allowed. The __WQ_DESTROYING helps to spot the issue that
1442 * queues a new work item to a wq after destroy_workqueue(wq).
1444 if (unlikely(wq->flags & (__WQ_DESTROYING | __WQ_DRAINING) &&
1445 WARN_ON_ONCE(!is_chained_work(wq))))
1449 /* pwq which will be used unless @work is executing elsewhere */
1450 if (wq->flags & WQ_UNBOUND) {
1451 if (req_cpu == WORK_CPU_UNBOUND)
1452 cpu = wq_select_unbound_cpu(raw_smp_processor_id());
1453 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1455 if (req_cpu == WORK_CPU_UNBOUND)
1456 cpu = raw_smp_processor_id();
1457 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1461 * If @work was previously on a different pool, it might still be
1462 * running there, in which case the work needs to be queued on that
1463 * pool to guarantee non-reentrancy.
1465 last_pool = get_work_pool(work);
1466 if (last_pool && last_pool != pwq->pool) {
1467 struct worker *worker;
1469 raw_spin_lock(&last_pool->lock);
1471 worker = find_worker_executing_work(last_pool, work);
1473 if (worker && worker->current_pwq->wq == wq) {
1474 pwq = worker->current_pwq;
1476 /* meh... not running there, queue here */
1477 raw_spin_unlock(&last_pool->lock);
1478 raw_spin_lock(&pwq->pool->lock);
1481 raw_spin_lock(&pwq->pool->lock);
1485 * pwq is determined and locked. For unbound pools, we could have
1486 * raced with pwq release and it could already be dead. If its
1487 * refcnt is zero, repeat pwq selection. Note that pwqs never die
1488 * without another pwq replacing it in the numa_pwq_tbl or while
1489 * work items are executing on it, so the retrying is guaranteed to
1490 * make forward-progress.
1492 if (unlikely(!pwq->refcnt)) {
1493 if (wq->flags & WQ_UNBOUND) {
1494 raw_spin_unlock(&pwq->pool->lock);
1499 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1503 /* pwq determined, queue */
1504 trace_workqueue_queue_work(req_cpu, pwq, work);
1506 if (WARN_ON(!list_empty(&work->entry)))
1509 pwq->nr_in_flight[pwq->work_color]++;
1510 work_flags = work_color_to_flags(pwq->work_color);
1512 if (likely(pwq->nr_active < pwq->max_active)) {
1513 trace_workqueue_activate_work(work);
1515 worklist = &pwq->pool->worklist;
1516 if (list_empty(worklist))
1517 pwq->pool->watchdog_ts = jiffies;
1519 work_flags |= WORK_STRUCT_INACTIVE;
1520 worklist = &pwq->inactive_works;
1523 debug_work_activate(work);
1524 insert_work(pwq, work, worklist, work_flags);
1527 raw_spin_unlock(&pwq->pool->lock);
1532 * queue_work_on - queue work on specific cpu
1533 * @cpu: CPU number to execute work on
1534 * @wq: workqueue to use
1535 * @work: work to queue
1537 * We queue the work to a specific CPU, the caller must ensure it
1538 * can't go away. Callers that fail to ensure that the specified
1539 * CPU cannot go away will execute on a randomly chosen CPU.
1541 * Return: %false if @work was already on a queue, %true otherwise.
1543 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1544 struct work_struct *work)
1547 unsigned long flags;
1549 local_irq_save(flags);
1551 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1552 __queue_work(cpu, wq, work);
1556 local_irq_restore(flags);
1559 EXPORT_SYMBOL(queue_work_on);
1562 * workqueue_select_cpu_near - Select a CPU based on NUMA node
1563 * @node: NUMA node ID that we want to select a CPU from
1565 * This function will attempt to find a "random" cpu available on a given
1566 * node. If there are no CPUs available on the given node it will return
1567 * WORK_CPU_UNBOUND indicating that we should just schedule to any
1568 * available CPU if we need to schedule this work.
1570 static int workqueue_select_cpu_near(int node)
1574 /* No point in doing this if NUMA isn't enabled for workqueues */
1575 if (!wq_numa_enabled)
1576 return WORK_CPU_UNBOUND;
1578 /* Delay binding to CPU if node is not valid or online */
1579 if (node < 0 || node >= MAX_NUMNODES || !node_online(node))
1580 return WORK_CPU_UNBOUND;
1582 /* Use local node/cpu if we are already there */
1583 cpu = raw_smp_processor_id();
1584 if (node == cpu_to_node(cpu))
1587 /* Use "random" otherwise know as "first" online CPU of node */
1588 cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
1590 /* If CPU is valid return that, otherwise just defer */
1591 return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND;
1595 * queue_work_node - queue work on a "random" cpu for a given NUMA node
1596 * @node: NUMA node that we are targeting the work for
1597 * @wq: workqueue to use
1598 * @work: work to queue
1600 * We queue the work to a "random" CPU within a given NUMA node. The basic
1601 * idea here is to provide a way to somehow associate work with a given
1604 * This function will only make a best effort attempt at getting this onto
1605 * the right NUMA node. If no node is requested or the requested node is
1606 * offline then we just fall back to standard queue_work behavior.
1608 * Currently the "random" CPU ends up being the first available CPU in the
1609 * intersection of cpu_online_mask and the cpumask of the node, unless we
1610 * are running on the node. In that case we just use the current CPU.
1612 * Return: %false if @work was already on a queue, %true otherwise.
1614 bool queue_work_node(int node, struct workqueue_struct *wq,
1615 struct work_struct *work)
1617 unsigned long flags;
1621 * This current implementation is specific to unbound workqueues.
1622 * Specifically we only return the first available CPU for a given
1623 * node instead of cycling through individual CPUs within the node.
1625 * If this is used with a per-cpu workqueue then the logic in
1626 * workqueue_select_cpu_near would need to be updated to allow for
1627 * some round robin type logic.
1629 WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND));
1631 local_irq_save(flags);
1633 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1634 int cpu = workqueue_select_cpu_near(node);
1636 __queue_work(cpu, wq, work);
1640 local_irq_restore(flags);
1643 EXPORT_SYMBOL_GPL(queue_work_node);
1645 void delayed_work_timer_fn(struct timer_list *t)
1647 struct delayed_work *dwork = from_timer(dwork, t, timer);
1649 /* should have been called from irqsafe timer with irq already off */
1650 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1652 EXPORT_SYMBOL(delayed_work_timer_fn);
1654 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1655 struct delayed_work *dwork, unsigned long delay)
1657 struct timer_list *timer = &dwork->timer;
1658 struct work_struct *work = &dwork->work;
1661 WARN_ON_ONCE(timer->function != delayed_work_timer_fn);
1662 WARN_ON_ONCE(timer_pending(timer));
1663 WARN_ON_ONCE(!list_empty(&work->entry));
1666 * If @delay is 0, queue @dwork->work immediately. This is for
1667 * both optimization and correctness. The earliest @timer can
1668 * expire is on the closest next tick and delayed_work users depend
1669 * on that there's no such delay when @delay is 0.
1672 __queue_work(cpu, wq, &dwork->work);
1678 timer->expires = jiffies + delay;
1680 if (unlikely(cpu != WORK_CPU_UNBOUND))
1681 add_timer_on(timer, cpu);
1687 * queue_delayed_work_on - queue work on specific CPU after delay
1688 * @cpu: CPU number to execute work on
1689 * @wq: workqueue to use
1690 * @dwork: work to queue
1691 * @delay: number of jiffies to wait before queueing
1693 * Return: %false if @work was already on a queue, %true otherwise. If
1694 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1697 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1698 struct delayed_work *dwork, unsigned long delay)
1700 struct work_struct *work = &dwork->work;
1702 unsigned long flags;
1704 /* read the comment in __queue_work() */
1705 local_irq_save(flags);
1707 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1708 __queue_delayed_work(cpu, wq, dwork, delay);
1712 local_irq_restore(flags);
1715 EXPORT_SYMBOL(queue_delayed_work_on);
1718 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1719 * @cpu: CPU number to execute work on
1720 * @wq: workqueue to use
1721 * @dwork: work to queue
1722 * @delay: number of jiffies to wait before queueing
1724 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1725 * modify @dwork's timer so that it expires after @delay. If @delay is
1726 * zero, @work is guaranteed to be scheduled immediately regardless of its
1729 * Return: %false if @dwork was idle and queued, %true if @dwork was
1730 * pending and its timer was modified.
1732 * This function is safe to call from any context including IRQ handler.
1733 * See try_to_grab_pending() for details.
1735 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1736 struct delayed_work *dwork, unsigned long delay)
1738 unsigned long flags;
1742 ret = try_to_grab_pending(&dwork->work, true, &flags);
1743 } while (unlikely(ret == -EAGAIN));
1745 if (likely(ret >= 0)) {
1746 __queue_delayed_work(cpu, wq, dwork, delay);
1747 local_irq_restore(flags);
1750 /* -ENOENT from try_to_grab_pending() becomes %true */
1753 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1755 static void rcu_work_rcufn(struct rcu_head *rcu)
1757 struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
1759 /* read the comment in __queue_work() */
1760 local_irq_disable();
1761 __queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
1766 * queue_rcu_work - queue work after a RCU grace period
1767 * @wq: workqueue to use
1768 * @rwork: work to queue
1770 * Return: %false if @rwork was already pending, %true otherwise. Note
1771 * that a full RCU grace period is guaranteed only after a %true return.
1772 * While @rwork is guaranteed to be executed after a %false return, the
1773 * execution may happen before a full RCU grace period has passed.
1775 bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
1777 struct work_struct *work = &rwork->work;
1779 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1781 call_rcu_hurry(&rwork->rcu, rcu_work_rcufn);
1787 EXPORT_SYMBOL(queue_rcu_work);
1790 * worker_enter_idle - enter idle state
1791 * @worker: worker which is entering idle state
1793 * @worker is entering idle state. Update stats and idle timer if
1797 * raw_spin_lock_irq(pool->lock).
1799 static void worker_enter_idle(struct worker *worker)
1801 struct worker_pool *pool = worker->pool;
1803 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1804 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1805 (worker->hentry.next || worker->hentry.pprev)))
1808 /* can't use worker_set_flags(), also called from create_worker() */
1809 worker->flags |= WORKER_IDLE;
1811 worker->last_active = jiffies;
1813 /* idle_list is LIFO */
1814 list_add(&worker->entry, &pool->idle_list);
1816 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1817 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1819 /* Sanity check nr_running. */
1820 WARN_ON_ONCE(pool->nr_workers == pool->nr_idle && pool->nr_running);
1824 * worker_leave_idle - leave idle state
1825 * @worker: worker which is leaving idle state
1827 * @worker is leaving idle state. Update stats.
1830 * raw_spin_lock_irq(pool->lock).
1832 static void worker_leave_idle(struct worker *worker)
1834 struct worker_pool *pool = worker->pool;
1836 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1838 worker_clr_flags(worker, WORKER_IDLE);
1840 list_del_init(&worker->entry);
1843 static struct worker *alloc_worker(int node)
1845 struct worker *worker;
1847 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
1849 INIT_LIST_HEAD(&worker->entry);
1850 INIT_LIST_HEAD(&worker->scheduled);
1851 INIT_LIST_HEAD(&worker->node);
1852 /* on creation a worker is in !idle && prep state */
1853 worker->flags = WORKER_PREP;
1859 * worker_attach_to_pool() - attach a worker to a pool
1860 * @worker: worker to be attached
1861 * @pool: the target pool
1863 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and
1864 * cpu-binding of @worker are kept coordinated with the pool across
1867 static void worker_attach_to_pool(struct worker *worker,
1868 struct worker_pool *pool)
1870 mutex_lock(&wq_pool_attach_mutex);
1873 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains
1874 * stable across this function. See the comments above the flag
1875 * definition for details.
1877 if (pool->flags & POOL_DISASSOCIATED)
1878 worker->flags |= WORKER_UNBOUND;
1880 kthread_set_per_cpu(worker->task, pool->cpu);
1882 if (worker->rescue_wq)
1883 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1885 list_add_tail(&worker->node, &pool->workers);
1886 worker->pool = pool;
1888 mutex_unlock(&wq_pool_attach_mutex);
1892 * worker_detach_from_pool() - detach a worker from its pool
1893 * @worker: worker which is attached to its pool
1895 * Undo the attaching which had been done in worker_attach_to_pool(). The
1896 * caller worker shouldn't access to the pool after detached except it has
1897 * other reference to the pool.
1899 static void worker_detach_from_pool(struct worker *worker)
1901 struct worker_pool *pool = worker->pool;
1902 struct completion *detach_completion = NULL;
1904 mutex_lock(&wq_pool_attach_mutex);
1906 kthread_set_per_cpu(worker->task, -1);
1907 list_del(&worker->node);
1908 worker->pool = NULL;
1910 if (list_empty(&pool->workers) && list_empty(&pool->dying_workers))
1911 detach_completion = pool->detach_completion;
1912 mutex_unlock(&wq_pool_attach_mutex);
1914 /* clear leftover flags without pool->lock after it is detached */
1915 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1917 if (detach_completion)
1918 complete(detach_completion);
1922 * create_worker - create a new workqueue worker
1923 * @pool: pool the new worker will belong to
1925 * Create and start a new worker which is attached to @pool.
1928 * Might sleep. Does GFP_KERNEL allocations.
1931 * Pointer to the newly created worker.
1933 static struct worker *create_worker(struct worker_pool *pool)
1935 struct worker *worker;
1939 /* ID is needed to determine kthread name */
1940 id = ida_alloc(&pool->worker_ida, GFP_KERNEL);
1944 worker = alloc_worker(pool->node);
1951 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1952 pool->attrs->nice < 0 ? "H" : "");
1954 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1956 worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1957 "kworker/%s", id_buf);
1958 if (IS_ERR(worker->task))
1961 set_user_nice(worker->task, pool->attrs->nice);
1962 kthread_bind_mask(worker->task, pool->attrs->cpumask);
1964 /* successful, attach the worker to the pool */
1965 worker_attach_to_pool(worker, pool);
1967 /* start the newly created worker */
1968 raw_spin_lock_irq(&pool->lock);
1969 worker->pool->nr_workers++;
1970 worker_enter_idle(worker);
1971 wake_up_process(worker->task);
1972 raw_spin_unlock_irq(&pool->lock);
1977 ida_free(&pool->worker_ida, id);
1982 static void unbind_worker(struct worker *worker)
1984 lockdep_assert_held(&wq_pool_attach_mutex);
1986 kthread_set_per_cpu(worker->task, -1);
1987 if (cpumask_intersects(wq_unbound_cpumask, cpu_active_mask))
1988 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, wq_unbound_cpumask) < 0);
1990 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, cpu_possible_mask) < 0);
1993 static void wake_dying_workers(struct list_head *cull_list)
1995 struct worker *worker, *tmp;
1997 list_for_each_entry_safe(worker, tmp, cull_list, entry) {
1998 list_del_init(&worker->entry);
1999 unbind_worker(worker);
2001 * If the worker was somehow already running, then it had to be
2002 * in pool->idle_list when set_worker_dying() happened or we
2003 * wouldn't have gotten here.
2005 * Thus, the worker must either have observed the WORKER_DIE
2006 * flag, or have set its state to TASK_IDLE. Either way, the
2007 * below will be observed by the worker and is safe to do
2008 * outside of pool->lock.
2010 wake_up_process(worker->task);
2015 * set_worker_dying - Tag a worker for destruction
2016 * @worker: worker to be destroyed
2017 * @list: transfer worker away from its pool->idle_list and into list
2019 * Tag @worker for destruction and adjust @pool stats accordingly. The worker
2023 * raw_spin_lock_irq(pool->lock).
2025 static void set_worker_dying(struct worker *worker, struct list_head *list)
2027 struct worker_pool *pool = worker->pool;
2029 lockdep_assert_held(&pool->lock);
2030 lockdep_assert_held(&wq_pool_attach_mutex);
2032 /* sanity check frenzy */
2033 if (WARN_ON(worker->current_work) ||
2034 WARN_ON(!list_empty(&worker->scheduled)) ||
2035 WARN_ON(!(worker->flags & WORKER_IDLE)))
2041 worker->flags |= WORKER_DIE;
2043 list_move(&worker->entry, list);
2044 list_move(&worker->node, &pool->dying_workers);
2048 * idle_worker_timeout - check if some idle workers can now be deleted.
2049 * @t: The pool's idle_timer that just expired
2051 * The timer is armed in worker_enter_idle(). Note that it isn't disarmed in
2052 * worker_leave_idle(), as a worker flicking between idle and active while its
2053 * pool is at the too_many_workers() tipping point would cause too much timer
2054 * housekeeping overhead. Since IDLE_WORKER_TIMEOUT is long enough, we just let
2055 * it expire and re-evaluate things from there.
2057 static void idle_worker_timeout(struct timer_list *t)
2059 struct worker_pool *pool = from_timer(pool, t, idle_timer);
2060 bool do_cull = false;
2062 if (work_pending(&pool->idle_cull_work))
2065 raw_spin_lock_irq(&pool->lock);
2067 if (too_many_workers(pool)) {
2068 struct worker *worker;
2069 unsigned long expires;
2071 /* idle_list is kept in LIFO order, check the last one */
2072 worker = list_entry(pool->idle_list.prev, struct worker, entry);
2073 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2074 do_cull = !time_before(jiffies, expires);
2077 mod_timer(&pool->idle_timer, expires);
2079 raw_spin_unlock_irq(&pool->lock);
2082 queue_work(system_unbound_wq, &pool->idle_cull_work);
2086 * idle_cull_fn - cull workers that have been idle for too long.
2087 * @work: the pool's work for handling these idle workers
2089 * This goes through a pool's idle workers and gets rid of those that have been
2090 * idle for at least IDLE_WORKER_TIMEOUT seconds.
2092 * We don't want to disturb isolated CPUs because of a pcpu kworker being
2093 * culled, so this also resets worker affinity. This requires a sleepable
2094 * context, hence the split between timer callback and work item.
2096 static void idle_cull_fn(struct work_struct *work)
2098 struct worker_pool *pool = container_of(work, struct worker_pool, idle_cull_work);
2099 struct list_head cull_list;
2101 INIT_LIST_HEAD(&cull_list);
2103 * Grabbing wq_pool_attach_mutex here ensures an already-running worker
2104 * cannot proceed beyong worker_detach_from_pool() in its self-destruct
2105 * path. This is required as a previously-preempted worker could run after
2106 * set_worker_dying() has happened but before wake_dying_workers() did.
2108 mutex_lock(&wq_pool_attach_mutex);
2109 raw_spin_lock_irq(&pool->lock);
2111 while (too_many_workers(pool)) {
2112 struct worker *worker;
2113 unsigned long expires;
2115 worker = list_entry(pool->idle_list.prev, struct worker, entry);
2116 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2118 if (time_before(jiffies, expires)) {
2119 mod_timer(&pool->idle_timer, expires);
2123 set_worker_dying(worker, &cull_list);
2126 raw_spin_unlock_irq(&pool->lock);
2127 wake_dying_workers(&cull_list);
2128 mutex_unlock(&wq_pool_attach_mutex);
2131 static void send_mayday(struct work_struct *work)
2133 struct pool_workqueue *pwq = get_work_pwq(work);
2134 struct workqueue_struct *wq = pwq->wq;
2136 lockdep_assert_held(&wq_mayday_lock);
2141 /* mayday mayday mayday */
2142 if (list_empty(&pwq->mayday_node)) {
2144 * If @pwq is for an unbound wq, its base ref may be put at
2145 * any time due to an attribute change. Pin @pwq until the
2146 * rescuer is done with it.
2149 list_add_tail(&pwq->mayday_node, &wq->maydays);
2150 wake_up_process(wq->rescuer->task);
2154 static void pool_mayday_timeout(struct timer_list *t)
2156 struct worker_pool *pool = from_timer(pool, t, mayday_timer);
2157 struct work_struct *work;
2159 raw_spin_lock_irq(&pool->lock);
2160 raw_spin_lock(&wq_mayday_lock); /* for wq->maydays */
2162 if (need_to_create_worker(pool)) {
2164 * We've been trying to create a new worker but
2165 * haven't been successful. We might be hitting an
2166 * allocation deadlock. Send distress signals to
2169 list_for_each_entry(work, &pool->worklist, entry)
2173 raw_spin_unlock(&wq_mayday_lock);
2174 raw_spin_unlock_irq(&pool->lock);
2176 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
2180 * maybe_create_worker - create a new worker if necessary
2181 * @pool: pool to create a new worker for
2183 * Create a new worker for @pool if necessary. @pool is guaranteed to
2184 * have at least one idle worker on return from this function. If
2185 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
2186 * sent to all rescuers with works scheduled on @pool to resolve
2187 * possible allocation deadlock.
2189 * On return, need_to_create_worker() is guaranteed to be %false and
2190 * may_start_working() %true.
2193 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2194 * multiple times. Does GFP_KERNEL allocations. Called only from
2197 static void maybe_create_worker(struct worker_pool *pool)
2198 __releases(&pool->lock)
2199 __acquires(&pool->lock)
2202 raw_spin_unlock_irq(&pool->lock);
2204 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
2205 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
2208 if (create_worker(pool) || !need_to_create_worker(pool))
2211 schedule_timeout_interruptible(CREATE_COOLDOWN);
2213 if (!need_to_create_worker(pool))
2217 del_timer_sync(&pool->mayday_timer);
2218 raw_spin_lock_irq(&pool->lock);
2220 * This is necessary even after a new worker was just successfully
2221 * created as @pool->lock was dropped and the new worker might have
2222 * already become busy.
2224 if (need_to_create_worker(pool))
2229 * manage_workers - manage worker pool
2232 * Assume the manager role and manage the worker pool @worker belongs
2233 * to. At any given time, there can be only zero or one manager per
2234 * pool. The exclusion is handled automatically by this function.
2236 * The caller can safely start processing works on false return. On
2237 * true return, it's guaranteed that need_to_create_worker() is false
2238 * and may_start_working() is true.
2241 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2242 * multiple times. Does GFP_KERNEL allocations.
2245 * %false if the pool doesn't need management and the caller can safely
2246 * start processing works, %true if management function was performed and
2247 * the conditions that the caller verified before calling the function may
2248 * no longer be true.
2250 static bool manage_workers(struct worker *worker)
2252 struct worker_pool *pool = worker->pool;
2254 if (pool->flags & POOL_MANAGER_ACTIVE)
2257 pool->flags |= POOL_MANAGER_ACTIVE;
2258 pool->manager = worker;
2260 maybe_create_worker(pool);
2262 pool->manager = NULL;
2263 pool->flags &= ~POOL_MANAGER_ACTIVE;
2264 rcuwait_wake_up(&manager_wait);
2269 * process_one_work - process single work
2271 * @work: work to process
2273 * Process @work. This function contains all the logics necessary to
2274 * process a single work including synchronization against and
2275 * interaction with other workers on the same cpu, queueing and
2276 * flushing. As long as context requirement is met, any worker can
2277 * call this function to process a work.
2280 * raw_spin_lock_irq(pool->lock) which is released and regrabbed.
2282 static void process_one_work(struct worker *worker, struct work_struct *work)
2283 __releases(&pool->lock)
2284 __acquires(&pool->lock)
2286 struct pool_workqueue *pwq = get_work_pwq(work);
2287 struct worker_pool *pool = worker->pool;
2288 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2289 unsigned long work_data;
2290 struct worker *collision;
2291 #ifdef CONFIG_LOCKDEP
2293 * It is permissible to free the struct work_struct from
2294 * inside the function that is called from it, this we need to
2295 * take into account for lockdep too. To avoid bogus "held
2296 * lock freed" warnings as well as problems when looking into
2297 * work->lockdep_map, make a copy and use that here.
2299 struct lockdep_map lockdep_map;
2301 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2303 /* ensure we're on the correct CPU */
2304 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
2305 raw_smp_processor_id() != pool->cpu);
2308 * A single work shouldn't be executed concurrently by
2309 * multiple workers on a single cpu. Check whether anyone is
2310 * already processing the work. If so, defer the work to the
2311 * currently executing one.
2313 collision = find_worker_executing_work(pool, work);
2314 if (unlikely(collision)) {
2315 move_linked_works(work, &collision->scheduled, NULL);
2319 /* claim and dequeue */
2320 debug_work_deactivate(work);
2321 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2322 worker->current_work = work;
2323 worker->current_func = work->func;
2324 worker->current_pwq = pwq;
2325 work_data = *work_data_bits(work);
2326 worker->current_color = get_work_color(work_data);
2329 * Record wq name for cmdline and debug reporting, may get
2330 * overridden through set_worker_desc().
2332 strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
2334 list_del_init(&work->entry);
2337 * CPU intensive works don't participate in concurrency management.
2338 * They're the scheduler's responsibility. This takes @worker out
2339 * of concurrency management and the next code block will chain
2340 * execution of the pending work items.
2342 if (unlikely(cpu_intensive))
2343 worker_set_flags(worker, WORKER_CPU_INTENSIVE);
2346 * Wake up another worker if necessary. The condition is always
2347 * false for normal per-cpu workers since nr_running would always
2348 * be >= 1 at this point. This is used to chain execution of the
2349 * pending work items for WORKER_NOT_RUNNING workers such as the
2350 * UNBOUND and CPU_INTENSIVE ones.
2352 if (need_more_worker(pool))
2353 wake_up_worker(pool);
2356 * Record the last pool and clear PENDING which should be the last
2357 * update to @work. Also, do this inside @pool->lock so that
2358 * PENDING and queued state changes happen together while IRQ is
2361 set_work_pool_and_clear_pending(work, pool->id);
2363 raw_spin_unlock_irq(&pool->lock);
2365 lock_map_acquire(&pwq->wq->lockdep_map);
2366 lock_map_acquire(&lockdep_map);
2368 * Strictly speaking we should mark the invariant state without holding
2369 * any locks, that is, before these two lock_map_acquire()'s.
2371 * However, that would result in:
2378 * Which would create W1->C->W1 dependencies, even though there is no
2379 * actual deadlock possible. There are two solutions, using a
2380 * read-recursive acquire on the work(queue) 'locks', but this will then
2381 * hit the lockdep limitation on recursive locks, or simply discard
2384 * AFAICT there is no possible deadlock scenario between the
2385 * flush_work() and complete() primitives (except for single-threaded
2386 * workqueues), so hiding them isn't a problem.
2388 lockdep_invariant_state(true);
2389 trace_workqueue_execute_start(work);
2390 worker->current_func(work);
2392 * While we must be careful to not use "work" after this, the trace
2393 * point will only record its address.
2395 trace_workqueue_execute_end(work, worker->current_func);
2396 lock_map_release(&lockdep_map);
2397 lock_map_release(&pwq->wq->lockdep_map);
2399 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2400 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2401 " last function: %ps\n",
2402 current->comm, preempt_count(), task_pid_nr(current),
2403 worker->current_func);
2404 debug_show_held_locks(current);
2409 * The following prevents a kworker from hogging CPU on !PREEMPTION
2410 * kernels, where a requeueing work item waiting for something to
2411 * happen could deadlock with stop_machine as such work item could
2412 * indefinitely requeue itself while all other CPUs are trapped in
2413 * stop_machine. At the same time, report a quiescent RCU state so
2414 * the same condition doesn't freeze RCU.
2418 raw_spin_lock_irq(&pool->lock);
2420 /* clear cpu intensive status */
2421 if (unlikely(cpu_intensive))
2422 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2424 /* tag the worker for identification in schedule() */
2425 worker->last_func = worker->current_func;
2427 /* we're done with it, release */
2428 hash_del(&worker->hentry);
2429 worker->current_work = NULL;
2430 worker->current_func = NULL;
2431 worker->current_pwq = NULL;
2432 worker->current_color = INT_MAX;
2433 pwq_dec_nr_in_flight(pwq, work_data);
2437 * process_scheduled_works - process scheduled works
2440 * Process all scheduled works. Please note that the scheduled list
2441 * may change while processing a work, so this function repeatedly
2442 * fetches a work from the top and executes it.
2445 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2448 static void process_scheduled_works(struct worker *worker)
2450 while (!list_empty(&worker->scheduled)) {
2451 struct work_struct *work = list_first_entry(&worker->scheduled,
2452 struct work_struct, entry);
2453 process_one_work(worker, work);
2457 static void set_pf_worker(bool val)
2459 mutex_lock(&wq_pool_attach_mutex);
2461 current->flags |= PF_WQ_WORKER;
2463 current->flags &= ~PF_WQ_WORKER;
2464 mutex_unlock(&wq_pool_attach_mutex);
2468 * worker_thread - the worker thread function
2471 * The worker thread function. All workers belong to a worker_pool -
2472 * either a per-cpu one or dynamic unbound one. These workers process all
2473 * work items regardless of their specific target workqueue. The only
2474 * exception is work items which belong to workqueues with a rescuer which
2475 * will be explained in rescuer_thread().
2479 static int worker_thread(void *__worker)
2481 struct worker *worker = __worker;
2482 struct worker_pool *pool = worker->pool;
2484 /* tell the scheduler that this is a workqueue worker */
2485 set_pf_worker(true);
2487 raw_spin_lock_irq(&pool->lock);
2489 /* am I supposed to die? */
2490 if (unlikely(worker->flags & WORKER_DIE)) {
2491 raw_spin_unlock_irq(&pool->lock);
2492 set_pf_worker(false);
2494 set_task_comm(worker->task, "kworker/dying");
2495 ida_free(&pool->worker_ida, worker->id);
2496 worker_detach_from_pool(worker);
2497 WARN_ON_ONCE(!list_empty(&worker->entry));
2502 worker_leave_idle(worker);
2504 /* no more worker necessary? */
2505 if (!need_more_worker(pool))
2508 /* do we need to manage? */
2509 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2513 * ->scheduled list can only be filled while a worker is
2514 * preparing to process a work or actually processing it.
2515 * Make sure nobody diddled with it while I was sleeping.
2517 WARN_ON_ONCE(!list_empty(&worker->scheduled));
2520 * Finish PREP stage. We're guaranteed to have at least one idle
2521 * worker or that someone else has already assumed the manager
2522 * role. This is where @worker starts participating in concurrency
2523 * management if applicable and concurrency management is restored
2524 * after being rebound. See rebind_workers() for details.
2526 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2529 struct work_struct *work =
2530 list_first_entry(&pool->worklist,
2531 struct work_struct, entry);
2533 pool->watchdog_ts = jiffies;
2535 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2536 /* optimization path, not strictly necessary */
2537 process_one_work(worker, work);
2538 if (unlikely(!list_empty(&worker->scheduled)))
2539 process_scheduled_works(worker);
2541 move_linked_works(work, &worker->scheduled, NULL);
2542 process_scheduled_works(worker);
2544 } while (keep_working(pool));
2546 worker_set_flags(worker, WORKER_PREP);
2549 * pool->lock is held and there's no work to process and no need to
2550 * manage, sleep. Workers are woken up only while holding
2551 * pool->lock or from local cpu, so setting the current state
2552 * before releasing pool->lock is enough to prevent losing any
2555 worker_enter_idle(worker);
2556 __set_current_state(TASK_IDLE);
2557 raw_spin_unlock_irq(&pool->lock);
2563 * rescuer_thread - the rescuer thread function
2566 * Workqueue rescuer thread function. There's one rescuer for each
2567 * workqueue which has WQ_MEM_RECLAIM set.
2569 * Regular work processing on a pool may block trying to create a new
2570 * worker which uses GFP_KERNEL allocation which has slight chance of
2571 * developing into deadlock if some works currently on the same queue
2572 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2573 * the problem rescuer solves.
2575 * When such condition is possible, the pool summons rescuers of all
2576 * workqueues which have works queued on the pool and let them process
2577 * those works so that forward progress can be guaranteed.
2579 * This should happen rarely.
2583 static int rescuer_thread(void *__rescuer)
2585 struct worker *rescuer = __rescuer;
2586 struct workqueue_struct *wq = rescuer->rescue_wq;
2587 struct list_head *scheduled = &rescuer->scheduled;
2590 set_user_nice(current, RESCUER_NICE_LEVEL);
2593 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2594 * doesn't participate in concurrency management.
2596 set_pf_worker(true);
2598 set_current_state(TASK_IDLE);
2601 * By the time the rescuer is requested to stop, the workqueue
2602 * shouldn't have any work pending, but @wq->maydays may still have
2603 * pwq(s) queued. This can happen by non-rescuer workers consuming
2604 * all the work items before the rescuer got to them. Go through
2605 * @wq->maydays processing before acting on should_stop so that the
2606 * list is always empty on exit.
2608 should_stop = kthread_should_stop();
2610 /* see whether any pwq is asking for help */
2611 raw_spin_lock_irq(&wq_mayday_lock);
2613 while (!list_empty(&wq->maydays)) {
2614 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2615 struct pool_workqueue, mayday_node);
2616 struct worker_pool *pool = pwq->pool;
2617 struct work_struct *work, *n;
2620 __set_current_state(TASK_RUNNING);
2621 list_del_init(&pwq->mayday_node);
2623 raw_spin_unlock_irq(&wq_mayday_lock);
2625 worker_attach_to_pool(rescuer, pool);
2627 raw_spin_lock_irq(&pool->lock);
2630 * Slurp in all works issued via this workqueue and
2633 WARN_ON_ONCE(!list_empty(scheduled));
2634 list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2635 if (get_work_pwq(work) == pwq) {
2637 pool->watchdog_ts = jiffies;
2638 move_linked_works(work, scheduled, &n);
2643 if (!list_empty(scheduled)) {
2644 process_scheduled_works(rescuer);
2647 * The above execution of rescued work items could
2648 * have created more to rescue through
2649 * pwq_activate_first_inactive() or chained
2650 * queueing. Let's put @pwq back on mayday list so
2651 * that such back-to-back work items, which may be
2652 * being used to relieve memory pressure, don't
2653 * incur MAYDAY_INTERVAL delay inbetween.
2655 if (pwq->nr_active && need_to_create_worker(pool)) {
2656 raw_spin_lock(&wq_mayday_lock);
2658 * Queue iff we aren't racing destruction
2659 * and somebody else hasn't queued it already.
2661 if (wq->rescuer && list_empty(&pwq->mayday_node)) {
2663 list_add_tail(&pwq->mayday_node, &wq->maydays);
2665 raw_spin_unlock(&wq_mayday_lock);
2670 * Put the reference grabbed by send_mayday(). @pool won't
2671 * go away while we're still attached to it.
2676 * Leave this pool. If need_more_worker() is %true, notify a
2677 * regular worker; otherwise, we end up with 0 concurrency
2678 * and stalling the execution.
2680 if (need_more_worker(pool))
2681 wake_up_worker(pool);
2683 raw_spin_unlock_irq(&pool->lock);
2685 worker_detach_from_pool(rescuer);
2687 raw_spin_lock_irq(&wq_mayday_lock);
2690 raw_spin_unlock_irq(&wq_mayday_lock);
2693 __set_current_state(TASK_RUNNING);
2694 set_pf_worker(false);
2698 /* rescuers should never participate in concurrency management */
2699 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2705 * check_flush_dependency - check for flush dependency sanity
2706 * @target_wq: workqueue being flushed
2707 * @target_work: work item being flushed (NULL for workqueue flushes)
2709 * %current is trying to flush the whole @target_wq or @target_work on it.
2710 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2711 * reclaiming memory or running on a workqueue which doesn't have
2712 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2715 static void check_flush_dependency(struct workqueue_struct *target_wq,
2716 struct work_struct *target_work)
2718 work_func_t target_func = target_work ? target_work->func : NULL;
2719 struct worker *worker;
2721 if (target_wq->flags & WQ_MEM_RECLAIM)
2724 worker = current_wq_worker();
2726 WARN_ONCE(current->flags & PF_MEMALLOC,
2727 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps",
2728 current->pid, current->comm, target_wq->name, target_func);
2729 WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2730 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
2731 "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps",
2732 worker->current_pwq->wq->name, worker->current_func,
2733 target_wq->name, target_func);
2737 struct work_struct work;
2738 struct completion done;
2739 struct task_struct *task; /* purely informational */
2742 static void wq_barrier_func(struct work_struct *work)
2744 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2745 complete(&barr->done);
2749 * insert_wq_barrier - insert a barrier work
2750 * @pwq: pwq to insert barrier into
2751 * @barr: wq_barrier to insert
2752 * @target: target work to attach @barr to
2753 * @worker: worker currently executing @target, NULL if @target is not executing
2755 * @barr is linked to @target such that @barr is completed only after
2756 * @target finishes execution. Please note that the ordering
2757 * guarantee is observed only with respect to @target and on the local
2760 * Currently, a queued barrier can't be canceled. This is because
2761 * try_to_grab_pending() can't determine whether the work to be
2762 * grabbed is at the head of the queue and thus can't clear LINKED
2763 * flag of the previous work while there must be a valid next work
2764 * after a work with LINKED flag set.
2766 * Note that when @worker is non-NULL, @target may be modified
2767 * underneath us, so we can't reliably determine pwq from @target.
2770 * raw_spin_lock_irq(pool->lock).
2772 static void insert_wq_barrier(struct pool_workqueue *pwq,
2773 struct wq_barrier *barr,
2774 struct work_struct *target, struct worker *worker)
2776 unsigned int work_flags = 0;
2777 unsigned int work_color;
2778 struct list_head *head;
2781 * debugobject calls are safe here even with pool->lock locked
2782 * as we know for sure that this will not trigger any of the
2783 * checks and call back into the fixup functions where we
2786 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2787 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2789 init_completion_map(&barr->done, &target->lockdep_map);
2791 barr->task = current;
2793 /* The barrier work item does not participate in pwq->nr_active. */
2794 work_flags |= WORK_STRUCT_INACTIVE;
2797 * If @target is currently being executed, schedule the
2798 * barrier to the worker; otherwise, put it after @target.
2801 head = worker->scheduled.next;
2802 work_color = worker->current_color;
2804 unsigned long *bits = work_data_bits(target);
2806 head = target->entry.next;
2807 /* there can already be other linked works, inherit and set */
2808 work_flags |= *bits & WORK_STRUCT_LINKED;
2809 work_color = get_work_color(*bits);
2810 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2813 pwq->nr_in_flight[work_color]++;
2814 work_flags |= work_color_to_flags(work_color);
2816 debug_work_activate(&barr->work);
2817 insert_work(pwq, &barr->work, head, work_flags);
2821 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2822 * @wq: workqueue being flushed
2823 * @flush_color: new flush color, < 0 for no-op
2824 * @work_color: new work color, < 0 for no-op
2826 * Prepare pwqs for workqueue flushing.
2828 * If @flush_color is non-negative, flush_color on all pwqs should be
2829 * -1. If no pwq has in-flight commands at the specified color, all
2830 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2831 * has in flight commands, its pwq->flush_color is set to
2832 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2833 * wakeup logic is armed and %true is returned.
2835 * The caller should have initialized @wq->first_flusher prior to
2836 * calling this function with non-negative @flush_color. If
2837 * @flush_color is negative, no flush color update is done and %false
2840 * If @work_color is non-negative, all pwqs should have the same
2841 * work_color which is previous to @work_color and all will be
2842 * advanced to @work_color.
2845 * mutex_lock(wq->mutex).
2848 * %true if @flush_color >= 0 and there's something to flush. %false
2851 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2852 int flush_color, int work_color)
2855 struct pool_workqueue *pwq;
2857 if (flush_color >= 0) {
2858 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2859 atomic_set(&wq->nr_pwqs_to_flush, 1);
2862 for_each_pwq(pwq, wq) {
2863 struct worker_pool *pool = pwq->pool;
2865 raw_spin_lock_irq(&pool->lock);
2867 if (flush_color >= 0) {
2868 WARN_ON_ONCE(pwq->flush_color != -1);
2870 if (pwq->nr_in_flight[flush_color]) {
2871 pwq->flush_color = flush_color;
2872 atomic_inc(&wq->nr_pwqs_to_flush);
2877 if (work_color >= 0) {
2878 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2879 pwq->work_color = work_color;
2882 raw_spin_unlock_irq(&pool->lock);
2885 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2886 complete(&wq->first_flusher->done);
2892 * __flush_workqueue - ensure that any scheduled work has run to completion.
2893 * @wq: workqueue to flush
2895 * This function sleeps until all work items which were queued on entry
2896 * have finished execution, but it is not livelocked by new incoming ones.
2898 void __flush_workqueue(struct workqueue_struct *wq)
2900 struct wq_flusher this_flusher = {
2901 .list = LIST_HEAD_INIT(this_flusher.list),
2903 .done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
2907 if (WARN_ON(!wq_online))
2910 lock_map_acquire(&wq->lockdep_map);
2911 lock_map_release(&wq->lockdep_map);
2913 mutex_lock(&wq->mutex);
2916 * Start-to-wait phase
2918 next_color = work_next_color(wq->work_color);
2920 if (next_color != wq->flush_color) {
2922 * Color space is not full. The current work_color
2923 * becomes our flush_color and work_color is advanced
2926 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2927 this_flusher.flush_color = wq->work_color;
2928 wq->work_color = next_color;
2930 if (!wq->first_flusher) {
2931 /* no flush in progress, become the first flusher */
2932 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2934 wq->first_flusher = &this_flusher;
2936 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2938 /* nothing to flush, done */
2939 wq->flush_color = next_color;
2940 wq->first_flusher = NULL;
2945 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2946 list_add_tail(&this_flusher.list, &wq->flusher_queue);
2947 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2951 * Oops, color space is full, wait on overflow queue.
2952 * The next flush completion will assign us
2953 * flush_color and transfer to flusher_queue.
2955 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2958 check_flush_dependency(wq, NULL);
2960 mutex_unlock(&wq->mutex);
2962 wait_for_completion(&this_flusher.done);
2965 * Wake-up-and-cascade phase
2967 * First flushers are responsible for cascading flushes and
2968 * handling overflow. Non-first flushers can simply return.
2970 if (READ_ONCE(wq->first_flusher) != &this_flusher)
2973 mutex_lock(&wq->mutex);
2975 /* we might have raced, check again with mutex held */
2976 if (wq->first_flusher != &this_flusher)
2979 WRITE_ONCE(wq->first_flusher, NULL);
2981 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2982 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2985 struct wq_flusher *next, *tmp;
2987 /* complete all the flushers sharing the current flush color */
2988 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2989 if (next->flush_color != wq->flush_color)
2991 list_del_init(&next->list);
2992 complete(&next->done);
2995 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2996 wq->flush_color != work_next_color(wq->work_color));
2998 /* this flush_color is finished, advance by one */
2999 wq->flush_color = work_next_color(wq->flush_color);
3001 /* one color has been freed, handle overflow queue */
3002 if (!list_empty(&wq->flusher_overflow)) {
3004 * Assign the same color to all overflowed
3005 * flushers, advance work_color and append to
3006 * flusher_queue. This is the start-to-wait
3007 * phase for these overflowed flushers.
3009 list_for_each_entry(tmp, &wq->flusher_overflow, list)
3010 tmp->flush_color = wq->work_color;
3012 wq->work_color = work_next_color(wq->work_color);
3014 list_splice_tail_init(&wq->flusher_overflow,
3015 &wq->flusher_queue);
3016 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
3019 if (list_empty(&wq->flusher_queue)) {
3020 WARN_ON_ONCE(wq->flush_color != wq->work_color);
3025 * Need to flush more colors. Make the next flusher
3026 * the new first flusher and arm pwqs.
3028 WARN_ON_ONCE(wq->flush_color == wq->work_color);
3029 WARN_ON_ONCE(wq->flush_color != next->flush_color);
3031 list_del_init(&next->list);
3032 wq->first_flusher = next;
3034 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
3038 * Meh... this color is already done, clear first
3039 * flusher and repeat cascading.
3041 wq->first_flusher = NULL;
3045 mutex_unlock(&wq->mutex);
3047 EXPORT_SYMBOL(__flush_workqueue);
3050 * drain_workqueue - drain a workqueue
3051 * @wq: workqueue to drain
3053 * Wait until the workqueue becomes empty. While draining is in progress,
3054 * only chain queueing is allowed. IOW, only currently pending or running
3055 * work items on @wq can queue further work items on it. @wq is flushed
3056 * repeatedly until it becomes empty. The number of flushing is determined
3057 * by the depth of chaining and should be relatively short. Whine if it
3060 void drain_workqueue(struct workqueue_struct *wq)
3062 unsigned int flush_cnt = 0;
3063 struct pool_workqueue *pwq;
3066 * __queue_work() needs to test whether there are drainers, is much
3067 * hotter than drain_workqueue() and already looks at @wq->flags.
3068 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
3070 mutex_lock(&wq->mutex);
3071 if (!wq->nr_drainers++)
3072 wq->flags |= __WQ_DRAINING;
3073 mutex_unlock(&wq->mutex);
3075 __flush_workqueue(wq);
3077 mutex_lock(&wq->mutex);
3079 for_each_pwq(pwq, wq) {
3082 raw_spin_lock_irq(&pwq->pool->lock);
3083 drained = !pwq->nr_active && list_empty(&pwq->inactive_works);
3084 raw_spin_unlock_irq(&pwq->pool->lock);
3089 if (++flush_cnt == 10 ||
3090 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
3091 pr_warn("workqueue %s: %s() isn't complete after %u tries\n",
3092 wq->name, __func__, flush_cnt);
3094 mutex_unlock(&wq->mutex);
3098 if (!--wq->nr_drainers)
3099 wq->flags &= ~__WQ_DRAINING;
3100 mutex_unlock(&wq->mutex);
3102 EXPORT_SYMBOL_GPL(drain_workqueue);
3104 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
3107 struct worker *worker = NULL;
3108 struct worker_pool *pool;
3109 struct pool_workqueue *pwq;
3114 pool = get_work_pool(work);
3120 raw_spin_lock_irq(&pool->lock);
3121 /* see the comment in try_to_grab_pending() with the same code */
3122 pwq = get_work_pwq(work);
3124 if (unlikely(pwq->pool != pool))
3127 worker = find_worker_executing_work(pool, work);
3130 pwq = worker->current_pwq;
3133 check_flush_dependency(pwq->wq, work);
3135 insert_wq_barrier(pwq, barr, work, worker);
3136 raw_spin_unlock_irq(&pool->lock);
3139 * Force a lock recursion deadlock when using flush_work() inside a
3140 * single-threaded or rescuer equipped workqueue.
3142 * For single threaded workqueues the deadlock happens when the work
3143 * is after the work issuing the flush_work(). For rescuer equipped
3144 * workqueues the deadlock happens when the rescuer stalls, blocking
3148 (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) {
3149 lock_map_acquire(&pwq->wq->lockdep_map);
3150 lock_map_release(&pwq->wq->lockdep_map);
3155 raw_spin_unlock_irq(&pool->lock);
3160 static bool __flush_work(struct work_struct *work, bool from_cancel)
3162 struct wq_barrier barr;
3164 if (WARN_ON(!wq_online))
3167 if (WARN_ON(!work->func))
3170 lock_map_acquire(&work->lockdep_map);
3171 lock_map_release(&work->lockdep_map);
3173 if (start_flush_work(work, &barr, from_cancel)) {
3174 wait_for_completion(&barr.done);
3175 destroy_work_on_stack(&barr.work);
3183 * flush_work - wait for a work to finish executing the last queueing instance
3184 * @work: the work to flush
3186 * Wait until @work has finished execution. @work is guaranteed to be idle
3187 * on return if it hasn't been requeued since flush started.
3190 * %true if flush_work() waited for the work to finish execution,
3191 * %false if it was already idle.
3193 bool flush_work(struct work_struct *work)
3195 return __flush_work(work, false);
3197 EXPORT_SYMBOL_GPL(flush_work);
3200 wait_queue_entry_t wait;
3201 struct work_struct *work;
3204 static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
3206 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
3208 if (cwait->work != key)
3210 return autoremove_wake_function(wait, mode, sync, key);
3213 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
3215 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
3216 unsigned long flags;
3220 ret = try_to_grab_pending(work, is_dwork, &flags);
3222 * If someone else is already canceling, wait for it to
3223 * finish. flush_work() doesn't work for PREEMPT_NONE
3224 * because we may get scheduled between @work's completion
3225 * and the other canceling task resuming and clearing
3226 * CANCELING - flush_work() will return false immediately
3227 * as @work is no longer busy, try_to_grab_pending() will
3228 * return -ENOENT as @work is still being canceled and the
3229 * other canceling task won't be able to clear CANCELING as
3230 * we're hogging the CPU.
3232 * Let's wait for completion using a waitqueue. As this
3233 * may lead to the thundering herd problem, use a custom
3234 * wake function which matches @work along with exclusive
3237 if (unlikely(ret == -ENOENT)) {
3238 struct cwt_wait cwait;
3240 init_wait(&cwait.wait);
3241 cwait.wait.func = cwt_wakefn;
3244 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
3245 TASK_UNINTERRUPTIBLE);
3246 if (work_is_canceling(work))
3248 finish_wait(&cancel_waitq, &cwait.wait);
3250 } while (unlikely(ret < 0));
3252 /* tell other tasks trying to grab @work to back off */
3253 mark_work_canceling(work);
3254 local_irq_restore(flags);
3257 * This allows canceling during early boot. We know that @work
3261 __flush_work(work, true);
3263 clear_work_data(work);
3266 * Paired with prepare_to_wait() above so that either
3267 * waitqueue_active() is visible here or !work_is_canceling() is
3271 if (waitqueue_active(&cancel_waitq))
3272 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
3278 * cancel_work_sync - cancel a work and wait for it to finish
3279 * @work: the work to cancel
3281 * Cancel @work and wait for its execution to finish. This function
3282 * can be used even if the work re-queues itself or migrates to
3283 * another workqueue. On return from this function, @work is
3284 * guaranteed to be not pending or executing on any CPU.
3286 * cancel_work_sync(&delayed_work->work) must not be used for
3287 * delayed_work's. Use cancel_delayed_work_sync() instead.
3289 * The caller must ensure that the workqueue on which @work was last
3290 * queued can't be destroyed before this function returns.
3293 * %true if @work was pending, %false otherwise.
3295 bool cancel_work_sync(struct work_struct *work)
3297 return __cancel_work_timer(work, false);
3299 EXPORT_SYMBOL_GPL(cancel_work_sync);
3302 * flush_delayed_work - wait for a dwork to finish executing the last queueing
3303 * @dwork: the delayed work to flush
3305 * Delayed timer is cancelled and the pending work is queued for
3306 * immediate execution. Like flush_work(), this function only
3307 * considers the last queueing instance of @dwork.
3310 * %true if flush_work() waited for the work to finish execution,
3311 * %false if it was already idle.
3313 bool flush_delayed_work(struct delayed_work *dwork)
3315 local_irq_disable();
3316 if (del_timer_sync(&dwork->timer))
3317 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
3319 return flush_work(&dwork->work);
3321 EXPORT_SYMBOL(flush_delayed_work);
3324 * flush_rcu_work - wait for a rwork to finish executing the last queueing
3325 * @rwork: the rcu work to flush
3328 * %true if flush_rcu_work() waited for the work to finish execution,
3329 * %false if it was already idle.
3331 bool flush_rcu_work(struct rcu_work *rwork)
3333 if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
3335 flush_work(&rwork->work);
3338 return flush_work(&rwork->work);
3341 EXPORT_SYMBOL(flush_rcu_work);
3343 static bool __cancel_work(struct work_struct *work, bool is_dwork)
3345 unsigned long flags;
3349 ret = try_to_grab_pending(work, is_dwork, &flags);
3350 } while (unlikely(ret == -EAGAIN));
3352 if (unlikely(ret < 0))
3355 set_work_pool_and_clear_pending(work, get_work_pool_id(work));
3356 local_irq_restore(flags);
3361 * See cancel_delayed_work()
3363 bool cancel_work(struct work_struct *work)
3365 return __cancel_work(work, false);
3367 EXPORT_SYMBOL(cancel_work);
3370 * cancel_delayed_work - cancel a delayed work
3371 * @dwork: delayed_work to cancel
3373 * Kill off a pending delayed_work.
3375 * Return: %true if @dwork was pending and canceled; %false if it wasn't
3379 * The work callback function may still be running on return, unless
3380 * it returns %true and the work doesn't re-arm itself. Explicitly flush or
3381 * use cancel_delayed_work_sync() to wait on it.
3383 * This function is safe to call from any context including IRQ handler.
3385 bool cancel_delayed_work(struct delayed_work *dwork)
3387 return __cancel_work(&dwork->work, true);
3389 EXPORT_SYMBOL(cancel_delayed_work);
3392 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3393 * @dwork: the delayed work cancel
3395 * This is cancel_work_sync() for delayed works.
3398 * %true if @dwork was pending, %false otherwise.
3400 bool cancel_delayed_work_sync(struct delayed_work *dwork)
3402 return __cancel_work_timer(&dwork->work, true);
3404 EXPORT_SYMBOL(cancel_delayed_work_sync);
3407 * schedule_on_each_cpu - execute a function synchronously on each online CPU
3408 * @func: the function to call
3410 * schedule_on_each_cpu() executes @func on each online CPU using the
3411 * system workqueue and blocks until all CPUs have completed.
3412 * schedule_on_each_cpu() is very slow.
3415 * 0 on success, -errno on failure.
3417 int schedule_on_each_cpu(work_func_t func)
3420 struct work_struct __percpu *works;
3422 works = alloc_percpu(struct work_struct);
3428 for_each_online_cpu(cpu) {
3429 struct work_struct *work = per_cpu_ptr(works, cpu);
3431 INIT_WORK(work, func);
3432 schedule_work_on(cpu, work);
3435 for_each_online_cpu(cpu)
3436 flush_work(per_cpu_ptr(works, cpu));
3444 * execute_in_process_context - reliably execute the routine with user context
3445 * @fn: the function to execute
3446 * @ew: guaranteed storage for the execute work structure (must
3447 * be available when the work executes)
3449 * Executes the function immediately if process context is available,
3450 * otherwise schedules the function for delayed execution.
3452 * Return: 0 - function was executed
3453 * 1 - function was scheduled for execution
3455 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3457 if (!in_interrupt()) {
3462 INIT_WORK(&ew->work, fn);
3463 schedule_work(&ew->work);
3467 EXPORT_SYMBOL_GPL(execute_in_process_context);
3470 * free_workqueue_attrs - free a workqueue_attrs
3471 * @attrs: workqueue_attrs to free
3473 * Undo alloc_workqueue_attrs().
3475 void free_workqueue_attrs(struct workqueue_attrs *attrs)
3478 free_cpumask_var(attrs->cpumask);
3484 * alloc_workqueue_attrs - allocate a workqueue_attrs
3486 * Allocate a new workqueue_attrs, initialize with default settings and
3489 * Return: The allocated new workqueue_attr on success. %NULL on failure.
3491 struct workqueue_attrs *alloc_workqueue_attrs(void)
3493 struct workqueue_attrs *attrs;
3495 attrs = kzalloc(sizeof(*attrs), GFP_KERNEL);
3498 if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL))
3501 cpumask_copy(attrs->cpumask, cpu_possible_mask);
3504 free_workqueue_attrs(attrs);
3508 static void copy_workqueue_attrs(struct workqueue_attrs *to,
3509 const struct workqueue_attrs *from)
3511 to->nice = from->nice;
3512 cpumask_copy(to->cpumask, from->cpumask);
3514 * Unlike hash and equality test, this function doesn't ignore
3515 * ->no_numa as it is used for both pool and wq attrs. Instead,
3516 * get_unbound_pool() explicitly clears ->no_numa after copying.
3518 to->no_numa = from->no_numa;
3521 /* hash value of the content of @attr */
3522 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3526 hash = jhash_1word(attrs->nice, hash);
3527 hash = jhash(cpumask_bits(attrs->cpumask),
3528 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3532 /* content equality test */
3533 static bool wqattrs_equal(const struct workqueue_attrs *a,
3534 const struct workqueue_attrs *b)
3536 if (a->nice != b->nice)
3538 if (!cpumask_equal(a->cpumask, b->cpumask))
3544 * init_worker_pool - initialize a newly zalloc'd worker_pool
3545 * @pool: worker_pool to initialize
3547 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs.
3549 * Return: 0 on success, -errno on failure. Even on failure, all fields
3550 * inside @pool proper are initialized and put_unbound_pool() can be called
3551 * on @pool safely to release it.
3553 static int init_worker_pool(struct worker_pool *pool)
3555 raw_spin_lock_init(&pool->lock);
3558 pool->node = NUMA_NO_NODE;
3559 pool->flags |= POOL_DISASSOCIATED;
3560 pool->watchdog_ts = jiffies;
3561 INIT_LIST_HEAD(&pool->worklist);
3562 INIT_LIST_HEAD(&pool->idle_list);
3563 hash_init(pool->busy_hash);
3565 timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
3566 INIT_WORK(&pool->idle_cull_work, idle_cull_fn);
3568 timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
3570 INIT_LIST_HEAD(&pool->workers);
3571 INIT_LIST_HEAD(&pool->dying_workers);
3573 ida_init(&pool->worker_ida);
3574 INIT_HLIST_NODE(&pool->hash_node);
3577 /* shouldn't fail above this point */
3578 pool->attrs = alloc_workqueue_attrs();
3584 #ifdef CONFIG_LOCKDEP
3585 static void wq_init_lockdep(struct workqueue_struct *wq)
3589 lockdep_register_key(&wq->key);
3590 lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name);
3592 lock_name = wq->name;
3594 wq->lock_name = lock_name;
3595 lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0);
3598 static void wq_unregister_lockdep(struct workqueue_struct *wq)
3600 lockdep_unregister_key(&wq->key);
3603 static void wq_free_lockdep(struct workqueue_struct *wq)
3605 if (wq->lock_name != wq->name)
3606 kfree(wq->lock_name);
3609 static void wq_init_lockdep(struct workqueue_struct *wq)
3613 static void wq_unregister_lockdep(struct workqueue_struct *wq)
3617 static void wq_free_lockdep(struct workqueue_struct *wq)
3622 static void rcu_free_wq(struct rcu_head *rcu)
3624 struct workqueue_struct *wq =
3625 container_of(rcu, struct workqueue_struct, rcu);
3627 wq_free_lockdep(wq);
3629 if (!(wq->flags & WQ_UNBOUND))
3630 free_percpu(wq->cpu_pwqs);
3632 free_workqueue_attrs(wq->unbound_attrs);
3637 static void rcu_free_pool(struct rcu_head *rcu)
3639 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3641 ida_destroy(&pool->worker_ida);
3642 free_workqueue_attrs(pool->attrs);
3647 * put_unbound_pool - put a worker_pool
3648 * @pool: worker_pool to put
3650 * Put @pool. If its refcnt reaches zero, it gets destroyed in RCU
3651 * safe manner. get_unbound_pool() calls this function on its failure path
3652 * and this function should be able to release pools which went through,
3653 * successfully or not, init_worker_pool().
3655 * Should be called with wq_pool_mutex held.
3657 static void put_unbound_pool(struct worker_pool *pool)
3659 DECLARE_COMPLETION_ONSTACK(detach_completion);
3660 struct list_head cull_list;
3661 struct worker *worker;
3663 INIT_LIST_HEAD(&cull_list);
3665 lockdep_assert_held(&wq_pool_mutex);
3671 if (WARN_ON(!(pool->cpu < 0)) ||
3672 WARN_ON(!list_empty(&pool->worklist)))
3675 /* release id and unhash */
3677 idr_remove(&worker_pool_idr, pool->id);
3678 hash_del(&pool->hash_node);
3681 * Become the manager and destroy all workers. This prevents
3682 * @pool's workers from blocking on attach_mutex. We're the last
3683 * manager and @pool gets freed with the flag set.
3685 * Having a concurrent manager is quite unlikely to happen as we can
3686 * only get here with
3687 * pwq->refcnt == pool->refcnt == 0
3688 * which implies no work queued to the pool, which implies no worker can
3689 * become the manager. However a worker could have taken the role of
3690 * manager before the refcnts dropped to 0, since maybe_create_worker()
3694 rcuwait_wait_event(&manager_wait,
3695 !(pool->flags & POOL_MANAGER_ACTIVE),
3696 TASK_UNINTERRUPTIBLE);
3698 mutex_lock(&wq_pool_attach_mutex);
3699 raw_spin_lock_irq(&pool->lock);
3700 if (!(pool->flags & POOL_MANAGER_ACTIVE)) {
3701 pool->flags |= POOL_MANAGER_ACTIVE;
3704 raw_spin_unlock_irq(&pool->lock);
3705 mutex_unlock(&wq_pool_attach_mutex);
3708 while ((worker = first_idle_worker(pool)))
3709 set_worker_dying(worker, &cull_list);
3710 WARN_ON(pool->nr_workers || pool->nr_idle);
3711 raw_spin_unlock_irq(&pool->lock);
3713 wake_dying_workers(&cull_list);
3715 if (!list_empty(&pool->workers) || !list_empty(&pool->dying_workers))
3716 pool->detach_completion = &detach_completion;
3717 mutex_unlock(&wq_pool_attach_mutex);
3719 if (pool->detach_completion)
3720 wait_for_completion(pool->detach_completion);
3722 /* shut down the timers */
3723 del_timer_sync(&pool->idle_timer);
3724 cancel_work_sync(&pool->idle_cull_work);
3725 del_timer_sync(&pool->mayday_timer);
3727 /* RCU protected to allow dereferences from get_work_pool() */
3728 call_rcu(&pool->rcu, rcu_free_pool);
3732 * get_unbound_pool - get a worker_pool with the specified attributes
3733 * @attrs: the attributes of the worker_pool to get
3735 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3736 * reference count and return it. If there already is a matching
3737 * worker_pool, it will be used; otherwise, this function attempts to
3740 * Should be called with wq_pool_mutex held.
3742 * Return: On success, a worker_pool with the same attributes as @attrs.
3743 * On failure, %NULL.
3745 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3747 u32 hash = wqattrs_hash(attrs);
3748 struct worker_pool *pool;
3750 int target_node = NUMA_NO_NODE;
3752 lockdep_assert_held(&wq_pool_mutex);
3754 /* do we already have a matching pool? */
3755 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3756 if (wqattrs_equal(pool->attrs, attrs)) {
3762 /* if cpumask is contained inside a NUMA node, we belong to that node */
3763 if (wq_numa_enabled) {
3764 for_each_node(node) {
3765 if (cpumask_subset(attrs->cpumask,
3766 wq_numa_possible_cpumask[node])) {
3773 /* nope, create a new one */
3774 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
3775 if (!pool || init_worker_pool(pool) < 0)
3778 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
3779 copy_workqueue_attrs(pool->attrs, attrs);
3780 pool->node = target_node;
3783 * no_numa isn't a worker_pool attribute, always clear it. See
3784 * 'struct workqueue_attrs' comments for detail.
3786 pool->attrs->no_numa = false;
3788 if (worker_pool_assign_id(pool) < 0)
3791 /* create and start the initial worker */
3792 if (wq_online && !create_worker(pool))
3796 hash_add(unbound_pool_hash, &pool->hash_node, hash);
3801 put_unbound_pool(pool);
3805 static void rcu_free_pwq(struct rcu_head *rcu)
3807 kmem_cache_free(pwq_cache,
3808 container_of(rcu, struct pool_workqueue, rcu));
3812 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3813 * and needs to be destroyed.
3815 static void pwq_unbound_release_workfn(struct work_struct *work)
3817 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3818 unbound_release_work);
3819 struct workqueue_struct *wq = pwq->wq;
3820 struct worker_pool *pool = pwq->pool;
3821 bool is_last = false;
3824 * when @pwq is not linked, it doesn't hold any reference to the
3825 * @wq, and @wq is invalid to access.
3827 if (!list_empty(&pwq->pwqs_node)) {
3828 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3831 mutex_lock(&wq->mutex);
3832 list_del_rcu(&pwq->pwqs_node);
3833 is_last = list_empty(&wq->pwqs);
3834 mutex_unlock(&wq->mutex);
3837 mutex_lock(&wq_pool_mutex);
3838 put_unbound_pool(pool);
3839 mutex_unlock(&wq_pool_mutex);
3841 call_rcu(&pwq->rcu, rcu_free_pwq);
3844 * If we're the last pwq going away, @wq is already dead and no one
3845 * is gonna access it anymore. Schedule RCU free.
3848 wq_unregister_lockdep(wq);
3849 call_rcu(&wq->rcu, rcu_free_wq);
3854 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3855 * @pwq: target pool_workqueue
3857 * If @pwq isn't freezing, set @pwq->max_active to the associated
3858 * workqueue's saved_max_active and activate inactive work items
3859 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
3861 static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3863 struct workqueue_struct *wq = pwq->wq;
3864 bool freezable = wq->flags & WQ_FREEZABLE;
3865 unsigned long flags;
3867 /* for @wq->saved_max_active */
3868 lockdep_assert_held(&wq->mutex);
3870 /* fast exit for non-freezable wqs */
3871 if (!freezable && pwq->max_active == wq->saved_max_active)
3874 /* this function can be called during early boot w/ irq disabled */
3875 raw_spin_lock_irqsave(&pwq->pool->lock, flags);
3878 * During [un]freezing, the caller is responsible for ensuring that
3879 * this function is called at least once after @workqueue_freezing
3880 * is updated and visible.
3882 if (!freezable || !workqueue_freezing) {
3885 pwq->max_active = wq->saved_max_active;
3887 while (!list_empty(&pwq->inactive_works) &&
3888 pwq->nr_active < pwq->max_active) {
3889 pwq_activate_first_inactive(pwq);
3894 * Need to kick a worker after thawed or an unbound wq's
3895 * max_active is bumped. In realtime scenarios, always kicking a
3896 * worker will cause interference on the isolated cpu cores, so
3897 * let's kick iff work items were activated.
3900 wake_up_worker(pwq->pool);
3902 pwq->max_active = 0;
3905 raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
3908 /* initialize newly allocated @pwq which is associated with @wq and @pool */
3909 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3910 struct worker_pool *pool)
3912 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3914 memset(pwq, 0, sizeof(*pwq));
3918 pwq->flush_color = -1;
3920 INIT_LIST_HEAD(&pwq->inactive_works);
3921 INIT_LIST_HEAD(&pwq->pwqs_node);
3922 INIT_LIST_HEAD(&pwq->mayday_node);
3923 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3926 /* sync @pwq with the current state of its associated wq and link it */
3927 static void link_pwq(struct pool_workqueue *pwq)
3929 struct workqueue_struct *wq = pwq->wq;
3931 lockdep_assert_held(&wq->mutex);
3933 /* may be called multiple times, ignore if already linked */
3934 if (!list_empty(&pwq->pwqs_node))
3937 /* set the matching work_color */
3938 pwq->work_color = wq->work_color;
3940 /* sync max_active to the current setting */
3941 pwq_adjust_max_active(pwq);
3944 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3947 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3948 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3949 const struct workqueue_attrs *attrs)
3951 struct worker_pool *pool;
3952 struct pool_workqueue *pwq;
3954 lockdep_assert_held(&wq_pool_mutex);
3956 pool = get_unbound_pool(attrs);
3960 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3962 put_unbound_pool(pool);
3966 init_pwq(pwq, wq, pool);
3971 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
3972 * @attrs: the wq_attrs of the default pwq of the target workqueue
3973 * @node: the target NUMA node
3974 * @cpu_going_down: if >= 0, the CPU to consider as offline
3975 * @cpumask: outarg, the resulting cpumask
3977 * Calculate the cpumask a workqueue with @attrs should use on @node. If
3978 * @cpu_going_down is >= 0, that cpu is considered offline during
3979 * calculation. The result is stored in @cpumask.
3981 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If
3982 * enabled and @node has online CPUs requested by @attrs, the returned
3983 * cpumask is the intersection of the possible CPUs of @node and
3986 * The caller is responsible for ensuring that the cpumask of @node stays
3989 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3992 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3993 int cpu_going_down, cpumask_t *cpumask)
3995 if (!wq_numa_enabled || attrs->no_numa)
3998 /* does @node have any online CPUs @attrs wants? */
3999 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
4000 if (cpu_going_down >= 0)
4001 cpumask_clear_cpu(cpu_going_down, cpumask);
4003 if (cpumask_empty(cpumask))
4006 /* yeap, return possible CPUs in @node that @attrs wants */
4007 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
4009 if (cpumask_empty(cpumask)) {
4010 pr_warn_once("WARNING: workqueue cpumask: online intersect > "
4011 "possible intersect\n");
4015 return !cpumask_equal(cpumask, attrs->cpumask);
4018 cpumask_copy(cpumask, attrs->cpumask);
4022 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
4023 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
4025 struct pool_workqueue *pwq)
4027 struct pool_workqueue *old_pwq;
4029 lockdep_assert_held(&wq_pool_mutex);
4030 lockdep_assert_held(&wq->mutex);
4032 /* link_pwq() can handle duplicate calls */
4035 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4036 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
4040 /* context to store the prepared attrs & pwqs before applying */
4041 struct apply_wqattrs_ctx {
4042 struct workqueue_struct *wq; /* target workqueue */
4043 struct workqueue_attrs *attrs; /* attrs to apply */
4044 struct list_head list; /* queued for batching commit */
4045 struct pool_workqueue *dfl_pwq;
4046 struct pool_workqueue *pwq_tbl[];
4049 /* free the resources after success or abort */
4050 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
4056 put_pwq_unlocked(ctx->pwq_tbl[node]);
4057 put_pwq_unlocked(ctx->dfl_pwq);
4059 free_workqueue_attrs(ctx->attrs);
4065 /* allocate the attrs and pwqs for later installation */
4066 static struct apply_wqattrs_ctx *
4067 apply_wqattrs_prepare(struct workqueue_struct *wq,
4068 const struct workqueue_attrs *attrs,
4069 const cpumask_var_t unbound_cpumask)
4071 struct apply_wqattrs_ctx *ctx;
4072 struct workqueue_attrs *new_attrs, *tmp_attrs;
4075 lockdep_assert_held(&wq_pool_mutex);
4077 ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_node_ids), GFP_KERNEL);
4079 new_attrs = alloc_workqueue_attrs();
4080 tmp_attrs = alloc_workqueue_attrs();
4081 if (!ctx || !new_attrs || !tmp_attrs)
4085 * Calculate the attrs of the default pwq with unbound_cpumask
4086 * which is wq_unbound_cpumask or to set to wq_unbound_cpumask.
4087 * If the user configured cpumask doesn't overlap with the
4088 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
4090 copy_workqueue_attrs(new_attrs, attrs);
4091 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, unbound_cpumask);
4092 if (unlikely(cpumask_empty(new_attrs->cpumask)))
4093 cpumask_copy(new_attrs->cpumask, unbound_cpumask);
4096 * We may create multiple pwqs with differing cpumasks. Make a
4097 * copy of @new_attrs which will be modified and used to obtain
4100 copy_workqueue_attrs(tmp_attrs, new_attrs);
4103 * If something goes wrong during CPU up/down, we'll fall back to
4104 * the default pwq covering whole @attrs->cpumask. Always create
4105 * it even if we don't use it immediately.
4107 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
4111 for_each_node(node) {
4112 if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
4113 ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
4114 if (!ctx->pwq_tbl[node])
4117 ctx->dfl_pwq->refcnt++;
4118 ctx->pwq_tbl[node] = ctx->dfl_pwq;
4122 /* save the user configured attrs and sanitize it. */
4123 copy_workqueue_attrs(new_attrs, attrs);
4124 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
4125 ctx->attrs = new_attrs;
4128 free_workqueue_attrs(tmp_attrs);
4132 free_workqueue_attrs(tmp_attrs);
4133 free_workqueue_attrs(new_attrs);
4134 apply_wqattrs_cleanup(ctx);
4138 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
4139 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
4143 /* all pwqs have been created successfully, let's install'em */
4144 mutex_lock(&ctx->wq->mutex);
4146 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
4148 /* save the previous pwq and install the new one */
4150 ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
4151 ctx->pwq_tbl[node]);
4153 /* @dfl_pwq might not have been used, ensure it's linked */
4154 link_pwq(ctx->dfl_pwq);
4155 swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
4157 mutex_unlock(&ctx->wq->mutex);
4160 static void apply_wqattrs_lock(void)
4162 /* CPUs should stay stable across pwq creations and installations */
4164 mutex_lock(&wq_pool_mutex);
4167 static void apply_wqattrs_unlock(void)
4169 mutex_unlock(&wq_pool_mutex);
4173 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
4174 const struct workqueue_attrs *attrs)
4176 struct apply_wqattrs_ctx *ctx;
4178 /* only unbound workqueues can change attributes */
4179 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
4182 /* creating multiple pwqs breaks ordering guarantee */
4183 if (!list_empty(&wq->pwqs)) {
4184 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4187 wq->flags &= ~__WQ_ORDERED;
4190 ctx = apply_wqattrs_prepare(wq, attrs, wq_unbound_cpumask);
4194 /* the ctx has been prepared successfully, let's commit it */
4195 apply_wqattrs_commit(ctx);
4196 apply_wqattrs_cleanup(ctx);
4202 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
4203 * @wq: the target workqueue
4204 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
4206 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA
4207 * machines, this function maps a separate pwq to each NUMA node with
4208 * possibles CPUs in @attrs->cpumask so that work items are affine to the
4209 * NUMA node it was issued on. Older pwqs are released as in-flight work
4210 * items finish. Note that a work item which repeatedly requeues itself
4211 * back-to-back will stay on its current pwq.
4213 * Performs GFP_KERNEL allocations.
4215 * Assumes caller has CPU hotplug read exclusion, i.e. cpus_read_lock().
4217 * Return: 0 on success and -errno on failure.
4219 int apply_workqueue_attrs(struct workqueue_struct *wq,
4220 const struct workqueue_attrs *attrs)
4224 lockdep_assert_cpus_held();
4226 mutex_lock(&wq_pool_mutex);
4227 ret = apply_workqueue_attrs_locked(wq, attrs);
4228 mutex_unlock(&wq_pool_mutex);
4234 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
4235 * @wq: the target workqueue
4236 * @cpu: the CPU coming up or going down
4237 * @online: whether @cpu is coming up or going down
4239 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
4240 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of
4243 * If NUMA affinity can't be adjusted due to memory allocation failure, it
4244 * falls back to @wq->dfl_pwq which may not be optimal but is always
4247 * Note that when the last allowed CPU of a NUMA node goes offline for a
4248 * workqueue with a cpumask spanning multiple nodes, the workers which were
4249 * already executing the work items for the workqueue will lose their CPU
4250 * affinity and may execute on any CPU. This is similar to how per-cpu
4251 * workqueues behave on CPU_DOWN. If a workqueue user wants strict
4252 * affinity, it's the user's responsibility to flush the work item from
4255 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
4258 int node = cpu_to_node(cpu);
4259 int cpu_off = online ? -1 : cpu;
4260 struct pool_workqueue *old_pwq = NULL, *pwq;
4261 struct workqueue_attrs *target_attrs;
4264 lockdep_assert_held(&wq_pool_mutex);
4266 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
4267 wq->unbound_attrs->no_numa)
4271 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
4272 * Let's use a preallocated one. The following buf is protected by
4273 * CPU hotplug exclusion.
4275 target_attrs = wq_update_unbound_numa_attrs_buf;
4276 cpumask = target_attrs->cpumask;
4278 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
4279 pwq = unbound_pwq_by_node(wq, node);
4282 * Let's determine what needs to be done. If the target cpumask is
4283 * different from the default pwq's, we need to compare it to @pwq's
4284 * and create a new one if they don't match. If the target cpumask
4285 * equals the default pwq's, the default pwq should be used.
4287 if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
4288 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
4294 /* create a new pwq */
4295 pwq = alloc_unbound_pwq(wq, target_attrs);
4297 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
4302 /* Install the new pwq. */
4303 mutex_lock(&wq->mutex);
4304 old_pwq = numa_pwq_tbl_install(wq, node, pwq);
4308 mutex_lock(&wq->mutex);
4309 raw_spin_lock_irq(&wq->dfl_pwq->pool->lock);
4310 get_pwq(wq->dfl_pwq);
4311 raw_spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4312 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
4314 mutex_unlock(&wq->mutex);
4315 put_pwq_unlocked(old_pwq);
4318 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
4320 bool highpri = wq->flags & WQ_HIGHPRI;
4323 if (!(wq->flags & WQ_UNBOUND)) {
4324 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
4328 for_each_possible_cpu(cpu) {
4329 struct pool_workqueue *pwq =
4330 per_cpu_ptr(wq->cpu_pwqs, cpu);
4331 struct worker_pool *cpu_pools =
4332 per_cpu(cpu_worker_pools, cpu);
4334 init_pwq(pwq, wq, &cpu_pools[highpri]);
4336 mutex_lock(&wq->mutex);
4338 mutex_unlock(&wq->mutex);
4344 if (wq->flags & __WQ_ORDERED) {
4345 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
4346 /* there should only be single pwq for ordering guarantee */
4347 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
4348 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
4349 "ordering guarantee broken for workqueue %s\n", wq->name);
4351 ret = apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
4358 static int wq_clamp_max_active(int max_active, unsigned int flags,
4361 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4363 if (max_active < 1 || max_active > lim)
4364 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4365 max_active, name, 1, lim);
4367 return clamp_val(max_active, 1, lim);
4371 * Workqueues which may be used during memory reclaim should have a rescuer
4372 * to guarantee forward progress.
4374 static int init_rescuer(struct workqueue_struct *wq)
4376 struct worker *rescuer;
4379 if (!(wq->flags & WQ_MEM_RECLAIM))
4382 rescuer = alloc_worker(NUMA_NO_NODE);
4386 rescuer->rescue_wq = wq;
4387 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", wq->name);
4388 if (IS_ERR(rescuer->task)) {
4389 ret = PTR_ERR(rescuer->task);
4394 wq->rescuer = rescuer;
4395 kthread_bind_mask(rescuer->task, cpu_possible_mask);
4396 wake_up_process(rescuer->task);
4402 struct workqueue_struct *alloc_workqueue(const char *fmt,
4404 int max_active, ...)
4406 size_t tbl_size = 0;
4408 struct workqueue_struct *wq;
4409 struct pool_workqueue *pwq;
4412 * Unbound && max_active == 1 used to imply ordered, which is no
4413 * longer the case on NUMA machines due to per-node pools. While
4414 * alloc_ordered_workqueue() is the right way to create an ordered
4415 * workqueue, keep the previous behavior to avoid subtle breakages
4418 if ((flags & WQ_UNBOUND) && max_active == 1)
4419 flags |= __WQ_ORDERED;
4421 /* see the comment above the definition of WQ_POWER_EFFICIENT */
4422 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4423 flags |= WQ_UNBOUND;
4425 /* allocate wq and format name */
4426 if (flags & WQ_UNBOUND)
4427 tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
4429 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
4433 if (flags & WQ_UNBOUND) {
4434 wq->unbound_attrs = alloc_workqueue_attrs();
4435 if (!wq->unbound_attrs)
4439 va_start(args, max_active);
4440 vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4443 max_active = max_active ?: WQ_DFL_ACTIVE;
4444 max_active = wq_clamp_max_active(max_active, flags, wq->name);
4448 wq->saved_max_active = max_active;
4449 mutex_init(&wq->mutex);
4450 atomic_set(&wq->nr_pwqs_to_flush, 0);
4451 INIT_LIST_HEAD(&wq->pwqs);
4452 INIT_LIST_HEAD(&wq->flusher_queue);
4453 INIT_LIST_HEAD(&wq->flusher_overflow);
4454 INIT_LIST_HEAD(&wq->maydays);
4456 wq_init_lockdep(wq);
4457 INIT_LIST_HEAD(&wq->list);
4459 if (alloc_and_link_pwqs(wq) < 0)
4460 goto err_unreg_lockdep;
4462 if (wq_online && init_rescuer(wq) < 0)
4465 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4469 * wq_pool_mutex protects global freeze state and workqueues list.
4470 * Grab it, adjust max_active and add the new @wq to workqueues
4473 mutex_lock(&wq_pool_mutex);
4475 mutex_lock(&wq->mutex);
4476 for_each_pwq(pwq, wq)
4477 pwq_adjust_max_active(pwq);
4478 mutex_unlock(&wq->mutex);
4480 list_add_tail_rcu(&wq->list, &workqueues);
4482 mutex_unlock(&wq_pool_mutex);
4487 wq_unregister_lockdep(wq);
4488 wq_free_lockdep(wq);
4490 free_workqueue_attrs(wq->unbound_attrs);
4494 destroy_workqueue(wq);
4497 EXPORT_SYMBOL_GPL(alloc_workqueue);
4499 static bool pwq_busy(struct pool_workqueue *pwq)
4503 for (i = 0; i < WORK_NR_COLORS; i++)
4504 if (pwq->nr_in_flight[i])
4507 if ((pwq != pwq->wq->dfl_pwq) && (pwq->refcnt > 1))
4509 if (pwq->nr_active || !list_empty(&pwq->inactive_works))
4516 * destroy_workqueue - safely terminate a workqueue
4517 * @wq: target workqueue
4519 * Safely destroy a workqueue. All work currently pending will be done first.
4521 void destroy_workqueue(struct workqueue_struct *wq)
4523 struct pool_workqueue *pwq;
4527 * Remove it from sysfs first so that sanity check failure doesn't
4528 * lead to sysfs name conflicts.
4530 workqueue_sysfs_unregister(wq);
4532 /* mark the workqueue destruction is in progress */
4533 mutex_lock(&wq->mutex);
4534 wq->flags |= __WQ_DESTROYING;
4535 mutex_unlock(&wq->mutex);
4537 /* drain it before proceeding with destruction */
4538 drain_workqueue(wq);
4540 /* kill rescuer, if sanity checks fail, leave it w/o rescuer */
4542 struct worker *rescuer = wq->rescuer;
4544 /* this prevents new queueing */
4545 raw_spin_lock_irq(&wq_mayday_lock);
4547 raw_spin_unlock_irq(&wq_mayday_lock);
4549 /* rescuer will empty maydays list before exiting */
4550 kthread_stop(rescuer->task);
4555 * Sanity checks - grab all the locks so that we wait for all
4556 * in-flight operations which may do put_pwq().
4558 mutex_lock(&wq_pool_mutex);
4559 mutex_lock(&wq->mutex);
4560 for_each_pwq(pwq, wq) {
4561 raw_spin_lock_irq(&pwq->pool->lock);
4562 if (WARN_ON(pwq_busy(pwq))) {
4563 pr_warn("%s: %s has the following busy pwq\n",
4564 __func__, wq->name);
4566 raw_spin_unlock_irq(&pwq->pool->lock);
4567 mutex_unlock(&wq->mutex);
4568 mutex_unlock(&wq_pool_mutex);
4569 show_one_workqueue(wq);
4572 raw_spin_unlock_irq(&pwq->pool->lock);
4574 mutex_unlock(&wq->mutex);
4577 * wq list is used to freeze wq, remove from list after
4578 * flushing is complete in case freeze races us.
4580 list_del_rcu(&wq->list);
4581 mutex_unlock(&wq_pool_mutex);
4583 if (!(wq->flags & WQ_UNBOUND)) {
4584 wq_unregister_lockdep(wq);
4586 * The base ref is never dropped on per-cpu pwqs. Directly
4587 * schedule RCU free.
4589 call_rcu(&wq->rcu, rcu_free_wq);
4592 * We're the sole accessor of @wq at this point. Directly
4593 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4594 * @wq will be freed when the last pwq is released.
4596 for_each_node(node) {
4597 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4598 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4599 put_pwq_unlocked(pwq);
4603 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is
4604 * put. Don't access it afterwards.
4608 put_pwq_unlocked(pwq);
4611 EXPORT_SYMBOL_GPL(destroy_workqueue);
4614 * workqueue_set_max_active - adjust max_active of a workqueue
4615 * @wq: target workqueue
4616 * @max_active: new max_active value.
4618 * Set max_active of @wq to @max_active.
4621 * Don't call from IRQ context.
4623 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4625 struct pool_workqueue *pwq;
4627 /* disallow meddling with max_active for ordered workqueues */
4628 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4631 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4633 mutex_lock(&wq->mutex);
4635 wq->flags &= ~__WQ_ORDERED;
4636 wq->saved_max_active = max_active;
4638 for_each_pwq(pwq, wq)
4639 pwq_adjust_max_active(pwq);
4641 mutex_unlock(&wq->mutex);
4643 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4646 * current_work - retrieve %current task's work struct
4648 * Determine if %current task is a workqueue worker and what it's working on.
4649 * Useful to find out the context that the %current task is running in.
4651 * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
4653 struct work_struct *current_work(void)
4655 struct worker *worker = current_wq_worker();
4657 return worker ? worker->current_work : NULL;
4659 EXPORT_SYMBOL(current_work);
4662 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4664 * Determine whether %current is a workqueue rescuer. Can be used from
4665 * work functions to determine whether it's being run off the rescuer task.
4667 * Return: %true if %current is a workqueue rescuer. %false otherwise.
4669 bool current_is_workqueue_rescuer(void)
4671 struct worker *worker = current_wq_worker();
4673 return worker && worker->rescue_wq;
4677 * workqueue_congested - test whether a workqueue is congested
4678 * @cpu: CPU in question
4679 * @wq: target workqueue
4681 * Test whether @wq's cpu workqueue for @cpu is congested. There is
4682 * no synchronization around this function and the test result is
4683 * unreliable and only useful as advisory hints or for debugging.
4685 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4686 * Note that both per-cpu and unbound workqueues may be associated with
4687 * multiple pool_workqueues which have separate congested states. A
4688 * workqueue being congested on one CPU doesn't mean the workqueue is also
4689 * contested on other CPUs / NUMA nodes.
4692 * %true if congested, %false otherwise.
4694 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4696 struct pool_workqueue *pwq;
4702 if (cpu == WORK_CPU_UNBOUND)
4703 cpu = smp_processor_id();
4705 if (!(wq->flags & WQ_UNBOUND))
4706 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4708 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4710 ret = !list_empty(&pwq->inactive_works);
4716 EXPORT_SYMBOL_GPL(workqueue_congested);
4719 * work_busy - test whether a work is currently pending or running
4720 * @work: the work to be tested
4722 * Test whether @work is currently pending or running. There is no
4723 * synchronization around this function and the test result is
4724 * unreliable and only useful as advisory hints or for debugging.
4727 * OR'd bitmask of WORK_BUSY_* bits.
4729 unsigned int work_busy(struct work_struct *work)
4731 struct worker_pool *pool;
4732 unsigned long flags;
4733 unsigned int ret = 0;
4735 if (work_pending(work))
4736 ret |= WORK_BUSY_PENDING;
4739 pool = get_work_pool(work);
4741 raw_spin_lock_irqsave(&pool->lock, flags);
4742 if (find_worker_executing_work(pool, work))
4743 ret |= WORK_BUSY_RUNNING;
4744 raw_spin_unlock_irqrestore(&pool->lock, flags);
4750 EXPORT_SYMBOL_GPL(work_busy);
4753 * set_worker_desc - set description for the current work item
4754 * @fmt: printf-style format string
4755 * @...: arguments for the format string
4757 * This function can be called by a running work function to describe what
4758 * the work item is about. If the worker task gets dumped, this
4759 * information will be printed out together to help debugging. The
4760 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4762 void set_worker_desc(const char *fmt, ...)
4764 struct worker *worker = current_wq_worker();
4768 va_start(args, fmt);
4769 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4773 EXPORT_SYMBOL_GPL(set_worker_desc);
4776 * print_worker_info - print out worker information and description
4777 * @log_lvl: the log level to use when printing
4778 * @task: target task
4780 * If @task is a worker and currently executing a work item, print out the
4781 * name of the workqueue being serviced and worker description set with
4782 * set_worker_desc() by the currently executing work item.
4784 * This function can be safely called on any task as long as the
4785 * task_struct itself is accessible. While safe, this function isn't
4786 * synchronized and may print out mixups or garbages of limited length.
4788 void print_worker_info(const char *log_lvl, struct task_struct *task)
4790 work_func_t *fn = NULL;
4791 char name[WQ_NAME_LEN] = { };
4792 char desc[WORKER_DESC_LEN] = { };
4793 struct pool_workqueue *pwq = NULL;
4794 struct workqueue_struct *wq = NULL;
4795 struct worker *worker;
4797 if (!(task->flags & PF_WQ_WORKER))
4801 * This function is called without any synchronization and @task
4802 * could be in any state. Be careful with dereferences.
4804 worker = kthread_probe_data(task);
4807 * Carefully copy the associated workqueue's workfn, name and desc.
4808 * Keep the original last '\0' in case the original is garbage.
4810 copy_from_kernel_nofault(&fn, &worker->current_func, sizeof(fn));
4811 copy_from_kernel_nofault(&pwq, &worker->current_pwq, sizeof(pwq));
4812 copy_from_kernel_nofault(&wq, &pwq->wq, sizeof(wq));
4813 copy_from_kernel_nofault(name, wq->name, sizeof(name) - 1);
4814 copy_from_kernel_nofault(desc, worker->desc, sizeof(desc) - 1);
4816 if (fn || name[0] || desc[0]) {
4817 printk("%sWorkqueue: %s %ps", log_lvl, name, fn);
4818 if (strcmp(name, desc))
4819 pr_cont(" (%s)", desc);
4824 static void pr_cont_pool_info(struct worker_pool *pool)
4826 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4827 if (pool->node != NUMA_NO_NODE)
4828 pr_cont(" node=%d", pool->node);
4829 pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4832 struct pr_cont_work_struct {
4838 static void pr_cont_work_flush(bool comma, work_func_t func, struct pr_cont_work_struct *pcwsp)
4842 if (func == pcwsp->func) {
4846 if (pcwsp->ctr == 1)
4847 pr_cont("%s %ps", pcwsp->comma ? "," : "", pcwsp->func);
4849 pr_cont("%s %ld*%ps", pcwsp->comma ? "," : "", pcwsp->ctr, pcwsp->func);
4852 if ((long)func == -1L)
4854 pcwsp->comma = comma;
4859 static void pr_cont_work(bool comma, struct work_struct *work, struct pr_cont_work_struct *pcwsp)
4861 if (work->func == wq_barrier_func) {
4862 struct wq_barrier *barr;
4864 barr = container_of(work, struct wq_barrier, work);
4866 pr_cont_work_flush(comma, (work_func_t)-1, pcwsp);
4867 pr_cont("%s BAR(%d)", comma ? "," : "",
4868 task_pid_nr(barr->task));
4871 pr_cont_work_flush(comma, (work_func_t)-1, pcwsp);
4872 pr_cont_work_flush(comma, work->func, pcwsp);
4876 static void show_pwq(struct pool_workqueue *pwq)
4878 struct pr_cont_work_struct pcws = { .ctr = 0, };
4879 struct worker_pool *pool = pwq->pool;
4880 struct work_struct *work;
4881 struct worker *worker;
4882 bool has_in_flight = false, has_pending = false;
4885 pr_info(" pwq %d:", pool->id);
4886 pr_cont_pool_info(pool);
4888 pr_cont(" active=%d/%d refcnt=%d%s\n",
4889 pwq->nr_active, pwq->max_active, pwq->refcnt,
4890 !list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4892 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4893 if (worker->current_pwq == pwq) {
4894 has_in_flight = true;
4898 if (has_in_flight) {
4901 pr_info(" in-flight:");
4902 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4903 if (worker->current_pwq != pwq)
4906 pr_cont("%s %d%s:%ps", comma ? "," : "",
4907 task_pid_nr(worker->task),
4908 worker->rescue_wq ? "(RESCUER)" : "",
4909 worker->current_func);
4910 list_for_each_entry(work, &worker->scheduled, entry)
4911 pr_cont_work(false, work, &pcws);
4912 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
4918 list_for_each_entry(work, &pool->worklist, entry) {
4919 if (get_work_pwq(work) == pwq) {
4927 pr_info(" pending:");
4928 list_for_each_entry(work, &pool->worklist, entry) {
4929 if (get_work_pwq(work) != pwq)
4932 pr_cont_work(comma, work, &pcws);
4933 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4935 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
4939 if (!list_empty(&pwq->inactive_works)) {
4942 pr_info(" inactive:");
4943 list_for_each_entry(work, &pwq->inactive_works, entry) {
4944 pr_cont_work(comma, work, &pcws);
4945 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4947 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
4953 * show_one_workqueue - dump state of specified workqueue
4954 * @wq: workqueue whose state will be printed
4956 void show_one_workqueue(struct workqueue_struct *wq)
4958 struct pool_workqueue *pwq;
4960 unsigned long flags;
4962 for_each_pwq(pwq, wq) {
4963 if (pwq->nr_active || !list_empty(&pwq->inactive_works)) {
4968 if (idle) /* Nothing to print for idle workqueue */
4971 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4973 for_each_pwq(pwq, wq) {
4974 raw_spin_lock_irqsave(&pwq->pool->lock, flags);
4975 if (pwq->nr_active || !list_empty(&pwq->inactive_works)) {
4977 * Defer printing to avoid deadlocks in console
4978 * drivers that queue work while holding locks
4979 * also taken in their write paths.
4981 printk_deferred_enter();
4983 printk_deferred_exit();
4985 raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
4987 * We could be printing a lot from atomic context, e.g.
4988 * sysrq-t -> show_all_workqueues(). Avoid triggering
4991 touch_nmi_watchdog();
4997 * show_one_worker_pool - dump state of specified worker pool
4998 * @pool: worker pool whose state will be printed
5000 static void show_one_worker_pool(struct worker_pool *pool)
5002 struct worker *worker;
5004 unsigned long flags;
5006 raw_spin_lock_irqsave(&pool->lock, flags);
5007 if (pool->nr_workers == pool->nr_idle)
5010 * Defer printing to avoid deadlocks in console drivers that
5011 * queue work while holding locks also taken in their write
5014 printk_deferred_enter();
5015 pr_info("pool %d:", pool->id);
5016 pr_cont_pool_info(pool);
5017 pr_cont(" hung=%us workers=%d",
5018 jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
5021 pr_cont(" manager: %d",
5022 task_pid_nr(pool->manager->task));
5023 list_for_each_entry(worker, &pool->idle_list, entry) {
5024 pr_cont(" %s%d", first ? "idle: " : "",
5025 task_pid_nr(worker->task));
5029 printk_deferred_exit();
5031 raw_spin_unlock_irqrestore(&pool->lock, flags);
5033 * We could be printing a lot from atomic context, e.g.
5034 * sysrq-t -> show_all_workqueues(). Avoid triggering
5037 touch_nmi_watchdog();
5042 * show_all_workqueues - dump workqueue state
5044 * Called from a sysrq handler or try_to_freeze_tasks() and prints out
5045 * all busy workqueues and pools.
5047 void show_all_workqueues(void)
5049 struct workqueue_struct *wq;
5050 struct worker_pool *pool;
5055 pr_info("Showing busy workqueues and worker pools:\n");
5057 list_for_each_entry_rcu(wq, &workqueues, list)
5058 show_one_workqueue(wq);
5060 for_each_pool(pool, pi)
5061 show_one_worker_pool(pool);
5066 /* used to show worker information through /proc/PID/{comm,stat,status} */
5067 void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
5071 /* always show the actual comm */
5072 off = strscpy(buf, task->comm, size);
5076 /* stabilize PF_WQ_WORKER and worker pool association */
5077 mutex_lock(&wq_pool_attach_mutex);
5079 if (task->flags & PF_WQ_WORKER) {
5080 struct worker *worker = kthread_data(task);
5081 struct worker_pool *pool = worker->pool;
5084 raw_spin_lock_irq(&pool->lock);
5086 * ->desc tracks information (wq name or
5087 * set_worker_desc()) for the latest execution. If
5088 * current, prepend '+', otherwise '-'.
5090 if (worker->desc[0] != '\0') {
5091 if (worker->current_work)
5092 scnprintf(buf + off, size - off, "+%s",
5095 scnprintf(buf + off, size - off, "-%s",
5098 raw_spin_unlock_irq(&pool->lock);
5102 mutex_unlock(&wq_pool_attach_mutex);
5110 * There are two challenges in supporting CPU hotplug. Firstly, there
5111 * are a lot of assumptions on strong associations among work, pwq and
5112 * pool which make migrating pending and scheduled works very
5113 * difficult to implement without impacting hot paths. Secondly,
5114 * worker pools serve mix of short, long and very long running works making
5115 * blocked draining impractical.
5117 * This is solved by allowing the pools to be disassociated from the CPU
5118 * running as an unbound one and allowing it to be reattached later if the
5119 * cpu comes back online.
5122 static void unbind_workers(int cpu)
5124 struct worker_pool *pool;
5125 struct worker *worker;
5127 for_each_cpu_worker_pool(pool, cpu) {
5128 mutex_lock(&wq_pool_attach_mutex);
5129 raw_spin_lock_irq(&pool->lock);
5132 * We've blocked all attach/detach operations. Make all workers
5133 * unbound and set DISASSOCIATED. Before this, all workers
5134 * must be on the cpu. After this, they may become diasporas.
5135 * And the preemption disabled section in their sched callbacks
5136 * are guaranteed to see WORKER_UNBOUND since the code here
5137 * is on the same cpu.
5139 for_each_pool_worker(worker, pool)
5140 worker->flags |= WORKER_UNBOUND;
5142 pool->flags |= POOL_DISASSOCIATED;
5145 * The handling of nr_running in sched callbacks are disabled
5146 * now. Zap nr_running. After this, nr_running stays zero and
5147 * need_more_worker() and keep_working() are always true as
5148 * long as the worklist is not empty. This pool now behaves as
5149 * an unbound (in terms of concurrency management) pool which
5150 * are served by workers tied to the pool.
5152 pool->nr_running = 0;
5155 * With concurrency management just turned off, a busy
5156 * worker blocking could lead to lengthy stalls. Kick off
5157 * unbound chain execution of currently pending work items.
5159 wake_up_worker(pool);
5161 raw_spin_unlock_irq(&pool->lock);
5163 for_each_pool_worker(worker, pool)
5164 unbind_worker(worker);
5166 mutex_unlock(&wq_pool_attach_mutex);
5171 * rebind_workers - rebind all workers of a pool to the associated CPU
5172 * @pool: pool of interest
5174 * @pool->cpu is coming online. Rebind all workers to the CPU.
5176 static void rebind_workers(struct worker_pool *pool)
5178 struct worker *worker;
5180 lockdep_assert_held(&wq_pool_attach_mutex);
5183 * Restore CPU affinity of all workers. As all idle workers should
5184 * be on the run-queue of the associated CPU before any local
5185 * wake-ups for concurrency management happen, restore CPU affinity
5186 * of all workers first and then clear UNBOUND. As we're called
5187 * from CPU_ONLINE, the following shouldn't fail.
5189 for_each_pool_worker(worker, pool) {
5190 kthread_set_per_cpu(worker->task, pool->cpu);
5191 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
5192 pool->attrs->cpumask) < 0);
5195 raw_spin_lock_irq(&pool->lock);
5197 pool->flags &= ~POOL_DISASSOCIATED;
5199 for_each_pool_worker(worker, pool) {
5200 unsigned int worker_flags = worker->flags;
5203 * We want to clear UNBOUND but can't directly call
5204 * worker_clr_flags() or adjust nr_running. Atomically
5205 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
5206 * @worker will clear REBOUND using worker_clr_flags() when
5207 * it initiates the next execution cycle thus restoring
5208 * concurrency management. Note that when or whether
5209 * @worker clears REBOUND doesn't affect correctness.
5211 * WRITE_ONCE() is necessary because @worker->flags may be
5212 * tested without holding any lock in
5213 * wq_worker_running(). Without it, NOT_RUNNING test may
5214 * fail incorrectly leading to premature concurrency
5215 * management operations.
5217 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
5218 worker_flags |= WORKER_REBOUND;
5219 worker_flags &= ~WORKER_UNBOUND;
5220 WRITE_ONCE(worker->flags, worker_flags);
5223 raw_spin_unlock_irq(&pool->lock);
5227 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
5228 * @pool: unbound pool of interest
5229 * @cpu: the CPU which is coming up
5231 * An unbound pool may end up with a cpumask which doesn't have any online
5232 * CPUs. When a worker of such pool get scheduled, the scheduler resets
5233 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
5234 * online CPU before, cpus_allowed of all its workers should be restored.
5236 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
5238 static cpumask_t cpumask;
5239 struct worker *worker;
5241 lockdep_assert_held(&wq_pool_attach_mutex);
5243 /* is @cpu allowed for @pool? */
5244 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
5247 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
5249 /* as we're called from CPU_ONLINE, the following shouldn't fail */
5250 for_each_pool_worker(worker, pool)
5251 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
5254 int workqueue_prepare_cpu(unsigned int cpu)
5256 struct worker_pool *pool;
5258 for_each_cpu_worker_pool(pool, cpu) {
5259 if (pool->nr_workers)
5261 if (!create_worker(pool))
5267 int workqueue_online_cpu(unsigned int cpu)
5269 struct worker_pool *pool;
5270 struct workqueue_struct *wq;
5273 mutex_lock(&wq_pool_mutex);
5275 for_each_pool(pool, pi) {
5276 mutex_lock(&wq_pool_attach_mutex);
5278 if (pool->cpu == cpu)
5279 rebind_workers(pool);
5280 else if (pool->cpu < 0)
5281 restore_unbound_workers_cpumask(pool, cpu);
5283 mutex_unlock(&wq_pool_attach_mutex);
5286 /* update NUMA affinity of unbound workqueues */
5287 list_for_each_entry(wq, &workqueues, list)
5288 wq_update_unbound_numa(wq, cpu, true);
5290 mutex_unlock(&wq_pool_mutex);
5294 int workqueue_offline_cpu(unsigned int cpu)
5296 struct workqueue_struct *wq;
5298 /* unbinding per-cpu workers should happen on the local CPU */
5299 if (WARN_ON(cpu != smp_processor_id()))
5302 unbind_workers(cpu);
5304 /* update NUMA affinity of unbound workqueues */
5305 mutex_lock(&wq_pool_mutex);
5306 list_for_each_entry(wq, &workqueues, list)
5307 wq_update_unbound_numa(wq, cpu, false);
5308 mutex_unlock(&wq_pool_mutex);
5313 struct work_for_cpu {
5314 struct work_struct work;
5320 static void work_for_cpu_fn(struct work_struct *work)
5322 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
5324 wfc->ret = wfc->fn(wfc->arg);
5328 * work_on_cpu - run a function in thread context on a particular cpu
5329 * @cpu: the cpu to run on
5330 * @fn: the function to run
5331 * @arg: the function arg
5333 * It is up to the caller to ensure that the cpu doesn't go offline.
5334 * The caller must not hold any locks which would prevent @fn from completing.
5336 * Return: The value @fn returns.
5338 long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
5340 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
5342 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
5343 schedule_work_on(cpu, &wfc.work);
5344 flush_work(&wfc.work);
5345 destroy_work_on_stack(&wfc.work);
5348 EXPORT_SYMBOL_GPL(work_on_cpu);
5351 * work_on_cpu_safe - run a function in thread context on a particular cpu
5352 * @cpu: the cpu to run on
5353 * @fn: the function to run
5354 * @arg: the function argument
5356 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
5357 * any locks which would prevent @fn from completing.
5359 * Return: The value @fn returns.
5361 long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg)
5366 if (cpu_online(cpu))
5367 ret = work_on_cpu(cpu, fn, arg);
5371 EXPORT_SYMBOL_GPL(work_on_cpu_safe);
5372 #endif /* CONFIG_SMP */
5374 #ifdef CONFIG_FREEZER
5377 * freeze_workqueues_begin - begin freezing workqueues
5379 * Start freezing workqueues. After this function returns, all freezable
5380 * workqueues will queue new works to their inactive_works list instead of
5384 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5386 void freeze_workqueues_begin(void)
5388 struct workqueue_struct *wq;
5389 struct pool_workqueue *pwq;
5391 mutex_lock(&wq_pool_mutex);
5393 WARN_ON_ONCE(workqueue_freezing);
5394 workqueue_freezing = true;
5396 list_for_each_entry(wq, &workqueues, list) {
5397 mutex_lock(&wq->mutex);
5398 for_each_pwq(pwq, wq)
5399 pwq_adjust_max_active(pwq);
5400 mutex_unlock(&wq->mutex);
5403 mutex_unlock(&wq_pool_mutex);
5407 * freeze_workqueues_busy - are freezable workqueues still busy?
5409 * Check whether freezing is complete. This function must be called
5410 * between freeze_workqueues_begin() and thaw_workqueues().
5413 * Grabs and releases wq_pool_mutex.
5416 * %true if some freezable workqueues are still busy. %false if freezing
5419 bool freeze_workqueues_busy(void)
5422 struct workqueue_struct *wq;
5423 struct pool_workqueue *pwq;
5425 mutex_lock(&wq_pool_mutex);
5427 WARN_ON_ONCE(!workqueue_freezing);
5429 list_for_each_entry(wq, &workqueues, list) {
5430 if (!(wq->flags & WQ_FREEZABLE))
5433 * nr_active is monotonically decreasing. It's safe
5434 * to peek without lock.
5437 for_each_pwq(pwq, wq) {
5438 WARN_ON_ONCE(pwq->nr_active < 0);
5439 if (pwq->nr_active) {
5448 mutex_unlock(&wq_pool_mutex);
5453 * thaw_workqueues - thaw workqueues
5455 * Thaw workqueues. Normal queueing is restored and all collected
5456 * frozen works are transferred to their respective pool worklists.
5459 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5461 void thaw_workqueues(void)
5463 struct workqueue_struct *wq;
5464 struct pool_workqueue *pwq;
5466 mutex_lock(&wq_pool_mutex);
5468 if (!workqueue_freezing)
5471 workqueue_freezing = false;
5473 /* restore max_active and repopulate worklist */
5474 list_for_each_entry(wq, &workqueues, list) {
5475 mutex_lock(&wq->mutex);
5476 for_each_pwq(pwq, wq)
5477 pwq_adjust_max_active(pwq);
5478 mutex_unlock(&wq->mutex);
5482 mutex_unlock(&wq_pool_mutex);
5484 #endif /* CONFIG_FREEZER */
5486 static int workqueue_apply_unbound_cpumask(const cpumask_var_t unbound_cpumask)
5490 struct workqueue_struct *wq;
5491 struct apply_wqattrs_ctx *ctx, *n;
5493 lockdep_assert_held(&wq_pool_mutex);
5495 list_for_each_entry(wq, &workqueues, list) {
5496 if (!(wq->flags & WQ_UNBOUND))
5498 /* creating multiple pwqs breaks ordering guarantee */
5499 if (wq->flags & __WQ_ORDERED)
5502 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs, unbound_cpumask);
5508 list_add_tail(&ctx->list, &ctxs);
5511 list_for_each_entry_safe(ctx, n, &ctxs, list) {
5513 apply_wqattrs_commit(ctx);
5514 apply_wqattrs_cleanup(ctx);
5518 mutex_lock(&wq_pool_attach_mutex);
5519 cpumask_copy(wq_unbound_cpumask, unbound_cpumask);
5520 mutex_unlock(&wq_pool_attach_mutex);
5526 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
5527 * @cpumask: the cpumask to set
5529 * The low-level workqueues cpumask is a global cpumask that limits
5530 * the affinity of all unbound workqueues. This function check the @cpumask
5531 * and apply it to all unbound workqueues and updates all pwqs of them.
5533 * Return: 0 - Success
5534 * -EINVAL - Invalid @cpumask
5535 * -ENOMEM - Failed to allocate memory for attrs or pwqs.
5537 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
5542 * Not excluding isolated cpus on purpose.
5543 * If the user wishes to include them, we allow that.
5545 cpumask_and(cpumask, cpumask, cpu_possible_mask);
5546 if (!cpumask_empty(cpumask)) {
5547 apply_wqattrs_lock();
5548 if (cpumask_equal(cpumask, wq_unbound_cpumask)) {
5553 ret = workqueue_apply_unbound_cpumask(cpumask);
5556 apply_wqattrs_unlock();
5564 * Workqueues with WQ_SYSFS flag set is visible to userland via
5565 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
5566 * following attributes.
5568 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
5569 * max_active RW int : maximum number of in-flight work items
5571 * Unbound workqueues have the following extra attributes.
5573 * pool_ids RO int : the associated pool IDs for each node
5574 * nice RW int : nice value of the workers
5575 * cpumask RW mask : bitmask of allowed CPUs for the workers
5576 * numa RW bool : whether enable NUMA affinity
5579 struct workqueue_struct *wq;
5583 static struct workqueue_struct *dev_to_wq(struct device *dev)
5585 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5590 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
5593 struct workqueue_struct *wq = dev_to_wq(dev);
5595 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
5597 static DEVICE_ATTR_RO(per_cpu);
5599 static ssize_t max_active_show(struct device *dev,
5600 struct device_attribute *attr, char *buf)
5602 struct workqueue_struct *wq = dev_to_wq(dev);
5604 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
5607 static ssize_t max_active_store(struct device *dev,
5608 struct device_attribute *attr, const char *buf,
5611 struct workqueue_struct *wq = dev_to_wq(dev);
5614 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
5617 workqueue_set_max_active(wq, val);
5620 static DEVICE_ATTR_RW(max_active);
5622 static struct attribute *wq_sysfs_attrs[] = {
5623 &dev_attr_per_cpu.attr,
5624 &dev_attr_max_active.attr,
5627 ATTRIBUTE_GROUPS(wq_sysfs);
5629 static ssize_t wq_pool_ids_show(struct device *dev,
5630 struct device_attribute *attr, char *buf)
5632 struct workqueue_struct *wq = dev_to_wq(dev);
5633 const char *delim = "";
5634 int node, written = 0;
5638 for_each_node(node) {
5639 written += scnprintf(buf + written, PAGE_SIZE - written,
5640 "%s%d:%d", delim, node,
5641 unbound_pwq_by_node(wq, node)->pool->id);
5644 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
5651 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
5654 struct workqueue_struct *wq = dev_to_wq(dev);
5657 mutex_lock(&wq->mutex);
5658 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5659 mutex_unlock(&wq->mutex);
5664 /* prepare workqueue_attrs for sysfs store operations */
5665 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5667 struct workqueue_attrs *attrs;
5669 lockdep_assert_held(&wq_pool_mutex);
5671 attrs = alloc_workqueue_attrs();
5675 copy_workqueue_attrs(attrs, wq->unbound_attrs);
5679 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5680 const char *buf, size_t count)
5682 struct workqueue_struct *wq = dev_to_wq(dev);
5683 struct workqueue_attrs *attrs;
5686 apply_wqattrs_lock();
5688 attrs = wq_sysfs_prep_attrs(wq);
5692 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5693 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
5694 ret = apply_workqueue_attrs_locked(wq, attrs);
5699 apply_wqattrs_unlock();
5700 free_workqueue_attrs(attrs);
5701 return ret ?: count;
5704 static ssize_t wq_cpumask_show(struct device *dev,
5705 struct device_attribute *attr, char *buf)
5707 struct workqueue_struct *wq = dev_to_wq(dev);
5710 mutex_lock(&wq->mutex);
5711 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5712 cpumask_pr_args(wq->unbound_attrs->cpumask));
5713 mutex_unlock(&wq->mutex);
5717 static ssize_t wq_cpumask_store(struct device *dev,
5718 struct device_attribute *attr,
5719 const char *buf, size_t count)
5721 struct workqueue_struct *wq = dev_to_wq(dev);
5722 struct workqueue_attrs *attrs;
5725 apply_wqattrs_lock();
5727 attrs = wq_sysfs_prep_attrs(wq);
5731 ret = cpumask_parse(buf, attrs->cpumask);
5733 ret = apply_workqueue_attrs_locked(wq, attrs);
5736 apply_wqattrs_unlock();
5737 free_workqueue_attrs(attrs);
5738 return ret ?: count;
5741 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5744 struct workqueue_struct *wq = dev_to_wq(dev);
5747 mutex_lock(&wq->mutex);
5748 written = scnprintf(buf, PAGE_SIZE, "%d\n",
5749 !wq->unbound_attrs->no_numa);
5750 mutex_unlock(&wq->mutex);
5755 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5756 const char *buf, size_t count)
5758 struct workqueue_struct *wq = dev_to_wq(dev);
5759 struct workqueue_attrs *attrs;
5760 int v, ret = -ENOMEM;
5762 apply_wqattrs_lock();
5764 attrs = wq_sysfs_prep_attrs(wq);
5769 if (sscanf(buf, "%d", &v) == 1) {
5770 attrs->no_numa = !v;
5771 ret = apply_workqueue_attrs_locked(wq, attrs);
5775 apply_wqattrs_unlock();
5776 free_workqueue_attrs(attrs);
5777 return ret ?: count;
5780 static struct device_attribute wq_sysfs_unbound_attrs[] = {
5781 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5782 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5783 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5784 __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5788 static struct bus_type wq_subsys = {
5789 .name = "workqueue",
5790 .dev_groups = wq_sysfs_groups,
5793 static ssize_t wq_unbound_cpumask_show(struct device *dev,
5794 struct device_attribute *attr, char *buf)
5798 mutex_lock(&wq_pool_mutex);
5799 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5800 cpumask_pr_args(wq_unbound_cpumask));
5801 mutex_unlock(&wq_pool_mutex);
5806 static ssize_t wq_unbound_cpumask_store(struct device *dev,
5807 struct device_attribute *attr, const char *buf, size_t count)
5809 cpumask_var_t cpumask;
5812 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5815 ret = cpumask_parse(buf, cpumask);
5817 ret = workqueue_set_unbound_cpumask(cpumask);
5819 free_cpumask_var(cpumask);
5820 return ret ? ret : count;
5823 static struct device_attribute wq_sysfs_cpumask_attr =
5824 __ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5825 wq_unbound_cpumask_store);
5827 static int __init wq_sysfs_init(void)
5831 err = subsys_virtual_register(&wq_subsys, NULL);
5835 return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
5837 core_initcall(wq_sysfs_init);
5839 static void wq_device_release(struct device *dev)
5841 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5847 * workqueue_sysfs_register - make a workqueue visible in sysfs
5848 * @wq: the workqueue to register
5850 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5851 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5852 * which is the preferred method.
5854 * Workqueue user should use this function directly iff it wants to apply
5855 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5856 * apply_workqueue_attrs() may race against userland updating the
5859 * Return: 0 on success, -errno on failure.
5861 int workqueue_sysfs_register(struct workqueue_struct *wq)
5863 struct wq_device *wq_dev;
5867 * Adjusting max_active or creating new pwqs by applying
5868 * attributes breaks ordering guarantee. Disallow exposing ordered
5871 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
5874 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5879 wq_dev->dev.bus = &wq_subsys;
5880 wq_dev->dev.release = wq_device_release;
5881 dev_set_name(&wq_dev->dev, "%s", wq->name);
5884 * unbound_attrs are created separately. Suppress uevent until
5885 * everything is ready.
5887 dev_set_uevent_suppress(&wq_dev->dev, true);
5889 ret = device_register(&wq_dev->dev);
5891 put_device(&wq_dev->dev);
5896 if (wq->flags & WQ_UNBOUND) {
5897 struct device_attribute *attr;
5899 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5900 ret = device_create_file(&wq_dev->dev, attr);
5902 device_unregister(&wq_dev->dev);
5909 dev_set_uevent_suppress(&wq_dev->dev, false);
5910 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5915 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5916 * @wq: the workqueue to unregister
5918 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
5920 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
5922 struct wq_device *wq_dev = wq->wq_dev;
5928 device_unregister(&wq_dev->dev);
5930 #else /* CONFIG_SYSFS */
5931 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
5932 #endif /* CONFIG_SYSFS */
5935 * Workqueue watchdog.
5937 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5938 * flush dependency, a concurrency managed work item which stays RUNNING
5939 * indefinitely. Workqueue stalls can be very difficult to debug as the
5940 * usual warning mechanisms don't trigger and internal workqueue state is
5943 * Workqueue watchdog monitors all worker pools periodically and dumps
5944 * state if some pools failed to make forward progress for a while where
5945 * forward progress is defined as the first item on ->worklist changing.
5947 * This mechanism is controlled through the kernel parameter
5948 * "workqueue.watchdog_thresh" which can be updated at runtime through the
5949 * corresponding sysfs parameter file.
5951 #ifdef CONFIG_WQ_WATCHDOG
5953 static unsigned long wq_watchdog_thresh = 30;
5954 static struct timer_list wq_watchdog_timer;
5956 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
5957 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
5959 static void wq_watchdog_reset_touched(void)
5963 wq_watchdog_touched = jiffies;
5964 for_each_possible_cpu(cpu)
5965 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5968 static void wq_watchdog_timer_fn(struct timer_list *unused)
5970 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
5971 bool lockup_detected = false;
5972 unsigned long now = jiffies;
5973 struct worker_pool *pool;
5981 for_each_pool(pool, pi) {
5982 unsigned long pool_ts, touched, ts;
5984 if (list_empty(&pool->worklist))
5988 * If a virtual machine is stopped by the host it can look to
5989 * the watchdog like a stall.
5991 kvm_check_and_clear_guest_paused();
5993 /* get the latest of pool and touched timestamps */
5995 touched = READ_ONCE(per_cpu(wq_watchdog_touched_cpu, pool->cpu));
5997 touched = READ_ONCE(wq_watchdog_touched);
5998 pool_ts = READ_ONCE(pool->watchdog_ts);
6000 if (time_after(pool_ts, touched))
6006 if (time_after(now, ts + thresh)) {
6007 lockup_detected = true;
6008 pr_emerg("BUG: workqueue lockup - pool");
6009 pr_cont_pool_info(pool);
6010 pr_cont(" stuck for %us!\n",
6011 jiffies_to_msecs(now - pool_ts) / 1000);
6017 if (lockup_detected)
6018 show_all_workqueues();
6020 wq_watchdog_reset_touched();
6021 mod_timer(&wq_watchdog_timer, jiffies + thresh);
6024 notrace void wq_watchdog_touch(int cpu)
6027 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
6029 wq_watchdog_touched = jiffies;
6032 static void wq_watchdog_set_thresh(unsigned long thresh)
6034 wq_watchdog_thresh = 0;
6035 del_timer_sync(&wq_watchdog_timer);
6038 wq_watchdog_thresh = thresh;
6039 wq_watchdog_reset_touched();
6040 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
6044 static int wq_watchdog_param_set_thresh(const char *val,
6045 const struct kernel_param *kp)
6047 unsigned long thresh;
6050 ret = kstrtoul(val, 0, &thresh);
6055 wq_watchdog_set_thresh(thresh);
6057 wq_watchdog_thresh = thresh;
6062 static const struct kernel_param_ops wq_watchdog_thresh_ops = {
6063 .set = wq_watchdog_param_set_thresh,
6064 .get = param_get_ulong,
6067 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
6070 static void wq_watchdog_init(void)
6072 timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
6073 wq_watchdog_set_thresh(wq_watchdog_thresh);
6076 #else /* CONFIG_WQ_WATCHDOG */
6078 static inline void wq_watchdog_init(void) { }
6080 #endif /* CONFIG_WQ_WATCHDOG */
6082 static void __init wq_numa_init(void)
6087 if (num_possible_nodes() <= 1)
6090 if (wq_disable_numa) {
6091 pr_info("workqueue: NUMA affinity support disabled\n");
6095 for_each_possible_cpu(cpu) {
6096 if (WARN_ON(cpu_to_node(cpu) == NUMA_NO_NODE)) {
6097 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
6102 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs();
6103 BUG_ON(!wq_update_unbound_numa_attrs_buf);
6106 * We want masks of possible CPUs of each node which isn't readily
6107 * available. Build one from cpu_to_node() which should have been
6108 * fully initialized by now.
6110 tbl = kcalloc(nr_node_ids, sizeof(tbl[0]), GFP_KERNEL);
6114 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
6115 node_online(node) ? node : NUMA_NO_NODE));
6117 for_each_possible_cpu(cpu) {
6118 node = cpu_to_node(cpu);
6119 cpumask_set_cpu(cpu, tbl[node]);
6122 wq_numa_possible_cpumask = tbl;
6123 wq_numa_enabled = true;
6127 * workqueue_init_early - early init for workqueue subsystem
6129 * This is the first half of two-staged workqueue subsystem initialization
6130 * and invoked as soon as the bare basics - memory allocation, cpumasks and
6131 * idr are up. It sets up all the data structures and system workqueues
6132 * and allows early boot code to create workqueues and queue/cancel work
6133 * items. Actual work item execution starts only after kthreads can be
6134 * created and scheduled right before early initcalls.
6136 void __init workqueue_init_early(void)
6138 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
6141 BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
6143 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
6144 cpumask_copy(wq_unbound_cpumask, housekeeping_cpumask(HK_TYPE_WQ));
6145 cpumask_and(wq_unbound_cpumask, wq_unbound_cpumask, housekeeping_cpumask(HK_TYPE_DOMAIN));
6147 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
6149 /* initialize CPU pools */
6150 for_each_possible_cpu(cpu) {
6151 struct worker_pool *pool;
6154 for_each_cpu_worker_pool(pool, cpu) {
6155 BUG_ON(init_worker_pool(pool));
6157 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
6158 pool->attrs->nice = std_nice[i++];
6159 pool->node = cpu_to_node(cpu);
6162 mutex_lock(&wq_pool_mutex);
6163 BUG_ON(worker_pool_assign_id(pool));
6164 mutex_unlock(&wq_pool_mutex);
6168 /* create default unbound and ordered wq attrs */
6169 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
6170 struct workqueue_attrs *attrs;
6172 BUG_ON(!(attrs = alloc_workqueue_attrs()));
6173 attrs->nice = std_nice[i];
6174 unbound_std_wq_attrs[i] = attrs;
6177 * An ordered wq should have only one pwq as ordering is
6178 * guaranteed by max_active which is enforced by pwqs.
6179 * Turn off NUMA so that dfl_pwq is used for all nodes.
6181 BUG_ON(!(attrs = alloc_workqueue_attrs()));
6182 attrs->nice = std_nice[i];
6183 attrs->no_numa = true;
6184 ordered_wq_attrs[i] = attrs;
6187 system_wq = alloc_workqueue("events", 0, 0);
6188 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
6189 system_long_wq = alloc_workqueue("events_long", 0, 0);
6190 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
6191 WQ_UNBOUND_MAX_ACTIVE);
6192 system_freezable_wq = alloc_workqueue("events_freezable",
6194 system_power_efficient_wq = alloc_workqueue("events_power_efficient",
6195 WQ_POWER_EFFICIENT, 0);
6196 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
6197 WQ_FREEZABLE | WQ_POWER_EFFICIENT,
6199 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
6200 !system_unbound_wq || !system_freezable_wq ||
6201 !system_power_efficient_wq ||
6202 !system_freezable_power_efficient_wq);
6206 * workqueue_init - bring workqueue subsystem fully online
6208 * This is the latter half of two-staged workqueue subsystem initialization
6209 * and invoked as soon as kthreads can be created and scheduled.
6210 * Workqueues have been created and work items queued on them, but there
6211 * are no kworkers executing the work items yet. Populate the worker pools
6212 * with the initial workers and enable future kworker creations.
6214 void __init workqueue_init(void)
6216 struct workqueue_struct *wq;
6217 struct worker_pool *pool;
6221 * It'd be simpler to initialize NUMA in workqueue_init_early() but
6222 * CPU to node mapping may not be available that early on some
6223 * archs such as power and arm64. As per-cpu pools created
6224 * previously could be missing node hint and unbound pools NUMA
6225 * affinity, fix them up.
6227 * Also, while iterating workqueues, create rescuers if requested.
6231 mutex_lock(&wq_pool_mutex);
6233 for_each_possible_cpu(cpu) {
6234 for_each_cpu_worker_pool(pool, cpu) {
6235 pool->node = cpu_to_node(cpu);
6239 list_for_each_entry(wq, &workqueues, list) {
6240 wq_update_unbound_numa(wq, smp_processor_id(), true);
6241 WARN(init_rescuer(wq),
6242 "workqueue: failed to create early rescuer for %s",
6246 mutex_unlock(&wq_pool_mutex);
6248 /* create the initial workers */
6249 for_each_online_cpu(cpu) {
6250 for_each_cpu_worker_pool(pool, cpu) {
6251 pool->flags &= ~POOL_DISASSOCIATED;
6252 BUG_ON(!create_worker(pool));
6256 hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
6257 BUG_ON(!create_worker(pool));
6264 * Despite the naming, this is a no-op function which is here only for avoiding
6265 * link error. Since compile-time warning may fail to catch, we will need to
6266 * emit run-time warning from __flush_workqueue().
6268 void __warn_flushing_systemwide_wq(void) { }
6269 EXPORT_SYMBOL(__warn_flushing_systemwide_wq);