1 #ifndef _INTEL_RINGBUFFER_H_
2 #define _INTEL_RINGBUFFER_H_
4 #include <linux/hashtable.h>
5 #include "i915_gem_batch_pool.h"
6 #include "i915_gem_request.h"
7 #include "i915_gem_timeline.h"
8 #include "i915_selftest.h"
12 #define I915_CMD_HASH_ORDER 9
14 /* Early gen2 devices have a cacheline of just 32 bytes, using 64 is overkill,
15 * but keeps the logic simple. Indeed, the whole purpose of this macro is just
16 * to give some inclination as to some of the magic values used in the various
19 #define CACHELINE_BYTES 64
20 #define CACHELINE_DWORDS (CACHELINE_BYTES / sizeof(uint32_t))
22 struct intel_hw_status_page {
28 #define I915_READ_TAIL(engine) I915_READ(RING_TAIL((engine)->mmio_base))
29 #define I915_WRITE_TAIL(engine, val) I915_WRITE(RING_TAIL((engine)->mmio_base), val)
31 #define I915_READ_START(engine) I915_READ(RING_START((engine)->mmio_base))
32 #define I915_WRITE_START(engine, val) I915_WRITE(RING_START((engine)->mmio_base), val)
34 #define I915_READ_HEAD(engine) I915_READ(RING_HEAD((engine)->mmio_base))
35 #define I915_WRITE_HEAD(engine, val) I915_WRITE(RING_HEAD((engine)->mmio_base), val)
37 #define I915_READ_CTL(engine) I915_READ(RING_CTL((engine)->mmio_base))
38 #define I915_WRITE_CTL(engine, val) I915_WRITE(RING_CTL((engine)->mmio_base), val)
40 #define I915_READ_IMR(engine) I915_READ(RING_IMR((engine)->mmio_base))
41 #define I915_WRITE_IMR(engine, val) I915_WRITE(RING_IMR((engine)->mmio_base), val)
43 #define I915_READ_MODE(engine) I915_READ(RING_MI_MODE((engine)->mmio_base))
44 #define I915_WRITE_MODE(engine, val) I915_WRITE(RING_MI_MODE((engine)->mmio_base), val)
46 /* seqno size is actually only a uint32, but since we plan to use MI_FLUSH_DW to
47 * do the writes, and that must have qw aligned offsets, simply pretend it's 8b.
49 #define gen8_semaphore_seqno_size sizeof(uint64_t)
50 #define GEN8_SEMAPHORE_OFFSET(__from, __to) \
51 (((__from) * I915_NUM_ENGINES + (__to)) * gen8_semaphore_seqno_size)
52 #define GEN8_SIGNAL_OFFSET(__ring, to) \
53 (dev_priv->semaphore->node.start + \
54 GEN8_SEMAPHORE_OFFSET((__ring)->id, (to)))
55 #define GEN8_WAIT_OFFSET(__ring, from) \
56 (dev_priv->semaphore->node.start + \
57 GEN8_SEMAPHORE_OFFSET(from, (__ring)->id))
59 enum intel_engine_hangcheck_action {
64 ENGINE_ACTIVE_SUBUNITS,
69 static inline const char *
70 hangcheck_action_to_str(const enum intel_engine_hangcheck_action a)
77 case ENGINE_ACTIVE_SEQNO:
78 return "active seqno";
79 case ENGINE_ACTIVE_HEAD:
81 case ENGINE_ACTIVE_SUBUNITS:
82 return "active subunits";
83 case ENGINE_WAIT_KICK:
92 #define I915_MAX_SLICES 3
93 #define I915_MAX_SUBSLICES 3
95 #define instdone_slice_mask(dev_priv__) \
96 (INTEL_GEN(dev_priv__) == 7 ? \
97 1 : INTEL_INFO(dev_priv__)->sseu.slice_mask)
99 #define instdone_subslice_mask(dev_priv__) \
100 (INTEL_GEN(dev_priv__) == 7 ? \
101 1 : INTEL_INFO(dev_priv__)->sseu.subslice_mask)
103 #define for_each_instdone_slice_subslice(dev_priv__, slice__, subslice__) \
104 for ((slice__) = 0, (subslice__) = 0; \
105 (slice__) < I915_MAX_SLICES; \
106 (subslice__) = ((subslice__) + 1) < I915_MAX_SUBSLICES ? (subslice__) + 1 : 0, \
107 (slice__) += ((subslice__) == 0)) \
108 for_each_if((BIT(slice__) & instdone_slice_mask(dev_priv__)) && \
109 (BIT(subslice__) & instdone_subslice_mask(dev_priv__)))
111 struct intel_instdone {
113 /* The following exist only in the RCS engine */
115 u32 sampler[I915_MAX_SLICES][I915_MAX_SUBSLICES];
116 u32 row[I915_MAX_SLICES][I915_MAX_SUBSLICES];
119 struct intel_engine_hangcheck {
122 enum intel_engine_hangcheck_action action;
123 unsigned long action_timestamp;
125 struct intel_instdone instdone;
126 struct drm_i915_gem_request *active_request;
131 struct i915_vma *vma;
134 struct list_head request_list;
145 struct i915_gem_context;
146 struct drm_i915_reg_table;
149 * we use a single page to load ctx workarounds so all of these
150 * values are referred in terms of dwords
152 * struct i915_wa_ctx_bb:
153 * offset: specifies batch starting position, also helpful in case
154 * if we want to have multiple batches at different offsets based on
155 * some criteria. It is not a requirement at the moment but provides
156 * an option for future use.
157 * size: size of the batch in DWORDS
159 struct i915_ctx_workarounds {
160 struct i915_wa_ctx_bb {
163 } indirect_ctx, per_ctx;
164 struct i915_vma *vma;
167 struct drm_i915_gem_request;
168 struct intel_render_state;
171 * Engine IDs definitions.
172 * Keep instances of the same type engine together.
174 enum intel_engine_id {
179 #define _VCS(n) (VCS + (n))
183 struct i915_priolist {
185 struct list_head requests;
190 * struct intel_engine_execlists - execlist submission queue and port state
192 * The struct intel_engine_execlists represents the combined logical state of
193 * driver and the hardware state for execlist mode of submission.
195 struct intel_engine_execlists {
197 * @irq_tasklet: softirq tasklet for bottom handler
199 struct tasklet_struct irq_tasklet;
202 * @default_priolist: priority list for I915_PRIORITY_NORMAL
204 struct i915_priolist default_priolist;
207 * @no_priolist: priority lists disabled
212 * @port: execlist port states
214 * For each hardware ELSP (ExecList Submission Port) we keep
215 * track of the last request and the number of times we submitted
216 * that port to hw. We then count the number of times the hw reports
217 * a context completion or preemption. As only one context can
218 * be active on hw, we limit resubmission of context to port[0]. This
219 * is called Lite Restore, of the context.
221 struct execlist_port {
223 * @request_count: combined request and submission count
225 struct drm_i915_gem_request *request_count;
226 #define EXECLIST_COUNT_BITS 2
227 #define port_request(p) ptr_mask_bits((p)->request_count, EXECLIST_COUNT_BITS)
228 #define port_count(p) ptr_unmask_bits((p)->request_count, EXECLIST_COUNT_BITS)
229 #define port_pack(rq, count) ptr_pack_bits(rq, count, EXECLIST_COUNT_BITS)
230 #define port_unpack(p, count) ptr_unpack_bits((p)->request_count, count, EXECLIST_COUNT_BITS)
231 #define port_set(p, packed) ((p)->request_count = (packed))
232 #define port_isset(p) ((p)->request_count)
233 #define port_index(p, execlists) ((p) - (execlists)->port)
236 * @context_id: context ID for port
238 GEM_DEBUG_DECL(u32 context_id);
240 #define EXECLIST_MAX_PORTS 2
241 } port[EXECLIST_MAX_PORTS];
244 * @active: is the HW active? We consider the HW as active after
245 * submitting any context for execution and until we have seen the
246 * last context completion event. After that, we do not expect any
247 * more events until we submit, and so can park the HW.
249 * As we have a small number of different sources from which we feed
250 * the HW, we track the state of each inside a single bitfield.
253 #define EXECLISTS_ACTIVE_USER 0
254 #define EXECLISTS_ACTIVE_PREEMPT 1
257 * @port_mask: number of execlist ports - 1
259 unsigned int port_mask;
262 * @queue: queue of requests, in priority lists
264 struct rb_root queue;
267 * @first: leftmost level in priority @queue
269 struct rb_node *first;
272 * @fw_domains: forcewake domains for irq tasklet
274 unsigned int fw_domains;
277 * @csb_head: context status buffer head
279 unsigned int csb_head;
282 * @csb_use_mmio: access csb through mmio, instead of hwsp
287 #define INTEL_ENGINE_CS_MAX_NAME 8
289 struct intel_engine_cs {
290 struct drm_i915_private *i915;
291 char name[INTEL_ENGINE_CS_MAX_NAME];
292 enum intel_engine_id id;
293 unsigned int uabi_id;
301 unsigned int irq_shift;
303 struct intel_ring *buffer;
304 struct intel_timeline *timeline;
306 struct intel_render_state *render_state;
309 unsigned long irq_posted;
310 #define ENGINE_IRQ_BREADCRUMB 0
311 #define ENGINE_IRQ_EXECLIST 1
313 /* Rather than have every client wait upon all user interrupts,
314 * with the herd waking after every interrupt and each doing the
315 * heavyweight seqno dance, we delegate the task (of being the
316 * bottom-half of the user interrupt) to the first client. After
317 * every interrupt, we wake up one client, who does the heavyweight
318 * coherent seqno read and either goes back to sleep (if incomplete),
319 * or wakes up all the completed clients in parallel, before then
320 * transferring the bottom-half status to the next client in the queue.
322 * Compared to walking the entire list of waiters in a single dedicated
323 * bottom-half, we reduce the latency of the first waiter by avoiding
324 * a context switch, but incur additional coherent seqno reads when
325 * following the chain of request breadcrumbs. Since it is most likely
326 * that we have a single client waiting on each seqno, then reducing
327 * the overhead of waking that client is much preferred.
329 struct intel_breadcrumbs {
330 spinlock_t irq_lock; /* protects irq_*; irqsafe */
331 struct intel_wait *irq_wait; /* oldest waiter by retirement */
333 spinlock_t rb_lock; /* protects the rb and wraps irq_lock */
334 struct rb_root waiters; /* sorted by retirement, priority */
335 struct rb_root signals; /* sorted by retirement */
336 struct task_struct *signaler; /* used for fence signalling */
337 struct drm_i915_gem_request __rcu *first_signal;
338 struct timer_list fake_irq; /* used after a missed interrupt */
339 struct timer_list hangcheck; /* detect missed interrupts */
341 unsigned int hangcheck_interrupts;
344 bool irq_enabled : 1;
345 I915_SELFTEST_DECLARE(bool mock : 1);
349 * A pool of objects to use as shadow copies of client batch buffers
350 * when the command parser is enabled. Prevents the client from
351 * modifying the batch contents after software parsing.
353 struct i915_gem_batch_pool batch_pool;
355 struct intel_hw_status_page status_page;
356 struct i915_ctx_workarounds wa_ctx;
357 struct i915_vma *scratch;
359 u32 irq_keep_mask; /* always keep these interrupts */
360 u32 irq_enable_mask; /* bitmask to enable ring interrupt */
361 void (*irq_enable)(struct intel_engine_cs *engine);
362 void (*irq_disable)(struct intel_engine_cs *engine);
364 int (*init_hw)(struct intel_engine_cs *engine);
365 void (*reset_hw)(struct intel_engine_cs *engine,
366 struct drm_i915_gem_request *req);
368 void (*set_default_submission)(struct intel_engine_cs *engine);
370 struct intel_ring *(*context_pin)(struct intel_engine_cs *engine,
371 struct i915_gem_context *ctx);
372 void (*context_unpin)(struct intel_engine_cs *engine,
373 struct i915_gem_context *ctx);
374 int (*request_alloc)(struct drm_i915_gem_request *req);
375 int (*init_context)(struct drm_i915_gem_request *req);
377 int (*emit_flush)(struct drm_i915_gem_request *request,
379 #define EMIT_INVALIDATE BIT(0)
380 #define EMIT_FLUSH BIT(1)
381 #define EMIT_BARRIER (EMIT_INVALIDATE | EMIT_FLUSH)
382 int (*emit_bb_start)(struct drm_i915_gem_request *req,
383 u64 offset, u32 length,
384 unsigned int dispatch_flags);
385 #define I915_DISPATCH_SECURE BIT(0)
386 #define I915_DISPATCH_PINNED BIT(1)
387 #define I915_DISPATCH_RS BIT(2)
388 void (*emit_breadcrumb)(struct drm_i915_gem_request *req,
390 int emit_breadcrumb_sz;
392 /* Pass the request to the hardware queue (e.g. directly into
393 * the legacy ringbuffer or to the end of an execlist).
395 * This is called from an atomic context with irqs disabled; must
398 void (*submit_request)(struct drm_i915_gem_request *req);
400 /* Call when the priority on a request has changed and it and its
401 * dependencies may need rescheduling. Note the request itself may
402 * not be ready to run!
404 * Called under the struct_mutex.
406 void (*schedule)(struct drm_i915_gem_request *request,
410 * Cancel all requests on the hardware, or queued for execution.
411 * This should only cancel the ready requests that have been
412 * submitted to the engine (via the engine->submit_request callback).
413 * This is called when marking the device as wedged.
415 void (*cancel_requests)(struct intel_engine_cs *engine);
417 /* Some chipsets are not quite as coherent as advertised and need
418 * an expensive kick to force a true read of the up-to-date seqno.
419 * However, the up-to-date seqno is not always required and the last
420 * seen value is good enough. Note that the seqno will always be
421 * monotonic, even if not coherent.
423 void (*irq_seqno_barrier)(struct intel_engine_cs *engine);
424 void (*cleanup)(struct intel_engine_cs *engine);
426 /* GEN8 signal/wait table - never trust comments!
427 * signal to signal to signal to signal to signal to
428 * RCS VCS BCS VECS VCS2
429 * --------------------------------------------------------------------
430 * RCS | NOP (0x00) | VCS (0x08) | BCS (0x10) | VECS (0x18) | VCS2 (0x20) |
431 * |-------------------------------------------------------------------
432 * VCS | RCS (0x28) | NOP (0x30) | BCS (0x38) | VECS (0x40) | VCS2 (0x48) |
433 * |-------------------------------------------------------------------
434 * BCS | RCS (0x50) | VCS (0x58) | NOP (0x60) | VECS (0x68) | VCS2 (0x70) |
435 * |-------------------------------------------------------------------
436 * VECS | RCS (0x78) | VCS (0x80) | BCS (0x88) | NOP (0x90) | VCS2 (0x98) |
437 * |-------------------------------------------------------------------
438 * VCS2 | RCS (0xa0) | VCS (0xa8) | BCS (0xb0) | VECS (0xb8) | NOP (0xc0) |
439 * |-------------------------------------------------------------------
442 * f(x, y) := (x->id * NUM_RINGS * seqno_size) + (seqno_size * y->id)
443 * ie. transpose of g(x, y)
445 * sync from sync from sync from sync from sync from
446 * RCS VCS BCS VECS VCS2
447 * --------------------------------------------------------------------
448 * RCS | NOP (0x00) | VCS (0x28) | BCS (0x50) | VECS (0x78) | VCS2 (0xa0) |
449 * |-------------------------------------------------------------------
450 * VCS | RCS (0x08) | NOP (0x30) | BCS (0x58) | VECS (0x80) | VCS2 (0xa8) |
451 * |-------------------------------------------------------------------
452 * BCS | RCS (0x10) | VCS (0x38) | NOP (0x60) | VECS (0x88) | VCS2 (0xb0) |
453 * |-------------------------------------------------------------------
454 * VECS | RCS (0x18) | VCS (0x40) | BCS (0x68) | NOP (0x90) | VCS2 (0xb8) |
455 * |-------------------------------------------------------------------
456 * VCS2 | RCS (0x20) | VCS (0x48) | BCS (0x70) | VECS (0x98) | NOP (0xc0) |
457 * |-------------------------------------------------------------------
460 * g(x, y) := (y->id * NUM_RINGS * seqno_size) + (seqno_size * x->id)
461 * ie. transpose of f(x, y)
465 #define GEN6_SEMAPHORE_LAST VECS_HW
466 #define GEN6_NUM_SEMAPHORES (GEN6_SEMAPHORE_LAST + 1)
467 #define GEN6_SEMAPHORES_MASK GENMASK(GEN6_SEMAPHORE_LAST, 0)
469 /* our mbox written by others */
470 u32 wait[GEN6_NUM_SEMAPHORES];
471 /* mboxes this ring signals to */
472 i915_reg_t signal[GEN6_NUM_SEMAPHORES];
474 u64 signal_ggtt[I915_NUM_ENGINES];
478 int (*sync_to)(struct drm_i915_gem_request *req,
479 struct drm_i915_gem_request *signal);
480 u32 *(*signal)(struct drm_i915_gem_request *req, u32 *cs);
483 struct intel_engine_execlists execlists;
485 /* Contexts are pinned whilst they are active on the GPU. The last
486 * context executed remains active whilst the GPU is idle - the
487 * switch away and write to the context object only occurs on the
488 * next execution. Contexts are only unpinned on retirement of the
489 * following request ensuring that we can always write to the object
490 * on the context switch even after idling. Across suspend, we switch
491 * to the kernel context and trash it as the save may not happen
492 * before the hardware is powered down.
494 struct i915_gem_context *last_retired_context;
496 /* We track the current MI_SET_CONTEXT in order to eliminate
497 * redudant context switches. This presumes that requests are not
498 * reordered! Or when they are the tracking is updated along with
499 * the emission of individual requests into the legacy command
502 struct i915_gem_context *legacy_active_context;
504 /* status_notifier: list of callbacks for context-switch changes */
505 struct atomic_notifier_head context_status_notifier;
507 struct intel_engine_hangcheck hangcheck;
509 bool needs_cmd_parser;
512 * Table of commands the command parser needs to know about
515 DECLARE_HASHTABLE(cmd_hash, I915_CMD_HASH_ORDER);
518 * Table of registers allowed in commands that read/write registers.
520 const struct drm_i915_reg_table *reg_tables;
524 * Returns the bitmask for the length field of the specified command.
525 * Return 0 for an unrecognized/invalid command.
527 * If the command parser finds an entry for a command in the engine's
528 * cmd_tables, it gets the command's length based on the table entry.
529 * If not, it calls this function to determine the per-engine length
530 * field encoding for the command (i.e. different opcode ranges use
531 * certain bits to encode the command length in the header).
533 u32 (*get_cmd_length_mask)(u32 cmd_header);
537 execlists_set_active(struct intel_engine_execlists *execlists,
540 __set_bit(bit, (unsigned long *)&execlists->active);
544 execlists_clear_active(struct intel_engine_execlists *execlists,
547 __clear_bit(bit, (unsigned long *)&execlists->active);
551 execlists_is_active(const struct intel_engine_execlists *execlists,
554 return test_bit(bit, (unsigned long *)&execlists->active);
557 static inline unsigned int
558 execlists_num_ports(const struct intel_engine_execlists * const execlists)
560 return execlists->port_mask + 1;
564 execlists_port_complete(struct intel_engine_execlists * const execlists,
565 struct execlist_port * const port)
567 const unsigned int m = execlists->port_mask;
569 GEM_BUG_ON(port_index(port, execlists) != 0);
570 GEM_BUG_ON(!execlists_is_active(execlists, EXECLISTS_ACTIVE_USER));
572 memmove(port, port + 1, m * sizeof(struct execlist_port));
573 memset(port + m, 0, sizeof(struct execlist_port));
576 static inline unsigned int
577 intel_engine_flag(const struct intel_engine_cs *engine)
579 return BIT(engine->id);
583 intel_read_status_page(struct intel_engine_cs *engine, int reg)
585 /* Ensure that the compiler doesn't optimize away the load. */
586 return READ_ONCE(engine->status_page.page_addr[reg]);
590 intel_write_status_page(struct intel_engine_cs *engine, int reg, u32 value)
592 /* Writing into the status page should be done sparingly. Since
593 * we do when we are uncertain of the device state, we take a bit
594 * of extra paranoia to try and ensure that the HWS takes the value
595 * we give and that it doesn't end up trapped inside the CPU!
597 if (static_cpu_has(X86_FEATURE_CLFLUSH)) {
599 clflush(&engine->status_page.page_addr[reg]);
600 engine->status_page.page_addr[reg] = value;
601 clflush(&engine->status_page.page_addr[reg]);
604 WRITE_ONCE(engine->status_page.page_addr[reg], value);
609 * Reads a dword out of the status page, which is written to from the command
610 * queue by automatic updates, MI_REPORT_HEAD, MI_STORE_DATA_INDEX, or
613 * The following dwords have a reserved meaning:
614 * 0x00: ISR copy, updated when an ISR bit not set in the HWSTAM changes.
615 * 0x04: ring 0 head pointer
616 * 0x05: ring 1 head pointer (915-class)
617 * 0x06: ring 2 head pointer (915-class)
618 * 0x10-0x1b: Context status DWords (GM45)
619 * 0x1f: Last written status offset. (GM45)
620 * 0x20-0x2f: Reserved (Gen6+)
622 * The area from dword 0x30 to 0x3ff is available for driver usage.
624 #define I915_GEM_HWS_INDEX 0x30
625 #define I915_GEM_HWS_INDEX_ADDR (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)
626 #define I915_GEM_HWS_SCRATCH_INDEX 0x40
627 #define I915_GEM_HWS_SCRATCH_ADDR (I915_GEM_HWS_SCRATCH_INDEX << MI_STORE_DWORD_INDEX_SHIFT)
629 #define I915_HWS_CSB_BUF0_INDEX 0x10
630 #define I915_HWS_CSB_WRITE_INDEX 0x1f
631 #define CNL_HWS_CSB_WRITE_INDEX 0x2f
634 intel_engine_create_ring(struct intel_engine_cs *engine, int size);
635 int intel_ring_pin(struct intel_ring *ring,
636 struct drm_i915_private *i915,
637 unsigned int offset_bias);
638 void intel_ring_reset(struct intel_ring *ring, u32 tail);
639 unsigned int intel_ring_update_space(struct intel_ring *ring);
640 void intel_ring_unpin(struct intel_ring *ring);
641 void intel_ring_free(struct intel_ring *ring);
643 void intel_engine_stop(struct intel_engine_cs *engine);
644 void intel_engine_cleanup(struct intel_engine_cs *engine);
646 void intel_legacy_submission_resume(struct drm_i915_private *dev_priv);
648 int __must_check intel_ring_cacheline_align(struct drm_i915_gem_request *req);
650 u32 __must_check *intel_ring_begin(struct drm_i915_gem_request *req,
654 intel_ring_advance(struct drm_i915_gem_request *req, u32 *cs)
658 * This serves as a placeholder in the code so that the reader
659 * can compare against the preceding intel_ring_begin() and
660 * check that the number of dwords emitted matches the space
661 * reserved for the command packet (i.e. the value passed to
662 * intel_ring_begin()).
664 GEM_BUG_ON((req->ring->vaddr + req->ring->emit) != cs);
668 intel_ring_wrap(const struct intel_ring *ring, u32 pos)
670 return pos & (ring->size - 1);
674 intel_ring_offset(const struct drm_i915_gem_request *req, void *addr)
676 /* Don't write ring->size (equivalent to 0) as that hangs some GPUs. */
677 u32 offset = addr - req->ring->vaddr;
678 GEM_BUG_ON(offset > req->ring->size);
679 return intel_ring_wrap(req->ring, offset);
683 assert_ring_tail_valid(const struct intel_ring *ring, unsigned int tail)
685 /* We could combine these into a single tail operation, but keeping
686 * them as seperate tests will help identify the cause should one
689 GEM_BUG_ON(!IS_ALIGNED(tail, 8));
690 GEM_BUG_ON(tail >= ring->size);
694 * Gen2 BSpec "1. Programming Environment" / 1.4.4.6
695 * Gen3 BSpec "1c Memory Interface Functions" / 2.3.4.5
696 * Gen4+ BSpec "1c Memory Interface and Command Stream" / 5.3.4.5
697 * "If the Ring Buffer Head Pointer and the Tail Pointer are on the
698 * same cacheline, the Head Pointer must not be greater than the Tail
701 * We use ring->head as the last known location of the actual RING_HEAD,
702 * it may have advanced but in the worst case it is equally the same
703 * as ring->head and so we should never program RING_TAIL to advance
704 * into the same cacheline as ring->head.
706 #define cacheline(a) round_down(a, CACHELINE_BYTES)
707 GEM_BUG_ON(cacheline(tail) == cacheline(ring->head) &&
712 static inline unsigned int
713 intel_ring_set_tail(struct intel_ring *ring, unsigned int tail)
715 /* Whilst writes to the tail are strictly order, there is no
716 * serialisation between readers and the writers. The tail may be
717 * read by i915_gem_request_retire() just as it is being updated
718 * by execlists, as although the breadcrumb is complete, the context
719 * switch hasn't been seen.
721 assert_ring_tail_valid(ring, tail);
726 void intel_engine_init_global_seqno(struct intel_engine_cs *engine, u32 seqno);
728 void intel_engine_setup_common(struct intel_engine_cs *engine);
729 int intel_engine_init_common(struct intel_engine_cs *engine);
730 int intel_engine_create_scratch(struct intel_engine_cs *engine, int size);
731 void intel_engine_cleanup_common(struct intel_engine_cs *engine);
733 int intel_init_render_ring_buffer(struct intel_engine_cs *engine);
734 int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine);
735 int intel_init_blt_ring_buffer(struct intel_engine_cs *engine);
736 int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine);
738 u64 intel_engine_get_active_head(struct intel_engine_cs *engine);
739 u64 intel_engine_get_last_batch_head(struct intel_engine_cs *engine);
741 static inline u32 intel_engine_get_seqno(struct intel_engine_cs *engine)
743 return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
746 static inline u32 intel_engine_last_submit(struct intel_engine_cs *engine)
748 /* We are only peeking at the tail of the submit queue (and not the
749 * queue itself) in order to gain a hint as to the current active
750 * state of the engine. Callers are not expected to be taking
751 * engine->timeline->lock, nor are they expected to be concerned
752 * wtih serialising this hint with anything, so document it as
753 * a hint and nothing more.
755 return READ_ONCE(engine->timeline->seqno);
758 int init_workarounds_ring(struct intel_engine_cs *engine);
759 int intel_ring_workarounds_emit(struct drm_i915_gem_request *req);
761 void intel_engine_get_instdone(struct intel_engine_cs *engine,
762 struct intel_instdone *instdone);
765 * Arbitrary size for largest possible 'add request' sequence. The code paths
766 * are complex and variable. Empirical measurement shows that the worst case
767 * is BDW at 192 bytes (6 + 6 + 36 dwords), then ILK at 136 bytes. However,
768 * we need to allocate double the largest single packet within that emission
769 * to account for tail wraparound (so 6 + 6 + 72 dwords for BDW).
771 #define MIN_SPACE_FOR_ADD_REQUEST 336
773 static inline u32 intel_hws_seqno_address(struct intel_engine_cs *engine)
775 return engine->status_page.ggtt_offset + I915_GEM_HWS_INDEX_ADDR;
778 /* intel_breadcrumbs.c -- user interrupt bottom-half for waiters */
779 int intel_engine_init_breadcrumbs(struct intel_engine_cs *engine);
781 static inline void intel_wait_init(struct intel_wait *wait,
782 struct drm_i915_gem_request *rq)
788 static inline void intel_wait_init_for_seqno(struct intel_wait *wait, u32 seqno)
794 static inline bool intel_wait_has_seqno(const struct intel_wait *wait)
800 intel_wait_update_seqno(struct intel_wait *wait, u32 seqno)
803 return intel_wait_has_seqno(wait);
807 intel_wait_update_request(struct intel_wait *wait,
808 const struct drm_i915_gem_request *rq)
810 return intel_wait_update_seqno(wait, i915_gem_request_global_seqno(rq));
814 intel_wait_check_seqno(const struct intel_wait *wait, u32 seqno)
816 return wait->seqno == seqno;
820 intel_wait_check_request(const struct intel_wait *wait,
821 const struct drm_i915_gem_request *rq)
823 return intel_wait_check_seqno(wait, i915_gem_request_global_seqno(rq));
826 static inline bool intel_wait_complete(const struct intel_wait *wait)
828 return RB_EMPTY_NODE(&wait->node);
831 bool intel_engine_add_wait(struct intel_engine_cs *engine,
832 struct intel_wait *wait);
833 void intel_engine_remove_wait(struct intel_engine_cs *engine,
834 struct intel_wait *wait);
835 void intel_engine_enable_signaling(struct drm_i915_gem_request *request,
837 void intel_engine_cancel_signaling(struct drm_i915_gem_request *request);
839 static inline bool intel_engine_has_waiter(const struct intel_engine_cs *engine)
841 return READ_ONCE(engine->breadcrumbs.irq_wait);
844 unsigned int intel_engine_wakeup(struct intel_engine_cs *engine);
845 #define ENGINE_WAKEUP_WAITER BIT(0)
846 #define ENGINE_WAKEUP_ASLEEP BIT(1)
848 void __intel_engine_disarm_breadcrumbs(struct intel_engine_cs *engine);
849 void intel_engine_disarm_breadcrumbs(struct intel_engine_cs *engine);
851 void intel_engine_reset_breadcrumbs(struct intel_engine_cs *engine);
852 void intel_engine_fini_breadcrumbs(struct intel_engine_cs *engine);
853 bool intel_breadcrumbs_busy(struct intel_engine_cs *engine);
855 static inline u32 *gen8_emit_pipe_control(u32 *batch, u32 flags, u32 offset)
857 memset(batch, 0, 6 * sizeof(u32));
859 batch[0] = GFX_OP_PIPE_CONTROL(6);
866 bool intel_engine_is_idle(struct intel_engine_cs *engine);
867 bool intel_engines_are_idle(struct drm_i915_private *dev_priv);
869 void intel_engines_mark_idle(struct drm_i915_private *i915);
870 void intel_engines_reset_default_submission(struct drm_i915_private *i915);
872 bool intel_engine_can_store_dword(struct intel_engine_cs *engine);
874 void intel_engine_dump(struct intel_engine_cs *engine, struct drm_printer *p);
876 #endif /* _INTEL_RINGBUFFER_H_ */