]> Git Repo - linux.git/blob - drivers/iommu/intel/dmar.c
Merge tag 'for-5.14-rc3-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave...
[linux.git] / drivers / iommu / intel / dmar.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2006, Intel Corporation.
4  *
5  * Copyright (C) 2006-2008 Intel Corporation
6  * Author: Ashok Raj <[email protected]>
7  * Author: Shaohua Li <[email protected]>
8  * Author: Anil S Keshavamurthy <[email protected]>
9  *
10  * This file implements early detection/parsing of Remapping Devices
11  * reported to OS through BIOS via DMA remapping reporting (DMAR) ACPI
12  * tables.
13  *
14  * These routines are used by both DMA-remapping and Interrupt-remapping
15  */
16
17 #define pr_fmt(fmt)     "DMAR: " fmt
18
19 #include <linux/pci.h>
20 #include <linux/dmar.h>
21 #include <linux/iova.h>
22 #include <linux/intel-iommu.h>
23 #include <linux/timer.h>
24 #include <linux/irq.h>
25 #include <linux/interrupt.h>
26 #include <linux/tboot.h>
27 #include <linux/dmi.h>
28 #include <linux/slab.h>
29 #include <linux/iommu.h>
30 #include <linux/numa.h>
31 #include <linux/limits.h>
32 #include <asm/irq_remapping.h>
33 #include <asm/iommu_table.h>
34 #include <trace/events/intel_iommu.h>
35
36 #include "../irq_remapping.h"
37 #include "perf.h"
38
39 typedef int (*dmar_res_handler_t)(struct acpi_dmar_header *, void *);
40 struct dmar_res_callback {
41         dmar_res_handler_t      cb[ACPI_DMAR_TYPE_RESERVED];
42         void                    *arg[ACPI_DMAR_TYPE_RESERVED];
43         bool                    ignore_unhandled;
44         bool                    print_entry;
45 };
46
47 /*
48  * Assumptions:
49  * 1) The hotplug framework guarentees that DMAR unit will be hot-added
50  *    before IO devices managed by that unit.
51  * 2) The hotplug framework guarantees that DMAR unit will be hot-removed
52  *    after IO devices managed by that unit.
53  * 3) Hotplug events are rare.
54  *
55  * Locking rules for DMA and interrupt remapping related global data structures:
56  * 1) Use dmar_global_lock in process context
57  * 2) Use RCU in interrupt context
58  */
59 DECLARE_RWSEM(dmar_global_lock);
60 LIST_HEAD(dmar_drhd_units);
61
62 struct acpi_table_header * __initdata dmar_tbl;
63 static int dmar_dev_scope_status = 1;
64 static unsigned long dmar_seq_ids[BITS_TO_LONGS(DMAR_UNITS_SUPPORTED)];
65
66 static int alloc_iommu(struct dmar_drhd_unit *drhd);
67 static void free_iommu(struct intel_iommu *iommu);
68
69 extern const struct iommu_ops intel_iommu_ops;
70
71 static void dmar_register_drhd_unit(struct dmar_drhd_unit *drhd)
72 {
73         /*
74          * add INCLUDE_ALL at the tail, so scan the list will find it at
75          * the very end.
76          */
77         if (drhd->include_all)
78                 list_add_tail_rcu(&drhd->list, &dmar_drhd_units);
79         else
80                 list_add_rcu(&drhd->list, &dmar_drhd_units);
81 }
82
83 void *dmar_alloc_dev_scope(void *start, void *end, int *cnt)
84 {
85         struct acpi_dmar_device_scope *scope;
86
87         *cnt = 0;
88         while (start < end) {
89                 scope = start;
90                 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_NAMESPACE ||
91                     scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
92                     scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE)
93                         (*cnt)++;
94                 else if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_IOAPIC &&
95                         scope->entry_type != ACPI_DMAR_SCOPE_TYPE_HPET) {
96                         pr_warn("Unsupported device scope\n");
97                 }
98                 start += scope->length;
99         }
100         if (*cnt == 0)
101                 return NULL;
102
103         return kcalloc(*cnt, sizeof(struct dmar_dev_scope), GFP_KERNEL);
104 }
105
106 void dmar_free_dev_scope(struct dmar_dev_scope **devices, int *cnt)
107 {
108         int i;
109         struct device *tmp_dev;
110
111         if (*devices && *cnt) {
112                 for_each_active_dev_scope(*devices, *cnt, i, tmp_dev)
113                         put_device(tmp_dev);
114                 kfree(*devices);
115         }
116
117         *devices = NULL;
118         *cnt = 0;
119 }
120
121 /* Optimize out kzalloc()/kfree() for normal cases */
122 static char dmar_pci_notify_info_buf[64];
123
124 static struct dmar_pci_notify_info *
125 dmar_alloc_pci_notify_info(struct pci_dev *dev, unsigned long event)
126 {
127         int level = 0;
128         size_t size;
129         struct pci_dev *tmp;
130         struct dmar_pci_notify_info *info;
131
132         BUG_ON(dev->is_virtfn);
133
134         /*
135          * Ignore devices that have a domain number higher than what can
136          * be looked up in DMAR, e.g. VMD subdevices with domain 0x10000
137          */
138         if (pci_domain_nr(dev->bus) > U16_MAX)
139                 return NULL;
140
141         /* Only generate path[] for device addition event */
142         if (event == BUS_NOTIFY_ADD_DEVICE)
143                 for (tmp = dev; tmp; tmp = tmp->bus->self)
144                         level++;
145
146         size = struct_size(info, path, level);
147         if (size <= sizeof(dmar_pci_notify_info_buf)) {
148                 info = (struct dmar_pci_notify_info *)dmar_pci_notify_info_buf;
149         } else {
150                 info = kzalloc(size, GFP_KERNEL);
151                 if (!info) {
152                         pr_warn("Out of memory when allocating notify_info "
153                                 "for %s.\n", pci_name(dev));
154                         if (dmar_dev_scope_status == 0)
155                                 dmar_dev_scope_status = -ENOMEM;
156                         return NULL;
157                 }
158         }
159
160         info->event = event;
161         info->dev = dev;
162         info->seg = pci_domain_nr(dev->bus);
163         info->level = level;
164         if (event == BUS_NOTIFY_ADD_DEVICE) {
165                 for (tmp = dev; tmp; tmp = tmp->bus->self) {
166                         level--;
167                         info->path[level].bus = tmp->bus->number;
168                         info->path[level].device = PCI_SLOT(tmp->devfn);
169                         info->path[level].function = PCI_FUNC(tmp->devfn);
170                         if (pci_is_root_bus(tmp->bus))
171                                 info->bus = tmp->bus->number;
172                 }
173         }
174
175         return info;
176 }
177
178 static inline void dmar_free_pci_notify_info(struct dmar_pci_notify_info *info)
179 {
180         if ((void *)info != dmar_pci_notify_info_buf)
181                 kfree(info);
182 }
183
184 static bool dmar_match_pci_path(struct dmar_pci_notify_info *info, int bus,
185                                 struct acpi_dmar_pci_path *path, int count)
186 {
187         int i;
188
189         if (info->bus != bus)
190                 goto fallback;
191         if (info->level != count)
192                 goto fallback;
193
194         for (i = 0; i < count; i++) {
195                 if (path[i].device != info->path[i].device ||
196                     path[i].function != info->path[i].function)
197                         goto fallback;
198         }
199
200         return true;
201
202 fallback:
203
204         if (count != 1)
205                 return false;
206
207         i = info->level - 1;
208         if (bus              == info->path[i].bus &&
209             path[0].device   == info->path[i].device &&
210             path[0].function == info->path[i].function) {
211                 pr_info(FW_BUG "RMRR entry for device %02x:%02x.%x is broken - applying workaround\n",
212                         bus, path[0].device, path[0].function);
213                 return true;
214         }
215
216         return false;
217 }
218
219 /* Return: > 0 if match found, 0 if no match found, < 0 if error happens */
220 int dmar_insert_dev_scope(struct dmar_pci_notify_info *info,
221                           void *start, void*end, u16 segment,
222                           struct dmar_dev_scope *devices,
223                           int devices_cnt)
224 {
225         int i, level;
226         struct device *tmp, *dev = &info->dev->dev;
227         struct acpi_dmar_device_scope *scope;
228         struct acpi_dmar_pci_path *path;
229
230         if (segment != info->seg)
231                 return 0;
232
233         for (; start < end; start += scope->length) {
234                 scope = start;
235                 if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_ENDPOINT &&
236                     scope->entry_type != ACPI_DMAR_SCOPE_TYPE_BRIDGE)
237                         continue;
238
239                 path = (struct acpi_dmar_pci_path *)(scope + 1);
240                 level = (scope->length - sizeof(*scope)) / sizeof(*path);
241                 if (!dmar_match_pci_path(info, scope->bus, path, level))
242                         continue;
243
244                 /*
245                  * We expect devices with endpoint scope to have normal PCI
246                  * headers, and devices with bridge scope to have bridge PCI
247                  * headers.  However PCI NTB devices may be listed in the
248                  * DMAR table with bridge scope, even though they have a
249                  * normal PCI header.  NTB devices are identified by class
250                  * "BRIDGE_OTHER" (0680h) - we don't declare a socpe mismatch
251                  * for this special case.
252                  */
253                 if ((scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT &&
254                      info->dev->hdr_type != PCI_HEADER_TYPE_NORMAL) ||
255                     (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE &&
256                      (info->dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
257                       info->dev->class >> 16 != PCI_BASE_CLASS_BRIDGE))) {
258                         pr_warn("Device scope type does not match for %s\n",
259                                 pci_name(info->dev));
260                         return -EINVAL;
261                 }
262
263                 for_each_dev_scope(devices, devices_cnt, i, tmp)
264                         if (tmp == NULL) {
265                                 devices[i].bus = info->dev->bus->number;
266                                 devices[i].devfn = info->dev->devfn;
267                                 rcu_assign_pointer(devices[i].dev,
268                                                    get_device(dev));
269                                 return 1;
270                         }
271                 BUG_ON(i >= devices_cnt);
272         }
273
274         return 0;
275 }
276
277 int dmar_remove_dev_scope(struct dmar_pci_notify_info *info, u16 segment,
278                           struct dmar_dev_scope *devices, int count)
279 {
280         int index;
281         struct device *tmp;
282
283         if (info->seg != segment)
284                 return 0;
285
286         for_each_active_dev_scope(devices, count, index, tmp)
287                 if (tmp == &info->dev->dev) {
288                         RCU_INIT_POINTER(devices[index].dev, NULL);
289                         synchronize_rcu();
290                         put_device(tmp);
291                         return 1;
292                 }
293
294         return 0;
295 }
296
297 static int dmar_pci_bus_add_dev(struct dmar_pci_notify_info *info)
298 {
299         int ret = 0;
300         struct dmar_drhd_unit *dmaru;
301         struct acpi_dmar_hardware_unit *drhd;
302
303         for_each_drhd_unit(dmaru) {
304                 if (dmaru->include_all)
305                         continue;
306
307                 drhd = container_of(dmaru->hdr,
308                                     struct acpi_dmar_hardware_unit, header);
309                 ret = dmar_insert_dev_scope(info, (void *)(drhd + 1),
310                                 ((void *)drhd) + drhd->header.length,
311                                 dmaru->segment,
312                                 dmaru->devices, dmaru->devices_cnt);
313                 if (ret)
314                         break;
315         }
316         if (ret >= 0)
317                 ret = dmar_iommu_notify_scope_dev(info);
318         if (ret < 0 && dmar_dev_scope_status == 0)
319                 dmar_dev_scope_status = ret;
320
321         if (ret >= 0)
322                 intel_irq_remap_add_device(info);
323
324         return ret;
325 }
326
327 static void  dmar_pci_bus_del_dev(struct dmar_pci_notify_info *info)
328 {
329         struct dmar_drhd_unit *dmaru;
330
331         for_each_drhd_unit(dmaru)
332                 if (dmar_remove_dev_scope(info, dmaru->segment,
333                         dmaru->devices, dmaru->devices_cnt))
334                         break;
335         dmar_iommu_notify_scope_dev(info);
336 }
337
338 static inline void vf_inherit_msi_domain(struct pci_dev *pdev)
339 {
340         struct pci_dev *physfn = pci_physfn(pdev);
341
342         dev_set_msi_domain(&pdev->dev, dev_get_msi_domain(&physfn->dev));
343 }
344
345 static int dmar_pci_bus_notifier(struct notifier_block *nb,
346                                  unsigned long action, void *data)
347 {
348         struct pci_dev *pdev = to_pci_dev(data);
349         struct dmar_pci_notify_info *info;
350
351         /* Only care about add/remove events for physical functions.
352          * For VFs we actually do the lookup based on the corresponding
353          * PF in device_to_iommu() anyway. */
354         if (pdev->is_virtfn) {
355                 /*
356                  * Ensure that the VF device inherits the irq domain of the
357                  * PF device. Ideally the device would inherit the domain
358                  * from the bus, but DMAR can have multiple units per bus
359                  * which makes this impossible. The VF 'bus' could inherit
360                  * from the PF device, but that's yet another x86'sism to
361                  * inflict on everybody else.
362                  */
363                 if (action == BUS_NOTIFY_ADD_DEVICE)
364                         vf_inherit_msi_domain(pdev);
365                 return NOTIFY_DONE;
366         }
367
368         if (action != BUS_NOTIFY_ADD_DEVICE &&
369             action != BUS_NOTIFY_REMOVED_DEVICE)
370                 return NOTIFY_DONE;
371
372         info = dmar_alloc_pci_notify_info(pdev, action);
373         if (!info)
374                 return NOTIFY_DONE;
375
376         down_write(&dmar_global_lock);
377         if (action == BUS_NOTIFY_ADD_DEVICE)
378                 dmar_pci_bus_add_dev(info);
379         else if (action == BUS_NOTIFY_REMOVED_DEVICE)
380                 dmar_pci_bus_del_dev(info);
381         up_write(&dmar_global_lock);
382
383         dmar_free_pci_notify_info(info);
384
385         return NOTIFY_OK;
386 }
387
388 static struct notifier_block dmar_pci_bus_nb = {
389         .notifier_call = dmar_pci_bus_notifier,
390         .priority = INT_MIN,
391 };
392
393 static struct dmar_drhd_unit *
394 dmar_find_dmaru(struct acpi_dmar_hardware_unit *drhd)
395 {
396         struct dmar_drhd_unit *dmaru;
397
398         list_for_each_entry_rcu(dmaru, &dmar_drhd_units, list,
399                                 dmar_rcu_check())
400                 if (dmaru->segment == drhd->segment &&
401                     dmaru->reg_base_addr == drhd->address)
402                         return dmaru;
403
404         return NULL;
405 }
406
407 /*
408  * dmar_parse_one_drhd - parses exactly one DMA remapping hardware definition
409  * structure which uniquely represent one DMA remapping hardware unit
410  * present in the platform
411  */
412 static int dmar_parse_one_drhd(struct acpi_dmar_header *header, void *arg)
413 {
414         struct acpi_dmar_hardware_unit *drhd;
415         struct dmar_drhd_unit *dmaru;
416         int ret;
417
418         drhd = (struct acpi_dmar_hardware_unit *)header;
419         dmaru = dmar_find_dmaru(drhd);
420         if (dmaru)
421                 goto out;
422
423         dmaru = kzalloc(sizeof(*dmaru) + header->length, GFP_KERNEL);
424         if (!dmaru)
425                 return -ENOMEM;
426
427         /*
428          * If header is allocated from slab by ACPI _DSM method, we need to
429          * copy the content because the memory buffer will be freed on return.
430          */
431         dmaru->hdr = (void *)(dmaru + 1);
432         memcpy(dmaru->hdr, header, header->length);
433         dmaru->reg_base_addr = drhd->address;
434         dmaru->segment = drhd->segment;
435         dmaru->include_all = drhd->flags & 0x1; /* BIT0: INCLUDE_ALL */
436         dmaru->devices = dmar_alloc_dev_scope((void *)(drhd + 1),
437                                               ((void *)drhd) + drhd->header.length,
438                                               &dmaru->devices_cnt);
439         if (dmaru->devices_cnt && dmaru->devices == NULL) {
440                 kfree(dmaru);
441                 return -ENOMEM;
442         }
443
444         ret = alloc_iommu(dmaru);
445         if (ret) {
446                 dmar_free_dev_scope(&dmaru->devices,
447                                     &dmaru->devices_cnt);
448                 kfree(dmaru);
449                 return ret;
450         }
451         dmar_register_drhd_unit(dmaru);
452
453 out:
454         if (arg)
455                 (*(int *)arg)++;
456
457         return 0;
458 }
459
460 static void dmar_free_drhd(struct dmar_drhd_unit *dmaru)
461 {
462         if (dmaru->devices && dmaru->devices_cnt)
463                 dmar_free_dev_scope(&dmaru->devices, &dmaru->devices_cnt);
464         if (dmaru->iommu)
465                 free_iommu(dmaru->iommu);
466         kfree(dmaru);
467 }
468
469 static int __init dmar_parse_one_andd(struct acpi_dmar_header *header,
470                                       void *arg)
471 {
472         struct acpi_dmar_andd *andd = (void *)header;
473
474         /* Check for NUL termination within the designated length */
475         if (strnlen(andd->device_name, header->length - 8) == header->length - 8) {
476                 pr_warn(FW_BUG
477                            "Your BIOS is broken; ANDD object name is not NUL-terminated\n"
478                            "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
479                            dmi_get_system_info(DMI_BIOS_VENDOR),
480                            dmi_get_system_info(DMI_BIOS_VERSION),
481                            dmi_get_system_info(DMI_PRODUCT_VERSION));
482                 add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
483                 return -EINVAL;
484         }
485         pr_info("ANDD device: %x name: %s\n", andd->device_number,
486                 andd->device_name);
487
488         return 0;
489 }
490
491 #ifdef CONFIG_ACPI_NUMA
492 static int dmar_parse_one_rhsa(struct acpi_dmar_header *header, void *arg)
493 {
494         struct acpi_dmar_rhsa *rhsa;
495         struct dmar_drhd_unit *drhd;
496
497         rhsa = (struct acpi_dmar_rhsa *)header;
498         for_each_drhd_unit(drhd) {
499                 if (drhd->reg_base_addr == rhsa->base_address) {
500                         int node = pxm_to_node(rhsa->proximity_domain);
501
502                         if (!node_online(node))
503                                 node = NUMA_NO_NODE;
504                         drhd->iommu->node = node;
505                         return 0;
506                 }
507         }
508         pr_warn(FW_BUG
509                 "Your BIOS is broken; RHSA refers to non-existent DMAR unit at %llx\n"
510                 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
511                 rhsa->base_address,
512                 dmi_get_system_info(DMI_BIOS_VENDOR),
513                 dmi_get_system_info(DMI_BIOS_VERSION),
514                 dmi_get_system_info(DMI_PRODUCT_VERSION));
515         add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
516
517         return 0;
518 }
519 #else
520 #define dmar_parse_one_rhsa             dmar_res_noop
521 #endif
522
523 static void
524 dmar_table_print_dmar_entry(struct acpi_dmar_header *header)
525 {
526         struct acpi_dmar_hardware_unit *drhd;
527         struct acpi_dmar_reserved_memory *rmrr;
528         struct acpi_dmar_atsr *atsr;
529         struct acpi_dmar_rhsa *rhsa;
530         struct acpi_dmar_satc *satc;
531
532         switch (header->type) {
533         case ACPI_DMAR_TYPE_HARDWARE_UNIT:
534                 drhd = container_of(header, struct acpi_dmar_hardware_unit,
535                                     header);
536                 pr_info("DRHD base: %#016Lx flags: %#x\n",
537                         (unsigned long long)drhd->address, drhd->flags);
538                 break;
539         case ACPI_DMAR_TYPE_RESERVED_MEMORY:
540                 rmrr = container_of(header, struct acpi_dmar_reserved_memory,
541                                     header);
542                 pr_info("RMRR base: %#016Lx end: %#016Lx\n",
543                         (unsigned long long)rmrr->base_address,
544                         (unsigned long long)rmrr->end_address);
545                 break;
546         case ACPI_DMAR_TYPE_ROOT_ATS:
547                 atsr = container_of(header, struct acpi_dmar_atsr, header);
548                 pr_info("ATSR flags: %#x\n", atsr->flags);
549                 break;
550         case ACPI_DMAR_TYPE_HARDWARE_AFFINITY:
551                 rhsa = container_of(header, struct acpi_dmar_rhsa, header);
552                 pr_info("RHSA base: %#016Lx proximity domain: %#x\n",
553                        (unsigned long long)rhsa->base_address,
554                        rhsa->proximity_domain);
555                 break;
556         case ACPI_DMAR_TYPE_NAMESPACE:
557                 /* We don't print this here because we need to sanity-check
558                    it first. So print it in dmar_parse_one_andd() instead. */
559                 break;
560         case ACPI_DMAR_TYPE_SATC:
561                 satc = container_of(header, struct acpi_dmar_satc, header);
562                 pr_info("SATC flags: 0x%x\n", satc->flags);
563                 break;
564         }
565 }
566
567 /**
568  * dmar_table_detect - checks to see if the platform supports DMAR devices
569  */
570 static int __init dmar_table_detect(void)
571 {
572         acpi_status status = AE_OK;
573
574         /* if we could find DMAR table, then there are DMAR devices */
575         status = acpi_get_table(ACPI_SIG_DMAR, 0, &dmar_tbl);
576
577         if (ACPI_SUCCESS(status) && !dmar_tbl) {
578                 pr_warn("Unable to map DMAR\n");
579                 status = AE_NOT_FOUND;
580         }
581
582         return ACPI_SUCCESS(status) ? 0 : -ENOENT;
583 }
584
585 static int dmar_walk_remapping_entries(struct acpi_dmar_header *start,
586                                        size_t len, struct dmar_res_callback *cb)
587 {
588         struct acpi_dmar_header *iter, *next;
589         struct acpi_dmar_header *end = ((void *)start) + len;
590
591         for (iter = start; iter < end; iter = next) {
592                 next = (void *)iter + iter->length;
593                 if (iter->length == 0) {
594                         /* Avoid looping forever on bad ACPI tables */
595                         pr_debug(FW_BUG "Invalid 0-length structure\n");
596                         break;
597                 } else if (next > end) {
598                         /* Avoid passing table end */
599                         pr_warn(FW_BUG "Record passes table end\n");
600                         return -EINVAL;
601                 }
602
603                 if (cb->print_entry)
604                         dmar_table_print_dmar_entry(iter);
605
606                 if (iter->type >= ACPI_DMAR_TYPE_RESERVED) {
607                         /* continue for forward compatibility */
608                         pr_debug("Unknown DMAR structure type %d\n",
609                                  iter->type);
610                 } else if (cb->cb[iter->type]) {
611                         int ret;
612
613                         ret = cb->cb[iter->type](iter, cb->arg[iter->type]);
614                         if (ret)
615                                 return ret;
616                 } else if (!cb->ignore_unhandled) {
617                         pr_warn("No handler for DMAR structure type %d\n",
618                                 iter->type);
619                         return -EINVAL;
620                 }
621         }
622
623         return 0;
624 }
625
626 static inline int dmar_walk_dmar_table(struct acpi_table_dmar *dmar,
627                                        struct dmar_res_callback *cb)
628 {
629         return dmar_walk_remapping_entries((void *)(dmar + 1),
630                         dmar->header.length - sizeof(*dmar), cb);
631 }
632
633 /**
634  * parse_dmar_table - parses the DMA reporting table
635  */
636 static int __init
637 parse_dmar_table(void)
638 {
639         struct acpi_table_dmar *dmar;
640         int drhd_count = 0;
641         int ret;
642         struct dmar_res_callback cb = {
643                 .print_entry = true,
644                 .ignore_unhandled = true,
645                 .arg[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &drhd_count,
646                 .cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_parse_one_drhd,
647                 .cb[ACPI_DMAR_TYPE_RESERVED_MEMORY] = &dmar_parse_one_rmrr,
648                 .cb[ACPI_DMAR_TYPE_ROOT_ATS] = &dmar_parse_one_atsr,
649                 .cb[ACPI_DMAR_TYPE_HARDWARE_AFFINITY] = &dmar_parse_one_rhsa,
650                 .cb[ACPI_DMAR_TYPE_NAMESPACE] = &dmar_parse_one_andd,
651                 .cb[ACPI_DMAR_TYPE_SATC] = &dmar_parse_one_satc,
652         };
653
654         /*
655          * Do it again, earlier dmar_tbl mapping could be mapped with
656          * fixed map.
657          */
658         dmar_table_detect();
659
660         /*
661          * ACPI tables may not be DMA protected by tboot, so use DMAR copy
662          * SINIT saved in SinitMleData in TXT heap (which is DMA protected)
663          */
664         dmar_tbl = tboot_get_dmar_table(dmar_tbl);
665
666         dmar = (struct acpi_table_dmar *)dmar_tbl;
667         if (!dmar)
668                 return -ENODEV;
669
670         if (dmar->width < PAGE_SHIFT - 1) {
671                 pr_warn("Invalid DMAR haw\n");
672                 return -EINVAL;
673         }
674
675         pr_info("Host address width %d\n", dmar->width + 1);
676         ret = dmar_walk_dmar_table(dmar, &cb);
677         if (ret == 0 && drhd_count == 0)
678                 pr_warn(FW_BUG "No DRHD structure found in DMAR table\n");
679
680         return ret;
681 }
682
683 static int dmar_pci_device_match(struct dmar_dev_scope devices[],
684                                  int cnt, struct pci_dev *dev)
685 {
686         int index;
687         struct device *tmp;
688
689         while (dev) {
690                 for_each_active_dev_scope(devices, cnt, index, tmp)
691                         if (dev_is_pci(tmp) && dev == to_pci_dev(tmp))
692                                 return 1;
693
694                 /* Check our parent */
695                 dev = dev->bus->self;
696         }
697
698         return 0;
699 }
700
701 struct dmar_drhd_unit *
702 dmar_find_matched_drhd_unit(struct pci_dev *dev)
703 {
704         struct dmar_drhd_unit *dmaru;
705         struct acpi_dmar_hardware_unit *drhd;
706
707         dev = pci_physfn(dev);
708
709         rcu_read_lock();
710         for_each_drhd_unit(dmaru) {
711                 drhd = container_of(dmaru->hdr,
712                                     struct acpi_dmar_hardware_unit,
713                                     header);
714
715                 if (dmaru->include_all &&
716                     drhd->segment == pci_domain_nr(dev->bus))
717                         goto out;
718
719                 if (dmar_pci_device_match(dmaru->devices,
720                                           dmaru->devices_cnt, dev))
721                         goto out;
722         }
723         dmaru = NULL;
724 out:
725         rcu_read_unlock();
726
727         return dmaru;
728 }
729
730 static void __init dmar_acpi_insert_dev_scope(u8 device_number,
731                                               struct acpi_device *adev)
732 {
733         struct dmar_drhd_unit *dmaru;
734         struct acpi_dmar_hardware_unit *drhd;
735         struct acpi_dmar_device_scope *scope;
736         struct device *tmp;
737         int i;
738         struct acpi_dmar_pci_path *path;
739
740         for_each_drhd_unit(dmaru) {
741                 drhd = container_of(dmaru->hdr,
742                                     struct acpi_dmar_hardware_unit,
743                                     header);
744
745                 for (scope = (void *)(drhd + 1);
746                      (unsigned long)scope < ((unsigned long)drhd) + drhd->header.length;
747                      scope = ((void *)scope) + scope->length) {
748                         if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_NAMESPACE)
749                                 continue;
750                         if (scope->enumeration_id != device_number)
751                                 continue;
752
753                         path = (void *)(scope + 1);
754                         pr_info("ACPI device \"%s\" under DMAR at %llx as %02x:%02x.%d\n",
755                                 dev_name(&adev->dev), dmaru->reg_base_addr,
756                                 scope->bus, path->device, path->function);
757                         for_each_dev_scope(dmaru->devices, dmaru->devices_cnt, i, tmp)
758                                 if (tmp == NULL) {
759                                         dmaru->devices[i].bus = scope->bus;
760                                         dmaru->devices[i].devfn = PCI_DEVFN(path->device,
761                                                                             path->function);
762                                         rcu_assign_pointer(dmaru->devices[i].dev,
763                                                            get_device(&adev->dev));
764                                         return;
765                                 }
766                         BUG_ON(i >= dmaru->devices_cnt);
767                 }
768         }
769         pr_warn("No IOMMU scope found for ANDD enumeration ID %d (%s)\n",
770                 device_number, dev_name(&adev->dev));
771 }
772
773 static int __init dmar_acpi_dev_scope_init(void)
774 {
775         struct acpi_dmar_andd *andd;
776
777         if (dmar_tbl == NULL)
778                 return -ENODEV;
779
780         for (andd = (void *)dmar_tbl + sizeof(struct acpi_table_dmar);
781              ((unsigned long)andd) < ((unsigned long)dmar_tbl) + dmar_tbl->length;
782              andd = ((void *)andd) + andd->header.length) {
783                 if (andd->header.type == ACPI_DMAR_TYPE_NAMESPACE) {
784                         acpi_handle h;
785                         struct acpi_device *adev;
786
787                         if (!ACPI_SUCCESS(acpi_get_handle(ACPI_ROOT_OBJECT,
788                                                           andd->device_name,
789                                                           &h))) {
790                                 pr_err("Failed to find handle for ACPI object %s\n",
791                                        andd->device_name);
792                                 continue;
793                         }
794                         if (acpi_bus_get_device(h, &adev)) {
795                                 pr_err("Failed to get device for ACPI object %s\n",
796                                        andd->device_name);
797                                 continue;
798                         }
799                         dmar_acpi_insert_dev_scope(andd->device_number, adev);
800                 }
801         }
802         return 0;
803 }
804
805 int __init dmar_dev_scope_init(void)
806 {
807         struct pci_dev *dev = NULL;
808         struct dmar_pci_notify_info *info;
809
810         if (dmar_dev_scope_status != 1)
811                 return dmar_dev_scope_status;
812
813         if (list_empty(&dmar_drhd_units)) {
814                 dmar_dev_scope_status = -ENODEV;
815         } else {
816                 dmar_dev_scope_status = 0;
817
818                 dmar_acpi_dev_scope_init();
819
820                 for_each_pci_dev(dev) {
821                         if (dev->is_virtfn)
822                                 continue;
823
824                         info = dmar_alloc_pci_notify_info(dev,
825                                         BUS_NOTIFY_ADD_DEVICE);
826                         if (!info) {
827                                 return dmar_dev_scope_status;
828                         } else {
829                                 dmar_pci_bus_add_dev(info);
830                                 dmar_free_pci_notify_info(info);
831                         }
832                 }
833         }
834
835         return dmar_dev_scope_status;
836 }
837
838 void __init dmar_register_bus_notifier(void)
839 {
840         bus_register_notifier(&pci_bus_type, &dmar_pci_bus_nb);
841 }
842
843
844 int __init dmar_table_init(void)
845 {
846         static int dmar_table_initialized;
847         int ret;
848
849         if (dmar_table_initialized == 0) {
850                 ret = parse_dmar_table();
851                 if (ret < 0) {
852                         if (ret != -ENODEV)
853                                 pr_info("Parse DMAR table failure.\n");
854                 } else  if (list_empty(&dmar_drhd_units)) {
855                         pr_info("No DMAR devices found\n");
856                         ret = -ENODEV;
857                 }
858
859                 if (ret < 0)
860                         dmar_table_initialized = ret;
861                 else
862                         dmar_table_initialized = 1;
863         }
864
865         return dmar_table_initialized < 0 ? dmar_table_initialized : 0;
866 }
867
868 static void warn_invalid_dmar(u64 addr, const char *message)
869 {
870         pr_warn_once(FW_BUG
871                 "Your BIOS is broken; DMAR reported at address %llx%s!\n"
872                 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
873                 addr, message,
874                 dmi_get_system_info(DMI_BIOS_VENDOR),
875                 dmi_get_system_info(DMI_BIOS_VERSION),
876                 dmi_get_system_info(DMI_PRODUCT_VERSION));
877         add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
878 }
879
880 static int __ref
881 dmar_validate_one_drhd(struct acpi_dmar_header *entry, void *arg)
882 {
883         struct acpi_dmar_hardware_unit *drhd;
884         void __iomem *addr;
885         u64 cap, ecap;
886
887         drhd = (void *)entry;
888         if (!drhd->address) {
889                 warn_invalid_dmar(0, "");
890                 return -EINVAL;
891         }
892
893         if (arg)
894                 addr = ioremap(drhd->address, VTD_PAGE_SIZE);
895         else
896                 addr = early_ioremap(drhd->address, VTD_PAGE_SIZE);
897         if (!addr) {
898                 pr_warn("Can't validate DRHD address: %llx\n", drhd->address);
899                 return -EINVAL;
900         }
901
902         cap = dmar_readq(addr + DMAR_CAP_REG);
903         ecap = dmar_readq(addr + DMAR_ECAP_REG);
904
905         if (arg)
906                 iounmap(addr);
907         else
908                 early_iounmap(addr, VTD_PAGE_SIZE);
909
910         if (cap == (uint64_t)-1 && ecap == (uint64_t)-1) {
911                 warn_invalid_dmar(drhd->address, " returns all ones");
912                 return -EINVAL;
913         }
914
915         return 0;
916 }
917
918 int __init detect_intel_iommu(void)
919 {
920         int ret;
921         struct dmar_res_callback validate_drhd_cb = {
922                 .cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_validate_one_drhd,
923                 .ignore_unhandled = true,
924         };
925
926         down_write(&dmar_global_lock);
927         ret = dmar_table_detect();
928         if (!ret)
929                 ret = dmar_walk_dmar_table((struct acpi_table_dmar *)dmar_tbl,
930                                            &validate_drhd_cb);
931         if (!ret && !no_iommu && !iommu_detected &&
932             (!dmar_disabled || dmar_platform_optin())) {
933                 iommu_detected = 1;
934                 /* Make sure ACS will be enabled */
935                 pci_request_acs();
936         }
937
938 #ifdef CONFIG_X86
939         if (!ret) {
940                 x86_init.iommu.iommu_init = intel_iommu_init;
941                 x86_platform.iommu_shutdown = intel_iommu_shutdown;
942         }
943
944 #endif
945
946         if (dmar_tbl) {
947                 acpi_put_table(dmar_tbl);
948                 dmar_tbl = NULL;
949         }
950         up_write(&dmar_global_lock);
951
952         return ret ? ret : 1;
953 }
954
955 static void unmap_iommu(struct intel_iommu *iommu)
956 {
957         iounmap(iommu->reg);
958         release_mem_region(iommu->reg_phys, iommu->reg_size);
959 }
960
961 /**
962  * map_iommu: map the iommu's registers
963  * @iommu: the iommu to map
964  * @phys_addr: the physical address of the base resgister
965  *
966  * Memory map the iommu's registers.  Start w/ a single page, and
967  * possibly expand if that turns out to be insufficent.
968  */
969 static int map_iommu(struct intel_iommu *iommu, u64 phys_addr)
970 {
971         int map_size, err=0;
972
973         iommu->reg_phys = phys_addr;
974         iommu->reg_size = VTD_PAGE_SIZE;
975
976         if (!request_mem_region(iommu->reg_phys, iommu->reg_size, iommu->name)) {
977                 pr_err("Can't reserve memory\n");
978                 err = -EBUSY;
979                 goto out;
980         }
981
982         iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
983         if (!iommu->reg) {
984                 pr_err("Can't map the region\n");
985                 err = -ENOMEM;
986                 goto release;
987         }
988
989         iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG);
990         iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG);
991
992         if (iommu->cap == (uint64_t)-1 && iommu->ecap == (uint64_t)-1) {
993                 err = -EINVAL;
994                 warn_invalid_dmar(phys_addr, " returns all ones");
995                 goto unmap;
996         }
997         if (ecap_vcs(iommu->ecap))
998                 iommu->vccap = dmar_readq(iommu->reg + DMAR_VCCAP_REG);
999
1000         /* the registers might be more than one page */
1001         map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap),
1002                          cap_max_fault_reg_offset(iommu->cap));
1003         map_size = VTD_PAGE_ALIGN(map_size);
1004         if (map_size > iommu->reg_size) {
1005                 iounmap(iommu->reg);
1006                 release_mem_region(iommu->reg_phys, iommu->reg_size);
1007                 iommu->reg_size = map_size;
1008                 if (!request_mem_region(iommu->reg_phys, iommu->reg_size,
1009                                         iommu->name)) {
1010                         pr_err("Can't reserve memory\n");
1011                         err = -EBUSY;
1012                         goto out;
1013                 }
1014                 iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
1015                 if (!iommu->reg) {
1016                         pr_err("Can't map the region\n");
1017                         err = -ENOMEM;
1018                         goto release;
1019                 }
1020         }
1021         err = 0;
1022         goto out;
1023
1024 unmap:
1025         iounmap(iommu->reg);
1026 release:
1027         release_mem_region(iommu->reg_phys, iommu->reg_size);
1028 out:
1029         return err;
1030 }
1031
1032 static int dmar_alloc_seq_id(struct intel_iommu *iommu)
1033 {
1034         iommu->seq_id = find_first_zero_bit(dmar_seq_ids,
1035                                             DMAR_UNITS_SUPPORTED);
1036         if (iommu->seq_id >= DMAR_UNITS_SUPPORTED) {
1037                 iommu->seq_id = -1;
1038         } else {
1039                 set_bit(iommu->seq_id, dmar_seq_ids);
1040                 sprintf(iommu->name, "dmar%d", iommu->seq_id);
1041         }
1042
1043         return iommu->seq_id;
1044 }
1045
1046 static void dmar_free_seq_id(struct intel_iommu *iommu)
1047 {
1048         if (iommu->seq_id >= 0) {
1049                 clear_bit(iommu->seq_id, dmar_seq_ids);
1050                 iommu->seq_id = -1;
1051         }
1052 }
1053
1054 static int alloc_iommu(struct dmar_drhd_unit *drhd)
1055 {
1056         struct intel_iommu *iommu;
1057         u32 ver, sts;
1058         int agaw = -1;
1059         int msagaw = -1;
1060         int err;
1061
1062         if (!drhd->reg_base_addr) {
1063                 warn_invalid_dmar(0, "");
1064                 return -EINVAL;
1065         }
1066
1067         iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
1068         if (!iommu)
1069                 return -ENOMEM;
1070
1071         if (dmar_alloc_seq_id(iommu) < 0) {
1072                 pr_err("Failed to allocate seq_id\n");
1073                 err = -ENOSPC;
1074                 goto error;
1075         }
1076
1077         err = map_iommu(iommu, drhd->reg_base_addr);
1078         if (err) {
1079                 pr_err("Failed to map %s\n", iommu->name);
1080                 goto error_free_seq_id;
1081         }
1082
1083         err = -EINVAL;
1084         if (cap_sagaw(iommu->cap) == 0) {
1085                 pr_info("%s: No supported address widths. Not attempting DMA translation.\n",
1086                         iommu->name);
1087                 drhd->ignored = 1;
1088         }
1089
1090         if (!drhd->ignored) {
1091                 agaw = iommu_calculate_agaw(iommu);
1092                 if (agaw < 0) {
1093                         pr_err("Cannot get a valid agaw for iommu (seq_id = %d)\n",
1094                                iommu->seq_id);
1095                         drhd->ignored = 1;
1096                 }
1097         }
1098         if (!drhd->ignored) {
1099                 msagaw = iommu_calculate_max_sagaw(iommu);
1100                 if (msagaw < 0) {
1101                         pr_err("Cannot get a valid max agaw for iommu (seq_id = %d)\n",
1102                                iommu->seq_id);
1103                         drhd->ignored = 1;
1104                         agaw = -1;
1105                 }
1106         }
1107         iommu->agaw = agaw;
1108         iommu->msagaw = msagaw;
1109         iommu->segment = drhd->segment;
1110
1111         iommu->node = NUMA_NO_NODE;
1112
1113         ver = readl(iommu->reg + DMAR_VER_REG);
1114         pr_info("%s: reg_base_addr %llx ver %d:%d cap %llx ecap %llx\n",
1115                 iommu->name,
1116                 (unsigned long long)drhd->reg_base_addr,
1117                 DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver),
1118                 (unsigned long long)iommu->cap,
1119                 (unsigned long long)iommu->ecap);
1120
1121         /* Reflect status in gcmd */
1122         sts = readl(iommu->reg + DMAR_GSTS_REG);
1123         if (sts & DMA_GSTS_IRES)
1124                 iommu->gcmd |= DMA_GCMD_IRE;
1125         if (sts & DMA_GSTS_TES)
1126                 iommu->gcmd |= DMA_GCMD_TE;
1127         if (sts & DMA_GSTS_QIES)
1128                 iommu->gcmd |= DMA_GCMD_QIE;
1129
1130         raw_spin_lock_init(&iommu->register_lock);
1131
1132         /*
1133          * This is only for hotplug; at boot time intel_iommu_enabled won't
1134          * be set yet. When intel_iommu_init() runs, it registers the units
1135          * present at boot time, then sets intel_iommu_enabled.
1136          */
1137         if (intel_iommu_enabled && !drhd->ignored) {
1138                 err = iommu_device_sysfs_add(&iommu->iommu, NULL,
1139                                              intel_iommu_groups,
1140                                              "%s", iommu->name);
1141                 if (err)
1142                         goto err_unmap;
1143
1144                 err = iommu_device_register(&iommu->iommu, &intel_iommu_ops, NULL);
1145                 if (err)
1146                         goto err_sysfs;
1147         }
1148
1149         drhd->iommu = iommu;
1150         iommu->drhd = drhd;
1151
1152         return 0;
1153
1154 err_sysfs:
1155         iommu_device_sysfs_remove(&iommu->iommu);
1156 err_unmap:
1157         unmap_iommu(iommu);
1158 error_free_seq_id:
1159         dmar_free_seq_id(iommu);
1160 error:
1161         kfree(iommu);
1162         return err;
1163 }
1164
1165 static void free_iommu(struct intel_iommu *iommu)
1166 {
1167         if (intel_iommu_enabled && !iommu->drhd->ignored) {
1168                 iommu_device_unregister(&iommu->iommu);
1169                 iommu_device_sysfs_remove(&iommu->iommu);
1170         }
1171
1172         if (iommu->irq) {
1173                 if (iommu->pr_irq) {
1174                         free_irq(iommu->pr_irq, iommu);
1175                         dmar_free_hwirq(iommu->pr_irq);
1176                         iommu->pr_irq = 0;
1177                 }
1178                 free_irq(iommu->irq, iommu);
1179                 dmar_free_hwirq(iommu->irq);
1180                 iommu->irq = 0;
1181         }
1182
1183         if (iommu->qi) {
1184                 free_page((unsigned long)iommu->qi->desc);
1185                 kfree(iommu->qi->desc_status);
1186                 kfree(iommu->qi);
1187         }
1188
1189         if (iommu->reg)
1190                 unmap_iommu(iommu);
1191
1192         dmar_free_seq_id(iommu);
1193         kfree(iommu);
1194 }
1195
1196 /*
1197  * Reclaim all the submitted descriptors which have completed its work.
1198  */
1199 static inline void reclaim_free_desc(struct q_inval *qi)
1200 {
1201         while (qi->desc_status[qi->free_tail] == QI_DONE ||
1202                qi->desc_status[qi->free_tail] == QI_ABORT) {
1203                 qi->desc_status[qi->free_tail] = QI_FREE;
1204                 qi->free_tail = (qi->free_tail + 1) % QI_LENGTH;
1205                 qi->free_cnt++;
1206         }
1207 }
1208
1209 static const char *qi_type_string(u8 type)
1210 {
1211         switch (type) {
1212         case QI_CC_TYPE:
1213                 return "Context-cache Invalidation";
1214         case QI_IOTLB_TYPE:
1215                 return "IOTLB Invalidation";
1216         case QI_DIOTLB_TYPE:
1217                 return "Device-TLB Invalidation";
1218         case QI_IEC_TYPE:
1219                 return "Interrupt Entry Cache Invalidation";
1220         case QI_IWD_TYPE:
1221                 return "Invalidation Wait";
1222         case QI_EIOTLB_TYPE:
1223                 return "PASID-based IOTLB Invalidation";
1224         case QI_PC_TYPE:
1225                 return "PASID-cache Invalidation";
1226         case QI_DEIOTLB_TYPE:
1227                 return "PASID-based Device-TLB Invalidation";
1228         case QI_PGRP_RESP_TYPE:
1229                 return "Page Group Response";
1230         default:
1231                 return "UNKNOWN";
1232         }
1233 }
1234
1235 static void qi_dump_fault(struct intel_iommu *iommu, u32 fault)
1236 {
1237         unsigned int head = dmar_readl(iommu->reg + DMAR_IQH_REG);
1238         u64 iqe_err = dmar_readq(iommu->reg + DMAR_IQER_REG);
1239         struct qi_desc *desc = iommu->qi->desc + head;
1240
1241         if (fault & DMA_FSTS_IQE)
1242                 pr_err("VT-d detected Invalidation Queue Error: Reason %llx",
1243                        DMAR_IQER_REG_IQEI(iqe_err));
1244         if (fault & DMA_FSTS_ITE)
1245                 pr_err("VT-d detected Invalidation Time-out Error: SID %llx",
1246                        DMAR_IQER_REG_ITESID(iqe_err));
1247         if (fault & DMA_FSTS_ICE)
1248                 pr_err("VT-d detected Invalidation Completion Error: SID %llx",
1249                        DMAR_IQER_REG_ICESID(iqe_err));
1250
1251         pr_err("QI HEAD: %s qw0 = 0x%llx, qw1 = 0x%llx\n",
1252                qi_type_string(desc->qw0 & 0xf),
1253                (unsigned long long)desc->qw0,
1254                (unsigned long long)desc->qw1);
1255
1256         head = ((head >> qi_shift(iommu)) + QI_LENGTH - 1) % QI_LENGTH;
1257         head <<= qi_shift(iommu);
1258         desc = iommu->qi->desc + head;
1259
1260         pr_err("QI PRIOR: %s qw0 = 0x%llx, qw1 = 0x%llx\n",
1261                qi_type_string(desc->qw0 & 0xf),
1262                (unsigned long long)desc->qw0,
1263                (unsigned long long)desc->qw1);
1264 }
1265
1266 static int qi_check_fault(struct intel_iommu *iommu, int index, int wait_index)
1267 {
1268         u32 fault;
1269         int head, tail;
1270         struct q_inval *qi = iommu->qi;
1271         int shift = qi_shift(iommu);
1272
1273         if (qi->desc_status[wait_index] == QI_ABORT)
1274                 return -EAGAIN;
1275
1276         fault = readl(iommu->reg + DMAR_FSTS_REG);
1277         if (fault & (DMA_FSTS_IQE | DMA_FSTS_ITE | DMA_FSTS_ICE))
1278                 qi_dump_fault(iommu, fault);
1279
1280         /*
1281          * If IQE happens, the head points to the descriptor associated
1282          * with the error. No new descriptors are fetched until the IQE
1283          * is cleared.
1284          */
1285         if (fault & DMA_FSTS_IQE) {
1286                 head = readl(iommu->reg + DMAR_IQH_REG);
1287                 if ((head >> shift) == index) {
1288                         struct qi_desc *desc = qi->desc + head;
1289
1290                         /*
1291                          * desc->qw2 and desc->qw3 are either reserved or
1292                          * used by software as private data. We won't print
1293                          * out these two qw's for security consideration.
1294                          */
1295                         memcpy(desc, qi->desc + (wait_index << shift),
1296                                1 << shift);
1297                         writel(DMA_FSTS_IQE, iommu->reg + DMAR_FSTS_REG);
1298                         pr_info("Invalidation Queue Error (IQE) cleared\n");
1299                         return -EINVAL;
1300                 }
1301         }
1302
1303         /*
1304          * If ITE happens, all pending wait_desc commands are aborted.
1305          * No new descriptors are fetched until the ITE is cleared.
1306          */
1307         if (fault & DMA_FSTS_ITE) {
1308                 head = readl(iommu->reg + DMAR_IQH_REG);
1309                 head = ((head >> shift) - 1 + QI_LENGTH) % QI_LENGTH;
1310                 head |= 1;
1311                 tail = readl(iommu->reg + DMAR_IQT_REG);
1312                 tail = ((tail >> shift) - 1 + QI_LENGTH) % QI_LENGTH;
1313
1314                 writel(DMA_FSTS_ITE, iommu->reg + DMAR_FSTS_REG);
1315                 pr_info("Invalidation Time-out Error (ITE) cleared\n");
1316
1317                 do {
1318                         if (qi->desc_status[head] == QI_IN_USE)
1319                                 qi->desc_status[head] = QI_ABORT;
1320                         head = (head - 2 + QI_LENGTH) % QI_LENGTH;
1321                 } while (head != tail);
1322
1323                 if (qi->desc_status[wait_index] == QI_ABORT)
1324                         return -EAGAIN;
1325         }
1326
1327         if (fault & DMA_FSTS_ICE) {
1328                 writel(DMA_FSTS_ICE, iommu->reg + DMAR_FSTS_REG);
1329                 pr_info("Invalidation Completion Error (ICE) cleared\n");
1330         }
1331
1332         return 0;
1333 }
1334
1335 /*
1336  * Function to submit invalidation descriptors of all types to the queued
1337  * invalidation interface(QI). Multiple descriptors can be submitted at a
1338  * time, a wait descriptor will be appended to each submission to ensure
1339  * hardware has completed the invalidation before return. Wait descriptors
1340  * can be part of the submission but it will not be polled for completion.
1341  */
1342 int qi_submit_sync(struct intel_iommu *iommu, struct qi_desc *desc,
1343                    unsigned int count, unsigned long options)
1344 {
1345         struct q_inval *qi = iommu->qi;
1346         s64 devtlb_start_ktime = 0;
1347         s64 iotlb_start_ktime = 0;
1348         s64 iec_start_ktime = 0;
1349         struct qi_desc wait_desc;
1350         int wait_index, index;
1351         unsigned long flags;
1352         int offset, shift;
1353         int rc, i;
1354         u64 type;
1355
1356         if (!qi)
1357                 return 0;
1358
1359         type = desc->qw0 & GENMASK_ULL(3, 0);
1360
1361         if ((type == QI_IOTLB_TYPE || type == QI_EIOTLB_TYPE) &&
1362             dmar_latency_enabled(iommu, DMAR_LATENCY_INV_IOTLB))
1363                 iotlb_start_ktime = ktime_to_ns(ktime_get());
1364
1365         if ((type == QI_DIOTLB_TYPE || type == QI_DEIOTLB_TYPE) &&
1366             dmar_latency_enabled(iommu, DMAR_LATENCY_INV_DEVTLB))
1367                 devtlb_start_ktime = ktime_to_ns(ktime_get());
1368
1369         if (type == QI_IEC_TYPE &&
1370             dmar_latency_enabled(iommu, DMAR_LATENCY_INV_IEC))
1371                 iec_start_ktime = ktime_to_ns(ktime_get());
1372
1373 restart:
1374         rc = 0;
1375
1376         raw_spin_lock_irqsave(&qi->q_lock, flags);
1377         /*
1378          * Check if we have enough empty slots in the queue to submit,
1379          * the calculation is based on:
1380          * # of desc + 1 wait desc + 1 space between head and tail
1381          */
1382         while (qi->free_cnt < count + 2) {
1383                 raw_spin_unlock_irqrestore(&qi->q_lock, flags);
1384                 cpu_relax();
1385                 raw_spin_lock_irqsave(&qi->q_lock, flags);
1386         }
1387
1388         index = qi->free_head;
1389         wait_index = (index + count) % QI_LENGTH;
1390         shift = qi_shift(iommu);
1391
1392         for (i = 0; i < count; i++) {
1393                 offset = ((index + i) % QI_LENGTH) << shift;
1394                 memcpy(qi->desc + offset, &desc[i], 1 << shift);
1395                 qi->desc_status[(index + i) % QI_LENGTH] = QI_IN_USE;
1396                 trace_qi_submit(iommu, desc[i].qw0, desc[i].qw1,
1397                                 desc[i].qw2, desc[i].qw3);
1398         }
1399         qi->desc_status[wait_index] = QI_IN_USE;
1400
1401         wait_desc.qw0 = QI_IWD_STATUS_DATA(QI_DONE) |
1402                         QI_IWD_STATUS_WRITE | QI_IWD_TYPE;
1403         if (options & QI_OPT_WAIT_DRAIN)
1404                 wait_desc.qw0 |= QI_IWD_PRQ_DRAIN;
1405         wait_desc.qw1 = virt_to_phys(&qi->desc_status[wait_index]);
1406         wait_desc.qw2 = 0;
1407         wait_desc.qw3 = 0;
1408
1409         offset = wait_index << shift;
1410         memcpy(qi->desc + offset, &wait_desc, 1 << shift);
1411
1412         qi->free_head = (qi->free_head + count + 1) % QI_LENGTH;
1413         qi->free_cnt -= count + 1;
1414
1415         /*
1416          * update the HW tail register indicating the presence of
1417          * new descriptors.
1418          */
1419         writel(qi->free_head << shift, iommu->reg + DMAR_IQT_REG);
1420
1421         while (qi->desc_status[wait_index] != QI_DONE) {
1422                 /*
1423                  * We will leave the interrupts disabled, to prevent interrupt
1424                  * context to queue another cmd while a cmd is already submitted
1425                  * and waiting for completion on this cpu. This is to avoid
1426                  * a deadlock where the interrupt context can wait indefinitely
1427                  * for free slots in the queue.
1428                  */
1429                 rc = qi_check_fault(iommu, index, wait_index);
1430                 if (rc)
1431                         break;
1432
1433                 raw_spin_unlock(&qi->q_lock);
1434                 cpu_relax();
1435                 raw_spin_lock(&qi->q_lock);
1436         }
1437
1438         for (i = 0; i < count; i++)
1439                 qi->desc_status[(index + i) % QI_LENGTH] = QI_DONE;
1440
1441         reclaim_free_desc(qi);
1442         raw_spin_unlock_irqrestore(&qi->q_lock, flags);
1443
1444         if (rc == -EAGAIN)
1445                 goto restart;
1446
1447         if (iotlb_start_ktime)
1448                 dmar_latency_update(iommu, DMAR_LATENCY_INV_IOTLB,
1449                                 ktime_to_ns(ktime_get()) - iotlb_start_ktime);
1450
1451         if (devtlb_start_ktime)
1452                 dmar_latency_update(iommu, DMAR_LATENCY_INV_DEVTLB,
1453                                 ktime_to_ns(ktime_get()) - devtlb_start_ktime);
1454
1455         if (iec_start_ktime)
1456                 dmar_latency_update(iommu, DMAR_LATENCY_INV_IEC,
1457                                 ktime_to_ns(ktime_get()) - iec_start_ktime);
1458
1459         return rc;
1460 }
1461
1462 /*
1463  * Flush the global interrupt entry cache.
1464  */
1465 void qi_global_iec(struct intel_iommu *iommu)
1466 {
1467         struct qi_desc desc;
1468
1469         desc.qw0 = QI_IEC_TYPE;
1470         desc.qw1 = 0;
1471         desc.qw2 = 0;
1472         desc.qw3 = 0;
1473
1474         /* should never fail */
1475         qi_submit_sync(iommu, &desc, 1, 0);
1476 }
1477
1478 void qi_flush_context(struct intel_iommu *iommu, u16 did, u16 sid, u8 fm,
1479                       u64 type)
1480 {
1481         struct qi_desc desc;
1482
1483         desc.qw0 = QI_CC_FM(fm) | QI_CC_SID(sid) | QI_CC_DID(did)
1484                         | QI_CC_GRAN(type) | QI_CC_TYPE;
1485         desc.qw1 = 0;
1486         desc.qw2 = 0;
1487         desc.qw3 = 0;
1488
1489         qi_submit_sync(iommu, &desc, 1, 0);
1490 }
1491
1492 void qi_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr,
1493                     unsigned int size_order, u64 type)
1494 {
1495         u8 dw = 0, dr = 0;
1496
1497         struct qi_desc desc;
1498         int ih = 0;
1499
1500         if (cap_write_drain(iommu->cap))
1501                 dw = 1;
1502
1503         if (cap_read_drain(iommu->cap))
1504                 dr = 1;
1505
1506         desc.qw0 = QI_IOTLB_DID(did) | QI_IOTLB_DR(dr) | QI_IOTLB_DW(dw)
1507                 | QI_IOTLB_GRAN(type) | QI_IOTLB_TYPE;
1508         desc.qw1 = QI_IOTLB_ADDR(addr) | QI_IOTLB_IH(ih)
1509                 | QI_IOTLB_AM(size_order);
1510         desc.qw2 = 0;
1511         desc.qw3 = 0;
1512
1513         qi_submit_sync(iommu, &desc, 1, 0);
1514 }
1515
1516 void qi_flush_dev_iotlb(struct intel_iommu *iommu, u16 sid, u16 pfsid,
1517                         u16 qdep, u64 addr, unsigned mask)
1518 {
1519         struct qi_desc desc;
1520
1521         if (mask) {
1522                 addr |= (1ULL << (VTD_PAGE_SHIFT + mask - 1)) - 1;
1523                 desc.qw1 = QI_DEV_IOTLB_ADDR(addr) | QI_DEV_IOTLB_SIZE;
1524         } else
1525                 desc.qw1 = QI_DEV_IOTLB_ADDR(addr);
1526
1527         if (qdep >= QI_DEV_IOTLB_MAX_INVS)
1528                 qdep = 0;
1529
1530         desc.qw0 = QI_DEV_IOTLB_SID(sid) | QI_DEV_IOTLB_QDEP(qdep) |
1531                    QI_DIOTLB_TYPE | QI_DEV_IOTLB_PFSID(pfsid);
1532         desc.qw2 = 0;
1533         desc.qw3 = 0;
1534
1535         qi_submit_sync(iommu, &desc, 1, 0);
1536 }
1537
1538 /* PASID-based IOTLB invalidation */
1539 void qi_flush_piotlb(struct intel_iommu *iommu, u16 did, u32 pasid, u64 addr,
1540                      unsigned long npages, bool ih)
1541 {
1542         struct qi_desc desc = {.qw2 = 0, .qw3 = 0};
1543
1544         /*
1545          * npages == -1 means a PASID-selective invalidation, otherwise,
1546          * a positive value for Page-selective-within-PASID invalidation.
1547          * 0 is not a valid input.
1548          */
1549         if (WARN_ON(!npages)) {
1550                 pr_err("Invalid input npages = %ld\n", npages);
1551                 return;
1552         }
1553
1554         if (npages == -1) {
1555                 desc.qw0 = QI_EIOTLB_PASID(pasid) |
1556                                 QI_EIOTLB_DID(did) |
1557                                 QI_EIOTLB_GRAN(QI_GRAN_NONG_PASID) |
1558                                 QI_EIOTLB_TYPE;
1559                 desc.qw1 = 0;
1560         } else {
1561                 int mask = ilog2(__roundup_pow_of_two(npages));
1562                 unsigned long align = (1ULL << (VTD_PAGE_SHIFT + mask));
1563
1564                 if (WARN_ON_ONCE(!IS_ALIGNED(addr, align)))
1565                         addr = ALIGN_DOWN(addr, align);
1566
1567                 desc.qw0 = QI_EIOTLB_PASID(pasid) |
1568                                 QI_EIOTLB_DID(did) |
1569                                 QI_EIOTLB_GRAN(QI_GRAN_PSI_PASID) |
1570                                 QI_EIOTLB_TYPE;
1571                 desc.qw1 = QI_EIOTLB_ADDR(addr) |
1572                                 QI_EIOTLB_IH(ih) |
1573                                 QI_EIOTLB_AM(mask);
1574         }
1575
1576         qi_submit_sync(iommu, &desc, 1, 0);
1577 }
1578
1579 /* PASID-based device IOTLB Invalidate */
1580 void qi_flush_dev_iotlb_pasid(struct intel_iommu *iommu, u16 sid, u16 pfsid,
1581                               u32 pasid,  u16 qdep, u64 addr, unsigned int size_order)
1582 {
1583         unsigned long mask = 1UL << (VTD_PAGE_SHIFT + size_order - 1);
1584         struct qi_desc desc = {.qw1 = 0, .qw2 = 0, .qw3 = 0};
1585
1586         desc.qw0 = QI_DEV_EIOTLB_PASID(pasid) | QI_DEV_EIOTLB_SID(sid) |
1587                 QI_DEV_EIOTLB_QDEP(qdep) | QI_DEIOTLB_TYPE |
1588                 QI_DEV_IOTLB_PFSID(pfsid);
1589
1590         /*
1591          * If S bit is 0, we only flush a single page. If S bit is set,
1592          * The least significant zero bit indicates the invalidation address
1593          * range. VT-d spec 6.5.2.6.
1594          * e.g. address bit 12[0] indicates 8KB, 13[0] indicates 16KB.
1595          * size order = 0 is PAGE_SIZE 4KB
1596          * Max Invs Pending (MIP) is set to 0 for now until we have DIT in
1597          * ECAP.
1598          */
1599         if (!IS_ALIGNED(addr, VTD_PAGE_SIZE << size_order))
1600                 pr_warn_ratelimited("Invalidate non-aligned address %llx, order %d\n",
1601                                     addr, size_order);
1602
1603         /* Take page address */
1604         desc.qw1 = QI_DEV_EIOTLB_ADDR(addr);
1605
1606         if (size_order) {
1607                 /*
1608                  * Existing 0s in address below size_order may be the least
1609                  * significant bit, we must set them to 1s to avoid having
1610                  * smaller size than desired.
1611                  */
1612                 desc.qw1 |= GENMASK_ULL(size_order + VTD_PAGE_SHIFT - 1,
1613                                         VTD_PAGE_SHIFT);
1614                 /* Clear size_order bit to indicate size */
1615                 desc.qw1 &= ~mask;
1616                 /* Set the S bit to indicate flushing more than 1 page */
1617                 desc.qw1 |= QI_DEV_EIOTLB_SIZE;
1618         }
1619
1620         qi_submit_sync(iommu, &desc, 1, 0);
1621 }
1622
1623 void qi_flush_pasid_cache(struct intel_iommu *iommu, u16 did,
1624                           u64 granu, u32 pasid)
1625 {
1626         struct qi_desc desc = {.qw1 = 0, .qw2 = 0, .qw3 = 0};
1627
1628         desc.qw0 = QI_PC_PASID(pasid) | QI_PC_DID(did) |
1629                         QI_PC_GRAN(granu) | QI_PC_TYPE;
1630         qi_submit_sync(iommu, &desc, 1, 0);
1631 }
1632
1633 /*
1634  * Disable Queued Invalidation interface.
1635  */
1636 void dmar_disable_qi(struct intel_iommu *iommu)
1637 {
1638         unsigned long flags;
1639         u32 sts;
1640         cycles_t start_time = get_cycles();
1641
1642         if (!ecap_qis(iommu->ecap))
1643                 return;
1644
1645         raw_spin_lock_irqsave(&iommu->register_lock, flags);
1646
1647         sts =  readl(iommu->reg + DMAR_GSTS_REG);
1648         if (!(sts & DMA_GSTS_QIES))
1649                 goto end;
1650
1651         /*
1652          * Give a chance to HW to complete the pending invalidation requests.
1653          */
1654         while ((readl(iommu->reg + DMAR_IQT_REG) !=
1655                 readl(iommu->reg + DMAR_IQH_REG)) &&
1656                 (DMAR_OPERATION_TIMEOUT > (get_cycles() - start_time)))
1657                 cpu_relax();
1658
1659         iommu->gcmd &= ~DMA_GCMD_QIE;
1660         writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1661
1662         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl,
1663                       !(sts & DMA_GSTS_QIES), sts);
1664 end:
1665         raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1666 }
1667
1668 /*
1669  * Enable queued invalidation.
1670  */
1671 static void __dmar_enable_qi(struct intel_iommu *iommu)
1672 {
1673         u32 sts;
1674         unsigned long flags;
1675         struct q_inval *qi = iommu->qi;
1676         u64 val = virt_to_phys(qi->desc);
1677
1678         qi->free_head = qi->free_tail = 0;
1679         qi->free_cnt = QI_LENGTH;
1680
1681         /*
1682          * Set DW=1 and QS=1 in IQA_REG when Scalable Mode capability
1683          * is present.
1684          */
1685         if (ecap_smts(iommu->ecap))
1686                 val |= (1 << 11) | 1;
1687
1688         raw_spin_lock_irqsave(&iommu->register_lock, flags);
1689
1690         /* write zero to the tail reg */
1691         writel(0, iommu->reg + DMAR_IQT_REG);
1692
1693         dmar_writeq(iommu->reg + DMAR_IQA_REG, val);
1694
1695         iommu->gcmd |= DMA_GCMD_QIE;
1696         writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1697
1698         /* Make sure hardware complete it */
1699         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_QIES), sts);
1700
1701         raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1702 }
1703
1704 /*
1705  * Enable Queued Invalidation interface. This is a must to support
1706  * interrupt-remapping. Also used by DMA-remapping, which replaces
1707  * register based IOTLB invalidation.
1708  */
1709 int dmar_enable_qi(struct intel_iommu *iommu)
1710 {
1711         struct q_inval *qi;
1712         struct page *desc_page;
1713
1714         if (!ecap_qis(iommu->ecap))
1715                 return -ENOENT;
1716
1717         /*
1718          * queued invalidation is already setup and enabled.
1719          */
1720         if (iommu->qi)
1721                 return 0;
1722
1723         iommu->qi = kmalloc(sizeof(*qi), GFP_ATOMIC);
1724         if (!iommu->qi)
1725                 return -ENOMEM;
1726
1727         qi = iommu->qi;
1728
1729         /*
1730          * Need two pages to accommodate 256 descriptors of 256 bits each
1731          * if the remapping hardware supports scalable mode translation.
1732          */
1733         desc_page = alloc_pages_node(iommu->node, GFP_ATOMIC | __GFP_ZERO,
1734                                      !!ecap_smts(iommu->ecap));
1735         if (!desc_page) {
1736                 kfree(qi);
1737                 iommu->qi = NULL;
1738                 return -ENOMEM;
1739         }
1740
1741         qi->desc = page_address(desc_page);
1742
1743         qi->desc_status = kcalloc(QI_LENGTH, sizeof(int), GFP_ATOMIC);
1744         if (!qi->desc_status) {
1745                 free_page((unsigned long) qi->desc);
1746                 kfree(qi);
1747                 iommu->qi = NULL;
1748                 return -ENOMEM;
1749         }
1750
1751         raw_spin_lock_init(&qi->q_lock);
1752
1753         __dmar_enable_qi(iommu);
1754
1755         return 0;
1756 }
1757
1758 /* iommu interrupt handling. Most stuff are MSI-like. */
1759
1760 enum faulttype {
1761         DMA_REMAP,
1762         INTR_REMAP,
1763         UNKNOWN,
1764 };
1765
1766 static const char *dma_remap_fault_reasons[] =
1767 {
1768         "Software",
1769         "Present bit in root entry is clear",
1770         "Present bit in context entry is clear",
1771         "Invalid context entry",
1772         "Access beyond MGAW",
1773         "PTE Write access is not set",
1774         "PTE Read access is not set",
1775         "Next page table ptr is invalid",
1776         "Root table address invalid",
1777         "Context table ptr is invalid",
1778         "non-zero reserved fields in RTP",
1779         "non-zero reserved fields in CTP",
1780         "non-zero reserved fields in PTE",
1781         "PCE for translation request specifies blocking",
1782 };
1783
1784 static const char * const dma_remap_sm_fault_reasons[] = {
1785         "SM: Invalid Root Table Address",
1786         "SM: TTM 0 for request with PASID",
1787         "SM: TTM 0 for page group request",
1788         "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x33-0x37 */
1789         "SM: Error attempting to access Root Entry",
1790         "SM: Present bit in Root Entry is clear",
1791         "SM: Non-zero reserved field set in Root Entry",
1792         "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x3B-0x3F */
1793         "SM: Error attempting to access Context Entry",
1794         "SM: Present bit in Context Entry is clear",
1795         "SM: Non-zero reserved field set in the Context Entry",
1796         "SM: Invalid Context Entry",
1797         "SM: DTE field in Context Entry is clear",
1798         "SM: PASID Enable field in Context Entry is clear",
1799         "SM: PASID is larger than the max in Context Entry",
1800         "SM: PRE field in Context-Entry is clear",
1801         "SM: RID_PASID field error in Context-Entry",
1802         "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x49-0x4F */
1803         "SM: Error attempting to access the PASID Directory Entry",
1804         "SM: Present bit in Directory Entry is clear",
1805         "SM: Non-zero reserved field set in PASID Directory Entry",
1806         "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x53-0x57 */
1807         "SM: Error attempting to access PASID Table Entry",
1808         "SM: Present bit in PASID Table Entry is clear",
1809         "SM: Non-zero reserved field set in PASID Table Entry",
1810         "SM: Invalid Scalable-Mode PASID Table Entry",
1811         "SM: ERE field is clear in PASID Table Entry",
1812         "SM: SRE field is clear in PASID Table Entry",
1813         "Unknown", "Unknown",/* 0x5E-0x5F */
1814         "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x60-0x67 */
1815         "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x68-0x6F */
1816         "SM: Error attempting to access first-level paging entry",
1817         "SM: Present bit in first-level paging entry is clear",
1818         "SM: Non-zero reserved field set in first-level paging entry",
1819         "SM: Error attempting to access FL-PML4 entry",
1820         "SM: First-level entry address beyond MGAW in Nested translation",
1821         "SM: Read permission error in FL-PML4 entry in Nested translation",
1822         "SM: Read permission error in first-level paging entry in Nested translation",
1823         "SM: Write permission error in first-level paging entry in Nested translation",
1824         "SM: Error attempting to access second-level paging entry",
1825         "SM: Read/Write permission error in second-level paging entry",
1826         "SM: Non-zero reserved field set in second-level paging entry",
1827         "SM: Invalid second-level page table pointer",
1828         "SM: A/D bit update needed in second-level entry when set up in no snoop",
1829         "Unknown", "Unknown", "Unknown", /* 0x7D-0x7F */
1830         "SM: Address in first-level translation is not canonical",
1831         "SM: U/S set 0 for first-level translation with user privilege",
1832         "SM: No execute permission for request with PASID and ER=1",
1833         "SM: Address beyond the DMA hardware max",
1834         "SM: Second-level entry address beyond the max",
1835         "SM: No write permission for Write/AtomicOp request",
1836         "SM: No read permission for Read/AtomicOp request",
1837         "SM: Invalid address-interrupt address",
1838         "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x88-0x8F */
1839         "SM: A/D bit update needed in first-level entry when set up in no snoop",
1840 };
1841
1842 static const char *irq_remap_fault_reasons[] =
1843 {
1844         "Detected reserved fields in the decoded interrupt-remapped request",
1845         "Interrupt index exceeded the interrupt-remapping table size",
1846         "Present field in the IRTE entry is clear",
1847         "Error accessing interrupt-remapping table pointed by IRTA_REG",
1848         "Detected reserved fields in the IRTE entry",
1849         "Blocked a compatibility format interrupt request",
1850         "Blocked an interrupt request due to source-id verification failure",
1851 };
1852
1853 static const char *dmar_get_fault_reason(u8 fault_reason, int *fault_type)
1854 {
1855         if (fault_reason >= 0x20 && (fault_reason - 0x20 <
1856                                         ARRAY_SIZE(irq_remap_fault_reasons))) {
1857                 *fault_type = INTR_REMAP;
1858                 return irq_remap_fault_reasons[fault_reason - 0x20];
1859         } else if (fault_reason >= 0x30 && (fault_reason - 0x30 <
1860                         ARRAY_SIZE(dma_remap_sm_fault_reasons))) {
1861                 *fault_type = DMA_REMAP;
1862                 return dma_remap_sm_fault_reasons[fault_reason - 0x30];
1863         } else if (fault_reason < ARRAY_SIZE(dma_remap_fault_reasons)) {
1864                 *fault_type = DMA_REMAP;
1865                 return dma_remap_fault_reasons[fault_reason];
1866         } else {
1867                 *fault_type = UNKNOWN;
1868                 return "Unknown";
1869         }
1870 }
1871
1872
1873 static inline int dmar_msi_reg(struct intel_iommu *iommu, int irq)
1874 {
1875         if (iommu->irq == irq)
1876                 return DMAR_FECTL_REG;
1877         else if (iommu->pr_irq == irq)
1878                 return DMAR_PECTL_REG;
1879         else
1880                 BUG();
1881 }
1882
1883 void dmar_msi_unmask(struct irq_data *data)
1884 {
1885         struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1886         int reg = dmar_msi_reg(iommu, data->irq);
1887         unsigned long flag;
1888
1889         /* unmask it */
1890         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1891         writel(0, iommu->reg + reg);
1892         /* Read a reg to force flush the post write */
1893         readl(iommu->reg + reg);
1894         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1895 }
1896
1897 void dmar_msi_mask(struct irq_data *data)
1898 {
1899         struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1900         int reg = dmar_msi_reg(iommu, data->irq);
1901         unsigned long flag;
1902
1903         /* mask it */
1904         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1905         writel(DMA_FECTL_IM, iommu->reg + reg);
1906         /* Read a reg to force flush the post write */
1907         readl(iommu->reg + reg);
1908         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1909 }
1910
1911 void dmar_msi_write(int irq, struct msi_msg *msg)
1912 {
1913         struct intel_iommu *iommu = irq_get_handler_data(irq);
1914         int reg = dmar_msi_reg(iommu, irq);
1915         unsigned long flag;
1916
1917         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1918         writel(msg->data, iommu->reg + reg + 4);
1919         writel(msg->address_lo, iommu->reg + reg + 8);
1920         writel(msg->address_hi, iommu->reg + reg + 12);
1921         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1922 }
1923
1924 void dmar_msi_read(int irq, struct msi_msg *msg)
1925 {
1926         struct intel_iommu *iommu = irq_get_handler_data(irq);
1927         int reg = dmar_msi_reg(iommu, irq);
1928         unsigned long flag;
1929
1930         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1931         msg->data = readl(iommu->reg + reg + 4);
1932         msg->address_lo = readl(iommu->reg + reg + 8);
1933         msg->address_hi = readl(iommu->reg + reg + 12);
1934         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1935 }
1936
1937 static int dmar_fault_do_one(struct intel_iommu *iommu, int type,
1938                 u8 fault_reason, u32 pasid, u16 source_id,
1939                 unsigned long long addr)
1940 {
1941         const char *reason;
1942         int fault_type;
1943
1944         reason = dmar_get_fault_reason(fault_reason, &fault_type);
1945
1946         if (fault_type == INTR_REMAP)
1947                 pr_err("[INTR-REMAP] Request device [0x%02x:0x%02x.%d] fault index 0x%llx [fault reason 0x%02x] %s\n",
1948                        source_id >> 8, PCI_SLOT(source_id & 0xFF),
1949                        PCI_FUNC(source_id & 0xFF), addr >> 48,
1950                        fault_reason, reason);
1951         else if (pasid == INVALID_IOASID)
1952                 pr_err("[%s NO_PASID] Request device [0x%02x:0x%02x.%d] fault addr 0x%llx [fault reason 0x%02x] %s\n",
1953                        type ? "DMA Read" : "DMA Write",
1954                        source_id >> 8, PCI_SLOT(source_id & 0xFF),
1955                        PCI_FUNC(source_id & 0xFF), addr,
1956                        fault_reason, reason);
1957         else
1958                 pr_err("[%s PASID 0x%x] Request device [0x%02x:0x%02x.%d] fault addr 0x%llx [fault reason 0x%02x] %s\n",
1959                        type ? "DMA Read" : "DMA Write", pasid,
1960                        source_id >> 8, PCI_SLOT(source_id & 0xFF),
1961                        PCI_FUNC(source_id & 0xFF), addr,
1962                        fault_reason, reason);
1963
1964         return 0;
1965 }
1966
1967 #define PRIMARY_FAULT_REG_LEN (16)
1968 irqreturn_t dmar_fault(int irq, void *dev_id)
1969 {
1970         struct intel_iommu *iommu = dev_id;
1971         int reg, fault_index;
1972         u32 fault_status;
1973         unsigned long flag;
1974         static DEFINE_RATELIMIT_STATE(rs,
1975                                       DEFAULT_RATELIMIT_INTERVAL,
1976                                       DEFAULT_RATELIMIT_BURST);
1977
1978         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1979         fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1980         if (fault_status && __ratelimit(&rs))
1981                 pr_err("DRHD: handling fault status reg %x\n", fault_status);
1982
1983         /* TBD: ignore advanced fault log currently */
1984         if (!(fault_status & DMA_FSTS_PPF))
1985                 goto unlock_exit;
1986
1987         fault_index = dma_fsts_fault_record_index(fault_status);
1988         reg = cap_fault_reg_offset(iommu->cap);
1989         while (1) {
1990                 /* Disable printing, simply clear the fault when ratelimited */
1991                 bool ratelimited = !__ratelimit(&rs);
1992                 u8 fault_reason;
1993                 u16 source_id;
1994                 u64 guest_addr;
1995                 u32 pasid;
1996                 int type;
1997                 u32 data;
1998                 bool pasid_present;
1999
2000                 /* highest 32 bits */
2001                 data = readl(iommu->reg + reg +
2002                                 fault_index * PRIMARY_FAULT_REG_LEN + 12);
2003                 if (!(data & DMA_FRCD_F))
2004                         break;
2005
2006                 if (!ratelimited) {
2007                         fault_reason = dma_frcd_fault_reason(data);
2008                         type = dma_frcd_type(data);
2009
2010                         pasid = dma_frcd_pasid_value(data);
2011                         data = readl(iommu->reg + reg +
2012                                      fault_index * PRIMARY_FAULT_REG_LEN + 8);
2013                         source_id = dma_frcd_source_id(data);
2014
2015                         pasid_present = dma_frcd_pasid_present(data);
2016                         guest_addr = dmar_readq(iommu->reg + reg +
2017                                         fault_index * PRIMARY_FAULT_REG_LEN);
2018                         guest_addr = dma_frcd_page_addr(guest_addr);
2019                 }
2020
2021                 /* clear the fault */
2022                 writel(DMA_FRCD_F, iommu->reg + reg +
2023                         fault_index * PRIMARY_FAULT_REG_LEN + 12);
2024
2025                 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
2026
2027                 if (!ratelimited)
2028                         /* Using pasid -1 if pasid is not present */
2029                         dmar_fault_do_one(iommu, type, fault_reason,
2030                                           pasid_present ? pasid : INVALID_IOASID,
2031                                           source_id, guest_addr);
2032
2033                 fault_index++;
2034                 if (fault_index >= cap_num_fault_regs(iommu->cap))
2035                         fault_index = 0;
2036                 raw_spin_lock_irqsave(&iommu->register_lock, flag);
2037         }
2038
2039         writel(DMA_FSTS_PFO | DMA_FSTS_PPF | DMA_FSTS_PRO,
2040                iommu->reg + DMAR_FSTS_REG);
2041
2042 unlock_exit:
2043         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
2044         return IRQ_HANDLED;
2045 }
2046
2047 int dmar_set_interrupt(struct intel_iommu *iommu)
2048 {
2049         int irq, ret;
2050
2051         /*
2052          * Check if the fault interrupt is already initialized.
2053          */
2054         if (iommu->irq)
2055                 return 0;
2056
2057         irq = dmar_alloc_hwirq(iommu->seq_id, iommu->node, iommu);
2058         if (irq > 0) {
2059                 iommu->irq = irq;
2060         } else {
2061                 pr_err("No free IRQ vectors\n");
2062                 return -EINVAL;
2063         }
2064
2065         ret = request_irq(irq, dmar_fault, IRQF_NO_THREAD, iommu->name, iommu);
2066         if (ret)
2067                 pr_err("Can't request irq\n");
2068         return ret;
2069 }
2070
2071 int __init enable_drhd_fault_handling(void)
2072 {
2073         struct dmar_drhd_unit *drhd;
2074         struct intel_iommu *iommu;
2075
2076         /*
2077          * Enable fault control interrupt.
2078          */
2079         for_each_iommu(iommu, drhd) {
2080                 u32 fault_status;
2081                 int ret = dmar_set_interrupt(iommu);
2082
2083                 if (ret) {
2084                         pr_err("DRHD %Lx: failed to enable fault, interrupt, ret %d\n",
2085                                (unsigned long long)drhd->reg_base_addr, ret);
2086                         return -1;
2087                 }
2088
2089                 /*
2090                  * Clear any previous faults.
2091                  */
2092                 dmar_fault(iommu->irq, iommu);
2093                 fault_status = readl(iommu->reg + DMAR_FSTS_REG);
2094                 writel(fault_status, iommu->reg + DMAR_FSTS_REG);
2095         }
2096
2097         return 0;
2098 }
2099
2100 /*
2101  * Re-enable Queued Invalidation interface.
2102  */
2103 int dmar_reenable_qi(struct intel_iommu *iommu)
2104 {
2105         if (!ecap_qis(iommu->ecap))
2106                 return -ENOENT;
2107
2108         if (!iommu->qi)
2109                 return -ENOENT;
2110
2111         /*
2112          * First disable queued invalidation.
2113          */
2114         dmar_disable_qi(iommu);
2115         /*
2116          * Then enable queued invalidation again. Since there is no pending
2117          * invalidation requests now, it's safe to re-enable queued
2118          * invalidation.
2119          */
2120         __dmar_enable_qi(iommu);
2121
2122         return 0;
2123 }
2124
2125 /*
2126  * Check interrupt remapping support in DMAR table description.
2127  */
2128 int __init dmar_ir_support(void)
2129 {
2130         struct acpi_table_dmar *dmar;
2131         dmar = (struct acpi_table_dmar *)dmar_tbl;
2132         if (!dmar)
2133                 return 0;
2134         return dmar->flags & 0x1;
2135 }
2136
2137 /* Check whether DMAR units are in use */
2138 static inline bool dmar_in_use(void)
2139 {
2140         return irq_remapping_enabled || intel_iommu_enabled;
2141 }
2142
2143 static int __init dmar_free_unused_resources(void)
2144 {
2145         struct dmar_drhd_unit *dmaru, *dmaru_n;
2146
2147         if (dmar_in_use())
2148                 return 0;
2149
2150         if (dmar_dev_scope_status != 1 && !list_empty(&dmar_drhd_units))
2151                 bus_unregister_notifier(&pci_bus_type, &dmar_pci_bus_nb);
2152
2153         down_write(&dmar_global_lock);
2154         list_for_each_entry_safe(dmaru, dmaru_n, &dmar_drhd_units, list) {
2155                 list_del(&dmaru->list);
2156                 dmar_free_drhd(dmaru);
2157         }
2158         up_write(&dmar_global_lock);
2159
2160         return 0;
2161 }
2162
2163 late_initcall(dmar_free_unused_resources);
2164 IOMMU_INIT_POST(detect_intel_iommu);
2165
2166 /*
2167  * DMAR Hotplug Support
2168  * For more details, please refer to Intel(R) Virtualization Technology
2169  * for Directed-IO Architecture Specifiction, Rev 2.2, Section 8.8
2170  * "Remapping Hardware Unit Hot Plug".
2171  */
2172 static guid_t dmar_hp_guid =
2173         GUID_INIT(0xD8C1A3A6, 0xBE9B, 0x4C9B,
2174                   0x91, 0xBF, 0xC3, 0xCB, 0x81, 0xFC, 0x5D, 0xAF);
2175
2176 /*
2177  * Currently there's only one revision and BIOS will not check the revision id,
2178  * so use 0 for safety.
2179  */
2180 #define DMAR_DSM_REV_ID                 0
2181 #define DMAR_DSM_FUNC_DRHD              1
2182 #define DMAR_DSM_FUNC_ATSR              2
2183 #define DMAR_DSM_FUNC_RHSA              3
2184 #define DMAR_DSM_FUNC_SATC              4
2185
2186 static inline bool dmar_detect_dsm(acpi_handle handle, int func)
2187 {
2188         return acpi_check_dsm(handle, &dmar_hp_guid, DMAR_DSM_REV_ID, 1 << func);
2189 }
2190
2191 static int dmar_walk_dsm_resource(acpi_handle handle, int func,
2192                                   dmar_res_handler_t handler, void *arg)
2193 {
2194         int ret = -ENODEV;
2195         union acpi_object *obj;
2196         struct acpi_dmar_header *start;
2197         struct dmar_res_callback callback;
2198         static int res_type[] = {
2199                 [DMAR_DSM_FUNC_DRHD] = ACPI_DMAR_TYPE_HARDWARE_UNIT,
2200                 [DMAR_DSM_FUNC_ATSR] = ACPI_DMAR_TYPE_ROOT_ATS,
2201                 [DMAR_DSM_FUNC_RHSA] = ACPI_DMAR_TYPE_HARDWARE_AFFINITY,
2202                 [DMAR_DSM_FUNC_SATC] = ACPI_DMAR_TYPE_SATC,
2203         };
2204
2205         if (!dmar_detect_dsm(handle, func))
2206                 return 0;
2207
2208         obj = acpi_evaluate_dsm_typed(handle, &dmar_hp_guid, DMAR_DSM_REV_ID,
2209                                       func, NULL, ACPI_TYPE_BUFFER);
2210         if (!obj)
2211                 return -ENODEV;
2212
2213         memset(&callback, 0, sizeof(callback));
2214         callback.cb[res_type[func]] = handler;
2215         callback.arg[res_type[func]] = arg;
2216         start = (struct acpi_dmar_header *)obj->buffer.pointer;
2217         ret = dmar_walk_remapping_entries(start, obj->buffer.length, &callback);
2218
2219         ACPI_FREE(obj);
2220
2221         return ret;
2222 }
2223
2224 static int dmar_hp_add_drhd(struct acpi_dmar_header *header, void *arg)
2225 {
2226         int ret;
2227         struct dmar_drhd_unit *dmaru;
2228
2229         dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
2230         if (!dmaru)
2231                 return -ENODEV;
2232
2233         ret = dmar_ir_hotplug(dmaru, true);
2234         if (ret == 0)
2235                 ret = dmar_iommu_hotplug(dmaru, true);
2236
2237         return ret;
2238 }
2239
2240 static int dmar_hp_remove_drhd(struct acpi_dmar_header *header, void *arg)
2241 {
2242         int i, ret;
2243         struct device *dev;
2244         struct dmar_drhd_unit *dmaru;
2245
2246         dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
2247         if (!dmaru)
2248                 return 0;
2249
2250         /*
2251          * All PCI devices managed by this unit should have been destroyed.
2252          */
2253         if (!dmaru->include_all && dmaru->devices && dmaru->devices_cnt) {
2254                 for_each_active_dev_scope(dmaru->devices,
2255                                           dmaru->devices_cnt, i, dev)
2256                         return -EBUSY;
2257         }
2258
2259         ret = dmar_ir_hotplug(dmaru, false);
2260         if (ret == 0)
2261                 ret = dmar_iommu_hotplug(dmaru, false);
2262
2263         return ret;
2264 }
2265
2266 static int dmar_hp_release_drhd(struct acpi_dmar_header *header, void *arg)
2267 {
2268         struct dmar_drhd_unit *dmaru;
2269
2270         dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
2271         if (dmaru) {
2272                 list_del_rcu(&dmaru->list);
2273                 synchronize_rcu();
2274                 dmar_free_drhd(dmaru);
2275         }
2276
2277         return 0;
2278 }
2279
2280 static int dmar_hotplug_insert(acpi_handle handle)
2281 {
2282         int ret;
2283         int drhd_count = 0;
2284
2285         ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2286                                      &dmar_validate_one_drhd, (void *)1);
2287         if (ret)
2288                 goto out;
2289
2290         ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2291                                      &dmar_parse_one_drhd, (void *)&drhd_count);
2292         if (ret == 0 && drhd_count == 0) {
2293                 pr_warn(FW_BUG "No DRHD structures in buffer returned by _DSM method\n");
2294                 goto out;
2295         } else if (ret) {
2296                 goto release_drhd;
2297         }
2298
2299         ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_RHSA,
2300                                      &dmar_parse_one_rhsa, NULL);
2301         if (ret)
2302                 goto release_drhd;
2303
2304         ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2305                                      &dmar_parse_one_atsr, NULL);
2306         if (ret)
2307                 goto release_atsr;
2308
2309         ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2310                                      &dmar_hp_add_drhd, NULL);
2311         if (!ret)
2312                 return 0;
2313
2314         dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2315                                &dmar_hp_remove_drhd, NULL);
2316 release_atsr:
2317         dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2318                                &dmar_release_one_atsr, NULL);
2319 release_drhd:
2320         dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2321                                &dmar_hp_release_drhd, NULL);
2322 out:
2323         return ret;
2324 }
2325
2326 static int dmar_hotplug_remove(acpi_handle handle)
2327 {
2328         int ret;
2329
2330         ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2331                                      &dmar_check_one_atsr, NULL);
2332         if (ret)
2333                 return ret;
2334
2335         ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2336                                      &dmar_hp_remove_drhd, NULL);
2337         if (ret == 0) {
2338                 WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2339                                                &dmar_release_one_atsr, NULL));
2340                 WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2341                                                &dmar_hp_release_drhd, NULL));
2342         } else {
2343                 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2344                                        &dmar_hp_add_drhd, NULL);
2345         }
2346
2347         return ret;
2348 }
2349
2350 static acpi_status dmar_get_dsm_handle(acpi_handle handle, u32 lvl,
2351                                        void *context, void **retval)
2352 {
2353         acpi_handle *phdl = retval;
2354
2355         if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) {
2356                 *phdl = handle;
2357                 return AE_CTRL_TERMINATE;
2358         }
2359
2360         return AE_OK;
2361 }
2362
2363 static int dmar_device_hotplug(acpi_handle handle, bool insert)
2364 {
2365         int ret;
2366         acpi_handle tmp = NULL;
2367         acpi_status status;
2368
2369         if (!dmar_in_use())
2370                 return 0;
2371
2372         if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) {
2373                 tmp = handle;
2374         } else {
2375                 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle,
2376                                              ACPI_UINT32_MAX,
2377                                              dmar_get_dsm_handle,
2378                                              NULL, NULL, &tmp);
2379                 if (ACPI_FAILURE(status)) {
2380                         pr_warn("Failed to locate _DSM method.\n");
2381                         return -ENXIO;
2382                 }
2383         }
2384         if (tmp == NULL)
2385                 return 0;
2386
2387         down_write(&dmar_global_lock);
2388         if (insert)
2389                 ret = dmar_hotplug_insert(tmp);
2390         else
2391                 ret = dmar_hotplug_remove(tmp);
2392         up_write(&dmar_global_lock);
2393
2394         return ret;
2395 }
2396
2397 int dmar_device_add(acpi_handle handle)
2398 {
2399         return dmar_device_hotplug(handle, true);
2400 }
2401
2402 int dmar_device_remove(acpi_handle handle)
2403 {
2404         return dmar_device_hotplug(handle, false);
2405 }
2406
2407 /*
2408  * dmar_platform_optin - Is %DMA_CTRL_PLATFORM_OPT_IN_FLAG set in DMAR table
2409  *
2410  * Returns true if the platform has %DMA_CTRL_PLATFORM_OPT_IN_FLAG set in
2411  * the ACPI DMAR table. This means that the platform boot firmware has made
2412  * sure no device can issue DMA outside of RMRR regions.
2413  */
2414 bool dmar_platform_optin(void)
2415 {
2416         struct acpi_table_dmar *dmar;
2417         acpi_status status;
2418         bool ret;
2419
2420         status = acpi_get_table(ACPI_SIG_DMAR, 0,
2421                                 (struct acpi_table_header **)&dmar);
2422         if (ACPI_FAILURE(status))
2423                 return false;
2424
2425         ret = !!(dmar->flags & DMAR_PLATFORM_OPT_IN);
2426         acpi_put_table((struct acpi_table_header *)dmar);
2427
2428         return ret;
2429 }
2430 EXPORT_SYMBOL_GPL(dmar_platform_optin);
This page took 0.18579 seconds and 4 git commands to generate.