1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (c) 2006, Intel Corporation.
5 * Copyright (C) 2006-2008 Intel Corporation
10 * This file implements early detection/parsing of Remapping Devices
11 * reported to OS through BIOS via DMA remapping reporting (DMAR) ACPI
14 * These routines are used by both DMA-remapping and Interrupt-remapping
17 #define pr_fmt(fmt) "DMAR: " fmt
19 #include <linux/pci.h>
20 #include <linux/dmar.h>
21 #include <linux/iova.h>
22 #include <linux/intel-iommu.h>
23 #include <linux/timer.h>
24 #include <linux/irq.h>
25 #include <linux/interrupt.h>
26 #include <linux/tboot.h>
27 #include <linux/dmi.h>
28 #include <linux/slab.h>
29 #include <linux/iommu.h>
30 #include <linux/numa.h>
31 #include <linux/limits.h>
32 #include <asm/irq_remapping.h>
33 #include <asm/iommu_table.h>
34 #include <trace/events/intel_iommu.h>
36 #include "../irq_remapping.h"
39 typedef int (*dmar_res_handler_t)(struct acpi_dmar_header *, void *);
40 struct dmar_res_callback {
41 dmar_res_handler_t cb[ACPI_DMAR_TYPE_RESERVED];
42 void *arg[ACPI_DMAR_TYPE_RESERVED];
43 bool ignore_unhandled;
49 * 1) The hotplug framework guarentees that DMAR unit will be hot-added
50 * before IO devices managed by that unit.
51 * 2) The hotplug framework guarantees that DMAR unit will be hot-removed
52 * after IO devices managed by that unit.
53 * 3) Hotplug events are rare.
55 * Locking rules for DMA and interrupt remapping related global data structures:
56 * 1) Use dmar_global_lock in process context
57 * 2) Use RCU in interrupt context
59 DECLARE_RWSEM(dmar_global_lock);
60 LIST_HEAD(dmar_drhd_units);
62 struct acpi_table_header * __initdata dmar_tbl;
63 static int dmar_dev_scope_status = 1;
64 static unsigned long dmar_seq_ids[BITS_TO_LONGS(DMAR_UNITS_SUPPORTED)];
66 static int alloc_iommu(struct dmar_drhd_unit *drhd);
67 static void free_iommu(struct intel_iommu *iommu);
69 extern const struct iommu_ops intel_iommu_ops;
71 static void dmar_register_drhd_unit(struct dmar_drhd_unit *drhd)
74 * add INCLUDE_ALL at the tail, so scan the list will find it at
77 if (drhd->include_all)
78 list_add_tail_rcu(&drhd->list, &dmar_drhd_units);
80 list_add_rcu(&drhd->list, &dmar_drhd_units);
83 void *dmar_alloc_dev_scope(void *start, void *end, int *cnt)
85 struct acpi_dmar_device_scope *scope;
90 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_NAMESPACE ||
91 scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
92 scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE)
94 else if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_IOAPIC &&
95 scope->entry_type != ACPI_DMAR_SCOPE_TYPE_HPET) {
96 pr_warn("Unsupported device scope\n");
98 start += scope->length;
103 return kcalloc(*cnt, sizeof(struct dmar_dev_scope), GFP_KERNEL);
106 void dmar_free_dev_scope(struct dmar_dev_scope **devices, int *cnt)
109 struct device *tmp_dev;
111 if (*devices && *cnt) {
112 for_each_active_dev_scope(*devices, *cnt, i, tmp_dev)
121 /* Optimize out kzalloc()/kfree() for normal cases */
122 static char dmar_pci_notify_info_buf[64];
124 static struct dmar_pci_notify_info *
125 dmar_alloc_pci_notify_info(struct pci_dev *dev, unsigned long event)
130 struct dmar_pci_notify_info *info;
132 BUG_ON(dev->is_virtfn);
135 * Ignore devices that have a domain number higher than what can
136 * be looked up in DMAR, e.g. VMD subdevices with domain 0x10000
138 if (pci_domain_nr(dev->bus) > U16_MAX)
141 /* Only generate path[] for device addition event */
142 if (event == BUS_NOTIFY_ADD_DEVICE)
143 for (tmp = dev; tmp; tmp = tmp->bus->self)
146 size = struct_size(info, path, level);
147 if (size <= sizeof(dmar_pci_notify_info_buf)) {
148 info = (struct dmar_pci_notify_info *)dmar_pci_notify_info_buf;
150 info = kzalloc(size, GFP_KERNEL);
152 pr_warn("Out of memory when allocating notify_info "
153 "for %s.\n", pci_name(dev));
154 if (dmar_dev_scope_status == 0)
155 dmar_dev_scope_status = -ENOMEM;
162 info->seg = pci_domain_nr(dev->bus);
164 if (event == BUS_NOTIFY_ADD_DEVICE) {
165 for (tmp = dev; tmp; tmp = tmp->bus->self) {
167 info->path[level].bus = tmp->bus->number;
168 info->path[level].device = PCI_SLOT(tmp->devfn);
169 info->path[level].function = PCI_FUNC(tmp->devfn);
170 if (pci_is_root_bus(tmp->bus))
171 info->bus = tmp->bus->number;
178 static inline void dmar_free_pci_notify_info(struct dmar_pci_notify_info *info)
180 if ((void *)info != dmar_pci_notify_info_buf)
184 static bool dmar_match_pci_path(struct dmar_pci_notify_info *info, int bus,
185 struct acpi_dmar_pci_path *path, int count)
189 if (info->bus != bus)
191 if (info->level != count)
194 for (i = 0; i < count; i++) {
195 if (path[i].device != info->path[i].device ||
196 path[i].function != info->path[i].function)
208 if (bus == info->path[i].bus &&
209 path[0].device == info->path[i].device &&
210 path[0].function == info->path[i].function) {
211 pr_info(FW_BUG "RMRR entry for device %02x:%02x.%x is broken - applying workaround\n",
212 bus, path[0].device, path[0].function);
219 /* Return: > 0 if match found, 0 if no match found, < 0 if error happens */
220 int dmar_insert_dev_scope(struct dmar_pci_notify_info *info,
221 void *start, void*end, u16 segment,
222 struct dmar_dev_scope *devices,
226 struct device *tmp, *dev = &info->dev->dev;
227 struct acpi_dmar_device_scope *scope;
228 struct acpi_dmar_pci_path *path;
230 if (segment != info->seg)
233 for (; start < end; start += scope->length) {
235 if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_ENDPOINT &&
236 scope->entry_type != ACPI_DMAR_SCOPE_TYPE_BRIDGE)
239 path = (struct acpi_dmar_pci_path *)(scope + 1);
240 level = (scope->length - sizeof(*scope)) / sizeof(*path);
241 if (!dmar_match_pci_path(info, scope->bus, path, level))
245 * We expect devices with endpoint scope to have normal PCI
246 * headers, and devices with bridge scope to have bridge PCI
247 * headers. However PCI NTB devices may be listed in the
248 * DMAR table with bridge scope, even though they have a
249 * normal PCI header. NTB devices are identified by class
250 * "BRIDGE_OTHER" (0680h) - we don't declare a socpe mismatch
251 * for this special case.
253 if ((scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT &&
254 info->dev->hdr_type != PCI_HEADER_TYPE_NORMAL) ||
255 (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE &&
256 (info->dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
257 info->dev->class >> 16 != PCI_BASE_CLASS_BRIDGE))) {
258 pr_warn("Device scope type does not match for %s\n",
259 pci_name(info->dev));
263 for_each_dev_scope(devices, devices_cnt, i, tmp)
265 devices[i].bus = info->dev->bus->number;
266 devices[i].devfn = info->dev->devfn;
267 rcu_assign_pointer(devices[i].dev,
271 BUG_ON(i >= devices_cnt);
277 int dmar_remove_dev_scope(struct dmar_pci_notify_info *info, u16 segment,
278 struct dmar_dev_scope *devices, int count)
283 if (info->seg != segment)
286 for_each_active_dev_scope(devices, count, index, tmp)
287 if (tmp == &info->dev->dev) {
288 RCU_INIT_POINTER(devices[index].dev, NULL);
297 static int dmar_pci_bus_add_dev(struct dmar_pci_notify_info *info)
300 struct dmar_drhd_unit *dmaru;
301 struct acpi_dmar_hardware_unit *drhd;
303 for_each_drhd_unit(dmaru) {
304 if (dmaru->include_all)
307 drhd = container_of(dmaru->hdr,
308 struct acpi_dmar_hardware_unit, header);
309 ret = dmar_insert_dev_scope(info, (void *)(drhd + 1),
310 ((void *)drhd) + drhd->header.length,
312 dmaru->devices, dmaru->devices_cnt);
317 ret = dmar_iommu_notify_scope_dev(info);
318 if (ret < 0 && dmar_dev_scope_status == 0)
319 dmar_dev_scope_status = ret;
322 intel_irq_remap_add_device(info);
327 static void dmar_pci_bus_del_dev(struct dmar_pci_notify_info *info)
329 struct dmar_drhd_unit *dmaru;
331 for_each_drhd_unit(dmaru)
332 if (dmar_remove_dev_scope(info, dmaru->segment,
333 dmaru->devices, dmaru->devices_cnt))
335 dmar_iommu_notify_scope_dev(info);
338 static inline void vf_inherit_msi_domain(struct pci_dev *pdev)
340 struct pci_dev *physfn = pci_physfn(pdev);
342 dev_set_msi_domain(&pdev->dev, dev_get_msi_domain(&physfn->dev));
345 static int dmar_pci_bus_notifier(struct notifier_block *nb,
346 unsigned long action, void *data)
348 struct pci_dev *pdev = to_pci_dev(data);
349 struct dmar_pci_notify_info *info;
351 /* Only care about add/remove events for physical functions.
352 * For VFs we actually do the lookup based on the corresponding
353 * PF in device_to_iommu() anyway. */
354 if (pdev->is_virtfn) {
356 * Ensure that the VF device inherits the irq domain of the
357 * PF device. Ideally the device would inherit the domain
358 * from the bus, but DMAR can have multiple units per bus
359 * which makes this impossible. The VF 'bus' could inherit
360 * from the PF device, but that's yet another x86'sism to
361 * inflict on everybody else.
363 if (action == BUS_NOTIFY_ADD_DEVICE)
364 vf_inherit_msi_domain(pdev);
368 if (action != BUS_NOTIFY_ADD_DEVICE &&
369 action != BUS_NOTIFY_REMOVED_DEVICE)
372 info = dmar_alloc_pci_notify_info(pdev, action);
376 down_write(&dmar_global_lock);
377 if (action == BUS_NOTIFY_ADD_DEVICE)
378 dmar_pci_bus_add_dev(info);
379 else if (action == BUS_NOTIFY_REMOVED_DEVICE)
380 dmar_pci_bus_del_dev(info);
381 up_write(&dmar_global_lock);
383 dmar_free_pci_notify_info(info);
388 static struct notifier_block dmar_pci_bus_nb = {
389 .notifier_call = dmar_pci_bus_notifier,
393 static struct dmar_drhd_unit *
394 dmar_find_dmaru(struct acpi_dmar_hardware_unit *drhd)
396 struct dmar_drhd_unit *dmaru;
398 list_for_each_entry_rcu(dmaru, &dmar_drhd_units, list,
400 if (dmaru->segment == drhd->segment &&
401 dmaru->reg_base_addr == drhd->address)
408 * dmar_parse_one_drhd - parses exactly one DMA remapping hardware definition
409 * structure which uniquely represent one DMA remapping hardware unit
410 * present in the platform
412 static int dmar_parse_one_drhd(struct acpi_dmar_header *header, void *arg)
414 struct acpi_dmar_hardware_unit *drhd;
415 struct dmar_drhd_unit *dmaru;
418 drhd = (struct acpi_dmar_hardware_unit *)header;
419 dmaru = dmar_find_dmaru(drhd);
423 dmaru = kzalloc(sizeof(*dmaru) + header->length, GFP_KERNEL);
428 * If header is allocated from slab by ACPI _DSM method, we need to
429 * copy the content because the memory buffer will be freed on return.
431 dmaru->hdr = (void *)(dmaru + 1);
432 memcpy(dmaru->hdr, header, header->length);
433 dmaru->reg_base_addr = drhd->address;
434 dmaru->segment = drhd->segment;
435 dmaru->include_all = drhd->flags & 0x1; /* BIT0: INCLUDE_ALL */
436 dmaru->devices = dmar_alloc_dev_scope((void *)(drhd + 1),
437 ((void *)drhd) + drhd->header.length,
438 &dmaru->devices_cnt);
439 if (dmaru->devices_cnt && dmaru->devices == NULL) {
444 ret = alloc_iommu(dmaru);
446 dmar_free_dev_scope(&dmaru->devices,
447 &dmaru->devices_cnt);
451 dmar_register_drhd_unit(dmaru);
460 static void dmar_free_drhd(struct dmar_drhd_unit *dmaru)
462 if (dmaru->devices && dmaru->devices_cnt)
463 dmar_free_dev_scope(&dmaru->devices, &dmaru->devices_cnt);
465 free_iommu(dmaru->iommu);
469 static int __init dmar_parse_one_andd(struct acpi_dmar_header *header,
472 struct acpi_dmar_andd *andd = (void *)header;
474 /* Check for NUL termination within the designated length */
475 if (strnlen(andd->device_name, header->length - 8) == header->length - 8) {
477 "Your BIOS is broken; ANDD object name is not NUL-terminated\n"
478 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
479 dmi_get_system_info(DMI_BIOS_VENDOR),
480 dmi_get_system_info(DMI_BIOS_VERSION),
481 dmi_get_system_info(DMI_PRODUCT_VERSION));
482 add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
485 pr_info("ANDD device: %x name: %s\n", andd->device_number,
491 #ifdef CONFIG_ACPI_NUMA
492 static int dmar_parse_one_rhsa(struct acpi_dmar_header *header, void *arg)
494 struct acpi_dmar_rhsa *rhsa;
495 struct dmar_drhd_unit *drhd;
497 rhsa = (struct acpi_dmar_rhsa *)header;
498 for_each_drhd_unit(drhd) {
499 if (drhd->reg_base_addr == rhsa->base_address) {
500 int node = pxm_to_node(rhsa->proximity_domain);
502 if (!node_online(node))
504 drhd->iommu->node = node;
509 "Your BIOS is broken; RHSA refers to non-existent DMAR unit at %llx\n"
510 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
512 dmi_get_system_info(DMI_BIOS_VENDOR),
513 dmi_get_system_info(DMI_BIOS_VERSION),
514 dmi_get_system_info(DMI_PRODUCT_VERSION));
515 add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
520 #define dmar_parse_one_rhsa dmar_res_noop
524 dmar_table_print_dmar_entry(struct acpi_dmar_header *header)
526 struct acpi_dmar_hardware_unit *drhd;
527 struct acpi_dmar_reserved_memory *rmrr;
528 struct acpi_dmar_atsr *atsr;
529 struct acpi_dmar_rhsa *rhsa;
530 struct acpi_dmar_satc *satc;
532 switch (header->type) {
533 case ACPI_DMAR_TYPE_HARDWARE_UNIT:
534 drhd = container_of(header, struct acpi_dmar_hardware_unit,
536 pr_info("DRHD base: %#016Lx flags: %#x\n",
537 (unsigned long long)drhd->address, drhd->flags);
539 case ACPI_DMAR_TYPE_RESERVED_MEMORY:
540 rmrr = container_of(header, struct acpi_dmar_reserved_memory,
542 pr_info("RMRR base: %#016Lx end: %#016Lx\n",
543 (unsigned long long)rmrr->base_address,
544 (unsigned long long)rmrr->end_address);
546 case ACPI_DMAR_TYPE_ROOT_ATS:
547 atsr = container_of(header, struct acpi_dmar_atsr, header);
548 pr_info("ATSR flags: %#x\n", atsr->flags);
550 case ACPI_DMAR_TYPE_HARDWARE_AFFINITY:
551 rhsa = container_of(header, struct acpi_dmar_rhsa, header);
552 pr_info("RHSA base: %#016Lx proximity domain: %#x\n",
553 (unsigned long long)rhsa->base_address,
554 rhsa->proximity_domain);
556 case ACPI_DMAR_TYPE_NAMESPACE:
557 /* We don't print this here because we need to sanity-check
558 it first. So print it in dmar_parse_one_andd() instead. */
560 case ACPI_DMAR_TYPE_SATC:
561 satc = container_of(header, struct acpi_dmar_satc, header);
562 pr_info("SATC flags: 0x%x\n", satc->flags);
568 * dmar_table_detect - checks to see if the platform supports DMAR devices
570 static int __init dmar_table_detect(void)
572 acpi_status status = AE_OK;
574 /* if we could find DMAR table, then there are DMAR devices */
575 status = acpi_get_table(ACPI_SIG_DMAR, 0, &dmar_tbl);
577 if (ACPI_SUCCESS(status) && !dmar_tbl) {
578 pr_warn("Unable to map DMAR\n");
579 status = AE_NOT_FOUND;
582 return ACPI_SUCCESS(status) ? 0 : -ENOENT;
585 static int dmar_walk_remapping_entries(struct acpi_dmar_header *start,
586 size_t len, struct dmar_res_callback *cb)
588 struct acpi_dmar_header *iter, *next;
589 struct acpi_dmar_header *end = ((void *)start) + len;
591 for (iter = start; iter < end; iter = next) {
592 next = (void *)iter + iter->length;
593 if (iter->length == 0) {
594 /* Avoid looping forever on bad ACPI tables */
595 pr_debug(FW_BUG "Invalid 0-length structure\n");
597 } else if (next > end) {
598 /* Avoid passing table end */
599 pr_warn(FW_BUG "Record passes table end\n");
604 dmar_table_print_dmar_entry(iter);
606 if (iter->type >= ACPI_DMAR_TYPE_RESERVED) {
607 /* continue for forward compatibility */
608 pr_debug("Unknown DMAR structure type %d\n",
610 } else if (cb->cb[iter->type]) {
613 ret = cb->cb[iter->type](iter, cb->arg[iter->type]);
616 } else if (!cb->ignore_unhandled) {
617 pr_warn("No handler for DMAR structure type %d\n",
626 static inline int dmar_walk_dmar_table(struct acpi_table_dmar *dmar,
627 struct dmar_res_callback *cb)
629 return dmar_walk_remapping_entries((void *)(dmar + 1),
630 dmar->header.length - sizeof(*dmar), cb);
634 * parse_dmar_table - parses the DMA reporting table
637 parse_dmar_table(void)
639 struct acpi_table_dmar *dmar;
642 struct dmar_res_callback cb = {
644 .ignore_unhandled = true,
645 .arg[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &drhd_count,
646 .cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_parse_one_drhd,
647 .cb[ACPI_DMAR_TYPE_RESERVED_MEMORY] = &dmar_parse_one_rmrr,
648 .cb[ACPI_DMAR_TYPE_ROOT_ATS] = &dmar_parse_one_atsr,
649 .cb[ACPI_DMAR_TYPE_HARDWARE_AFFINITY] = &dmar_parse_one_rhsa,
650 .cb[ACPI_DMAR_TYPE_NAMESPACE] = &dmar_parse_one_andd,
651 .cb[ACPI_DMAR_TYPE_SATC] = &dmar_parse_one_satc,
655 * Do it again, earlier dmar_tbl mapping could be mapped with
661 * ACPI tables may not be DMA protected by tboot, so use DMAR copy
662 * SINIT saved in SinitMleData in TXT heap (which is DMA protected)
664 dmar_tbl = tboot_get_dmar_table(dmar_tbl);
666 dmar = (struct acpi_table_dmar *)dmar_tbl;
670 if (dmar->width < PAGE_SHIFT - 1) {
671 pr_warn("Invalid DMAR haw\n");
675 pr_info("Host address width %d\n", dmar->width + 1);
676 ret = dmar_walk_dmar_table(dmar, &cb);
677 if (ret == 0 && drhd_count == 0)
678 pr_warn(FW_BUG "No DRHD structure found in DMAR table\n");
683 static int dmar_pci_device_match(struct dmar_dev_scope devices[],
684 int cnt, struct pci_dev *dev)
690 for_each_active_dev_scope(devices, cnt, index, tmp)
691 if (dev_is_pci(tmp) && dev == to_pci_dev(tmp))
694 /* Check our parent */
695 dev = dev->bus->self;
701 struct dmar_drhd_unit *
702 dmar_find_matched_drhd_unit(struct pci_dev *dev)
704 struct dmar_drhd_unit *dmaru;
705 struct acpi_dmar_hardware_unit *drhd;
707 dev = pci_physfn(dev);
710 for_each_drhd_unit(dmaru) {
711 drhd = container_of(dmaru->hdr,
712 struct acpi_dmar_hardware_unit,
715 if (dmaru->include_all &&
716 drhd->segment == pci_domain_nr(dev->bus))
719 if (dmar_pci_device_match(dmaru->devices,
720 dmaru->devices_cnt, dev))
730 static void __init dmar_acpi_insert_dev_scope(u8 device_number,
731 struct acpi_device *adev)
733 struct dmar_drhd_unit *dmaru;
734 struct acpi_dmar_hardware_unit *drhd;
735 struct acpi_dmar_device_scope *scope;
738 struct acpi_dmar_pci_path *path;
740 for_each_drhd_unit(dmaru) {
741 drhd = container_of(dmaru->hdr,
742 struct acpi_dmar_hardware_unit,
745 for (scope = (void *)(drhd + 1);
746 (unsigned long)scope < ((unsigned long)drhd) + drhd->header.length;
747 scope = ((void *)scope) + scope->length) {
748 if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_NAMESPACE)
750 if (scope->enumeration_id != device_number)
753 path = (void *)(scope + 1);
754 pr_info("ACPI device \"%s\" under DMAR at %llx as %02x:%02x.%d\n",
755 dev_name(&adev->dev), dmaru->reg_base_addr,
756 scope->bus, path->device, path->function);
757 for_each_dev_scope(dmaru->devices, dmaru->devices_cnt, i, tmp)
759 dmaru->devices[i].bus = scope->bus;
760 dmaru->devices[i].devfn = PCI_DEVFN(path->device,
762 rcu_assign_pointer(dmaru->devices[i].dev,
763 get_device(&adev->dev));
766 BUG_ON(i >= dmaru->devices_cnt);
769 pr_warn("No IOMMU scope found for ANDD enumeration ID %d (%s)\n",
770 device_number, dev_name(&adev->dev));
773 static int __init dmar_acpi_dev_scope_init(void)
775 struct acpi_dmar_andd *andd;
777 if (dmar_tbl == NULL)
780 for (andd = (void *)dmar_tbl + sizeof(struct acpi_table_dmar);
781 ((unsigned long)andd) < ((unsigned long)dmar_tbl) + dmar_tbl->length;
782 andd = ((void *)andd) + andd->header.length) {
783 if (andd->header.type == ACPI_DMAR_TYPE_NAMESPACE) {
785 struct acpi_device *adev;
787 if (!ACPI_SUCCESS(acpi_get_handle(ACPI_ROOT_OBJECT,
790 pr_err("Failed to find handle for ACPI object %s\n",
794 if (acpi_bus_get_device(h, &adev)) {
795 pr_err("Failed to get device for ACPI object %s\n",
799 dmar_acpi_insert_dev_scope(andd->device_number, adev);
805 int __init dmar_dev_scope_init(void)
807 struct pci_dev *dev = NULL;
808 struct dmar_pci_notify_info *info;
810 if (dmar_dev_scope_status != 1)
811 return dmar_dev_scope_status;
813 if (list_empty(&dmar_drhd_units)) {
814 dmar_dev_scope_status = -ENODEV;
816 dmar_dev_scope_status = 0;
818 dmar_acpi_dev_scope_init();
820 for_each_pci_dev(dev) {
824 info = dmar_alloc_pci_notify_info(dev,
825 BUS_NOTIFY_ADD_DEVICE);
827 return dmar_dev_scope_status;
829 dmar_pci_bus_add_dev(info);
830 dmar_free_pci_notify_info(info);
835 return dmar_dev_scope_status;
838 void __init dmar_register_bus_notifier(void)
840 bus_register_notifier(&pci_bus_type, &dmar_pci_bus_nb);
844 int __init dmar_table_init(void)
846 static int dmar_table_initialized;
849 if (dmar_table_initialized == 0) {
850 ret = parse_dmar_table();
853 pr_info("Parse DMAR table failure.\n");
854 } else if (list_empty(&dmar_drhd_units)) {
855 pr_info("No DMAR devices found\n");
860 dmar_table_initialized = ret;
862 dmar_table_initialized = 1;
865 return dmar_table_initialized < 0 ? dmar_table_initialized : 0;
868 static void warn_invalid_dmar(u64 addr, const char *message)
871 "Your BIOS is broken; DMAR reported at address %llx%s!\n"
872 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
874 dmi_get_system_info(DMI_BIOS_VENDOR),
875 dmi_get_system_info(DMI_BIOS_VERSION),
876 dmi_get_system_info(DMI_PRODUCT_VERSION));
877 add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
881 dmar_validate_one_drhd(struct acpi_dmar_header *entry, void *arg)
883 struct acpi_dmar_hardware_unit *drhd;
887 drhd = (void *)entry;
888 if (!drhd->address) {
889 warn_invalid_dmar(0, "");
894 addr = ioremap(drhd->address, VTD_PAGE_SIZE);
896 addr = early_ioremap(drhd->address, VTD_PAGE_SIZE);
898 pr_warn("Can't validate DRHD address: %llx\n", drhd->address);
902 cap = dmar_readq(addr + DMAR_CAP_REG);
903 ecap = dmar_readq(addr + DMAR_ECAP_REG);
908 early_iounmap(addr, VTD_PAGE_SIZE);
910 if (cap == (uint64_t)-1 && ecap == (uint64_t)-1) {
911 warn_invalid_dmar(drhd->address, " returns all ones");
918 int __init detect_intel_iommu(void)
921 struct dmar_res_callback validate_drhd_cb = {
922 .cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_validate_one_drhd,
923 .ignore_unhandled = true,
926 down_write(&dmar_global_lock);
927 ret = dmar_table_detect();
929 ret = dmar_walk_dmar_table((struct acpi_table_dmar *)dmar_tbl,
931 if (!ret && !no_iommu && !iommu_detected &&
932 (!dmar_disabled || dmar_platform_optin())) {
934 /* Make sure ACS will be enabled */
940 x86_init.iommu.iommu_init = intel_iommu_init;
941 x86_platform.iommu_shutdown = intel_iommu_shutdown;
947 acpi_put_table(dmar_tbl);
950 up_write(&dmar_global_lock);
952 return ret ? ret : 1;
955 static void unmap_iommu(struct intel_iommu *iommu)
958 release_mem_region(iommu->reg_phys, iommu->reg_size);
962 * map_iommu: map the iommu's registers
963 * @iommu: the iommu to map
964 * @phys_addr: the physical address of the base resgister
966 * Memory map the iommu's registers. Start w/ a single page, and
967 * possibly expand if that turns out to be insufficent.
969 static int map_iommu(struct intel_iommu *iommu, u64 phys_addr)
973 iommu->reg_phys = phys_addr;
974 iommu->reg_size = VTD_PAGE_SIZE;
976 if (!request_mem_region(iommu->reg_phys, iommu->reg_size, iommu->name)) {
977 pr_err("Can't reserve memory\n");
982 iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
984 pr_err("Can't map the region\n");
989 iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG);
990 iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG);
992 if (iommu->cap == (uint64_t)-1 && iommu->ecap == (uint64_t)-1) {
994 warn_invalid_dmar(phys_addr, " returns all ones");
997 if (ecap_vcs(iommu->ecap))
998 iommu->vccap = dmar_readq(iommu->reg + DMAR_VCCAP_REG);
1000 /* the registers might be more than one page */
1001 map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap),
1002 cap_max_fault_reg_offset(iommu->cap));
1003 map_size = VTD_PAGE_ALIGN(map_size);
1004 if (map_size > iommu->reg_size) {
1005 iounmap(iommu->reg);
1006 release_mem_region(iommu->reg_phys, iommu->reg_size);
1007 iommu->reg_size = map_size;
1008 if (!request_mem_region(iommu->reg_phys, iommu->reg_size,
1010 pr_err("Can't reserve memory\n");
1014 iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
1016 pr_err("Can't map the region\n");
1025 iounmap(iommu->reg);
1027 release_mem_region(iommu->reg_phys, iommu->reg_size);
1032 static int dmar_alloc_seq_id(struct intel_iommu *iommu)
1034 iommu->seq_id = find_first_zero_bit(dmar_seq_ids,
1035 DMAR_UNITS_SUPPORTED);
1036 if (iommu->seq_id >= DMAR_UNITS_SUPPORTED) {
1039 set_bit(iommu->seq_id, dmar_seq_ids);
1040 sprintf(iommu->name, "dmar%d", iommu->seq_id);
1043 return iommu->seq_id;
1046 static void dmar_free_seq_id(struct intel_iommu *iommu)
1048 if (iommu->seq_id >= 0) {
1049 clear_bit(iommu->seq_id, dmar_seq_ids);
1054 static int alloc_iommu(struct dmar_drhd_unit *drhd)
1056 struct intel_iommu *iommu;
1062 if (!drhd->reg_base_addr) {
1063 warn_invalid_dmar(0, "");
1067 iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
1071 if (dmar_alloc_seq_id(iommu) < 0) {
1072 pr_err("Failed to allocate seq_id\n");
1077 err = map_iommu(iommu, drhd->reg_base_addr);
1079 pr_err("Failed to map %s\n", iommu->name);
1080 goto error_free_seq_id;
1084 if (cap_sagaw(iommu->cap) == 0) {
1085 pr_info("%s: No supported address widths. Not attempting DMA translation.\n",
1090 if (!drhd->ignored) {
1091 agaw = iommu_calculate_agaw(iommu);
1093 pr_err("Cannot get a valid agaw for iommu (seq_id = %d)\n",
1098 if (!drhd->ignored) {
1099 msagaw = iommu_calculate_max_sagaw(iommu);
1101 pr_err("Cannot get a valid max agaw for iommu (seq_id = %d)\n",
1108 iommu->msagaw = msagaw;
1109 iommu->segment = drhd->segment;
1111 iommu->node = NUMA_NO_NODE;
1113 ver = readl(iommu->reg + DMAR_VER_REG);
1114 pr_info("%s: reg_base_addr %llx ver %d:%d cap %llx ecap %llx\n",
1116 (unsigned long long)drhd->reg_base_addr,
1117 DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver),
1118 (unsigned long long)iommu->cap,
1119 (unsigned long long)iommu->ecap);
1121 /* Reflect status in gcmd */
1122 sts = readl(iommu->reg + DMAR_GSTS_REG);
1123 if (sts & DMA_GSTS_IRES)
1124 iommu->gcmd |= DMA_GCMD_IRE;
1125 if (sts & DMA_GSTS_TES)
1126 iommu->gcmd |= DMA_GCMD_TE;
1127 if (sts & DMA_GSTS_QIES)
1128 iommu->gcmd |= DMA_GCMD_QIE;
1130 raw_spin_lock_init(&iommu->register_lock);
1133 * This is only for hotplug; at boot time intel_iommu_enabled won't
1134 * be set yet. When intel_iommu_init() runs, it registers the units
1135 * present at boot time, then sets intel_iommu_enabled.
1137 if (intel_iommu_enabled && !drhd->ignored) {
1138 err = iommu_device_sysfs_add(&iommu->iommu, NULL,
1144 err = iommu_device_register(&iommu->iommu, &intel_iommu_ops, NULL);
1149 drhd->iommu = iommu;
1155 iommu_device_sysfs_remove(&iommu->iommu);
1159 dmar_free_seq_id(iommu);
1165 static void free_iommu(struct intel_iommu *iommu)
1167 if (intel_iommu_enabled && !iommu->drhd->ignored) {
1168 iommu_device_unregister(&iommu->iommu);
1169 iommu_device_sysfs_remove(&iommu->iommu);
1173 if (iommu->pr_irq) {
1174 free_irq(iommu->pr_irq, iommu);
1175 dmar_free_hwirq(iommu->pr_irq);
1178 free_irq(iommu->irq, iommu);
1179 dmar_free_hwirq(iommu->irq);
1184 free_page((unsigned long)iommu->qi->desc);
1185 kfree(iommu->qi->desc_status);
1192 dmar_free_seq_id(iommu);
1197 * Reclaim all the submitted descriptors which have completed its work.
1199 static inline void reclaim_free_desc(struct q_inval *qi)
1201 while (qi->desc_status[qi->free_tail] == QI_DONE ||
1202 qi->desc_status[qi->free_tail] == QI_ABORT) {
1203 qi->desc_status[qi->free_tail] = QI_FREE;
1204 qi->free_tail = (qi->free_tail + 1) % QI_LENGTH;
1209 static const char *qi_type_string(u8 type)
1213 return "Context-cache Invalidation";
1215 return "IOTLB Invalidation";
1216 case QI_DIOTLB_TYPE:
1217 return "Device-TLB Invalidation";
1219 return "Interrupt Entry Cache Invalidation";
1221 return "Invalidation Wait";
1222 case QI_EIOTLB_TYPE:
1223 return "PASID-based IOTLB Invalidation";
1225 return "PASID-cache Invalidation";
1226 case QI_DEIOTLB_TYPE:
1227 return "PASID-based Device-TLB Invalidation";
1228 case QI_PGRP_RESP_TYPE:
1229 return "Page Group Response";
1235 static void qi_dump_fault(struct intel_iommu *iommu, u32 fault)
1237 unsigned int head = dmar_readl(iommu->reg + DMAR_IQH_REG);
1238 u64 iqe_err = dmar_readq(iommu->reg + DMAR_IQER_REG);
1239 struct qi_desc *desc = iommu->qi->desc + head;
1241 if (fault & DMA_FSTS_IQE)
1242 pr_err("VT-d detected Invalidation Queue Error: Reason %llx",
1243 DMAR_IQER_REG_IQEI(iqe_err));
1244 if (fault & DMA_FSTS_ITE)
1245 pr_err("VT-d detected Invalidation Time-out Error: SID %llx",
1246 DMAR_IQER_REG_ITESID(iqe_err));
1247 if (fault & DMA_FSTS_ICE)
1248 pr_err("VT-d detected Invalidation Completion Error: SID %llx",
1249 DMAR_IQER_REG_ICESID(iqe_err));
1251 pr_err("QI HEAD: %s qw0 = 0x%llx, qw1 = 0x%llx\n",
1252 qi_type_string(desc->qw0 & 0xf),
1253 (unsigned long long)desc->qw0,
1254 (unsigned long long)desc->qw1);
1256 head = ((head >> qi_shift(iommu)) + QI_LENGTH - 1) % QI_LENGTH;
1257 head <<= qi_shift(iommu);
1258 desc = iommu->qi->desc + head;
1260 pr_err("QI PRIOR: %s qw0 = 0x%llx, qw1 = 0x%llx\n",
1261 qi_type_string(desc->qw0 & 0xf),
1262 (unsigned long long)desc->qw0,
1263 (unsigned long long)desc->qw1);
1266 static int qi_check_fault(struct intel_iommu *iommu, int index, int wait_index)
1270 struct q_inval *qi = iommu->qi;
1271 int shift = qi_shift(iommu);
1273 if (qi->desc_status[wait_index] == QI_ABORT)
1276 fault = readl(iommu->reg + DMAR_FSTS_REG);
1277 if (fault & (DMA_FSTS_IQE | DMA_FSTS_ITE | DMA_FSTS_ICE))
1278 qi_dump_fault(iommu, fault);
1281 * If IQE happens, the head points to the descriptor associated
1282 * with the error. No new descriptors are fetched until the IQE
1285 if (fault & DMA_FSTS_IQE) {
1286 head = readl(iommu->reg + DMAR_IQH_REG);
1287 if ((head >> shift) == index) {
1288 struct qi_desc *desc = qi->desc + head;
1291 * desc->qw2 and desc->qw3 are either reserved or
1292 * used by software as private data. We won't print
1293 * out these two qw's for security consideration.
1295 memcpy(desc, qi->desc + (wait_index << shift),
1297 writel(DMA_FSTS_IQE, iommu->reg + DMAR_FSTS_REG);
1298 pr_info("Invalidation Queue Error (IQE) cleared\n");
1304 * If ITE happens, all pending wait_desc commands are aborted.
1305 * No new descriptors are fetched until the ITE is cleared.
1307 if (fault & DMA_FSTS_ITE) {
1308 head = readl(iommu->reg + DMAR_IQH_REG);
1309 head = ((head >> shift) - 1 + QI_LENGTH) % QI_LENGTH;
1311 tail = readl(iommu->reg + DMAR_IQT_REG);
1312 tail = ((tail >> shift) - 1 + QI_LENGTH) % QI_LENGTH;
1314 writel(DMA_FSTS_ITE, iommu->reg + DMAR_FSTS_REG);
1315 pr_info("Invalidation Time-out Error (ITE) cleared\n");
1318 if (qi->desc_status[head] == QI_IN_USE)
1319 qi->desc_status[head] = QI_ABORT;
1320 head = (head - 2 + QI_LENGTH) % QI_LENGTH;
1321 } while (head != tail);
1323 if (qi->desc_status[wait_index] == QI_ABORT)
1327 if (fault & DMA_FSTS_ICE) {
1328 writel(DMA_FSTS_ICE, iommu->reg + DMAR_FSTS_REG);
1329 pr_info("Invalidation Completion Error (ICE) cleared\n");
1336 * Function to submit invalidation descriptors of all types to the queued
1337 * invalidation interface(QI). Multiple descriptors can be submitted at a
1338 * time, a wait descriptor will be appended to each submission to ensure
1339 * hardware has completed the invalidation before return. Wait descriptors
1340 * can be part of the submission but it will not be polled for completion.
1342 int qi_submit_sync(struct intel_iommu *iommu, struct qi_desc *desc,
1343 unsigned int count, unsigned long options)
1345 struct q_inval *qi = iommu->qi;
1346 s64 devtlb_start_ktime = 0;
1347 s64 iotlb_start_ktime = 0;
1348 s64 iec_start_ktime = 0;
1349 struct qi_desc wait_desc;
1350 int wait_index, index;
1351 unsigned long flags;
1359 type = desc->qw0 & GENMASK_ULL(3, 0);
1361 if ((type == QI_IOTLB_TYPE || type == QI_EIOTLB_TYPE) &&
1362 dmar_latency_enabled(iommu, DMAR_LATENCY_INV_IOTLB))
1363 iotlb_start_ktime = ktime_to_ns(ktime_get());
1365 if ((type == QI_DIOTLB_TYPE || type == QI_DEIOTLB_TYPE) &&
1366 dmar_latency_enabled(iommu, DMAR_LATENCY_INV_DEVTLB))
1367 devtlb_start_ktime = ktime_to_ns(ktime_get());
1369 if (type == QI_IEC_TYPE &&
1370 dmar_latency_enabled(iommu, DMAR_LATENCY_INV_IEC))
1371 iec_start_ktime = ktime_to_ns(ktime_get());
1376 raw_spin_lock_irqsave(&qi->q_lock, flags);
1378 * Check if we have enough empty slots in the queue to submit,
1379 * the calculation is based on:
1380 * # of desc + 1 wait desc + 1 space between head and tail
1382 while (qi->free_cnt < count + 2) {
1383 raw_spin_unlock_irqrestore(&qi->q_lock, flags);
1385 raw_spin_lock_irqsave(&qi->q_lock, flags);
1388 index = qi->free_head;
1389 wait_index = (index + count) % QI_LENGTH;
1390 shift = qi_shift(iommu);
1392 for (i = 0; i < count; i++) {
1393 offset = ((index + i) % QI_LENGTH) << shift;
1394 memcpy(qi->desc + offset, &desc[i], 1 << shift);
1395 qi->desc_status[(index + i) % QI_LENGTH] = QI_IN_USE;
1396 trace_qi_submit(iommu, desc[i].qw0, desc[i].qw1,
1397 desc[i].qw2, desc[i].qw3);
1399 qi->desc_status[wait_index] = QI_IN_USE;
1401 wait_desc.qw0 = QI_IWD_STATUS_DATA(QI_DONE) |
1402 QI_IWD_STATUS_WRITE | QI_IWD_TYPE;
1403 if (options & QI_OPT_WAIT_DRAIN)
1404 wait_desc.qw0 |= QI_IWD_PRQ_DRAIN;
1405 wait_desc.qw1 = virt_to_phys(&qi->desc_status[wait_index]);
1409 offset = wait_index << shift;
1410 memcpy(qi->desc + offset, &wait_desc, 1 << shift);
1412 qi->free_head = (qi->free_head + count + 1) % QI_LENGTH;
1413 qi->free_cnt -= count + 1;
1416 * update the HW tail register indicating the presence of
1419 writel(qi->free_head << shift, iommu->reg + DMAR_IQT_REG);
1421 while (qi->desc_status[wait_index] != QI_DONE) {
1423 * We will leave the interrupts disabled, to prevent interrupt
1424 * context to queue another cmd while a cmd is already submitted
1425 * and waiting for completion on this cpu. This is to avoid
1426 * a deadlock where the interrupt context can wait indefinitely
1427 * for free slots in the queue.
1429 rc = qi_check_fault(iommu, index, wait_index);
1433 raw_spin_unlock(&qi->q_lock);
1435 raw_spin_lock(&qi->q_lock);
1438 for (i = 0; i < count; i++)
1439 qi->desc_status[(index + i) % QI_LENGTH] = QI_DONE;
1441 reclaim_free_desc(qi);
1442 raw_spin_unlock_irqrestore(&qi->q_lock, flags);
1447 if (iotlb_start_ktime)
1448 dmar_latency_update(iommu, DMAR_LATENCY_INV_IOTLB,
1449 ktime_to_ns(ktime_get()) - iotlb_start_ktime);
1451 if (devtlb_start_ktime)
1452 dmar_latency_update(iommu, DMAR_LATENCY_INV_DEVTLB,
1453 ktime_to_ns(ktime_get()) - devtlb_start_ktime);
1455 if (iec_start_ktime)
1456 dmar_latency_update(iommu, DMAR_LATENCY_INV_IEC,
1457 ktime_to_ns(ktime_get()) - iec_start_ktime);
1463 * Flush the global interrupt entry cache.
1465 void qi_global_iec(struct intel_iommu *iommu)
1467 struct qi_desc desc;
1469 desc.qw0 = QI_IEC_TYPE;
1474 /* should never fail */
1475 qi_submit_sync(iommu, &desc, 1, 0);
1478 void qi_flush_context(struct intel_iommu *iommu, u16 did, u16 sid, u8 fm,
1481 struct qi_desc desc;
1483 desc.qw0 = QI_CC_FM(fm) | QI_CC_SID(sid) | QI_CC_DID(did)
1484 | QI_CC_GRAN(type) | QI_CC_TYPE;
1489 qi_submit_sync(iommu, &desc, 1, 0);
1492 void qi_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr,
1493 unsigned int size_order, u64 type)
1497 struct qi_desc desc;
1500 if (cap_write_drain(iommu->cap))
1503 if (cap_read_drain(iommu->cap))
1506 desc.qw0 = QI_IOTLB_DID(did) | QI_IOTLB_DR(dr) | QI_IOTLB_DW(dw)
1507 | QI_IOTLB_GRAN(type) | QI_IOTLB_TYPE;
1508 desc.qw1 = QI_IOTLB_ADDR(addr) | QI_IOTLB_IH(ih)
1509 | QI_IOTLB_AM(size_order);
1513 qi_submit_sync(iommu, &desc, 1, 0);
1516 void qi_flush_dev_iotlb(struct intel_iommu *iommu, u16 sid, u16 pfsid,
1517 u16 qdep, u64 addr, unsigned mask)
1519 struct qi_desc desc;
1522 addr |= (1ULL << (VTD_PAGE_SHIFT + mask - 1)) - 1;
1523 desc.qw1 = QI_DEV_IOTLB_ADDR(addr) | QI_DEV_IOTLB_SIZE;
1525 desc.qw1 = QI_DEV_IOTLB_ADDR(addr);
1527 if (qdep >= QI_DEV_IOTLB_MAX_INVS)
1530 desc.qw0 = QI_DEV_IOTLB_SID(sid) | QI_DEV_IOTLB_QDEP(qdep) |
1531 QI_DIOTLB_TYPE | QI_DEV_IOTLB_PFSID(pfsid);
1535 qi_submit_sync(iommu, &desc, 1, 0);
1538 /* PASID-based IOTLB invalidation */
1539 void qi_flush_piotlb(struct intel_iommu *iommu, u16 did, u32 pasid, u64 addr,
1540 unsigned long npages, bool ih)
1542 struct qi_desc desc = {.qw2 = 0, .qw3 = 0};
1545 * npages == -1 means a PASID-selective invalidation, otherwise,
1546 * a positive value for Page-selective-within-PASID invalidation.
1547 * 0 is not a valid input.
1549 if (WARN_ON(!npages)) {
1550 pr_err("Invalid input npages = %ld\n", npages);
1555 desc.qw0 = QI_EIOTLB_PASID(pasid) |
1556 QI_EIOTLB_DID(did) |
1557 QI_EIOTLB_GRAN(QI_GRAN_NONG_PASID) |
1561 int mask = ilog2(__roundup_pow_of_two(npages));
1562 unsigned long align = (1ULL << (VTD_PAGE_SHIFT + mask));
1564 if (WARN_ON_ONCE(!IS_ALIGNED(addr, align)))
1565 addr = ALIGN_DOWN(addr, align);
1567 desc.qw0 = QI_EIOTLB_PASID(pasid) |
1568 QI_EIOTLB_DID(did) |
1569 QI_EIOTLB_GRAN(QI_GRAN_PSI_PASID) |
1571 desc.qw1 = QI_EIOTLB_ADDR(addr) |
1576 qi_submit_sync(iommu, &desc, 1, 0);
1579 /* PASID-based device IOTLB Invalidate */
1580 void qi_flush_dev_iotlb_pasid(struct intel_iommu *iommu, u16 sid, u16 pfsid,
1581 u32 pasid, u16 qdep, u64 addr, unsigned int size_order)
1583 unsigned long mask = 1UL << (VTD_PAGE_SHIFT + size_order - 1);
1584 struct qi_desc desc = {.qw1 = 0, .qw2 = 0, .qw3 = 0};
1586 desc.qw0 = QI_DEV_EIOTLB_PASID(pasid) | QI_DEV_EIOTLB_SID(sid) |
1587 QI_DEV_EIOTLB_QDEP(qdep) | QI_DEIOTLB_TYPE |
1588 QI_DEV_IOTLB_PFSID(pfsid);
1591 * If S bit is 0, we only flush a single page. If S bit is set,
1592 * The least significant zero bit indicates the invalidation address
1593 * range. VT-d spec 6.5.2.6.
1594 * e.g. address bit 12[0] indicates 8KB, 13[0] indicates 16KB.
1595 * size order = 0 is PAGE_SIZE 4KB
1596 * Max Invs Pending (MIP) is set to 0 for now until we have DIT in
1599 if (!IS_ALIGNED(addr, VTD_PAGE_SIZE << size_order))
1600 pr_warn_ratelimited("Invalidate non-aligned address %llx, order %d\n",
1603 /* Take page address */
1604 desc.qw1 = QI_DEV_EIOTLB_ADDR(addr);
1608 * Existing 0s in address below size_order may be the least
1609 * significant bit, we must set them to 1s to avoid having
1610 * smaller size than desired.
1612 desc.qw1 |= GENMASK_ULL(size_order + VTD_PAGE_SHIFT - 1,
1614 /* Clear size_order bit to indicate size */
1616 /* Set the S bit to indicate flushing more than 1 page */
1617 desc.qw1 |= QI_DEV_EIOTLB_SIZE;
1620 qi_submit_sync(iommu, &desc, 1, 0);
1623 void qi_flush_pasid_cache(struct intel_iommu *iommu, u16 did,
1624 u64 granu, u32 pasid)
1626 struct qi_desc desc = {.qw1 = 0, .qw2 = 0, .qw3 = 0};
1628 desc.qw0 = QI_PC_PASID(pasid) | QI_PC_DID(did) |
1629 QI_PC_GRAN(granu) | QI_PC_TYPE;
1630 qi_submit_sync(iommu, &desc, 1, 0);
1634 * Disable Queued Invalidation interface.
1636 void dmar_disable_qi(struct intel_iommu *iommu)
1638 unsigned long flags;
1640 cycles_t start_time = get_cycles();
1642 if (!ecap_qis(iommu->ecap))
1645 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1647 sts = readl(iommu->reg + DMAR_GSTS_REG);
1648 if (!(sts & DMA_GSTS_QIES))
1652 * Give a chance to HW to complete the pending invalidation requests.
1654 while ((readl(iommu->reg + DMAR_IQT_REG) !=
1655 readl(iommu->reg + DMAR_IQH_REG)) &&
1656 (DMAR_OPERATION_TIMEOUT > (get_cycles() - start_time)))
1659 iommu->gcmd &= ~DMA_GCMD_QIE;
1660 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1662 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl,
1663 !(sts & DMA_GSTS_QIES), sts);
1665 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1669 * Enable queued invalidation.
1671 static void __dmar_enable_qi(struct intel_iommu *iommu)
1674 unsigned long flags;
1675 struct q_inval *qi = iommu->qi;
1676 u64 val = virt_to_phys(qi->desc);
1678 qi->free_head = qi->free_tail = 0;
1679 qi->free_cnt = QI_LENGTH;
1682 * Set DW=1 and QS=1 in IQA_REG when Scalable Mode capability
1685 if (ecap_smts(iommu->ecap))
1686 val |= (1 << 11) | 1;
1688 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1690 /* write zero to the tail reg */
1691 writel(0, iommu->reg + DMAR_IQT_REG);
1693 dmar_writeq(iommu->reg + DMAR_IQA_REG, val);
1695 iommu->gcmd |= DMA_GCMD_QIE;
1696 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1698 /* Make sure hardware complete it */
1699 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_QIES), sts);
1701 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1705 * Enable Queued Invalidation interface. This is a must to support
1706 * interrupt-remapping. Also used by DMA-remapping, which replaces
1707 * register based IOTLB invalidation.
1709 int dmar_enable_qi(struct intel_iommu *iommu)
1712 struct page *desc_page;
1714 if (!ecap_qis(iommu->ecap))
1718 * queued invalidation is already setup and enabled.
1723 iommu->qi = kmalloc(sizeof(*qi), GFP_ATOMIC);
1730 * Need two pages to accommodate 256 descriptors of 256 bits each
1731 * if the remapping hardware supports scalable mode translation.
1733 desc_page = alloc_pages_node(iommu->node, GFP_ATOMIC | __GFP_ZERO,
1734 !!ecap_smts(iommu->ecap));
1741 qi->desc = page_address(desc_page);
1743 qi->desc_status = kcalloc(QI_LENGTH, sizeof(int), GFP_ATOMIC);
1744 if (!qi->desc_status) {
1745 free_page((unsigned long) qi->desc);
1751 raw_spin_lock_init(&qi->q_lock);
1753 __dmar_enable_qi(iommu);
1758 /* iommu interrupt handling. Most stuff are MSI-like. */
1766 static const char *dma_remap_fault_reasons[] =
1769 "Present bit in root entry is clear",
1770 "Present bit in context entry is clear",
1771 "Invalid context entry",
1772 "Access beyond MGAW",
1773 "PTE Write access is not set",
1774 "PTE Read access is not set",
1775 "Next page table ptr is invalid",
1776 "Root table address invalid",
1777 "Context table ptr is invalid",
1778 "non-zero reserved fields in RTP",
1779 "non-zero reserved fields in CTP",
1780 "non-zero reserved fields in PTE",
1781 "PCE for translation request specifies blocking",
1784 static const char * const dma_remap_sm_fault_reasons[] = {
1785 "SM: Invalid Root Table Address",
1786 "SM: TTM 0 for request with PASID",
1787 "SM: TTM 0 for page group request",
1788 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x33-0x37 */
1789 "SM: Error attempting to access Root Entry",
1790 "SM: Present bit in Root Entry is clear",
1791 "SM: Non-zero reserved field set in Root Entry",
1792 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x3B-0x3F */
1793 "SM: Error attempting to access Context Entry",
1794 "SM: Present bit in Context Entry is clear",
1795 "SM: Non-zero reserved field set in the Context Entry",
1796 "SM: Invalid Context Entry",
1797 "SM: DTE field in Context Entry is clear",
1798 "SM: PASID Enable field in Context Entry is clear",
1799 "SM: PASID is larger than the max in Context Entry",
1800 "SM: PRE field in Context-Entry is clear",
1801 "SM: RID_PASID field error in Context-Entry",
1802 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x49-0x4F */
1803 "SM: Error attempting to access the PASID Directory Entry",
1804 "SM: Present bit in Directory Entry is clear",
1805 "SM: Non-zero reserved field set in PASID Directory Entry",
1806 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x53-0x57 */
1807 "SM: Error attempting to access PASID Table Entry",
1808 "SM: Present bit in PASID Table Entry is clear",
1809 "SM: Non-zero reserved field set in PASID Table Entry",
1810 "SM: Invalid Scalable-Mode PASID Table Entry",
1811 "SM: ERE field is clear in PASID Table Entry",
1812 "SM: SRE field is clear in PASID Table Entry",
1813 "Unknown", "Unknown",/* 0x5E-0x5F */
1814 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x60-0x67 */
1815 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x68-0x6F */
1816 "SM: Error attempting to access first-level paging entry",
1817 "SM: Present bit in first-level paging entry is clear",
1818 "SM: Non-zero reserved field set in first-level paging entry",
1819 "SM: Error attempting to access FL-PML4 entry",
1820 "SM: First-level entry address beyond MGAW in Nested translation",
1821 "SM: Read permission error in FL-PML4 entry in Nested translation",
1822 "SM: Read permission error in first-level paging entry in Nested translation",
1823 "SM: Write permission error in first-level paging entry in Nested translation",
1824 "SM: Error attempting to access second-level paging entry",
1825 "SM: Read/Write permission error in second-level paging entry",
1826 "SM: Non-zero reserved field set in second-level paging entry",
1827 "SM: Invalid second-level page table pointer",
1828 "SM: A/D bit update needed in second-level entry when set up in no snoop",
1829 "Unknown", "Unknown", "Unknown", /* 0x7D-0x7F */
1830 "SM: Address in first-level translation is not canonical",
1831 "SM: U/S set 0 for first-level translation with user privilege",
1832 "SM: No execute permission for request with PASID and ER=1",
1833 "SM: Address beyond the DMA hardware max",
1834 "SM: Second-level entry address beyond the max",
1835 "SM: No write permission for Write/AtomicOp request",
1836 "SM: No read permission for Read/AtomicOp request",
1837 "SM: Invalid address-interrupt address",
1838 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x88-0x8F */
1839 "SM: A/D bit update needed in first-level entry when set up in no snoop",
1842 static const char *irq_remap_fault_reasons[] =
1844 "Detected reserved fields in the decoded interrupt-remapped request",
1845 "Interrupt index exceeded the interrupt-remapping table size",
1846 "Present field in the IRTE entry is clear",
1847 "Error accessing interrupt-remapping table pointed by IRTA_REG",
1848 "Detected reserved fields in the IRTE entry",
1849 "Blocked a compatibility format interrupt request",
1850 "Blocked an interrupt request due to source-id verification failure",
1853 static const char *dmar_get_fault_reason(u8 fault_reason, int *fault_type)
1855 if (fault_reason >= 0x20 && (fault_reason - 0x20 <
1856 ARRAY_SIZE(irq_remap_fault_reasons))) {
1857 *fault_type = INTR_REMAP;
1858 return irq_remap_fault_reasons[fault_reason - 0x20];
1859 } else if (fault_reason >= 0x30 && (fault_reason - 0x30 <
1860 ARRAY_SIZE(dma_remap_sm_fault_reasons))) {
1861 *fault_type = DMA_REMAP;
1862 return dma_remap_sm_fault_reasons[fault_reason - 0x30];
1863 } else if (fault_reason < ARRAY_SIZE(dma_remap_fault_reasons)) {
1864 *fault_type = DMA_REMAP;
1865 return dma_remap_fault_reasons[fault_reason];
1867 *fault_type = UNKNOWN;
1873 static inline int dmar_msi_reg(struct intel_iommu *iommu, int irq)
1875 if (iommu->irq == irq)
1876 return DMAR_FECTL_REG;
1877 else if (iommu->pr_irq == irq)
1878 return DMAR_PECTL_REG;
1883 void dmar_msi_unmask(struct irq_data *data)
1885 struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1886 int reg = dmar_msi_reg(iommu, data->irq);
1890 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1891 writel(0, iommu->reg + reg);
1892 /* Read a reg to force flush the post write */
1893 readl(iommu->reg + reg);
1894 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1897 void dmar_msi_mask(struct irq_data *data)
1899 struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1900 int reg = dmar_msi_reg(iommu, data->irq);
1904 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1905 writel(DMA_FECTL_IM, iommu->reg + reg);
1906 /* Read a reg to force flush the post write */
1907 readl(iommu->reg + reg);
1908 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1911 void dmar_msi_write(int irq, struct msi_msg *msg)
1913 struct intel_iommu *iommu = irq_get_handler_data(irq);
1914 int reg = dmar_msi_reg(iommu, irq);
1917 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1918 writel(msg->data, iommu->reg + reg + 4);
1919 writel(msg->address_lo, iommu->reg + reg + 8);
1920 writel(msg->address_hi, iommu->reg + reg + 12);
1921 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1924 void dmar_msi_read(int irq, struct msi_msg *msg)
1926 struct intel_iommu *iommu = irq_get_handler_data(irq);
1927 int reg = dmar_msi_reg(iommu, irq);
1930 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1931 msg->data = readl(iommu->reg + reg + 4);
1932 msg->address_lo = readl(iommu->reg + reg + 8);
1933 msg->address_hi = readl(iommu->reg + reg + 12);
1934 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1937 static int dmar_fault_do_one(struct intel_iommu *iommu, int type,
1938 u8 fault_reason, u32 pasid, u16 source_id,
1939 unsigned long long addr)
1944 reason = dmar_get_fault_reason(fault_reason, &fault_type);
1946 if (fault_type == INTR_REMAP)
1947 pr_err("[INTR-REMAP] Request device [0x%02x:0x%02x.%d] fault index 0x%llx [fault reason 0x%02x] %s\n",
1948 source_id >> 8, PCI_SLOT(source_id & 0xFF),
1949 PCI_FUNC(source_id & 0xFF), addr >> 48,
1950 fault_reason, reason);
1951 else if (pasid == INVALID_IOASID)
1952 pr_err("[%s NO_PASID] Request device [0x%02x:0x%02x.%d] fault addr 0x%llx [fault reason 0x%02x] %s\n",
1953 type ? "DMA Read" : "DMA Write",
1954 source_id >> 8, PCI_SLOT(source_id & 0xFF),
1955 PCI_FUNC(source_id & 0xFF), addr,
1956 fault_reason, reason);
1958 pr_err("[%s PASID 0x%x] Request device [0x%02x:0x%02x.%d] fault addr 0x%llx [fault reason 0x%02x] %s\n",
1959 type ? "DMA Read" : "DMA Write", pasid,
1960 source_id >> 8, PCI_SLOT(source_id & 0xFF),
1961 PCI_FUNC(source_id & 0xFF), addr,
1962 fault_reason, reason);
1967 #define PRIMARY_FAULT_REG_LEN (16)
1968 irqreturn_t dmar_fault(int irq, void *dev_id)
1970 struct intel_iommu *iommu = dev_id;
1971 int reg, fault_index;
1974 static DEFINE_RATELIMIT_STATE(rs,
1975 DEFAULT_RATELIMIT_INTERVAL,
1976 DEFAULT_RATELIMIT_BURST);
1978 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1979 fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1980 if (fault_status && __ratelimit(&rs))
1981 pr_err("DRHD: handling fault status reg %x\n", fault_status);
1983 /* TBD: ignore advanced fault log currently */
1984 if (!(fault_status & DMA_FSTS_PPF))
1987 fault_index = dma_fsts_fault_record_index(fault_status);
1988 reg = cap_fault_reg_offset(iommu->cap);
1990 /* Disable printing, simply clear the fault when ratelimited */
1991 bool ratelimited = !__ratelimit(&rs);
2000 /* highest 32 bits */
2001 data = readl(iommu->reg + reg +
2002 fault_index * PRIMARY_FAULT_REG_LEN + 12);
2003 if (!(data & DMA_FRCD_F))
2007 fault_reason = dma_frcd_fault_reason(data);
2008 type = dma_frcd_type(data);
2010 pasid = dma_frcd_pasid_value(data);
2011 data = readl(iommu->reg + reg +
2012 fault_index * PRIMARY_FAULT_REG_LEN + 8);
2013 source_id = dma_frcd_source_id(data);
2015 pasid_present = dma_frcd_pasid_present(data);
2016 guest_addr = dmar_readq(iommu->reg + reg +
2017 fault_index * PRIMARY_FAULT_REG_LEN);
2018 guest_addr = dma_frcd_page_addr(guest_addr);
2021 /* clear the fault */
2022 writel(DMA_FRCD_F, iommu->reg + reg +
2023 fault_index * PRIMARY_FAULT_REG_LEN + 12);
2025 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
2028 /* Using pasid -1 if pasid is not present */
2029 dmar_fault_do_one(iommu, type, fault_reason,
2030 pasid_present ? pasid : INVALID_IOASID,
2031 source_id, guest_addr);
2034 if (fault_index >= cap_num_fault_regs(iommu->cap))
2036 raw_spin_lock_irqsave(&iommu->register_lock, flag);
2039 writel(DMA_FSTS_PFO | DMA_FSTS_PPF | DMA_FSTS_PRO,
2040 iommu->reg + DMAR_FSTS_REG);
2043 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
2047 int dmar_set_interrupt(struct intel_iommu *iommu)
2052 * Check if the fault interrupt is already initialized.
2057 irq = dmar_alloc_hwirq(iommu->seq_id, iommu->node, iommu);
2061 pr_err("No free IRQ vectors\n");
2065 ret = request_irq(irq, dmar_fault, IRQF_NO_THREAD, iommu->name, iommu);
2067 pr_err("Can't request irq\n");
2071 int __init enable_drhd_fault_handling(void)
2073 struct dmar_drhd_unit *drhd;
2074 struct intel_iommu *iommu;
2077 * Enable fault control interrupt.
2079 for_each_iommu(iommu, drhd) {
2081 int ret = dmar_set_interrupt(iommu);
2084 pr_err("DRHD %Lx: failed to enable fault, interrupt, ret %d\n",
2085 (unsigned long long)drhd->reg_base_addr, ret);
2090 * Clear any previous faults.
2092 dmar_fault(iommu->irq, iommu);
2093 fault_status = readl(iommu->reg + DMAR_FSTS_REG);
2094 writel(fault_status, iommu->reg + DMAR_FSTS_REG);
2101 * Re-enable Queued Invalidation interface.
2103 int dmar_reenable_qi(struct intel_iommu *iommu)
2105 if (!ecap_qis(iommu->ecap))
2112 * First disable queued invalidation.
2114 dmar_disable_qi(iommu);
2116 * Then enable queued invalidation again. Since there is no pending
2117 * invalidation requests now, it's safe to re-enable queued
2120 __dmar_enable_qi(iommu);
2126 * Check interrupt remapping support in DMAR table description.
2128 int __init dmar_ir_support(void)
2130 struct acpi_table_dmar *dmar;
2131 dmar = (struct acpi_table_dmar *)dmar_tbl;
2134 return dmar->flags & 0x1;
2137 /* Check whether DMAR units are in use */
2138 static inline bool dmar_in_use(void)
2140 return irq_remapping_enabled || intel_iommu_enabled;
2143 static int __init dmar_free_unused_resources(void)
2145 struct dmar_drhd_unit *dmaru, *dmaru_n;
2150 if (dmar_dev_scope_status != 1 && !list_empty(&dmar_drhd_units))
2151 bus_unregister_notifier(&pci_bus_type, &dmar_pci_bus_nb);
2153 down_write(&dmar_global_lock);
2154 list_for_each_entry_safe(dmaru, dmaru_n, &dmar_drhd_units, list) {
2155 list_del(&dmaru->list);
2156 dmar_free_drhd(dmaru);
2158 up_write(&dmar_global_lock);
2163 late_initcall(dmar_free_unused_resources);
2164 IOMMU_INIT_POST(detect_intel_iommu);
2167 * DMAR Hotplug Support
2168 * For more details, please refer to Intel(R) Virtualization Technology
2169 * for Directed-IO Architecture Specifiction, Rev 2.2, Section 8.8
2170 * "Remapping Hardware Unit Hot Plug".
2172 static guid_t dmar_hp_guid =
2173 GUID_INIT(0xD8C1A3A6, 0xBE9B, 0x4C9B,
2174 0x91, 0xBF, 0xC3, 0xCB, 0x81, 0xFC, 0x5D, 0xAF);
2177 * Currently there's only one revision and BIOS will not check the revision id,
2178 * so use 0 for safety.
2180 #define DMAR_DSM_REV_ID 0
2181 #define DMAR_DSM_FUNC_DRHD 1
2182 #define DMAR_DSM_FUNC_ATSR 2
2183 #define DMAR_DSM_FUNC_RHSA 3
2184 #define DMAR_DSM_FUNC_SATC 4
2186 static inline bool dmar_detect_dsm(acpi_handle handle, int func)
2188 return acpi_check_dsm(handle, &dmar_hp_guid, DMAR_DSM_REV_ID, 1 << func);
2191 static int dmar_walk_dsm_resource(acpi_handle handle, int func,
2192 dmar_res_handler_t handler, void *arg)
2195 union acpi_object *obj;
2196 struct acpi_dmar_header *start;
2197 struct dmar_res_callback callback;
2198 static int res_type[] = {
2199 [DMAR_DSM_FUNC_DRHD] = ACPI_DMAR_TYPE_HARDWARE_UNIT,
2200 [DMAR_DSM_FUNC_ATSR] = ACPI_DMAR_TYPE_ROOT_ATS,
2201 [DMAR_DSM_FUNC_RHSA] = ACPI_DMAR_TYPE_HARDWARE_AFFINITY,
2202 [DMAR_DSM_FUNC_SATC] = ACPI_DMAR_TYPE_SATC,
2205 if (!dmar_detect_dsm(handle, func))
2208 obj = acpi_evaluate_dsm_typed(handle, &dmar_hp_guid, DMAR_DSM_REV_ID,
2209 func, NULL, ACPI_TYPE_BUFFER);
2213 memset(&callback, 0, sizeof(callback));
2214 callback.cb[res_type[func]] = handler;
2215 callback.arg[res_type[func]] = arg;
2216 start = (struct acpi_dmar_header *)obj->buffer.pointer;
2217 ret = dmar_walk_remapping_entries(start, obj->buffer.length, &callback);
2224 static int dmar_hp_add_drhd(struct acpi_dmar_header *header, void *arg)
2227 struct dmar_drhd_unit *dmaru;
2229 dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
2233 ret = dmar_ir_hotplug(dmaru, true);
2235 ret = dmar_iommu_hotplug(dmaru, true);
2240 static int dmar_hp_remove_drhd(struct acpi_dmar_header *header, void *arg)
2244 struct dmar_drhd_unit *dmaru;
2246 dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
2251 * All PCI devices managed by this unit should have been destroyed.
2253 if (!dmaru->include_all && dmaru->devices && dmaru->devices_cnt) {
2254 for_each_active_dev_scope(dmaru->devices,
2255 dmaru->devices_cnt, i, dev)
2259 ret = dmar_ir_hotplug(dmaru, false);
2261 ret = dmar_iommu_hotplug(dmaru, false);
2266 static int dmar_hp_release_drhd(struct acpi_dmar_header *header, void *arg)
2268 struct dmar_drhd_unit *dmaru;
2270 dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
2272 list_del_rcu(&dmaru->list);
2274 dmar_free_drhd(dmaru);
2280 static int dmar_hotplug_insert(acpi_handle handle)
2285 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2286 &dmar_validate_one_drhd, (void *)1);
2290 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2291 &dmar_parse_one_drhd, (void *)&drhd_count);
2292 if (ret == 0 && drhd_count == 0) {
2293 pr_warn(FW_BUG "No DRHD structures in buffer returned by _DSM method\n");
2299 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_RHSA,
2300 &dmar_parse_one_rhsa, NULL);
2304 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2305 &dmar_parse_one_atsr, NULL);
2309 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2310 &dmar_hp_add_drhd, NULL);
2314 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2315 &dmar_hp_remove_drhd, NULL);
2317 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2318 &dmar_release_one_atsr, NULL);
2320 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2321 &dmar_hp_release_drhd, NULL);
2326 static int dmar_hotplug_remove(acpi_handle handle)
2330 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2331 &dmar_check_one_atsr, NULL);
2335 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2336 &dmar_hp_remove_drhd, NULL);
2338 WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2339 &dmar_release_one_atsr, NULL));
2340 WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2341 &dmar_hp_release_drhd, NULL));
2343 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2344 &dmar_hp_add_drhd, NULL);
2350 static acpi_status dmar_get_dsm_handle(acpi_handle handle, u32 lvl,
2351 void *context, void **retval)
2353 acpi_handle *phdl = retval;
2355 if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) {
2357 return AE_CTRL_TERMINATE;
2363 static int dmar_device_hotplug(acpi_handle handle, bool insert)
2366 acpi_handle tmp = NULL;
2372 if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) {
2375 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle,
2377 dmar_get_dsm_handle,
2379 if (ACPI_FAILURE(status)) {
2380 pr_warn("Failed to locate _DSM method.\n");
2387 down_write(&dmar_global_lock);
2389 ret = dmar_hotplug_insert(tmp);
2391 ret = dmar_hotplug_remove(tmp);
2392 up_write(&dmar_global_lock);
2397 int dmar_device_add(acpi_handle handle)
2399 return dmar_device_hotplug(handle, true);
2402 int dmar_device_remove(acpi_handle handle)
2404 return dmar_device_hotplug(handle, false);
2408 * dmar_platform_optin - Is %DMA_CTRL_PLATFORM_OPT_IN_FLAG set in DMAR table
2410 * Returns true if the platform has %DMA_CTRL_PLATFORM_OPT_IN_FLAG set in
2411 * the ACPI DMAR table. This means that the platform boot firmware has made
2412 * sure no device can issue DMA outside of RMRR regions.
2414 bool dmar_platform_optin(void)
2416 struct acpi_table_dmar *dmar;
2420 status = acpi_get_table(ACPI_SIG_DMAR, 0,
2421 (struct acpi_table_header **)&dmar);
2422 if (ACPI_FAILURE(status))
2425 ret = !!(dmar->flags & DMAR_PLATFORM_OPT_IN);
2426 acpi_put_table((struct acpi_table_header *)dmar);
2430 EXPORT_SYMBOL_GPL(dmar_platform_optin);