1 // SPDX-License-Identifier: GPL-2.0
3 * linux/fs/ext4/ialloc.c
5 * Copyright (C) 1992, 1993, 1994, 1995
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
10 * BSD ufs-inspired inode and directory allocation by
12 * Big-endian to little-endian byte-swapping/bitmaps by
16 #include <linux/time.h>
18 #include <linux/stat.h>
19 #include <linux/string.h>
20 #include <linux/quotaops.h>
21 #include <linux/buffer_head.h>
22 #include <linux/random.h>
23 #include <linux/bitops.h>
24 #include <linux/blkdev.h>
25 #include <linux/cred.h>
27 #include <asm/byteorder.h>
30 #include "ext4_jbd2.h"
34 #include <trace/events/ext4.h>
37 * ialloc.c contains the inodes allocation and deallocation routines
41 * The free inodes are managed by bitmaps. A file system contains several
42 * blocks groups. Each group contains 1 bitmap block for blocks, 1 bitmap
43 * block for inodes, N blocks for the inode table and data blocks.
45 * The file system contains group descriptors which are located after the
46 * super block. Each descriptor contains the number of the bitmap block and
47 * the free blocks count in the block.
51 * To avoid calling the atomic setbit hundreds or thousands of times, we only
52 * need to use it within a single byte (to ensure we get endianness right).
53 * We can use memset for the rest of the bitmap as there are no other users.
55 void ext4_mark_bitmap_end(int start_bit, int end_bit, char *bitmap)
59 if (start_bit >= end_bit)
62 ext4_debug("mark end bits +%d through +%d used\n", start_bit, end_bit);
63 for (i = start_bit; i < ((start_bit + 7) & ~7UL); i++)
64 ext4_set_bit(i, bitmap);
66 memset(bitmap + (i >> 3), 0xff, (end_bit - i) >> 3);
69 void ext4_end_bitmap_read(struct buffer_head *bh, int uptodate)
72 set_buffer_uptodate(bh);
73 set_bitmap_uptodate(bh);
79 static int ext4_validate_inode_bitmap(struct super_block *sb,
80 struct ext4_group_desc *desc,
81 ext4_group_t block_group,
82 struct buffer_head *bh)
85 struct ext4_group_info *grp = ext4_get_group_info(sb, block_group);
86 struct ext4_sb_info *sbi = EXT4_SB(sb);
88 if (buffer_verified(bh))
90 if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp))
93 ext4_lock_group(sb, block_group);
94 blk = ext4_inode_bitmap(sb, desc);
95 if (!ext4_inode_bitmap_csum_verify(sb, block_group, desc, bh,
96 EXT4_INODES_PER_GROUP(sb) / 8)) {
97 ext4_unlock_group(sb, block_group);
98 ext4_error(sb, "Corrupt inode bitmap - block_group = %u, "
99 "inode_bitmap = %llu", block_group, blk);
100 grp = ext4_get_group_info(sb, block_group);
101 if (!EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) {
103 count = ext4_free_inodes_count(sb, desc);
104 percpu_counter_sub(&sbi->s_freeinodes_counter,
107 set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, &grp->bb_state);
110 set_buffer_verified(bh);
111 ext4_unlock_group(sb, block_group);
116 * Read the inode allocation bitmap for a given block_group, reading
117 * into the specified slot in the superblock's bitmap cache.
119 * Return buffer_head of bitmap on success or NULL.
121 static struct buffer_head *
122 ext4_read_inode_bitmap(struct super_block *sb, ext4_group_t block_group)
124 struct ext4_group_desc *desc;
125 struct ext4_sb_info *sbi = EXT4_SB(sb);
126 struct buffer_head *bh = NULL;
127 ext4_fsblk_t bitmap_blk;
130 desc = ext4_get_group_desc(sb, block_group, NULL);
132 return ERR_PTR(-EFSCORRUPTED);
134 bitmap_blk = ext4_inode_bitmap(sb, desc);
135 if ((bitmap_blk <= le32_to_cpu(sbi->s_es->s_first_data_block)) ||
136 (bitmap_blk >= ext4_blocks_count(sbi->s_es))) {
137 ext4_error(sb, "Invalid inode bitmap blk %llu in "
138 "block_group %u", bitmap_blk, block_group);
139 return ERR_PTR(-EFSCORRUPTED);
141 bh = sb_getblk(sb, bitmap_blk);
143 ext4_error(sb, "Cannot read inode bitmap - "
144 "block_group = %u, inode_bitmap = %llu",
145 block_group, bitmap_blk);
146 return ERR_PTR(-EIO);
148 if (bitmap_uptodate(bh))
152 if (bitmap_uptodate(bh)) {
157 ext4_lock_group(sb, block_group);
158 if (desc->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) {
159 memset(bh->b_data, 0, (EXT4_INODES_PER_GROUP(sb) + 7) / 8);
160 ext4_mark_bitmap_end(EXT4_INODES_PER_GROUP(sb),
161 sb->s_blocksize * 8, bh->b_data);
162 set_bitmap_uptodate(bh);
163 set_buffer_uptodate(bh);
164 set_buffer_verified(bh);
165 ext4_unlock_group(sb, block_group);
169 ext4_unlock_group(sb, block_group);
171 if (buffer_uptodate(bh)) {
173 * if not uninit if bh is uptodate,
174 * bitmap is also uptodate
176 set_bitmap_uptodate(bh);
181 * submit the buffer_head for reading
183 trace_ext4_load_inode_bitmap(sb, block_group);
184 bh->b_end_io = ext4_end_bitmap_read;
186 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
188 if (!buffer_uptodate(bh)) {
190 ext4_error(sb, "Cannot read inode bitmap - "
191 "block_group = %u, inode_bitmap = %llu",
192 block_group, bitmap_blk);
193 return ERR_PTR(-EIO);
197 err = ext4_validate_inode_bitmap(sb, desc, block_group, bh);
207 * NOTE! When we get the inode, we're the only people
208 * that have access to it, and as such there are no
209 * race conditions we have to worry about. The inode
210 * is not on the hash-lists, and it cannot be reached
211 * through the filesystem because the directory entry
212 * has been deleted earlier.
214 * HOWEVER: we must make sure that we get no aliases,
215 * which means that we have to call "clear_inode()"
216 * _before_ we mark the inode not in use in the inode
217 * bitmaps. Otherwise a newly created file might use
218 * the same inode number (not actually the same pointer
219 * though), and then we'd have two inodes sharing the
220 * same inode number and space on the harddisk.
222 void ext4_free_inode(handle_t *handle, struct inode *inode)
224 struct super_block *sb = inode->i_sb;
227 struct buffer_head *bitmap_bh = NULL;
228 struct buffer_head *bh2;
229 ext4_group_t block_group;
231 struct ext4_group_desc *gdp;
232 struct ext4_super_block *es;
233 struct ext4_sb_info *sbi;
234 int fatal = 0, err, count, cleared;
235 struct ext4_group_info *grp;
238 printk(KERN_ERR "EXT4-fs: %s:%d: inode on "
239 "nonexistent device\n", __func__, __LINE__);
242 if (atomic_read(&inode->i_count) > 1) {
243 ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: count=%d",
244 __func__, __LINE__, inode->i_ino,
245 atomic_read(&inode->i_count));
248 if (inode->i_nlink) {
249 ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: nlink=%d\n",
250 __func__, __LINE__, inode->i_ino, inode->i_nlink);
256 ext4_debug("freeing inode %lu\n", ino);
257 trace_ext4_free_inode(inode);
260 * Note: we must free any quota before locking the superblock,
261 * as writing the quota to disk may need the lock as well.
263 dquot_initialize(inode);
264 dquot_free_inode(inode);
267 is_directory = S_ISDIR(inode->i_mode);
269 /* Do this BEFORE marking the inode not in use or returning an error */
270 ext4_clear_inode(inode);
273 if (ino < EXT4_FIRST_INO(sb) || ino > le32_to_cpu(es->s_inodes_count)) {
274 ext4_error(sb, "reserved or nonexistent inode %lu", ino);
277 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
278 bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb);
279 bitmap_bh = ext4_read_inode_bitmap(sb, block_group);
280 /* Don't bother if the inode bitmap is corrupt. */
281 grp = ext4_get_group_info(sb, block_group);
282 if (IS_ERR(bitmap_bh)) {
283 fatal = PTR_ERR(bitmap_bh);
287 if (unlikely(EXT4_MB_GRP_IBITMAP_CORRUPT(grp))) {
288 fatal = -EFSCORRUPTED;
292 BUFFER_TRACE(bitmap_bh, "get_write_access");
293 fatal = ext4_journal_get_write_access(handle, bitmap_bh);
298 gdp = ext4_get_group_desc(sb, block_group, &bh2);
300 BUFFER_TRACE(bh2, "get_write_access");
301 fatal = ext4_journal_get_write_access(handle, bh2);
303 ext4_lock_group(sb, block_group);
304 cleared = ext4_test_and_clear_bit(bit, bitmap_bh->b_data);
305 if (fatal || !cleared) {
306 ext4_unlock_group(sb, block_group);
310 count = ext4_free_inodes_count(sb, gdp) + 1;
311 ext4_free_inodes_set(sb, gdp, count);
313 count = ext4_used_dirs_count(sb, gdp) - 1;
314 ext4_used_dirs_set(sb, gdp, count);
315 percpu_counter_dec(&sbi->s_dirs_counter);
317 ext4_inode_bitmap_csum_set(sb, block_group, gdp, bitmap_bh,
318 EXT4_INODES_PER_GROUP(sb) / 8);
319 ext4_group_desc_csum_set(sb, block_group, gdp);
320 ext4_unlock_group(sb, block_group);
322 percpu_counter_inc(&sbi->s_freeinodes_counter);
323 if (sbi->s_log_groups_per_flex) {
324 ext4_group_t f = ext4_flex_group(sbi, block_group);
326 atomic_inc(&sbi->s_flex_groups[f].free_inodes);
328 atomic_dec(&sbi->s_flex_groups[f].used_dirs);
330 BUFFER_TRACE(bh2, "call ext4_handle_dirty_metadata");
331 fatal = ext4_handle_dirty_metadata(handle, NULL, bh2);
334 BUFFER_TRACE(bitmap_bh, "call ext4_handle_dirty_metadata");
335 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
339 ext4_error(sb, "bit already cleared for inode %lu", ino);
340 if (gdp && !EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) {
342 count = ext4_free_inodes_count(sb, gdp);
343 percpu_counter_sub(&sbi->s_freeinodes_counter,
346 set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, &grp->bb_state);
351 ext4_std_error(sb, fatal);
361 * Helper function for Orlov's allocator; returns critical information
362 * for a particular block group or flex_bg. If flex_size is 1, then g
363 * is a block group number; otherwise it is flex_bg number.
365 static void get_orlov_stats(struct super_block *sb, ext4_group_t g,
366 int flex_size, struct orlov_stats *stats)
368 struct ext4_group_desc *desc;
369 struct flex_groups *flex_group = EXT4_SB(sb)->s_flex_groups;
372 stats->free_inodes = atomic_read(&flex_group[g].free_inodes);
373 stats->free_clusters = atomic64_read(&flex_group[g].free_clusters);
374 stats->used_dirs = atomic_read(&flex_group[g].used_dirs);
378 desc = ext4_get_group_desc(sb, g, NULL);
380 stats->free_inodes = ext4_free_inodes_count(sb, desc);
381 stats->free_clusters = ext4_free_group_clusters(sb, desc);
382 stats->used_dirs = ext4_used_dirs_count(sb, desc);
384 stats->free_inodes = 0;
385 stats->free_clusters = 0;
386 stats->used_dirs = 0;
391 * Orlov's allocator for directories.
393 * We always try to spread first-level directories.
395 * If there are blockgroups with both free inodes and free blocks counts
396 * not worse than average we return one with smallest directory count.
397 * Otherwise we simply return a random group.
399 * For the rest rules look so:
401 * It's OK to put directory into a group unless
402 * it has too many directories already (max_dirs) or
403 * it has too few free inodes left (min_inodes) or
404 * it has too few free blocks left (min_blocks) or
405 * Parent's group is preferred, if it doesn't satisfy these
406 * conditions we search cyclically through the rest. If none
407 * of the groups look good we just look for a group with more
408 * free inodes than average (starting at parent's group).
411 static int find_group_orlov(struct super_block *sb, struct inode *parent,
412 ext4_group_t *group, umode_t mode,
413 const struct qstr *qstr)
415 ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
416 struct ext4_sb_info *sbi = EXT4_SB(sb);
417 ext4_group_t real_ngroups = ext4_get_groups_count(sb);
418 int inodes_per_group = EXT4_INODES_PER_GROUP(sb);
419 unsigned int freei, avefreei, grp_free;
420 ext4_fsblk_t freeb, avefreec;
422 int max_dirs, min_inodes;
423 ext4_grpblk_t min_clusters;
424 ext4_group_t i, grp, g, ngroups;
425 struct ext4_group_desc *desc;
426 struct orlov_stats stats;
427 int flex_size = ext4_flex_bg_size(sbi);
428 struct dx_hash_info hinfo;
430 ngroups = real_ngroups;
432 ngroups = (real_ngroups + flex_size - 1) >>
433 sbi->s_log_groups_per_flex;
434 parent_group >>= sbi->s_log_groups_per_flex;
437 freei = percpu_counter_read_positive(&sbi->s_freeinodes_counter);
438 avefreei = freei / ngroups;
439 freeb = EXT4_C2B(sbi,
440 percpu_counter_read_positive(&sbi->s_freeclusters_counter));
442 do_div(avefreec, ngroups);
443 ndirs = percpu_counter_read_positive(&sbi->s_dirs_counter);
446 ((parent == d_inode(sb->s_root)) ||
447 (ext4_test_inode_flag(parent, EXT4_INODE_TOPDIR)))) {
448 int best_ndir = inodes_per_group;
452 hinfo.hash_version = DX_HASH_HALF_MD4;
453 hinfo.seed = sbi->s_hash_seed;
454 ext4fs_dirhash(qstr->name, qstr->len, &hinfo);
458 parent_group = (unsigned)grp % ngroups;
459 for (i = 0; i < ngroups; i++) {
460 g = (parent_group + i) % ngroups;
461 get_orlov_stats(sb, g, flex_size, &stats);
462 if (!stats.free_inodes)
464 if (stats.used_dirs >= best_ndir)
466 if (stats.free_inodes < avefreei)
468 if (stats.free_clusters < avefreec)
472 best_ndir = stats.used_dirs;
477 if (flex_size == 1) {
483 * We pack inodes at the beginning of the flexgroup's
484 * inode tables. Block allocation decisions will do
485 * something similar, although regular files will
486 * start at 2nd block group of the flexgroup. See
487 * ext4_ext_find_goal() and ext4_find_near().
490 for (i = 0; i < flex_size; i++) {
491 if (grp+i >= real_ngroups)
493 desc = ext4_get_group_desc(sb, grp+i, NULL);
494 if (desc && ext4_free_inodes_count(sb, desc)) {
502 max_dirs = ndirs / ngroups + inodes_per_group / 16;
503 min_inodes = avefreei - inodes_per_group*flex_size / 4;
506 min_clusters = avefreec - EXT4_CLUSTERS_PER_GROUP(sb)*flex_size / 4;
509 * Start looking in the flex group where we last allocated an
510 * inode for this parent directory
512 if (EXT4_I(parent)->i_last_alloc_group != ~0) {
513 parent_group = EXT4_I(parent)->i_last_alloc_group;
515 parent_group >>= sbi->s_log_groups_per_flex;
518 for (i = 0; i < ngroups; i++) {
519 grp = (parent_group + i) % ngroups;
520 get_orlov_stats(sb, grp, flex_size, &stats);
521 if (stats.used_dirs >= max_dirs)
523 if (stats.free_inodes < min_inodes)
525 if (stats.free_clusters < min_clusters)
531 ngroups = real_ngroups;
532 avefreei = freei / ngroups;
534 parent_group = EXT4_I(parent)->i_block_group;
535 for (i = 0; i < ngroups; i++) {
536 grp = (parent_group + i) % ngroups;
537 desc = ext4_get_group_desc(sb, grp, NULL);
539 grp_free = ext4_free_inodes_count(sb, desc);
540 if (grp_free && grp_free >= avefreei) {
549 * The free-inodes counter is approximate, and for really small
550 * filesystems the above test can fail to find any blockgroups
559 static int find_group_other(struct super_block *sb, struct inode *parent,
560 ext4_group_t *group, umode_t mode)
562 ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
563 ext4_group_t i, last, ngroups = ext4_get_groups_count(sb);
564 struct ext4_group_desc *desc;
565 int flex_size = ext4_flex_bg_size(EXT4_SB(sb));
568 * Try to place the inode is the same flex group as its
569 * parent. If we can't find space, use the Orlov algorithm to
570 * find another flex group, and store that information in the
571 * parent directory's inode information so that use that flex
572 * group for future allocations.
578 parent_group &= ~(flex_size-1);
579 last = parent_group + flex_size;
582 for (i = parent_group; i < last; i++) {
583 desc = ext4_get_group_desc(sb, i, NULL);
584 if (desc && ext4_free_inodes_count(sb, desc)) {
589 if (!retry && EXT4_I(parent)->i_last_alloc_group != ~0) {
591 parent_group = EXT4_I(parent)->i_last_alloc_group;
595 * If this didn't work, use the Orlov search algorithm
596 * to find a new flex group; we pass in the mode to
597 * avoid the topdir algorithms.
599 *group = parent_group + flex_size;
600 if (*group > ngroups)
602 return find_group_orlov(sb, parent, group, mode, NULL);
606 * Try to place the inode in its parent directory
608 *group = parent_group;
609 desc = ext4_get_group_desc(sb, *group, NULL);
610 if (desc && ext4_free_inodes_count(sb, desc) &&
611 ext4_free_group_clusters(sb, desc))
615 * We're going to place this inode in a different blockgroup from its
616 * parent. We want to cause files in a common directory to all land in
617 * the same blockgroup. But we want files which are in a different
618 * directory which shares a blockgroup with our parent to land in a
619 * different blockgroup.
621 * So add our directory's i_ino into the starting point for the hash.
623 *group = (*group + parent->i_ino) % ngroups;
626 * Use a quadratic hash to find a group with a free inode and some free
629 for (i = 1; i < ngroups; i <<= 1) {
631 if (*group >= ngroups)
633 desc = ext4_get_group_desc(sb, *group, NULL);
634 if (desc && ext4_free_inodes_count(sb, desc) &&
635 ext4_free_group_clusters(sb, desc))
640 * That failed: try linear search for a free inode, even if that group
641 * has no free blocks.
643 *group = parent_group;
644 for (i = 0; i < ngroups; i++) {
645 if (++*group >= ngroups)
647 desc = ext4_get_group_desc(sb, *group, NULL);
648 if (desc && ext4_free_inodes_count(sb, desc))
656 * In no journal mode, if an inode has recently been deleted, we want
657 * to avoid reusing it until we're reasonably sure the inode table
658 * block has been written back to disk. (Yes, these values are
659 * somewhat arbitrary...)
661 #define RECENTCY_MIN 5
662 #define RECENTCY_DIRTY 300
664 static int recently_deleted(struct super_block *sb, ext4_group_t group, int ino)
666 struct ext4_group_desc *gdp;
667 struct ext4_inode *raw_inode;
668 struct buffer_head *bh;
669 int inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
671 int recentcy = RECENTCY_MIN;
674 gdp = ext4_get_group_desc(sb, group, NULL);
678 bh = sb_find_get_block(sb, ext4_inode_table(sb, gdp) +
679 (ino / inodes_per_block));
680 if (!bh || !buffer_uptodate(bh))
682 * If the block is not in the buffer cache, then it
683 * must have been written out.
687 offset = (ino % inodes_per_block) * EXT4_INODE_SIZE(sb);
688 raw_inode = (struct ext4_inode *) (bh->b_data + offset);
690 /* i_dtime is only 32 bits on disk, but we only care about relative
691 * times in the range of a few minutes (i.e. long enough to sync a
692 * recently-deleted inode to disk), so using the low 32 bits of the
693 * clock (a 68 year range) is enough, see time_before32() */
694 dtime = le32_to_cpu(raw_inode->i_dtime);
695 now = ktime_get_real_seconds();
696 if (buffer_dirty(bh))
697 recentcy += RECENTCY_DIRTY;
699 if (dtime && time_before32(dtime, now) &&
700 time_before32(now, dtime + recentcy))
707 static int find_inode_bit(struct super_block *sb, ext4_group_t group,
708 struct buffer_head *bitmap, unsigned long *ino)
711 *ino = ext4_find_next_zero_bit((unsigned long *)
713 EXT4_INODES_PER_GROUP(sb), *ino);
714 if (*ino >= EXT4_INODES_PER_GROUP(sb))
717 if ((EXT4_SB(sb)->s_journal == NULL) &&
718 recently_deleted(sb, group, *ino)) {
720 if (*ino < EXT4_INODES_PER_GROUP(sb))
729 * There are two policies for allocating an inode. If the new inode is
730 * a directory, then a forward search is made for a block group with both
731 * free space and a low directory-to-inode ratio; if that fails, then of
732 * the groups with above-average free space, that group with the fewest
733 * directories already is chosen.
735 * For other inodes, search forward from the parent directory's block
736 * group to find a free inode.
738 struct inode *__ext4_new_inode(handle_t *handle, struct inode *dir,
739 umode_t mode, const struct qstr *qstr,
740 __u32 goal, uid_t *owner, __u32 i_flags,
741 int handle_type, unsigned int line_no,
744 struct super_block *sb;
745 struct buffer_head *inode_bitmap_bh = NULL;
746 struct buffer_head *group_desc_bh;
747 ext4_group_t ngroups, group = 0;
748 unsigned long ino = 0;
750 struct ext4_group_desc *gdp = NULL;
751 struct ext4_inode_info *ei;
752 struct ext4_sb_info *sbi;
756 ext4_group_t flex_group;
757 struct ext4_group_info *grp;
760 /* Cannot create files in a deleted directory */
761 if (!dir || !dir->i_nlink)
762 return ERR_PTR(-EPERM);
767 if (unlikely(ext4_forced_shutdown(sbi)))
768 return ERR_PTR(-EIO);
770 if ((ext4_encrypted_inode(dir) || DUMMY_ENCRYPTION_ENABLED(sbi)) &&
771 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)) &&
772 !(i_flags & EXT4_EA_INODE_FL)) {
773 err = fscrypt_get_encryption_info(dir);
776 if (!fscrypt_has_encryption_key(dir))
777 return ERR_PTR(-ENOKEY);
781 if (!handle && sbi->s_journal && !(i_flags & EXT4_EA_INODE_FL)) {
782 #ifdef CONFIG_EXT4_FS_POSIX_ACL
783 struct posix_acl *p = get_acl(dir, ACL_TYPE_DEFAULT);
788 int acl_size = p->a_count * sizeof(ext4_acl_entry);
790 nblocks += (S_ISDIR(mode) ? 2 : 1) *
791 __ext4_xattr_set_credits(sb, NULL /* inode */,
792 NULL /* block_bh */, acl_size,
793 true /* is_create */);
794 posix_acl_release(p);
798 #ifdef CONFIG_SECURITY
800 int num_security_xattrs = 1;
802 #ifdef CONFIG_INTEGRITY
803 num_security_xattrs++;
806 * We assume that security xattrs are never
807 * more than 1k. In practice they are under
810 nblocks += num_security_xattrs *
811 __ext4_xattr_set_credits(sb, NULL /* inode */,
812 NULL /* block_bh */, 1024,
813 true /* is_create */);
817 nblocks += __ext4_xattr_set_credits(sb,
818 NULL /* inode */, NULL /* block_bh */,
819 FSCRYPT_SET_CONTEXT_MAX_SIZE,
820 true /* is_create */);
823 ngroups = ext4_get_groups_count(sb);
824 trace_ext4_request_inode(dir, mode);
825 inode = new_inode(sb);
827 return ERR_PTR(-ENOMEM);
831 * Initialize owners and quota early so that we don't have to account
832 * for quota initialization worst case in standard inode creating
836 inode->i_mode = mode;
837 i_uid_write(inode, owner[0]);
838 i_gid_write(inode, owner[1]);
839 } else if (test_opt(sb, GRPID)) {
840 inode->i_mode = mode;
841 inode->i_uid = current_fsuid();
842 inode->i_gid = dir->i_gid;
844 inode_init_owner(inode, dir, mode);
846 if (ext4_has_feature_project(sb) &&
847 ext4_test_inode_flag(dir, EXT4_INODE_PROJINHERIT))
848 ei->i_projid = EXT4_I(dir)->i_projid;
850 ei->i_projid = make_kprojid(&init_user_ns, EXT4_DEF_PROJID);
852 err = dquot_initialize(inode);
857 goal = sbi->s_inode_goal;
859 if (goal && goal <= le32_to_cpu(sbi->s_es->s_inodes_count)) {
860 group = (goal - 1) / EXT4_INODES_PER_GROUP(sb);
861 ino = (goal - 1) % EXT4_INODES_PER_GROUP(sb);
867 ret2 = find_group_orlov(sb, dir, &group, mode, qstr);
869 ret2 = find_group_other(sb, dir, &group, mode);
872 EXT4_I(dir)->i_last_alloc_group = group;
878 * Normally we will only go through one pass of this loop,
879 * unless we get unlucky and it turns out the group we selected
880 * had its last inode grabbed by someone else.
882 for (i = 0; i < ngroups; i++, ino = 0) {
885 gdp = ext4_get_group_desc(sb, group, &group_desc_bh);
890 * Check free inodes count before loading bitmap.
892 if (ext4_free_inodes_count(sb, gdp) == 0)
895 grp = ext4_get_group_info(sb, group);
896 /* Skip groups with already-known suspicious inode tables */
897 if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp))
900 brelse(inode_bitmap_bh);
901 inode_bitmap_bh = ext4_read_inode_bitmap(sb, group);
902 /* Skip groups with suspicious inode tables */
903 if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp) ||
904 IS_ERR(inode_bitmap_bh)) {
905 inode_bitmap_bh = NULL;
909 repeat_in_this_group:
910 ret2 = find_inode_bit(sb, group, inode_bitmap_bh, &ino);
914 if (group == 0 && (ino + 1) < EXT4_FIRST_INO(sb)) {
915 ext4_error(sb, "reserved inode found cleared - "
916 "inode=%lu", ino + 1);
921 BUG_ON(nblocks <= 0);
922 handle = __ext4_journal_start_sb(dir->i_sb, line_no,
923 handle_type, nblocks,
925 if (IS_ERR(handle)) {
926 err = PTR_ERR(handle);
927 ext4_std_error(sb, err);
931 BUFFER_TRACE(inode_bitmap_bh, "get_write_access");
932 err = ext4_journal_get_write_access(handle, inode_bitmap_bh);
934 ext4_std_error(sb, err);
937 ext4_lock_group(sb, group);
938 ret2 = ext4_test_and_set_bit(ino, inode_bitmap_bh->b_data);
940 /* Someone already took the bit. Repeat the search
943 ret2 = find_inode_bit(sb, group, inode_bitmap_bh, &ino);
945 ext4_set_bit(ino, inode_bitmap_bh->b_data);
948 ret2 = 1; /* we didn't grab the inode */
951 ext4_unlock_group(sb, group);
952 ino++; /* the inode bitmap is zero-based */
954 goto got; /* we grabbed the inode! */
956 if (ino < EXT4_INODES_PER_GROUP(sb))
957 goto repeat_in_this_group;
959 if (++group == ngroups)
966 BUFFER_TRACE(inode_bitmap_bh, "call ext4_handle_dirty_metadata");
967 err = ext4_handle_dirty_metadata(handle, NULL, inode_bitmap_bh);
969 ext4_std_error(sb, err);
973 BUFFER_TRACE(group_desc_bh, "get_write_access");
974 err = ext4_journal_get_write_access(handle, group_desc_bh);
976 ext4_std_error(sb, err);
980 /* We may have to initialize the block bitmap if it isn't already */
981 if (ext4_has_group_desc_csum(sb) &&
982 gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
983 struct buffer_head *block_bitmap_bh;
985 block_bitmap_bh = ext4_read_block_bitmap(sb, group);
986 if (IS_ERR(block_bitmap_bh)) {
987 err = PTR_ERR(block_bitmap_bh);
990 BUFFER_TRACE(block_bitmap_bh, "get block bitmap access");
991 err = ext4_journal_get_write_access(handle, block_bitmap_bh);
993 brelse(block_bitmap_bh);
994 ext4_std_error(sb, err);
998 BUFFER_TRACE(block_bitmap_bh, "dirty block bitmap");
999 err = ext4_handle_dirty_metadata(handle, NULL, block_bitmap_bh);
1001 /* recheck and clear flag under lock if we still need to */
1002 ext4_lock_group(sb, group);
1003 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
1004 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
1005 ext4_free_group_clusters_set(sb, gdp,
1006 ext4_free_clusters_after_init(sb, group, gdp));
1007 ext4_block_bitmap_csum_set(sb, group, gdp,
1009 ext4_group_desc_csum_set(sb, group, gdp);
1011 ext4_unlock_group(sb, group);
1012 brelse(block_bitmap_bh);
1015 ext4_std_error(sb, err);
1020 /* Update the relevant bg descriptor fields */
1021 if (ext4_has_group_desc_csum(sb)) {
1023 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1025 down_read(&grp->alloc_sem); /* protect vs itable lazyinit */
1026 ext4_lock_group(sb, group); /* while we modify the bg desc */
1027 free = EXT4_INODES_PER_GROUP(sb) -
1028 ext4_itable_unused_count(sb, gdp);
1029 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) {
1030 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_INODE_UNINIT);
1034 * Check the relative inode number against the last used
1035 * relative inode number in this group. if it is greater
1036 * we need to update the bg_itable_unused count
1039 ext4_itable_unused_set(sb, gdp,
1040 (EXT4_INODES_PER_GROUP(sb) - ino));
1041 up_read(&grp->alloc_sem);
1043 ext4_lock_group(sb, group);
1046 ext4_free_inodes_set(sb, gdp, ext4_free_inodes_count(sb, gdp) - 1);
1047 if (S_ISDIR(mode)) {
1048 ext4_used_dirs_set(sb, gdp, ext4_used_dirs_count(sb, gdp) + 1);
1049 if (sbi->s_log_groups_per_flex) {
1050 ext4_group_t f = ext4_flex_group(sbi, group);
1052 atomic_inc(&sbi->s_flex_groups[f].used_dirs);
1055 if (ext4_has_group_desc_csum(sb)) {
1056 ext4_inode_bitmap_csum_set(sb, group, gdp, inode_bitmap_bh,
1057 EXT4_INODES_PER_GROUP(sb) / 8);
1058 ext4_group_desc_csum_set(sb, group, gdp);
1060 ext4_unlock_group(sb, group);
1062 BUFFER_TRACE(group_desc_bh, "call ext4_handle_dirty_metadata");
1063 err = ext4_handle_dirty_metadata(handle, NULL, group_desc_bh);
1065 ext4_std_error(sb, err);
1069 percpu_counter_dec(&sbi->s_freeinodes_counter);
1071 percpu_counter_inc(&sbi->s_dirs_counter);
1073 if (sbi->s_log_groups_per_flex) {
1074 flex_group = ext4_flex_group(sbi, group);
1075 atomic_dec(&sbi->s_flex_groups[flex_group].free_inodes);
1078 inode->i_ino = ino + group * EXT4_INODES_PER_GROUP(sb);
1079 /* This is the optimal IO size (for stat), not the fs block size */
1080 inode->i_blocks = 0;
1081 inode->i_mtime = inode->i_atime = inode->i_ctime = ei->i_crtime =
1082 current_time(inode);
1084 memset(ei->i_data, 0, sizeof(ei->i_data));
1085 ei->i_dir_start_lookup = 0;
1088 /* Don't inherit extent flag from directory, amongst others. */
1090 ext4_mask_flags(mode, EXT4_I(dir)->i_flags & EXT4_FL_INHERITED);
1091 ei->i_flags |= i_flags;
1094 ei->i_block_group = group;
1095 ei->i_last_alloc_group = ~0;
1097 ext4_set_inode_flags(inode);
1098 if (IS_DIRSYNC(inode))
1099 ext4_handle_sync(handle);
1100 if (insert_inode_locked(inode) < 0) {
1102 * Likely a bitmap corruption causing inode to be allocated
1106 ext4_error(sb, "failed to insert inode %lu: doubly allocated?",
1110 inode->i_generation = prandom_u32();
1112 /* Precompute checksum seed for inode metadata */
1113 if (ext4_has_metadata_csum(sb)) {
1115 __le32 inum = cpu_to_le32(inode->i_ino);
1116 __le32 gen = cpu_to_le32(inode->i_generation);
1117 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
1119 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
1123 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
1124 ext4_set_inode_state(inode, EXT4_STATE_NEW);
1126 ei->i_extra_isize = sbi->s_want_extra_isize;
1127 ei->i_inline_off = 0;
1128 if (ext4_has_feature_inline_data(sb))
1129 ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
1131 err = dquot_alloc_inode(inode);
1136 * Since the encryption xattr will always be unique, create it first so
1137 * that it's less likely to end up in an external xattr block and
1138 * prevent its deduplication.
1141 err = fscrypt_inherit_context(dir, inode, handle, true);
1143 goto fail_free_drop;
1146 if (!(ei->i_flags & EXT4_EA_INODE_FL)) {
1147 err = ext4_init_acl(handle, inode, dir);
1149 goto fail_free_drop;
1151 err = ext4_init_security(handle, inode, dir, qstr);
1153 goto fail_free_drop;
1156 if (ext4_has_feature_extents(sb)) {
1157 /* set extent flag only for directory, file and normal symlink*/
1158 if (S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode)) {
1159 ext4_set_inode_flag(inode, EXT4_INODE_EXTENTS);
1160 ext4_ext_tree_init(handle, inode);
1164 if (ext4_handle_valid(handle)) {
1165 ei->i_sync_tid = handle->h_transaction->t_tid;
1166 ei->i_datasync_tid = handle->h_transaction->t_tid;
1169 err = ext4_mark_inode_dirty(handle, inode);
1171 ext4_std_error(sb, err);
1172 goto fail_free_drop;
1175 ext4_debug("allocating inode %lu\n", inode->i_ino);
1176 trace_ext4_allocate_inode(inode, dir, mode);
1177 brelse(inode_bitmap_bh);
1181 dquot_free_inode(inode);
1184 unlock_new_inode(inode);
1187 inode->i_flags |= S_NOQUOTA;
1189 brelse(inode_bitmap_bh);
1190 return ERR_PTR(err);
1193 /* Verify that we are loading a valid orphan from disk */
1194 struct inode *ext4_orphan_get(struct super_block *sb, unsigned long ino)
1196 unsigned long max_ino = le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count);
1197 ext4_group_t block_group;
1199 struct buffer_head *bitmap_bh = NULL;
1200 struct inode *inode = NULL;
1201 int err = -EFSCORRUPTED;
1203 if (ino < EXT4_FIRST_INO(sb) || ino > max_ino)
1206 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
1207 bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb);
1208 bitmap_bh = ext4_read_inode_bitmap(sb, block_group);
1209 if (IS_ERR(bitmap_bh)) {
1210 ext4_error(sb, "inode bitmap error %ld for orphan %lu",
1211 ino, PTR_ERR(bitmap_bh));
1212 return (struct inode *) bitmap_bh;
1215 /* Having the inode bit set should be a 100% indicator that this
1216 * is a valid orphan (no e2fsck run on fs). Orphans also include
1217 * inodes that were being truncated, so we can't check i_nlink==0.
1219 if (!ext4_test_bit(bit, bitmap_bh->b_data))
1222 inode = ext4_iget(sb, ino);
1223 if (IS_ERR(inode)) {
1224 err = PTR_ERR(inode);
1225 ext4_error(sb, "couldn't read orphan inode %lu (err %d)",
1231 * If the orphans has i_nlinks > 0 then it should be able to
1232 * be truncated, otherwise it won't be removed from the orphan
1233 * list during processing and an infinite loop will result.
1234 * Similarly, it must not be a bad inode.
1236 if ((inode->i_nlink && !ext4_can_truncate(inode)) ||
1237 is_bad_inode(inode))
1240 if (NEXT_ORPHAN(inode) > max_ino)
1246 ext4_error(sb, "bad orphan inode %lu", ino);
1248 printk(KERN_ERR "ext4_test_bit(bit=%d, block=%llu) = %d\n",
1249 bit, (unsigned long long)bitmap_bh->b_blocknr,
1250 ext4_test_bit(bit, bitmap_bh->b_data));
1252 printk(KERN_ERR "is_bad_inode(inode)=%d\n",
1253 is_bad_inode(inode));
1254 printk(KERN_ERR "NEXT_ORPHAN(inode)=%u\n",
1255 NEXT_ORPHAN(inode));
1256 printk(KERN_ERR "max_ino=%lu\n", max_ino);
1257 printk(KERN_ERR "i_nlink=%u\n", inode->i_nlink);
1258 /* Avoid freeing blocks if we got a bad deleted inode */
1259 if (inode->i_nlink == 0)
1260 inode->i_blocks = 0;
1264 return ERR_PTR(err);
1267 unsigned long ext4_count_free_inodes(struct super_block *sb)
1269 unsigned long desc_count;
1270 struct ext4_group_desc *gdp;
1271 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
1273 struct ext4_super_block *es;
1274 unsigned long bitmap_count, x;
1275 struct buffer_head *bitmap_bh = NULL;
1277 es = EXT4_SB(sb)->s_es;
1281 for (i = 0; i < ngroups; i++) {
1282 gdp = ext4_get_group_desc(sb, i, NULL);
1285 desc_count += ext4_free_inodes_count(sb, gdp);
1287 bitmap_bh = ext4_read_inode_bitmap(sb, i);
1288 if (IS_ERR(bitmap_bh)) {
1293 x = ext4_count_free(bitmap_bh->b_data,
1294 EXT4_INODES_PER_GROUP(sb) / 8);
1295 printk(KERN_DEBUG "group %lu: stored = %d, counted = %lu\n",
1296 (unsigned long) i, ext4_free_inodes_count(sb, gdp), x);
1300 printk(KERN_DEBUG "ext4_count_free_inodes: "
1301 "stored = %u, computed = %lu, %lu\n",
1302 le32_to_cpu(es->s_free_inodes_count), desc_count, bitmap_count);
1306 for (i = 0; i < ngroups; i++) {
1307 gdp = ext4_get_group_desc(sb, i, NULL);
1310 desc_count += ext4_free_inodes_count(sb, gdp);
1317 /* Called at mount-time, super-block is locked */
1318 unsigned long ext4_count_dirs(struct super_block * sb)
1320 unsigned long count = 0;
1321 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
1323 for (i = 0; i < ngroups; i++) {
1324 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
1327 count += ext4_used_dirs_count(sb, gdp);
1333 * Zeroes not yet zeroed inode table - just write zeroes through the whole
1334 * inode table. Must be called without any spinlock held. The only place
1335 * where it is called from on active part of filesystem is ext4lazyinit
1336 * thread, so we do not need any special locks, however we have to prevent
1337 * inode allocation from the current group, so we take alloc_sem lock, to
1338 * block ext4_new_inode() until we are finished.
1340 int ext4_init_inode_table(struct super_block *sb, ext4_group_t group,
1343 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1344 struct ext4_sb_info *sbi = EXT4_SB(sb);
1345 struct ext4_group_desc *gdp = NULL;
1346 struct buffer_head *group_desc_bh;
1349 int num, ret = 0, used_blks = 0;
1351 /* This should not happen, but just to be sure check this */
1352 if (sb_rdonly(sb)) {
1357 gdp = ext4_get_group_desc(sb, group, &group_desc_bh);
1362 * We do not need to lock this, because we are the only one
1363 * handling this flag.
1365 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))
1368 handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1);
1369 if (IS_ERR(handle)) {
1370 ret = PTR_ERR(handle);
1374 down_write(&grp->alloc_sem);
1376 * If inode bitmap was already initialized there may be some
1377 * used inodes so we need to skip blocks with used inodes in
1380 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)))
1381 used_blks = DIV_ROUND_UP((EXT4_INODES_PER_GROUP(sb) -
1382 ext4_itable_unused_count(sb, gdp)),
1383 sbi->s_inodes_per_block);
1385 if ((used_blks < 0) || (used_blks > sbi->s_itb_per_group)) {
1386 ext4_error(sb, "Something is wrong with group %u: "
1387 "used itable blocks: %d; "
1388 "itable unused count: %u",
1390 ext4_itable_unused_count(sb, gdp));
1395 blk = ext4_inode_table(sb, gdp) + used_blks;
1396 num = sbi->s_itb_per_group - used_blks;
1398 BUFFER_TRACE(group_desc_bh, "get_write_access");
1399 ret = ext4_journal_get_write_access(handle,
1405 * Skip zeroout if the inode table is full. But we set the ZEROED
1406 * flag anyway, because obviously, when it is full it does not need
1409 if (unlikely(num == 0))
1412 ext4_debug("going to zero out inode table in group %d\n",
1414 ret = sb_issue_zeroout(sb, blk, num, GFP_NOFS);
1418 blkdev_issue_flush(sb->s_bdev, GFP_NOFS, NULL);
1421 ext4_lock_group(sb, group);
1422 gdp->bg_flags |= cpu_to_le16(EXT4_BG_INODE_ZEROED);
1423 ext4_group_desc_csum_set(sb, group, gdp);
1424 ext4_unlock_group(sb, group);
1426 BUFFER_TRACE(group_desc_bh,
1427 "call ext4_handle_dirty_metadata");
1428 ret = ext4_handle_dirty_metadata(handle, NULL,
1432 up_write(&grp->alloc_sem);
1433 ext4_journal_stop(handle);