]> Git Repo - linux.git/blob - drivers/usb/core/hcd.c
Merge branch 'x86-efi-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux.git] / drivers / usb / core / hcd.c
1 /*
2  * (C) Copyright Linus Torvalds 1999
3  * (C) Copyright Johannes Erdfelt 1999-2001
4  * (C) Copyright Andreas Gal 1999
5  * (C) Copyright Gregory P. Smith 1999
6  * (C) Copyright Deti Fliegl 1999
7  * (C) Copyright Randy Dunlap 2000
8  * (C) Copyright David Brownell 2000-2002
9  *
10  * This program is free software; you can redistribute it and/or modify it
11  * under the terms of the GNU General Public License as published by the
12  * Free Software Foundation; either version 2 of the License, or (at your
13  * option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful, but
16  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
17  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
18  * for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software Foundation,
22  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23  */
24
25 #include <linux/bcd.h>
26 #include <linux/module.h>
27 #include <linux/version.h>
28 #include <linux/kernel.h>
29 #include <linux/slab.h>
30 #include <linux/completion.h>
31 #include <linux/utsname.h>
32 #include <linux/mm.h>
33 #include <asm/io.h>
34 #include <linux/device.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/mutex.h>
37 #include <asm/irq.h>
38 #include <asm/byteorder.h>
39 #include <asm/unaligned.h>
40 #include <linux/platform_device.h>
41 #include <linux/workqueue.h>
42 #include <linux/pm_runtime.h>
43 #include <linux/types.h>
44
45 #include <linux/usb.h>
46 #include <linux/usb/hcd.h>
47 #include <linux/usb/phy.h>
48
49 #include "usb.h"
50
51
52 /*-------------------------------------------------------------------------*/
53
54 /*
55  * USB Host Controller Driver framework
56  *
57  * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
58  * HCD-specific behaviors/bugs.
59  *
60  * This does error checks, tracks devices and urbs, and delegates to a
61  * "hc_driver" only for code (and data) that really needs to know about
62  * hardware differences.  That includes root hub registers, i/o queues,
63  * and so on ... but as little else as possible.
64  *
65  * Shared code includes most of the "root hub" code (these are emulated,
66  * though each HC's hardware works differently) and PCI glue, plus request
67  * tracking overhead.  The HCD code should only block on spinlocks or on
68  * hardware handshaking; blocking on software events (such as other kernel
69  * threads releasing resources, or completing actions) is all generic.
70  *
71  * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
72  * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
73  * only by the hub driver ... and that neither should be seen or used by
74  * usb client device drivers.
75  *
76  * Contributors of ideas or unattributed patches include: David Brownell,
77  * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
78  *
79  * HISTORY:
80  * 2002-02-21   Pull in most of the usb_bus support from usb.c; some
81  *              associated cleanup.  "usb_hcd" still != "usb_bus".
82  * 2001-12-12   Initial patch version for Linux 2.5.1 kernel.
83  */
84
85 /*-------------------------------------------------------------------------*/
86
87 /* Keep track of which host controller drivers are loaded */
88 unsigned long usb_hcds_loaded;
89 EXPORT_SYMBOL_GPL(usb_hcds_loaded);
90
91 /* host controllers we manage */
92 LIST_HEAD (usb_bus_list);
93 EXPORT_SYMBOL_GPL (usb_bus_list);
94
95 /* used when allocating bus numbers */
96 #define USB_MAXBUS              64
97 static DECLARE_BITMAP(busmap, USB_MAXBUS);
98
99 /* used when updating list of hcds */
100 DEFINE_MUTEX(usb_bus_list_lock);        /* exported only for usbfs */
101 EXPORT_SYMBOL_GPL (usb_bus_list_lock);
102
103 /* used for controlling access to virtual root hubs */
104 static DEFINE_SPINLOCK(hcd_root_hub_lock);
105
106 /* used when updating an endpoint's URB list */
107 static DEFINE_SPINLOCK(hcd_urb_list_lock);
108
109 /* used to protect against unlinking URBs after the device is gone */
110 static DEFINE_SPINLOCK(hcd_urb_unlink_lock);
111
112 /* wait queue for synchronous unlinks */
113 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
114
115 static inline int is_root_hub(struct usb_device *udev)
116 {
117         return (udev->parent == NULL);
118 }
119
120 /*-------------------------------------------------------------------------*/
121
122 /*
123  * Sharable chunks of root hub code.
124  */
125
126 /*-------------------------------------------------------------------------*/
127 #define KERNEL_REL      bin2bcd(((LINUX_VERSION_CODE >> 16) & 0x0ff))
128 #define KERNEL_VER      bin2bcd(((LINUX_VERSION_CODE >> 8) & 0x0ff))
129
130 /* usb 3.0 root hub device descriptor */
131 static const u8 usb3_rh_dev_descriptor[18] = {
132         0x12,       /*  __u8  bLength; */
133         0x01,       /*  __u8  bDescriptorType; Device */
134         0x00, 0x03, /*  __le16 bcdUSB; v3.0 */
135
136         0x09,       /*  __u8  bDeviceClass; HUB_CLASSCODE */
137         0x00,       /*  __u8  bDeviceSubClass; */
138         0x03,       /*  __u8  bDeviceProtocol; USB 3.0 hub */
139         0x09,       /*  __u8  bMaxPacketSize0; 2^9 = 512 Bytes */
140
141         0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
142         0x03, 0x00, /*  __le16 idProduct; device 0x0003 */
143         KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
144
145         0x03,       /*  __u8  iManufacturer; */
146         0x02,       /*  __u8  iProduct; */
147         0x01,       /*  __u8  iSerialNumber; */
148         0x01        /*  __u8  bNumConfigurations; */
149 };
150
151 /* usb 2.5 (wireless USB 1.0) root hub device descriptor */
152 static const u8 usb25_rh_dev_descriptor[18] = {
153         0x12,       /*  __u8  bLength; */
154         0x01,       /*  __u8  bDescriptorType; Device */
155         0x50, 0x02, /*  __le16 bcdUSB; v2.5 */
156
157         0x09,       /*  __u8  bDeviceClass; HUB_CLASSCODE */
158         0x00,       /*  __u8  bDeviceSubClass; */
159         0x00,       /*  __u8  bDeviceProtocol; [ usb 2.0 no TT ] */
160         0xFF,       /*  __u8  bMaxPacketSize0; always 0xFF (WUSB Spec 7.4.1). */
161
162         0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
163         0x02, 0x00, /*  __le16 idProduct; device 0x0002 */
164         KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
165
166         0x03,       /*  __u8  iManufacturer; */
167         0x02,       /*  __u8  iProduct; */
168         0x01,       /*  __u8  iSerialNumber; */
169         0x01        /*  __u8  bNumConfigurations; */
170 };
171
172 /* usb 2.0 root hub device descriptor */
173 static const u8 usb2_rh_dev_descriptor[18] = {
174         0x12,       /*  __u8  bLength; */
175         0x01,       /*  __u8  bDescriptorType; Device */
176         0x00, 0x02, /*  __le16 bcdUSB; v2.0 */
177
178         0x09,       /*  __u8  bDeviceClass; HUB_CLASSCODE */
179         0x00,       /*  __u8  bDeviceSubClass; */
180         0x00,       /*  __u8  bDeviceProtocol; [ usb 2.0 no TT ] */
181         0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
182
183         0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
184         0x02, 0x00, /*  __le16 idProduct; device 0x0002 */
185         KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
186
187         0x03,       /*  __u8  iManufacturer; */
188         0x02,       /*  __u8  iProduct; */
189         0x01,       /*  __u8  iSerialNumber; */
190         0x01        /*  __u8  bNumConfigurations; */
191 };
192
193 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
194
195 /* usb 1.1 root hub device descriptor */
196 static const u8 usb11_rh_dev_descriptor[18] = {
197         0x12,       /*  __u8  bLength; */
198         0x01,       /*  __u8  bDescriptorType; Device */
199         0x10, 0x01, /*  __le16 bcdUSB; v1.1 */
200
201         0x09,       /*  __u8  bDeviceClass; HUB_CLASSCODE */
202         0x00,       /*  __u8  bDeviceSubClass; */
203         0x00,       /*  __u8  bDeviceProtocol; [ low/full speeds only ] */
204         0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
205
206         0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
207         0x01, 0x00, /*  __le16 idProduct; device 0x0001 */
208         KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
209
210         0x03,       /*  __u8  iManufacturer; */
211         0x02,       /*  __u8  iProduct; */
212         0x01,       /*  __u8  iSerialNumber; */
213         0x01        /*  __u8  bNumConfigurations; */
214 };
215
216
217 /*-------------------------------------------------------------------------*/
218
219 /* Configuration descriptors for our root hubs */
220
221 static const u8 fs_rh_config_descriptor[] = {
222
223         /* one configuration */
224         0x09,       /*  __u8  bLength; */
225         0x02,       /*  __u8  bDescriptorType; Configuration */
226         0x19, 0x00, /*  __le16 wTotalLength; */
227         0x01,       /*  __u8  bNumInterfaces; (1) */
228         0x01,       /*  __u8  bConfigurationValue; */
229         0x00,       /*  __u8  iConfiguration; */
230         0xc0,       /*  __u8  bmAttributes;
231                                  Bit 7: must be set,
232                                      6: Self-powered,
233                                      5: Remote wakeup,
234                                      4..0: resvd */
235         0x00,       /*  __u8  MaxPower; */
236
237         /* USB 1.1:
238          * USB 2.0, single TT organization (mandatory):
239          *      one interface, protocol 0
240          *
241          * USB 2.0, multiple TT organization (optional):
242          *      two interfaces, protocols 1 (like single TT)
243          *      and 2 (multiple TT mode) ... config is
244          *      sometimes settable
245          *      NOT IMPLEMENTED
246          */
247
248         /* one interface */
249         0x09,       /*  __u8  if_bLength; */
250         0x04,       /*  __u8  if_bDescriptorType; Interface */
251         0x00,       /*  __u8  if_bInterfaceNumber; */
252         0x00,       /*  __u8  if_bAlternateSetting; */
253         0x01,       /*  __u8  if_bNumEndpoints; */
254         0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
255         0x00,       /*  __u8  if_bInterfaceSubClass; */
256         0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
257         0x00,       /*  __u8  if_iInterface; */
258
259         /* one endpoint (status change endpoint) */
260         0x07,       /*  __u8  ep_bLength; */
261         0x05,       /*  __u8  ep_bDescriptorType; Endpoint */
262         0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
263         0x03,       /*  __u8  ep_bmAttributes; Interrupt */
264         0x02, 0x00, /*  __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
265         0xff        /*  __u8  ep_bInterval; (255ms -- usb 2.0 spec) */
266 };
267
268 static const u8 hs_rh_config_descriptor[] = {
269
270         /* one configuration */
271         0x09,       /*  __u8  bLength; */
272         0x02,       /*  __u8  bDescriptorType; Configuration */
273         0x19, 0x00, /*  __le16 wTotalLength; */
274         0x01,       /*  __u8  bNumInterfaces; (1) */
275         0x01,       /*  __u8  bConfigurationValue; */
276         0x00,       /*  __u8  iConfiguration; */
277         0xc0,       /*  __u8  bmAttributes;
278                                  Bit 7: must be set,
279                                      6: Self-powered,
280                                      5: Remote wakeup,
281                                      4..0: resvd */
282         0x00,       /*  __u8  MaxPower; */
283
284         /* USB 1.1:
285          * USB 2.0, single TT organization (mandatory):
286          *      one interface, protocol 0
287          *
288          * USB 2.0, multiple TT organization (optional):
289          *      two interfaces, protocols 1 (like single TT)
290          *      and 2 (multiple TT mode) ... config is
291          *      sometimes settable
292          *      NOT IMPLEMENTED
293          */
294
295         /* one interface */
296         0x09,       /*  __u8  if_bLength; */
297         0x04,       /*  __u8  if_bDescriptorType; Interface */
298         0x00,       /*  __u8  if_bInterfaceNumber; */
299         0x00,       /*  __u8  if_bAlternateSetting; */
300         0x01,       /*  __u8  if_bNumEndpoints; */
301         0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
302         0x00,       /*  __u8  if_bInterfaceSubClass; */
303         0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
304         0x00,       /*  __u8  if_iInterface; */
305
306         /* one endpoint (status change endpoint) */
307         0x07,       /*  __u8  ep_bLength; */
308         0x05,       /*  __u8  ep_bDescriptorType; Endpoint */
309         0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
310         0x03,       /*  __u8  ep_bmAttributes; Interrupt */
311                     /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
312                      * see hub.c:hub_configure() for details. */
313         (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
314         0x0c        /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
315 };
316
317 static const u8 ss_rh_config_descriptor[] = {
318         /* one configuration */
319         0x09,       /*  __u8  bLength; */
320         0x02,       /*  __u8  bDescriptorType; Configuration */
321         0x1f, 0x00, /*  __le16 wTotalLength; */
322         0x01,       /*  __u8  bNumInterfaces; (1) */
323         0x01,       /*  __u8  bConfigurationValue; */
324         0x00,       /*  __u8  iConfiguration; */
325         0xc0,       /*  __u8  bmAttributes;
326                                  Bit 7: must be set,
327                                      6: Self-powered,
328                                      5: Remote wakeup,
329                                      4..0: resvd */
330         0x00,       /*  __u8  MaxPower; */
331
332         /* one interface */
333         0x09,       /*  __u8  if_bLength; */
334         0x04,       /*  __u8  if_bDescriptorType; Interface */
335         0x00,       /*  __u8  if_bInterfaceNumber; */
336         0x00,       /*  __u8  if_bAlternateSetting; */
337         0x01,       /*  __u8  if_bNumEndpoints; */
338         0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
339         0x00,       /*  __u8  if_bInterfaceSubClass; */
340         0x00,       /*  __u8  if_bInterfaceProtocol; */
341         0x00,       /*  __u8  if_iInterface; */
342
343         /* one endpoint (status change endpoint) */
344         0x07,       /*  __u8  ep_bLength; */
345         0x05,       /*  __u8  ep_bDescriptorType; Endpoint */
346         0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
347         0x03,       /*  __u8  ep_bmAttributes; Interrupt */
348                     /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
349                      * see hub.c:hub_configure() for details. */
350         (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
351         0x0c,       /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
352
353         /* one SuperSpeed endpoint companion descriptor */
354         0x06,        /* __u8 ss_bLength */
355         0x30,        /* __u8 ss_bDescriptorType; SuperSpeed EP Companion */
356         0x00,        /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */
357         0x00,        /* __u8 ss_bmAttributes; 1 packet per service interval */
358         0x02, 0x00   /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */
359 };
360
361 /* authorized_default behaviour:
362  * -1 is authorized for all devices except wireless (old behaviour)
363  * 0 is unauthorized for all devices
364  * 1 is authorized for all devices
365  */
366 static int authorized_default = -1;
367 module_param(authorized_default, int, S_IRUGO|S_IWUSR);
368 MODULE_PARM_DESC(authorized_default,
369                 "Default USB device authorization: 0 is not authorized, 1 is "
370                 "authorized, -1 is authorized except for wireless USB (default, "
371                 "old behaviour");
372 /*-------------------------------------------------------------------------*/
373
374 /**
375  * ascii2desc() - Helper routine for producing UTF-16LE string descriptors
376  * @s: Null-terminated ASCII (actually ISO-8859-1) string
377  * @buf: Buffer for USB string descriptor (header + UTF-16LE)
378  * @len: Length (in bytes; may be odd) of descriptor buffer.
379  *
380  * Return: The number of bytes filled in: 2 + 2*strlen(s) or @len,
381  * whichever is less.
382  *
383  * Note:
384  * USB String descriptors can contain at most 126 characters; input
385  * strings longer than that are truncated.
386  */
387 static unsigned
388 ascii2desc(char const *s, u8 *buf, unsigned len)
389 {
390         unsigned n, t = 2 + 2*strlen(s);
391
392         if (t > 254)
393                 t = 254;        /* Longest possible UTF string descriptor */
394         if (len > t)
395                 len = t;
396
397         t += USB_DT_STRING << 8;        /* Now t is first 16 bits to store */
398
399         n = len;
400         while (n--) {
401                 *buf++ = t;
402                 if (!n--)
403                         break;
404                 *buf++ = t >> 8;
405                 t = (unsigned char)*s++;
406         }
407         return len;
408 }
409
410 /**
411  * rh_string() - provides string descriptors for root hub
412  * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor)
413  * @hcd: the host controller for this root hub
414  * @data: buffer for output packet
415  * @len: length of the provided buffer
416  *
417  * Produces either a manufacturer, product or serial number string for the
418  * virtual root hub device.
419  *
420  * Return: The number of bytes filled in: the length of the descriptor or
421  * of the provided buffer, whichever is less.
422  */
423 static unsigned
424 rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len)
425 {
426         char buf[100];
427         char const *s;
428         static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04};
429
430         /* language ids */
431         switch (id) {
432         case 0:
433                 /* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */
434                 /* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */
435                 if (len > 4)
436                         len = 4;
437                 memcpy(data, langids, len);
438                 return len;
439         case 1:
440                 /* Serial number */
441                 s = hcd->self.bus_name;
442                 break;
443         case 2:
444                 /* Product name */
445                 s = hcd->product_desc;
446                 break;
447         case 3:
448                 /* Manufacturer */
449                 snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
450                         init_utsname()->release, hcd->driver->description);
451                 s = buf;
452                 break;
453         default:
454                 /* Can't happen; caller guarantees it */
455                 return 0;
456         }
457
458         return ascii2desc(s, data, len);
459 }
460
461
462 /* Root hub control transfers execute synchronously */
463 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
464 {
465         struct usb_ctrlrequest *cmd;
466         u16             typeReq, wValue, wIndex, wLength;
467         u8              *ubuf = urb->transfer_buffer;
468         unsigned        len = 0;
469         int             status;
470         u8              patch_wakeup = 0;
471         u8              patch_protocol = 0;
472         u16             tbuf_size;
473         u8              *tbuf = NULL;
474         const u8        *bufp;
475
476         might_sleep();
477
478         spin_lock_irq(&hcd_root_hub_lock);
479         status = usb_hcd_link_urb_to_ep(hcd, urb);
480         spin_unlock_irq(&hcd_root_hub_lock);
481         if (status)
482                 return status;
483         urb->hcpriv = hcd;      /* Indicate it's queued */
484
485         cmd = (struct usb_ctrlrequest *) urb->setup_packet;
486         typeReq  = (cmd->bRequestType << 8) | cmd->bRequest;
487         wValue   = le16_to_cpu (cmd->wValue);
488         wIndex   = le16_to_cpu (cmd->wIndex);
489         wLength  = le16_to_cpu (cmd->wLength);
490
491         if (wLength > urb->transfer_buffer_length)
492                 goto error;
493
494         /*
495          * tbuf should be at least as big as the
496          * USB hub descriptor.
497          */
498         tbuf_size =  max_t(u16, sizeof(struct usb_hub_descriptor), wLength);
499         tbuf = kzalloc(tbuf_size, GFP_KERNEL);
500         if (!tbuf)
501                 return -ENOMEM;
502
503         bufp = tbuf;
504
505
506         urb->actual_length = 0;
507         switch (typeReq) {
508
509         /* DEVICE REQUESTS */
510
511         /* The root hub's remote wakeup enable bit is implemented using
512          * driver model wakeup flags.  If this system supports wakeup
513          * through USB, userspace may change the default "allow wakeup"
514          * policy through sysfs or these calls.
515          *
516          * Most root hubs support wakeup from downstream devices, for
517          * runtime power management (disabling USB clocks and reducing
518          * VBUS power usage).  However, not all of them do so; silicon,
519          * board, and BIOS bugs here are not uncommon, so these can't
520          * be treated quite like external hubs.
521          *
522          * Likewise, not all root hubs will pass wakeup events upstream,
523          * to wake up the whole system.  So don't assume root hub and
524          * controller capabilities are identical.
525          */
526
527         case DeviceRequest | USB_REQ_GET_STATUS:
528                 tbuf[0] = (device_may_wakeup(&hcd->self.root_hub->dev)
529                                         << USB_DEVICE_REMOTE_WAKEUP)
530                                 | (1 << USB_DEVICE_SELF_POWERED);
531                 tbuf[1] = 0;
532                 len = 2;
533                 break;
534         case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
535                 if (wValue == USB_DEVICE_REMOTE_WAKEUP)
536                         device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
537                 else
538                         goto error;
539                 break;
540         case DeviceOutRequest | USB_REQ_SET_FEATURE:
541                 if (device_can_wakeup(&hcd->self.root_hub->dev)
542                                 && wValue == USB_DEVICE_REMOTE_WAKEUP)
543                         device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
544                 else
545                         goto error;
546                 break;
547         case DeviceRequest | USB_REQ_GET_CONFIGURATION:
548                 tbuf[0] = 1;
549                 len = 1;
550                         /* FALLTHROUGH */
551         case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
552                 break;
553         case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
554                 switch (wValue & 0xff00) {
555                 case USB_DT_DEVICE << 8:
556                         switch (hcd->speed) {
557                         case HCD_USB3:
558                                 bufp = usb3_rh_dev_descriptor;
559                                 break;
560                         case HCD_USB25:
561                                 bufp = usb25_rh_dev_descriptor;
562                                 break;
563                         case HCD_USB2:
564                                 bufp = usb2_rh_dev_descriptor;
565                                 break;
566                         case HCD_USB11:
567                                 bufp = usb11_rh_dev_descriptor;
568                                 break;
569                         default:
570                                 goto error;
571                         }
572                         len = 18;
573                         if (hcd->has_tt)
574                                 patch_protocol = 1;
575                         break;
576                 case USB_DT_CONFIG << 8:
577                         switch (hcd->speed) {
578                         case HCD_USB3:
579                                 bufp = ss_rh_config_descriptor;
580                                 len = sizeof ss_rh_config_descriptor;
581                                 break;
582                         case HCD_USB25:
583                         case HCD_USB2:
584                                 bufp = hs_rh_config_descriptor;
585                                 len = sizeof hs_rh_config_descriptor;
586                                 break;
587                         case HCD_USB11:
588                                 bufp = fs_rh_config_descriptor;
589                                 len = sizeof fs_rh_config_descriptor;
590                                 break;
591                         default:
592                                 goto error;
593                         }
594                         if (device_can_wakeup(&hcd->self.root_hub->dev))
595                                 patch_wakeup = 1;
596                         break;
597                 case USB_DT_STRING << 8:
598                         if ((wValue & 0xff) < 4)
599                                 urb->actual_length = rh_string(wValue & 0xff,
600                                                 hcd, ubuf, wLength);
601                         else /* unsupported IDs --> "protocol stall" */
602                                 goto error;
603                         break;
604                 case USB_DT_BOS << 8:
605                         goto nongeneric;
606                 default:
607                         goto error;
608                 }
609                 break;
610         case DeviceRequest | USB_REQ_GET_INTERFACE:
611                 tbuf[0] = 0;
612                 len = 1;
613                         /* FALLTHROUGH */
614         case DeviceOutRequest | USB_REQ_SET_INTERFACE:
615                 break;
616         case DeviceOutRequest | USB_REQ_SET_ADDRESS:
617                 /* wValue == urb->dev->devaddr */
618                 dev_dbg (hcd->self.controller, "root hub device address %d\n",
619                         wValue);
620                 break;
621
622         /* INTERFACE REQUESTS (no defined feature/status flags) */
623
624         /* ENDPOINT REQUESTS */
625
626         case EndpointRequest | USB_REQ_GET_STATUS:
627                 /* ENDPOINT_HALT flag */
628                 tbuf[0] = 0;
629                 tbuf[1] = 0;
630                 len = 2;
631                         /* FALLTHROUGH */
632         case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
633         case EndpointOutRequest | USB_REQ_SET_FEATURE:
634                 dev_dbg (hcd->self.controller, "no endpoint features yet\n");
635                 break;
636
637         /* CLASS REQUESTS (and errors) */
638
639         default:
640 nongeneric:
641                 /* non-generic request */
642                 switch (typeReq) {
643                 case GetHubStatus:
644                 case GetPortStatus:
645                         len = 4;
646                         break;
647                 case GetHubDescriptor:
648                         len = sizeof (struct usb_hub_descriptor);
649                         break;
650                 case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
651                         /* len is returned by hub_control */
652                         break;
653                 }
654                 status = hcd->driver->hub_control (hcd,
655                         typeReq, wValue, wIndex,
656                         tbuf, wLength);
657
658                 if (typeReq == GetHubDescriptor)
659                         usb_hub_adjust_deviceremovable(hcd->self.root_hub,
660                                 (struct usb_hub_descriptor *)tbuf);
661                 break;
662 error:
663                 /* "protocol stall" on error */
664                 status = -EPIPE;
665         }
666
667         if (status < 0) {
668                 len = 0;
669                 if (status != -EPIPE) {
670                         dev_dbg (hcd->self.controller,
671                                 "CTRL: TypeReq=0x%x val=0x%x "
672                                 "idx=0x%x len=%d ==> %d\n",
673                                 typeReq, wValue, wIndex,
674                                 wLength, status);
675                 }
676         } else if (status > 0) {
677                 /* hub_control may return the length of data copied. */
678                 len = status;
679                 status = 0;
680         }
681         if (len) {
682                 if (urb->transfer_buffer_length < len)
683                         len = urb->transfer_buffer_length;
684                 urb->actual_length = len;
685                 /* always USB_DIR_IN, toward host */
686                 memcpy (ubuf, bufp, len);
687
688                 /* report whether RH hardware supports remote wakeup */
689                 if (patch_wakeup &&
690                                 len > offsetof (struct usb_config_descriptor,
691                                                 bmAttributes))
692                         ((struct usb_config_descriptor *)ubuf)->bmAttributes
693                                 |= USB_CONFIG_ATT_WAKEUP;
694
695                 /* report whether RH hardware has an integrated TT */
696                 if (patch_protocol &&
697                                 len > offsetof(struct usb_device_descriptor,
698                                                 bDeviceProtocol))
699                         ((struct usb_device_descriptor *) ubuf)->
700                                 bDeviceProtocol = USB_HUB_PR_HS_SINGLE_TT;
701         }
702
703         kfree(tbuf);
704
705         /* any errors get returned through the urb completion */
706         spin_lock_irq(&hcd_root_hub_lock);
707         usb_hcd_unlink_urb_from_ep(hcd, urb);
708         usb_hcd_giveback_urb(hcd, urb, status);
709         spin_unlock_irq(&hcd_root_hub_lock);
710         return 0;
711 }
712
713 /*-------------------------------------------------------------------------*/
714
715 /*
716  * Root Hub interrupt transfers are polled using a timer if the
717  * driver requests it; otherwise the driver is responsible for
718  * calling usb_hcd_poll_rh_status() when an event occurs.
719  *
720  * Completions are called in_interrupt(), but they may or may not
721  * be in_irq().
722  */
723 void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
724 {
725         struct urb      *urb;
726         int             length;
727         unsigned long   flags;
728         char            buffer[6];      /* Any root hubs with > 31 ports? */
729
730         if (unlikely(!hcd->rh_pollable))
731                 return;
732         if (!hcd->uses_new_polling && !hcd->status_urb)
733                 return;
734
735         length = hcd->driver->hub_status_data(hcd, buffer);
736         if (length > 0) {
737
738                 /* try to complete the status urb */
739                 spin_lock_irqsave(&hcd_root_hub_lock, flags);
740                 urb = hcd->status_urb;
741                 if (urb) {
742                         clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
743                         hcd->status_urb = NULL;
744                         urb->actual_length = length;
745                         memcpy(urb->transfer_buffer, buffer, length);
746
747                         usb_hcd_unlink_urb_from_ep(hcd, urb);
748                         usb_hcd_giveback_urb(hcd, urb, 0);
749                 } else {
750                         length = 0;
751                         set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
752                 }
753                 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
754         }
755
756         /* The USB 2.0 spec says 256 ms.  This is close enough and won't
757          * exceed that limit if HZ is 100. The math is more clunky than
758          * maybe expected, this is to make sure that all timers for USB devices
759          * fire at the same time to give the CPU a break in between */
760         if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) :
761                         (length == 0 && hcd->status_urb != NULL))
762                 mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
763 }
764 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
765
766 /* timer callback */
767 static void rh_timer_func (unsigned long _hcd)
768 {
769         usb_hcd_poll_rh_status((struct usb_hcd *) _hcd);
770 }
771
772 /*-------------------------------------------------------------------------*/
773
774 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
775 {
776         int             retval;
777         unsigned long   flags;
778         unsigned        len = 1 + (urb->dev->maxchild / 8);
779
780         spin_lock_irqsave (&hcd_root_hub_lock, flags);
781         if (hcd->status_urb || urb->transfer_buffer_length < len) {
782                 dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
783                 retval = -EINVAL;
784                 goto done;
785         }
786
787         retval = usb_hcd_link_urb_to_ep(hcd, urb);
788         if (retval)
789                 goto done;
790
791         hcd->status_urb = urb;
792         urb->hcpriv = hcd;      /* indicate it's queued */
793         if (!hcd->uses_new_polling)
794                 mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
795
796         /* If a status change has already occurred, report it ASAP */
797         else if (HCD_POLL_PENDING(hcd))
798                 mod_timer(&hcd->rh_timer, jiffies);
799         retval = 0;
800  done:
801         spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
802         return retval;
803 }
804
805 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
806 {
807         if (usb_endpoint_xfer_int(&urb->ep->desc))
808                 return rh_queue_status (hcd, urb);
809         if (usb_endpoint_xfer_control(&urb->ep->desc))
810                 return rh_call_control (hcd, urb);
811         return -EINVAL;
812 }
813
814 /*-------------------------------------------------------------------------*/
815
816 /* Unlinks of root-hub control URBs are legal, but they don't do anything
817  * since these URBs always execute synchronously.
818  */
819 static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
820 {
821         unsigned long   flags;
822         int             rc;
823
824         spin_lock_irqsave(&hcd_root_hub_lock, flags);
825         rc = usb_hcd_check_unlink_urb(hcd, urb, status);
826         if (rc)
827                 goto done;
828
829         if (usb_endpoint_num(&urb->ep->desc) == 0) {    /* Control URB */
830                 ;       /* Do nothing */
831
832         } else {                                /* Status URB */
833                 if (!hcd->uses_new_polling)
834                         del_timer (&hcd->rh_timer);
835                 if (urb == hcd->status_urb) {
836                         hcd->status_urb = NULL;
837                         usb_hcd_unlink_urb_from_ep(hcd, urb);
838                         usb_hcd_giveback_urb(hcd, urb, status);
839                 }
840         }
841  done:
842         spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
843         return rc;
844 }
845
846
847
848 /*
849  * Show & store the current value of authorized_default
850  */
851 static ssize_t authorized_default_show(struct device *dev,
852                                        struct device_attribute *attr, char *buf)
853 {
854         struct usb_device *rh_usb_dev = to_usb_device(dev);
855         struct usb_bus *usb_bus = rh_usb_dev->bus;
856         struct usb_hcd *usb_hcd;
857
858         if (usb_bus == NULL)    /* FIXME: not sure if this case is possible */
859                 return -ENODEV;
860         usb_hcd = bus_to_hcd(usb_bus);
861         return snprintf(buf, PAGE_SIZE, "%u\n", usb_hcd->authorized_default);
862 }
863
864 static ssize_t authorized_default_store(struct device *dev,
865                                         struct device_attribute *attr,
866                                         const char *buf, size_t size)
867 {
868         ssize_t result;
869         unsigned val;
870         struct usb_device *rh_usb_dev = to_usb_device(dev);
871         struct usb_bus *usb_bus = rh_usb_dev->bus;
872         struct usb_hcd *usb_hcd;
873
874         if (usb_bus == NULL)    /* FIXME: not sure if this case is possible */
875                 return -ENODEV;
876         usb_hcd = bus_to_hcd(usb_bus);
877         result = sscanf(buf, "%u\n", &val);
878         if (result == 1) {
879                 usb_hcd->authorized_default = val ? 1 : 0;
880                 result = size;
881         } else {
882                 result = -EINVAL;
883         }
884         return result;
885 }
886 static DEVICE_ATTR_RW(authorized_default);
887
888 /* Group all the USB bus attributes */
889 static struct attribute *usb_bus_attrs[] = {
890                 &dev_attr_authorized_default.attr,
891                 NULL,
892 };
893
894 static struct attribute_group usb_bus_attr_group = {
895         .name = NULL,   /* we want them in the same directory */
896         .attrs = usb_bus_attrs,
897 };
898
899
900
901 /*-------------------------------------------------------------------------*/
902
903 /**
904  * usb_bus_init - shared initialization code
905  * @bus: the bus structure being initialized
906  *
907  * This code is used to initialize a usb_bus structure, memory for which is
908  * separately managed.
909  */
910 static void usb_bus_init (struct usb_bus *bus)
911 {
912         memset (&bus->devmap, 0, sizeof(struct usb_devmap));
913
914         bus->devnum_next = 1;
915
916         bus->root_hub = NULL;
917         bus->busnum = -1;
918         bus->bandwidth_allocated = 0;
919         bus->bandwidth_int_reqs  = 0;
920         bus->bandwidth_isoc_reqs = 0;
921         mutex_init(&bus->usb_address0_mutex);
922
923         INIT_LIST_HEAD (&bus->bus_list);
924 }
925
926 /*-------------------------------------------------------------------------*/
927
928 /**
929  * usb_register_bus - registers the USB host controller with the usb core
930  * @bus: pointer to the bus to register
931  * Context: !in_interrupt()
932  *
933  * Assigns a bus number, and links the controller into usbcore data
934  * structures so that it can be seen by scanning the bus list.
935  *
936  * Return: 0 if successful. A negative error code otherwise.
937  */
938 static int usb_register_bus(struct usb_bus *bus)
939 {
940         int result = -E2BIG;
941         int busnum;
942
943         mutex_lock(&usb_bus_list_lock);
944         busnum = find_next_zero_bit(busmap, USB_MAXBUS, 1);
945         if (busnum >= USB_MAXBUS) {
946                 printk (KERN_ERR "%s: too many buses\n", usbcore_name);
947                 goto error_find_busnum;
948         }
949         set_bit(busnum, busmap);
950         bus->busnum = busnum;
951
952         /* Add it to the local list of buses */
953         list_add (&bus->bus_list, &usb_bus_list);
954         mutex_unlock(&usb_bus_list_lock);
955
956         usb_notify_add_bus(bus);
957
958         dev_info (bus->controller, "new USB bus registered, assigned bus "
959                   "number %d\n", bus->busnum);
960         return 0;
961
962 error_find_busnum:
963         mutex_unlock(&usb_bus_list_lock);
964         return result;
965 }
966
967 /**
968  * usb_deregister_bus - deregisters the USB host controller
969  * @bus: pointer to the bus to deregister
970  * Context: !in_interrupt()
971  *
972  * Recycles the bus number, and unlinks the controller from usbcore data
973  * structures so that it won't be seen by scanning the bus list.
974  */
975 static void usb_deregister_bus (struct usb_bus *bus)
976 {
977         dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
978
979         /*
980          * NOTE: make sure that all the devices are removed by the
981          * controller code, as well as having it call this when cleaning
982          * itself up
983          */
984         mutex_lock(&usb_bus_list_lock);
985         list_del (&bus->bus_list);
986         mutex_unlock(&usb_bus_list_lock);
987
988         usb_notify_remove_bus(bus);
989
990         clear_bit(bus->busnum, busmap);
991 }
992
993 /**
994  * register_root_hub - called by usb_add_hcd() to register a root hub
995  * @hcd: host controller for this root hub
996  *
997  * This function registers the root hub with the USB subsystem.  It sets up
998  * the device properly in the device tree and then calls usb_new_device()
999  * to register the usb device.  It also assigns the root hub's USB address
1000  * (always 1).
1001  *
1002  * Return: 0 if successful. A negative error code otherwise.
1003  */
1004 static int register_root_hub(struct usb_hcd *hcd)
1005 {
1006         struct device *parent_dev = hcd->self.controller;
1007         struct usb_device *usb_dev = hcd->self.root_hub;
1008         const int devnum = 1;
1009         int retval;
1010
1011         usb_dev->devnum = devnum;
1012         usb_dev->bus->devnum_next = devnum + 1;
1013         memset (&usb_dev->bus->devmap.devicemap, 0,
1014                         sizeof usb_dev->bus->devmap.devicemap);
1015         set_bit (devnum, usb_dev->bus->devmap.devicemap);
1016         usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
1017
1018         mutex_lock(&usb_bus_list_lock);
1019
1020         usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64);
1021         retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE);
1022         if (retval != sizeof usb_dev->descriptor) {
1023                 mutex_unlock(&usb_bus_list_lock);
1024                 dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
1025                                 dev_name(&usb_dev->dev), retval);
1026                 return (retval < 0) ? retval : -EMSGSIZE;
1027         }
1028         if (usb_dev->speed == USB_SPEED_SUPER) {
1029                 retval = usb_get_bos_descriptor(usb_dev);
1030                 if (retval < 0) {
1031                         mutex_unlock(&usb_bus_list_lock);
1032                         dev_dbg(parent_dev, "can't read %s bos descriptor %d\n",
1033                                         dev_name(&usb_dev->dev), retval);
1034                         return retval;
1035                 }
1036         }
1037
1038         retval = usb_new_device (usb_dev);
1039         if (retval) {
1040                 dev_err (parent_dev, "can't register root hub for %s, %d\n",
1041                                 dev_name(&usb_dev->dev), retval);
1042         } else {
1043                 spin_lock_irq (&hcd_root_hub_lock);
1044                 hcd->rh_registered = 1;
1045                 spin_unlock_irq (&hcd_root_hub_lock);
1046
1047                 /* Did the HC die before the root hub was registered? */
1048                 if (HCD_DEAD(hcd))
1049                         usb_hc_died (hcd);      /* This time clean up */
1050         }
1051         mutex_unlock(&usb_bus_list_lock);
1052
1053         return retval;
1054 }
1055
1056 /*
1057  * usb_hcd_start_port_resume - a root-hub port is sending a resume signal
1058  * @bus: the bus which the root hub belongs to
1059  * @portnum: the port which is being resumed
1060  *
1061  * HCDs should call this function when they know that a resume signal is
1062  * being sent to a root-hub port.  The root hub will be prevented from
1063  * going into autosuspend until usb_hcd_end_port_resume() is called.
1064  *
1065  * The bus's private lock must be held by the caller.
1066  */
1067 void usb_hcd_start_port_resume(struct usb_bus *bus, int portnum)
1068 {
1069         unsigned bit = 1 << portnum;
1070
1071         if (!(bus->resuming_ports & bit)) {
1072                 bus->resuming_ports |= bit;
1073                 pm_runtime_get_noresume(&bus->root_hub->dev);
1074         }
1075 }
1076 EXPORT_SYMBOL_GPL(usb_hcd_start_port_resume);
1077
1078 /*
1079  * usb_hcd_end_port_resume - a root-hub port has stopped sending a resume signal
1080  * @bus: the bus which the root hub belongs to
1081  * @portnum: the port which is being resumed
1082  *
1083  * HCDs should call this function when they know that a resume signal has
1084  * stopped being sent to a root-hub port.  The root hub will be allowed to
1085  * autosuspend again.
1086  *
1087  * The bus's private lock must be held by the caller.
1088  */
1089 void usb_hcd_end_port_resume(struct usb_bus *bus, int portnum)
1090 {
1091         unsigned bit = 1 << portnum;
1092
1093         if (bus->resuming_ports & bit) {
1094                 bus->resuming_ports &= ~bit;
1095                 pm_runtime_put_noidle(&bus->root_hub->dev);
1096         }
1097 }
1098 EXPORT_SYMBOL_GPL(usb_hcd_end_port_resume);
1099
1100 /*-------------------------------------------------------------------------*/
1101
1102 /**
1103  * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
1104  * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
1105  * @is_input: true iff the transaction sends data to the host
1106  * @isoc: true for isochronous transactions, false for interrupt ones
1107  * @bytecount: how many bytes in the transaction.
1108  *
1109  * Return: Approximate bus time in nanoseconds for a periodic transaction.
1110  *
1111  * Note:
1112  * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
1113  * scheduled in software, this function is only used for such scheduling.
1114  */
1115 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
1116 {
1117         unsigned long   tmp;
1118
1119         switch (speed) {
1120         case USB_SPEED_LOW:     /* INTR only */
1121                 if (is_input) {
1122                         tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
1123                         return 64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1124                 } else {
1125                         tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
1126                         return 64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1127                 }
1128         case USB_SPEED_FULL:    /* ISOC or INTR */
1129                 if (isoc) {
1130                         tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1131                         return ((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp;
1132                 } else {
1133                         tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1134                         return 9107L + BW_HOST_DELAY + tmp;
1135                 }
1136         case USB_SPEED_HIGH:    /* ISOC or INTR */
1137                 /* FIXME adjust for input vs output */
1138                 if (isoc)
1139                         tmp = HS_NSECS_ISO (bytecount);
1140                 else
1141                         tmp = HS_NSECS (bytecount);
1142                 return tmp;
1143         default:
1144                 pr_debug ("%s: bogus device speed!\n", usbcore_name);
1145                 return -1;
1146         }
1147 }
1148 EXPORT_SYMBOL_GPL(usb_calc_bus_time);
1149
1150
1151 /*-------------------------------------------------------------------------*/
1152
1153 /*
1154  * Generic HC operations.
1155  */
1156
1157 /*-------------------------------------------------------------------------*/
1158
1159 /**
1160  * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
1161  * @hcd: host controller to which @urb was submitted
1162  * @urb: URB being submitted
1163  *
1164  * Host controller drivers should call this routine in their enqueue()
1165  * method.  The HCD's private spinlock must be held and interrupts must
1166  * be disabled.  The actions carried out here are required for URB
1167  * submission, as well as for endpoint shutdown and for usb_kill_urb.
1168  *
1169  * Return: 0 for no error, otherwise a negative error code (in which case
1170  * the enqueue() method must fail).  If no error occurs but enqueue() fails
1171  * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1172  * the private spinlock and returning.
1173  */
1174 int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1175 {
1176         int             rc = 0;
1177
1178         spin_lock(&hcd_urb_list_lock);
1179
1180         /* Check that the URB isn't being killed */
1181         if (unlikely(atomic_read(&urb->reject))) {
1182                 rc = -EPERM;
1183                 goto done;
1184         }
1185
1186         if (unlikely(!urb->ep->enabled)) {
1187                 rc = -ENOENT;
1188                 goto done;
1189         }
1190
1191         if (unlikely(!urb->dev->can_submit)) {
1192                 rc = -EHOSTUNREACH;
1193                 goto done;
1194         }
1195
1196         /*
1197          * Check the host controller's state and add the URB to the
1198          * endpoint's queue.
1199          */
1200         if (HCD_RH_RUNNING(hcd)) {
1201                 urb->unlinked = 0;
1202                 list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1203         } else {
1204                 rc = -ESHUTDOWN;
1205                 goto done;
1206         }
1207  done:
1208         spin_unlock(&hcd_urb_list_lock);
1209         return rc;
1210 }
1211 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1212
1213 /**
1214  * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1215  * @hcd: host controller to which @urb was submitted
1216  * @urb: URB being checked for unlinkability
1217  * @status: error code to store in @urb if the unlink succeeds
1218  *
1219  * Host controller drivers should call this routine in their dequeue()
1220  * method.  The HCD's private spinlock must be held and interrupts must
1221  * be disabled.  The actions carried out here are required for making
1222  * sure than an unlink is valid.
1223  *
1224  * Return: 0 for no error, otherwise a negative error code (in which case
1225  * the dequeue() method must fail).  The possible error codes are:
1226  *
1227  *      -EIDRM: @urb was not submitted or has already completed.
1228  *              The completion function may not have been called yet.
1229  *
1230  *      -EBUSY: @urb has already been unlinked.
1231  */
1232 int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1233                 int status)
1234 {
1235         struct list_head        *tmp;
1236
1237         /* insist the urb is still queued */
1238         list_for_each(tmp, &urb->ep->urb_list) {
1239                 if (tmp == &urb->urb_list)
1240                         break;
1241         }
1242         if (tmp != &urb->urb_list)
1243                 return -EIDRM;
1244
1245         /* Any status except -EINPROGRESS means something already started to
1246          * unlink this URB from the hardware.  So there's no more work to do.
1247          */
1248         if (urb->unlinked)
1249                 return -EBUSY;
1250         urb->unlinked = status;
1251         return 0;
1252 }
1253 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1254
1255 /**
1256  * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1257  * @hcd: host controller to which @urb was submitted
1258  * @urb: URB being unlinked
1259  *
1260  * Host controller drivers should call this routine before calling
1261  * usb_hcd_giveback_urb().  The HCD's private spinlock must be held and
1262  * interrupts must be disabled.  The actions carried out here are required
1263  * for URB completion.
1264  */
1265 void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1266 {
1267         /* clear all state linking urb to this dev (and hcd) */
1268         spin_lock(&hcd_urb_list_lock);
1269         list_del_init(&urb->urb_list);
1270         spin_unlock(&hcd_urb_list_lock);
1271 }
1272 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1273
1274 /*
1275  * Some usb host controllers can only perform dma using a small SRAM area.
1276  * The usb core itself is however optimized for host controllers that can dma
1277  * using regular system memory - like pci devices doing bus mastering.
1278  *
1279  * To support host controllers with limited dma capabilites we provide dma
1280  * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag.
1281  * For this to work properly the host controller code must first use the
1282  * function dma_declare_coherent_memory() to point out which memory area
1283  * that should be used for dma allocations.
1284  *
1285  * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for
1286  * dma using dma_alloc_coherent() which in turn allocates from the memory
1287  * area pointed out with dma_declare_coherent_memory().
1288  *
1289  * So, to summarize...
1290  *
1291  * - We need "local" memory, canonical example being
1292  *   a small SRAM on a discrete controller being the
1293  *   only memory that the controller can read ...
1294  *   (a) "normal" kernel memory is no good, and
1295  *   (b) there's not enough to share
1296  *
1297  * - The only *portable* hook for such stuff in the
1298  *   DMA framework is dma_declare_coherent_memory()
1299  *
1300  * - So we use that, even though the primary requirement
1301  *   is that the memory be "local" (hence addressable
1302  *   by that device), not "coherent".
1303  *
1304  */
1305
1306 static int hcd_alloc_coherent(struct usb_bus *bus,
1307                               gfp_t mem_flags, dma_addr_t *dma_handle,
1308                               void **vaddr_handle, size_t size,
1309                               enum dma_data_direction dir)
1310 {
1311         unsigned char *vaddr;
1312
1313         if (*vaddr_handle == NULL) {
1314                 WARN_ON_ONCE(1);
1315                 return -EFAULT;
1316         }
1317
1318         vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr),
1319                                  mem_flags, dma_handle);
1320         if (!vaddr)
1321                 return -ENOMEM;
1322
1323         /*
1324          * Store the virtual address of the buffer at the end
1325          * of the allocated dma buffer. The size of the buffer
1326          * may be uneven so use unaligned functions instead
1327          * of just rounding up. It makes sense to optimize for
1328          * memory footprint over access speed since the amount
1329          * of memory available for dma may be limited.
1330          */
1331         put_unaligned((unsigned long)*vaddr_handle,
1332                       (unsigned long *)(vaddr + size));
1333
1334         if (dir == DMA_TO_DEVICE)
1335                 memcpy(vaddr, *vaddr_handle, size);
1336
1337         *vaddr_handle = vaddr;
1338         return 0;
1339 }
1340
1341 static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1342                               void **vaddr_handle, size_t size,
1343                               enum dma_data_direction dir)
1344 {
1345         unsigned char *vaddr = *vaddr_handle;
1346
1347         vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1348
1349         if (dir == DMA_FROM_DEVICE)
1350                 memcpy(vaddr, *vaddr_handle, size);
1351
1352         hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1353
1354         *vaddr_handle = vaddr;
1355         *dma_handle = 0;
1356 }
1357
1358 void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb)
1359 {
1360         if (urb->transfer_flags & URB_SETUP_MAP_SINGLE)
1361                 dma_unmap_single(hcd->self.controller,
1362                                 urb->setup_dma,
1363                                 sizeof(struct usb_ctrlrequest),
1364                                 DMA_TO_DEVICE);
1365         else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL)
1366                 hcd_free_coherent(urb->dev->bus,
1367                                 &urb->setup_dma,
1368                                 (void **) &urb->setup_packet,
1369                                 sizeof(struct usb_ctrlrequest),
1370                                 DMA_TO_DEVICE);
1371
1372         /* Make it safe to call this routine more than once */
1373         urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL);
1374 }
1375 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma);
1376
1377 static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1378 {
1379         if (hcd->driver->unmap_urb_for_dma)
1380                 hcd->driver->unmap_urb_for_dma(hcd, urb);
1381         else
1382                 usb_hcd_unmap_urb_for_dma(hcd, urb);
1383 }
1384
1385 void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1386 {
1387         enum dma_data_direction dir;
1388
1389         usb_hcd_unmap_urb_setup_for_dma(hcd, urb);
1390
1391         dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1392         if (urb->transfer_flags & URB_DMA_MAP_SG)
1393                 dma_unmap_sg(hcd->self.controller,
1394                                 urb->sg,
1395                                 urb->num_sgs,
1396                                 dir);
1397         else if (urb->transfer_flags & URB_DMA_MAP_PAGE)
1398                 dma_unmap_page(hcd->self.controller,
1399                                 urb->transfer_dma,
1400                                 urb->transfer_buffer_length,
1401                                 dir);
1402         else if (urb->transfer_flags & URB_DMA_MAP_SINGLE)
1403                 dma_unmap_single(hcd->self.controller,
1404                                 urb->transfer_dma,
1405                                 urb->transfer_buffer_length,
1406                                 dir);
1407         else if (urb->transfer_flags & URB_MAP_LOCAL)
1408                 hcd_free_coherent(urb->dev->bus,
1409                                 &urb->transfer_dma,
1410                                 &urb->transfer_buffer,
1411                                 urb->transfer_buffer_length,
1412                                 dir);
1413
1414         /* Make it safe to call this routine more than once */
1415         urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE |
1416                         URB_DMA_MAP_SINGLE | URB_MAP_LOCAL);
1417 }
1418 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma);
1419
1420 static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1421                            gfp_t mem_flags)
1422 {
1423         if (hcd->driver->map_urb_for_dma)
1424                 return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags);
1425         else
1426                 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1427 }
1428
1429 int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1430                             gfp_t mem_flags)
1431 {
1432         enum dma_data_direction dir;
1433         int ret = 0;
1434
1435         /* Map the URB's buffers for DMA access.
1436          * Lower level HCD code should use *_dma exclusively,
1437          * unless it uses pio or talks to another transport,
1438          * or uses the provided scatter gather list for bulk.
1439          */
1440
1441         if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1442                 if (hcd->self.uses_pio_for_control)
1443                         return ret;
1444                 if (hcd->self.uses_dma) {
1445                         urb->setup_dma = dma_map_single(
1446                                         hcd->self.controller,
1447                                         urb->setup_packet,
1448                                         sizeof(struct usb_ctrlrequest),
1449                                         DMA_TO_DEVICE);
1450                         if (dma_mapping_error(hcd->self.controller,
1451                                                 urb->setup_dma))
1452                                 return -EAGAIN;
1453                         urb->transfer_flags |= URB_SETUP_MAP_SINGLE;
1454                 } else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1455                         ret = hcd_alloc_coherent(
1456                                         urb->dev->bus, mem_flags,
1457                                         &urb->setup_dma,
1458                                         (void **)&urb->setup_packet,
1459                                         sizeof(struct usb_ctrlrequest),
1460                                         DMA_TO_DEVICE);
1461                         if (ret)
1462                                 return ret;
1463                         urb->transfer_flags |= URB_SETUP_MAP_LOCAL;
1464                 }
1465         }
1466
1467         dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1468         if (urb->transfer_buffer_length != 0
1469             && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1470                 if (hcd->self.uses_dma) {
1471                         if (urb->num_sgs) {
1472                                 int n;
1473
1474                                 /* We don't support sg for isoc transfers ! */
1475                                 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) {
1476                                         WARN_ON(1);
1477                                         return -EINVAL;
1478                                 }
1479
1480                                 n = dma_map_sg(
1481                                                 hcd->self.controller,
1482                                                 urb->sg,
1483                                                 urb->num_sgs,
1484                                                 dir);
1485                                 if (n <= 0)
1486                                         ret = -EAGAIN;
1487                                 else
1488                                         urb->transfer_flags |= URB_DMA_MAP_SG;
1489                                 urb->num_mapped_sgs = n;
1490                                 if (n != urb->num_sgs)
1491                                         urb->transfer_flags |=
1492                                                         URB_DMA_SG_COMBINED;
1493                         } else if (urb->sg) {
1494                                 struct scatterlist *sg = urb->sg;
1495                                 urb->transfer_dma = dma_map_page(
1496                                                 hcd->self.controller,
1497                                                 sg_page(sg),
1498                                                 sg->offset,
1499                                                 urb->transfer_buffer_length,
1500                                                 dir);
1501                                 if (dma_mapping_error(hcd->self.controller,
1502                                                 urb->transfer_dma))
1503                                         ret = -EAGAIN;
1504                                 else
1505                                         urb->transfer_flags |= URB_DMA_MAP_PAGE;
1506                         } else if (is_vmalloc_addr(urb->transfer_buffer)) {
1507                                 WARN_ONCE(1, "transfer buffer not dma capable\n");
1508                                 ret = -EAGAIN;
1509                         } else {
1510                                 urb->transfer_dma = dma_map_single(
1511                                                 hcd->self.controller,
1512                                                 urb->transfer_buffer,
1513                                                 urb->transfer_buffer_length,
1514                                                 dir);
1515                                 if (dma_mapping_error(hcd->self.controller,
1516                                                 urb->transfer_dma))
1517                                         ret = -EAGAIN;
1518                                 else
1519                                         urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1520                         }
1521                 } else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1522                         ret = hcd_alloc_coherent(
1523                                         urb->dev->bus, mem_flags,
1524                                         &urb->transfer_dma,
1525                                         &urb->transfer_buffer,
1526                                         urb->transfer_buffer_length,
1527                                         dir);
1528                         if (ret == 0)
1529                                 urb->transfer_flags |= URB_MAP_LOCAL;
1530                 }
1531                 if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE |
1532                                 URB_SETUP_MAP_LOCAL)))
1533                         usb_hcd_unmap_urb_for_dma(hcd, urb);
1534         }
1535         return ret;
1536 }
1537 EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma);
1538
1539 /*-------------------------------------------------------------------------*/
1540
1541 /* may be called in any context with a valid urb->dev usecount
1542  * caller surrenders "ownership" of urb
1543  * expects usb_submit_urb() to have sanity checked and conditioned all
1544  * inputs in the urb
1545  */
1546 int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1547 {
1548         int                     status;
1549         struct usb_hcd          *hcd = bus_to_hcd(urb->dev->bus);
1550
1551         /* increment urb's reference count as part of giving it to the HCD
1552          * (which will control it).  HCD guarantees that it either returns
1553          * an error or calls giveback(), but not both.
1554          */
1555         usb_get_urb(urb);
1556         atomic_inc(&urb->use_count);
1557         atomic_inc(&urb->dev->urbnum);
1558         usbmon_urb_submit(&hcd->self, urb);
1559
1560         /* NOTE requirements on root-hub callers (usbfs and the hub
1561          * driver, for now):  URBs' urb->transfer_buffer must be
1562          * valid and usb_buffer_{sync,unmap}() not be needed, since
1563          * they could clobber root hub response data.  Also, control
1564          * URBs must be submitted in process context with interrupts
1565          * enabled.
1566          */
1567
1568         if (is_root_hub(urb->dev)) {
1569                 status = rh_urb_enqueue(hcd, urb);
1570         } else {
1571                 status = map_urb_for_dma(hcd, urb, mem_flags);
1572                 if (likely(status == 0)) {
1573                         status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1574                         if (unlikely(status))
1575                                 unmap_urb_for_dma(hcd, urb);
1576                 }
1577         }
1578
1579         if (unlikely(status)) {
1580                 usbmon_urb_submit_error(&hcd->self, urb, status);
1581                 urb->hcpriv = NULL;
1582                 INIT_LIST_HEAD(&urb->urb_list);
1583                 atomic_dec(&urb->use_count);
1584                 atomic_dec(&urb->dev->urbnum);
1585                 if (atomic_read(&urb->reject))
1586                         wake_up(&usb_kill_urb_queue);
1587                 usb_put_urb(urb);
1588         }
1589         return status;
1590 }
1591
1592 /*-------------------------------------------------------------------------*/
1593
1594 /* this makes the hcd giveback() the urb more quickly, by kicking it
1595  * off hardware queues (which may take a while) and returning it as
1596  * soon as practical.  we've already set up the urb's return status,
1597  * but we can't know if the callback completed already.
1598  */
1599 static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1600 {
1601         int             value;
1602
1603         if (is_root_hub(urb->dev))
1604                 value = usb_rh_urb_dequeue(hcd, urb, status);
1605         else {
1606
1607                 /* The only reason an HCD might fail this call is if
1608                  * it has not yet fully queued the urb to begin with.
1609                  * Such failures should be harmless. */
1610                 value = hcd->driver->urb_dequeue(hcd, urb, status);
1611         }
1612         return value;
1613 }
1614
1615 /*
1616  * called in any context
1617  *
1618  * caller guarantees urb won't be recycled till both unlink()
1619  * and the urb's completion function return
1620  */
1621 int usb_hcd_unlink_urb (struct urb *urb, int status)
1622 {
1623         struct usb_hcd          *hcd;
1624         int                     retval = -EIDRM;
1625         unsigned long           flags;
1626
1627         /* Prevent the device and bus from going away while
1628          * the unlink is carried out.  If they are already gone
1629          * then urb->use_count must be 0, since disconnected
1630          * devices can't have any active URBs.
1631          */
1632         spin_lock_irqsave(&hcd_urb_unlink_lock, flags);
1633         if (atomic_read(&urb->use_count) > 0) {
1634                 retval = 0;
1635                 usb_get_dev(urb->dev);
1636         }
1637         spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags);
1638         if (retval == 0) {
1639                 hcd = bus_to_hcd(urb->dev->bus);
1640                 retval = unlink1(hcd, urb, status);
1641                 usb_put_dev(urb->dev);
1642         }
1643
1644         if (retval == 0)
1645                 retval = -EINPROGRESS;
1646         else if (retval != -EIDRM && retval != -EBUSY)
1647                 dev_dbg(&urb->dev->dev, "hcd_unlink_urb %p fail %d\n",
1648                                 urb, retval);
1649         return retval;
1650 }
1651
1652 /*-------------------------------------------------------------------------*/
1653
1654 static void __usb_hcd_giveback_urb(struct urb *urb)
1655 {
1656         struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1657         struct usb_anchor *anchor = urb->anchor;
1658         int status = urb->unlinked;
1659         unsigned long flags;
1660
1661         urb->hcpriv = NULL;
1662         if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1663             urb->actual_length < urb->transfer_buffer_length &&
1664             !status))
1665                 status = -EREMOTEIO;
1666
1667         unmap_urb_for_dma(hcd, urb);
1668         usbmon_urb_complete(&hcd->self, urb, status);
1669         usb_anchor_suspend_wakeups(anchor);
1670         usb_unanchor_urb(urb);
1671
1672         /* pass ownership to the completion handler */
1673         urb->status = status;
1674
1675         /*
1676          * We disable local IRQs here avoid possible deadlock because
1677          * drivers may call spin_lock() to hold lock which might be
1678          * acquired in one hard interrupt handler.
1679          *
1680          * The local_irq_save()/local_irq_restore() around complete()
1681          * will be removed if current USB drivers have been cleaned up
1682          * and no one may trigger the above deadlock situation when
1683          * running complete() in tasklet.
1684          */
1685         local_irq_save(flags);
1686         urb->complete(urb);
1687         local_irq_restore(flags);
1688
1689         usb_anchor_resume_wakeups(anchor);
1690         atomic_dec(&urb->use_count);
1691         if (unlikely(atomic_read(&urb->reject)))
1692                 wake_up(&usb_kill_urb_queue);
1693         usb_put_urb(urb);
1694 }
1695
1696 static void usb_giveback_urb_bh(unsigned long param)
1697 {
1698         struct giveback_urb_bh *bh = (struct giveback_urb_bh *)param;
1699         struct list_head local_list;
1700
1701         spin_lock_irq(&bh->lock);
1702         bh->running = true;
1703  restart:
1704         list_replace_init(&bh->head, &local_list);
1705         spin_unlock_irq(&bh->lock);
1706
1707         while (!list_empty(&local_list)) {
1708                 struct urb *urb;
1709
1710                 urb = list_entry(local_list.next, struct urb, urb_list);
1711                 list_del_init(&urb->urb_list);
1712                 bh->completing_ep = urb->ep;
1713                 __usb_hcd_giveback_urb(urb);
1714                 bh->completing_ep = NULL;
1715         }
1716
1717         /* check if there are new URBs to giveback */
1718         spin_lock_irq(&bh->lock);
1719         if (!list_empty(&bh->head))
1720                 goto restart;
1721         bh->running = false;
1722         spin_unlock_irq(&bh->lock);
1723 }
1724
1725 /**
1726  * usb_hcd_giveback_urb - return URB from HCD to device driver
1727  * @hcd: host controller returning the URB
1728  * @urb: urb being returned to the USB device driver.
1729  * @status: completion status code for the URB.
1730  * Context: in_interrupt()
1731  *
1732  * This hands the URB from HCD to its USB device driver, using its
1733  * completion function.  The HCD has freed all per-urb resources
1734  * (and is done using urb->hcpriv).  It also released all HCD locks;
1735  * the device driver won't cause problems if it frees, modifies,
1736  * or resubmits this URB.
1737  *
1738  * If @urb was unlinked, the value of @status will be overridden by
1739  * @urb->unlinked.  Erroneous short transfers are detected in case
1740  * the HCD hasn't checked for them.
1741  */
1742 void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1743 {
1744         struct giveback_urb_bh *bh;
1745         bool running, high_prio_bh;
1746
1747         /* pass status to tasklet via unlinked */
1748         if (likely(!urb->unlinked))
1749                 urb->unlinked = status;
1750
1751         if (!hcd_giveback_urb_in_bh(hcd) && !is_root_hub(urb->dev)) {
1752                 __usb_hcd_giveback_urb(urb);
1753                 return;
1754         }
1755
1756         if (usb_pipeisoc(urb->pipe) || usb_pipeint(urb->pipe)) {
1757                 bh = &hcd->high_prio_bh;
1758                 high_prio_bh = true;
1759         } else {
1760                 bh = &hcd->low_prio_bh;
1761                 high_prio_bh = false;
1762         }
1763
1764         spin_lock(&bh->lock);
1765         list_add_tail(&urb->urb_list, &bh->head);
1766         running = bh->running;
1767         spin_unlock(&bh->lock);
1768
1769         if (running)
1770                 ;
1771         else if (high_prio_bh)
1772                 tasklet_hi_schedule(&bh->bh);
1773         else
1774                 tasklet_schedule(&bh->bh);
1775 }
1776 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1777
1778 /*-------------------------------------------------------------------------*/
1779
1780 /* Cancel all URBs pending on this endpoint and wait for the endpoint's
1781  * queue to drain completely.  The caller must first insure that no more
1782  * URBs can be submitted for this endpoint.
1783  */
1784 void usb_hcd_flush_endpoint(struct usb_device *udev,
1785                 struct usb_host_endpoint *ep)
1786 {
1787         struct usb_hcd          *hcd;
1788         struct urb              *urb;
1789
1790         if (!ep)
1791                 return;
1792         might_sleep();
1793         hcd = bus_to_hcd(udev->bus);
1794
1795         /* No more submits can occur */
1796         spin_lock_irq(&hcd_urb_list_lock);
1797 rescan:
1798         list_for_each_entry (urb, &ep->urb_list, urb_list) {
1799                 int     is_in;
1800
1801                 if (urb->unlinked)
1802                         continue;
1803                 usb_get_urb (urb);
1804                 is_in = usb_urb_dir_in(urb);
1805                 spin_unlock(&hcd_urb_list_lock);
1806
1807                 /* kick hcd */
1808                 unlink1(hcd, urb, -ESHUTDOWN);
1809                 dev_dbg (hcd->self.controller,
1810                         "shutdown urb %p ep%d%s%s\n",
1811                         urb, usb_endpoint_num(&ep->desc),
1812                         is_in ? "in" : "out",
1813                         ({      char *s;
1814
1815                                  switch (usb_endpoint_type(&ep->desc)) {
1816                                  case USB_ENDPOINT_XFER_CONTROL:
1817                                         s = ""; break;
1818                                  case USB_ENDPOINT_XFER_BULK:
1819                                         s = "-bulk"; break;
1820                                  case USB_ENDPOINT_XFER_INT:
1821                                         s = "-intr"; break;
1822                                  default:
1823                                         s = "-iso"; break;
1824                                 };
1825                                 s;
1826                         }));
1827                 usb_put_urb (urb);
1828
1829                 /* list contents may have changed */
1830                 spin_lock(&hcd_urb_list_lock);
1831                 goto rescan;
1832         }
1833         spin_unlock_irq(&hcd_urb_list_lock);
1834
1835         /* Wait until the endpoint queue is completely empty */
1836         while (!list_empty (&ep->urb_list)) {
1837                 spin_lock_irq(&hcd_urb_list_lock);
1838
1839                 /* The list may have changed while we acquired the spinlock */
1840                 urb = NULL;
1841                 if (!list_empty (&ep->urb_list)) {
1842                         urb = list_entry (ep->urb_list.prev, struct urb,
1843                                         urb_list);
1844                         usb_get_urb (urb);
1845                 }
1846                 spin_unlock_irq(&hcd_urb_list_lock);
1847
1848                 if (urb) {
1849                         usb_kill_urb (urb);
1850                         usb_put_urb (urb);
1851                 }
1852         }
1853 }
1854
1855 /**
1856  * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds
1857  *                              the bus bandwidth
1858  * @udev: target &usb_device
1859  * @new_config: new configuration to install
1860  * @cur_alt: the current alternate interface setting
1861  * @new_alt: alternate interface setting that is being installed
1862  *
1863  * To change configurations, pass in the new configuration in new_config,
1864  * and pass NULL for cur_alt and new_alt.
1865  *
1866  * To reset a device's configuration (put the device in the ADDRESSED state),
1867  * pass in NULL for new_config, cur_alt, and new_alt.
1868  *
1869  * To change alternate interface settings, pass in NULL for new_config,
1870  * pass in the current alternate interface setting in cur_alt,
1871  * and pass in the new alternate interface setting in new_alt.
1872  *
1873  * Return: An error if the requested bandwidth change exceeds the
1874  * bus bandwidth or host controller internal resources.
1875  */
1876 int usb_hcd_alloc_bandwidth(struct usb_device *udev,
1877                 struct usb_host_config *new_config,
1878                 struct usb_host_interface *cur_alt,
1879                 struct usb_host_interface *new_alt)
1880 {
1881         int num_intfs, i, j;
1882         struct usb_host_interface *alt = NULL;
1883         int ret = 0;
1884         struct usb_hcd *hcd;
1885         struct usb_host_endpoint *ep;
1886
1887         hcd = bus_to_hcd(udev->bus);
1888         if (!hcd->driver->check_bandwidth)
1889                 return 0;
1890
1891         /* Configuration is being removed - set configuration 0 */
1892         if (!new_config && !cur_alt) {
1893                 for (i = 1; i < 16; ++i) {
1894                         ep = udev->ep_out[i];
1895                         if (ep)
1896                                 hcd->driver->drop_endpoint(hcd, udev, ep);
1897                         ep = udev->ep_in[i];
1898                         if (ep)
1899                                 hcd->driver->drop_endpoint(hcd, udev, ep);
1900                 }
1901                 hcd->driver->check_bandwidth(hcd, udev);
1902                 return 0;
1903         }
1904         /* Check if the HCD says there's enough bandwidth.  Enable all endpoints
1905          * each interface's alt setting 0 and ask the HCD to check the bandwidth
1906          * of the bus.  There will always be bandwidth for endpoint 0, so it's
1907          * ok to exclude it.
1908          */
1909         if (new_config) {
1910                 num_intfs = new_config->desc.bNumInterfaces;
1911                 /* Remove endpoints (except endpoint 0, which is always on the
1912                  * schedule) from the old config from the schedule
1913                  */
1914                 for (i = 1; i < 16; ++i) {
1915                         ep = udev->ep_out[i];
1916                         if (ep) {
1917                                 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1918                                 if (ret < 0)
1919                                         goto reset;
1920                         }
1921                         ep = udev->ep_in[i];
1922                         if (ep) {
1923                                 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1924                                 if (ret < 0)
1925                                         goto reset;
1926                         }
1927                 }
1928                 for (i = 0; i < num_intfs; ++i) {
1929                         struct usb_host_interface *first_alt;
1930                         int iface_num;
1931
1932                         first_alt = &new_config->intf_cache[i]->altsetting[0];
1933                         iface_num = first_alt->desc.bInterfaceNumber;
1934                         /* Set up endpoints for alternate interface setting 0 */
1935                         alt = usb_find_alt_setting(new_config, iface_num, 0);
1936                         if (!alt)
1937                                 /* No alt setting 0? Pick the first setting. */
1938                                 alt = first_alt;
1939
1940                         for (j = 0; j < alt->desc.bNumEndpoints; j++) {
1941                                 ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]);
1942                                 if (ret < 0)
1943                                         goto reset;
1944                         }
1945                 }
1946         }
1947         if (cur_alt && new_alt) {
1948                 struct usb_interface *iface = usb_ifnum_to_if(udev,
1949                                 cur_alt->desc.bInterfaceNumber);
1950
1951                 if (!iface)
1952                         return -EINVAL;
1953                 if (iface->resetting_device) {
1954                         /*
1955                          * The USB core just reset the device, so the xHCI host
1956                          * and the device will think alt setting 0 is installed.
1957                          * However, the USB core will pass in the alternate
1958                          * setting installed before the reset as cur_alt.  Dig
1959                          * out the alternate setting 0 structure, or the first
1960                          * alternate setting if a broken device doesn't have alt
1961                          * setting 0.
1962                          */
1963                         cur_alt = usb_altnum_to_altsetting(iface, 0);
1964                         if (!cur_alt)
1965                                 cur_alt = &iface->altsetting[0];
1966                 }
1967
1968                 /* Drop all the endpoints in the current alt setting */
1969                 for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) {
1970                         ret = hcd->driver->drop_endpoint(hcd, udev,
1971                                         &cur_alt->endpoint[i]);
1972                         if (ret < 0)
1973                                 goto reset;
1974                 }
1975                 /* Add all the endpoints in the new alt setting */
1976                 for (i = 0; i < new_alt->desc.bNumEndpoints; i++) {
1977                         ret = hcd->driver->add_endpoint(hcd, udev,
1978                                         &new_alt->endpoint[i]);
1979                         if (ret < 0)
1980                                 goto reset;
1981                 }
1982         }
1983         ret = hcd->driver->check_bandwidth(hcd, udev);
1984 reset:
1985         if (ret < 0)
1986                 hcd->driver->reset_bandwidth(hcd, udev);
1987         return ret;
1988 }
1989
1990 /* Disables the endpoint: synchronizes with the hcd to make sure all
1991  * endpoint state is gone from hardware.  usb_hcd_flush_endpoint() must
1992  * have been called previously.  Use for set_configuration, set_interface,
1993  * driver removal, physical disconnect.
1994  *
1995  * example:  a qh stored in ep->hcpriv, holding state related to endpoint
1996  * type, maxpacket size, toggle, halt status, and scheduling.
1997  */
1998 void usb_hcd_disable_endpoint(struct usb_device *udev,
1999                 struct usb_host_endpoint *ep)
2000 {
2001         struct usb_hcd          *hcd;
2002
2003         might_sleep();
2004         hcd = bus_to_hcd(udev->bus);
2005         if (hcd->driver->endpoint_disable)
2006                 hcd->driver->endpoint_disable(hcd, ep);
2007 }
2008
2009 /**
2010  * usb_hcd_reset_endpoint - reset host endpoint state
2011  * @udev: USB device.
2012  * @ep:   the endpoint to reset.
2013  *
2014  * Resets any host endpoint state such as the toggle bit, sequence
2015  * number and current window.
2016  */
2017 void usb_hcd_reset_endpoint(struct usb_device *udev,
2018                             struct usb_host_endpoint *ep)
2019 {
2020         struct usb_hcd *hcd = bus_to_hcd(udev->bus);
2021
2022         if (hcd->driver->endpoint_reset)
2023                 hcd->driver->endpoint_reset(hcd, ep);
2024         else {
2025                 int epnum = usb_endpoint_num(&ep->desc);
2026                 int is_out = usb_endpoint_dir_out(&ep->desc);
2027                 int is_control = usb_endpoint_xfer_control(&ep->desc);
2028
2029                 usb_settoggle(udev, epnum, is_out, 0);
2030                 if (is_control)
2031                         usb_settoggle(udev, epnum, !is_out, 0);
2032         }
2033 }
2034
2035 /**
2036  * usb_alloc_streams - allocate bulk endpoint stream IDs.
2037  * @interface:          alternate setting that includes all endpoints.
2038  * @eps:                array of endpoints that need streams.
2039  * @num_eps:            number of endpoints in the array.
2040  * @num_streams:        number of streams to allocate.
2041  * @mem_flags:          flags hcd should use to allocate memory.
2042  *
2043  * Sets up a group of bulk endpoints to have @num_streams stream IDs available.
2044  * Drivers may queue multiple transfers to different stream IDs, which may
2045  * complete in a different order than they were queued.
2046  *
2047  * Return: On success, the number of allocated streams. On failure, a negative
2048  * error code.
2049  */
2050 int usb_alloc_streams(struct usb_interface *interface,
2051                 struct usb_host_endpoint **eps, unsigned int num_eps,
2052                 unsigned int num_streams, gfp_t mem_flags)
2053 {
2054         struct usb_hcd *hcd;
2055         struct usb_device *dev;
2056         int i, ret;
2057
2058         dev = interface_to_usbdev(interface);
2059         hcd = bus_to_hcd(dev->bus);
2060         if (!hcd->driver->alloc_streams || !hcd->driver->free_streams)
2061                 return -EINVAL;
2062         if (dev->speed != USB_SPEED_SUPER)
2063                 return -EINVAL;
2064
2065         for (i = 0; i < num_eps; i++) {
2066                 /* Streams only apply to bulk endpoints. */
2067                 if (!usb_endpoint_xfer_bulk(&eps[i]->desc))
2068                         return -EINVAL;
2069                 /* Re-alloc is not allowed */
2070                 if (eps[i]->streams)
2071                         return -EINVAL;
2072         }
2073
2074         ret = hcd->driver->alloc_streams(hcd, dev, eps, num_eps,
2075                         num_streams, mem_flags);
2076         if (ret < 0)
2077                 return ret;
2078
2079         for (i = 0; i < num_eps; i++)
2080                 eps[i]->streams = ret;
2081
2082         return ret;
2083 }
2084 EXPORT_SYMBOL_GPL(usb_alloc_streams);
2085
2086 /**
2087  * usb_free_streams - free bulk endpoint stream IDs.
2088  * @interface:  alternate setting that includes all endpoints.
2089  * @eps:        array of endpoints to remove streams from.
2090  * @num_eps:    number of endpoints in the array.
2091  * @mem_flags:  flags hcd should use to allocate memory.
2092  *
2093  * Reverts a group of bulk endpoints back to not using stream IDs.
2094  * Can fail if we are given bad arguments, or HCD is broken.
2095  *
2096  * Return: 0 on success. On failure, a negative error code.
2097  */
2098 int usb_free_streams(struct usb_interface *interface,
2099                 struct usb_host_endpoint **eps, unsigned int num_eps,
2100                 gfp_t mem_flags)
2101 {
2102         struct usb_hcd *hcd;
2103         struct usb_device *dev;
2104         int i, ret;
2105
2106         dev = interface_to_usbdev(interface);
2107         hcd = bus_to_hcd(dev->bus);
2108         if (dev->speed != USB_SPEED_SUPER)
2109                 return -EINVAL;
2110
2111         /* Double-free is not allowed */
2112         for (i = 0; i < num_eps; i++)
2113                 if (!eps[i] || !eps[i]->streams)
2114                         return -EINVAL;
2115
2116         ret = hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags);
2117         if (ret < 0)
2118                 return ret;
2119
2120         for (i = 0; i < num_eps; i++)
2121                 eps[i]->streams = 0;
2122
2123         return ret;
2124 }
2125 EXPORT_SYMBOL_GPL(usb_free_streams);
2126
2127 /* Protect against drivers that try to unlink URBs after the device
2128  * is gone, by waiting until all unlinks for @udev are finished.
2129  * Since we don't currently track URBs by device, simply wait until
2130  * nothing is running in the locked region of usb_hcd_unlink_urb().
2131  */
2132 void usb_hcd_synchronize_unlinks(struct usb_device *udev)
2133 {
2134         spin_lock_irq(&hcd_urb_unlink_lock);
2135         spin_unlock_irq(&hcd_urb_unlink_lock);
2136 }
2137
2138 /*-------------------------------------------------------------------------*/
2139
2140 /* called in any context */
2141 int usb_hcd_get_frame_number (struct usb_device *udev)
2142 {
2143         struct usb_hcd  *hcd = bus_to_hcd(udev->bus);
2144
2145         if (!HCD_RH_RUNNING(hcd))
2146                 return -ESHUTDOWN;
2147         return hcd->driver->get_frame_number (hcd);
2148 }
2149
2150 /*-------------------------------------------------------------------------*/
2151
2152 #ifdef  CONFIG_PM
2153
2154 int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg)
2155 {
2156         struct usb_hcd  *hcd = container_of(rhdev->bus, struct usb_hcd, self);
2157         int             status;
2158         int             old_state = hcd->state;
2159
2160         dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n",
2161                         (PMSG_IS_AUTO(msg) ? "auto-" : ""),
2162                         rhdev->do_remote_wakeup);
2163         if (HCD_DEAD(hcd)) {
2164                 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend");
2165                 return 0;
2166         }
2167
2168         if (!hcd->driver->bus_suspend) {
2169                 status = -ENOENT;
2170         } else {
2171                 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2172                 hcd->state = HC_STATE_QUIESCING;
2173                 status = hcd->driver->bus_suspend(hcd);
2174         }
2175         if (status == 0) {
2176                 usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
2177                 hcd->state = HC_STATE_SUSPENDED;
2178
2179                 /* Did we race with a root-hub wakeup event? */
2180                 if (rhdev->do_remote_wakeup) {
2181                         char    buffer[6];
2182
2183                         status = hcd->driver->hub_status_data(hcd, buffer);
2184                         if (status != 0) {
2185                                 dev_dbg(&rhdev->dev, "suspend raced with wakeup event\n");
2186                                 hcd_bus_resume(rhdev, PMSG_AUTO_RESUME);
2187                                 status = -EBUSY;
2188                         }
2189                 }
2190         } else {
2191                 spin_lock_irq(&hcd_root_hub_lock);
2192                 if (!HCD_DEAD(hcd)) {
2193                         set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2194                         hcd->state = old_state;
2195                 }
2196                 spin_unlock_irq(&hcd_root_hub_lock);
2197                 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2198                                 "suspend", status);
2199         }
2200         return status;
2201 }
2202
2203 int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg)
2204 {
2205         struct usb_hcd  *hcd = container_of(rhdev->bus, struct usb_hcd, self);
2206         int             status;
2207         int             old_state = hcd->state;
2208
2209         dev_dbg(&rhdev->dev, "usb %sresume\n",
2210                         (PMSG_IS_AUTO(msg) ? "auto-" : ""));
2211         if (HCD_DEAD(hcd)) {
2212                 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume");
2213                 return 0;
2214         }
2215         if (!hcd->driver->bus_resume)
2216                 return -ENOENT;
2217         if (HCD_RH_RUNNING(hcd))
2218                 return 0;
2219
2220         hcd->state = HC_STATE_RESUMING;
2221         status = hcd->driver->bus_resume(hcd);
2222         clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2223         if (status == 0) {
2224                 struct usb_device *udev;
2225                 int port1;
2226
2227                 spin_lock_irq(&hcd_root_hub_lock);
2228                 if (!HCD_DEAD(hcd)) {
2229                         usb_set_device_state(rhdev, rhdev->actconfig
2230                                         ? USB_STATE_CONFIGURED
2231                                         : USB_STATE_ADDRESS);
2232                         set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2233                         hcd->state = HC_STATE_RUNNING;
2234                 }
2235                 spin_unlock_irq(&hcd_root_hub_lock);
2236
2237                 /*
2238                  * Check whether any of the enabled ports on the root hub are
2239                  * unsuspended.  If they are then a TRSMRCY delay is needed
2240                  * (this is what the USB-2 spec calls a "global resume").
2241                  * Otherwise we can skip the delay.
2242                  */
2243                 usb_hub_for_each_child(rhdev, port1, udev) {
2244                         if (udev->state != USB_STATE_NOTATTACHED &&
2245                                         !udev->port_is_suspended) {
2246                                 usleep_range(10000, 11000);     /* TRSMRCY */
2247                                 break;
2248                         }
2249                 }
2250         } else {
2251                 hcd->state = old_state;
2252                 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2253                                 "resume", status);
2254                 if (status != -ESHUTDOWN)
2255                         usb_hc_died(hcd);
2256         }
2257         return status;
2258 }
2259
2260 #endif  /* CONFIG_PM */
2261
2262 #ifdef  CONFIG_PM_RUNTIME
2263
2264 /* Workqueue routine for root-hub remote wakeup */
2265 static void hcd_resume_work(struct work_struct *work)
2266 {
2267         struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
2268         struct usb_device *udev = hcd->self.root_hub;
2269
2270         usb_remote_wakeup(udev);
2271 }
2272
2273 /**
2274  * usb_hcd_resume_root_hub - called by HCD to resume its root hub
2275  * @hcd: host controller for this root hub
2276  *
2277  * The USB host controller calls this function when its root hub is
2278  * suspended (with the remote wakeup feature enabled) and a remote
2279  * wakeup request is received.  The routine submits a workqueue request
2280  * to resume the root hub (that is, manage its downstream ports again).
2281  */
2282 void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
2283 {
2284         unsigned long flags;
2285
2286         spin_lock_irqsave (&hcd_root_hub_lock, flags);
2287         if (hcd->rh_registered) {
2288                 set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2289                 queue_work(pm_wq, &hcd->wakeup_work);
2290         }
2291         spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2292 }
2293 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
2294
2295 #endif  /* CONFIG_PM_RUNTIME */
2296
2297 /*-------------------------------------------------------------------------*/
2298
2299 #ifdef  CONFIG_USB_OTG
2300
2301 /**
2302  * usb_bus_start_enum - start immediate enumeration (for OTG)
2303  * @bus: the bus (must use hcd framework)
2304  * @port_num: 1-based number of port; usually bus->otg_port
2305  * Context: in_interrupt()
2306  *
2307  * Starts enumeration, with an immediate reset followed later by
2308  * khubd identifying and possibly configuring the device.
2309  * This is needed by OTG controller drivers, where it helps meet
2310  * HNP protocol timing requirements for starting a port reset.
2311  *
2312  * Return: 0 if successful.
2313  */
2314 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
2315 {
2316         struct usb_hcd          *hcd;
2317         int                     status = -EOPNOTSUPP;
2318
2319         /* NOTE: since HNP can't start by grabbing the bus's address0_sem,
2320          * boards with root hubs hooked up to internal devices (instead of
2321          * just the OTG port) may need more attention to resetting...
2322          */
2323         hcd = container_of (bus, struct usb_hcd, self);
2324         if (port_num && hcd->driver->start_port_reset)
2325                 status = hcd->driver->start_port_reset(hcd, port_num);
2326
2327         /* run khubd shortly after (first) root port reset finishes;
2328          * it may issue others, until at least 50 msecs have passed.
2329          */
2330         if (status == 0)
2331                 mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
2332         return status;
2333 }
2334 EXPORT_SYMBOL_GPL(usb_bus_start_enum);
2335
2336 #endif
2337
2338 /*-------------------------------------------------------------------------*/
2339
2340 /**
2341  * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
2342  * @irq: the IRQ being raised
2343  * @__hcd: pointer to the HCD whose IRQ is being signaled
2344  *
2345  * If the controller isn't HALTed, calls the driver's irq handler.
2346  * Checks whether the controller is now dead.
2347  *
2348  * Return: %IRQ_HANDLED if the IRQ was handled. %IRQ_NONE otherwise.
2349  */
2350 irqreturn_t usb_hcd_irq (int irq, void *__hcd)
2351 {
2352         struct usb_hcd          *hcd = __hcd;
2353         irqreturn_t             rc;
2354
2355         if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd)))
2356                 rc = IRQ_NONE;
2357         else if (hcd->driver->irq(hcd) == IRQ_NONE)
2358                 rc = IRQ_NONE;
2359         else
2360                 rc = IRQ_HANDLED;
2361
2362         return rc;
2363 }
2364 EXPORT_SYMBOL_GPL(usb_hcd_irq);
2365
2366 /*-------------------------------------------------------------------------*/
2367
2368 /**
2369  * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
2370  * @hcd: pointer to the HCD representing the controller
2371  *
2372  * This is called by bus glue to report a USB host controller that died
2373  * while operations may still have been pending.  It's called automatically
2374  * by the PCI glue, so only glue for non-PCI busses should need to call it.
2375  *
2376  * Only call this function with the primary HCD.
2377  */
2378 void usb_hc_died (struct usb_hcd *hcd)
2379 {
2380         unsigned long flags;
2381
2382         dev_err (hcd->self.controller, "HC died; cleaning up\n");
2383
2384         spin_lock_irqsave (&hcd_root_hub_lock, flags);
2385         clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2386         set_bit(HCD_FLAG_DEAD, &hcd->flags);
2387         if (hcd->rh_registered) {
2388                 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2389
2390                 /* make khubd clean up old urbs and devices */
2391                 usb_set_device_state (hcd->self.root_hub,
2392                                 USB_STATE_NOTATTACHED);
2393                 usb_kick_khubd (hcd->self.root_hub);
2394         }
2395         if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) {
2396                 hcd = hcd->shared_hcd;
2397                 if (hcd->rh_registered) {
2398                         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2399
2400                         /* make khubd clean up old urbs and devices */
2401                         usb_set_device_state(hcd->self.root_hub,
2402                                         USB_STATE_NOTATTACHED);
2403                         usb_kick_khubd(hcd->self.root_hub);
2404                 }
2405         }
2406         spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2407         /* Make sure that the other roothub is also deallocated. */
2408 }
2409 EXPORT_SYMBOL_GPL (usb_hc_died);
2410
2411 /*-------------------------------------------------------------------------*/
2412
2413 static void init_giveback_urb_bh(struct giveback_urb_bh *bh)
2414 {
2415
2416         spin_lock_init(&bh->lock);
2417         INIT_LIST_HEAD(&bh->head);
2418         tasklet_init(&bh->bh, usb_giveback_urb_bh, (unsigned long)bh);
2419 }
2420
2421 /**
2422  * usb_create_shared_hcd - create and initialize an HCD structure
2423  * @driver: HC driver that will use this hcd
2424  * @dev: device for this HC, stored in hcd->self.controller
2425  * @bus_name: value to store in hcd->self.bus_name
2426  * @primary_hcd: a pointer to the usb_hcd structure that is sharing the
2427  *              PCI device.  Only allocate certain resources for the primary HCD
2428  * Context: !in_interrupt()
2429  *
2430  * Allocate a struct usb_hcd, with extra space at the end for the
2431  * HC driver's private data.  Initialize the generic members of the
2432  * hcd structure.
2433  *
2434  * Return: On success, a pointer to the created and initialized HCD structure.
2435  * On failure (e.g. if memory is unavailable), %NULL.
2436  */
2437 struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver,
2438                 struct device *dev, const char *bus_name,
2439                 struct usb_hcd *primary_hcd)
2440 {
2441         struct usb_hcd *hcd;
2442
2443         hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
2444         if (!hcd) {
2445                 dev_dbg (dev, "hcd alloc failed\n");
2446                 return NULL;
2447         }
2448         if (primary_hcd == NULL) {
2449                 hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex),
2450                                 GFP_KERNEL);
2451                 if (!hcd->bandwidth_mutex) {
2452                         kfree(hcd);
2453                         dev_dbg(dev, "hcd bandwidth mutex alloc failed\n");
2454                         return NULL;
2455                 }
2456                 mutex_init(hcd->bandwidth_mutex);
2457                 dev_set_drvdata(dev, hcd);
2458         } else {
2459                 mutex_lock(&usb_port_peer_mutex);
2460                 hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex;
2461                 hcd->primary_hcd = primary_hcd;
2462                 primary_hcd->primary_hcd = primary_hcd;
2463                 hcd->shared_hcd = primary_hcd;
2464                 primary_hcd->shared_hcd = hcd;
2465                 mutex_unlock(&usb_port_peer_mutex);
2466         }
2467
2468         kref_init(&hcd->kref);
2469
2470         usb_bus_init(&hcd->self);
2471         hcd->self.controller = dev;
2472         hcd->self.bus_name = bus_name;
2473         hcd->self.uses_dma = (dev->dma_mask != NULL);
2474
2475         init_timer(&hcd->rh_timer);
2476         hcd->rh_timer.function = rh_timer_func;
2477         hcd->rh_timer.data = (unsigned long) hcd;
2478 #ifdef CONFIG_PM_RUNTIME
2479         INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
2480 #endif
2481
2482         hcd->driver = driver;
2483         hcd->speed = driver->flags & HCD_MASK;
2484         hcd->product_desc = (driver->product_desc) ? driver->product_desc :
2485                         "USB Host Controller";
2486         return hcd;
2487 }
2488 EXPORT_SYMBOL_GPL(usb_create_shared_hcd);
2489
2490 /**
2491  * usb_create_hcd - create and initialize an HCD structure
2492  * @driver: HC driver that will use this hcd
2493  * @dev: device for this HC, stored in hcd->self.controller
2494  * @bus_name: value to store in hcd->self.bus_name
2495  * Context: !in_interrupt()
2496  *
2497  * Allocate a struct usb_hcd, with extra space at the end for the
2498  * HC driver's private data.  Initialize the generic members of the
2499  * hcd structure.
2500  *
2501  * Return: On success, a pointer to the created and initialized HCD
2502  * structure. On failure (e.g. if memory is unavailable), %NULL.
2503  */
2504 struct usb_hcd *usb_create_hcd(const struct hc_driver *driver,
2505                 struct device *dev, const char *bus_name)
2506 {
2507         return usb_create_shared_hcd(driver, dev, bus_name, NULL);
2508 }
2509 EXPORT_SYMBOL_GPL(usb_create_hcd);
2510
2511 /*
2512  * Roothubs that share one PCI device must also share the bandwidth mutex.
2513  * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is
2514  * deallocated.
2515  *
2516  * Make sure to only deallocate the bandwidth_mutex when the primary HCD is
2517  * freed.  When hcd_release() is called for either hcd in a peer set
2518  * invalidate the peer's ->shared_hcd and ->primary_hcd pointers to
2519  * block new peering attempts
2520  */
2521 static void hcd_release(struct kref *kref)
2522 {
2523         struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
2524
2525         mutex_lock(&usb_port_peer_mutex);
2526         if (usb_hcd_is_primary_hcd(hcd))
2527                 kfree(hcd->bandwidth_mutex);
2528         if (hcd->shared_hcd) {
2529                 struct usb_hcd *peer = hcd->shared_hcd;
2530
2531                 peer->shared_hcd = NULL;
2532                 if (peer->primary_hcd == hcd)
2533                         peer->primary_hcd = NULL;
2534         }
2535         mutex_unlock(&usb_port_peer_mutex);
2536         kfree(hcd);
2537 }
2538
2539 struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
2540 {
2541         if (hcd)
2542                 kref_get (&hcd->kref);
2543         return hcd;
2544 }
2545 EXPORT_SYMBOL_GPL(usb_get_hcd);
2546
2547 void usb_put_hcd (struct usb_hcd *hcd)
2548 {
2549         if (hcd)
2550                 kref_put (&hcd->kref, hcd_release);
2551 }
2552 EXPORT_SYMBOL_GPL(usb_put_hcd);
2553
2554 int usb_hcd_is_primary_hcd(struct usb_hcd *hcd)
2555 {
2556         if (!hcd->primary_hcd)
2557                 return 1;
2558         return hcd == hcd->primary_hcd;
2559 }
2560 EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd);
2561
2562 int usb_hcd_find_raw_port_number(struct usb_hcd *hcd, int port1)
2563 {
2564         if (!hcd->driver->find_raw_port_number)
2565                 return port1;
2566
2567         return hcd->driver->find_raw_port_number(hcd, port1);
2568 }
2569
2570 static int usb_hcd_request_irqs(struct usb_hcd *hcd,
2571                 unsigned int irqnum, unsigned long irqflags)
2572 {
2573         int retval;
2574
2575         if (hcd->driver->irq) {
2576
2577                 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
2578                                 hcd->driver->description, hcd->self.busnum);
2579                 retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
2580                                 hcd->irq_descr, hcd);
2581                 if (retval != 0) {
2582                         dev_err(hcd->self.controller,
2583                                         "request interrupt %d failed\n",
2584                                         irqnum);
2585                         return retval;
2586                 }
2587                 hcd->irq = irqnum;
2588                 dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
2589                                 (hcd->driver->flags & HCD_MEMORY) ?
2590                                         "io mem" : "io base",
2591                                         (unsigned long long)hcd->rsrc_start);
2592         } else {
2593                 hcd->irq = 0;
2594                 if (hcd->rsrc_start)
2595                         dev_info(hcd->self.controller, "%s 0x%08llx\n",
2596                                         (hcd->driver->flags & HCD_MEMORY) ?
2597                                         "io mem" : "io base",
2598                                         (unsigned long long)hcd->rsrc_start);
2599         }
2600         return 0;
2601 }
2602
2603 /*
2604  * Before we free this root hub, flush in-flight peering attempts
2605  * and disable peer lookups
2606  */
2607 static void usb_put_invalidate_rhdev(struct usb_hcd *hcd)
2608 {
2609         struct usb_device *rhdev;
2610
2611         mutex_lock(&usb_port_peer_mutex);
2612         rhdev = hcd->self.root_hub;
2613         hcd->self.root_hub = NULL;
2614         mutex_unlock(&usb_port_peer_mutex);
2615         usb_put_dev(rhdev);
2616 }
2617
2618 /**
2619  * usb_add_hcd - finish generic HCD structure initialization and register
2620  * @hcd: the usb_hcd structure to initialize
2621  * @irqnum: Interrupt line to allocate
2622  * @irqflags: Interrupt type flags
2623  *
2624  * Finish the remaining parts of generic HCD initialization: allocate the
2625  * buffers of consistent memory, register the bus, request the IRQ line,
2626  * and call the driver's reset() and start() routines.
2627  */
2628 int usb_add_hcd(struct usb_hcd *hcd,
2629                 unsigned int irqnum, unsigned long irqflags)
2630 {
2631         int retval;
2632         struct usb_device *rhdev;
2633
2634         if (IS_ENABLED(CONFIG_USB_PHY) && !hcd->phy) {
2635                 struct usb_phy *phy = usb_get_phy_dev(hcd->self.controller, 0);
2636
2637                 if (IS_ERR(phy)) {
2638                         retval = PTR_ERR(phy);
2639                         if (retval == -EPROBE_DEFER)
2640                                 return retval;
2641                 } else {
2642                         retval = usb_phy_init(phy);
2643                         if (retval) {
2644                                 usb_put_phy(phy);
2645                                 return retval;
2646                         }
2647                         hcd->phy = phy;
2648                         hcd->remove_phy = 1;
2649                 }
2650         }
2651
2652         dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
2653
2654         /* Keep old behaviour if authorized_default is not in [0, 1]. */
2655         if (authorized_default < 0 || authorized_default > 1)
2656                 hcd->authorized_default = hcd->wireless ? 0 : 1;
2657         else
2658                 hcd->authorized_default = authorized_default;
2659         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
2660
2661         /* HC is in reset state, but accessible.  Now do the one-time init,
2662          * bottom up so that hcds can customize the root hubs before khubd
2663          * starts talking to them.  (Note, bus id is assigned early too.)
2664          */
2665         if ((retval = hcd_buffer_create(hcd)) != 0) {
2666                 dev_dbg(hcd->self.controller, "pool alloc failed\n");
2667                 goto err_remove_phy;
2668         }
2669
2670         if ((retval = usb_register_bus(&hcd->self)) < 0)
2671                 goto err_register_bus;
2672
2673         if ((rhdev = usb_alloc_dev(NULL, &hcd->self, 0)) == NULL) {
2674                 dev_err(hcd->self.controller, "unable to allocate root hub\n");
2675                 retval = -ENOMEM;
2676                 goto err_allocate_root_hub;
2677         }
2678         mutex_lock(&usb_port_peer_mutex);
2679         hcd->self.root_hub = rhdev;
2680         mutex_unlock(&usb_port_peer_mutex);
2681
2682         switch (hcd->speed) {
2683         case HCD_USB11:
2684                 rhdev->speed = USB_SPEED_FULL;
2685                 break;
2686         case HCD_USB2:
2687                 rhdev->speed = USB_SPEED_HIGH;
2688                 break;
2689         case HCD_USB25:
2690                 rhdev->speed = USB_SPEED_WIRELESS;
2691                 break;
2692         case HCD_USB3:
2693                 rhdev->speed = USB_SPEED_SUPER;
2694                 break;
2695         default:
2696                 retval = -EINVAL;
2697                 goto err_set_rh_speed;
2698         }
2699
2700         /* wakeup flag init defaults to "everything works" for root hubs,
2701          * but drivers can override it in reset() if needed, along with
2702          * recording the overall controller's system wakeup capability.
2703          */
2704         device_set_wakeup_capable(&rhdev->dev, 1);
2705
2706         /* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is
2707          * registered.  But since the controller can die at any time,
2708          * let's initialize the flag before touching the hardware.
2709          */
2710         set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2711
2712         /* "reset" is misnamed; its role is now one-time init. the controller
2713          * should already have been reset (and boot firmware kicked off etc).
2714          */
2715         if (hcd->driver->reset && (retval = hcd->driver->reset(hcd)) < 0) {
2716                 dev_err(hcd->self.controller, "can't setup: %d\n", retval);
2717                 goto err_hcd_driver_setup;
2718         }
2719         hcd->rh_pollable = 1;
2720
2721         /* NOTE: root hub and controller capabilities may not be the same */
2722         if (device_can_wakeup(hcd->self.controller)
2723                         && device_can_wakeup(&hcd->self.root_hub->dev))
2724                 dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
2725
2726         /* initialize tasklets */
2727         init_giveback_urb_bh(&hcd->high_prio_bh);
2728         init_giveback_urb_bh(&hcd->low_prio_bh);
2729
2730         /* enable irqs just before we start the controller,
2731          * if the BIOS provides legacy PCI irqs.
2732          */
2733         if (usb_hcd_is_primary_hcd(hcd) && irqnum) {
2734                 retval = usb_hcd_request_irqs(hcd, irqnum, irqflags);
2735                 if (retval)
2736                         goto err_request_irq;
2737         }
2738
2739         hcd->state = HC_STATE_RUNNING;
2740         retval = hcd->driver->start(hcd);
2741         if (retval < 0) {
2742                 dev_err(hcd->self.controller, "startup error %d\n", retval);
2743                 goto err_hcd_driver_start;
2744         }
2745
2746         /* starting here, usbcore will pay attention to this root hub */
2747         if ((retval = register_root_hub(hcd)) != 0)
2748                 goto err_register_root_hub;
2749
2750         retval = sysfs_create_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2751         if (retval < 0) {
2752                 printk(KERN_ERR "Cannot register USB bus sysfs attributes: %d\n",
2753                        retval);
2754                 goto error_create_attr_group;
2755         }
2756         if (hcd->uses_new_polling && HCD_POLL_RH(hcd))
2757                 usb_hcd_poll_rh_status(hcd);
2758
2759         return retval;
2760
2761 error_create_attr_group:
2762         clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2763         if (HC_IS_RUNNING(hcd->state))
2764                 hcd->state = HC_STATE_QUIESCING;
2765         spin_lock_irq(&hcd_root_hub_lock);
2766         hcd->rh_registered = 0;
2767         spin_unlock_irq(&hcd_root_hub_lock);
2768
2769 #ifdef CONFIG_PM_RUNTIME
2770         cancel_work_sync(&hcd->wakeup_work);
2771 #endif
2772         mutex_lock(&usb_bus_list_lock);
2773         usb_disconnect(&rhdev);         /* Sets rhdev to NULL */
2774         mutex_unlock(&usb_bus_list_lock);
2775 err_register_root_hub:
2776         hcd->rh_pollable = 0;
2777         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2778         del_timer_sync(&hcd->rh_timer);
2779         hcd->driver->stop(hcd);
2780         hcd->state = HC_STATE_HALT;
2781         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2782         del_timer_sync(&hcd->rh_timer);
2783 err_hcd_driver_start:
2784         if (usb_hcd_is_primary_hcd(hcd) && hcd->irq > 0)
2785                 free_irq(irqnum, hcd);
2786 err_request_irq:
2787 err_hcd_driver_setup:
2788 err_set_rh_speed:
2789         usb_put_invalidate_rhdev(hcd);
2790 err_allocate_root_hub:
2791         usb_deregister_bus(&hcd->self);
2792 err_register_bus:
2793         hcd_buffer_destroy(hcd);
2794 err_remove_phy:
2795         if (hcd->remove_phy && hcd->phy) {
2796                 usb_phy_shutdown(hcd->phy);
2797                 usb_put_phy(hcd->phy);
2798                 hcd->phy = NULL;
2799         }
2800         return retval;
2801 }
2802 EXPORT_SYMBOL_GPL(usb_add_hcd);
2803
2804 /**
2805  * usb_remove_hcd - shutdown processing for generic HCDs
2806  * @hcd: the usb_hcd structure to remove
2807  * Context: !in_interrupt()
2808  *
2809  * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
2810  * invoking the HCD's stop() method.
2811  */
2812 void usb_remove_hcd(struct usb_hcd *hcd)
2813 {
2814         struct usb_device *rhdev = hcd->self.root_hub;
2815
2816         dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
2817
2818         usb_get_dev(rhdev);
2819         sysfs_remove_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2820
2821         clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2822         if (HC_IS_RUNNING (hcd->state))
2823                 hcd->state = HC_STATE_QUIESCING;
2824
2825         dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
2826         spin_lock_irq (&hcd_root_hub_lock);
2827         hcd->rh_registered = 0;
2828         spin_unlock_irq (&hcd_root_hub_lock);
2829
2830 #ifdef CONFIG_PM_RUNTIME
2831         cancel_work_sync(&hcd->wakeup_work);
2832 #endif
2833
2834         mutex_lock(&usb_bus_list_lock);
2835         usb_disconnect(&rhdev);         /* Sets rhdev to NULL */
2836         mutex_unlock(&usb_bus_list_lock);
2837
2838         /*
2839          * tasklet_kill() isn't needed here because:
2840          * - driver's disconnect() called from usb_disconnect() should
2841          *   make sure its URBs are completed during the disconnect()
2842          *   callback
2843          *
2844          * - it is too late to run complete() here since driver may have
2845          *   been removed already now
2846          */
2847
2848         /* Prevent any more root-hub status calls from the timer.
2849          * The HCD might still restart the timer (if a port status change
2850          * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke
2851          * the hub_status_data() callback.
2852          */
2853         hcd->rh_pollable = 0;
2854         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2855         del_timer_sync(&hcd->rh_timer);
2856
2857         hcd->driver->stop(hcd);
2858         hcd->state = HC_STATE_HALT;
2859
2860         /* In case the HCD restarted the timer, stop it again. */
2861         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2862         del_timer_sync(&hcd->rh_timer);
2863
2864         if (usb_hcd_is_primary_hcd(hcd)) {
2865                 if (hcd->irq > 0)
2866                         free_irq(hcd->irq, hcd);
2867         }
2868
2869         usb_deregister_bus(&hcd->self);
2870         hcd_buffer_destroy(hcd);
2871         if (hcd->remove_phy && hcd->phy) {
2872                 usb_phy_shutdown(hcd->phy);
2873                 usb_put_phy(hcd->phy);
2874                 hcd->phy = NULL;
2875         }
2876
2877         usb_put_invalidate_rhdev(hcd);
2878 }
2879 EXPORT_SYMBOL_GPL(usb_remove_hcd);
2880
2881 void
2882 usb_hcd_platform_shutdown(struct platform_device *dev)
2883 {
2884         struct usb_hcd *hcd = platform_get_drvdata(dev);
2885
2886         if (hcd->driver->shutdown)
2887                 hcd->driver->shutdown(hcd);
2888 }
2889 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
2890
2891 /*-------------------------------------------------------------------------*/
2892
2893 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
2894
2895 struct usb_mon_operations *mon_ops;
2896
2897 /*
2898  * The registration is unlocked.
2899  * We do it this way because we do not want to lock in hot paths.
2900  *
2901  * Notice that the code is minimally error-proof. Because usbmon needs
2902  * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
2903  */
2904
2905 int usb_mon_register (struct usb_mon_operations *ops)
2906 {
2907
2908         if (mon_ops)
2909                 return -EBUSY;
2910
2911         mon_ops = ops;
2912         mb();
2913         return 0;
2914 }
2915 EXPORT_SYMBOL_GPL (usb_mon_register);
2916
2917 void usb_mon_deregister (void)
2918 {
2919
2920         if (mon_ops == NULL) {
2921                 printk(KERN_ERR "USB: monitor was not registered\n");
2922                 return;
2923         }
2924         mon_ops = NULL;
2925         mb();
2926 }
2927 EXPORT_SYMBOL_GPL (usb_mon_deregister);
2928
2929 #endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */
This page took 0.206595 seconds and 4 git commands to generate.