3 * Copyright (c) 2011, Microsoft Corporation.
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
16 * Place - Suite 330, Boston, MA 02111-1307 USA.
28 #include <uapi/linux/hyperv.h>
29 #include <uapi/asm/hyperv.h>
31 #include <linux/types.h>
32 #include <linux/scatterlist.h>
33 #include <linux/list.h>
34 #include <linux/timer.h>
35 #include <linux/completion.h>
36 #include <linux/device.h>
37 #include <linux/mod_devicetable.h>
38 #include <linux/interrupt.h>
40 #define MAX_PAGE_BUFFER_COUNT 32
41 #define MAX_MULTIPAGE_BUFFER_COUNT 32 /* 128K */
45 /* Single-page buffer */
46 struct hv_page_buffer {
52 /* Multiple-page buffer */
53 struct hv_multipage_buffer {
54 /* Length and Offset determines the # of pfns in the array */
57 u64 pfn_array[MAX_MULTIPAGE_BUFFER_COUNT];
61 * Multiple-page buffer array; the pfn array is variable size:
62 * The number of entries in the PFN array is determined by
66 /* Length and Offset determines the # of pfns in the array */
72 /* 0x18 includes the proprietary packet header */
73 #define MAX_PAGE_BUFFER_PACKET (0x18 + \
74 (sizeof(struct hv_page_buffer) * \
75 MAX_PAGE_BUFFER_COUNT))
76 #define MAX_MULTIPAGE_BUFFER_PACKET (0x18 + \
77 sizeof(struct hv_multipage_buffer))
82 struct hv_ring_buffer {
83 /* Offset in bytes from the start of ring data below */
86 /* Offset in bytes from the start of ring data below */
92 * Win8 uses some of the reserved bits to implement
93 * interrupt driven flow management. On the send side
94 * we can request that the receiver interrupt the sender
95 * when the ring transitions from being full to being able
96 * to handle a message of size "pending_send_sz".
98 * Add necessary state for this enhancement.
106 u32 feat_pending_send_sz:1;
111 /* Pad it to PAGE_SIZE so that data starts on page boundary */
115 * Ring data starts here + RingDataStartOffset
116 * !!! DO NOT place any fields below this !!!
121 struct hv_ring_buffer_info {
122 struct hv_ring_buffer *ring_buffer;
123 u32 ring_size; /* Include the shared header */
124 spinlock_t ring_lock;
126 u32 ring_datasize; /* < ring_size */
127 u32 ring_data_startoffset;
128 u32 priv_write_index;
130 u32 cached_read_index;
135 * hv_get_ringbuffer_availbytes()
137 * Get number of bytes available to read and to write to
138 * for the specified ring buffer
141 hv_get_ringbuffer_availbytes(const struct hv_ring_buffer_info *rbi,
142 u32 *read, u32 *write)
144 u32 read_loc, write_loc, dsize;
146 /* Capture the read/write indices before they changed */
147 read_loc = rbi->ring_buffer->read_index;
148 write_loc = rbi->ring_buffer->write_index;
149 dsize = rbi->ring_datasize;
151 *write = write_loc >= read_loc ? dsize - (write_loc - read_loc) :
152 read_loc - write_loc;
153 *read = dsize - *write;
156 static inline u32 hv_get_bytes_to_read(const struct hv_ring_buffer_info *rbi)
158 u32 read_loc, write_loc, dsize, read;
160 dsize = rbi->ring_datasize;
161 read_loc = rbi->ring_buffer->read_index;
162 write_loc = READ_ONCE(rbi->ring_buffer->write_index);
164 read = write_loc >= read_loc ? (write_loc - read_loc) :
165 (dsize - read_loc) + write_loc;
170 static inline u32 hv_get_bytes_to_write(const struct hv_ring_buffer_info *rbi)
172 u32 read_loc, write_loc, dsize, write;
174 dsize = rbi->ring_datasize;
175 read_loc = READ_ONCE(rbi->ring_buffer->read_index);
176 write_loc = rbi->ring_buffer->write_index;
178 write = write_loc >= read_loc ? dsize - (write_loc - read_loc) :
179 read_loc - write_loc;
183 static inline u32 hv_get_cached_bytes_to_write(
184 const struct hv_ring_buffer_info *rbi)
186 u32 read_loc, write_loc, dsize, write;
188 dsize = rbi->ring_datasize;
189 read_loc = rbi->cached_read_index;
190 write_loc = rbi->ring_buffer->write_index;
192 write = write_loc >= read_loc ? dsize - (write_loc - read_loc) :
193 read_loc - write_loc;
197 * VMBUS version is 32 bit entity broken up into
198 * two 16 bit quantities: major_number. minor_number.
200 * 0 . 13 (Windows Server 2008)
203 * 3 . 0 (Windows 8 R2)
207 #define VERSION_WS2008 ((0 << 16) | (13))
208 #define VERSION_WIN7 ((1 << 16) | (1))
209 #define VERSION_WIN8 ((2 << 16) | (4))
210 #define VERSION_WIN8_1 ((3 << 16) | (0))
211 #define VERSION_WIN10 ((4 << 16) | (0))
213 #define VERSION_INVAL -1
215 #define VERSION_CURRENT VERSION_WIN10
217 /* Make maximum size of pipe payload of 16K */
218 #define MAX_PIPE_DATA_PAYLOAD (sizeof(u8) * 16384)
220 /* Define PipeMode values. */
221 #define VMBUS_PIPE_TYPE_BYTE 0x00000000
222 #define VMBUS_PIPE_TYPE_MESSAGE 0x00000004
224 /* The size of the user defined data buffer for non-pipe offers. */
225 #define MAX_USER_DEFINED_BYTES 120
227 /* The size of the user defined data buffer for pipe offers. */
228 #define MAX_PIPE_USER_DEFINED_BYTES 116
231 * At the center of the Channel Management library is the Channel Offer. This
232 * struct contains the fundamental information about an offer.
234 struct vmbus_channel_offer {
239 * These two fields are not currently used.
245 u16 mmio_megabytes; /* in bytes * 1024 * 1024 */
248 /* Non-pipes: The user has MAX_USER_DEFINED_BYTES bytes. */
250 unsigned char user_def[MAX_USER_DEFINED_BYTES];
255 * The following sructure is an integrated pipe protocol, which
256 * is implemented on top of standard user-defined data. Pipe
257 * clients have MAX_PIPE_USER_DEFINED_BYTES left for their own
262 unsigned char user_def[MAX_PIPE_USER_DEFINED_BYTES];
266 * The sub_channel_index is defined in win8.
268 u16 sub_channel_index;
273 #define VMBUS_CHANNEL_ENUMERATE_DEVICE_INTERFACE 1
274 #define VMBUS_CHANNEL_SERVER_SUPPORTS_TRANSFER_PAGES 2
275 #define VMBUS_CHANNEL_SERVER_SUPPORTS_GPADLS 4
276 #define VMBUS_CHANNEL_NAMED_PIPE_MODE 0x10
277 #define VMBUS_CHANNEL_LOOPBACK_OFFER 0x100
278 #define VMBUS_CHANNEL_PARENT_OFFER 0x200
279 #define VMBUS_CHANNEL_REQUEST_MONITORED_NOTIFICATION 0x400
280 #define VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER 0x2000
282 struct vmpacket_descriptor {
290 struct vmpacket_header {
291 u32 prev_pkt_start_offset;
292 struct vmpacket_descriptor descriptor;
295 struct vmtransfer_page_range {
300 struct vmtransfer_page_packet_header {
301 struct vmpacket_descriptor d;
306 struct vmtransfer_page_range ranges[1];
309 struct vmgpadl_packet_header {
310 struct vmpacket_descriptor d;
315 struct vmadd_remove_transfer_page_set {
316 struct vmpacket_descriptor d;
323 * This structure defines a range in guest physical space that can be made to
324 * look virtually contiguous.
333 * This is the format for an Establish Gpadl packet, which contains a handle by
334 * which this GPADL will be known and a set of GPA ranges associated with it.
335 * This can be converted to a MDL by the guest OS. If there are multiple GPA
336 * ranges, then the resulting MDL will be "chained," representing multiple VA
339 struct vmestablish_gpadl {
340 struct vmpacket_descriptor d;
343 struct gpa_range range[1];
347 * This is the format for a Teardown Gpadl packet, which indicates that the
348 * GPADL handle in the Establish Gpadl packet will never be referenced again.
350 struct vmteardown_gpadl {
351 struct vmpacket_descriptor d;
353 u32 reserved; /* for alignment to a 8-byte boundary */
357 * This is the format for a GPA-Direct packet, which contains a set of GPA
358 * ranges, in addition to commands and/or data.
360 struct vmdata_gpa_direct {
361 struct vmpacket_descriptor d;
364 struct gpa_range range[1];
367 /* This is the format for a Additional Data Packet. */
368 struct vmadditional_data {
369 struct vmpacket_descriptor d;
373 unsigned char data[1];
376 union vmpacket_largest_possible_header {
377 struct vmpacket_descriptor simple_hdr;
378 struct vmtransfer_page_packet_header xfer_page_hdr;
379 struct vmgpadl_packet_header gpadl_hdr;
380 struct vmadd_remove_transfer_page_set add_rm_xfer_page_hdr;
381 struct vmestablish_gpadl establish_gpadl_hdr;
382 struct vmteardown_gpadl teardown_gpadl_hdr;
383 struct vmdata_gpa_direct data_gpa_direct_hdr;
386 #define VMPACKET_DATA_START_ADDRESS(__packet) \
387 (void *)(((unsigned char *)__packet) + \
388 ((struct vmpacket_descriptor)__packet)->offset8 * 8)
390 #define VMPACKET_DATA_LENGTH(__packet) \
391 ((((struct vmpacket_descriptor)__packet)->len8 - \
392 ((struct vmpacket_descriptor)__packet)->offset8) * 8)
394 #define VMPACKET_TRANSFER_MODE(__packet) \
395 (((struct IMPACT)__packet)->type)
397 enum vmbus_packet_type {
398 VM_PKT_INVALID = 0x0,
400 VM_PKT_ADD_XFER_PAGESET = 0x2,
401 VM_PKT_RM_XFER_PAGESET = 0x3,
402 VM_PKT_ESTABLISH_GPADL = 0x4,
403 VM_PKT_TEARDOWN_GPADL = 0x5,
404 VM_PKT_DATA_INBAND = 0x6,
405 VM_PKT_DATA_USING_XFER_PAGES = 0x7,
406 VM_PKT_DATA_USING_GPADL = 0x8,
407 VM_PKT_DATA_USING_GPA_DIRECT = 0x9,
408 VM_PKT_CANCEL_REQUEST = 0xa,
410 VM_PKT_DATA_USING_ADDITIONAL_PKT = 0xc,
411 VM_PKT_ADDITIONAL_DATA = 0xd
414 #define VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED 1
417 /* Version 1 messages */
418 enum vmbus_channel_message_type {
419 CHANNELMSG_INVALID = 0,
420 CHANNELMSG_OFFERCHANNEL = 1,
421 CHANNELMSG_RESCIND_CHANNELOFFER = 2,
422 CHANNELMSG_REQUESTOFFERS = 3,
423 CHANNELMSG_ALLOFFERS_DELIVERED = 4,
424 CHANNELMSG_OPENCHANNEL = 5,
425 CHANNELMSG_OPENCHANNEL_RESULT = 6,
426 CHANNELMSG_CLOSECHANNEL = 7,
427 CHANNELMSG_GPADL_HEADER = 8,
428 CHANNELMSG_GPADL_BODY = 9,
429 CHANNELMSG_GPADL_CREATED = 10,
430 CHANNELMSG_GPADL_TEARDOWN = 11,
431 CHANNELMSG_GPADL_TORNDOWN = 12,
432 CHANNELMSG_RELID_RELEASED = 13,
433 CHANNELMSG_INITIATE_CONTACT = 14,
434 CHANNELMSG_VERSION_RESPONSE = 15,
435 CHANNELMSG_UNLOAD = 16,
436 CHANNELMSG_UNLOAD_RESPONSE = 17,
440 CHANNELMSG_TL_CONNECT_REQUEST = 21,
444 struct vmbus_channel_message_header {
445 enum vmbus_channel_message_type msgtype;
449 /* Query VMBus Version parameters */
450 struct vmbus_channel_query_vmbus_version {
451 struct vmbus_channel_message_header header;
455 /* VMBus Version Supported parameters */
456 struct vmbus_channel_version_supported {
457 struct vmbus_channel_message_header header;
458 u8 version_supported;
461 /* Offer Channel parameters */
462 struct vmbus_channel_offer_channel {
463 struct vmbus_channel_message_header header;
464 struct vmbus_channel_offer offer;
468 * win7 and beyond splits this field into a bit field.
470 u8 monitor_allocated:1;
473 * These are new fields added in win7 and later.
474 * Do not access these fields without checking the
475 * negotiated protocol.
477 * If "is_dedicated_interrupt" is set, we must not set the
478 * associated bit in the channel bitmap while sending the
479 * interrupt to the host.
481 * connection_id is to be used in signaling the host.
483 u16 is_dedicated_interrupt:1;
488 /* Rescind Offer parameters */
489 struct vmbus_channel_rescind_offer {
490 struct vmbus_channel_message_header header;
495 hv_ringbuffer_pending_size(const struct hv_ring_buffer_info *rbi)
497 return rbi->ring_buffer->pending_send_sz;
501 * Request Offer -- no parameters, SynIC message contains the partition ID
502 * Set Snoop -- no parameters, SynIC message contains the partition ID
503 * Clear Snoop -- no parameters, SynIC message contains the partition ID
504 * All Offers Delivered -- no parameters, SynIC message contains the partition
506 * Flush Client -- no parameters, SynIC message contains the partition ID
509 /* Open Channel parameters */
510 struct vmbus_channel_open_channel {
511 struct vmbus_channel_message_header header;
513 /* Identifies the specific VMBus channel that is being opened. */
516 /* ID making a particular open request at a channel offer unique. */
519 /* GPADL for the channel's ring buffer. */
520 u32 ringbuffer_gpadlhandle;
523 * Starting with win8, this field will be used to specify
524 * the target virtual processor on which to deliver the interrupt for
525 * the host to guest communication.
526 * Prior to win8, incoming channel interrupts would only
527 * be delivered on cpu 0. Setting this value to 0 would
528 * preserve the earlier behavior.
533 * The upstream ring buffer begins at offset zero in the memory
534 * described by RingBufferGpadlHandle. The downstream ring buffer
535 * follows it at this offset (in pages).
537 u32 downstream_ringbuffer_pageoffset;
539 /* User-specific data to be passed along to the server endpoint. */
540 unsigned char userdata[MAX_USER_DEFINED_BYTES];
543 /* Open Channel Result parameters */
544 struct vmbus_channel_open_result {
545 struct vmbus_channel_message_header header;
551 /* Close channel parameters; */
552 struct vmbus_channel_close_channel {
553 struct vmbus_channel_message_header header;
557 /* Channel Message GPADL */
558 #define GPADL_TYPE_RING_BUFFER 1
559 #define GPADL_TYPE_SERVER_SAVE_AREA 2
560 #define GPADL_TYPE_TRANSACTION 8
563 * The number of PFNs in a GPADL message is defined by the number of
564 * pages that would be spanned by ByteCount and ByteOffset. If the
565 * implied number of PFNs won't fit in this packet, there will be a
566 * follow-up packet that contains more.
568 struct vmbus_channel_gpadl_header {
569 struct vmbus_channel_message_header header;
574 struct gpa_range range[0];
577 /* This is the followup packet that contains more PFNs. */
578 struct vmbus_channel_gpadl_body {
579 struct vmbus_channel_message_header header;
585 struct vmbus_channel_gpadl_created {
586 struct vmbus_channel_message_header header;
592 struct vmbus_channel_gpadl_teardown {
593 struct vmbus_channel_message_header header;
598 struct vmbus_channel_gpadl_torndown {
599 struct vmbus_channel_message_header header;
603 struct vmbus_channel_relid_released {
604 struct vmbus_channel_message_header header;
608 struct vmbus_channel_initiate_contact {
609 struct vmbus_channel_message_header header;
610 u32 vmbus_version_requested;
611 u32 target_vcpu; /* The VCPU the host should respond to */
617 /* Hyper-V socket: guest's connect()-ing to host */
618 struct vmbus_channel_tl_connect_request {
619 struct vmbus_channel_message_header header;
620 uuid_le guest_endpoint_id;
621 uuid_le host_service_id;
624 struct vmbus_channel_version_response {
625 struct vmbus_channel_message_header header;
626 u8 version_supported;
629 enum vmbus_channel_state {
631 CHANNEL_OPENING_STATE,
633 CHANNEL_OPENED_STATE,
637 * Represents each channel msg on the vmbus connection This is a
638 * variable-size data structure depending on the msg type itself
640 struct vmbus_channel_msginfo {
641 /* Bookkeeping stuff */
642 struct list_head msglistentry;
644 /* So far, this is only used to handle gpadl body message */
645 struct list_head submsglist;
647 /* Synchronize the request/response if needed */
648 struct completion waitevent;
649 struct vmbus_channel *waiting_channel;
651 struct vmbus_channel_version_supported version_supported;
652 struct vmbus_channel_open_result open_result;
653 struct vmbus_channel_gpadl_torndown gpadl_torndown;
654 struct vmbus_channel_gpadl_created gpadl_created;
655 struct vmbus_channel_version_response version_response;
660 * The channel message that goes out on the "wire".
661 * It will contain at minimum the VMBUS_CHANNEL_MESSAGE_HEADER header
663 unsigned char msg[0];
666 struct vmbus_close_msg {
667 struct vmbus_channel_msginfo info;
668 struct vmbus_channel_close_channel msg;
671 /* Define connection identifier type. */
672 union hv_connection_id {
680 /* Definition of the hv_signal_event hypercall input structure. */
681 struct hv_input_signal_event {
682 union hv_connection_id connectionid;
687 struct hv_input_signal_event_buffer {
689 struct hv_input_signal_event event;
692 enum hv_numa_policy {
697 enum vmbus_device_type {
717 struct vmbus_device {
723 struct vmbus_channel {
724 struct list_head listentry;
726 struct hv_device *device_obj;
728 enum vmbus_channel_state state;
730 struct vmbus_channel_offer_channel offermsg;
732 * These are based on the OfferMsg.MonitorId.
733 * Save it here for easy access.
738 bool rescind; /* got rescind msg */
740 u32 ringbuffer_gpadlhandle;
742 /* Allocated memory for ring buffer */
743 void *ringbuffer_pages;
744 u32 ringbuffer_pagecount;
745 struct hv_ring_buffer_info outbound; /* send to parent */
746 struct hv_ring_buffer_info inbound; /* receive from parent */
747 spinlock_t inbound_lock;
749 struct vmbus_close_msg close_msg;
751 /* Channel callback's invoked in softirq context */
752 struct tasklet_struct callback_event;
753 void (*onchannel_callback)(void *context);
754 void *channel_callback_context;
757 * A channel can be marked for one of three modes of reading:
758 * BATCHED - callback called from taslket and should read
759 * channel until empty. Interrupts from the host
760 * are masked while read is in process (default).
761 * DIRECT - callback called from tasklet (softirq).
762 * ISR - callback called in interrupt context and must
763 * invoke its own deferred processing.
764 * Host interrupts are disabled and must be re-enabled
765 * when ring is empty.
767 enum hv_callback_mode {
773 bool is_dedicated_interrupt;
774 struct hv_input_signal_event_buffer sig_buf;
775 struct hv_input_signal_event *sig_event;
778 * Starting with win8, this field will be used to specify
779 * the target virtual processor on which to deliver the interrupt for
780 * the host to guest communication.
781 * Prior to win8, incoming channel interrupts would only
782 * be delivered on cpu 0. Setting this value to 0 would
783 * preserve the earlier behavior.
786 /* The corresponding CPUID in the guest */
789 * State to manage the CPU affiliation of channels.
791 struct cpumask alloced_cpus_in_node;
794 * Support for sub-channels. For high performance devices,
795 * it will be useful to have multiple sub-channels to support
796 * a scalable communication infrastructure with the host.
797 * The support for sub-channels is implemented as an extention
798 * to the current infrastructure.
799 * The initial offer is considered the primary channel and this
800 * offer message will indicate if the host supports sub-channels.
801 * The guest is free to ask for sub-channels to be offerred and can
802 * open these sub-channels as a normal "primary" channel. However,
803 * all sub-channels will have the same type and instance guids as the
804 * primary channel. Requests sent on a given channel will result in a
805 * response on the same channel.
809 * Sub-channel creation callback. This callback will be called in
810 * process context when a sub-channel offer is received from the host.
811 * The guest can open the sub-channel in the context of this callback.
813 void (*sc_creation_callback)(struct vmbus_channel *new_sc);
816 * Channel rescind callback. Some channels (the hvsock ones), need to
817 * register a callback which is invoked in vmbus_onoffer_rescind().
819 void (*chn_rescind_callback)(struct vmbus_channel *channel);
822 * The spinlock to protect the structure. It is being used to protect
823 * test-and-set access to various attributes of the structure as well
824 * as all sc_list operations.
828 * All Sub-channels of a primary channel are linked here.
830 struct list_head sc_list;
832 * Current number of sub-channels.
836 * Number of a sub-channel (position within sc_list) which is supposed
837 * to be used as the next outgoing channel.
841 * The primary channel this sub-channel belongs to.
842 * This will be NULL for the primary channel.
844 struct vmbus_channel *primary_channel;
846 * Support per-channel state for use by vmbus drivers.
848 void *per_channel_state;
850 * To support per-cpu lookup mapping of relid to channel,
851 * link up channels based on their CPU affinity.
853 struct list_head percpu_list;
856 * Defer freeing channel until after all cpu's have
857 * gone through grace period.
862 * For performance critical channels (storage, networking
863 * etc,), Hyper-V has a mechanism to enhance the throughput
864 * at the expense of latency:
865 * When the host is to be signaled, we just set a bit in a shared page
866 * and this bit will be inspected by the hypervisor within a certain
867 * window and if the bit is set, the host will be signaled. The window
868 * of time is the monitor latency - currently around 100 usecs. This
869 * mechanism improves throughput by:
871 * A) Making the host more efficient - each time it wakes up,
872 * potentially it will process morev number of packets. The
873 * monitor latency allows a batch to build up.
874 * B) By deferring the hypercall to signal, we will also minimize
877 * Clearly, these optimizations improve throughput at the expense of
878 * latency. Furthermore, since the channel is shared for both
879 * control and data messages, control messages currently suffer
880 * unnecessary latency adversley impacting performance and boot
881 * time. To fix this issue, permit tagging the channel as being
882 * in "low latency" mode. In this mode, we will bypass the monitor
888 * NUMA distribution policy:
889 * We support teo policies:
890 * 1) Balanced: Here all performance critical channels are
891 * distributed evenly amongst all the NUMA nodes.
892 * This policy will be the default policy.
893 * 2) Localized: All channels of a given instance of a
894 * performance critical service will be assigned CPUs
895 * within a selected NUMA node.
897 enum hv_numa_policy affinity_policy;
901 static inline bool is_hvsock_channel(const struct vmbus_channel *c)
903 return !!(c->offermsg.offer.chn_flags &
904 VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER);
907 static inline void set_channel_affinity_state(struct vmbus_channel *c,
908 enum hv_numa_policy policy)
910 c->affinity_policy = policy;
913 static inline void set_channel_read_mode(struct vmbus_channel *c,
914 enum hv_callback_mode mode)
916 c->callback_mode = mode;
919 static inline void set_per_channel_state(struct vmbus_channel *c, void *s)
921 c->per_channel_state = s;
924 static inline void *get_per_channel_state(struct vmbus_channel *c)
926 return c->per_channel_state;
929 static inline void set_channel_pending_send_size(struct vmbus_channel *c,
932 c->outbound.ring_buffer->pending_send_sz = size;
935 static inline void set_low_latency_mode(struct vmbus_channel *c)
937 c->low_latency = true;
940 static inline void clear_low_latency_mode(struct vmbus_channel *c)
942 c->low_latency = false;
945 void vmbus_onmessage(void *context);
947 int vmbus_request_offers(void);
950 * APIs for managing sub-channels.
953 void vmbus_set_sc_create_callback(struct vmbus_channel *primary_channel,
954 void (*sc_cr_cb)(struct vmbus_channel *new_sc));
956 void vmbus_set_chn_rescind_callback(struct vmbus_channel *channel,
957 void (*chn_rescind_cb)(struct vmbus_channel *));
960 * Retrieve the (sub) channel on which to send an outgoing request.
961 * When a primary channel has multiple sub-channels, we choose a
962 * channel whose VCPU binding is closest to the VCPU on which
963 * this call is being made.
965 struct vmbus_channel *vmbus_get_outgoing_channel(struct vmbus_channel *primary);
968 * Check if sub-channels have already been offerred. This API will be useful
969 * when the driver is unloaded after establishing sub-channels. In this case,
970 * when the driver is re-loaded, the driver would have to check if the
971 * subchannels have already been established before attempting to request
972 * the creation of sub-channels.
973 * This function returns TRUE to indicate that subchannels have already been
975 * This function should be invoked after setting the callback function for
976 * sub-channel creation.
978 bool vmbus_are_subchannels_present(struct vmbus_channel *primary);
980 /* The format must be the same as struct vmdata_gpa_direct */
981 struct vmbus_channel_packet_page_buffer {
989 struct hv_page_buffer range[MAX_PAGE_BUFFER_COUNT];
992 /* The format must be the same as struct vmdata_gpa_direct */
993 struct vmbus_channel_packet_multipage_buffer {
1000 u32 rangecount; /* Always 1 in this case */
1001 struct hv_multipage_buffer range;
1004 /* The format must be the same as struct vmdata_gpa_direct */
1005 struct vmbus_packet_mpb_array {
1012 u32 rangecount; /* Always 1 in this case */
1013 struct hv_mpb_array range;
1017 extern int vmbus_open(struct vmbus_channel *channel,
1018 u32 send_ringbuffersize,
1019 u32 recv_ringbuffersize,
1022 void (*onchannel_callback)(void *context),
1025 extern void vmbus_close(struct vmbus_channel *channel);
1027 extern int vmbus_sendpacket(struct vmbus_channel *channel,
1031 enum vmbus_packet_type type,
1034 extern int vmbus_sendpacket_ctl(struct vmbus_channel *channel,
1038 enum vmbus_packet_type type,
1041 extern int vmbus_sendpacket_pagebuffer(struct vmbus_channel *channel,
1042 struct hv_page_buffer pagebuffers[],
1048 extern int vmbus_sendpacket_pagebuffer_ctl(struct vmbus_channel *channel,
1049 struct hv_page_buffer pagebuffers[],
1056 extern int vmbus_sendpacket_multipagebuffer(struct vmbus_channel *channel,
1057 struct hv_multipage_buffer *mpb,
1062 extern int vmbus_sendpacket_mpb_desc(struct vmbus_channel *channel,
1063 struct vmbus_packet_mpb_array *mpb,
1069 extern int vmbus_establish_gpadl(struct vmbus_channel *channel,
1074 extern int vmbus_teardown_gpadl(struct vmbus_channel *channel,
1077 extern int vmbus_recvpacket(struct vmbus_channel *channel,
1080 u32 *buffer_actual_len,
1083 extern int vmbus_recvpacket_raw(struct vmbus_channel *channel,
1086 u32 *buffer_actual_len,
1090 extern void vmbus_ontimer(unsigned long data);
1092 /* Base driver object */
1097 * A hvsock offer, which has a VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER
1098 * channel flag, actually doesn't mean a synthetic device because the
1099 * offer's if_type/if_instance can change for every new hvsock
1102 * However, to facilitate the notification of new-offer/rescind-offer
1103 * from vmbus driver to hvsock driver, we can handle hvsock offer as
1104 * a special vmbus device, and hence we need the below flag to
1105 * indicate if the driver is the hvsock driver or not: we need to
1106 * specially treat the hvosck offer & driver in vmbus_match().
1110 /* the device type supported by this driver */
1112 const struct hv_vmbus_device_id *id_table;
1114 struct device_driver driver;
1116 /* dynamic device GUID's */
1119 struct list_head list;
1122 int (*probe)(struct hv_device *, const struct hv_vmbus_device_id *);
1123 int (*remove)(struct hv_device *);
1124 void (*shutdown)(struct hv_device *);
1128 /* Base device object */
1130 /* the device type id of this device */
1133 /* the device instance id of this device */
1134 uuid_le dev_instance;
1138 struct device device;
1140 struct vmbus_channel *channel;
1144 static inline struct hv_device *device_to_hv_device(struct device *d)
1146 return container_of(d, struct hv_device, device);
1149 static inline struct hv_driver *drv_to_hv_drv(struct device_driver *d)
1151 return container_of(d, struct hv_driver, driver);
1154 static inline void hv_set_drvdata(struct hv_device *dev, void *data)
1156 dev_set_drvdata(&dev->device, data);
1159 static inline void *hv_get_drvdata(struct hv_device *dev)
1161 return dev_get_drvdata(&dev->device);
1164 struct hv_ring_buffer_debug_info {
1165 u32 current_interrupt_mask;
1166 u32 current_read_index;
1167 u32 current_write_index;
1168 u32 bytes_avail_toread;
1169 u32 bytes_avail_towrite;
1172 void hv_ringbuffer_get_debuginfo(const struct hv_ring_buffer_info *ring_info,
1173 struct hv_ring_buffer_debug_info *debug_info);
1175 /* Vmbus interface */
1176 #define vmbus_driver_register(driver) \
1177 __vmbus_driver_register(driver, THIS_MODULE, KBUILD_MODNAME)
1178 int __must_check __vmbus_driver_register(struct hv_driver *hv_driver,
1179 struct module *owner,
1180 const char *mod_name);
1181 void vmbus_driver_unregister(struct hv_driver *hv_driver);
1183 void vmbus_hvsock_device_unregister(struct vmbus_channel *channel);
1185 int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
1186 resource_size_t min, resource_size_t max,
1187 resource_size_t size, resource_size_t align,
1188 bool fb_overlap_ok);
1189 void vmbus_free_mmio(resource_size_t start, resource_size_t size);
1190 int vmbus_cpu_number_to_vp_number(int cpu_number);
1191 u64 hv_do_hypercall(u64 control, void *input, void *output);
1194 * GUID definitions of various offer types - services offered to the guest.
1199 * {f8615163-df3e-46c5-913f-f2d2f965ed0e}
1201 #define HV_NIC_GUID \
1202 .guid = UUID_LE(0xf8615163, 0xdf3e, 0x46c5, 0x91, 0x3f, \
1203 0xf2, 0xd2, 0xf9, 0x65, 0xed, 0x0e)
1207 * {32412632-86cb-44a2-9b5c-50d1417354f5}
1209 #define HV_IDE_GUID \
1210 .guid = UUID_LE(0x32412632, 0x86cb, 0x44a2, 0x9b, 0x5c, \
1211 0x50, 0xd1, 0x41, 0x73, 0x54, 0xf5)
1215 * {ba6163d9-04a1-4d29-b605-72e2ffb1dc7f}
1217 #define HV_SCSI_GUID \
1218 .guid = UUID_LE(0xba6163d9, 0x04a1, 0x4d29, 0xb6, 0x05, \
1219 0x72, 0xe2, 0xff, 0xb1, 0xdc, 0x7f)
1223 * {0e0b6031-5213-4934-818b-38d90ced39db}
1225 #define HV_SHUTDOWN_GUID \
1226 .guid = UUID_LE(0x0e0b6031, 0x5213, 0x4934, 0x81, 0x8b, \
1227 0x38, 0xd9, 0x0c, 0xed, 0x39, 0xdb)
1231 * {9527E630-D0AE-497b-ADCE-E80AB0175CAF}
1233 #define HV_TS_GUID \
1234 .guid = UUID_LE(0x9527e630, 0xd0ae, 0x497b, 0xad, 0xce, \
1235 0xe8, 0x0a, 0xb0, 0x17, 0x5c, 0xaf)
1239 * {57164f39-9115-4e78-ab55-382f3bd5422d}
1241 #define HV_HEART_BEAT_GUID \
1242 .guid = UUID_LE(0x57164f39, 0x9115, 0x4e78, 0xab, 0x55, \
1243 0x38, 0x2f, 0x3b, 0xd5, 0x42, 0x2d)
1247 * {a9a0f4e7-5a45-4d96-b827-8a841e8c03e6}
1249 #define HV_KVP_GUID \
1250 .guid = UUID_LE(0xa9a0f4e7, 0x5a45, 0x4d96, 0xb8, 0x27, \
1251 0x8a, 0x84, 0x1e, 0x8c, 0x03, 0xe6)
1254 * Dynamic memory GUID
1255 * {525074dc-8985-46e2-8057-a307dc18a502}
1257 #define HV_DM_GUID \
1258 .guid = UUID_LE(0x525074dc, 0x8985, 0x46e2, 0x80, 0x57, \
1259 0xa3, 0x07, 0xdc, 0x18, 0xa5, 0x02)
1263 * {cfa8b69e-5b4a-4cc0-b98b-8ba1a1f3f95a}
1265 #define HV_MOUSE_GUID \
1266 .guid = UUID_LE(0xcfa8b69e, 0x5b4a, 0x4cc0, 0xb9, 0x8b, \
1267 0x8b, 0xa1, 0xa1, 0xf3, 0xf9, 0x5a)
1271 * {f912ad6d-2b17-48ea-bd65-f927a61c7684}
1273 #define HV_KBD_GUID \
1274 .guid = UUID_LE(0xf912ad6d, 0x2b17, 0x48ea, 0xbd, 0x65, \
1275 0xf9, 0x27, 0xa6, 0x1c, 0x76, 0x84)
1278 * VSS (Backup/Restore) GUID
1280 #define HV_VSS_GUID \
1281 .guid = UUID_LE(0x35fa2e29, 0xea23, 0x4236, 0x96, 0xae, \
1282 0x3a, 0x6e, 0xba, 0xcb, 0xa4, 0x40)
1284 * Synthetic Video GUID
1285 * {DA0A7802-E377-4aac-8E77-0558EB1073F8}
1287 #define HV_SYNTHVID_GUID \
1288 .guid = UUID_LE(0xda0a7802, 0xe377, 0x4aac, 0x8e, 0x77, \
1289 0x05, 0x58, 0xeb, 0x10, 0x73, 0xf8)
1293 * {2f9bcc4a-0069-4af3-b76b-6fd0be528cda}
1295 #define HV_SYNTHFC_GUID \
1296 .guid = UUID_LE(0x2f9bcc4a, 0x0069, 0x4af3, 0xb7, 0x6b, \
1297 0x6f, 0xd0, 0xbe, 0x52, 0x8c, 0xda)
1300 * Guest File Copy Service
1301 * {34D14BE3-DEE4-41c8-9AE7-6B174977C192}
1304 #define HV_FCOPY_GUID \
1305 .guid = UUID_LE(0x34d14be3, 0xdee4, 0x41c8, 0x9a, 0xe7, \
1306 0x6b, 0x17, 0x49, 0x77, 0xc1, 0x92)
1309 * NetworkDirect. This is the guest RDMA service.
1310 * {8c2eaf3d-32a7-4b09-ab99-bd1f1c86b501}
1312 #define HV_ND_GUID \
1313 .guid = UUID_LE(0x8c2eaf3d, 0x32a7, 0x4b09, 0xab, 0x99, \
1314 0xbd, 0x1f, 0x1c, 0x86, 0xb5, 0x01)
1317 * PCI Express Pass Through
1318 * {44C4F61D-4444-4400-9D52-802E27EDE19F}
1321 #define HV_PCIE_GUID \
1322 .guid = UUID_LE(0x44c4f61d, 0x4444, 0x4400, 0x9d, 0x52, \
1323 0x80, 0x2e, 0x27, 0xed, 0xe1, 0x9f)
1326 * Linux doesn't support the 3 devices: the first two are for
1327 * Automatic Virtual Machine Activation, and the third is for
1328 * Remote Desktop Virtualization.
1329 * {f8e65716-3cb3-4a06-9a60-1889c5cccab5}
1330 * {3375baf4-9e15-4b30-b765-67acb10d607b}
1331 * {276aacf4-ac15-426c-98dd-7521ad3f01fe}
1334 #define HV_AVMA1_GUID \
1335 .guid = UUID_LE(0xf8e65716, 0x3cb3, 0x4a06, 0x9a, 0x60, \
1336 0x18, 0x89, 0xc5, 0xcc, 0xca, 0xb5)
1338 #define HV_AVMA2_GUID \
1339 .guid = UUID_LE(0x3375baf4, 0x9e15, 0x4b30, 0xb7, 0x65, \
1340 0x67, 0xac, 0xb1, 0x0d, 0x60, 0x7b)
1342 #define HV_RDV_GUID \
1343 .guid = UUID_LE(0x276aacf4, 0xac15, 0x426c, 0x98, 0xdd, \
1344 0x75, 0x21, 0xad, 0x3f, 0x01, 0xfe)
1347 * Common header for Hyper-V ICs
1350 #define ICMSGTYPE_NEGOTIATE 0
1351 #define ICMSGTYPE_HEARTBEAT 1
1352 #define ICMSGTYPE_KVPEXCHANGE 2
1353 #define ICMSGTYPE_SHUTDOWN 3
1354 #define ICMSGTYPE_TIMESYNC 4
1355 #define ICMSGTYPE_VSS 5
1357 #define ICMSGHDRFLAG_TRANSACTION 1
1358 #define ICMSGHDRFLAG_REQUEST 2
1359 #define ICMSGHDRFLAG_RESPONSE 4
1363 * While we want to handle util services as regular devices,
1364 * there is only one instance of each of these services; so
1365 * we statically allocate the service specific state.
1368 struct hv_util_service {
1371 void (*util_cb)(void *);
1372 int (*util_init)(struct hv_util_service *);
1373 void (*util_deinit)(void);
1376 struct vmbuspipe_hdr {
1387 struct ic_version icverframe;
1389 struct ic_version icvermsg;
1392 u8 ictransaction_id;
1397 struct icmsg_negotiate {
1401 struct ic_version icversion_data[1]; /* any size array */
1404 struct shutdown_msg_data {
1406 u32 timeout_seconds;
1408 u8 display_message[2048];
1411 struct heartbeat_msg_data {
1416 /* Time Sync IC defs */
1417 #define ICTIMESYNCFLAG_PROBE 0
1418 #define ICTIMESYNCFLAG_SYNC 1
1419 #define ICTIMESYNCFLAG_SAMPLE 2
1422 #define WLTIMEDELTA 116444736000000000L /* in 100ns unit */
1424 #define WLTIMEDELTA 116444736000000000LL
1427 struct ictimesync_data {
1434 struct ictimesync_ref_data {
1436 u64 vmreferencetime;
1443 struct hyperv_service_callback {
1447 struct vmbus_channel *channel;
1448 void (*callback)(void *context);
1451 #define MAX_SRV_VER 0x7ffffff
1452 extern bool vmbus_prep_negotiate_resp(struct icmsg_hdr *icmsghdrp, u8 *buf,
1453 const int *fw_version, int fw_vercnt,
1454 const int *srv_version, int srv_vercnt,
1455 int *nego_fw_version, int *nego_srv_version);
1457 void hv_process_channel_removal(struct vmbus_channel *channel, u32 relid);
1459 void vmbus_setevent(struct vmbus_channel *channel);
1461 * Negotiated version with the Host.
1464 extern __u32 vmbus_proto_version;
1466 int vmbus_send_tl_connect_request(const uuid_le *shv_guest_servie_id,
1467 const uuid_le *shv_host_servie_id);
1468 void vmbus_set_event(struct vmbus_channel *channel);
1470 /* Get the start of the ring buffer. */
1471 static inline void *
1472 hv_get_ring_buffer(const struct hv_ring_buffer_info *ring_info)
1474 return ring_info->ring_buffer->buffer;
1478 * To optimize the flow management on the send-side,
1479 * when the sender is blocked because of lack of
1480 * sufficient space in the ring buffer, potential the
1481 * consumer of the ring buffer can signal the producer.
1482 * This is controlled by the following parameters:
1484 * 1. pending_send_sz: This is the size in bytes that the
1485 * producer is trying to send.
1486 * 2. The feature bit feat_pending_send_sz set to indicate if
1487 * the consumer of the ring will signal when the ring
1488 * state transitions from being full to a state where
1489 * there is room for the producer to send the pending packet.
1492 static inline void hv_signal_on_read(struct vmbus_channel *channel)
1494 u32 cur_write_sz, cached_write_sz;
1496 struct hv_ring_buffer_info *rbi = &channel->inbound;
1499 * Issue a full memory barrier before making the signaling decision.
1500 * Here is the reason for having this barrier:
1501 * If the reading of the pend_sz (in this function)
1502 * were to be reordered and read before we commit the new read
1503 * index (in the calling function) we could
1504 * have a problem. If the host were to set the pending_sz after we
1505 * have sampled pending_sz and go to sleep before we commit the
1506 * read index, we could miss sending the interrupt. Issue a full
1507 * memory barrier to address this.
1511 pending_sz = READ_ONCE(rbi->ring_buffer->pending_send_sz);
1512 /* If the other end is not blocked on write don't bother. */
1513 if (pending_sz == 0)
1516 cur_write_sz = hv_get_bytes_to_write(rbi);
1518 if (cur_write_sz < pending_sz)
1521 cached_write_sz = hv_get_cached_bytes_to_write(rbi);
1522 if (cached_write_sz < pending_sz)
1523 vmbus_setevent(channel);
1527 * Mask off host interrupt callback notifications
1529 static inline void hv_begin_read(struct hv_ring_buffer_info *rbi)
1531 rbi->ring_buffer->interrupt_mask = 1;
1533 /* make sure mask update is not reordered */
1538 * Re-enable host callback and return number of outstanding bytes
1540 static inline u32 hv_end_read(struct hv_ring_buffer_info *rbi)
1543 rbi->ring_buffer->interrupt_mask = 0;
1545 /* make sure mask update is not reordered */
1549 * Now check to see if the ring buffer is still empty.
1550 * If it is not, we raced and we need to process new
1551 * incoming messages.
1553 return hv_get_bytes_to_read(rbi);
1557 * An API to support in-place processing of incoming VMBUS packets.
1560 /* Get data payload associated with descriptor */
1561 static inline void *hv_pkt_data(const struct vmpacket_descriptor *desc)
1563 return (void *)((unsigned long)desc + (desc->offset8 << 3));
1566 /* Get data size associated with descriptor */
1567 static inline u32 hv_pkt_datalen(const struct vmpacket_descriptor *desc)
1569 return (desc->len8 << 3) - (desc->offset8 << 3);
1573 struct vmpacket_descriptor *
1574 hv_pkt_iter_first(struct vmbus_channel *channel);
1576 struct vmpacket_descriptor *
1577 __hv_pkt_iter_next(struct vmbus_channel *channel,
1578 const struct vmpacket_descriptor *pkt);
1580 void hv_pkt_iter_close(struct vmbus_channel *channel);
1583 * Get next packet descriptor from iterator
1584 * If at end of list, return NULL and update host.
1586 static inline struct vmpacket_descriptor *
1587 hv_pkt_iter_next(struct vmbus_channel *channel,
1588 const struct vmpacket_descriptor *pkt)
1590 struct vmpacket_descriptor *nxt;
1592 nxt = __hv_pkt_iter_next(channel, pkt);
1594 hv_pkt_iter_close(channel);
1599 #define foreach_vmbus_pkt(pkt, channel) \
1600 for (pkt = hv_pkt_iter_first(channel); pkt; \
1601 pkt = hv_pkt_iter_next(channel, pkt))
1603 #endif /* _HYPERV_H */