]> Git Repo - linux.git/blob - include/linux/sched.h
Merge tag 'linux_kselftest-next-6.11-rc1' of git://git.kernel.org/pub/scm/linux/kerne...
[linux.git] / include / linux / sched.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_SCHED_H
3 #define _LINUX_SCHED_H
4
5 /*
6  * Define 'struct task_struct' and provide the main scheduler
7  * APIs (schedule(), wakeup variants, etc.)
8  */
9
10 #include <uapi/linux/sched.h>
11
12 #include <asm/current.h>
13 #include <asm/processor.h>
14 #include <linux/thread_info.h>
15 #include <linux/preempt.h>
16 #include <linux/cpumask.h>
17
18 #include <linux/cache.h>
19 #include <linux/irqflags_types.h>
20 #include <linux/smp_types.h>
21 #include <linux/pid_types.h>
22 #include <linux/sem_types.h>
23 #include <linux/shm.h>
24 #include <linux/kmsan_types.h>
25 #include <linux/mutex_types.h>
26 #include <linux/plist_types.h>
27 #include <linux/hrtimer_types.h>
28 #include <linux/timer_types.h>
29 #include <linux/seccomp_types.h>
30 #include <linux/nodemask_types.h>
31 #include <linux/refcount_types.h>
32 #include <linux/resource.h>
33 #include <linux/latencytop.h>
34 #include <linux/sched/prio.h>
35 #include <linux/sched/types.h>
36 #include <linux/signal_types.h>
37 #include <linux/syscall_user_dispatch_types.h>
38 #include <linux/mm_types_task.h>
39 #include <linux/task_io_accounting.h>
40 #include <linux/posix-timers_types.h>
41 #include <linux/restart_block.h>
42 #include <uapi/linux/rseq.h>
43 #include <linux/seqlock_types.h>
44 #include <linux/kcsan.h>
45 #include <linux/rv.h>
46 #include <linux/livepatch_sched.h>
47 #include <linux/uidgid_types.h>
48 #include <asm/kmap_size.h>
49
50 /* task_struct member predeclarations (sorted alphabetically): */
51 struct audit_context;
52 struct bio_list;
53 struct blk_plug;
54 struct bpf_local_storage;
55 struct bpf_run_ctx;
56 struct capture_control;
57 struct cfs_rq;
58 struct fs_struct;
59 struct futex_pi_state;
60 struct io_context;
61 struct io_uring_task;
62 struct mempolicy;
63 struct nameidata;
64 struct nsproxy;
65 struct perf_event_context;
66 struct pid_namespace;
67 struct pipe_inode_info;
68 struct rcu_node;
69 struct reclaim_state;
70 struct robust_list_head;
71 struct root_domain;
72 struct rq;
73 struct sched_attr;
74 struct sched_dl_entity;
75 struct seq_file;
76 struct sighand_struct;
77 struct signal_struct;
78 struct task_delay_info;
79 struct task_group;
80 struct task_struct;
81 struct user_event_mm;
82
83 /*
84  * Task state bitmask. NOTE! These bits are also
85  * encoded in fs/proc/array.c: get_task_state().
86  *
87  * We have two separate sets of flags: task->__state
88  * is about runnability, while task->exit_state are
89  * about the task exiting. Confusing, but this way
90  * modifying one set can't modify the other one by
91  * mistake.
92  */
93
94 /* Used in tsk->__state: */
95 #define TASK_RUNNING                    0x00000000
96 #define TASK_INTERRUPTIBLE              0x00000001
97 #define TASK_UNINTERRUPTIBLE            0x00000002
98 #define __TASK_STOPPED                  0x00000004
99 #define __TASK_TRACED                   0x00000008
100 /* Used in tsk->exit_state: */
101 #define EXIT_DEAD                       0x00000010
102 #define EXIT_ZOMBIE                     0x00000020
103 #define EXIT_TRACE                      (EXIT_ZOMBIE | EXIT_DEAD)
104 /* Used in tsk->__state again: */
105 #define TASK_PARKED                     0x00000040
106 #define TASK_DEAD                       0x00000080
107 #define TASK_WAKEKILL                   0x00000100
108 #define TASK_WAKING                     0x00000200
109 #define TASK_NOLOAD                     0x00000400
110 #define TASK_NEW                        0x00000800
111 #define TASK_RTLOCK_WAIT                0x00001000
112 #define TASK_FREEZABLE                  0x00002000
113 #define __TASK_FREEZABLE_UNSAFE        (0x00004000 * IS_ENABLED(CONFIG_LOCKDEP))
114 #define TASK_FROZEN                     0x00008000
115 #define TASK_STATE_MAX                  0x00010000
116
117 #define TASK_ANY                        (TASK_STATE_MAX-1)
118
119 /*
120  * DO NOT ADD ANY NEW USERS !
121  */
122 #define TASK_FREEZABLE_UNSAFE           (TASK_FREEZABLE | __TASK_FREEZABLE_UNSAFE)
123
124 /* Convenience macros for the sake of set_current_state: */
125 #define TASK_KILLABLE                   (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
126 #define TASK_STOPPED                    (TASK_WAKEKILL | __TASK_STOPPED)
127 #define TASK_TRACED                     __TASK_TRACED
128
129 #define TASK_IDLE                       (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
130
131 /* Convenience macros for the sake of wake_up(): */
132 #define TASK_NORMAL                     (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
133
134 /* get_task_state(): */
135 #define TASK_REPORT                     (TASK_RUNNING | TASK_INTERRUPTIBLE | \
136                                          TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
137                                          __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
138                                          TASK_PARKED)
139
140 #define task_is_running(task)           (READ_ONCE((task)->__state) == TASK_RUNNING)
141
142 #define task_is_traced(task)            ((READ_ONCE(task->jobctl) & JOBCTL_TRACED) != 0)
143 #define task_is_stopped(task)           ((READ_ONCE(task->jobctl) & JOBCTL_STOPPED) != 0)
144 #define task_is_stopped_or_traced(task) ((READ_ONCE(task->jobctl) & (JOBCTL_STOPPED | JOBCTL_TRACED)) != 0)
145
146 /*
147  * Special states are those that do not use the normal wait-loop pattern. See
148  * the comment with set_special_state().
149  */
150 #define is_special_task_state(state)                            \
151         ((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD))
152
153 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
154 # define debug_normal_state_change(state_value)                         \
155         do {                                                            \
156                 WARN_ON_ONCE(is_special_task_state(state_value));       \
157                 current->task_state_change = _THIS_IP_;                 \
158         } while (0)
159
160 # define debug_special_state_change(state_value)                        \
161         do {                                                            \
162                 WARN_ON_ONCE(!is_special_task_state(state_value));      \
163                 current->task_state_change = _THIS_IP_;                 \
164         } while (0)
165
166 # define debug_rtlock_wait_set_state()                                  \
167         do {                                                             \
168                 current->saved_state_change = current->task_state_change;\
169                 current->task_state_change = _THIS_IP_;                  \
170         } while (0)
171
172 # define debug_rtlock_wait_restore_state()                              \
173         do {                                                             \
174                 current->task_state_change = current->saved_state_change;\
175         } while (0)
176
177 #else
178 # define debug_normal_state_change(cond)        do { } while (0)
179 # define debug_special_state_change(cond)       do { } while (0)
180 # define debug_rtlock_wait_set_state()          do { } while (0)
181 # define debug_rtlock_wait_restore_state()      do { } while (0)
182 #endif
183
184 /*
185  * set_current_state() includes a barrier so that the write of current->__state
186  * is correctly serialised wrt the caller's subsequent test of whether to
187  * actually sleep:
188  *
189  *   for (;;) {
190  *      set_current_state(TASK_UNINTERRUPTIBLE);
191  *      if (CONDITION)
192  *         break;
193  *
194  *      schedule();
195  *   }
196  *   __set_current_state(TASK_RUNNING);
197  *
198  * If the caller does not need such serialisation (because, for instance, the
199  * CONDITION test and condition change and wakeup are under the same lock) then
200  * use __set_current_state().
201  *
202  * The above is typically ordered against the wakeup, which does:
203  *
204  *   CONDITION = 1;
205  *   wake_up_state(p, TASK_UNINTERRUPTIBLE);
206  *
207  * where wake_up_state()/try_to_wake_up() executes a full memory barrier before
208  * accessing p->__state.
209  *
210  * Wakeup will do: if (@state & p->__state) p->__state = TASK_RUNNING, that is,
211  * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
212  * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
213  *
214  * However, with slightly different timing the wakeup TASK_RUNNING store can
215  * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
216  * a problem either because that will result in one extra go around the loop
217  * and our @cond test will save the day.
218  *
219  * Also see the comments of try_to_wake_up().
220  */
221 #define __set_current_state(state_value)                                \
222         do {                                                            \
223                 debug_normal_state_change((state_value));               \
224                 WRITE_ONCE(current->__state, (state_value));            \
225         } while (0)
226
227 #define set_current_state(state_value)                                  \
228         do {                                                            \
229                 debug_normal_state_change((state_value));               \
230                 smp_store_mb(current->__state, (state_value));          \
231         } while (0)
232
233 /*
234  * set_special_state() should be used for those states when the blocking task
235  * can not use the regular condition based wait-loop. In that case we must
236  * serialize against wakeups such that any possible in-flight TASK_RUNNING
237  * stores will not collide with our state change.
238  */
239 #define set_special_state(state_value)                                  \
240         do {                                                            \
241                 unsigned long flags; /* may shadow */                   \
242                                                                         \
243                 raw_spin_lock_irqsave(&current->pi_lock, flags);        \
244                 debug_special_state_change((state_value));              \
245                 WRITE_ONCE(current->__state, (state_value));            \
246                 raw_spin_unlock_irqrestore(&current->pi_lock, flags);   \
247         } while (0)
248
249 /*
250  * PREEMPT_RT specific variants for "sleeping" spin/rwlocks
251  *
252  * RT's spin/rwlock substitutions are state preserving. The state of the
253  * task when blocking on the lock is saved in task_struct::saved_state and
254  * restored after the lock has been acquired.  These operations are
255  * serialized by task_struct::pi_lock against try_to_wake_up(). Any non RT
256  * lock related wakeups while the task is blocked on the lock are
257  * redirected to operate on task_struct::saved_state to ensure that these
258  * are not dropped. On restore task_struct::saved_state is set to
259  * TASK_RUNNING so any wakeup attempt redirected to saved_state will fail.
260  *
261  * The lock operation looks like this:
262  *
263  *      current_save_and_set_rtlock_wait_state();
264  *      for (;;) {
265  *              if (try_lock())
266  *                      break;
267  *              raw_spin_unlock_irq(&lock->wait_lock);
268  *              schedule_rtlock();
269  *              raw_spin_lock_irq(&lock->wait_lock);
270  *              set_current_state(TASK_RTLOCK_WAIT);
271  *      }
272  *      current_restore_rtlock_saved_state();
273  */
274 #define current_save_and_set_rtlock_wait_state()                        \
275         do {                                                            \
276                 lockdep_assert_irqs_disabled();                         \
277                 raw_spin_lock(&current->pi_lock);                       \
278                 current->saved_state = current->__state;                \
279                 debug_rtlock_wait_set_state();                          \
280                 WRITE_ONCE(current->__state, TASK_RTLOCK_WAIT);         \
281                 raw_spin_unlock(&current->pi_lock);                     \
282         } while (0);
283
284 #define current_restore_rtlock_saved_state()                            \
285         do {                                                            \
286                 lockdep_assert_irqs_disabled();                         \
287                 raw_spin_lock(&current->pi_lock);                       \
288                 debug_rtlock_wait_restore_state();                      \
289                 WRITE_ONCE(current->__state, current->saved_state);     \
290                 current->saved_state = TASK_RUNNING;                    \
291                 raw_spin_unlock(&current->pi_lock);                     \
292         } while (0);
293
294 #define get_current_state()     READ_ONCE(current->__state)
295
296 /*
297  * Define the task command name length as enum, then it can be visible to
298  * BPF programs.
299  */
300 enum {
301         TASK_COMM_LEN = 16,
302 };
303
304 extern void sched_tick(void);
305
306 #define MAX_SCHEDULE_TIMEOUT            LONG_MAX
307
308 extern long schedule_timeout(long timeout);
309 extern long schedule_timeout_interruptible(long timeout);
310 extern long schedule_timeout_killable(long timeout);
311 extern long schedule_timeout_uninterruptible(long timeout);
312 extern long schedule_timeout_idle(long timeout);
313 asmlinkage void schedule(void);
314 extern void schedule_preempt_disabled(void);
315 asmlinkage void preempt_schedule_irq(void);
316 #ifdef CONFIG_PREEMPT_RT
317  extern void schedule_rtlock(void);
318 #endif
319
320 extern int __must_check io_schedule_prepare(void);
321 extern void io_schedule_finish(int token);
322 extern long io_schedule_timeout(long timeout);
323 extern void io_schedule(void);
324
325 /**
326  * struct prev_cputime - snapshot of system and user cputime
327  * @utime: time spent in user mode
328  * @stime: time spent in system mode
329  * @lock: protects the above two fields
330  *
331  * Stores previous user/system time values such that we can guarantee
332  * monotonicity.
333  */
334 struct prev_cputime {
335 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
336         u64                             utime;
337         u64                             stime;
338         raw_spinlock_t                  lock;
339 #endif
340 };
341
342 enum vtime_state {
343         /* Task is sleeping or running in a CPU with VTIME inactive: */
344         VTIME_INACTIVE = 0,
345         /* Task is idle */
346         VTIME_IDLE,
347         /* Task runs in kernelspace in a CPU with VTIME active: */
348         VTIME_SYS,
349         /* Task runs in userspace in a CPU with VTIME active: */
350         VTIME_USER,
351         /* Task runs as guests in a CPU with VTIME active: */
352         VTIME_GUEST,
353 };
354
355 struct vtime {
356         seqcount_t              seqcount;
357         unsigned long long      starttime;
358         enum vtime_state        state;
359         unsigned int            cpu;
360         u64                     utime;
361         u64                     stime;
362         u64                     gtime;
363 };
364
365 /*
366  * Utilization clamp constraints.
367  * @UCLAMP_MIN: Minimum utilization
368  * @UCLAMP_MAX: Maximum utilization
369  * @UCLAMP_CNT: Utilization clamp constraints count
370  */
371 enum uclamp_id {
372         UCLAMP_MIN = 0,
373         UCLAMP_MAX,
374         UCLAMP_CNT
375 };
376
377 #ifdef CONFIG_SMP
378 extern struct root_domain def_root_domain;
379 extern struct mutex sched_domains_mutex;
380 #endif
381
382 struct sched_param {
383         int sched_priority;
384 };
385
386 struct sched_info {
387 #ifdef CONFIG_SCHED_INFO
388         /* Cumulative counters: */
389
390         /* # of times we have run on this CPU: */
391         unsigned long                   pcount;
392
393         /* Time spent waiting on a runqueue: */
394         unsigned long long              run_delay;
395
396         /* Timestamps: */
397
398         /* When did we last run on a CPU? */
399         unsigned long long              last_arrival;
400
401         /* When were we last queued to run? */
402         unsigned long long              last_queued;
403
404 #endif /* CONFIG_SCHED_INFO */
405 };
406
407 /*
408  * Integer metrics need fixed point arithmetic, e.g., sched/fair
409  * has a few: load, load_avg, util_avg, freq, and capacity.
410  *
411  * We define a basic fixed point arithmetic range, and then formalize
412  * all these metrics based on that basic range.
413  */
414 # define SCHED_FIXEDPOINT_SHIFT         10
415 # define SCHED_FIXEDPOINT_SCALE         (1L << SCHED_FIXEDPOINT_SHIFT)
416
417 /* Increase resolution of cpu_capacity calculations */
418 # define SCHED_CAPACITY_SHIFT           SCHED_FIXEDPOINT_SHIFT
419 # define SCHED_CAPACITY_SCALE           (1L << SCHED_CAPACITY_SHIFT)
420
421 struct load_weight {
422         unsigned long                   weight;
423         u32                             inv_weight;
424 };
425
426 /*
427  * The load/runnable/util_avg accumulates an infinite geometric series
428  * (see __update_load_avg_cfs_rq() in kernel/sched/pelt.c).
429  *
430  * [load_avg definition]
431  *
432  *   load_avg = runnable% * scale_load_down(load)
433  *
434  * [runnable_avg definition]
435  *
436  *   runnable_avg = runnable% * SCHED_CAPACITY_SCALE
437  *
438  * [util_avg definition]
439  *
440  *   util_avg = running% * SCHED_CAPACITY_SCALE
441  *
442  * where runnable% is the time ratio that a sched_entity is runnable and
443  * running% the time ratio that a sched_entity is running.
444  *
445  * For cfs_rq, they are the aggregated values of all runnable and blocked
446  * sched_entities.
447  *
448  * The load/runnable/util_avg doesn't directly factor frequency scaling and CPU
449  * capacity scaling. The scaling is done through the rq_clock_pelt that is used
450  * for computing those signals (see update_rq_clock_pelt())
451  *
452  * N.B., the above ratios (runnable% and running%) themselves are in the
453  * range of [0, 1]. To do fixed point arithmetics, we therefore scale them
454  * to as large a range as necessary. This is for example reflected by
455  * util_avg's SCHED_CAPACITY_SCALE.
456  *
457  * [Overflow issue]
458  *
459  * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
460  * with the highest load (=88761), always runnable on a single cfs_rq,
461  * and should not overflow as the number already hits PID_MAX_LIMIT.
462  *
463  * For all other cases (including 32-bit kernels), struct load_weight's
464  * weight will overflow first before we do, because:
465  *
466  *    Max(load_avg) <= Max(load.weight)
467  *
468  * Then it is the load_weight's responsibility to consider overflow
469  * issues.
470  */
471 struct sched_avg {
472         u64                             last_update_time;
473         u64                             load_sum;
474         u64                             runnable_sum;
475         u32                             util_sum;
476         u32                             period_contrib;
477         unsigned long                   load_avg;
478         unsigned long                   runnable_avg;
479         unsigned long                   util_avg;
480         unsigned int                    util_est;
481 } ____cacheline_aligned;
482
483 /*
484  * The UTIL_AVG_UNCHANGED flag is used to synchronize util_est with util_avg
485  * updates. When a task is dequeued, its util_est should not be updated if its
486  * util_avg has not been updated in the meantime.
487  * This information is mapped into the MSB bit of util_est at dequeue time.
488  * Since max value of util_est for a task is 1024 (PELT util_avg for a task)
489  * it is safe to use MSB.
490  */
491 #define UTIL_EST_WEIGHT_SHIFT           2
492 #define UTIL_AVG_UNCHANGED              0x80000000
493
494 struct sched_statistics {
495 #ifdef CONFIG_SCHEDSTATS
496         u64                             wait_start;
497         u64                             wait_max;
498         u64                             wait_count;
499         u64                             wait_sum;
500         u64                             iowait_count;
501         u64                             iowait_sum;
502
503         u64                             sleep_start;
504         u64                             sleep_max;
505         s64                             sum_sleep_runtime;
506
507         u64                             block_start;
508         u64                             block_max;
509         s64                             sum_block_runtime;
510
511         s64                             exec_max;
512         u64                             slice_max;
513
514         u64                             nr_migrations_cold;
515         u64                             nr_failed_migrations_affine;
516         u64                             nr_failed_migrations_running;
517         u64                             nr_failed_migrations_hot;
518         u64                             nr_forced_migrations;
519
520         u64                             nr_wakeups;
521         u64                             nr_wakeups_sync;
522         u64                             nr_wakeups_migrate;
523         u64                             nr_wakeups_local;
524         u64                             nr_wakeups_remote;
525         u64                             nr_wakeups_affine;
526         u64                             nr_wakeups_affine_attempts;
527         u64                             nr_wakeups_passive;
528         u64                             nr_wakeups_idle;
529
530 #ifdef CONFIG_SCHED_CORE
531         u64                             core_forceidle_sum;
532 #endif
533 #endif /* CONFIG_SCHEDSTATS */
534 } ____cacheline_aligned;
535
536 struct sched_entity {
537         /* For load-balancing: */
538         struct load_weight              load;
539         struct rb_node                  run_node;
540         u64                             deadline;
541         u64                             min_vruntime;
542
543         struct list_head                group_node;
544         unsigned int                    on_rq;
545
546         u64                             exec_start;
547         u64                             sum_exec_runtime;
548         u64                             prev_sum_exec_runtime;
549         u64                             vruntime;
550         s64                             vlag;
551         u64                             slice;
552
553         u64                             nr_migrations;
554
555 #ifdef CONFIG_FAIR_GROUP_SCHED
556         int                             depth;
557         struct sched_entity             *parent;
558         /* rq on which this entity is (to be) queued: */
559         struct cfs_rq                   *cfs_rq;
560         /* rq "owned" by this entity/group: */
561         struct cfs_rq                   *my_q;
562         /* cached value of my_q->h_nr_running */
563         unsigned long                   runnable_weight;
564 #endif
565
566 #ifdef CONFIG_SMP
567         /*
568          * Per entity load average tracking.
569          *
570          * Put into separate cache line so it does not
571          * collide with read-mostly values above.
572          */
573         struct sched_avg                avg;
574 #endif
575 };
576
577 struct sched_rt_entity {
578         struct list_head                run_list;
579         unsigned long                   timeout;
580         unsigned long                   watchdog_stamp;
581         unsigned int                    time_slice;
582         unsigned short                  on_rq;
583         unsigned short                  on_list;
584
585         struct sched_rt_entity          *back;
586 #ifdef CONFIG_RT_GROUP_SCHED
587         struct sched_rt_entity          *parent;
588         /* rq on which this entity is (to be) queued: */
589         struct rt_rq                    *rt_rq;
590         /* rq "owned" by this entity/group: */
591         struct rt_rq                    *my_q;
592 #endif
593 } __randomize_layout;
594
595 typedef bool (*dl_server_has_tasks_f)(struct sched_dl_entity *);
596 typedef struct task_struct *(*dl_server_pick_f)(struct sched_dl_entity *);
597
598 struct sched_dl_entity {
599         struct rb_node                  rb_node;
600
601         /*
602          * Original scheduling parameters. Copied here from sched_attr
603          * during sched_setattr(), they will remain the same until
604          * the next sched_setattr().
605          */
606         u64                             dl_runtime;     /* Maximum runtime for each instance    */
607         u64                             dl_deadline;    /* Relative deadline of each instance   */
608         u64                             dl_period;      /* Separation of two instances (period) */
609         u64                             dl_bw;          /* dl_runtime / dl_period               */
610         u64                             dl_density;     /* dl_runtime / dl_deadline             */
611
612         /*
613          * Actual scheduling parameters. Initialized with the values above,
614          * they are continuously updated during task execution. Note that
615          * the remaining runtime could be < 0 in case we are in overrun.
616          */
617         s64                             runtime;        /* Remaining runtime for this instance  */
618         u64                             deadline;       /* Absolute deadline for this instance  */
619         unsigned int                    flags;          /* Specifying the scheduler behaviour   */
620
621         /*
622          * Some bool flags:
623          *
624          * @dl_throttled tells if we exhausted the runtime. If so, the
625          * task has to wait for a replenishment to be performed at the
626          * next firing of dl_timer.
627          *
628          * @dl_yielded tells if task gave up the CPU before consuming
629          * all its available runtime during the last job.
630          *
631          * @dl_non_contending tells if the task is inactive while still
632          * contributing to the active utilization. In other words, it
633          * indicates if the inactive timer has been armed and its handler
634          * has not been executed yet. This flag is useful to avoid race
635          * conditions between the inactive timer handler and the wakeup
636          * code.
637          *
638          * @dl_overrun tells if the task asked to be informed about runtime
639          * overruns.
640          */
641         unsigned int                    dl_throttled      : 1;
642         unsigned int                    dl_yielded        : 1;
643         unsigned int                    dl_non_contending : 1;
644         unsigned int                    dl_overrun        : 1;
645         unsigned int                    dl_server         : 1;
646
647         /*
648          * Bandwidth enforcement timer. Each -deadline task has its
649          * own bandwidth to be enforced, thus we need one timer per task.
650          */
651         struct hrtimer                  dl_timer;
652
653         /*
654          * Inactive timer, responsible for decreasing the active utilization
655          * at the "0-lag time". When a -deadline task blocks, it contributes
656          * to GRUB's active utilization until the "0-lag time", hence a
657          * timer is needed to decrease the active utilization at the correct
658          * time.
659          */
660         struct hrtimer                  inactive_timer;
661
662         /*
663          * Bits for DL-server functionality. Also see the comment near
664          * dl_server_update().
665          *
666          * @rq the runqueue this server is for
667          *
668          * @server_has_tasks() returns true if @server_pick return a
669          * runnable task.
670          */
671         struct rq                       *rq;
672         dl_server_has_tasks_f           server_has_tasks;
673         dl_server_pick_f                server_pick;
674
675 #ifdef CONFIG_RT_MUTEXES
676         /*
677          * Priority Inheritance. When a DEADLINE scheduling entity is boosted
678          * pi_se points to the donor, otherwise points to the dl_se it belongs
679          * to (the original one/itself).
680          */
681         struct sched_dl_entity *pi_se;
682 #endif
683 };
684
685 #ifdef CONFIG_UCLAMP_TASK
686 /* Number of utilization clamp buckets (shorter alias) */
687 #define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT
688
689 /*
690  * Utilization clamp for a scheduling entity
691  * @value:              clamp value "assigned" to a se
692  * @bucket_id:          bucket index corresponding to the "assigned" value
693  * @active:             the se is currently refcounted in a rq's bucket
694  * @user_defined:       the requested clamp value comes from user-space
695  *
696  * The bucket_id is the index of the clamp bucket matching the clamp value
697  * which is pre-computed and stored to avoid expensive integer divisions from
698  * the fast path.
699  *
700  * The active bit is set whenever a task has got an "effective" value assigned,
701  * which can be different from the clamp value "requested" from user-space.
702  * This allows to know a task is refcounted in the rq's bucket corresponding
703  * to the "effective" bucket_id.
704  *
705  * The user_defined bit is set whenever a task has got a task-specific clamp
706  * value requested from userspace, i.e. the system defaults apply to this task
707  * just as a restriction. This allows to relax default clamps when a less
708  * restrictive task-specific value has been requested, thus allowing to
709  * implement a "nice" semantic. For example, a task running with a 20%
710  * default boost can still drop its own boosting to 0%.
711  */
712 struct uclamp_se {
713         unsigned int value              : bits_per(SCHED_CAPACITY_SCALE);
714         unsigned int bucket_id          : bits_per(UCLAMP_BUCKETS);
715         unsigned int active             : 1;
716         unsigned int user_defined       : 1;
717 };
718 #endif /* CONFIG_UCLAMP_TASK */
719
720 union rcu_special {
721         struct {
722                 u8                      blocked;
723                 u8                      need_qs;
724                 u8                      exp_hint; /* Hint for performance. */
725                 u8                      need_mb; /* Readers need smp_mb(). */
726         } b; /* Bits. */
727         u32 s; /* Set of bits. */
728 };
729
730 enum perf_event_task_context {
731         perf_invalid_context = -1,
732         perf_hw_context = 0,
733         perf_sw_context,
734         perf_nr_task_contexts,
735 };
736
737 /*
738  * Number of contexts where an event can trigger:
739  *      task, softirq, hardirq, nmi.
740  */
741 #define PERF_NR_CONTEXTS        4
742
743 struct wake_q_node {
744         struct wake_q_node *next;
745 };
746
747 struct kmap_ctrl {
748 #ifdef CONFIG_KMAP_LOCAL
749         int                             idx;
750         pte_t                           pteval[KM_MAX_IDX];
751 #endif
752 };
753
754 struct task_struct {
755 #ifdef CONFIG_THREAD_INFO_IN_TASK
756         /*
757          * For reasons of header soup (see current_thread_info()), this
758          * must be the first element of task_struct.
759          */
760         struct thread_info              thread_info;
761 #endif
762         unsigned int                    __state;
763
764         /* saved state for "spinlock sleepers" */
765         unsigned int                    saved_state;
766
767         /*
768          * This begins the randomizable portion of task_struct. Only
769          * scheduling-critical items should be added above here.
770          */
771         randomized_struct_fields_start
772
773         void                            *stack;
774         refcount_t                      usage;
775         /* Per task flags (PF_*), defined further below: */
776         unsigned int                    flags;
777         unsigned int                    ptrace;
778
779 #ifdef CONFIG_MEM_ALLOC_PROFILING
780         struct alloc_tag                *alloc_tag;
781 #endif
782
783 #ifdef CONFIG_SMP
784         int                             on_cpu;
785         struct __call_single_node       wake_entry;
786         unsigned int                    wakee_flips;
787         unsigned long                   wakee_flip_decay_ts;
788         struct task_struct              *last_wakee;
789
790         /*
791          * recent_used_cpu is initially set as the last CPU used by a task
792          * that wakes affine another task. Waker/wakee relationships can
793          * push tasks around a CPU where each wakeup moves to the next one.
794          * Tracking a recently used CPU allows a quick search for a recently
795          * used CPU that may be idle.
796          */
797         int                             recent_used_cpu;
798         int                             wake_cpu;
799 #endif
800         int                             on_rq;
801
802         int                             prio;
803         int                             static_prio;
804         int                             normal_prio;
805         unsigned int                    rt_priority;
806
807         struct sched_entity             se;
808         struct sched_rt_entity          rt;
809         struct sched_dl_entity          dl;
810         struct sched_dl_entity          *dl_server;
811         const struct sched_class        *sched_class;
812
813 #ifdef CONFIG_SCHED_CORE
814         struct rb_node                  core_node;
815         unsigned long                   core_cookie;
816         unsigned int                    core_occupation;
817 #endif
818
819 #ifdef CONFIG_CGROUP_SCHED
820         struct task_group               *sched_task_group;
821 #endif
822
823
824 #ifdef CONFIG_UCLAMP_TASK
825         /*
826          * Clamp values requested for a scheduling entity.
827          * Must be updated with task_rq_lock() held.
828          */
829         struct uclamp_se                uclamp_req[UCLAMP_CNT];
830         /*
831          * Effective clamp values used for a scheduling entity.
832          * Must be updated with task_rq_lock() held.
833          */
834         struct uclamp_se                uclamp[UCLAMP_CNT];
835 #endif
836
837         struct sched_statistics         stats;
838
839 #ifdef CONFIG_PREEMPT_NOTIFIERS
840         /* List of struct preempt_notifier: */
841         struct hlist_head               preempt_notifiers;
842 #endif
843
844 #ifdef CONFIG_BLK_DEV_IO_TRACE
845         unsigned int                    btrace_seq;
846 #endif
847
848         unsigned int                    policy;
849         unsigned long                   max_allowed_capacity;
850         int                             nr_cpus_allowed;
851         const cpumask_t                 *cpus_ptr;
852         cpumask_t                       *user_cpus_ptr;
853         cpumask_t                       cpus_mask;
854         void                            *migration_pending;
855 #ifdef CONFIG_SMP
856         unsigned short                  migration_disabled;
857 #endif
858         unsigned short                  migration_flags;
859
860 #ifdef CONFIG_PREEMPT_RCU
861         int                             rcu_read_lock_nesting;
862         union rcu_special               rcu_read_unlock_special;
863         struct list_head                rcu_node_entry;
864         struct rcu_node                 *rcu_blocked_node;
865 #endif /* #ifdef CONFIG_PREEMPT_RCU */
866
867 #ifdef CONFIG_TASKS_RCU
868         unsigned long                   rcu_tasks_nvcsw;
869         u8                              rcu_tasks_holdout;
870         u8                              rcu_tasks_idx;
871         int                             rcu_tasks_idle_cpu;
872         struct list_head                rcu_tasks_holdout_list;
873         int                             rcu_tasks_exit_cpu;
874         struct list_head                rcu_tasks_exit_list;
875 #endif /* #ifdef CONFIG_TASKS_RCU */
876
877 #ifdef CONFIG_TASKS_TRACE_RCU
878         int                             trc_reader_nesting;
879         int                             trc_ipi_to_cpu;
880         union rcu_special               trc_reader_special;
881         struct list_head                trc_holdout_list;
882         struct list_head                trc_blkd_node;
883         int                             trc_blkd_cpu;
884 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
885
886         struct sched_info               sched_info;
887
888         struct list_head                tasks;
889 #ifdef CONFIG_SMP
890         struct plist_node               pushable_tasks;
891         struct rb_node                  pushable_dl_tasks;
892 #endif
893
894         struct mm_struct                *mm;
895         struct mm_struct                *active_mm;
896         struct address_space            *faults_disabled_mapping;
897
898         int                             exit_state;
899         int                             exit_code;
900         int                             exit_signal;
901         /* The signal sent when the parent dies: */
902         int                             pdeath_signal;
903         /* JOBCTL_*, siglock protected: */
904         unsigned long                   jobctl;
905
906         /* Used for emulating ABI behavior of previous Linux versions: */
907         unsigned int                    personality;
908
909         /* Scheduler bits, serialized by scheduler locks: */
910         unsigned                        sched_reset_on_fork:1;
911         unsigned                        sched_contributes_to_load:1;
912         unsigned                        sched_migrated:1;
913
914         /* Force alignment to the next boundary: */
915         unsigned                        :0;
916
917         /* Unserialized, strictly 'current' */
918
919         /*
920          * This field must not be in the scheduler word above due to wakelist
921          * queueing no longer being serialized by p->on_cpu. However:
922          *
923          * p->XXX = X;                  ttwu()
924          * schedule()                     if (p->on_rq && ..) // false
925          *   smp_mb__after_spinlock();    if (smp_load_acquire(&p->on_cpu) && //true
926          *   deactivate_task()                ttwu_queue_wakelist())
927          *     p->on_rq = 0;                    p->sched_remote_wakeup = Y;
928          *
929          * guarantees all stores of 'current' are visible before
930          * ->sched_remote_wakeup gets used, so it can be in this word.
931          */
932         unsigned                        sched_remote_wakeup:1;
933 #ifdef CONFIG_RT_MUTEXES
934         unsigned                        sched_rt_mutex:1;
935 #endif
936
937         /* Bit to tell TOMOYO we're in execve(): */
938         unsigned                        in_execve:1;
939         unsigned                        in_iowait:1;
940 #ifndef TIF_RESTORE_SIGMASK
941         unsigned                        restore_sigmask:1;
942 #endif
943 #ifdef CONFIG_MEMCG
944         unsigned                        in_user_fault:1;
945 #endif
946 #ifdef CONFIG_LRU_GEN
947         /* whether the LRU algorithm may apply to this access */
948         unsigned                        in_lru_fault:1;
949 #endif
950 #ifdef CONFIG_COMPAT_BRK
951         unsigned                        brk_randomized:1;
952 #endif
953 #ifdef CONFIG_CGROUPS
954         /* disallow userland-initiated cgroup migration */
955         unsigned                        no_cgroup_migration:1;
956         /* task is frozen/stopped (used by the cgroup freezer) */
957         unsigned                        frozen:1;
958 #endif
959 #ifdef CONFIG_BLK_CGROUP
960         unsigned                        use_memdelay:1;
961 #endif
962 #ifdef CONFIG_PSI
963         /* Stalled due to lack of memory */
964         unsigned                        in_memstall:1;
965 #endif
966 #ifdef CONFIG_PAGE_OWNER
967         /* Used by page_owner=on to detect recursion in page tracking. */
968         unsigned                        in_page_owner:1;
969 #endif
970 #ifdef CONFIG_EVENTFD
971         /* Recursion prevention for eventfd_signal() */
972         unsigned                        in_eventfd:1;
973 #endif
974 #ifdef CONFIG_ARCH_HAS_CPU_PASID
975         unsigned                        pasid_activated:1;
976 #endif
977 #ifdef  CONFIG_CPU_SUP_INTEL
978         unsigned                        reported_split_lock:1;
979 #endif
980 #ifdef CONFIG_TASK_DELAY_ACCT
981         /* delay due to memory thrashing */
982         unsigned                        in_thrashing:1;
983 #endif
984
985         unsigned long                   atomic_flags; /* Flags requiring atomic access. */
986
987         struct restart_block            restart_block;
988
989         pid_t                           pid;
990         pid_t                           tgid;
991
992 #ifdef CONFIG_STACKPROTECTOR
993         /* Canary value for the -fstack-protector GCC feature: */
994         unsigned long                   stack_canary;
995 #endif
996         /*
997          * Pointers to the (original) parent process, youngest child, younger sibling,
998          * older sibling, respectively.  (p->father can be replaced with
999          * p->real_parent->pid)
1000          */
1001
1002         /* Real parent process: */
1003         struct task_struct __rcu        *real_parent;
1004
1005         /* Recipient of SIGCHLD, wait4() reports: */
1006         struct task_struct __rcu        *parent;
1007
1008         /*
1009          * Children/sibling form the list of natural children:
1010          */
1011         struct list_head                children;
1012         struct list_head                sibling;
1013         struct task_struct              *group_leader;
1014
1015         /*
1016          * 'ptraced' is the list of tasks this task is using ptrace() on.
1017          *
1018          * This includes both natural children and PTRACE_ATTACH targets.
1019          * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
1020          */
1021         struct list_head                ptraced;
1022         struct list_head                ptrace_entry;
1023
1024         /* PID/PID hash table linkage. */
1025         struct pid                      *thread_pid;
1026         struct hlist_node               pid_links[PIDTYPE_MAX];
1027         struct list_head                thread_node;
1028
1029         struct completion               *vfork_done;
1030
1031         /* CLONE_CHILD_SETTID: */
1032         int __user                      *set_child_tid;
1033
1034         /* CLONE_CHILD_CLEARTID: */
1035         int __user                      *clear_child_tid;
1036
1037         /* PF_KTHREAD | PF_IO_WORKER */
1038         void                            *worker_private;
1039
1040         u64                             utime;
1041         u64                             stime;
1042 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1043         u64                             utimescaled;
1044         u64                             stimescaled;
1045 #endif
1046         u64                             gtime;
1047         struct prev_cputime             prev_cputime;
1048 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1049         struct vtime                    vtime;
1050 #endif
1051
1052 #ifdef CONFIG_NO_HZ_FULL
1053         atomic_t                        tick_dep_mask;
1054 #endif
1055         /* Context switch counts: */
1056         unsigned long                   nvcsw;
1057         unsigned long                   nivcsw;
1058
1059         /* Monotonic time in nsecs: */
1060         u64                             start_time;
1061
1062         /* Boot based time in nsecs: */
1063         u64                             start_boottime;
1064
1065         /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
1066         unsigned long                   min_flt;
1067         unsigned long                   maj_flt;
1068
1069         /* Empty if CONFIG_POSIX_CPUTIMERS=n */
1070         struct posix_cputimers          posix_cputimers;
1071
1072 #ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK
1073         struct posix_cputimers_work     posix_cputimers_work;
1074 #endif
1075
1076         /* Process credentials: */
1077
1078         /* Tracer's credentials at attach: */
1079         const struct cred __rcu         *ptracer_cred;
1080
1081         /* Objective and real subjective task credentials (COW): */
1082         const struct cred __rcu         *real_cred;
1083
1084         /* Effective (overridable) subjective task credentials (COW): */
1085         const struct cred __rcu         *cred;
1086
1087 #ifdef CONFIG_KEYS
1088         /* Cached requested key. */
1089         struct key                      *cached_requested_key;
1090 #endif
1091
1092         /*
1093          * executable name, excluding path.
1094          *
1095          * - normally initialized setup_new_exec()
1096          * - access it with [gs]et_task_comm()
1097          * - lock it with task_lock()
1098          */
1099         char                            comm[TASK_COMM_LEN];
1100
1101         struct nameidata                *nameidata;
1102
1103 #ifdef CONFIG_SYSVIPC
1104         struct sysv_sem                 sysvsem;
1105         struct sysv_shm                 sysvshm;
1106 #endif
1107 #ifdef CONFIG_DETECT_HUNG_TASK
1108         unsigned long                   last_switch_count;
1109         unsigned long                   last_switch_time;
1110 #endif
1111         /* Filesystem information: */
1112         struct fs_struct                *fs;
1113
1114         /* Open file information: */
1115         struct files_struct             *files;
1116
1117 #ifdef CONFIG_IO_URING
1118         struct io_uring_task            *io_uring;
1119 #endif
1120
1121         /* Namespaces: */
1122         struct nsproxy                  *nsproxy;
1123
1124         /* Signal handlers: */
1125         struct signal_struct            *signal;
1126         struct sighand_struct __rcu             *sighand;
1127         sigset_t                        blocked;
1128         sigset_t                        real_blocked;
1129         /* Restored if set_restore_sigmask() was used: */
1130         sigset_t                        saved_sigmask;
1131         struct sigpending               pending;
1132         unsigned long                   sas_ss_sp;
1133         size_t                          sas_ss_size;
1134         unsigned int                    sas_ss_flags;
1135
1136         struct callback_head            *task_works;
1137
1138 #ifdef CONFIG_AUDIT
1139 #ifdef CONFIG_AUDITSYSCALL
1140         struct audit_context            *audit_context;
1141 #endif
1142         kuid_t                          loginuid;
1143         unsigned int                    sessionid;
1144 #endif
1145         struct seccomp                  seccomp;
1146         struct syscall_user_dispatch    syscall_dispatch;
1147
1148         /* Thread group tracking: */
1149         u64                             parent_exec_id;
1150         u64                             self_exec_id;
1151
1152         /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
1153         spinlock_t                      alloc_lock;
1154
1155         /* Protection of the PI data structures: */
1156         raw_spinlock_t                  pi_lock;
1157
1158         struct wake_q_node              wake_q;
1159
1160 #ifdef CONFIG_RT_MUTEXES
1161         /* PI waiters blocked on a rt_mutex held by this task: */
1162         struct rb_root_cached           pi_waiters;
1163         /* Updated under owner's pi_lock and rq lock */
1164         struct task_struct              *pi_top_task;
1165         /* Deadlock detection and priority inheritance handling: */
1166         struct rt_mutex_waiter          *pi_blocked_on;
1167 #endif
1168
1169 #ifdef CONFIG_DEBUG_MUTEXES
1170         /* Mutex deadlock detection: */
1171         struct mutex_waiter             *blocked_on;
1172 #endif
1173
1174 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1175         int                             non_block_count;
1176 #endif
1177
1178 #ifdef CONFIG_TRACE_IRQFLAGS
1179         struct irqtrace_events          irqtrace;
1180         unsigned int                    hardirq_threaded;
1181         u64                             hardirq_chain_key;
1182         int                             softirqs_enabled;
1183         int                             softirq_context;
1184         int                             irq_config;
1185 #endif
1186 #ifdef CONFIG_PREEMPT_RT
1187         int                             softirq_disable_cnt;
1188 #endif
1189
1190 #ifdef CONFIG_LOCKDEP
1191 # define MAX_LOCK_DEPTH                 48UL
1192         u64                             curr_chain_key;
1193         int                             lockdep_depth;
1194         unsigned int                    lockdep_recursion;
1195         struct held_lock                held_locks[MAX_LOCK_DEPTH];
1196 #endif
1197
1198 #if defined(CONFIG_UBSAN) && !defined(CONFIG_UBSAN_TRAP)
1199         unsigned int                    in_ubsan;
1200 #endif
1201
1202         /* Journalling filesystem info: */
1203         void                            *journal_info;
1204
1205         /* Stacked block device info: */
1206         struct bio_list                 *bio_list;
1207
1208         /* Stack plugging: */
1209         struct blk_plug                 *plug;
1210
1211         /* VM state: */
1212         struct reclaim_state            *reclaim_state;
1213
1214         struct io_context               *io_context;
1215
1216 #ifdef CONFIG_COMPACTION
1217         struct capture_control          *capture_control;
1218 #endif
1219         /* Ptrace state: */
1220         unsigned long                   ptrace_message;
1221         kernel_siginfo_t                *last_siginfo;
1222
1223         struct task_io_accounting       ioac;
1224 #ifdef CONFIG_PSI
1225         /* Pressure stall state */
1226         unsigned int                    psi_flags;
1227 #endif
1228 #ifdef CONFIG_TASK_XACCT
1229         /* Accumulated RSS usage: */
1230         u64                             acct_rss_mem1;
1231         /* Accumulated virtual memory usage: */
1232         u64                             acct_vm_mem1;
1233         /* stime + utime since last update: */
1234         u64                             acct_timexpd;
1235 #endif
1236 #ifdef CONFIG_CPUSETS
1237         /* Protected by ->alloc_lock: */
1238         nodemask_t                      mems_allowed;
1239         /* Sequence number to catch updates: */
1240         seqcount_spinlock_t             mems_allowed_seq;
1241         int                             cpuset_mem_spread_rotor;
1242         int                             cpuset_slab_spread_rotor;
1243 #endif
1244 #ifdef CONFIG_CGROUPS
1245         /* Control Group info protected by css_set_lock: */
1246         struct css_set __rcu            *cgroups;
1247         /* cg_list protected by css_set_lock and tsk->alloc_lock: */
1248         struct list_head                cg_list;
1249 #endif
1250 #ifdef CONFIG_X86_CPU_RESCTRL
1251         u32                             closid;
1252         u32                             rmid;
1253 #endif
1254 #ifdef CONFIG_FUTEX
1255         struct robust_list_head __user  *robust_list;
1256 #ifdef CONFIG_COMPAT
1257         struct compat_robust_list_head __user *compat_robust_list;
1258 #endif
1259         struct list_head                pi_state_list;
1260         struct futex_pi_state           *pi_state_cache;
1261         struct mutex                    futex_exit_mutex;
1262         unsigned int                    futex_state;
1263 #endif
1264 #ifdef CONFIG_PERF_EVENTS
1265         u8                              perf_recursion[PERF_NR_CONTEXTS];
1266         struct perf_event_context       *perf_event_ctxp;
1267         struct mutex                    perf_event_mutex;
1268         struct list_head                perf_event_list;
1269 #endif
1270 #ifdef CONFIG_DEBUG_PREEMPT
1271         unsigned long                   preempt_disable_ip;
1272 #endif
1273 #ifdef CONFIG_NUMA
1274         /* Protected by alloc_lock: */
1275         struct mempolicy                *mempolicy;
1276         short                           il_prev;
1277         u8                              il_weight;
1278         short                           pref_node_fork;
1279 #endif
1280 #ifdef CONFIG_NUMA_BALANCING
1281         int                             numa_scan_seq;
1282         unsigned int                    numa_scan_period;
1283         unsigned int                    numa_scan_period_max;
1284         int                             numa_preferred_nid;
1285         unsigned long                   numa_migrate_retry;
1286         /* Migration stamp: */
1287         u64                             node_stamp;
1288         u64                             last_task_numa_placement;
1289         u64                             last_sum_exec_runtime;
1290         struct callback_head            numa_work;
1291
1292         /*
1293          * This pointer is only modified for current in syscall and
1294          * pagefault context (and for tasks being destroyed), so it can be read
1295          * from any of the following contexts:
1296          *  - RCU read-side critical section
1297          *  - current->numa_group from everywhere
1298          *  - task's runqueue locked, task not running
1299          */
1300         struct numa_group __rcu         *numa_group;
1301
1302         /*
1303          * numa_faults is an array split into four regions:
1304          * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1305          * in this precise order.
1306          *
1307          * faults_memory: Exponential decaying average of faults on a per-node
1308          * basis. Scheduling placement decisions are made based on these
1309          * counts. The values remain static for the duration of a PTE scan.
1310          * faults_cpu: Track the nodes the process was running on when a NUMA
1311          * hinting fault was incurred.
1312          * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1313          * during the current scan window. When the scan completes, the counts
1314          * in faults_memory and faults_cpu decay and these values are copied.
1315          */
1316         unsigned long                   *numa_faults;
1317         unsigned long                   total_numa_faults;
1318
1319         /*
1320          * numa_faults_locality tracks if faults recorded during the last
1321          * scan window were remote/local or failed to migrate. The task scan
1322          * period is adapted based on the locality of the faults with different
1323          * weights depending on whether they were shared or private faults
1324          */
1325         unsigned long                   numa_faults_locality[3];
1326
1327         unsigned long                   numa_pages_migrated;
1328 #endif /* CONFIG_NUMA_BALANCING */
1329
1330 #ifdef CONFIG_RSEQ
1331         struct rseq __user *rseq;
1332         u32 rseq_len;
1333         u32 rseq_sig;
1334         /*
1335          * RmW on rseq_event_mask must be performed atomically
1336          * with respect to preemption.
1337          */
1338         unsigned long rseq_event_mask;
1339 #endif
1340
1341 #ifdef CONFIG_SCHED_MM_CID
1342         int                             mm_cid;         /* Current cid in mm */
1343         int                             last_mm_cid;    /* Most recent cid in mm */
1344         int                             migrate_from_cpu;
1345         int                             mm_cid_active;  /* Whether cid bitmap is active */
1346         struct callback_head            cid_work;
1347 #endif
1348
1349         struct tlbflush_unmap_batch     tlb_ubc;
1350
1351         /* Cache last used pipe for splice(): */
1352         struct pipe_inode_info          *splice_pipe;
1353
1354         struct page_frag                task_frag;
1355
1356 #ifdef CONFIG_TASK_DELAY_ACCT
1357         struct task_delay_info          *delays;
1358 #endif
1359
1360 #ifdef CONFIG_FAULT_INJECTION
1361         int                             make_it_fail;
1362         unsigned int                    fail_nth;
1363 #endif
1364         /*
1365          * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1366          * balance_dirty_pages() for a dirty throttling pause:
1367          */
1368         int                             nr_dirtied;
1369         int                             nr_dirtied_pause;
1370         /* Start of a write-and-pause period: */
1371         unsigned long                   dirty_paused_when;
1372
1373 #ifdef CONFIG_LATENCYTOP
1374         int                             latency_record_count;
1375         struct latency_record           latency_record[LT_SAVECOUNT];
1376 #endif
1377         /*
1378          * Time slack values; these are used to round up poll() and
1379          * select() etc timeout values. These are in nanoseconds.
1380          */
1381         u64                             timer_slack_ns;
1382         u64                             default_timer_slack_ns;
1383
1384 #if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
1385         unsigned int                    kasan_depth;
1386 #endif
1387
1388 #ifdef CONFIG_KCSAN
1389         struct kcsan_ctx                kcsan_ctx;
1390 #ifdef CONFIG_TRACE_IRQFLAGS
1391         struct irqtrace_events          kcsan_save_irqtrace;
1392 #endif
1393 #ifdef CONFIG_KCSAN_WEAK_MEMORY
1394         int                             kcsan_stack_depth;
1395 #endif
1396 #endif
1397
1398 #ifdef CONFIG_KMSAN
1399         struct kmsan_ctx                kmsan_ctx;
1400 #endif
1401
1402 #if IS_ENABLED(CONFIG_KUNIT)
1403         struct kunit                    *kunit_test;
1404 #endif
1405
1406 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1407         /* Index of current stored address in ret_stack: */
1408         int                             curr_ret_stack;
1409         int                             curr_ret_depth;
1410
1411         /* Stack of return addresses for return function tracing: */
1412         struct ftrace_ret_stack         *ret_stack;
1413
1414         /* Timestamp for last schedule: */
1415         unsigned long long              ftrace_timestamp;
1416
1417         /*
1418          * Number of functions that haven't been traced
1419          * because of depth overrun:
1420          */
1421         atomic_t                        trace_overrun;
1422
1423         /* Pause tracing: */
1424         atomic_t                        tracing_graph_pause;
1425 #endif
1426
1427 #ifdef CONFIG_TRACING
1428         /* Bitmask and counter of trace recursion: */
1429         unsigned long                   trace_recursion;
1430 #endif /* CONFIG_TRACING */
1431
1432 #ifdef CONFIG_KCOV
1433         /* See kernel/kcov.c for more details. */
1434
1435         /* Coverage collection mode enabled for this task (0 if disabled): */
1436         unsigned int                    kcov_mode;
1437
1438         /* Size of the kcov_area: */
1439         unsigned int                    kcov_size;
1440
1441         /* Buffer for coverage collection: */
1442         void                            *kcov_area;
1443
1444         /* KCOV descriptor wired with this task or NULL: */
1445         struct kcov                     *kcov;
1446
1447         /* KCOV common handle for remote coverage collection: */
1448         u64                             kcov_handle;
1449
1450         /* KCOV sequence number: */
1451         int                             kcov_sequence;
1452
1453         /* Collect coverage from softirq context: */
1454         unsigned int                    kcov_softirq;
1455 #endif
1456
1457 #ifdef CONFIG_MEMCG
1458         struct mem_cgroup               *memcg_in_oom;
1459
1460         /* Number of pages to reclaim on returning to userland: */
1461         unsigned int                    memcg_nr_pages_over_high;
1462
1463         /* Used by memcontrol for targeted memcg charge: */
1464         struct mem_cgroup               *active_memcg;
1465 #endif
1466
1467 #ifdef CONFIG_MEMCG_KMEM
1468         struct obj_cgroup               *objcg;
1469 #endif
1470
1471 #ifdef CONFIG_BLK_CGROUP
1472         struct gendisk                  *throttle_disk;
1473 #endif
1474
1475 #ifdef CONFIG_UPROBES
1476         struct uprobe_task              *utask;
1477 #endif
1478 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1479         unsigned int                    sequential_io;
1480         unsigned int                    sequential_io_avg;
1481 #endif
1482         struct kmap_ctrl                kmap_ctrl;
1483 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1484         unsigned long                   task_state_change;
1485 # ifdef CONFIG_PREEMPT_RT
1486         unsigned long                   saved_state_change;
1487 # endif
1488 #endif
1489         struct rcu_head                 rcu;
1490         refcount_t                      rcu_users;
1491         int                             pagefault_disabled;
1492 #ifdef CONFIG_MMU
1493         struct task_struct              *oom_reaper_list;
1494         struct timer_list               oom_reaper_timer;
1495 #endif
1496 #ifdef CONFIG_VMAP_STACK
1497         struct vm_struct                *stack_vm_area;
1498 #endif
1499 #ifdef CONFIG_THREAD_INFO_IN_TASK
1500         /* A live task holds one reference: */
1501         refcount_t                      stack_refcount;
1502 #endif
1503 #ifdef CONFIG_LIVEPATCH
1504         int patch_state;
1505 #endif
1506 #ifdef CONFIG_SECURITY
1507         /* Used by LSM modules for access restriction: */
1508         void                            *security;
1509 #endif
1510 #ifdef CONFIG_BPF_SYSCALL
1511         /* Used by BPF task local storage */
1512         struct bpf_local_storage __rcu  *bpf_storage;
1513         /* Used for BPF run context */
1514         struct bpf_run_ctx              *bpf_ctx;
1515 #endif
1516
1517 #ifdef CONFIG_GCC_PLUGIN_STACKLEAK
1518         unsigned long                   lowest_stack;
1519         unsigned long                   prev_lowest_stack;
1520 #endif
1521
1522 #ifdef CONFIG_X86_MCE
1523         void __user                     *mce_vaddr;
1524         __u64                           mce_kflags;
1525         u64                             mce_addr;
1526         __u64                           mce_ripv : 1,
1527                                         mce_whole_page : 1,
1528                                         __mce_reserved : 62;
1529         struct callback_head            mce_kill_me;
1530         int                             mce_count;
1531 #endif
1532
1533 #ifdef CONFIG_KRETPROBES
1534         struct llist_head               kretprobe_instances;
1535 #endif
1536 #ifdef CONFIG_RETHOOK
1537         struct llist_head               rethooks;
1538 #endif
1539
1540 #ifdef CONFIG_ARCH_HAS_PARANOID_L1D_FLUSH
1541         /*
1542          * If L1D flush is supported on mm context switch
1543          * then we use this callback head to queue kill work
1544          * to kill tasks that are not running on SMT disabled
1545          * cores
1546          */
1547         struct callback_head            l1d_flush_kill;
1548 #endif
1549
1550 #ifdef CONFIG_RV
1551         /*
1552          * Per-task RV monitor. Nowadays fixed in RV_PER_TASK_MONITORS.
1553          * If we find justification for more monitors, we can think
1554          * about adding more or developing a dynamic method. So far,
1555          * none of these are justified.
1556          */
1557         union rv_task_monitor           rv[RV_PER_TASK_MONITORS];
1558 #endif
1559
1560 #ifdef CONFIG_USER_EVENTS
1561         struct user_event_mm            *user_event_mm;
1562 #endif
1563
1564         /*
1565          * New fields for task_struct should be added above here, so that
1566          * they are included in the randomized portion of task_struct.
1567          */
1568         randomized_struct_fields_end
1569
1570         /* CPU-specific state of this task: */
1571         struct thread_struct            thread;
1572
1573         /*
1574          * WARNING: on x86, 'thread_struct' contains a variable-sized
1575          * structure.  It *MUST* be at the end of 'task_struct'.
1576          *
1577          * Do not put anything below here!
1578          */
1579 };
1580
1581 #define TASK_REPORT_IDLE        (TASK_REPORT + 1)
1582 #define TASK_REPORT_MAX         (TASK_REPORT_IDLE << 1)
1583
1584 static inline unsigned int __task_state_index(unsigned int tsk_state,
1585                                               unsigned int tsk_exit_state)
1586 {
1587         unsigned int state = (tsk_state | tsk_exit_state) & TASK_REPORT;
1588
1589         BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1590
1591         if ((tsk_state & TASK_IDLE) == TASK_IDLE)
1592                 state = TASK_REPORT_IDLE;
1593
1594         /*
1595          * We're lying here, but rather than expose a completely new task state
1596          * to userspace, we can make this appear as if the task has gone through
1597          * a regular rt_mutex_lock() call.
1598          */
1599         if (tsk_state & TASK_RTLOCK_WAIT)
1600                 state = TASK_UNINTERRUPTIBLE;
1601
1602         return fls(state);
1603 }
1604
1605 static inline unsigned int task_state_index(struct task_struct *tsk)
1606 {
1607         return __task_state_index(READ_ONCE(tsk->__state), tsk->exit_state);
1608 }
1609
1610 static inline char task_index_to_char(unsigned int state)
1611 {
1612         static const char state_char[] = "RSDTtXZPI";
1613
1614         BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
1615
1616         return state_char[state];
1617 }
1618
1619 static inline char task_state_to_char(struct task_struct *tsk)
1620 {
1621         return task_index_to_char(task_state_index(tsk));
1622 }
1623
1624 extern struct pid *cad_pid;
1625
1626 /*
1627  * Per process flags
1628  */
1629 #define PF_VCPU                 0x00000001      /* I'm a virtual CPU */
1630 #define PF_IDLE                 0x00000002      /* I am an IDLE thread */
1631 #define PF_EXITING              0x00000004      /* Getting shut down */
1632 #define PF_POSTCOREDUMP         0x00000008      /* Coredumps should ignore this task */
1633 #define PF_IO_WORKER            0x00000010      /* Task is an IO worker */
1634 #define PF_WQ_WORKER            0x00000020      /* I'm a workqueue worker */
1635 #define PF_FORKNOEXEC           0x00000040      /* Forked but didn't exec */
1636 #define PF_MCE_PROCESS          0x00000080      /* Process policy on mce errors */
1637 #define PF_SUPERPRIV            0x00000100      /* Used super-user privileges */
1638 #define PF_DUMPCORE             0x00000200      /* Dumped core */
1639 #define PF_SIGNALED             0x00000400      /* Killed by a signal */
1640 #define PF_MEMALLOC             0x00000800      /* Allocating memory to free memory. See memalloc_noreclaim_save() */
1641 #define PF_NPROC_EXCEEDED       0x00001000      /* set_user() noticed that RLIMIT_NPROC was exceeded */
1642 #define PF_USED_MATH            0x00002000      /* If unset the fpu must be initialized before use */
1643 #define PF_USER_WORKER          0x00004000      /* Kernel thread cloned from userspace thread */
1644 #define PF_NOFREEZE             0x00008000      /* This thread should not be frozen */
1645 #define PF__HOLE__00010000      0x00010000
1646 #define PF_KSWAPD               0x00020000      /* I am kswapd */
1647 #define PF_MEMALLOC_NOFS        0x00040000      /* All allocations inherit GFP_NOFS. See memalloc_nfs_save() */
1648 #define PF_MEMALLOC_NOIO        0x00080000      /* All allocations inherit GFP_NOIO. See memalloc_noio_save() */
1649 #define PF_LOCAL_THROTTLE       0x00100000      /* Throttle writes only against the bdi I write to,
1650                                                  * I am cleaning dirty pages from some other bdi. */
1651 #define PF_KTHREAD              0x00200000      /* I am a kernel thread */
1652 #define PF_RANDOMIZE            0x00400000      /* Randomize virtual address space */
1653 #define PF_MEMALLOC_NORECLAIM   0x00800000      /* All allocation requests will clear __GFP_DIRECT_RECLAIM */
1654 #define PF_MEMALLOC_NOWARN      0x01000000      /* All allocation requests will inherit __GFP_NOWARN */
1655 #define PF__HOLE__02000000      0x02000000
1656 #define PF_NO_SETAFFINITY       0x04000000      /* Userland is not allowed to meddle with cpus_mask */
1657 #define PF_MCE_EARLY            0x08000000      /* Early kill for mce process policy */
1658 #define PF_MEMALLOC_PIN         0x10000000      /* Allocations constrained to zones which allow long term pinning.
1659                                                  * See memalloc_pin_save() */
1660 #define PF_BLOCK_TS             0x20000000      /* plug has ts that needs updating */
1661 #define PF__HOLE__40000000      0x40000000
1662 #define PF_SUSPEND_TASK         0x80000000      /* This thread called freeze_processes() and should not be frozen */
1663
1664 /*
1665  * Only the _current_ task can read/write to tsk->flags, but other
1666  * tasks can access tsk->flags in readonly mode for example
1667  * with tsk_used_math (like during threaded core dumping).
1668  * There is however an exception to this rule during ptrace
1669  * or during fork: the ptracer task is allowed to write to the
1670  * child->flags of its traced child (same goes for fork, the parent
1671  * can write to the child->flags), because we're guaranteed the
1672  * child is not running and in turn not changing child->flags
1673  * at the same time the parent does it.
1674  */
1675 #define clear_stopped_child_used_math(child)    do { (child)->flags &= ~PF_USED_MATH; } while (0)
1676 #define set_stopped_child_used_math(child)      do { (child)->flags |= PF_USED_MATH; } while (0)
1677 #define clear_used_math()                       clear_stopped_child_used_math(current)
1678 #define set_used_math()                         set_stopped_child_used_math(current)
1679
1680 #define conditional_stopped_child_used_math(condition, child) \
1681         do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1682
1683 #define conditional_used_math(condition)        conditional_stopped_child_used_math(condition, current)
1684
1685 #define copy_to_stopped_child_used_math(child) \
1686         do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1687
1688 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1689 #define tsk_used_math(p)                        ((p)->flags & PF_USED_MATH)
1690 #define used_math()                             tsk_used_math(current)
1691
1692 static __always_inline bool is_percpu_thread(void)
1693 {
1694 #ifdef CONFIG_SMP
1695         return (current->flags & PF_NO_SETAFFINITY) &&
1696                 (current->nr_cpus_allowed  == 1);
1697 #else
1698         return true;
1699 #endif
1700 }
1701
1702 /* Per-process atomic flags. */
1703 #define PFA_NO_NEW_PRIVS                0       /* May not gain new privileges. */
1704 #define PFA_SPREAD_PAGE                 1       /* Spread page cache over cpuset */
1705 #define PFA_SPREAD_SLAB                 2       /* Spread some slab caches over cpuset */
1706 #define PFA_SPEC_SSB_DISABLE            3       /* Speculative Store Bypass disabled */
1707 #define PFA_SPEC_SSB_FORCE_DISABLE      4       /* Speculative Store Bypass force disabled*/
1708 #define PFA_SPEC_IB_DISABLE             5       /* Indirect branch speculation restricted */
1709 #define PFA_SPEC_IB_FORCE_DISABLE       6       /* Indirect branch speculation permanently restricted */
1710 #define PFA_SPEC_SSB_NOEXEC             7       /* Speculative Store Bypass clear on execve() */
1711
1712 #define TASK_PFA_TEST(name, func)                                       \
1713         static inline bool task_##func(struct task_struct *p)           \
1714         { return test_bit(PFA_##name, &p->atomic_flags); }
1715
1716 #define TASK_PFA_SET(name, func)                                        \
1717         static inline void task_set_##func(struct task_struct *p)       \
1718         { set_bit(PFA_##name, &p->atomic_flags); }
1719
1720 #define TASK_PFA_CLEAR(name, func)                                      \
1721         static inline void task_clear_##func(struct task_struct *p)     \
1722         { clear_bit(PFA_##name, &p->atomic_flags); }
1723
1724 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1725 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1726
1727 TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1728 TASK_PFA_SET(SPREAD_PAGE, spread_page)
1729 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1730
1731 TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1732 TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1733 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1734
1735 TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1736 TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1737 TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1738
1739 TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1740 TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1741 TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1742
1743 TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1744 TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1745
1746 TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
1747 TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
1748 TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)
1749
1750 TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1751 TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1752
1753 static inline void
1754 current_restore_flags(unsigned long orig_flags, unsigned long flags)
1755 {
1756         current->flags &= ~flags;
1757         current->flags |= orig_flags & flags;
1758 }
1759
1760 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1761 extern int task_can_attach(struct task_struct *p);
1762 extern int dl_bw_alloc(int cpu, u64 dl_bw);
1763 extern void dl_bw_free(int cpu, u64 dl_bw);
1764 #ifdef CONFIG_SMP
1765
1766 /* do_set_cpus_allowed() - consider using set_cpus_allowed_ptr() instead */
1767 extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1768
1769 /**
1770  * set_cpus_allowed_ptr - set CPU affinity mask of a task
1771  * @p: the task
1772  * @new_mask: CPU affinity mask
1773  *
1774  * Return: zero if successful, or a negative error code
1775  */
1776 extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1777 extern int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node);
1778 extern void release_user_cpus_ptr(struct task_struct *p);
1779 extern int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask);
1780 extern void force_compatible_cpus_allowed_ptr(struct task_struct *p);
1781 extern void relax_compatible_cpus_allowed_ptr(struct task_struct *p);
1782 #else
1783 static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1784 {
1785 }
1786 static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1787 {
1788         if (!cpumask_test_cpu(0, new_mask))
1789                 return -EINVAL;
1790         return 0;
1791 }
1792 static inline int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node)
1793 {
1794         if (src->user_cpus_ptr)
1795                 return -EINVAL;
1796         return 0;
1797 }
1798 static inline void release_user_cpus_ptr(struct task_struct *p)
1799 {
1800         WARN_ON(p->user_cpus_ptr);
1801 }
1802
1803 static inline int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
1804 {
1805         return 0;
1806 }
1807 #endif
1808
1809 extern int yield_to(struct task_struct *p, bool preempt);
1810 extern void set_user_nice(struct task_struct *p, long nice);
1811 extern int task_prio(const struct task_struct *p);
1812
1813 /**
1814  * task_nice - return the nice value of a given task.
1815  * @p: the task in question.
1816  *
1817  * Return: The nice value [ -20 ... 0 ... 19 ].
1818  */
1819 static inline int task_nice(const struct task_struct *p)
1820 {
1821         return PRIO_TO_NICE((p)->static_prio);
1822 }
1823
1824 extern int can_nice(const struct task_struct *p, const int nice);
1825 extern int task_curr(const struct task_struct *p);
1826 extern int idle_cpu(int cpu);
1827 extern int available_idle_cpu(int cpu);
1828 extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1829 extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1830 extern void sched_set_fifo(struct task_struct *p);
1831 extern void sched_set_fifo_low(struct task_struct *p);
1832 extern void sched_set_normal(struct task_struct *p, int nice);
1833 extern int sched_setattr(struct task_struct *, const struct sched_attr *);
1834 extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
1835 extern struct task_struct *idle_task(int cpu);
1836
1837 /**
1838  * is_idle_task - is the specified task an idle task?
1839  * @p: the task in question.
1840  *
1841  * Return: 1 if @p is an idle task. 0 otherwise.
1842  */
1843 static __always_inline bool is_idle_task(const struct task_struct *p)
1844 {
1845         return !!(p->flags & PF_IDLE);
1846 }
1847
1848 extern struct task_struct *curr_task(int cpu);
1849 extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1850
1851 void yield(void);
1852
1853 union thread_union {
1854         struct task_struct task;
1855 #ifndef CONFIG_THREAD_INFO_IN_TASK
1856         struct thread_info thread_info;
1857 #endif
1858         unsigned long stack[THREAD_SIZE/sizeof(long)];
1859 };
1860
1861 #ifndef CONFIG_THREAD_INFO_IN_TASK
1862 extern struct thread_info init_thread_info;
1863 #endif
1864
1865 extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
1866
1867 #ifdef CONFIG_THREAD_INFO_IN_TASK
1868 # define task_thread_info(task) (&(task)->thread_info)
1869 #elif !defined(__HAVE_THREAD_FUNCTIONS)
1870 # define task_thread_info(task) ((struct thread_info *)(task)->stack)
1871 #endif
1872
1873 /*
1874  * find a task by one of its numerical ids
1875  *
1876  * find_task_by_pid_ns():
1877  *      finds a task by its pid in the specified namespace
1878  * find_task_by_vpid():
1879  *      finds a task by its virtual pid
1880  *
1881  * see also find_vpid() etc in include/linux/pid.h
1882  */
1883
1884 extern struct task_struct *find_task_by_vpid(pid_t nr);
1885 extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
1886
1887 /*
1888  * find a task by its virtual pid and get the task struct
1889  */
1890 extern struct task_struct *find_get_task_by_vpid(pid_t nr);
1891
1892 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1893 extern int wake_up_process(struct task_struct *tsk);
1894 extern void wake_up_new_task(struct task_struct *tsk);
1895
1896 #ifdef CONFIG_SMP
1897 extern void kick_process(struct task_struct *tsk);
1898 #else
1899 static inline void kick_process(struct task_struct *tsk) { }
1900 #endif
1901
1902 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
1903
1904 static inline void set_task_comm(struct task_struct *tsk, const char *from)
1905 {
1906         __set_task_comm(tsk, from, false);
1907 }
1908
1909 extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
1910 #define get_task_comm(buf, tsk) ({                      \
1911         BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN);     \
1912         __get_task_comm(buf, sizeof(buf), tsk);         \
1913 })
1914
1915 #ifdef CONFIG_SMP
1916 static __always_inline void scheduler_ipi(void)
1917 {
1918         /*
1919          * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1920          * TIF_NEED_RESCHED remotely (for the first time) will also send
1921          * this IPI.
1922          */
1923         preempt_fold_need_resched();
1924 }
1925 #else
1926 static inline void scheduler_ipi(void) { }
1927 #endif
1928
1929 extern unsigned long wait_task_inactive(struct task_struct *, unsigned int match_state);
1930
1931 /*
1932  * Set thread flags in other task's structures.
1933  * See asm/thread_info.h for TIF_xxxx flags available:
1934  */
1935 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1936 {
1937         set_ti_thread_flag(task_thread_info(tsk), flag);
1938 }
1939
1940 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1941 {
1942         clear_ti_thread_flag(task_thread_info(tsk), flag);
1943 }
1944
1945 static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
1946                                           bool value)
1947 {
1948         update_ti_thread_flag(task_thread_info(tsk), flag, value);
1949 }
1950
1951 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1952 {
1953         return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1954 }
1955
1956 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1957 {
1958         return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1959 }
1960
1961 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1962 {
1963         return test_ti_thread_flag(task_thread_info(tsk), flag);
1964 }
1965
1966 static inline void set_tsk_need_resched(struct task_struct *tsk)
1967 {
1968         set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1969 }
1970
1971 static inline void clear_tsk_need_resched(struct task_struct *tsk)
1972 {
1973         clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1974 }
1975
1976 static inline int test_tsk_need_resched(struct task_struct *tsk)
1977 {
1978         return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
1979 }
1980
1981 /*
1982  * cond_resched() and cond_resched_lock(): latency reduction via
1983  * explicit rescheduling in places that are safe. The return
1984  * value indicates whether a reschedule was done in fact.
1985  * cond_resched_lock() will drop the spinlock before scheduling,
1986  */
1987 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
1988 extern int __cond_resched(void);
1989
1990 #if defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
1991
1992 void sched_dynamic_klp_enable(void);
1993 void sched_dynamic_klp_disable(void);
1994
1995 DECLARE_STATIC_CALL(cond_resched, __cond_resched);
1996
1997 static __always_inline int _cond_resched(void)
1998 {
1999         return static_call_mod(cond_resched)();
2000 }
2001
2002 #elif defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
2003
2004 extern int dynamic_cond_resched(void);
2005
2006 static __always_inline int _cond_resched(void)
2007 {
2008         return dynamic_cond_resched();
2009 }
2010
2011 #else /* !CONFIG_PREEMPTION */
2012
2013 static inline int _cond_resched(void)
2014 {
2015         klp_sched_try_switch();
2016         return __cond_resched();
2017 }
2018
2019 #endif /* PREEMPT_DYNAMIC && CONFIG_HAVE_PREEMPT_DYNAMIC_CALL */
2020
2021 #else /* CONFIG_PREEMPTION && !CONFIG_PREEMPT_DYNAMIC */
2022
2023 static inline int _cond_resched(void)
2024 {
2025         klp_sched_try_switch();
2026         return 0;
2027 }
2028
2029 #endif /* !CONFIG_PREEMPTION || CONFIG_PREEMPT_DYNAMIC */
2030
2031 #define cond_resched() ({                       \
2032         __might_resched(__FILE__, __LINE__, 0); \
2033         _cond_resched();                        \
2034 })
2035
2036 extern int __cond_resched_lock(spinlock_t *lock);
2037 extern int __cond_resched_rwlock_read(rwlock_t *lock);
2038 extern int __cond_resched_rwlock_write(rwlock_t *lock);
2039
2040 #define MIGHT_RESCHED_RCU_SHIFT         8
2041 #define MIGHT_RESCHED_PREEMPT_MASK      ((1U << MIGHT_RESCHED_RCU_SHIFT) - 1)
2042
2043 #ifndef CONFIG_PREEMPT_RT
2044 /*
2045  * Non RT kernels have an elevated preempt count due to the held lock,
2046  * but are not allowed to be inside a RCU read side critical section
2047  */
2048 # define PREEMPT_LOCK_RESCHED_OFFSETS   PREEMPT_LOCK_OFFSET
2049 #else
2050 /*
2051  * spin/rw_lock() on RT implies rcu_read_lock(). The might_sleep() check in
2052  * cond_resched*lock() has to take that into account because it checks for
2053  * preempt_count() and rcu_preempt_depth().
2054  */
2055 # define PREEMPT_LOCK_RESCHED_OFFSETS   \
2056         (PREEMPT_LOCK_OFFSET + (1U << MIGHT_RESCHED_RCU_SHIFT))
2057 #endif
2058
2059 #define cond_resched_lock(lock) ({                                              \
2060         __might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS);      \
2061         __cond_resched_lock(lock);                                              \
2062 })
2063
2064 #define cond_resched_rwlock_read(lock) ({                                       \
2065         __might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS);      \
2066         __cond_resched_rwlock_read(lock);                                       \
2067 })
2068
2069 #define cond_resched_rwlock_write(lock) ({                                      \
2070         __might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS);      \
2071         __cond_resched_rwlock_write(lock);                                      \
2072 })
2073
2074 static __always_inline bool need_resched(void)
2075 {
2076         return unlikely(tif_need_resched());
2077 }
2078
2079 /*
2080  * Wrappers for p->thread_info->cpu access. No-op on UP.
2081  */
2082 #ifdef CONFIG_SMP
2083
2084 static inline unsigned int task_cpu(const struct task_struct *p)
2085 {
2086         return READ_ONCE(task_thread_info(p)->cpu);
2087 }
2088
2089 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2090
2091 #else
2092
2093 static inline unsigned int task_cpu(const struct task_struct *p)
2094 {
2095         return 0;
2096 }
2097
2098 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2099 {
2100 }
2101
2102 #endif /* CONFIG_SMP */
2103
2104 extern bool sched_task_on_rq(struct task_struct *p);
2105 extern unsigned long get_wchan(struct task_struct *p);
2106 extern struct task_struct *cpu_curr_snapshot(int cpu);
2107
2108 #include <linux/spinlock.h>
2109
2110 /*
2111  * In order to reduce various lock holder preemption latencies provide an
2112  * interface to see if a vCPU is currently running or not.
2113  *
2114  * This allows us to terminate optimistic spin loops and block, analogous to
2115  * the native optimistic spin heuristic of testing if the lock owner task is
2116  * running or not.
2117  */
2118 #ifndef vcpu_is_preempted
2119 static inline bool vcpu_is_preempted(int cpu)
2120 {
2121         return false;
2122 }
2123 #endif
2124
2125 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2126 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2127
2128 #ifndef TASK_SIZE_OF
2129 #define TASK_SIZE_OF(tsk)       TASK_SIZE
2130 #endif
2131
2132 #ifdef CONFIG_SMP
2133 static inline bool owner_on_cpu(struct task_struct *owner)
2134 {
2135         /*
2136          * As lock holder preemption issue, we both skip spinning if
2137          * task is not on cpu or its cpu is preempted
2138          */
2139         return READ_ONCE(owner->on_cpu) && !vcpu_is_preempted(task_cpu(owner));
2140 }
2141
2142 /* Returns effective CPU energy utilization, as seen by the scheduler */
2143 unsigned long sched_cpu_util(int cpu);
2144 #endif /* CONFIG_SMP */
2145
2146 #ifdef CONFIG_SCHED_CORE
2147 extern void sched_core_free(struct task_struct *tsk);
2148 extern void sched_core_fork(struct task_struct *p);
2149 extern int sched_core_share_pid(unsigned int cmd, pid_t pid, enum pid_type type,
2150                                 unsigned long uaddr);
2151 extern int sched_core_idle_cpu(int cpu);
2152 #else
2153 static inline void sched_core_free(struct task_struct *tsk) { }
2154 static inline void sched_core_fork(struct task_struct *p) { }
2155 static inline int sched_core_idle_cpu(int cpu) { return idle_cpu(cpu); }
2156 #endif
2157
2158 extern void sched_set_stop_task(int cpu, struct task_struct *stop);
2159
2160 #ifdef CONFIG_MEM_ALLOC_PROFILING
2161 static __always_inline struct alloc_tag *alloc_tag_save(struct alloc_tag *tag)
2162 {
2163         swap(current->alloc_tag, tag);
2164         return tag;
2165 }
2166
2167 static __always_inline void alloc_tag_restore(struct alloc_tag *tag, struct alloc_tag *old)
2168 {
2169 #ifdef CONFIG_MEM_ALLOC_PROFILING_DEBUG
2170         WARN(current->alloc_tag != tag, "current->alloc_tag was changed:\n");
2171 #endif
2172         current->alloc_tag = old;
2173 }
2174 #else
2175 #define alloc_tag_save(_tag)                    NULL
2176 #define alloc_tag_restore(_tag, _old)           do {} while (0)
2177 #endif
2178
2179 #endif
This page took 0.170766 seconds and 4 git commands to generate.