]> Git Repo - linux.git/blob - drivers/usb/chipidea/udc.c
Merge tag 'xfs-5.12-merge-6' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux
[linux.git] / drivers / usb / chipidea / udc.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * udc.c - ChipIdea UDC driver
4  *
5  * Copyright (C) 2008 Chipidea - MIPS Technologies, Inc. All rights reserved.
6  *
7  * Author: David Lopo
8  */
9
10 #include <linux/delay.h>
11 #include <linux/device.h>
12 #include <linux/dmapool.h>
13 #include <linux/err.h>
14 #include <linux/irqreturn.h>
15 #include <linux/kernel.h>
16 #include <linux/slab.h>
17 #include <linux/pm_runtime.h>
18 #include <linux/pinctrl/consumer.h>
19 #include <linux/usb/ch9.h>
20 #include <linux/usb/gadget.h>
21 #include <linux/usb/otg-fsm.h>
22 #include <linux/usb/chipidea.h>
23
24 #include "ci.h"
25 #include "udc.h"
26 #include "bits.h"
27 #include "otg.h"
28 #include "otg_fsm.h"
29 #include "trace.h"
30
31 /* control endpoint description */
32 static const struct usb_endpoint_descriptor
33 ctrl_endpt_out_desc = {
34         .bLength         = USB_DT_ENDPOINT_SIZE,
35         .bDescriptorType = USB_DT_ENDPOINT,
36
37         .bEndpointAddress = USB_DIR_OUT,
38         .bmAttributes    = USB_ENDPOINT_XFER_CONTROL,
39         .wMaxPacketSize  = cpu_to_le16(CTRL_PAYLOAD_MAX),
40 };
41
42 static const struct usb_endpoint_descriptor
43 ctrl_endpt_in_desc = {
44         .bLength         = USB_DT_ENDPOINT_SIZE,
45         .bDescriptorType = USB_DT_ENDPOINT,
46
47         .bEndpointAddress = USB_DIR_IN,
48         .bmAttributes    = USB_ENDPOINT_XFER_CONTROL,
49         .wMaxPacketSize  = cpu_to_le16(CTRL_PAYLOAD_MAX),
50 };
51
52 /**
53  * hw_ep_bit: calculates the bit number
54  * @num: endpoint number
55  * @dir: endpoint direction
56  *
57  * This function returns bit number
58  */
59 static inline int hw_ep_bit(int num, int dir)
60 {
61         return num + ((dir == TX) ? 16 : 0);
62 }
63
64 static inline int ep_to_bit(struct ci_hdrc *ci, int n)
65 {
66         int fill = 16 - ci->hw_ep_max / 2;
67
68         if (n >= ci->hw_ep_max / 2)
69                 n += fill;
70
71         return n;
72 }
73
74 /**
75  * hw_device_state: enables/disables interrupts (execute without interruption)
76  * @ci: the controller
77  * @dma: 0 => disable, !0 => enable and set dma engine
78  *
79  * This function returns an error code
80  */
81 static int hw_device_state(struct ci_hdrc *ci, u32 dma)
82 {
83         if (dma) {
84                 hw_write(ci, OP_ENDPTLISTADDR, ~0, dma);
85                 /* interrupt, error, port change, reset, sleep/suspend */
86                 hw_write(ci, OP_USBINTR, ~0,
87                              USBi_UI|USBi_UEI|USBi_PCI|USBi_URI|USBi_SLI);
88         } else {
89                 hw_write(ci, OP_USBINTR, ~0, 0);
90         }
91         return 0;
92 }
93
94 /**
95  * hw_ep_flush: flush endpoint fifo (execute without interruption)
96  * @ci: the controller
97  * @num: endpoint number
98  * @dir: endpoint direction
99  *
100  * This function returns an error code
101  */
102 static int hw_ep_flush(struct ci_hdrc *ci, int num, int dir)
103 {
104         int n = hw_ep_bit(num, dir);
105
106         do {
107                 /* flush any pending transfer */
108                 hw_write(ci, OP_ENDPTFLUSH, ~0, BIT(n));
109                 while (hw_read(ci, OP_ENDPTFLUSH, BIT(n)))
110                         cpu_relax();
111         } while (hw_read(ci, OP_ENDPTSTAT, BIT(n)));
112
113         return 0;
114 }
115
116 /**
117  * hw_ep_disable: disables endpoint (execute without interruption)
118  * @ci: the controller
119  * @num: endpoint number
120  * @dir: endpoint direction
121  *
122  * This function returns an error code
123  */
124 static int hw_ep_disable(struct ci_hdrc *ci, int num, int dir)
125 {
126         hw_write(ci, OP_ENDPTCTRL + num,
127                  (dir == TX) ? ENDPTCTRL_TXE : ENDPTCTRL_RXE, 0);
128         return 0;
129 }
130
131 /**
132  * hw_ep_enable: enables endpoint (execute without interruption)
133  * @ci: the controller
134  * @num:  endpoint number
135  * @dir:  endpoint direction
136  * @type: endpoint type
137  *
138  * This function returns an error code
139  */
140 static int hw_ep_enable(struct ci_hdrc *ci, int num, int dir, int type)
141 {
142         u32 mask, data;
143
144         if (dir == TX) {
145                 mask  = ENDPTCTRL_TXT;  /* type    */
146                 data  = type << __ffs(mask);
147
148                 mask |= ENDPTCTRL_TXS;  /* unstall */
149                 mask |= ENDPTCTRL_TXR;  /* reset data toggle */
150                 data |= ENDPTCTRL_TXR;
151                 mask |= ENDPTCTRL_TXE;  /* enable  */
152                 data |= ENDPTCTRL_TXE;
153         } else {
154                 mask  = ENDPTCTRL_RXT;  /* type    */
155                 data  = type << __ffs(mask);
156
157                 mask |= ENDPTCTRL_RXS;  /* unstall */
158                 mask |= ENDPTCTRL_RXR;  /* reset data toggle */
159                 data |= ENDPTCTRL_RXR;
160                 mask |= ENDPTCTRL_RXE;  /* enable  */
161                 data |= ENDPTCTRL_RXE;
162         }
163         hw_write(ci, OP_ENDPTCTRL + num, mask, data);
164         return 0;
165 }
166
167 /**
168  * hw_ep_get_halt: return endpoint halt status
169  * @ci: the controller
170  * @num: endpoint number
171  * @dir: endpoint direction
172  *
173  * This function returns 1 if endpoint halted
174  */
175 static int hw_ep_get_halt(struct ci_hdrc *ci, int num, int dir)
176 {
177         u32 mask = (dir == TX) ? ENDPTCTRL_TXS : ENDPTCTRL_RXS;
178
179         return hw_read(ci, OP_ENDPTCTRL + num, mask) ? 1 : 0;
180 }
181
182 /**
183  * hw_ep_prime: primes endpoint (execute without interruption)
184  * @ci: the controller
185  * @num:     endpoint number
186  * @dir:     endpoint direction
187  * @is_ctrl: true if control endpoint
188  *
189  * This function returns an error code
190  */
191 static int hw_ep_prime(struct ci_hdrc *ci, int num, int dir, int is_ctrl)
192 {
193         int n = hw_ep_bit(num, dir);
194
195         /* Synchronize before ep prime */
196         wmb();
197
198         if (is_ctrl && dir == RX && hw_read(ci, OP_ENDPTSETUPSTAT, BIT(num)))
199                 return -EAGAIN;
200
201         hw_write(ci, OP_ENDPTPRIME, ~0, BIT(n));
202
203         while (hw_read(ci, OP_ENDPTPRIME, BIT(n)))
204                 cpu_relax();
205         if (is_ctrl && dir == RX && hw_read(ci, OP_ENDPTSETUPSTAT, BIT(num)))
206                 return -EAGAIN;
207
208         /* status shoult be tested according with manual but it doesn't work */
209         return 0;
210 }
211
212 /**
213  * hw_ep_set_halt: configures ep halt & resets data toggle after clear (execute
214  *                 without interruption)
215  * @ci: the controller
216  * @num:   endpoint number
217  * @dir:   endpoint direction
218  * @value: true => stall, false => unstall
219  *
220  * This function returns an error code
221  */
222 static int hw_ep_set_halt(struct ci_hdrc *ci, int num, int dir, int value)
223 {
224         if (value != 0 && value != 1)
225                 return -EINVAL;
226
227         do {
228                 enum ci_hw_regs reg = OP_ENDPTCTRL + num;
229                 u32 mask_xs = (dir == TX) ? ENDPTCTRL_TXS : ENDPTCTRL_RXS;
230                 u32 mask_xr = (dir == TX) ? ENDPTCTRL_TXR : ENDPTCTRL_RXR;
231
232                 /* data toggle - reserved for EP0 but it's in ESS */
233                 hw_write(ci, reg, mask_xs|mask_xr,
234                           value ? mask_xs : mask_xr);
235         } while (value != hw_ep_get_halt(ci, num, dir));
236
237         return 0;
238 }
239
240 /**
241  * hw_is_port_high_speed: test if port is high speed
242  * @ci: the controller
243  *
244  * This function returns true if high speed port
245  */
246 static int hw_port_is_high_speed(struct ci_hdrc *ci)
247 {
248         return ci->hw_bank.lpm ? hw_read(ci, OP_DEVLC, DEVLC_PSPD) :
249                 hw_read(ci, OP_PORTSC, PORTSC_HSP);
250 }
251
252 /**
253  * hw_test_and_clear_complete: test & clear complete status (execute without
254  *                             interruption)
255  * @ci: the controller
256  * @n: endpoint number
257  *
258  * This function returns complete status
259  */
260 static int hw_test_and_clear_complete(struct ci_hdrc *ci, int n)
261 {
262         n = ep_to_bit(ci, n);
263         return hw_test_and_clear(ci, OP_ENDPTCOMPLETE, BIT(n));
264 }
265
266 /**
267  * hw_test_and_clear_intr_active: test & clear active interrupts (execute
268  *                                without interruption)
269  * @ci: the controller
270  *
271  * This function returns active interrutps
272  */
273 static u32 hw_test_and_clear_intr_active(struct ci_hdrc *ci)
274 {
275         u32 reg = hw_read_intr_status(ci) & hw_read_intr_enable(ci);
276
277         hw_write(ci, OP_USBSTS, ~0, reg);
278         return reg;
279 }
280
281 /**
282  * hw_test_and_clear_setup_guard: test & clear setup guard (execute without
283  *                                interruption)
284  * @ci: the controller
285  *
286  * This function returns guard value
287  */
288 static int hw_test_and_clear_setup_guard(struct ci_hdrc *ci)
289 {
290         return hw_test_and_write(ci, OP_USBCMD, USBCMD_SUTW, 0);
291 }
292
293 /**
294  * hw_test_and_set_setup_guard: test & set setup guard (execute without
295  *                              interruption)
296  * @ci: the controller
297  *
298  * This function returns guard value
299  */
300 static int hw_test_and_set_setup_guard(struct ci_hdrc *ci)
301 {
302         return hw_test_and_write(ci, OP_USBCMD, USBCMD_SUTW, USBCMD_SUTW);
303 }
304
305 /**
306  * hw_usb_set_address: configures USB address (execute without interruption)
307  * @ci: the controller
308  * @value: new USB address
309  *
310  * This function explicitly sets the address, without the "USBADRA" (advance)
311  * feature, which is not supported by older versions of the controller.
312  */
313 static void hw_usb_set_address(struct ci_hdrc *ci, u8 value)
314 {
315         hw_write(ci, OP_DEVICEADDR, DEVICEADDR_USBADR,
316                  value << __ffs(DEVICEADDR_USBADR));
317 }
318
319 /**
320  * hw_usb_reset: restart device after a bus reset (execute without
321  *               interruption)
322  * @ci: the controller
323  *
324  * This function returns an error code
325  */
326 static int hw_usb_reset(struct ci_hdrc *ci)
327 {
328         hw_usb_set_address(ci, 0);
329
330         /* ESS flushes only at end?!? */
331         hw_write(ci, OP_ENDPTFLUSH,    ~0, ~0);
332
333         /* clear setup token semaphores */
334         hw_write(ci, OP_ENDPTSETUPSTAT, 0,  0);
335
336         /* clear complete status */
337         hw_write(ci, OP_ENDPTCOMPLETE,  0,  0);
338
339         /* wait until all bits cleared */
340         while (hw_read(ci, OP_ENDPTPRIME, ~0))
341                 udelay(10);             /* not RTOS friendly */
342
343         /* reset all endpoints ? */
344
345         /* reset internal status and wait for further instructions
346            no need to verify the port reset status (ESS does it) */
347
348         return 0;
349 }
350
351 /******************************************************************************
352  * UTIL block
353  *****************************************************************************/
354
355 static int add_td_to_list(struct ci_hw_ep *hwep, struct ci_hw_req *hwreq,
356                         unsigned int length, struct scatterlist *s)
357 {
358         int i;
359         u32 temp;
360         struct td_node *lastnode, *node = kzalloc(sizeof(struct td_node),
361                                                   GFP_ATOMIC);
362
363         if (node == NULL)
364                 return -ENOMEM;
365
366         node->ptr = dma_pool_zalloc(hwep->td_pool, GFP_ATOMIC, &node->dma);
367         if (node->ptr == NULL) {
368                 kfree(node);
369                 return -ENOMEM;
370         }
371
372         node->ptr->token = cpu_to_le32(length << __ffs(TD_TOTAL_BYTES));
373         node->ptr->token &= cpu_to_le32(TD_TOTAL_BYTES);
374         node->ptr->token |= cpu_to_le32(TD_STATUS_ACTIVE);
375         if (hwep->type == USB_ENDPOINT_XFER_ISOC && hwep->dir == TX) {
376                 u32 mul = hwreq->req.length / hwep->ep.maxpacket;
377
378                 if (hwreq->req.length == 0
379                                 || hwreq->req.length % hwep->ep.maxpacket)
380                         mul++;
381                 node->ptr->token |= cpu_to_le32(mul << __ffs(TD_MULTO));
382         }
383
384         if (s) {
385                 temp = (u32) (sg_dma_address(s) + hwreq->req.actual);
386                 node->td_remaining_size = CI_MAX_BUF_SIZE - length;
387         } else {
388                 temp = (u32) (hwreq->req.dma + hwreq->req.actual);
389         }
390
391         if (length) {
392                 node->ptr->page[0] = cpu_to_le32(temp);
393                 for (i = 1; i < TD_PAGE_COUNT; i++) {
394                         u32 page = temp + i * CI_HDRC_PAGE_SIZE;
395                         page &= ~TD_RESERVED_MASK;
396                         node->ptr->page[i] = cpu_to_le32(page);
397                 }
398         }
399
400         hwreq->req.actual += length;
401
402         if (!list_empty(&hwreq->tds)) {
403                 /* get the last entry */
404                 lastnode = list_entry(hwreq->tds.prev,
405                                 struct td_node, td);
406                 lastnode->ptr->next = cpu_to_le32(node->dma);
407         }
408
409         INIT_LIST_HEAD(&node->td);
410         list_add_tail(&node->td, &hwreq->tds);
411
412         return 0;
413 }
414
415 /**
416  * _usb_addr: calculates endpoint address from direction & number
417  * @ep:  endpoint
418  */
419 static inline u8 _usb_addr(struct ci_hw_ep *ep)
420 {
421         return ((ep->dir == TX) ? USB_ENDPOINT_DIR_MASK : 0) | ep->num;
422 }
423
424 static int prepare_td_for_non_sg(struct ci_hw_ep *hwep,
425                 struct ci_hw_req *hwreq)
426 {
427         unsigned int rest = hwreq->req.length;
428         int pages = TD_PAGE_COUNT;
429         int ret = 0;
430
431         if (rest == 0) {
432                 ret = add_td_to_list(hwep, hwreq, 0, NULL);
433                 if (ret < 0)
434                         return ret;
435         }
436
437         /*
438          * The first buffer could be not page aligned.
439          * In that case we have to span into one extra td.
440          */
441         if (hwreq->req.dma % PAGE_SIZE)
442                 pages--;
443
444         while (rest > 0) {
445                 unsigned int count = min(hwreq->req.length - hwreq->req.actual,
446                         (unsigned int)(pages * CI_HDRC_PAGE_SIZE));
447
448                 ret = add_td_to_list(hwep, hwreq, count, NULL);
449                 if (ret < 0)
450                         return ret;
451
452                 rest -= count;
453         }
454
455         if (hwreq->req.zero && hwreq->req.length && hwep->dir == TX
456             && (hwreq->req.length % hwep->ep.maxpacket == 0)) {
457                 ret = add_td_to_list(hwep, hwreq, 0, NULL);
458                 if (ret < 0)
459                         return ret;
460         }
461
462         return ret;
463 }
464
465 static int prepare_td_per_sg(struct ci_hw_ep *hwep, struct ci_hw_req *hwreq,
466                 struct scatterlist *s)
467 {
468         unsigned int rest = sg_dma_len(s);
469         int ret = 0;
470
471         hwreq->req.actual = 0;
472         while (rest > 0) {
473                 unsigned int count = min_t(unsigned int, rest,
474                                 CI_MAX_BUF_SIZE);
475
476                 ret = add_td_to_list(hwep, hwreq, count, s);
477                 if (ret < 0)
478                         return ret;
479
480                 rest -= count;
481         }
482
483         return ret;
484 }
485
486 static void ci_add_buffer_entry(struct td_node *node, struct scatterlist *s)
487 {
488         int empty_td_slot_index = (CI_MAX_BUF_SIZE - node->td_remaining_size)
489                         / CI_HDRC_PAGE_SIZE;
490         int i;
491         u32 token;
492
493         token = le32_to_cpu(node->ptr->token) + (sg_dma_len(s) << __ffs(TD_TOTAL_BYTES));
494         node->ptr->token = cpu_to_le32(token);
495
496         for (i = empty_td_slot_index; i < TD_PAGE_COUNT; i++) {
497                 u32 page = (u32) sg_dma_address(s) +
498                         (i - empty_td_slot_index) * CI_HDRC_PAGE_SIZE;
499
500                 page &= ~TD_RESERVED_MASK;
501                 node->ptr->page[i] = cpu_to_le32(page);
502         }
503 }
504
505 static int prepare_td_for_sg(struct ci_hw_ep *hwep, struct ci_hw_req *hwreq)
506 {
507         struct usb_request *req = &hwreq->req;
508         struct scatterlist *s = req->sg;
509         int ret = 0, i = 0;
510         struct td_node *node = NULL;
511
512         if (!s || req->zero || req->length == 0) {
513                 dev_err(hwep->ci->dev, "not supported operation for sg\n");
514                 return -EINVAL;
515         }
516
517         while (i++ < req->num_mapped_sgs) {
518                 if (sg_dma_address(s) % PAGE_SIZE) {
519                         dev_err(hwep->ci->dev, "not page aligned sg buffer\n");
520                         return -EINVAL;
521                 }
522
523                 if (node && (node->td_remaining_size >= sg_dma_len(s))) {
524                         ci_add_buffer_entry(node, s);
525                         node->td_remaining_size -= sg_dma_len(s);
526                 } else {
527                         ret = prepare_td_per_sg(hwep, hwreq, s);
528                         if (ret)
529                                 return ret;
530
531                         node = list_entry(hwreq->tds.prev,
532                                 struct td_node, td);
533                 }
534
535                 s = sg_next(s);
536         }
537
538         return ret;
539 }
540
541 /**
542  * _hardware_enqueue: configures a request at hardware level
543  * @hwep:   endpoint
544  * @hwreq:  request
545  *
546  * This function returns an error code
547  */
548 static int _hardware_enqueue(struct ci_hw_ep *hwep, struct ci_hw_req *hwreq)
549 {
550         struct ci_hdrc *ci = hwep->ci;
551         int ret = 0;
552         struct td_node *firstnode, *lastnode;
553
554         /* don't queue twice */
555         if (hwreq->req.status == -EALREADY)
556                 return -EALREADY;
557
558         hwreq->req.status = -EALREADY;
559
560         ret = usb_gadget_map_request_by_dev(ci->dev->parent,
561                                             &hwreq->req, hwep->dir);
562         if (ret)
563                 return ret;
564
565         if (hwreq->req.num_mapped_sgs)
566                 ret = prepare_td_for_sg(hwep, hwreq);
567         else
568                 ret = prepare_td_for_non_sg(hwep, hwreq);
569
570         if (ret)
571                 return ret;
572
573         lastnode = list_entry(hwreq->tds.prev,
574                 struct td_node, td);
575
576         lastnode->ptr->next = cpu_to_le32(TD_TERMINATE);
577         if (!hwreq->req.no_interrupt)
578                 lastnode->ptr->token |= cpu_to_le32(TD_IOC);
579
580         list_for_each_entry_safe(firstnode, lastnode, &hwreq->tds, td)
581                 trace_ci_prepare_td(hwep, hwreq, firstnode);
582
583         firstnode = list_first_entry(&hwreq->tds, struct td_node, td);
584
585         wmb();
586
587         hwreq->req.actual = 0;
588         if (!list_empty(&hwep->qh.queue)) {
589                 struct ci_hw_req *hwreqprev;
590                 int n = hw_ep_bit(hwep->num, hwep->dir);
591                 int tmp_stat;
592                 struct td_node *prevlastnode;
593                 u32 next = firstnode->dma & TD_ADDR_MASK;
594
595                 hwreqprev = list_entry(hwep->qh.queue.prev,
596                                 struct ci_hw_req, queue);
597                 prevlastnode = list_entry(hwreqprev->tds.prev,
598                                 struct td_node, td);
599
600                 prevlastnode->ptr->next = cpu_to_le32(next);
601                 wmb();
602                 if (hw_read(ci, OP_ENDPTPRIME, BIT(n)))
603                         goto done;
604                 do {
605                         hw_write(ci, OP_USBCMD, USBCMD_ATDTW, USBCMD_ATDTW);
606                         tmp_stat = hw_read(ci, OP_ENDPTSTAT, BIT(n));
607                 } while (!hw_read(ci, OP_USBCMD, USBCMD_ATDTW));
608                 hw_write(ci, OP_USBCMD, USBCMD_ATDTW, 0);
609                 if (tmp_stat)
610                         goto done;
611         }
612
613         /*  QH configuration */
614         hwep->qh.ptr->td.next = cpu_to_le32(firstnode->dma);
615         hwep->qh.ptr->td.token &=
616                 cpu_to_le32(~(TD_STATUS_HALTED|TD_STATUS_ACTIVE));
617
618         if (hwep->type == USB_ENDPOINT_XFER_ISOC && hwep->dir == RX) {
619                 u32 mul = hwreq->req.length / hwep->ep.maxpacket;
620
621                 if (hwreq->req.length == 0
622                                 || hwreq->req.length % hwep->ep.maxpacket)
623                         mul++;
624                 hwep->qh.ptr->cap |= cpu_to_le32(mul << __ffs(QH_MULT));
625         }
626
627         ret = hw_ep_prime(ci, hwep->num, hwep->dir,
628                            hwep->type == USB_ENDPOINT_XFER_CONTROL);
629 done:
630         return ret;
631 }
632
633 /**
634  * free_pending_td: remove a pending request for the endpoint
635  * @hwep: endpoint
636  */
637 static void free_pending_td(struct ci_hw_ep *hwep)
638 {
639         struct td_node *pending = hwep->pending_td;
640
641         dma_pool_free(hwep->td_pool, pending->ptr, pending->dma);
642         hwep->pending_td = NULL;
643         kfree(pending);
644 }
645
646 static int reprime_dtd(struct ci_hdrc *ci, struct ci_hw_ep *hwep,
647                                            struct td_node *node)
648 {
649         hwep->qh.ptr->td.next = cpu_to_le32(node->dma);
650         hwep->qh.ptr->td.token &=
651                 cpu_to_le32(~(TD_STATUS_HALTED | TD_STATUS_ACTIVE));
652
653         return hw_ep_prime(ci, hwep->num, hwep->dir,
654                                 hwep->type == USB_ENDPOINT_XFER_CONTROL);
655 }
656
657 /**
658  * _hardware_dequeue: handles a request at hardware level
659  * @hwep: endpoint
660  * @hwreq:  request
661  *
662  * This function returns an error code
663  */
664 static int _hardware_dequeue(struct ci_hw_ep *hwep, struct ci_hw_req *hwreq)
665 {
666         u32 tmptoken;
667         struct td_node *node, *tmpnode;
668         unsigned remaining_length;
669         unsigned actual = hwreq->req.length;
670         struct ci_hdrc *ci = hwep->ci;
671
672         if (hwreq->req.status != -EALREADY)
673                 return -EINVAL;
674
675         hwreq->req.status = 0;
676
677         list_for_each_entry_safe(node, tmpnode, &hwreq->tds, td) {
678                 tmptoken = le32_to_cpu(node->ptr->token);
679                 trace_ci_complete_td(hwep, hwreq, node);
680                 if ((TD_STATUS_ACTIVE & tmptoken) != 0) {
681                         int n = hw_ep_bit(hwep->num, hwep->dir);
682
683                         if (ci->rev == CI_REVISION_24)
684                                 if (!hw_read(ci, OP_ENDPTSTAT, BIT(n)))
685                                         reprime_dtd(ci, hwep, node);
686                         hwreq->req.status = -EALREADY;
687                         return -EBUSY;
688                 }
689
690                 remaining_length = (tmptoken & TD_TOTAL_BYTES);
691                 remaining_length >>= __ffs(TD_TOTAL_BYTES);
692                 actual -= remaining_length;
693
694                 hwreq->req.status = tmptoken & TD_STATUS;
695                 if ((TD_STATUS_HALTED & hwreq->req.status)) {
696                         hwreq->req.status = -EPIPE;
697                         break;
698                 } else if ((TD_STATUS_DT_ERR & hwreq->req.status)) {
699                         hwreq->req.status = -EPROTO;
700                         break;
701                 } else if ((TD_STATUS_TR_ERR & hwreq->req.status)) {
702                         hwreq->req.status = -EILSEQ;
703                         break;
704                 }
705
706                 if (remaining_length) {
707                         if (hwep->dir == TX) {
708                                 hwreq->req.status = -EPROTO;
709                                 break;
710                         }
711                 }
712                 /*
713                  * As the hardware could still address the freed td
714                  * which will run the udc unusable, the cleanup of the
715                  * td has to be delayed by one.
716                  */
717                 if (hwep->pending_td)
718                         free_pending_td(hwep);
719
720                 hwep->pending_td = node;
721                 list_del_init(&node->td);
722         }
723
724         usb_gadget_unmap_request_by_dev(hwep->ci->dev->parent,
725                                         &hwreq->req, hwep->dir);
726
727         hwreq->req.actual += actual;
728
729         if (hwreq->req.status)
730                 return hwreq->req.status;
731
732         return hwreq->req.actual;
733 }
734
735 /**
736  * _ep_nuke: dequeues all endpoint requests
737  * @hwep: endpoint
738  *
739  * This function returns an error code
740  * Caller must hold lock
741  */
742 static int _ep_nuke(struct ci_hw_ep *hwep)
743 __releases(hwep->lock)
744 __acquires(hwep->lock)
745 {
746         struct td_node *node, *tmpnode;
747         if (hwep == NULL)
748                 return -EINVAL;
749
750         hw_ep_flush(hwep->ci, hwep->num, hwep->dir);
751
752         while (!list_empty(&hwep->qh.queue)) {
753
754                 /* pop oldest request */
755                 struct ci_hw_req *hwreq = list_entry(hwep->qh.queue.next,
756                                                      struct ci_hw_req, queue);
757
758                 list_for_each_entry_safe(node, tmpnode, &hwreq->tds, td) {
759                         dma_pool_free(hwep->td_pool, node->ptr, node->dma);
760                         list_del_init(&node->td);
761                         node->ptr = NULL;
762                         kfree(node);
763                 }
764
765                 list_del_init(&hwreq->queue);
766                 hwreq->req.status = -ESHUTDOWN;
767
768                 if (hwreq->req.complete != NULL) {
769                         spin_unlock(hwep->lock);
770                         usb_gadget_giveback_request(&hwep->ep, &hwreq->req);
771                         spin_lock(hwep->lock);
772                 }
773         }
774
775         if (hwep->pending_td)
776                 free_pending_td(hwep);
777
778         return 0;
779 }
780
781 static int _ep_set_halt(struct usb_ep *ep, int value, bool check_transfer)
782 {
783         struct ci_hw_ep *hwep = container_of(ep, struct ci_hw_ep, ep);
784         int direction, retval = 0;
785         unsigned long flags;
786
787         if (ep == NULL || hwep->ep.desc == NULL)
788                 return -EINVAL;
789
790         if (usb_endpoint_xfer_isoc(hwep->ep.desc))
791                 return -EOPNOTSUPP;
792
793         spin_lock_irqsave(hwep->lock, flags);
794
795         if (value && hwep->dir == TX && check_transfer &&
796                 !list_empty(&hwep->qh.queue) &&
797                         !usb_endpoint_xfer_control(hwep->ep.desc)) {
798                 spin_unlock_irqrestore(hwep->lock, flags);
799                 return -EAGAIN;
800         }
801
802         direction = hwep->dir;
803         do {
804                 retval |= hw_ep_set_halt(hwep->ci, hwep->num, hwep->dir, value);
805
806                 if (!value)
807                         hwep->wedge = 0;
808
809                 if (hwep->type == USB_ENDPOINT_XFER_CONTROL)
810                         hwep->dir = (hwep->dir == TX) ? RX : TX;
811
812         } while (hwep->dir != direction);
813
814         spin_unlock_irqrestore(hwep->lock, flags);
815         return retval;
816 }
817
818
819 /**
820  * _gadget_stop_activity: stops all USB activity, flushes & disables all endpts
821  * @gadget: gadget
822  *
823  * This function returns an error code
824  */
825 static int _gadget_stop_activity(struct usb_gadget *gadget)
826 {
827         struct usb_ep *ep;
828         struct ci_hdrc    *ci = container_of(gadget, struct ci_hdrc, gadget);
829         unsigned long flags;
830
831         /* flush all endpoints */
832         gadget_for_each_ep(ep, gadget) {
833                 usb_ep_fifo_flush(ep);
834         }
835         usb_ep_fifo_flush(&ci->ep0out->ep);
836         usb_ep_fifo_flush(&ci->ep0in->ep);
837
838         /* make sure to disable all endpoints */
839         gadget_for_each_ep(ep, gadget) {
840                 usb_ep_disable(ep);
841         }
842
843         if (ci->status != NULL) {
844                 usb_ep_free_request(&ci->ep0in->ep, ci->status);
845                 ci->status = NULL;
846         }
847
848         spin_lock_irqsave(&ci->lock, flags);
849         ci->gadget.speed = USB_SPEED_UNKNOWN;
850         ci->remote_wakeup = 0;
851         ci->suspended = 0;
852         spin_unlock_irqrestore(&ci->lock, flags);
853
854         return 0;
855 }
856
857 /******************************************************************************
858  * ISR block
859  *****************************************************************************/
860 /**
861  * isr_reset_handler: USB reset interrupt handler
862  * @ci: UDC device
863  *
864  * This function resets USB engine after a bus reset occurred
865  */
866 static void isr_reset_handler(struct ci_hdrc *ci)
867 __releases(ci->lock)
868 __acquires(ci->lock)
869 {
870         int retval;
871
872         spin_unlock(&ci->lock);
873         if (ci->gadget.speed != USB_SPEED_UNKNOWN)
874                 usb_gadget_udc_reset(&ci->gadget, ci->driver);
875
876         retval = _gadget_stop_activity(&ci->gadget);
877         if (retval)
878                 goto done;
879
880         retval = hw_usb_reset(ci);
881         if (retval)
882                 goto done;
883
884         ci->status = usb_ep_alloc_request(&ci->ep0in->ep, GFP_ATOMIC);
885         if (ci->status == NULL)
886                 retval = -ENOMEM;
887
888 done:
889         spin_lock(&ci->lock);
890
891         if (retval)
892                 dev_err(ci->dev, "error: %i\n", retval);
893 }
894
895 /**
896  * isr_get_status_complete: get_status request complete function
897  * @ep:  endpoint
898  * @req: request handled
899  *
900  * Caller must release lock
901  */
902 static void isr_get_status_complete(struct usb_ep *ep, struct usb_request *req)
903 {
904         if (ep == NULL || req == NULL)
905                 return;
906
907         kfree(req->buf);
908         usb_ep_free_request(ep, req);
909 }
910
911 /**
912  * _ep_queue: queues (submits) an I/O request to an endpoint
913  * @ep:        endpoint
914  * @req:       request
915  * @gfp_flags: GFP flags (not used)
916  *
917  * Caller must hold lock
918  * This function returns an error code
919  */
920 static int _ep_queue(struct usb_ep *ep, struct usb_request *req,
921                     gfp_t __maybe_unused gfp_flags)
922 {
923         struct ci_hw_ep  *hwep  = container_of(ep,  struct ci_hw_ep, ep);
924         struct ci_hw_req *hwreq = container_of(req, struct ci_hw_req, req);
925         struct ci_hdrc *ci = hwep->ci;
926         int retval = 0;
927
928         if (ep == NULL || req == NULL || hwep->ep.desc == NULL)
929                 return -EINVAL;
930
931         if (hwep->type == USB_ENDPOINT_XFER_CONTROL) {
932                 if (req->length)
933                         hwep = (ci->ep0_dir == RX) ?
934                                ci->ep0out : ci->ep0in;
935                 if (!list_empty(&hwep->qh.queue)) {
936                         _ep_nuke(hwep);
937                         dev_warn(hwep->ci->dev, "endpoint ctrl %X nuked\n",
938                                  _usb_addr(hwep));
939                 }
940         }
941
942         if (usb_endpoint_xfer_isoc(hwep->ep.desc) &&
943             hwreq->req.length > hwep->ep.mult * hwep->ep.maxpacket) {
944                 dev_err(hwep->ci->dev, "request length too big for isochronous\n");
945                 return -EMSGSIZE;
946         }
947
948         /* first nuke then test link, e.g. previous status has not sent */
949         if (!list_empty(&hwreq->queue)) {
950                 dev_err(hwep->ci->dev, "request already in queue\n");
951                 return -EBUSY;
952         }
953
954         /* push request */
955         hwreq->req.status = -EINPROGRESS;
956         hwreq->req.actual = 0;
957
958         retval = _hardware_enqueue(hwep, hwreq);
959
960         if (retval == -EALREADY)
961                 retval = 0;
962         if (!retval)
963                 list_add_tail(&hwreq->queue, &hwep->qh.queue);
964
965         return retval;
966 }
967
968 /**
969  * isr_get_status_response: get_status request response
970  * @ci: ci struct
971  * @setup: setup request packet
972  *
973  * This function returns an error code
974  */
975 static int isr_get_status_response(struct ci_hdrc *ci,
976                                    struct usb_ctrlrequest *setup)
977 __releases(hwep->lock)
978 __acquires(hwep->lock)
979 {
980         struct ci_hw_ep *hwep = ci->ep0in;
981         struct usb_request *req = NULL;
982         gfp_t gfp_flags = GFP_ATOMIC;
983         int dir, num, retval;
984
985         if (hwep == NULL || setup == NULL)
986                 return -EINVAL;
987
988         spin_unlock(hwep->lock);
989         req = usb_ep_alloc_request(&hwep->ep, gfp_flags);
990         spin_lock(hwep->lock);
991         if (req == NULL)
992                 return -ENOMEM;
993
994         req->complete = isr_get_status_complete;
995         req->length   = 2;
996         req->buf      = kzalloc(req->length, gfp_flags);
997         if (req->buf == NULL) {
998                 retval = -ENOMEM;
999                 goto err_free_req;
1000         }
1001
1002         if ((setup->bRequestType & USB_RECIP_MASK) == USB_RECIP_DEVICE) {
1003                 *(u16 *)req->buf = (ci->remote_wakeup << 1) |
1004                         ci->gadget.is_selfpowered;
1005         } else if ((setup->bRequestType & USB_RECIP_MASK) \
1006                    == USB_RECIP_ENDPOINT) {
1007                 dir = (le16_to_cpu(setup->wIndex) & USB_ENDPOINT_DIR_MASK) ?
1008                         TX : RX;
1009                 num =  le16_to_cpu(setup->wIndex) & USB_ENDPOINT_NUMBER_MASK;
1010                 *(u16 *)req->buf = hw_ep_get_halt(ci, num, dir);
1011         }
1012         /* else do nothing; reserved for future use */
1013
1014         retval = _ep_queue(&hwep->ep, req, gfp_flags);
1015         if (retval)
1016                 goto err_free_buf;
1017
1018         return 0;
1019
1020  err_free_buf:
1021         kfree(req->buf);
1022  err_free_req:
1023         spin_unlock(hwep->lock);
1024         usb_ep_free_request(&hwep->ep, req);
1025         spin_lock(hwep->lock);
1026         return retval;
1027 }
1028
1029 /**
1030  * isr_setup_status_complete: setup_status request complete function
1031  * @ep:  endpoint
1032  * @req: request handled
1033  *
1034  * Caller must release lock. Put the port in test mode if test mode
1035  * feature is selected.
1036  */
1037 static void
1038 isr_setup_status_complete(struct usb_ep *ep, struct usb_request *req)
1039 {
1040         struct ci_hdrc *ci = req->context;
1041         unsigned long flags;
1042
1043         if (ci->setaddr) {
1044                 hw_usb_set_address(ci, ci->address);
1045                 ci->setaddr = false;
1046                 if (ci->address)
1047                         usb_gadget_set_state(&ci->gadget, USB_STATE_ADDRESS);
1048         }
1049
1050         spin_lock_irqsave(&ci->lock, flags);
1051         if (ci->test_mode)
1052                 hw_port_test_set(ci, ci->test_mode);
1053         spin_unlock_irqrestore(&ci->lock, flags);
1054 }
1055
1056 /**
1057  * isr_setup_status_phase: queues the status phase of a setup transation
1058  * @ci: ci struct
1059  *
1060  * This function returns an error code
1061  */
1062 static int isr_setup_status_phase(struct ci_hdrc *ci)
1063 {
1064         struct ci_hw_ep *hwep;
1065
1066         /*
1067          * Unexpected USB controller behavior, caused by bad signal integrity
1068          * or ground reference problems, can lead to isr_setup_status_phase
1069          * being called with ci->status equal to NULL.
1070          * If this situation occurs, you should review your USB hardware design.
1071          */
1072         if (WARN_ON_ONCE(!ci->status))
1073                 return -EPIPE;
1074
1075         hwep = (ci->ep0_dir == TX) ? ci->ep0out : ci->ep0in;
1076         ci->status->context = ci;
1077         ci->status->complete = isr_setup_status_complete;
1078
1079         return _ep_queue(&hwep->ep, ci->status, GFP_ATOMIC);
1080 }
1081
1082 /**
1083  * isr_tr_complete_low: transaction complete low level handler
1084  * @hwep: endpoint
1085  *
1086  * This function returns an error code
1087  * Caller must hold lock
1088  */
1089 static int isr_tr_complete_low(struct ci_hw_ep *hwep)
1090 __releases(hwep->lock)
1091 __acquires(hwep->lock)
1092 {
1093         struct ci_hw_req *hwreq, *hwreqtemp;
1094         struct ci_hw_ep *hweptemp = hwep;
1095         int retval = 0;
1096
1097         list_for_each_entry_safe(hwreq, hwreqtemp, &hwep->qh.queue,
1098                         queue) {
1099                 retval = _hardware_dequeue(hwep, hwreq);
1100                 if (retval < 0)
1101                         break;
1102                 list_del_init(&hwreq->queue);
1103                 if (hwreq->req.complete != NULL) {
1104                         spin_unlock(hwep->lock);
1105                         if ((hwep->type == USB_ENDPOINT_XFER_CONTROL) &&
1106                                         hwreq->req.length)
1107                                 hweptemp = hwep->ci->ep0in;
1108                         usb_gadget_giveback_request(&hweptemp->ep, &hwreq->req);
1109                         spin_lock(hwep->lock);
1110                 }
1111         }
1112
1113         if (retval == -EBUSY)
1114                 retval = 0;
1115
1116         return retval;
1117 }
1118
1119 static int otg_a_alt_hnp_support(struct ci_hdrc *ci)
1120 {
1121         dev_warn(&ci->gadget.dev,
1122                 "connect the device to an alternate port if you want HNP\n");
1123         return isr_setup_status_phase(ci);
1124 }
1125
1126 /**
1127  * isr_setup_packet_handler: setup packet handler
1128  * @ci: UDC descriptor
1129  *
1130  * This function handles setup packet 
1131  */
1132 static void isr_setup_packet_handler(struct ci_hdrc *ci)
1133 __releases(ci->lock)
1134 __acquires(ci->lock)
1135 {
1136         struct ci_hw_ep *hwep = &ci->ci_hw_ep[0];
1137         struct usb_ctrlrequest req;
1138         int type, num, dir, err = -EINVAL;
1139         u8 tmode = 0;
1140
1141         /*
1142          * Flush data and handshake transactions of previous
1143          * setup packet.
1144          */
1145         _ep_nuke(ci->ep0out);
1146         _ep_nuke(ci->ep0in);
1147
1148         /* read_setup_packet */
1149         do {
1150                 hw_test_and_set_setup_guard(ci);
1151                 memcpy(&req, &hwep->qh.ptr->setup, sizeof(req));
1152         } while (!hw_test_and_clear_setup_guard(ci));
1153
1154         type = req.bRequestType;
1155
1156         ci->ep0_dir = (type & USB_DIR_IN) ? TX : RX;
1157
1158         switch (req.bRequest) {
1159         case USB_REQ_CLEAR_FEATURE:
1160                 if (type == (USB_DIR_OUT|USB_RECIP_ENDPOINT) &&
1161                                 le16_to_cpu(req.wValue) ==
1162                                 USB_ENDPOINT_HALT) {
1163                         if (req.wLength != 0)
1164                                 break;
1165                         num  = le16_to_cpu(req.wIndex);
1166                         dir = (num & USB_ENDPOINT_DIR_MASK) ? TX : RX;
1167                         num &= USB_ENDPOINT_NUMBER_MASK;
1168                         if (dir == TX)
1169                                 num += ci->hw_ep_max / 2;
1170                         if (!ci->ci_hw_ep[num].wedge) {
1171                                 spin_unlock(&ci->lock);
1172                                 err = usb_ep_clear_halt(
1173                                         &ci->ci_hw_ep[num].ep);
1174                                 spin_lock(&ci->lock);
1175                                 if (err)
1176                                         break;
1177                         }
1178                         err = isr_setup_status_phase(ci);
1179                 } else if (type == (USB_DIR_OUT|USB_RECIP_DEVICE) &&
1180                                 le16_to_cpu(req.wValue) ==
1181                                 USB_DEVICE_REMOTE_WAKEUP) {
1182                         if (req.wLength != 0)
1183                                 break;
1184                         ci->remote_wakeup = 0;
1185                         err = isr_setup_status_phase(ci);
1186                 } else {
1187                         goto delegate;
1188                 }
1189                 break;
1190         case USB_REQ_GET_STATUS:
1191                 if ((type != (USB_DIR_IN|USB_RECIP_DEVICE) ||
1192                         le16_to_cpu(req.wIndex) == OTG_STS_SELECTOR) &&
1193                     type != (USB_DIR_IN|USB_RECIP_ENDPOINT) &&
1194                     type != (USB_DIR_IN|USB_RECIP_INTERFACE))
1195                         goto delegate;
1196                 if (le16_to_cpu(req.wLength) != 2 ||
1197                     le16_to_cpu(req.wValue)  != 0)
1198                         break;
1199                 err = isr_get_status_response(ci, &req);
1200                 break;
1201         case USB_REQ_SET_ADDRESS:
1202                 if (type != (USB_DIR_OUT|USB_RECIP_DEVICE))
1203                         goto delegate;
1204                 if (le16_to_cpu(req.wLength) != 0 ||
1205                     le16_to_cpu(req.wIndex)  != 0)
1206                         break;
1207                 ci->address = (u8)le16_to_cpu(req.wValue);
1208                 ci->setaddr = true;
1209                 err = isr_setup_status_phase(ci);
1210                 break;
1211         case USB_REQ_SET_FEATURE:
1212                 if (type == (USB_DIR_OUT|USB_RECIP_ENDPOINT) &&
1213                                 le16_to_cpu(req.wValue) ==
1214                                 USB_ENDPOINT_HALT) {
1215                         if (req.wLength != 0)
1216                                 break;
1217                         num  = le16_to_cpu(req.wIndex);
1218                         dir = (num & USB_ENDPOINT_DIR_MASK) ? TX : RX;
1219                         num &= USB_ENDPOINT_NUMBER_MASK;
1220                         if (dir == TX)
1221                                 num += ci->hw_ep_max / 2;
1222
1223                         spin_unlock(&ci->lock);
1224                         err = _ep_set_halt(&ci->ci_hw_ep[num].ep, 1, false);
1225                         spin_lock(&ci->lock);
1226                         if (!err)
1227                                 isr_setup_status_phase(ci);
1228                 } else if (type == (USB_DIR_OUT|USB_RECIP_DEVICE)) {
1229                         if (req.wLength != 0)
1230                                 break;
1231                         switch (le16_to_cpu(req.wValue)) {
1232                         case USB_DEVICE_REMOTE_WAKEUP:
1233                                 ci->remote_wakeup = 1;
1234                                 err = isr_setup_status_phase(ci);
1235                                 break;
1236                         case USB_DEVICE_TEST_MODE:
1237                                 tmode = le16_to_cpu(req.wIndex) >> 8;
1238                                 switch (tmode) {
1239                                 case USB_TEST_J:
1240                                 case USB_TEST_K:
1241                                 case USB_TEST_SE0_NAK:
1242                                 case USB_TEST_PACKET:
1243                                 case USB_TEST_FORCE_ENABLE:
1244                                         ci->test_mode = tmode;
1245                                         err = isr_setup_status_phase(
1246                                                         ci);
1247                                         break;
1248                                 default:
1249                                         break;
1250                                 }
1251                                 break;
1252                         case USB_DEVICE_B_HNP_ENABLE:
1253                                 if (ci_otg_is_fsm_mode(ci)) {
1254                                         ci->gadget.b_hnp_enable = 1;
1255                                         err = isr_setup_status_phase(
1256                                                         ci);
1257                                 }
1258                                 break;
1259                         case USB_DEVICE_A_ALT_HNP_SUPPORT:
1260                                 if (ci_otg_is_fsm_mode(ci))
1261                                         err = otg_a_alt_hnp_support(ci);
1262                                 break;
1263                         case USB_DEVICE_A_HNP_SUPPORT:
1264                                 if (ci_otg_is_fsm_mode(ci)) {
1265                                         ci->gadget.a_hnp_support = 1;
1266                                         err = isr_setup_status_phase(
1267                                                         ci);
1268                                 }
1269                                 break;
1270                         default:
1271                                 goto delegate;
1272                         }
1273                 } else {
1274                         goto delegate;
1275                 }
1276                 break;
1277         default:
1278 delegate:
1279                 if (req.wLength == 0)   /* no data phase */
1280                         ci->ep0_dir = TX;
1281
1282                 spin_unlock(&ci->lock);
1283                 err = ci->driver->setup(&ci->gadget, &req);
1284                 spin_lock(&ci->lock);
1285                 break;
1286         }
1287
1288         if (err < 0) {
1289                 spin_unlock(&ci->lock);
1290                 if (_ep_set_halt(&hwep->ep, 1, false))
1291                         dev_err(ci->dev, "error: _ep_set_halt\n");
1292                 spin_lock(&ci->lock);
1293         }
1294 }
1295
1296 /**
1297  * isr_tr_complete_handler: transaction complete interrupt handler
1298  * @ci: UDC descriptor
1299  *
1300  * This function handles traffic events
1301  */
1302 static void isr_tr_complete_handler(struct ci_hdrc *ci)
1303 __releases(ci->lock)
1304 __acquires(ci->lock)
1305 {
1306         unsigned i;
1307         int err;
1308
1309         for (i = 0; i < ci->hw_ep_max; i++) {
1310                 struct ci_hw_ep *hwep  = &ci->ci_hw_ep[i];
1311
1312                 if (hwep->ep.desc == NULL)
1313                         continue;   /* not configured */
1314
1315                 if (hw_test_and_clear_complete(ci, i)) {
1316                         err = isr_tr_complete_low(hwep);
1317                         if (hwep->type == USB_ENDPOINT_XFER_CONTROL) {
1318                                 if (err > 0)   /* needs status phase */
1319                                         err = isr_setup_status_phase(ci);
1320                                 if (err < 0) {
1321                                         spin_unlock(&ci->lock);
1322                                         if (_ep_set_halt(&hwep->ep, 1, false))
1323                                                 dev_err(ci->dev,
1324                                                 "error: _ep_set_halt\n");
1325                                         spin_lock(&ci->lock);
1326                                 }
1327                         }
1328                 }
1329
1330                 /* Only handle setup packet below */
1331                 if (i == 0 &&
1332                         hw_test_and_clear(ci, OP_ENDPTSETUPSTAT, BIT(0)))
1333                         isr_setup_packet_handler(ci);
1334         }
1335 }
1336
1337 /******************************************************************************
1338  * ENDPT block
1339  *****************************************************************************/
1340 /*
1341  * ep_enable: configure endpoint, making it usable
1342  *
1343  * Check usb_ep_enable() at "usb_gadget.h" for details
1344  */
1345 static int ep_enable(struct usb_ep *ep,
1346                      const struct usb_endpoint_descriptor *desc)
1347 {
1348         struct ci_hw_ep *hwep = container_of(ep, struct ci_hw_ep, ep);
1349         int retval = 0;
1350         unsigned long flags;
1351         u32 cap = 0;
1352
1353         if (ep == NULL || desc == NULL)
1354                 return -EINVAL;
1355
1356         spin_lock_irqsave(hwep->lock, flags);
1357
1358         /* only internal SW should enable ctrl endpts */
1359
1360         if (!list_empty(&hwep->qh.queue)) {
1361                 dev_warn(hwep->ci->dev, "enabling a non-empty endpoint!\n");
1362                 spin_unlock_irqrestore(hwep->lock, flags);
1363                 return -EBUSY;
1364         }
1365
1366         hwep->ep.desc = desc;
1367
1368         hwep->dir  = usb_endpoint_dir_in(desc) ? TX : RX;
1369         hwep->num  = usb_endpoint_num(desc);
1370         hwep->type = usb_endpoint_type(desc);
1371
1372         hwep->ep.maxpacket = usb_endpoint_maxp(desc);
1373         hwep->ep.mult = usb_endpoint_maxp_mult(desc);
1374
1375         if (hwep->type == USB_ENDPOINT_XFER_CONTROL)
1376                 cap |= QH_IOS;
1377
1378         cap |= QH_ZLT;
1379         cap |= (hwep->ep.maxpacket << __ffs(QH_MAX_PKT)) & QH_MAX_PKT;
1380         /*
1381          * For ISO-TX, we set mult at QH as the largest value, and use
1382          * MultO at TD as real mult value.
1383          */
1384         if (hwep->type == USB_ENDPOINT_XFER_ISOC && hwep->dir == TX)
1385                 cap |= 3 << __ffs(QH_MULT);
1386
1387         hwep->qh.ptr->cap = cpu_to_le32(cap);
1388
1389         hwep->qh.ptr->td.next |= cpu_to_le32(TD_TERMINATE);   /* needed? */
1390
1391         if (hwep->num != 0 && hwep->type == USB_ENDPOINT_XFER_CONTROL) {
1392                 dev_err(hwep->ci->dev, "Set control xfer at non-ep0\n");
1393                 retval = -EINVAL;
1394         }
1395
1396         /*
1397          * Enable endpoints in the HW other than ep0 as ep0
1398          * is always enabled
1399          */
1400         if (hwep->num)
1401                 retval |= hw_ep_enable(hwep->ci, hwep->num, hwep->dir,
1402                                        hwep->type);
1403
1404         spin_unlock_irqrestore(hwep->lock, flags);
1405         return retval;
1406 }
1407
1408 /*
1409  * ep_disable: endpoint is no longer usable
1410  *
1411  * Check usb_ep_disable() at "usb_gadget.h" for details
1412  */
1413 static int ep_disable(struct usb_ep *ep)
1414 {
1415         struct ci_hw_ep *hwep = container_of(ep, struct ci_hw_ep, ep);
1416         int direction, retval = 0;
1417         unsigned long flags;
1418
1419         if (ep == NULL)
1420                 return -EINVAL;
1421         else if (hwep->ep.desc == NULL)
1422                 return -EBUSY;
1423
1424         spin_lock_irqsave(hwep->lock, flags);
1425         if (hwep->ci->gadget.speed == USB_SPEED_UNKNOWN) {
1426                 spin_unlock_irqrestore(hwep->lock, flags);
1427                 return 0;
1428         }
1429
1430         /* only internal SW should disable ctrl endpts */
1431
1432         direction = hwep->dir;
1433         do {
1434                 retval |= _ep_nuke(hwep);
1435                 retval |= hw_ep_disable(hwep->ci, hwep->num, hwep->dir);
1436
1437                 if (hwep->type == USB_ENDPOINT_XFER_CONTROL)
1438                         hwep->dir = (hwep->dir == TX) ? RX : TX;
1439
1440         } while (hwep->dir != direction);
1441
1442         hwep->ep.desc = NULL;
1443
1444         spin_unlock_irqrestore(hwep->lock, flags);
1445         return retval;
1446 }
1447
1448 /*
1449  * ep_alloc_request: allocate a request object to use with this endpoint
1450  *
1451  * Check usb_ep_alloc_request() at "usb_gadget.h" for details
1452  */
1453 static struct usb_request *ep_alloc_request(struct usb_ep *ep, gfp_t gfp_flags)
1454 {
1455         struct ci_hw_req *hwreq = NULL;
1456
1457         if (ep == NULL)
1458                 return NULL;
1459
1460         hwreq = kzalloc(sizeof(struct ci_hw_req), gfp_flags);
1461         if (hwreq != NULL) {
1462                 INIT_LIST_HEAD(&hwreq->queue);
1463                 INIT_LIST_HEAD(&hwreq->tds);
1464         }
1465
1466         return (hwreq == NULL) ? NULL : &hwreq->req;
1467 }
1468
1469 /*
1470  * ep_free_request: frees a request object
1471  *
1472  * Check usb_ep_free_request() at "usb_gadget.h" for details
1473  */
1474 static void ep_free_request(struct usb_ep *ep, struct usb_request *req)
1475 {
1476         struct ci_hw_ep  *hwep  = container_of(ep,  struct ci_hw_ep, ep);
1477         struct ci_hw_req *hwreq = container_of(req, struct ci_hw_req, req);
1478         struct td_node *node, *tmpnode;
1479         unsigned long flags;
1480
1481         if (ep == NULL || req == NULL) {
1482                 return;
1483         } else if (!list_empty(&hwreq->queue)) {
1484                 dev_err(hwep->ci->dev, "freeing queued request\n");
1485                 return;
1486         }
1487
1488         spin_lock_irqsave(hwep->lock, flags);
1489
1490         list_for_each_entry_safe(node, tmpnode, &hwreq->tds, td) {
1491                 dma_pool_free(hwep->td_pool, node->ptr, node->dma);
1492                 list_del_init(&node->td);
1493                 node->ptr = NULL;
1494                 kfree(node);
1495         }
1496
1497         kfree(hwreq);
1498
1499         spin_unlock_irqrestore(hwep->lock, flags);
1500 }
1501
1502 /*
1503  * ep_queue: queues (submits) an I/O request to an endpoint
1504  *
1505  * Check usb_ep_queue()* at usb_gadget.h" for details
1506  */
1507 static int ep_queue(struct usb_ep *ep, struct usb_request *req,
1508                     gfp_t __maybe_unused gfp_flags)
1509 {
1510         struct ci_hw_ep  *hwep  = container_of(ep,  struct ci_hw_ep, ep);
1511         int retval = 0;
1512         unsigned long flags;
1513
1514         if (ep == NULL || req == NULL || hwep->ep.desc == NULL)
1515                 return -EINVAL;
1516
1517         spin_lock_irqsave(hwep->lock, flags);
1518         if (hwep->ci->gadget.speed == USB_SPEED_UNKNOWN) {
1519                 spin_unlock_irqrestore(hwep->lock, flags);
1520                 return 0;
1521         }
1522         retval = _ep_queue(ep, req, gfp_flags);
1523         spin_unlock_irqrestore(hwep->lock, flags);
1524         return retval;
1525 }
1526
1527 /*
1528  * ep_dequeue: dequeues (cancels, unlinks) an I/O request from an endpoint
1529  *
1530  * Check usb_ep_dequeue() at "usb_gadget.h" for details
1531  */
1532 static int ep_dequeue(struct usb_ep *ep, struct usb_request *req)
1533 {
1534         struct ci_hw_ep  *hwep  = container_of(ep,  struct ci_hw_ep, ep);
1535         struct ci_hw_req *hwreq = container_of(req, struct ci_hw_req, req);
1536         unsigned long flags;
1537         struct td_node *node, *tmpnode;
1538
1539         if (ep == NULL || req == NULL || hwreq->req.status != -EALREADY ||
1540                 hwep->ep.desc == NULL || list_empty(&hwreq->queue) ||
1541                 list_empty(&hwep->qh.queue))
1542                 return -EINVAL;
1543
1544         spin_lock_irqsave(hwep->lock, flags);
1545         if (hwep->ci->gadget.speed != USB_SPEED_UNKNOWN)
1546                 hw_ep_flush(hwep->ci, hwep->num, hwep->dir);
1547
1548         list_for_each_entry_safe(node, tmpnode, &hwreq->tds, td) {
1549                 dma_pool_free(hwep->td_pool, node->ptr, node->dma);
1550                 list_del(&node->td);
1551                 kfree(node);
1552         }
1553
1554         /* pop request */
1555         list_del_init(&hwreq->queue);
1556
1557         usb_gadget_unmap_request(&hwep->ci->gadget, req, hwep->dir);
1558
1559         req->status = -ECONNRESET;
1560
1561         if (hwreq->req.complete != NULL) {
1562                 spin_unlock(hwep->lock);
1563                 usb_gadget_giveback_request(&hwep->ep, &hwreq->req);
1564                 spin_lock(hwep->lock);
1565         }
1566
1567         spin_unlock_irqrestore(hwep->lock, flags);
1568         return 0;
1569 }
1570
1571 /*
1572  * ep_set_halt: sets the endpoint halt feature
1573  *
1574  * Check usb_ep_set_halt() at "usb_gadget.h" for details
1575  */
1576 static int ep_set_halt(struct usb_ep *ep, int value)
1577 {
1578         return _ep_set_halt(ep, value, true);
1579 }
1580
1581 /*
1582  * ep_set_wedge: sets the halt feature and ignores clear requests
1583  *
1584  * Check usb_ep_set_wedge() at "usb_gadget.h" for details
1585  */
1586 static int ep_set_wedge(struct usb_ep *ep)
1587 {
1588         struct ci_hw_ep *hwep = container_of(ep, struct ci_hw_ep, ep);
1589         unsigned long flags;
1590
1591         if (ep == NULL || hwep->ep.desc == NULL)
1592                 return -EINVAL;
1593
1594         spin_lock_irqsave(hwep->lock, flags);
1595         hwep->wedge = 1;
1596         spin_unlock_irqrestore(hwep->lock, flags);
1597
1598         return usb_ep_set_halt(ep);
1599 }
1600
1601 /*
1602  * ep_fifo_flush: flushes contents of a fifo
1603  *
1604  * Check usb_ep_fifo_flush() at "usb_gadget.h" for details
1605  */
1606 static void ep_fifo_flush(struct usb_ep *ep)
1607 {
1608         struct ci_hw_ep *hwep = container_of(ep, struct ci_hw_ep, ep);
1609         unsigned long flags;
1610
1611         if (ep == NULL) {
1612                 dev_err(hwep->ci->dev, "%02X: -EINVAL\n", _usb_addr(hwep));
1613                 return;
1614         }
1615
1616         spin_lock_irqsave(hwep->lock, flags);
1617         if (hwep->ci->gadget.speed == USB_SPEED_UNKNOWN) {
1618                 spin_unlock_irqrestore(hwep->lock, flags);
1619                 return;
1620         }
1621
1622         hw_ep_flush(hwep->ci, hwep->num, hwep->dir);
1623
1624         spin_unlock_irqrestore(hwep->lock, flags);
1625 }
1626
1627 /*
1628  * Endpoint-specific part of the API to the USB controller hardware
1629  * Check "usb_gadget.h" for details
1630  */
1631 static const struct usb_ep_ops usb_ep_ops = {
1632         .enable        = ep_enable,
1633         .disable       = ep_disable,
1634         .alloc_request = ep_alloc_request,
1635         .free_request  = ep_free_request,
1636         .queue         = ep_queue,
1637         .dequeue       = ep_dequeue,
1638         .set_halt      = ep_set_halt,
1639         .set_wedge     = ep_set_wedge,
1640         .fifo_flush    = ep_fifo_flush,
1641 };
1642
1643 /******************************************************************************
1644  * GADGET block
1645  *****************************************************************************/
1646 /*
1647  * ci_hdrc_gadget_connect: caller makes sure gadget driver is binded
1648  */
1649 static void ci_hdrc_gadget_connect(struct usb_gadget *_gadget, int is_active)
1650 {
1651         struct ci_hdrc *ci = container_of(_gadget, struct ci_hdrc, gadget);
1652
1653         if (is_active) {
1654                 pm_runtime_get_sync(ci->dev);
1655                 hw_device_reset(ci);
1656                 spin_lock_irq(&ci->lock);
1657                 if (ci->driver) {
1658                         hw_device_state(ci, ci->ep0out->qh.dma);
1659                         usb_gadget_set_state(_gadget, USB_STATE_POWERED);
1660                         spin_unlock_irq(&ci->lock);
1661                         usb_udc_vbus_handler(_gadget, true);
1662                 } else {
1663                         spin_unlock_irq(&ci->lock);
1664                 }
1665         } else {
1666                 usb_udc_vbus_handler(_gadget, false);
1667                 if (ci->driver)
1668                         ci->driver->disconnect(&ci->gadget);
1669                 hw_device_state(ci, 0);
1670                 if (ci->platdata->notify_event)
1671                         ci->platdata->notify_event(ci,
1672                         CI_HDRC_CONTROLLER_STOPPED_EVENT);
1673                 _gadget_stop_activity(&ci->gadget);
1674                 pm_runtime_put_sync(ci->dev);
1675                 usb_gadget_set_state(_gadget, USB_STATE_NOTATTACHED);
1676         }
1677 }
1678
1679 static int ci_udc_vbus_session(struct usb_gadget *_gadget, int is_active)
1680 {
1681         struct ci_hdrc *ci = container_of(_gadget, struct ci_hdrc, gadget);
1682         unsigned long flags;
1683         int ret = 0;
1684
1685         spin_lock_irqsave(&ci->lock, flags);
1686         ci->vbus_active = is_active;
1687         spin_unlock_irqrestore(&ci->lock, flags);
1688
1689         if (ci->usb_phy)
1690                 usb_phy_set_charger_state(ci->usb_phy, is_active ?
1691                         USB_CHARGER_PRESENT : USB_CHARGER_ABSENT);
1692
1693         if (ci->platdata->notify_event)
1694                 ret = ci->platdata->notify_event(ci,
1695                                 CI_HDRC_CONTROLLER_VBUS_EVENT);
1696
1697         if (ci->driver)
1698                 ci_hdrc_gadget_connect(_gadget, is_active);
1699
1700         return ret;
1701 }
1702
1703 static int ci_udc_wakeup(struct usb_gadget *_gadget)
1704 {
1705         struct ci_hdrc *ci = container_of(_gadget, struct ci_hdrc, gadget);
1706         unsigned long flags;
1707         int ret = 0;
1708
1709         spin_lock_irqsave(&ci->lock, flags);
1710         if (ci->gadget.speed == USB_SPEED_UNKNOWN) {
1711                 spin_unlock_irqrestore(&ci->lock, flags);
1712                 return 0;
1713         }
1714         if (!ci->remote_wakeup) {
1715                 ret = -EOPNOTSUPP;
1716                 goto out;
1717         }
1718         if (!hw_read(ci, OP_PORTSC, PORTSC_SUSP)) {
1719                 ret = -EINVAL;
1720                 goto out;
1721         }
1722         hw_write(ci, OP_PORTSC, PORTSC_FPR, PORTSC_FPR);
1723 out:
1724         spin_unlock_irqrestore(&ci->lock, flags);
1725         return ret;
1726 }
1727
1728 static int ci_udc_vbus_draw(struct usb_gadget *_gadget, unsigned ma)
1729 {
1730         struct ci_hdrc *ci = container_of(_gadget, struct ci_hdrc, gadget);
1731
1732         if (ci->usb_phy)
1733                 return usb_phy_set_power(ci->usb_phy, ma);
1734         return -ENOTSUPP;
1735 }
1736
1737 static int ci_udc_selfpowered(struct usb_gadget *_gadget, int is_on)
1738 {
1739         struct ci_hdrc *ci = container_of(_gadget, struct ci_hdrc, gadget);
1740         struct ci_hw_ep *hwep = ci->ep0in;
1741         unsigned long flags;
1742
1743         spin_lock_irqsave(hwep->lock, flags);
1744         _gadget->is_selfpowered = (is_on != 0);
1745         spin_unlock_irqrestore(hwep->lock, flags);
1746
1747         return 0;
1748 }
1749
1750 /* Change Data+ pullup status
1751  * this func is used by usb_gadget_connect/disconnect
1752  */
1753 static int ci_udc_pullup(struct usb_gadget *_gadget, int is_on)
1754 {
1755         struct ci_hdrc *ci = container_of(_gadget, struct ci_hdrc, gadget);
1756
1757         /*
1758          * Data+ pullup controlled by OTG state machine in OTG fsm mode;
1759          * and don't touch Data+ in host mode for dual role config.
1760          */
1761         if (ci_otg_is_fsm_mode(ci) || ci->role == CI_ROLE_HOST)
1762                 return 0;
1763
1764         pm_runtime_get_sync(ci->dev);
1765         if (is_on)
1766                 hw_write(ci, OP_USBCMD, USBCMD_RS, USBCMD_RS);
1767         else
1768                 hw_write(ci, OP_USBCMD, USBCMD_RS, 0);
1769         pm_runtime_put_sync(ci->dev);
1770
1771         return 0;
1772 }
1773
1774 static int ci_udc_start(struct usb_gadget *gadget,
1775                          struct usb_gadget_driver *driver);
1776 static int ci_udc_stop(struct usb_gadget *gadget);
1777
1778 /* Match ISOC IN from the highest endpoint */
1779 static struct usb_ep *ci_udc_match_ep(struct usb_gadget *gadget,
1780                               struct usb_endpoint_descriptor *desc,
1781                               struct usb_ss_ep_comp_descriptor *comp_desc)
1782 {
1783         struct ci_hdrc *ci = container_of(gadget, struct ci_hdrc, gadget);
1784         struct usb_ep *ep;
1785
1786         if (usb_endpoint_xfer_isoc(desc) && usb_endpoint_dir_in(desc)) {
1787                 list_for_each_entry_reverse(ep, &ci->gadget.ep_list, ep_list) {
1788                         if (ep->caps.dir_in && !ep->claimed)
1789                                 return ep;
1790                 }
1791         }
1792
1793         return NULL;
1794 }
1795
1796 /*
1797  * Device operations part of the API to the USB controller hardware,
1798  * which don't involve endpoints (or i/o)
1799  * Check  "usb_gadget.h" for details
1800  */
1801 static const struct usb_gadget_ops usb_gadget_ops = {
1802         .vbus_session   = ci_udc_vbus_session,
1803         .wakeup         = ci_udc_wakeup,
1804         .set_selfpowered        = ci_udc_selfpowered,
1805         .pullup         = ci_udc_pullup,
1806         .vbus_draw      = ci_udc_vbus_draw,
1807         .udc_start      = ci_udc_start,
1808         .udc_stop       = ci_udc_stop,
1809         .match_ep       = ci_udc_match_ep,
1810 };
1811
1812 static int init_eps(struct ci_hdrc *ci)
1813 {
1814         int retval = 0, i, j;
1815
1816         for (i = 0; i < ci->hw_ep_max/2; i++)
1817                 for (j = RX; j <= TX; j++) {
1818                         int k = i + j * ci->hw_ep_max/2;
1819                         struct ci_hw_ep *hwep = &ci->ci_hw_ep[k];
1820
1821                         scnprintf(hwep->name, sizeof(hwep->name), "ep%i%s", i,
1822                                         (j == TX)  ? "in" : "out");
1823
1824                         hwep->ci          = ci;
1825                         hwep->lock         = &ci->lock;
1826                         hwep->td_pool      = ci->td_pool;
1827
1828                         hwep->ep.name      = hwep->name;
1829                         hwep->ep.ops       = &usb_ep_ops;
1830
1831                         if (i == 0) {
1832                                 hwep->ep.caps.type_control = true;
1833                         } else {
1834                                 hwep->ep.caps.type_iso = true;
1835                                 hwep->ep.caps.type_bulk = true;
1836                                 hwep->ep.caps.type_int = true;
1837                         }
1838
1839                         if (j == TX)
1840                                 hwep->ep.caps.dir_in = true;
1841                         else
1842                                 hwep->ep.caps.dir_out = true;
1843
1844                         /*
1845                          * for ep0: maxP defined in desc, for other
1846                          * eps, maxP is set by epautoconfig() called
1847                          * by gadget layer
1848                          */
1849                         usb_ep_set_maxpacket_limit(&hwep->ep, (unsigned short)~0);
1850
1851                         INIT_LIST_HEAD(&hwep->qh.queue);
1852                         hwep->qh.ptr = dma_pool_zalloc(ci->qh_pool, GFP_KERNEL,
1853                                                        &hwep->qh.dma);
1854                         if (hwep->qh.ptr == NULL)
1855                                 retval = -ENOMEM;
1856
1857                         /*
1858                          * set up shorthands for ep0 out and in endpoints,
1859                          * don't add to gadget's ep_list
1860                          */
1861                         if (i == 0) {
1862                                 if (j == RX)
1863                                         ci->ep0out = hwep;
1864                                 else
1865                                         ci->ep0in = hwep;
1866
1867                                 usb_ep_set_maxpacket_limit(&hwep->ep, CTRL_PAYLOAD_MAX);
1868                                 continue;
1869                         }
1870
1871                         list_add_tail(&hwep->ep.ep_list, &ci->gadget.ep_list);
1872                 }
1873
1874         return retval;
1875 }
1876
1877 static void destroy_eps(struct ci_hdrc *ci)
1878 {
1879         int i;
1880
1881         for (i = 0; i < ci->hw_ep_max; i++) {
1882                 struct ci_hw_ep *hwep = &ci->ci_hw_ep[i];
1883
1884                 if (hwep->pending_td)
1885                         free_pending_td(hwep);
1886                 dma_pool_free(ci->qh_pool, hwep->qh.ptr, hwep->qh.dma);
1887         }
1888 }
1889
1890 /**
1891  * ci_udc_start: register a gadget driver
1892  * @gadget: our gadget
1893  * @driver: the driver being registered
1894  *
1895  * Interrupts are enabled here.
1896  */
1897 static int ci_udc_start(struct usb_gadget *gadget,
1898                          struct usb_gadget_driver *driver)
1899 {
1900         struct ci_hdrc *ci = container_of(gadget, struct ci_hdrc, gadget);
1901         int retval;
1902
1903         if (driver->disconnect == NULL)
1904                 return -EINVAL;
1905
1906         ci->ep0out->ep.desc = &ctrl_endpt_out_desc;
1907         retval = usb_ep_enable(&ci->ep0out->ep);
1908         if (retval)
1909                 return retval;
1910
1911         ci->ep0in->ep.desc = &ctrl_endpt_in_desc;
1912         retval = usb_ep_enable(&ci->ep0in->ep);
1913         if (retval)
1914                 return retval;
1915
1916         ci->driver = driver;
1917
1918         /* Start otg fsm for B-device */
1919         if (ci_otg_is_fsm_mode(ci) && ci->fsm.id) {
1920                 ci_hdrc_otg_fsm_start(ci);
1921                 return retval;
1922         }
1923
1924         if (ci->vbus_active)
1925                 ci_hdrc_gadget_connect(gadget, 1);
1926         else
1927                 usb_udc_vbus_handler(&ci->gadget, false);
1928
1929         return retval;
1930 }
1931
1932 static void ci_udc_stop_for_otg_fsm(struct ci_hdrc *ci)
1933 {
1934         if (!ci_otg_is_fsm_mode(ci))
1935                 return;
1936
1937         mutex_lock(&ci->fsm.lock);
1938         if (ci->fsm.otg->state == OTG_STATE_A_PERIPHERAL) {
1939                 ci->fsm.a_bidl_adis_tmout = 1;
1940                 ci_hdrc_otg_fsm_start(ci);
1941         } else if (ci->fsm.otg->state == OTG_STATE_B_PERIPHERAL) {
1942                 ci->fsm.protocol = PROTO_UNDEF;
1943                 ci->fsm.otg->state = OTG_STATE_UNDEFINED;
1944         }
1945         mutex_unlock(&ci->fsm.lock);
1946 }
1947
1948 /*
1949  * ci_udc_stop: unregister a gadget driver
1950  */
1951 static int ci_udc_stop(struct usb_gadget *gadget)
1952 {
1953         struct ci_hdrc *ci = container_of(gadget, struct ci_hdrc, gadget);
1954         unsigned long flags;
1955
1956         spin_lock_irqsave(&ci->lock, flags);
1957         ci->driver = NULL;
1958
1959         if (ci->vbus_active) {
1960                 hw_device_state(ci, 0);
1961                 spin_unlock_irqrestore(&ci->lock, flags);
1962                 if (ci->platdata->notify_event)
1963                         ci->platdata->notify_event(ci,
1964                         CI_HDRC_CONTROLLER_STOPPED_EVENT);
1965                 _gadget_stop_activity(&ci->gadget);
1966                 spin_lock_irqsave(&ci->lock, flags);
1967                 pm_runtime_put(ci->dev);
1968         }
1969
1970         spin_unlock_irqrestore(&ci->lock, flags);
1971
1972         ci_udc_stop_for_otg_fsm(ci);
1973         return 0;
1974 }
1975
1976 /******************************************************************************
1977  * BUS block
1978  *****************************************************************************/
1979 /*
1980  * udc_irq: ci interrupt handler
1981  *
1982  * This function returns IRQ_HANDLED if the IRQ has been handled
1983  * It locks access to registers
1984  */
1985 static irqreturn_t udc_irq(struct ci_hdrc *ci)
1986 {
1987         irqreturn_t retval;
1988         u32 intr;
1989
1990         if (ci == NULL)
1991                 return IRQ_HANDLED;
1992
1993         spin_lock(&ci->lock);
1994
1995         if (ci->platdata->flags & CI_HDRC_REGS_SHARED) {
1996                 if (hw_read(ci, OP_USBMODE, USBMODE_CM) !=
1997                                 USBMODE_CM_DC) {
1998                         spin_unlock(&ci->lock);
1999                         return IRQ_NONE;
2000                 }
2001         }
2002         intr = hw_test_and_clear_intr_active(ci);
2003
2004         if (intr) {
2005                 /* order defines priority - do NOT change it */
2006                 if (USBi_URI & intr)
2007                         isr_reset_handler(ci);
2008
2009                 if (USBi_PCI & intr) {
2010                         ci->gadget.speed = hw_port_is_high_speed(ci) ?
2011                                 USB_SPEED_HIGH : USB_SPEED_FULL;
2012                         if (ci->suspended) {
2013                                 if (ci->driver->resume) {
2014                                         spin_unlock(&ci->lock);
2015                                         ci->driver->resume(&ci->gadget);
2016                                         spin_lock(&ci->lock);
2017                                 }
2018                                 ci->suspended = 0;
2019                                 usb_gadget_set_state(&ci->gadget,
2020                                                 ci->resume_state);
2021                         }
2022                 }
2023
2024                 if (USBi_UI  & intr)
2025                         isr_tr_complete_handler(ci);
2026
2027                 if ((USBi_SLI & intr) && !(ci->suspended)) {
2028                         ci->suspended = 1;
2029                         ci->resume_state = ci->gadget.state;
2030                         if (ci->gadget.speed != USB_SPEED_UNKNOWN &&
2031                             ci->driver->suspend) {
2032                                 spin_unlock(&ci->lock);
2033                                 ci->driver->suspend(&ci->gadget);
2034                                 spin_lock(&ci->lock);
2035                         }
2036                         usb_gadget_set_state(&ci->gadget,
2037                                         USB_STATE_SUSPENDED);
2038                 }
2039                 retval = IRQ_HANDLED;
2040         } else {
2041                 retval = IRQ_NONE;
2042         }
2043         spin_unlock(&ci->lock);
2044
2045         return retval;
2046 }
2047
2048 /**
2049  * udc_start: initialize gadget role
2050  * @ci: chipidea controller
2051  */
2052 static int udc_start(struct ci_hdrc *ci)
2053 {
2054         struct device *dev = ci->dev;
2055         struct usb_otg_caps *otg_caps = &ci->platdata->ci_otg_caps;
2056         int retval = 0;
2057
2058         ci->gadget.ops          = &usb_gadget_ops;
2059         ci->gadget.speed        = USB_SPEED_UNKNOWN;
2060         ci->gadget.max_speed    = USB_SPEED_HIGH;
2061         ci->gadget.name         = ci->platdata->name;
2062         ci->gadget.otg_caps     = otg_caps;
2063         ci->gadget.sg_supported = 1;
2064
2065         if (ci->platdata->flags & CI_HDRC_REQUIRES_ALIGNED_DMA)
2066                 ci->gadget.quirk_avoids_skb_reserve = 1;
2067
2068         if (ci->is_otg && (otg_caps->hnp_support || otg_caps->srp_support ||
2069                                                 otg_caps->adp_support))
2070                 ci->gadget.is_otg = 1;
2071
2072         INIT_LIST_HEAD(&ci->gadget.ep_list);
2073
2074         /* alloc resources */
2075         ci->qh_pool = dma_pool_create("ci_hw_qh", dev->parent,
2076                                        sizeof(struct ci_hw_qh),
2077                                        64, CI_HDRC_PAGE_SIZE);
2078         if (ci->qh_pool == NULL)
2079                 return -ENOMEM;
2080
2081         ci->td_pool = dma_pool_create("ci_hw_td", dev->parent,
2082                                        sizeof(struct ci_hw_td),
2083                                        64, CI_HDRC_PAGE_SIZE);
2084         if (ci->td_pool == NULL) {
2085                 retval = -ENOMEM;
2086                 goto free_qh_pool;
2087         }
2088
2089         retval = init_eps(ci);
2090         if (retval)
2091                 goto free_pools;
2092
2093         ci->gadget.ep0 = &ci->ep0in->ep;
2094
2095         retval = usb_add_gadget_udc(dev, &ci->gadget);
2096         if (retval)
2097                 goto destroy_eps;
2098
2099         return retval;
2100
2101 destroy_eps:
2102         destroy_eps(ci);
2103 free_pools:
2104         dma_pool_destroy(ci->td_pool);
2105 free_qh_pool:
2106         dma_pool_destroy(ci->qh_pool);
2107         return retval;
2108 }
2109
2110 /*
2111  * ci_hdrc_gadget_destroy: parent remove must call this to remove UDC
2112  *
2113  * No interrupts active, the IRQ has been released
2114  */
2115 void ci_hdrc_gadget_destroy(struct ci_hdrc *ci)
2116 {
2117         if (!ci->roles[CI_ROLE_GADGET])
2118                 return;
2119
2120         usb_del_gadget_udc(&ci->gadget);
2121
2122         destroy_eps(ci);
2123
2124         dma_pool_destroy(ci->td_pool);
2125         dma_pool_destroy(ci->qh_pool);
2126 }
2127
2128 static int udc_id_switch_for_device(struct ci_hdrc *ci)
2129 {
2130         if (ci->platdata->pins_device)
2131                 pinctrl_select_state(ci->platdata->pctl,
2132                                      ci->platdata->pins_device);
2133
2134         if (ci->is_otg)
2135                 /* Clear and enable BSV irq */
2136                 hw_write_otgsc(ci, OTGSC_BSVIS | OTGSC_BSVIE,
2137                                         OTGSC_BSVIS | OTGSC_BSVIE);
2138
2139         return 0;
2140 }
2141
2142 static void udc_id_switch_for_host(struct ci_hdrc *ci)
2143 {
2144         /*
2145          * host doesn't care B_SESSION_VALID event
2146          * so clear and disbale BSV irq
2147          */
2148         if (ci->is_otg)
2149                 hw_write_otgsc(ci, OTGSC_BSVIE | OTGSC_BSVIS, OTGSC_BSVIS);
2150
2151         ci->vbus_active = 0;
2152
2153         if (ci->platdata->pins_device && ci->platdata->pins_default)
2154                 pinctrl_select_state(ci->platdata->pctl,
2155                                      ci->platdata->pins_default);
2156 }
2157
2158 /**
2159  * ci_hdrc_gadget_init - initialize device related bits
2160  * @ci: the controller
2161  *
2162  * This function initializes the gadget, if the device is "device capable".
2163  */
2164 int ci_hdrc_gadget_init(struct ci_hdrc *ci)
2165 {
2166         struct ci_role_driver *rdrv;
2167         int ret;
2168
2169         if (!hw_read(ci, CAP_DCCPARAMS, DCCPARAMS_DC))
2170                 return -ENXIO;
2171
2172         rdrv = devm_kzalloc(ci->dev, sizeof(*rdrv), GFP_KERNEL);
2173         if (!rdrv)
2174                 return -ENOMEM;
2175
2176         rdrv->start     = udc_id_switch_for_device;
2177         rdrv->stop      = udc_id_switch_for_host;
2178         rdrv->irq       = udc_irq;
2179         rdrv->name      = "gadget";
2180
2181         ret = udc_start(ci);
2182         if (!ret)
2183                 ci->roles[CI_ROLE_GADGET] = rdrv;
2184
2185         return ret;
2186 }
This page took 0.159737 seconds and 4 git commands to generate.