]> Git Repo - linux.git/blob - net/tls/tls_sw.c
net/mlx5: Kconfig: Make tc offload depend on tc skb extension
[linux.git] / net / tls / tls_sw.c
1 /*
2  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2016-2017, Dave Watson <[email protected]>. All rights reserved.
4  * Copyright (c) 2016-2017, Lance Chao <[email protected]>. All rights reserved.
5  * Copyright (c) 2016, Fridolin Pokorny <[email protected]>. All rights reserved.
6  * Copyright (c) 2016, Nikos Mavrogiannopoulos <[email protected]>. All rights reserved.
7  * Copyright (c) 2018, Covalent IO, Inc. http://covalent.io
8  *
9  * This software is available to you under a choice of one of two
10  * licenses.  You may choose to be licensed under the terms of the GNU
11  * General Public License (GPL) Version 2, available from the file
12  * COPYING in the main directory of this source tree, or the
13  * OpenIB.org BSD license below:
14  *
15  *     Redistribution and use in source and binary forms, with or
16  *     without modification, are permitted provided that the following
17  *     conditions are met:
18  *
19  *      - Redistributions of source code must retain the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer.
22  *
23  *      - Redistributions in binary form must reproduce the above
24  *        copyright notice, this list of conditions and the following
25  *        disclaimer in the documentation and/or other materials
26  *        provided with the distribution.
27  *
28  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
29  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
30  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
31  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
32  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
33  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
34  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
35  * SOFTWARE.
36  */
37
38 #include <linux/bug.h>
39 #include <linux/sched/signal.h>
40 #include <linux/module.h>
41 #include <linux/splice.h>
42 #include <crypto/aead.h>
43
44 #include <net/strparser.h>
45 #include <net/tls.h>
46 #include <trace/events/sock.h>
47
48 #include "tls.h"
49
50 struct tls_decrypt_arg {
51         struct_group(inargs,
52         bool zc;
53         bool async;
54         u8 tail;
55         );
56
57         struct sk_buff *skb;
58 };
59
60 struct tls_decrypt_ctx {
61         u8 iv[MAX_IV_SIZE];
62         u8 aad[TLS_MAX_AAD_SIZE];
63         u8 tail;
64         struct scatterlist sg[];
65 };
66
67 noinline void tls_err_abort(struct sock *sk, int err)
68 {
69         WARN_ON_ONCE(err >= 0);
70         /* sk->sk_err should contain a positive error code. */
71         sk->sk_err = -err;
72         sk_error_report(sk);
73 }
74
75 static int __skb_nsg(struct sk_buff *skb, int offset, int len,
76                      unsigned int recursion_level)
77 {
78         int start = skb_headlen(skb);
79         int i, chunk = start - offset;
80         struct sk_buff *frag_iter;
81         int elt = 0;
82
83         if (unlikely(recursion_level >= 24))
84                 return -EMSGSIZE;
85
86         if (chunk > 0) {
87                 if (chunk > len)
88                         chunk = len;
89                 elt++;
90                 len -= chunk;
91                 if (len == 0)
92                         return elt;
93                 offset += chunk;
94         }
95
96         for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
97                 int end;
98
99                 WARN_ON(start > offset + len);
100
101                 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
102                 chunk = end - offset;
103                 if (chunk > 0) {
104                         if (chunk > len)
105                                 chunk = len;
106                         elt++;
107                         len -= chunk;
108                         if (len == 0)
109                                 return elt;
110                         offset += chunk;
111                 }
112                 start = end;
113         }
114
115         if (unlikely(skb_has_frag_list(skb))) {
116                 skb_walk_frags(skb, frag_iter) {
117                         int end, ret;
118
119                         WARN_ON(start > offset + len);
120
121                         end = start + frag_iter->len;
122                         chunk = end - offset;
123                         if (chunk > 0) {
124                                 if (chunk > len)
125                                         chunk = len;
126                                 ret = __skb_nsg(frag_iter, offset - start, chunk,
127                                                 recursion_level + 1);
128                                 if (unlikely(ret < 0))
129                                         return ret;
130                                 elt += ret;
131                                 len -= chunk;
132                                 if (len == 0)
133                                         return elt;
134                                 offset += chunk;
135                         }
136                         start = end;
137                 }
138         }
139         BUG_ON(len);
140         return elt;
141 }
142
143 /* Return the number of scatterlist elements required to completely map the
144  * skb, or -EMSGSIZE if the recursion depth is exceeded.
145  */
146 static int skb_nsg(struct sk_buff *skb, int offset, int len)
147 {
148         return __skb_nsg(skb, offset, len, 0);
149 }
150
151 static int tls_padding_length(struct tls_prot_info *prot, struct sk_buff *skb,
152                               struct tls_decrypt_arg *darg)
153 {
154         struct strp_msg *rxm = strp_msg(skb);
155         struct tls_msg *tlm = tls_msg(skb);
156         int sub = 0;
157
158         /* Determine zero-padding length */
159         if (prot->version == TLS_1_3_VERSION) {
160                 int offset = rxm->full_len - TLS_TAG_SIZE - 1;
161                 char content_type = darg->zc ? darg->tail : 0;
162                 int err;
163
164                 while (content_type == 0) {
165                         if (offset < prot->prepend_size)
166                                 return -EBADMSG;
167                         err = skb_copy_bits(skb, rxm->offset + offset,
168                                             &content_type, 1);
169                         if (err)
170                                 return err;
171                         if (content_type)
172                                 break;
173                         sub++;
174                         offset--;
175                 }
176                 tlm->control = content_type;
177         }
178         return sub;
179 }
180
181 static void tls_decrypt_done(struct crypto_async_request *req, int err)
182 {
183         struct aead_request *aead_req = (struct aead_request *)req;
184         struct scatterlist *sgout = aead_req->dst;
185         struct scatterlist *sgin = aead_req->src;
186         struct tls_sw_context_rx *ctx;
187         struct tls_context *tls_ctx;
188         struct scatterlist *sg;
189         unsigned int pages;
190         struct sock *sk;
191
192         sk = (struct sock *)req->data;
193         tls_ctx = tls_get_ctx(sk);
194         ctx = tls_sw_ctx_rx(tls_ctx);
195
196         /* Propagate if there was an err */
197         if (err) {
198                 if (err == -EBADMSG)
199                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTERROR);
200                 ctx->async_wait.err = err;
201                 tls_err_abort(sk, err);
202         }
203
204         /* Free the destination pages if skb was not decrypted inplace */
205         if (sgout != sgin) {
206                 /* Skip the first S/G entry as it points to AAD */
207                 for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) {
208                         if (!sg)
209                                 break;
210                         put_page(sg_page(sg));
211                 }
212         }
213
214         kfree(aead_req);
215
216         spin_lock_bh(&ctx->decrypt_compl_lock);
217         if (!atomic_dec_return(&ctx->decrypt_pending))
218                 complete(&ctx->async_wait.completion);
219         spin_unlock_bh(&ctx->decrypt_compl_lock);
220 }
221
222 static int tls_do_decryption(struct sock *sk,
223                              struct scatterlist *sgin,
224                              struct scatterlist *sgout,
225                              char *iv_recv,
226                              size_t data_len,
227                              struct aead_request *aead_req,
228                              struct tls_decrypt_arg *darg)
229 {
230         struct tls_context *tls_ctx = tls_get_ctx(sk);
231         struct tls_prot_info *prot = &tls_ctx->prot_info;
232         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
233         int ret;
234
235         aead_request_set_tfm(aead_req, ctx->aead_recv);
236         aead_request_set_ad(aead_req, prot->aad_size);
237         aead_request_set_crypt(aead_req, sgin, sgout,
238                                data_len + prot->tag_size,
239                                (u8 *)iv_recv);
240
241         if (darg->async) {
242                 aead_request_set_callback(aead_req,
243                                           CRYPTO_TFM_REQ_MAY_BACKLOG,
244                                           tls_decrypt_done, sk);
245                 atomic_inc(&ctx->decrypt_pending);
246         } else {
247                 aead_request_set_callback(aead_req,
248                                           CRYPTO_TFM_REQ_MAY_BACKLOG,
249                                           crypto_req_done, &ctx->async_wait);
250         }
251
252         ret = crypto_aead_decrypt(aead_req);
253         if (ret == -EINPROGRESS) {
254                 if (darg->async)
255                         return 0;
256
257                 ret = crypto_wait_req(ret, &ctx->async_wait);
258         }
259         darg->async = false;
260
261         return ret;
262 }
263
264 static void tls_trim_both_msgs(struct sock *sk, int target_size)
265 {
266         struct tls_context *tls_ctx = tls_get_ctx(sk);
267         struct tls_prot_info *prot = &tls_ctx->prot_info;
268         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
269         struct tls_rec *rec = ctx->open_rec;
270
271         sk_msg_trim(sk, &rec->msg_plaintext, target_size);
272         if (target_size > 0)
273                 target_size += prot->overhead_size;
274         sk_msg_trim(sk, &rec->msg_encrypted, target_size);
275 }
276
277 static int tls_alloc_encrypted_msg(struct sock *sk, int len)
278 {
279         struct tls_context *tls_ctx = tls_get_ctx(sk);
280         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
281         struct tls_rec *rec = ctx->open_rec;
282         struct sk_msg *msg_en = &rec->msg_encrypted;
283
284         return sk_msg_alloc(sk, msg_en, len, 0);
285 }
286
287 static int tls_clone_plaintext_msg(struct sock *sk, int required)
288 {
289         struct tls_context *tls_ctx = tls_get_ctx(sk);
290         struct tls_prot_info *prot = &tls_ctx->prot_info;
291         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
292         struct tls_rec *rec = ctx->open_rec;
293         struct sk_msg *msg_pl = &rec->msg_plaintext;
294         struct sk_msg *msg_en = &rec->msg_encrypted;
295         int skip, len;
296
297         /* We add page references worth len bytes from encrypted sg
298          * at the end of plaintext sg. It is guaranteed that msg_en
299          * has enough required room (ensured by caller).
300          */
301         len = required - msg_pl->sg.size;
302
303         /* Skip initial bytes in msg_en's data to be able to use
304          * same offset of both plain and encrypted data.
305          */
306         skip = prot->prepend_size + msg_pl->sg.size;
307
308         return sk_msg_clone(sk, msg_pl, msg_en, skip, len);
309 }
310
311 static struct tls_rec *tls_get_rec(struct sock *sk)
312 {
313         struct tls_context *tls_ctx = tls_get_ctx(sk);
314         struct tls_prot_info *prot = &tls_ctx->prot_info;
315         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
316         struct sk_msg *msg_pl, *msg_en;
317         struct tls_rec *rec;
318         int mem_size;
319
320         mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send);
321
322         rec = kzalloc(mem_size, sk->sk_allocation);
323         if (!rec)
324                 return NULL;
325
326         msg_pl = &rec->msg_plaintext;
327         msg_en = &rec->msg_encrypted;
328
329         sk_msg_init(msg_pl);
330         sk_msg_init(msg_en);
331
332         sg_init_table(rec->sg_aead_in, 2);
333         sg_set_buf(&rec->sg_aead_in[0], rec->aad_space, prot->aad_size);
334         sg_unmark_end(&rec->sg_aead_in[1]);
335
336         sg_init_table(rec->sg_aead_out, 2);
337         sg_set_buf(&rec->sg_aead_out[0], rec->aad_space, prot->aad_size);
338         sg_unmark_end(&rec->sg_aead_out[1]);
339
340         return rec;
341 }
342
343 static void tls_free_rec(struct sock *sk, struct tls_rec *rec)
344 {
345         sk_msg_free(sk, &rec->msg_encrypted);
346         sk_msg_free(sk, &rec->msg_plaintext);
347         kfree(rec);
348 }
349
350 static void tls_free_open_rec(struct sock *sk)
351 {
352         struct tls_context *tls_ctx = tls_get_ctx(sk);
353         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
354         struct tls_rec *rec = ctx->open_rec;
355
356         if (rec) {
357                 tls_free_rec(sk, rec);
358                 ctx->open_rec = NULL;
359         }
360 }
361
362 int tls_tx_records(struct sock *sk, int flags)
363 {
364         struct tls_context *tls_ctx = tls_get_ctx(sk);
365         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
366         struct tls_rec *rec, *tmp;
367         struct sk_msg *msg_en;
368         int tx_flags, rc = 0;
369
370         if (tls_is_partially_sent_record(tls_ctx)) {
371                 rec = list_first_entry(&ctx->tx_list,
372                                        struct tls_rec, list);
373
374                 if (flags == -1)
375                         tx_flags = rec->tx_flags;
376                 else
377                         tx_flags = flags;
378
379                 rc = tls_push_partial_record(sk, tls_ctx, tx_flags);
380                 if (rc)
381                         goto tx_err;
382
383                 /* Full record has been transmitted.
384                  * Remove the head of tx_list
385                  */
386                 list_del(&rec->list);
387                 sk_msg_free(sk, &rec->msg_plaintext);
388                 kfree(rec);
389         }
390
391         /* Tx all ready records */
392         list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
393                 if (READ_ONCE(rec->tx_ready)) {
394                         if (flags == -1)
395                                 tx_flags = rec->tx_flags;
396                         else
397                                 tx_flags = flags;
398
399                         msg_en = &rec->msg_encrypted;
400                         rc = tls_push_sg(sk, tls_ctx,
401                                          &msg_en->sg.data[msg_en->sg.curr],
402                                          0, tx_flags);
403                         if (rc)
404                                 goto tx_err;
405
406                         list_del(&rec->list);
407                         sk_msg_free(sk, &rec->msg_plaintext);
408                         kfree(rec);
409                 } else {
410                         break;
411                 }
412         }
413
414 tx_err:
415         if (rc < 0 && rc != -EAGAIN)
416                 tls_err_abort(sk, -EBADMSG);
417
418         return rc;
419 }
420
421 static void tls_encrypt_done(struct crypto_async_request *req, int err)
422 {
423         struct aead_request *aead_req = (struct aead_request *)req;
424         struct sock *sk = req->data;
425         struct tls_context *tls_ctx = tls_get_ctx(sk);
426         struct tls_prot_info *prot = &tls_ctx->prot_info;
427         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
428         struct scatterlist *sge;
429         struct sk_msg *msg_en;
430         struct tls_rec *rec;
431         bool ready = false;
432         int pending;
433
434         rec = container_of(aead_req, struct tls_rec, aead_req);
435         msg_en = &rec->msg_encrypted;
436
437         sge = sk_msg_elem(msg_en, msg_en->sg.curr);
438         sge->offset -= prot->prepend_size;
439         sge->length += prot->prepend_size;
440
441         /* Check if error is previously set on socket */
442         if (err || sk->sk_err) {
443                 rec = NULL;
444
445                 /* If err is already set on socket, return the same code */
446                 if (sk->sk_err) {
447                         ctx->async_wait.err = -sk->sk_err;
448                 } else {
449                         ctx->async_wait.err = err;
450                         tls_err_abort(sk, err);
451                 }
452         }
453
454         if (rec) {
455                 struct tls_rec *first_rec;
456
457                 /* Mark the record as ready for transmission */
458                 smp_store_mb(rec->tx_ready, true);
459
460                 /* If received record is at head of tx_list, schedule tx */
461                 first_rec = list_first_entry(&ctx->tx_list,
462                                              struct tls_rec, list);
463                 if (rec == first_rec)
464                         ready = true;
465         }
466
467         spin_lock_bh(&ctx->encrypt_compl_lock);
468         pending = atomic_dec_return(&ctx->encrypt_pending);
469
470         if (!pending && ctx->async_notify)
471                 complete(&ctx->async_wait.completion);
472         spin_unlock_bh(&ctx->encrypt_compl_lock);
473
474         if (!ready)
475                 return;
476
477         /* Schedule the transmission */
478         if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
479                 schedule_delayed_work(&ctx->tx_work.work, 1);
480 }
481
482 static int tls_do_encryption(struct sock *sk,
483                              struct tls_context *tls_ctx,
484                              struct tls_sw_context_tx *ctx,
485                              struct aead_request *aead_req,
486                              size_t data_len, u32 start)
487 {
488         struct tls_prot_info *prot = &tls_ctx->prot_info;
489         struct tls_rec *rec = ctx->open_rec;
490         struct sk_msg *msg_en = &rec->msg_encrypted;
491         struct scatterlist *sge = sk_msg_elem(msg_en, start);
492         int rc, iv_offset = 0;
493
494         /* For CCM based ciphers, first byte of IV is a constant */
495         switch (prot->cipher_type) {
496         case TLS_CIPHER_AES_CCM_128:
497                 rec->iv_data[0] = TLS_AES_CCM_IV_B0_BYTE;
498                 iv_offset = 1;
499                 break;
500         case TLS_CIPHER_SM4_CCM:
501                 rec->iv_data[0] = TLS_SM4_CCM_IV_B0_BYTE;
502                 iv_offset = 1;
503                 break;
504         }
505
506         memcpy(&rec->iv_data[iv_offset], tls_ctx->tx.iv,
507                prot->iv_size + prot->salt_size);
508
509         tls_xor_iv_with_seq(prot, rec->iv_data + iv_offset,
510                             tls_ctx->tx.rec_seq);
511
512         sge->offset += prot->prepend_size;
513         sge->length -= prot->prepend_size;
514
515         msg_en->sg.curr = start;
516
517         aead_request_set_tfm(aead_req, ctx->aead_send);
518         aead_request_set_ad(aead_req, prot->aad_size);
519         aead_request_set_crypt(aead_req, rec->sg_aead_in,
520                                rec->sg_aead_out,
521                                data_len, rec->iv_data);
522
523         aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG,
524                                   tls_encrypt_done, sk);
525
526         /* Add the record in tx_list */
527         list_add_tail((struct list_head *)&rec->list, &ctx->tx_list);
528         atomic_inc(&ctx->encrypt_pending);
529
530         rc = crypto_aead_encrypt(aead_req);
531         if (!rc || rc != -EINPROGRESS) {
532                 atomic_dec(&ctx->encrypt_pending);
533                 sge->offset -= prot->prepend_size;
534                 sge->length += prot->prepend_size;
535         }
536
537         if (!rc) {
538                 WRITE_ONCE(rec->tx_ready, true);
539         } else if (rc != -EINPROGRESS) {
540                 list_del(&rec->list);
541                 return rc;
542         }
543
544         /* Unhook the record from context if encryption is not failure */
545         ctx->open_rec = NULL;
546         tls_advance_record_sn(sk, prot, &tls_ctx->tx);
547         return rc;
548 }
549
550 static int tls_split_open_record(struct sock *sk, struct tls_rec *from,
551                                  struct tls_rec **to, struct sk_msg *msg_opl,
552                                  struct sk_msg *msg_oen, u32 split_point,
553                                  u32 tx_overhead_size, u32 *orig_end)
554 {
555         u32 i, j, bytes = 0, apply = msg_opl->apply_bytes;
556         struct scatterlist *sge, *osge, *nsge;
557         u32 orig_size = msg_opl->sg.size;
558         struct scatterlist tmp = { };
559         struct sk_msg *msg_npl;
560         struct tls_rec *new;
561         int ret;
562
563         new = tls_get_rec(sk);
564         if (!new)
565                 return -ENOMEM;
566         ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size +
567                            tx_overhead_size, 0);
568         if (ret < 0) {
569                 tls_free_rec(sk, new);
570                 return ret;
571         }
572
573         *orig_end = msg_opl->sg.end;
574         i = msg_opl->sg.start;
575         sge = sk_msg_elem(msg_opl, i);
576         while (apply && sge->length) {
577                 if (sge->length > apply) {
578                         u32 len = sge->length - apply;
579
580                         get_page(sg_page(sge));
581                         sg_set_page(&tmp, sg_page(sge), len,
582                                     sge->offset + apply);
583                         sge->length = apply;
584                         bytes += apply;
585                         apply = 0;
586                 } else {
587                         apply -= sge->length;
588                         bytes += sge->length;
589                 }
590
591                 sk_msg_iter_var_next(i);
592                 if (i == msg_opl->sg.end)
593                         break;
594                 sge = sk_msg_elem(msg_opl, i);
595         }
596
597         msg_opl->sg.end = i;
598         msg_opl->sg.curr = i;
599         msg_opl->sg.copybreak = 0;
600         msg_opl->apply_bytes = 0;
601         msg_opl->sg.size = bytes;
602
603         msg_npl = &new->msg_plaintext;
604         msg_npl->apply_bytes = apply;
605         msg_npl->sg.size = orig_size - bytes;
606
607         j = msg_npl->sg.start;
608         nsge = sk_msg_elem(msg_npl, j);
609         if (tmp.length) {
610                 memcpy(nsge, &tmp, sizeof(*nsge));
611                 sk_msg_iter_var_next(j);
612                 nsge = sk_msg_elem(msg_npl, j);
613         }
614
615         osge = sk_msg_elem(msg_opl, i);
616         while (osge->length) {
617                 memcpy(nsge, osge, sizeof(*nsge));
618                 sg_unmark_end(nsge);
619                 sk_msg_iter_var_next(i);
620                 sk_msg_iter_var_next(j);
621                 if (i == *orig_end)
622                         break;
623                 osge = sk_msg_elem(msg_opl, i);
624                 nsge = sk_msg_elem(msg_npl, j);
625         }
626
627         msg_npl->sg.end = j;
628         msg_npl->sg.curr = j;
629         msg_npl->sg.copybreak = 0;
630
631         *to = new;
632         return 0;
633 }
634
635 static void tls_merge_open_record(struct sock *sk, struct tls_rec *to,
636                                   struct tls_rec *from, u32 orig_end)
637 {
638         struct sk_msg *msg_npl = &from->msg_plaintext;
639         struct sk_msg *msg_opl = &to->msg_plaintext;
640         struct scatterlist *osge, *nsge;
641         u32 i, j;
642
643         i = msg_opl->sg.end;
644         sk_msg_iter_var_prev(i);
645         j = msg_npl->sg.start;
646
647         osge = sk_msg_elem(msg_opl, i);
648         nsge = sk_msg_elem(msg_npl, j);
649
650         if (sg_page(osge) == sg_page(nsge) &&
651             osge->offset + osge->length == nsge->offset) {
652                 osge->length += nsge->length;
653                 put_page(sg_page(nsge));
654         }
655
656         msg_opl->sg.end = orig_end;
657         msg_opl->sg.curr = orig_end;
658         msg_opl->sg.copybreak = 0;
659         msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size;
660         msg_opl->sg.size += msg_npl->sg.size;
661
662         sk_msg_free(sk, &to->msg_encrypted);
663         sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted);
664
665         kfree(from);
666 }
667
668 static int tls_push_record(struct sock *sk, int flags,
669                            unsigned char record_type)
670 {
671         struct tls_context *tls_ctx = tls_get_ctx(sk);
672         struct tls_prot_info *prot = &tls_ctx->prot_info;
673         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
674         struct tls_rec *rec = ctx->open_rec, *tmp = NULL;
675         u32 i, split_point, orig_end;
676         struct sk_msg *msg_pl, *msg_en;
677         struct aead_request *req;
678         bool split;
679         int rc;
680
681         if (!rec)
682                 return 0;
683
684         msg_pl = &rec->msg_plaintext;
685         msg_en = &rec->msg_encrypted;
686
687         split_point = msg_pl->apply_bytes;
688         split = split_point && split_point < msg_pl->sg.size;
689         if (unlikely((!split &&
690                       msg_pl->sg.size +
691                       prot->overhead_size > msg_en->sg.size) ||
692                      (split &&
693                       split_point +
694                       prot->overhead_size > msg_en->sg.size))) {
695                 split = true;
696                 split_point = msg_en->sg.size;
697         }
698         if (split) {
699                 rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en,
700                                            split_point, prot->overhead_size,
701                                            &orig_end);
702                 if (rc < 0)
703                         return rc;
704                 /* This can happen if above tls_split_open_record allocates
705                  * a single large encryption buffer instead of two smaller
706                  * ones. In this case adjust pointers and continue without
707                  * split.
708                  */
709                 if (!msg_pl->sg.size) {
710                         tls_merge_open_record(sk, rec, tmp, orig_end);
711                         msg_pl = &rec->msg_plaintext;
712                         msg_en = &rec->msg_encrypted;
713                         split = false;
714                 }
715                 sk_msg_trim(sk, msg_en, msg_pl->sg.size +
716                             prot->overhead_size);
717         }
718
719         rec->tx_flags = flags;
720         req = &rec->aead_req;
721
722         i = msg_pl->sg.end;
723         sk_msg_iter_var_prev(i);
724
725         rec->content_type = record_type;
726         if (prot->version == TLS_1_3_VERSION) {
727                 /* Add content type to end of message.  No padding added */
728                 sg_set_buf(&rec->sg_content_type, &rec->content_type, 1);
729                 sg_mark_end(&rec->sg_content_type);
730                 sg_chain(msg_pl->sg.data, msg_pl->sg.end + 1,
731                          &rec->sg_content_type);
732         } else {
733                 sg_mark_end(sk_msg_elem(msg_pl, i));
734         }
735
736         if (msg_pl->sg.end < msg_pl->sg.start) {
737                 sg_chain(&msg_pl->sg.data[msg_pl->sg.start],
738                          MAX_SKB_FRAGS - msg_pl->sg.start + 1,
739                          msg_pl->sg.data);
740         }
741
742         i = msg_pl->sg.start;
743         sg_chain(rec->sg_aead_in, 2, &msg_pl->sg.data[i]);
744
745         i = msg_en->sg.end;
746         sk_msg_iter_var_prev(i);
747         sg_mark_end(sk_msg_elem(msg_en, i));
748
749         i = msg_en->sg.start;
750         sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]);
751
752         tls_make_aad(rec->aad_space, msg_pl->sg.size + prot->tail_size,
753                      tls_ctx->tx.rec_seq, record_type, prot);
754
755         tls_fill_prepend(tls_ctx,
756                          page_address(sg_page(&msg_en->sg.data[i])) +
757                          msg_en->sg.data[i].offset,
758                          msg_pl->sg.size + prot->tail_size,
759                          record_type);
760
761         tls_ctx->pending_open_record_frags = false;
762
763         rc = tls_do_encryption(sk, tls_ctx, ctx, req,
764                                msg_pl->sg.size + prot->tail_size, i);
765         if (rc < 0) {
766                 if (rc != -EINPROGRESS) {
767                         tls_err_abort(sk, -EBADMSG);
768                         if (split) {
769                                 tls_ctx->pending_open_record_frags = true;
770                                 tls_merge_open_record(sk, rec, tmp, orig_end);
771                         }
772                 }
773                 ctx->async_capable = 1;
774                 return rc;
775         } else if (split) {
776                 msg_pl = &tmp->msg_plaintext;
777                 msg_en = &tmp->msg_encrypted;
778                 sk_msg_trim(sk, msg_en, msg_pl->sg.size + prot->overhead_size);
779                 tls_ctx->pending_open_record_frags = true;
780                 ctx->open_rec = tmp;
781         }
782
783         return tls_tx_records(sk, flags);
784 }
785
786 static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk,
787                                bool full_record, u8 record_type,
788                                ssize_t *copied, int flags)
789 {
790         struct tls_context *tls_ctx = tls_get_ctx(sk);
791         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
792         struct sk_msg msg_redir = { };
793         struct sk_psock *psock;
794         struct sock *sk_redir;
795         struct tls_rec *rec;
796         bool enospc, policy, redir_ingress;
797         int err = 0, send;
798         u32 delta = 0;
799
800         policy = !(flags & MSG_SENDPAGE_NOPOLICY);
801         psock = sk_psock_get(sk);
802         if (!psock || !policy) {
803                 err = tls_push_record(sk, flags, record_type);
804                 if (err && sk->sk_err == EBADMSG) {
805                         *copied -= sk_msg_free(sk, msg);
806                         tls_free_open_rec(sk);
807                         err = -sk->sk_err;
808                 }
809                 if (psock)
810                         sk_psock_put(sk, psock);
811                 return err;
812         }
813 more_data:
814         enospc = sk_msg_full(msg);
815         if (psock->eval == __SK_NONE) {
816                 delta = msg->sg.size;
817                 psock->eval = sk_psock_msg_verdict(sk, psock, msg);
818                 delta -= msg->sg.size;
819         }
820         if (msg->cork_bytes && msg->cork_bytes > msg->sg.size &&
821             !enospc && !full_record) {
822                 err = -ENOSPC;
823                 goto out_err;
824         }
825         msg->cork_bytes = 0;
826         send = msg->sg.size;
827         if (msg->apply_bytes && msg->apply_bytes < send)
828                 send = msg->apply_bytes;
829
830         switch (psock->eval) {
831         case __SK_PASS:
832                 err = tls_push_record(sk, flags, record_type);
833                 if (err && sk->sk_err == EBADMSG) {
834                         *copied -= sk_msg_free(sk, msg);
835                         tls_free_open_rec(sk);
836                         err = -sk->sk_err;
837                         goto out_err;
838                 }
839                 break;
840         case __SK_REDIRECT:
841                 redir_ingress = psock->redir_ingress;
842                 sk_redir = psock->sk_redir;
843                 memcpy(&msg_redir, msg, sizeof(*msg));
844                 if (msg->apply_bytes < send)
845                         msg->apply_bytes = 0;
846                 else
847                         msg->apply_bytes -= send;
848                 sk_msg_return_zero(sk, msg, send);
849                 msg->sg.size -= send;
850                 release_sock(sk);
851                 err = tcp_bpf_sendmsg_redir(sk_redir, redir_ingress,
852                                             &msg_redir, send, flags);
853                 lock_sock(sk);
854                 if (err < 0) {
855                         *copied -= sk_msg_free_nocharge(sk, &msg_redir);
856                         msg->sg.size = 0;
857                 }
858                 if (msg->sg.size == 0)
859                         tls_free_open_rec(sk);
860                 break;
861         case __SK_DROP:
862         default:
863                 sk_msg_free_partial(sk, msg, send);
864                 if (msg->apply_bytes < send)
865                         msg->apply_bytes = 0;
866                 else
867                         msg->apply_bytes -= send;
868                 if (msg->sg.size == 0)
869                         tls_free_open_rec(sk);
870                 *copied -= (send + delta);
871                 err = -EACCES;
872         }
873
874         if (likely(!err)) {
875                 bool reset_eval = !ctx->open_rec;
876
877                 rec = ctx->open_rec;
878                 if (rec) {
879                         msg = &rec->msg_plaintext;
880                         if (!msg->apply_bytes)
881                                 reset_eval = true;
882                 }
883                 if (reset_eval) {
884                         psock->eval = __SK_NONE;
885                         if (psock->sk_redir) {
886                                 sock_put(psock->sk_redir);
887                                 psock->sk_redir = NULL;
888                         }
889                 }
890                 if (rec)
891                         goto more_data;
892         }
893  out_err:
894         sk_psock_put(sk, psock);
895         return err;
896 }
897
898 static int tls_sw_push_pending_record(struct sock *sk, int flags)
899 {
900         struct tls_context *tls_ctx = tls_get_ctx(sk);
901         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
902         struct tls_rec *rec = ctx->open_rec;
903         struct sk_msg *msg_pl;
904         size_t copied;
905
906         if (!rec)
907                 return 0;
908
909         msg_pl = &rec->msg_plaintext;
910         copied = msg_pl->sg.size;
911         if (!copied)
912                 return 0;
913
914         return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA,
915                                    &copied, flags);
916 }
917
918 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
919 {
920         long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
921         struct tls_context *tls_ctx = tls_get_ctx(sk);
922         struct tls_prot_info *prot = &tls_ctx->prot_info;
923         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
924         bool async_capable = ctx->async_capable;
925         unsigned char record_type = TLS_RECORD_TYPE_DATA;
926         bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
927         bool eor = !(msg->msg_flags & MSG_MORE);
928         size_t try_to_copy;
929         ssize_t copied = 0;
930         struct sk_msg *msg_pl, *msg_en;
931         struct tls_rec *rec;
932         int required_size;
933         int num_async = 0;
934         bool full_record;
935         int record_room;
936         int num_zc = 0;
937         int orig_size;
938         int ret = 0;
939         int pending;
940
941         if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
942                                MSG_CMSG_COMPAT))
943                 return -EOPNOTSUPP;
944
945         mutex_lock(&tls_ctx->tx_lock);
946         lock_sock(sk);
947
948         if (unlikely(msg->msg_controllen)) {
949                 ret = tls_process_cmsg(sk, msg, &record_type);
950                 if (ret) {
951                         if (ret == -EINPROGRESS)
952                                 num_async++;
953                         else if (ret != -EAGAIN)
954                                 goto send_end;
955                 }
956         }
957
958         while (msg_data_left(msg)) {
959                 if (sk->sk_err) {
960                         ret = -sk->sk_err;
961                         goto send_end;
962                 }
963
964                 if (ctx->open_rec)
965                         rec = ctx->open_rec;
966                 else
967                         rec = ctx->open_rec = tls_get_rec(sk);
968                 if (!rec) {
969                         ret = -ENOMEM;
970                         goto send_end;
971                 }
972
973                 msg_pl = &rec->msg_plaintext;
974                 msg_en = &rec->msg_encrypted;
975
976                 orig_size = msg_pl->sg.size;
977                 full_record = false;
978                 try_to_copy = msg_data_left(msg);
979                 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
980                 if (try_to_copy >= record_room) {
981                         try_to_copy = record_room;
982                         full_record = true;
983                 }
984
985                 required_size = msg_pl->sg.size + try_to_copy +
986                                 prot->overhead_size;
987
988                 if (!sk_stream_memory_free(sk))
989                         goto wait_for_sndbuf;
990
991 alloc_encrypted:
992                 ret = tls_alloc_encrypted_msg(sk, required_size);
993                 if (ret) {
994                         if (ret != -ENOSPC)
995                                 goto wait_for_memory;
996
997                         /* Adjust try_to_copy according to the amount that was
998                          * actually allocated. The difference is due
999                          * to max sg elements limit
1000                          */
1001                         try_to_copy -= required_size - msg_en->sg.size;
1002                         full_record = true;
1003                 }
1004
1005                 if (!is_kvec && (full_record || eor) && !async_capable) {
1006                         u32 first = msg_pl->sg.end;
1007
1008                         ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter,
1009                                                         msg_pl, try_to_copy);
1010                         if (ret)
1011                                 goto fallback_to_reg_send;
1012
1013                         num_zc++;
1014                         copied += try_to_copy;
1015
1016                         sk_msg_sg_copy_set(msg_pl, first);
1017                         ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1018                                                   record_type, &copied,
1019                                                   msg->msg_flags);
1020                         if (ret) {
1021                                 if (ret == -EINPROGRESS)
1022                                         num_async++;
1023                                 else if (ret == -ENOMEM)
1024                                         goto wait_for_memory;
1025                                 else if (ctx->open_rec && ret == -ENOSPC)
1026                                         goto rollback_iter;
1027                                 else if (ret != -EAGAIN)
1028                                         goto send_end;
1029                         }
1030                         continue;
1031 rollback_iter:
1032                         copied -= try_to_copy;
1033                         sk_msg_sg_copy_clear(msg_pl, first);
1034                         iov_iter_revert(&msg->msg_iter,
1035                                         msg_pl->sg.size - orig_size);
1036 fallback_to_reg_send:
1037                         sk_msg_trim(sk, msg_pl, orig_size);
1038                 }
1039
1040                 required_size = msg_pl->sg.size + try_to_copy;
1041
1042                 ret = tls_clone_plaintext_msg(sk, required_size);
1043                 if (ret) {
1044                         if (ret != -ENOSPC)
1045                                 goto send_end;
1046
1047                         /* Adjust try_to_copy according to the amount that was
1048                          * actually allocated. The difference is due
1049                          * to max sg elements limit
1050                          */
1051                         try_to_copy -= required_size - msg_pl->sg.size;
1052                         full_record = true;
1053                         sk_msg_trim(sk, msg_en,
1054                                     msg_pl->sg.size + prot->overhead_size);
1055                 }
1056
1057                 if (try_to_copy) {
1058                         ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter,
1059                                                        msg_pl, try_to_copy);
1060                         if (ret < 0)
1061                                 goto trim_sgl;
1062                 }
1063
1064                 /* Open records defined only if successfully copied, otherwise
1065                  * we would trim the sg but not reset the open record frags.
1066                  */
1067                 tls_ctx->pending_open_record_frags = true;
1068                 copied += try_to_copy;
1069                 if (full_record || eor) {
1070                         ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1071                                                   record_type, &copied,
1072                                                   msg->msg_flags);
1073                         if (ret) {
1074                                 if (ret == -EINPROGRESS)
1075                                         num_async++;
1076                                 else if (ret == -ENOMEM)
1077                                         goto wait_for_memory;
1078                                 else if (ret != -EAGAIN) {
1079                                         if (ret == -ENOSPC)
1080                                                 ret = 0;
1081                                         goto send_end;
1082                                 }
1083                         }
1084                 }
1085
1086                 continue;
1087
1088 wait_for_sndbuf:
1089                 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1090 wait_for_memory:
1091                 ret = sk_stream_wait_memory(sk, &timeo);
1092                 if (ret) {
1093 trim_sgl:
1094                         if (ctx->open_rec)
1095                                 tls_trim_both_msgs(sk, orig_size);
1096                         goto send_end;
1097                 }
1098
1099                 if (ctx->open_rec && msg_en->sg.size < required_size)
1100                         goto alloc_encrypted;
1101         }
1102
1103         if (!num_async) {
1104                 goto send_end;
1105         } else if (num_zc) {
1106                 /* Wait for pending encryptions to get completed */
1107                 spin_lock_bh(&ctx->encrypt_compl_lock);
1108                 ctx->async_notify = true;
1109
1110                 pending = atomic_read(&ctx->encrypt_pending);
1111                 spin_unlock_bh(&ctx->encrypt_compl_lock);
1112                 if (pending)
1113                         crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1114                 else
1115                         reinit_completion(&ctx->async_wait.completion);
1116
1117                 /* There can be no concurrent accesses, since we have no
1118                  * pending encrypt operations
1119                  */
1120                 WRITE_ONCE(ctx->async_notify, false);
1121
1122                 if (ctx->async_wait.err) {
1123                         ret = ctx->async_wait.err;
1124                         copied = 0;
1125                 }
1126         }
1127
1128         /* Transmit if any encryptions have completed */
1129         if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1130                 cancel_delayed_work(&ctx->tx_work.work);
1131                 tls_tx_records(sk, msg->msg_flags);
1132         }
1133
1134 send_end:
1135         ret = sk_stream_error(sk, msg->msg_flags, ret);
1136
1137         release_sock(sk);
1138         mutex_unlock(&tls_ctx->tx_lock);
1139         return copied > 0 ? copied : ret;
1140 }
1141
1142 static int tls_sw_do_sendpage(struct sock *sk, struct page *page,
1143                               int offset, size_t size, int flags)
1144 {
1145         long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1146         struct tls_context *tls_ctx = tls_get_ctx(sk);
1147         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
1148         struct tls_prot_info *prot = &tls_ctx->prot_info;
1149         unsigned char record_type = TLS_RECORD_TYPE_DATA;
1150         struct sk_msg *msg_pl;
1151         struct tls_rec *rec;
1152         int num_async = 0;
1153         ssize_t copied = 0;
1154         bool full_record;
1155         int record_room;
1156         int ret = 0;
1157         bool eor;
1158
1159         eor = !(flags & MSG_SENDPAGE_NOTLAST);
1160         sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1161
1162         /* Call the sk_stream functions to manage the sndbuf mem. */
1163         while (size > 0) {
1164                 size_t copy, required_size;
1165
1166                 if (sk->sk_err) {
1167                         ret = -sk->sk_err;
1168                         goto sendpage_end;
1169                 }
1170
1171                 if (ctx->open_rec)
1172                         rec = ctx->open_rec;
1173                 else
1174                         rec = ctx->open_rec = tls_get_rec(sk);
1175                 if (!rec) {
1176                         ret = -ENOMEM;
1177                         goto sendpage_end;
1178                 }
1179
1180                 msg_pl = &rec->msg_plaintext;
1181
1182                 full_record = false;
1183                 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
1184                 copy = size;
1185                 if (copy >= record_room) {
1186                         copy = record_room;
1187                         full_record = true;
1188                 }
1189
1190                 required_size = msg_pl->sg.size + copy + prot->overhead_size;
1191
1192                 if (!sk_stream_memory_free(sk))
1193                         goto wait_for_sndbuf;
1194 alloc_payload:
1195                 ret = tls_alloc_encrypted_msg(sk, required_size);
1196                 if (ret) {
1197                         if (ret != -ENOSPC)
1198                                 goto wait_for_memory;
1199
1200                         /* Adjust copy according to the amount that was
1201                          * actually allocated. The difference is due
1202                          * to max sg elements limit
1203                          */
1204                         copy -= required_size - msg_pl->sg.size;
1205                         full_record = true;
1206                 }
1207
1208                 sk_msg_page_add(msg_pl, page, copy, offset);
1209                 sk_mem_charge(sk, copy);
1210
1211                 offset += copy;
1212                 size -= copy;
1213                 copied += copy;
1214
1215                 tls_ctx->pending_open_record_frags = true;
1216                 if (full_record || eor || sk_msg_full(msg_pl)) {
1217                         ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1218                                                   record_type, &copied, flags);
1219                         if (ret) {
1220                                 if (ret == -EINPROGRESS)
1221                                         num_async++;
1222                                 else if (ret == -ENOMEM)
1223                                         goto wait_for_memory;
1224                                 else if (ret != -EAGAIN) {
1225                                         if (ret == -ENOSPC)
1226                                                 ret = 0;
1227                                         goto sendpage_end;
1228                                 }
1229                         }
1230                 }
1231                 continue;
1232 wait_for_sndbuf:
1233                 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1234 wait_for_memory:
1235                 ret = sk_stream_wait_memory(sk, &timeo);
1236                 if (ret) {
1237                         if (ctx->open_rec)
1238                                 tls_trim_both_msgs(sk, msg_pl->sg.size);
1239                         goto sendpage_end;
1240                 }
1241
1242                 if (ctx->open_rec)
1243                         goto alloc_payload;
1244         }
1245
1246         if (num_async) {
1247                 /* Transmit if any encryptions have completed */
1248                 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1249                         cancel_delayed_work(&ctx->tx_work.work);
1250                         tls_tx_records(sk, flags);
1251                 }
1252         }
1253 sendpage_end:
1254         ret = sk_stream_error(sk, flags, ret);
1255         return copied > 0 ? copied : ret;
1256 }
1257
1258 int tls_sw_sendpage_locked(struct sock *sk, struct page *page,
1259                            int offset, size_t size, int flags)
1260 {
1261         if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1262                       MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY |
1263                       MSG_NO_SHARED_FRAGS))
1264                 return -EOPNOTSUPP;
1265
1266         return tls_sw_do_sendpage(sk, page, offset, size, flags);
1267 }
1268
1269 int tls_sw_sendpage(struct sock *sk, struct page *page,
1270                     int offset, size_t size, int flags)
1271 {
1272         struct tls_context *tls_ctx = tls_get_ctx(sk);
1273         int ret;
1274
1275         if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1276                       MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY))
1277                 return -EOPNOTSUPP;
1278
1279         mutex_lock(&tls_ctx->tx_lock);
1280         lock_sock(sk);
1281         ret = tls_sw_do_sendpage(sk, page, offset, size, flags);
1282         release_sock(sk);
1283         mutex_unlock(&tls_ctx->tx_lock);
1284         return ret;
1285 }
1286
1287 static int
1288 tls_rx_rec_wait(struct sock *sk, struct sk_psock *psock, bool nonblock,
1289                 bool released)
1290 {
1291         struct tls_context *tls_ctx = tls_get_ctx(sk);
1292         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1293         DEFINE_WAIT_FUNC(wait, woken_wake_function);
1294         long timeo;
1295
1296         timeo = sock_rcvtimeo(sk, nonblock);
1297
1298         while (!tls_strp_msg_ready(ctx)) {
1299                 if (!sk_psock_queue_empty(psock))
1300                         return 0;
1301
1302                 if (sk->sk_err)
1303                         return sock_error(sk);
1304
1305                 if (!skb_queue_empty(&sk->sk_receive_queue)) {
1306                         tls_strp_check_rcv(&ctx->strp);
1307                         if (tls_strp_msg_ready(ctx))
1308                                 break;
1309                 }
1310
1311                 if (sk->sk_shutdown & RCV_SHUTDOWN)
1312                         return 0;
1313
1314                 if (sock_flag(sk, SOCK_DONE))
1315                         return 0;
1316
1317                 if (!timeo)
1318                         return -EAGAIN;
1319
1320                 released = true;
1321                 add_wait_queue(sk_sleep(sk), &wait);
1322                 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1323                 sk_wait_event(sk, &timeo,
1324                               tls_strp_msg_ready(ctx) ||
1325                               !sk_psock_queue_empty(psock),
1326                               &wait);
1327                 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1328                 remove_wait_queue(sk_sleep(sk), &wait);
1329
1330                 /* Handle signals */
1331                 if (signal_pending(current))
1332                         return sock_intr_errno(timeo);
1333         }
1334
1335         tls_strp_msg_load(&ctx->strp, released);
1336
1337         return 1;
1338 }
1339
1340 static int tls_setup_from_iter(struct iov_iter *from,
1341                                int length, int *pages_used,
1342                                struct scatterlist *to,
1343                                int to_max_pages)
1344 {
1345         int rc = 0, i = 0, num_elem = *pages_used, maxpages;
1346         struct page *pages[MAX_SKB_FRAGS];
1347         unsigned int size = 0;
1348         ssize_t copied, use;
1349         size_t offset;
1350
1351         while (length > 0) {
1352                 i = 0;
1353                 maxpages = to_max_pages - num_elem;
1354                 if (maxpages == 0) {
1355                         rc = -EFAULT;
1356                         goto out;
1357                 }
1358                 copied = iov_iter_get_pages2(from, pages,
1359                                             length,
1360                                             maxpages, &offset);
1361                 if (copied <= 0) {
1362                         rc = -EFAULT;
1363                         goto out;
1364                 }
1365
1366                 length -= copied;
1367                 size += copied;
1368                 while (copied) {
1369                         use = min_t(int, copied, PAGE_SIZE - offset);
1370
1371                         sg_set_page(&to[num_elem],
1372                                     pages[i], use, offset);
1373                         sg_unmark_end(&to[num_elem]);
1374                         /* We do not uncharge memory from this API */
1375
1376                         offset = 0;
1377                         copied -= use;
1378
1379                         i++;
1380                         num_elem++;
1381                 }
1382         }
1383         /* Mark the end in the last sg entry if newly added */
1384         if (num_elem > *pages_used)
1385                 sg_mark_end(&to[num_elem - 1]);
1386 out:
1387         if (rc)
1388                 iov_iter_revert(from, size);
1389         *pages_used = num_elem;
1390
1391         return rc;
1392 }
1393
1394 static struct sk_buff *
1395 tls_alloc_clrtxt_skb(struct sock *sk, struct sk_buff *skb,
1396                      unsigned int full_len)
1397 {
1398         struct strp_msg *clr_rxm;
1399         struct sk_buff *clr_skb;
1400         int err;
1401
1402         clr_skb = alloc_skb_with_frags(0, full_len, TLS_PAGE_ORDER,
1403                                        &err, sk->sk_allocation);
1404         if (!clr_skb)
1405                 return NULL;
1406
1407         skb_copy_header(clr_skb, skb);
1408         clr_skb->len = full_len;
1409         clr_skb->data_len = full_len;
1410
1411         clr_rxm = strp_msg(clr_skb);
1412         clr_rxm->offset = 0;
1413
1414         return clr_skb;
1415 }
1416
1417 /* Decrypt handlers
1418  *
1419  * tls_decrypt_sw() and tls_decrypt_device() are decrypt handlers.
1420  * They must transform the darg in/out argument are as follows:
1421  *       |          Input            |         Output
1422  * -------------------------------------------------------------------
1423  *    zc | Zero-copy decrypt allowed | Zero-copy performed
1424  * async | Async decrypt allowed     | Async crypto used / in progress
1425  *   skb |            *              | Output skb
1426  *
1427  * If ZC decryption was performed darg.skb will point to the input skb.
1428  */
1429
1430 /* This function decrypts the input skb into either out_iov or in out_sg
1431  * or in skb buffers itself. The input parameter 'darg->zc' indicates if
1432  * zero-copy mode needs to be tried or not. With zero-copy mode, either
1433  * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are
1434  * NULL, then the decryption happens inside skb buffers itself, i.e.
1435  * zero-copy gets disabled and 'darg->zc' is updated.
1436  */
1437 static int tls_decrypt_sg(struct sock *sk, struct iov_iter *out_iov,
1438                           struct scatterlist *out_sg,
1439                           struct tls_decrypt_arg *darg)
1440 {
1441         struct tls_context *tls_ctx = tls_get_ctx(sk);
1442         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1443         struct tls_prot_info *prot = &tls_ctx->prot_info;
1444         int n_sgin, n_sgout, aead_size, err, pages = 0;
1445         struct sk_buff *skb = tls_strp_msg(ctx);
1446         const struct strp_msg *rxm = strp_msg(skb);
1447         const struct tls_msg *tlm = tls_msg(skb);
1448         struct aead_request *aead_req;
1449         struct scatterlist *sgin = NULL;
1450         struct scatterlist *sgout = NULL;
1451         const int data_len = rxm->full_len - prot->overhead_size;
1452         int tail_pages = !!prot->tail_size;
1453         struct tls_decrypt_ctx *dctx;
1454         struct sk_buff *clear_skb;
1455         int iv_offset = 0;
1456         u8 *mem;
1457
1458         n_sgin = skb_nsg(skb, rxm->offset + prot->prepend_size,
1459                          rxm->full_len - prot->prepend_size);
1460         if (n_sgin < 1)
1461                 return n_sgin ?: -EBADMSG;
1462
1463         if (darg->zc && (out_iov || out_sg)) {
1464                 clear_skb = NULL;
1465
1466                 if (out_iov)
1467                         n_sgout = 1 + tail_pages +
1468                                 iov_iter_npages_cap(out_iov, INT_MAX, data_len);
1469                 else
1470                         n_sgout = sg_nents(out_sg);
1471         } else {
1472                 darg->zc = false;
1473
1474                 clear_skb = tls_alloc_clrtxt_skb(sk, skb, rxm->full_len);
1475                 if (!clear_skb)
1476                         return -ENOMEM;
1477
1478                 n_sgout = 1 + skb_shinfo(clear_skb)->nr_frags;
1479         }
1480
1481         /* Increment to accommodate AAD */
1482         n_sgin = n_sgin + 1;
1483
1484         /* Allocate a single block of memory which contains
1485          *   aead_req || tls_decrypt_ctx.
1486          * Both structs are variable length.
1487          */
1488         aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv);
1489         mem = kmalloc(aead_size + struct_size(dctx, sg, n_sgin + n_sgout),
1490                       sk->sk_allocation);
1491         if (!mem) {
1492                 err = -ENOMEM;
1493                 goto exit_free_skb;
1494         }
1495
1496         /* Segment the allocated memory */
1497         aead_req = (struct aead_request *)mem;
1498         dctx = (struct tls_decrypt_ctx *)(mem + aead_size);
1499         sgin = &dctx->sg[0];
1500         sgout = &dctx->sg[n_sgin];
1501
1502         /* For CCM based ciphers, first byte of nonce+iv is a constant */
1503         switch (prot->cipher_type) {
1504         case TLS_CIPHER_AES_CCM_128:
1505                 dctx->iv[0] = TLS_AES_CCM_IV_B0_BYTE;
1506                 iv_offset = 1;
1507                 break;
1508         case TLS_CIPHER_SM4_CCM:
1509                 dctx->iv[0] = TLS_SM4_CCM_IV_B0_BYTE;
1510                 iv_offset = 1;
1511                 break;
1512         }
1513
1514         /* Prepare IV */
1515         if (prot->version == TLS_1_3_VERSION ||
1516             prot->cipher_type == TLS_CIPHER_CHACHA20_POLY1305) {
1517                 memcpy(&dctx->iv[iv_offset], tls_ctx->rx.iv,
1518                        prot->iv_size + prot->salt_size);
1519         } else {
1520                 err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE,
1521                                     &dctx->iv[iv_offset] + prot->salt_size,
1522                                     prot->iv_size);
1523                 if (err < 0)
1524                         goto exit_free;
1525                 memcpy(&dctx->iv[iv_offset], tls_ctx->rx.iv, prot->salt_size);
1526         }
1527         tls_xor_iv_with_seq(prot, &dctx->iv[iv_offset], tls_ctx->rx.rec_seq);
1528
1529         /* Prepare AAD */
1530         tls_make_aad(dctx->aad, rxm->full_len - prot->overhead_size +
1531                      prot->tail_size,
1532                      tls_ctx->rx.rec_seq, tlm->control, prot);
1533
1534         /* Prepare sgin */
1535         sg_init_table(sgin, n_sgin);
1536         sg_set_buf(&sgin[0], dctx->aad, prot->aad_size);
1537         err = skb_to_sgvec(skb, &sgin[1],
1538                            rxm->offset + prot->prepend_size,
1539                            rxm->full_len - prot->prepend_size);
1540         if (err < 0)
1541                 goto exit_free;
1542
1543         if (clear_skb) {
1544                 sg_init_table(sgout, n_sgout);
1545                 sg_set_buf(&sgout[0], dctx->aad, prot->aad_size);
1546
1547                 err = skb_to_sgvec(clear_skb, &sgout[1], prot->prepend_size,
1548                                    data_len + prot->tail_size);
1549                 if (err < 0)
1550                         goto exit_free;
1551         } else if (out_iov) {
1552                 sg_init_table(sgout, n_sgout);
1553                 sg_set_buf(&sgout[0], dctx->aad, prot->aad_size);
1554
1555                 err = tls_setup_from_iter(out_iov, data_len, &pages, &sgout[1],
1556                                           (n_sgout - 1 - tail_pages));
1557                 if (err < 0)
1558                         goto exit_free_pages;
1559
1560                 if (prot->tail_size) {
1561                         sg_unmark_end(&sgout[pages]);
1562                         sg_set_buf(&sgout[pages + 1], &dctx->tail,
1563                                    prot->tail_size);
1564                         sg_mark_end(&sgout[pages + 1]);
1565                 }
1566         } else if (out_sg) {
1567                 memcpy(sgout, out_sg, n_sgout * sizeof(*sgout));
1568         }
1569
1570         /* Prepare and submit AEAD request */
1571         err = tls_do_decryption(sk, sgin, sgout, dctx->iv,
1572                                 data_len + prot->tail_size, aead_req, darg);
1573         if (err)
1574                 goto exit_free_pages;
1575
1576         darg->skb = clear_skb ?: tls_strp_msg(ctx);
1577         clear_skb = NULL;
1578
1579         if (unlikely(darg->async)) {
1580                 err = tls_strp_msg_hold(&ctx->strp, &ctx->async_hold);
1581                 if (err)
1582                         __skb_queue_tail(&ctx->async_hold, darg->skb);
1583                 return err;
1584         }
1585
1586         if (prot->tail_size)
1587                 darg->tail = dctx->tail;
1588
1589 exit_free_pages:
1590         /* Release the pages in case iov was mapped to pages */
1591         for (; pages > 0; pages--)
1592                 put_page(sg_page(&sgout[pages]));
1593 exit_free:
1594         kfree(mem);
1595 exit_free_skb:
1596         consume_skb(clear_skb);
1597         return err;
1598 }
1599
1600 static int
1601 tls_decrypt_sw(struct sock *sk, struct tls_context *tls_ctx,
1602                struct msghdr *msg, struct tls_decrypt_arg *darg)
1603 {
1604         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1605         struct tls_prot_info *prot = &tls_ctx->prot_info;
1606         struct strp_msg *rxm;
1607         int pad, err;
1608
1609         err = tls_decrypt_sg(sk, &msg->msg_iter, NULL, darg);
1610         if (err < 0) {
1611                 if (err == -EBADMSG)
1612                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTERROR);
1613                 return err;
1614         }
1615         /* keep going even for ->async, the code below is TLS 1.3 */
1616
1617         /* If opportunistic TLS 1.3 ZC failed retry without ZC */
1618         if (unlikely(darg->zc && prot->version == TLS_1_3_VERSION &&
1619                      darg->tail != TLS_RECORD_TYPE_DATA)) {
1620                 darg->zc = false;
1621                 if (!darg->tail)
1622                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXNOPADVIOL);
1623                 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTRETRY);
1624                 return tls_decrypt_sw(sk, tls_ctx, msg, darg);
1625         }
1626
1627         pad = tls_padding_length(prot, darg->skb, darg);
1628         if (pad < 0) {
1629                 if (darg->skb != tls_strp_msg(ctx))
1630                         consume_skb(darg->skb);
1631                 return pad;
1632         }
1633
1634         rxm = strp_msg(darg->skb);
1635         rxm->full_len -= pad;
1636
1637         return 0;
1638 }
1639
1640 static int
1641 tls_decrypt_device(struct sock *sk, struct msghdr *msg,
1642                    struct tls_context *tls_ctx, struct tls_decrypt_arg *darg)
1643 {
1644         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1645         struct tls_prot_info *prot = &tls_ctx->prot_info;
1646         struct strp_msg *rxm;
1647         int pad, err;
1648
1649         if (tls_ctx->rx_conf != TLS_HW)
1650                 return 0;
1651
1652         err = tls_device_decrypted(sk, tls_ctx);
1653         if (err <= 0)
1654                 return err;
1655
1656         pad = tls_padding_length(prot, tls_strp_msg(ctx), darg);
1657         if (pad < 0)
1658                 return pad;
1659
1660         darg->async = false;
1661         darg->skb = tls_strp_msg(ctx);
1662         /* ->zc downgrade check, in case TLS 1.3 gets here */
1663         darg->zc &= !(prot->version == TLS_1_3_VERSION &&
1664                       tls_msg(darg->skb)->control != TLS_RECORD_TYPE_DATA);
1665
1666         rxm = strp_msg(darg->skb);
1667         rxm->full_len -= pad;
1668
1669         if (!darg->zc) {
1670                 /* Non-ZC case needs a real skb */
1671                 darg->skb = tls_strp_msg_detach(ctx);
1672                 if (!darg->skb)
1673                         return -ENOMEM;
1674         } else {
1675                 unsigned int off, len;
1676
1677                 /* In ZC case nobody cares about the output skb.
1678                  * Just copy the data here. Note the skb is not fully trimmed.
1679                  */
1680                 off = rxm->offset + prot->prepend_size;
1681                 len = rxm->full_len - prot->overhead_size;
1682
1683                 err = skb_copy_datagram_msg(darg->skb, off, msg, len);
1684                 if (err)
1685                         return err;
1686         }
1687         return 1;
1688 }
1689
1690 static int tls_rx_one_record(struct sock *sk, struct msghdr *msg,
1691                              struct tls_decrypt_arg *darg)
1692 {
1693         struct tls_context *tls_ctx = tls_get_ctx(sk);
1694         struct tls_prot_info *prot = &tls_ctx->prot_info;
1695         struct strp_msg *rxm;
1696         int err;
1697
1698         err = tls_decrypt_device(sk, msg, tls_ctx, darg);
1699         if (!err)
1700                 err = tls_decrypt_sw(sk, tls_ctx, msg, darg);
1701         if (err < 0)
1702                 return err;
1703
1704         rxm = strp_msg(darg->skb);
1705         rxm->offset += prot->prepend_size;
1706         rxm->full_len -= prot->overhead_size;
1707         tls_advance_record_sn(sk, prot, &tls_ctx->rx);
1708
1709         return 0;
1710 }
1711
1712 int decrypt_skb(struct sock *sk, struct scatterlist *sgout)
1713 {
1714         struct tls_decrypt_arg darg = { .zc = true, };
1715
1716         return tls_decrypt_sg(sk, NULL, sgout, &darg);
1717 }
1718
1719 static int tls_record_content_type(struct msghdr *msg, struct tls_msg *tlm,
1720                                    u8 *control)
1721 {
1722         int err;
1723
1724         if (!*control) {
1725                 *control = tlm->control;
1726                 if (!*control)
1727                         return -EBADMSG;
1728
1729                 err = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
1730                                sizeof(*control), control);
1731                 if (*control != TLS_RECORD_TYPE_DATA) {
1732                         if (err || msg->msg_flags & MSG_CTRUNC)
1733                                 return -EIO;
1734                 }
1735         } else if (*control != tlm->control) {
1736                 return 0;
1737         }
1738
1739         return 1;
1740 }
1741
1742 static void tls_rx_rec_done(struct tls_sw_context_rx *ctx)
1743 {
1744         tls_strp_msg_done(&ctx->strp);
1745 }
1746
1747 /* This function traverses the rx_list in tls receive context to copies the
1748  * decrypted records into the buffer provided by caller zero copy is not
1749  * true. Further, the records are removed from the rx_list if it is not a peek
1750  * case and the record has been consumed completely.
1751  */
1752 static int process_rx_list(struct tls_sw_context_rx *ctx,
1753                            struct msghdr *msg,
1754                            u8 *control,
1755                            size_t skip,
1756                            size_t len,
1757                            bool is_peek)
1758 {
1759         struct sk_buff *skb = skb_peek(&ctx->rx_list);
1760         struct tls_msg *tlm;
1761         ssize_t copied = 0;
1762         int err;
1763
1764         while (skip && skb) {
1765                 struct strp_msg *rxm = strp_msg(skb);
1766                 tlm = tls_msg(skb);
1767
1768                 err = tls_record_content_type(msg, tlm, control);
1769                 if (err <= 0)
1770                         goto out;
1771
1772                 if (skip < rxm->full_len)
1773                         break;
1774
1775                 skip = skip - rxm->full_len;
1776                 skb = skb_peek_next(skb, &ctx->rx_list);
1777         }
1778
1779         while (len && skb) {
1780                 struct sk_buff *next_skb;
1781                 struct strp_msg *rxm = strp_msg(skb);
1782                 int chunk = min_t(unsigned int, rxm->full_len - skip, len);
1783
1784                 tlm = tls_msg(skb);
1785
1786                 err = tls_record_content_type(msg, tlm, control);
1787                 if (err <= 0)
1788                         goto out;
1789
1790                 err = skb_copy_datagram_msg(skb, rxm->offset + skip,
1791                                             msg, chunk);
1792                 if (err < 0)
1793                         goto out;
1794
1795                 len = len - chunk;
1796                 copied = copied + chunk;
1797
1798                 /* Consume the data from record if it is non-peek case*/
1799                 if (!is_peek) {
1800                         rxm->offset = rxm->offset + chunk;
1801                         rxm->full_len = rxm->full_len - chunk;
1802
1803                         /* Return if there is unconsumed data in the record */
1804                         if (rxm->full_len - skip)
1805                                 break;
1806                 }
1807
1808                 /* The remaining skip-bytes must lie in 1st record in rx_list.
1809                  * So from the 2nd record, 'skip' should be 0.
1810                  */
1811                 skip = 0;
1812
1813                 if (msg)
1814                         msg->msg_flags |= MSG_EOR;
1815
1816                 next_skb = skb_peek_next(skb, &ctx->rx_list);
1817
1818                 if (!is_peek) {
1819                         __skb_unlink(skb, &ctx->rx_list);
1820                         consume_skb(skb);
1821                 }
1822
1823                 skb = next_skb;
1824         }
1825         err = 0;
1826
1827 out:
1828         return copied ? : err;
1829 }
1830
1831 static bool
1832 tls_read_flush_backlog(struct sock *sk, struct tls_prot_info *prot,
1833                        size_t len_left, size_t decrypted, ssize_t done,
1834                        size_t *flushed_at)
1835 {
1836         size_t max_rec;
1837
1838         if (len_left <= decrypted)
1839                 return false;
1840
1841         max_rec = prot->overhead_size - prot->tail_size + TLS_MAX_PAYLOAD_SIZE;
1842         if (done - *flushed_at < SZ_128K && tcp_inq(sk) > max_rec)
1843                 return false;
1844
1845         *flushed_at = done;
1846         return sk_flush_backlog(sk);
1847 }
1848
1849 static int tls_rx_reader_lock(struct sock *sk, struct tls_sw_context_rx *ctx,
1850                               bool nonblock)
1851 {
1852         long timeo;
1853         int err;
1854
1855         lock_sock(sk);
1856
1857         timeo = sock_rcvtimeo(sk, nonblock);
1858
1859         while (unlikely(ctx->reader_present)) {
1860                 DEFINE_WAIT_FUNC(wait, woken_wake_function);
1861
1862                 ctx->reader_contended = 1;
1863
1864                 add_wait_queue(&ctx->wq, &wait);
1865                 sk_wait_event(sk, &timeo,
1866                               !READ_ONCE(ctx->reader_present), &wait);
1867                 remove_wait_queue(&ctx->wq, &wait);
1868
1869                 if (timeo <= 0) {
1870                         err = -EAGAIN;
1871                         goto err_unlock;
1872                 }
1873                 if (signal_pending(current)) {
1874                         err = sock_intr_errno(timeo);
1875                         goto err_unlock;
1876                 }
1877         }
1878
1879         WRITE_ONCE(ctx->reader_present, 1);
1880
1881         return 0;
1882
1883 err_unlock:
1884         release_sock(sk);
1885         return err;
1886 }
1887
1888 static void tls_rx_reader_unlock(struct sock *sk, struct tls_sw_context_rx *ctx)
1889 {
1890         if (unlikely(ctx->reader_contended)) {
1891                 if (wq_has_sleeper(&ctx->wq))
1892                         wake_up(&ctx->wq);
1893                 else
1894                         ctx->reader_contended = 0;
1895
1896                 WARN_ON_ONCE(!ctx->reader_present);
1897         }
1898
1899         WRITE_ONCE(ctx->reader_present, 0);
1900         release_sock(sk);
1901 }
1902
1903 int tls_sw_recvmsg(struct sock *sk,
1904                    struct msghdr *msg,
1905                    size_t len,
1906                    int flags,
1907                    int *addr_len)
1908 {
1909         struct tls_context *tls_ctx = tls_get_ctx(sk);
1910         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1911         struct tls_prot_info *prot = &tls_ctx->prot_info;
1912         ssize_t decrypted = 0, async_copy_bytes = 0;
1913         struct sk_psock *psock;
1914         unsigned char control = 0;
1915         size_t flushed_at = 0;
1916         struct strp_msg *rxm;
1917         struct tls_msg *tlm;
1918         ssize_t copied = 0;
1919         bool async = false;
1920         int target, err;
1921         bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
1922         bool is_peek = flags & MSG_PEEK;
1923         bool released = true;
1924         bool bpf_strp_enabled;
1925         bool zc_capable;
1926
1927         if (unlikely(flags & MSG_ERRQUEUE))
1928                 return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR);
1929
1930         psock = sk_psock_get(sk);
1931         err = tls_rx_reader_lock(sk, ctx, flags & MSG_DONTWAIT);
1932         if (err < 0)
1933                 return err;
1934         bpf_strp_enabled = sk_psock_strp_enabled(psock);
1935
1936         /* If crypto failed the connection is broken */
1937         err = ctx->async_wait.err;
1938         if (err)
1939                 goto end;
1940
1941         /* Process pending decrypted records. It must be non-zero-copy */
1942         err = process_rx_list(ctx, msg, &control, 0, len, is_peek);
1943         if (err < 0)
1944                 goto end;
1945
1946         copied = err;
1947         if (len <= copied)
1948                 goto end;
1949
1950         target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1951         len = len - copied;
1952
1953         zc_capable = !bpf_strp_enabled && !is_kvec && !is_peek &&
1954                 ctx->zc_capable;
1955         decrypted = 0;
1956         while (len && (decrypted + copied < target || tls_strp_msg_ready(ctx))) {
1957                 struct tls_decrypt_arg darg;
1958                 int to_decrypt, chunk;
1959
1960                 err = tls_rx_rec_wait(sk, psock, flags & MSG_DONTWAIT,
1961                                       released);
1962                 if (err <= 0) {
1963                         if (psock) {
1964                                 chunk = sk_msg_recvmsg(sk, psock, msg, len,
1965                                                        flags);
1966                                 if (chunk > 0) {
1967                                         decrypted += chunk;
1968                                         len -= chunk;
1969                                         continue;
1970                                 }
1971                         }
1972                         goto recv_end;
1973                 }
1974
1975                 memset(&darg.inargs, 0, sizeof(darg.inargs));
1976
1977                 rxm = strp_msg(tls_strp_msg(ctx));
1978                 tlm = tls_msg(tls_strp_msg(ctx));
1979
1980                 to_decrypt = rxm->full_len - prot->overhead_size;
1981
1982                 if (zc_capable && to_decrypt <= len &&
1983                     tlm->control == TLS_RECORD_TYPE_DATA)
1984                         darg.zc = true;
1985
1986                 /* Do not use async mode if record is non-data */
1987                 if (tlm->control == TLS_RECORD_TYPE_DATA && !bpf_strp_enabled)
1988                         darg.async = ctx->async_capable;
1989                 else
1990                         darg.async = false;
1991
1992                 err = tls_rx_one_record(sk, msg, &darg);
1993                 if (err < 0) {
1994                         tls_err_abort(sk, -EBADMSG);
1995                         goto recv_end;
1996                 }
1997
1998                 async |= darg.async;
1999
2000                 /* If the type of records being processed is not known yet,
2001                  * set it to record type just dequeued. If it is already known,
2002                  * but does not match the record type just dequeued, go to end.
2003                  * We always get record type here since for tls1.2, record type
2004                  * is known just after record is dequeued from stream parser.
2005                  * For tls1.3, we disable async.
2006                  */
2007                 err = tls_record_content_type(msg, tls_msg(darg.skb), &control);
2008                 if (err <= 0) {
2009                         DEBUG_NET_WARN_ON_ONCE(darg.zc);
2010                         tls_rx_rec_done(ctx);
2011 put_on_rx_list_err:
2012                         __skb_queue_tail(&ctx->rx_list, darg.skb);
2013                         goto recv_end;
2014                 }
2015
2016                 /* periodically flush backlog, and feed strparser */
2017                 released = tls_read_flush_backlog(sk, prot, len, to_decrypt,
2018                                                   decrypted + copied,
2019                                                   &flushed_at);
2020
2021                 /* TLS 1.3 may have updated the length by more than overhead */
2022                 rxm = strp_msg(darg.skb);
2023                 chunk = rxm->full_len;
2024                 tls_rx_rec_done(ctx);
2025
2026                 if (!darg.zc) {
2027                         bool partially_consumed = chunk > len;
2028                         struct sk_buff *skb = darg.skb;
2029
2030                         DEBUG_NET_WARN_ON_ONCE(darg.skb == ctx->strp.anchor);
2031
2032                         if (async) {
2033                                 /* TLS 1.2-only, to_decrypt must be text len */
2034                                 chunk = min_t(int, to_decrypt, len);
2035                                 async_copy_bytes += chunk;
2036 put_on_rx_list:
2037                                 decrypted += chunk;
2038                                 len -= chunk;
2039                                 __skb_queue_tail(&ctx->rx_list, skb);
2040                                 continue;
2041                         }
2042
2043                         if (bpf_strp_enabled) {
2044                                 released = true;
2045                                 err = sk_psock_tls_strp_read(psock, skb);
2046                                 if (err != __SK_PASS) {
2047                                         rxm->offset = rxm->offset + rxm->full_len;
2048                                         rxm->full_len = 0;
2049                                         if (err == __SK_DROP)
2050                                                 consume_skb(skb);
2051                                         continue;
2052                                 }
2053                         }
2054
2055                         if (partially_consumed)
2056                                 chunk = len;
2057
2058                         err = skb_copy_datagram_msg(skb, rxm->offset,
2059                                                     msg, chunk);
2060                         if (err < 0)
2061                                 goto put_on_rx_list_err;
2062
2063                         if (is_peek)
2064                                 goto put_on_rx_list;
2065
2066                         if (partially_consumed) {
2067                                 rxm->offset += chunk;
2068                                 rxm->full_len -= chunk;
2069                                 goto put_on_rx_list;
2070                         }
2071
2072                         consume_skb(skb);
2073                 }
2074
2075                 decrypted += chunk;
2076                 len -= chunk;
2077
2078                 /* Return full control message to userspace before trying
2079                  * to parse another message type
2080                  */
2081                 msg->msg_flags |= MSG_EOR;
2082                 if (control != TLS_RECORD_TYPE_DATA)
2083                         break;
2084         }
2085
2086 recv_end:
2087         if (async) {
2088                 int ret, pending;
2089
2090                 /* Wait for all previously submitted records to be decrypted */
2091                 spin_lock_bh(&ctx->decrypt_compl_lock);
2092                 reinit_completion(&ctx->async_wait.completion);
2093                 pending = atomic_read(&ctx->decrypt_pending);
2094                 spin_unlock_bh(&ctx->decrypt_compl_lock);
2095                 ret = 0;
2096                 if (pending)
2097                         ret = crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
2098                 __skb_queue_purge(&ctx->async_hold);
2099
2100                 if (ret) {
2101                         if (err >= 0 || err == -EINPROGRESS)
2102                                 err = ret;
2103                         decrypted = 0;
2104                         goto end;
2105                 }
2106
2107                 /* Drain records from the rx_list & copy if required */
2108                 if (is_peek || is_kvec)
2109                         err = process_rx_list(ctx, msg, &control, copied,
2110                                               decrypted, is_peek);
2111                 else
2112                         err = process_rx_list(ctx, msg, &control, 0,
2113                                               async_copy_bytes, is_peek);
2114                 decrypted = max(err, 0);
2115         }
2116
2117         copied += decrypted;
2118
2119 end:
2120         tls_rx_reader_unlock(sk, ctx);
2121         if (psock)
2122                 sk_psock_put(sk, psock);
2123         return copied ? : err;
2124 }
2125
2126 ssize_t tls_sw_splice_read(struct socket *sock,  loff_t *ppos,
2127                            struct pipe_inode_info *pipe,
2128                            size_t len, unsigned int flags)
2129 {
2130         struct tls_context *tls_ctx = tls_get_ctx(sock->sk);
2131         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2132         struct strp_msg *rxm = NULL;
2133         struct sock *sk = sock->sk;
2134         struct tls_msg *tlm;
2135         struct sk_buff *skb;
2136         ssize_t copied = 0;
2137         int chunk;
2138         int err;
2139
2140         err = tls_rx_reader_lock(sk, ctx, flags & SPLICE_F_NONBLOCK);
2141         if (err < 0)
2142                 return err;
2143
2144         if (!skb_queue_empty(&ctx->rx_list)) {
2145                 skb = __skb_dequeue(&ctx->rx_list);
2146         } else {
2147                 struct tls_decrypt_arg darg;
2148
2149                 err = tls_rx_rec_wait(sk, NULL, flags & SPLICE_F_NONBLOCK,
2150                                       true);
2151                 if (err <= 0)
2152                         goto splice_read_end;
2153
2154                 memset(&darg.inargs, 0, sizeof(darg.inargs));
2155
2156                 err = tls_rx_one_record(sk, NULL, &darg);
2157                 if (err < 0) {
2158                         tls_err_abort(sk, -EBADMSG);
2159                         goto splice_read_end;
2160                 }
2161
2162                 tls_rx_rec_done(ctx);
2163                 skb = darg.skb;
2164         }
2165
2166         rxm = strp_msg(skb);
2167         tlm = tls_msg(skb);
2168
2169         /* splice does not support reading control messages */
2170         if (tlm->control != TLS_RECORD_TYPE_DATA) {
2171                 err = -EINVAL;
2172                 goto splice_requeue;
2173         }
2174
2175         chunk = min_t(unsigned int, rxm->full_len, len);
2176         copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags);
2177         if (copied < 0)
2178                 goto splice_requeue;
2179
2180         if (chunk < rxm->full_len) {
2181                 rxm->offset += len;
2182                 rxm->full_len -= len;
2183                 goto splice_requeue;
2184         }
2185
2186         consume_skb(skb);
2187
2188 splice_read_end:
2189         tls_rx_reader_unlock(sk, ctx);
2190         return copied ? : err;
2191
2192 splice_requeue:
2193         __skb_queue_head(&ctx->rx_list, skb);
2194         goto splice_read_end;
2195 }
2196
2197 bool tls_sw_sock_is_readable(struct sock *sk)
2198 {
2199         struct tls_context *tls_ctx = tls_get_ctx(sk);
2200         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2201         bool ingress_empty = true;
2202         struct sk_psock *psock;
2203
2204         rcu_read_lock();
2205         psock = sk_psock(sk);
2206         if (psock)
2207                 ingress_empty = list_empty(&psock->ingress_msg);
2208         rcu_read_unlock();
2209
2210         return !ingress_empty || tls_strp_msg_ready(ctx) ||
2211                 !skb_queue_empty(&ctx->rx_list);
2212 }
2213
2214 int tls_rx_msg_size(struct tls_strparser *strp, struct sk_buff *skb)
2215 {
2216         struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
2217         struct tls_prot_info *prot = &tls_ctx->prot_info;
2218         char header[TLS_HEADER_SIZE + MAX_IV_SIZE];
2219         size_t cipher_overhead;
2220         size_t data_len = 0;
2221         int ret;
2222
2223         /* Verify that we have a full TLS header, or wait for more data */
2224         if (strp->stm.offset + prot->prepend_size > skb->len)
2225                 return 0;
2226
2227         /* Sanity-check size of on-stack buffer. */
2228         if (WARN_ON(prot->prepend_size > sizeof(header))) {
2229                 ret = -EINVAL;
2230                 goto read_failure;
2231         }
2232
2233         /* Linearize header to local buffer */
2234         ret = skb_copy_bits(skb, strp->stm.offset, header, prot->prepend_size);
2235         if (ret < 0)
2236                 goto read_failure;
2237
2238         strp->mark = header[0];
2239
2240         data_len = ((header[4] & 0xFF) | (header[3] << 8));
2241
2242         cipher_overhead = prot->tag_size;
2243         if (prot->version != TLS_1_3_VERSION &&
2244             prot->cipher_type != TLS_CIPHER_CHACHA20_POLY1305)
2245                 cipher_overhead += prot->iv_size;
2246
2247         if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead +
2248             prot->tail_size) {
2249                 ret = -EMSGSIZE;
2250                 goto read_failure;
2251         }
2252         if (data_len < cipher_overhead) {
2253                 ret = -EBADMSG;
2254                 goto read_failure;
2255         }
2256
2257         /* Note that both TLS1.3 and TLS1.2 use TLS_1_2 version here */
2258         if (header[1] != TLS_1_2_VERSION_MINOR ||
2259             header[2] != TLS_1_2_VERSION_MAJOR) {
2260                 ret = -EINVAL;
2261                 goto read_failure;
2262         }
2263
2264         tls_device_rx_resync_new_rec(strp->sk, data_len + TLS_HEADER_SIZE,
2265                                      TCP_SKB_CB(skb)->seq + strp->stm.offset);
2266         return data_len + TLS_HEADER_SIZE;
2267
2268 read_failure:
2269         tls_err_abort(strp->sk, ret);
2270
2271         return ret;
2272 }
2273
2274 void tls_rx_msg_ready(struct tls_strparser *strp)
2275 {
2276         struct tls_sw_context_rx *ctx;
2277
2278         ctx = container_of(strp, struct tls_sw_context_rx, strp);
2279         ctx->saved_data_ready(strp->sk);
2280 }
2281
2282 static void tls_data_ready(struct sock *sk)
2283 {
2284         struct tls_context *tls_ctx = tls_get_ctx(sk);
2285         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2286         struct sk_psock *psock;
2287
2288         trace_sk_data_ready(sk);
2289
2290         tls_strp_data_ready(&ctx->strp);
2291
2292         psock = sk_psock_get(sk);
2293         if (psock) {
2294                 if (!list_empty(&psock->ingress_msg))
2295                         ctx->saved_data_ready(sk);
2296                 sk_psock_put(sk, psock);
2297         }
2298 }
2299
2300 void tls_sw_cancel_work_tx(struct tls_context *tls_ctx)
2301 {
2302         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2303
2304         set_bit(BIT_TX_CLOSING, &ctx->tx_bitmask);
2305         set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask);
2306         cancel_delayed_work_sync(&ctx->tx_work.work);
2307 }
2308
2309 void tls_sw_release_resources_tx(struct sock *sk)
2310 {
2311         struct tls_context *tls_ctx = tls_get_ctx(sk);
2312         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2313         struct tls_rec *rec, *tmp;
2314         int pending;
2315
2316         /* Wait for any pending async encryptions to complete */
2317         spin_lock_bh(&ctx->encrypt_compl_lock);
2318         ctx->async_notify = true;
2319         pending = atomic_read(&ctx->encrypt_pending);
2320         spin_unlock_bh(&ctx->encrypt_compl_lock);
2321
2322         if (pending)
2323                 crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
2324
2325         tls_tx_records(sk, -1);
2326
2327         /* Free up un-sent records in tx_list. First, free
2328          * the partially sent record if any at head of tx_list.
2329          */
2330         if (tls_ctx->partially_sent_record) {
2331                 tls_free_partial_record(sk, tls_ctx);
2332                 rec = list_first_entry(&ctx->tx_list,
2333                                        struct tls_rec, list);
2334                 list_del(&rec->list);
2335                 sk_msg_free(sk, &rec->msg_plaintext);
2336                 kfree(rec);
2337         }
2338
2339         list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
2340                 list_del(&rec->list);
2341                 sk_msg_free(sk, &rec->msg_encrypted);
2342                 sk_msg_free(sk, &rec->msg_plaintext);
2343                 kfree(rec);
2344         }
2345
2346         crypto_free_aead(ctx->aead_send);
2347         tls_free_open_rec(sk);
2348 }
2349
2350 void tls_sw_free_ctx_tx(struct tls_context *tls_ctx)
2351 {
2352         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2353
2354         kfree(ctx);
2355 }
2356
2357 void tls_sw_release_resources_rx(struct sock *sk)
2358 {
2359         struct tls_context *tls_ctx = tls_get_ctx(sk);
2360         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2361
2362         kfree(tls_ctx->rx.rec_seq);
2363         kfree(tls_ctx->rx.iv);
2364
2365         if (ctx->aead_recv) {
2366                 __skb_queue_purge(&ctx->rx_list);
2367                 crypto_free_aead(ctx->aead_recv);
2368                 tls_strp_stop(&ctx->strp);
2369                 /* If tls_sw_strparser_arm() was not called (cleanup paths)
2370                  * we still want to tls_strp_stop(), but sk->sk_data_ready was
2371                  * never swapped.
2372                  */
2373                 if (ctx->saved_data_ready) {
2374                         write_lock_bh(&sk->sk_callback_lock);
2375                         sk->sk_data_ready = ctx->saved_data_ready;
2376                         write_unlock_bh(&sk->sk_callback_lock);
2377                 }
2378         }
2379 }
2380
2381 void tls_sw_strparser_done(struct tls_context *tls_ctx)
2382 {
2383         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2384
2385         tls_strp_done(&ctx->strp);
2386 }
2387
2388 void tls_sw_free_ctx_rx(struct tls_context *tls_ctx)
2389 {
2390         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2391
2392         kfree(ctx);
2393 }
2394
2395 void tls_sw_free_resources_rx(struct sock *sk)
2396 {
2397         struct tls_context *tls_ctx = tls_get_ctx(sk);
2398
2399         tls_sw_release_resources_rx(sk);
2400         tls_sw_free_ctx_rx(tls_ctx);
2401 }
2402
2403 /* The work handler to transmitt the encrypted records in tx_list */
2404 static void tx_work_handler(struct work_struct *work)
2405 {
2406         struct delayed_work *delayed_work = to_delayed_work(work);
2407         struct tx_work *tx_work = container_of(delayed_work,
2408                                                struct tx_work, work);
2409         struct sock *sk = tx_work->sk;
2410         struct tls_context *tls_ctx = tls_get_ctx(sk);
2411         struct tls_sw_context_tx *ctx;
2412
2413         if (unlikely(!tls_ctx))
2414                 return;
2415
2416         ctx = tls_sw_ctx_tx(tls_ctx);
2417         if (test_bit(BIT_TX_CLOSING, &ctx->tx_bitmask))
2418                 return;
2419
2420         if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
2421                 return;
2422         mutex_lock(&tls_ctx->tx_lock);
2423         lock_sock(sk);
2424         tls_tx_records(sk, -1);
2425         release_sock(sk);
2426         mutex_unlock(&tls_ctx->tx_lock);
2427 }
2428
2429 static bool tls_is_tx_ready(struct tls_sw_context_tx *ctx)
2430 {
2431         struct tls_rec *rec;
2432
2433         rec = list_first_entry_or_null(&ctx->tx_list, struct tls_rec, list);
2434         if (!rec)
2435                 return false;
2436
2437         return READ_ONCE(rec->tx_ready);
2438 }
2439
2440 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx)
2441 {
2442         struct tls_sw_context_tx *tx_ctx = tls_sw_ctx_tx(ctx);
2443
2444         /* Schedule the transmission if tx list is ready */
2445         if (tls_is_tx_ready(tx_ctx) &&
2446             !test_and_set_bit(BIT_TX_SCHEDULED, &tx_ctx->tx_bitmask))
2447                 schedule_delayed_work(&tx_ctx->tx_work.work, 0);
2448 }
2449
2450 void tls_sw_strparser_arm(struct sock *sk, struct tls_context *tls_ctx)
2451 {
2452         struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx);
2453
2454         write_lock_bh(&sk->sk_callback_lock);
2455         rx_ctx->saved_data_ready = sk->sk_data_ready;
2456         sk->sk_data_ready = tls_data_ready;
2457         write_unlock_bh(&sk->sk_callback_lock);
2458 }
2459
2460 void tls_update_rx_zc_capable(struct tls_context *tls_ctx)
2461 {
2462         struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx);
2463
2464         rx_ctx->zc_capable = tls_ctx->rx_no_pad ||
2465                 tls_ctx->prot_info.version != TLS_1_3_VERSION;
2466 }
2467
2468 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx)
2469 {
2470         struct tls_context *tls_ctx = tls_get_ctx(sk);
2471         struct tls_prot_info *prot = &tls_ctx->prot_info;
2472         struct tls_crypto_info *crypto_info;
2473         struct tls_sw_context_tx *sw_ctx_tx = NULL;
2474         struct tls_sw_context_rx *sw_ctx_rx = NULL;
2475         struct cipher_context *cctx;
2476         struct crypto_aead **aead;
2477         u16 nonce_size, tag_size, iv_size, rec_seq_size, salt_size;
2478         struct crypto_tfm *tfm;
2479         char *iv, *rec_seq, *key, *salt, *cipher_name;
2480         size_t keysize;
2481         int rc = 0;
2482
2483         if (!ctx) {
2484                 rc = -EINVAL;
2485                 goto out;
2486         }
2487
2488         if (tx) {
2489                 if (!ctx->priv_ctx_tx) {
2490                         sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL);
2491                         if (!sw_ctx_tx) {
2492                                 rc = -ENOMEM;
2493                                 goto out;
2494                         }
2495                         ctx->priv_ctx_tx = sw_ctx_tx;
2496                 } else {
2497                         sw_ctx_tx =
2498                                 (struct tls_sw_context_tx *)ctx->priv_ctx_tx;
2499                 }
2500         } else {
2501                 if (!ctx->priv_ctx_rx) {
2502                         sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL);
2503                         if (!sw_ctx_rx) {
2504                                 rc = -ENOMEM;
2505                                 goto out;
2506                         }
2507                         ctx->priv_ctx_rx = sw_ctx_rx;
2508                 } else {
2509                         sw_ctx_rx =
2510                                 (struct tls_sw_context_rx *)ctx->priv_ctx_rx;
2511                 }
2512         }
2513
2514         if (tx) {
2515                 crypto_init_wait(&sw_ctx_tx->async_wait);
2516                 spin_lock_init(&sw_ctx_tx->encrypt_compl_lock);
2517                 crypto_info = &ctx->crypto_send.info;
2518                 cctx = &ctx->tx;
2519                 aead = &sw_ctx_tx->aead_send;
2520                 INIT_LIST_HEAD(&sw_ctx_tx->tx_list);
2521                 INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler);
2522                 sw_ctx_tx->tx_work.sk = sk;
2523         } else {
2524                 crypto_init_wait(&sw_ctx_rx->async_wait);
2525                 spin_lock_init(&sw_ctx_rx->decrypt_compl_lock);
2526                 init_waitqueue_head(&sw_ctx_rx->wq);
2527                 crypto_info = &ctx->crypto_recv.info;
2528                 cctx = &ctx->rx;
2529                 skb_queue_head_init(&sw_ctx_rx->rx_list);
2530                 skb_queue_head_init(&sw_ctx_rx->async_hold);
2531                 aead = &sw_ctx_rx->aead_recv;
2532         }
2533
2534         switch (crypto_info->cipher_type) {
2535         case TLS_CIPHER_AES_GCM_128: {
2536                 struct tls12_crypto_info_aes_gcm_128 *gcm_128_info;
2537
2538                 gcm_128_info = (void *)crypto_info;
2539                 nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2540                 tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE;
2541                 iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2542                 iv = gcm_128_info->iv;
2543                 rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE;
2544                 rec_seq = gcm_128_info->rec_seq;
2545                 keysize = TLS_CIPHER_AES_GCM_128_KEY_SIZE;
2546                 key = gcm_128_info->key;
2547                 salt = gcm_128_info->salt;
2548                 salt_size = TLS_CIPHER_AES_GCM_128_SALT_SIZE;
2549                 cipher_name = "gcm(aes)";
2550                 break;
2551         }
2552         case TLS_CIPHER_AES_GCM_256: {
2553                 struct tls12_crypto_info_aes_gcm_256 *gcm_256_info;
2554
2555                 gcm_256_info = (void *)crypto_info;
2556                 nonce_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2557                 tag_size = TLS_CIPHER_AES_GCM_256_TAG_SIZE;
2558                 iv_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2559                 iv = gcm_256_info->iv;
2560                 rec_seq_size = TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE;
2561                 rec_seq = gcm_256_info->rec_seq;
2562                 keysize = TLS_CIPHER_AES_GCM_256_KEY_SIZE;
2563                 key = gcm_256_info->key;
2564                 salt = gcm_256_info->salt;
2565                 salt_size = TLS_CIPHER_AES_GCM_256_SALT_SIZE;
2566                 cipher_name = "gcm(aes)";
2567                 break;
2568         }
2569         case TLS_CIPHER_AES_CCM_128: {
2570                 struct tls12_crypto_info_aes_ccm_128 *ccm_128_info;
2571
2572                 ccm_128_info = (void *)crypto_info;
2573                 nonce_size = TLS_CIPHER_AES_CCM_128_IV_SIZE;
2574                 tag_size = TLS_CIPHER_AES_CCM_128_TAG_SIZE;
2575                 iv_size = TLS_CIPHER_AES_CCM_128_IV_SIZE;
2576                 iv = ccm_128_info->iv;
2577                 rec_seq_size = TLS_CIPHER_AES_CCM_128_REC_SEQ_SIZE;
2578                 rec_seq = ccm_128_info->rec_seq;
2579                 keysize = TLS_CIPHER_AES_CCM_128_KEY_SIZE;
2580                 key = ccm_128_info->key;
2581                 salt = ccm_128_info->salt;
2582                 salt_size = TLS_CIPHER_AES_CCM_128_SALT_SIZE;
2583                 cipher_name = "ccm(aes)";
2584                 break;
2585         }
2586         case TLS_CIPHER_CHACHA20_POLY1305: {
2587                 struct tls12_crypto_info_chacha20_poly1305 *chacha20_poly1305_info;
2588
2589                 chacha20_poly1305_info = (void *)crypto_info;
2590                 nonce_size = 0;
2591                 tag_size = TLS_CIPHER_CHACHA20_POLY1305_TAG_SIZE;
2592                 iv_size = TLS_CIPHER_CHACHA20_POLY1305_IV_SIZE;
2593                 iv = chacha20_poly1305_info->iv;
2594                 rec_seq_size = TLS_CIPHER_CHACHA20_POLY1305_REC_SEQ_SIZE;
2595                 rec_seq = chacha20_poly1305_info->rec_seq;
2596                 keysize = TLS_CIPHER_CHACHA20_POLY1305_KEY_SIZE;
2597                 key = chacha20_poly1305_info->key;
2598                 salt = chacha20_poly1305_info->salt;
2599                 salt_size = TLS_CIPHER_CHACHA20_POLY1305_SALT_SIZE;
2600                 cipher_name = "rfc7539(chacha20,poly1305)";
2601                 break;
2602         }
2603         case TLS_CIPHER_SM4_GCM: {
2604                 struct tls12_crypto_info_sm4_gcm *sm4_gcm_info;
2605
2606                 sm4_gcm_info = (void *)crypto_info;
2607                 nonce_size = TLS_CIPHER_SM4_GCM_IV_SIZE;
2608                 tag_size = TLS_CIPHER_SM4_GCM_TAG_SIZE;
2609                 iv_size = TLS_CIPHER_SM4_GCM_IV_SIZE;
2610                 iv = sm4_gcm_info->iv;
2611                 rec_seq_size = TLS_CIPHER_SM4_GCM_REC_SEQ_SIZE;
2612                 rec_seq = sm4_gcm_info->rec_seq;
2613                 keysize = TLS_CIPHER_SM4_GCM_KEY_SIZE;
2614                 key = sm4_gcm_info->key;
2615                 salt = sm4_gcm_info->salt;
2616                 salt_size = TLS_CIPHER_SM4_GCM_SALT_SIZE;
2617                 cipher_name = "gcm(sm4)";
2618                 break;
2619         }
2620         case TLS_CIPHER_SM4_CCM: {
2621                 struct tls12_crypto_info_sm4_ccm *sm4_ccm_info;
2622
2623                 sm4_ccm_info = (void *)crypto_info;
2624                 nonce_size = TLS_CIPHER_SM4_CCM_IV_SIZE;
2625                 tag_size = TLS_CIPHER_SM4_CCM_TAG_SIZE;
2626                 iv_size = TLS_CIPHER_SM4_CCM_IV_SIZE;
2627                 iv = sm4_ccm_info->iv;
2628                 rec_seq_size = TLS_CIPHER_SM4_CCM_REC_SEQ_SIZE;
2629                 rec_seq = sm4_ccm_info->rec_seq;
2630                 keysize = TLS_CIPHER_SM4_CCM_KEY_SIZE;
2631                 key = sm4_ccm_info->key;
2632                 salt = sm4_ccm_info->salt;
2633                 salt_size = TLS_CIPHER_SM4_CCM_SALT_SIZE;
2634                 cipher_name = "ccm(sm4)";
2635                 break;
2636         }
2637         case TLS_CIPHER_ARIA_GCM_128: {
2638                 struct tls12_crypto_info_aria_gcm_128 *aria_gcm_128_info;
2639
2640                 aria_gcm_128_info = (void *)crypto_info;
2641                 nonce_size = TLS_CIPHER_ARIA_GCM_128_IV_SIZE;
2642                 tag_size = TLS_CIPHER_ARIA_GCM_128_TAG_SIZE;
2643                 iv_size = TLS_CIPHER_ARIA_GCM_128_IV_SIZE;
2644                 iv = aria_gcm_128_info->iv;
2645                 rec_seq_size = TLS_CIPHER_ARIA_GCM_128_REC_SEQ_SIZE;
2646                 rec_seq = aria_gcm_128_info->rec_seq;
2647                 keysize = TLS_CIPHER_ARIA_GCM_128_KEY_SIZE;
2648                 key = aria_gcm_128_info->key;
2649                 salt = aria_gcm_128_info->salt;
2650                 salt_size = TLS_CIPHER_ARIA_GCM_128_SALT_SIZE;
2651                 cipher_name = "gcm(aria)";
2652                 break;
2653         }
2654         case TLS_CIPHER_ARIA_GCM_256: {
2655                 struct tls12_crypto_info_aria_gcm_256 *gcm_256_info;
2656
2657                 gcm_256_info = (void *)crypto_info;
2658                 nonce_size = TLS_CIPHER_ARIA_GCM_256_IV_SIZE;
2659                 tag_size = TLS_CIPHER_ARIA_GCM_256_TAG_SIZE;
2660                 iv_size = TLS_CIPHER_ARIA_GCM_256_IV_SIZE;
2661                 iv = gcm_256_info->iv;
2662                 rec_seq_size = TLS_CIPHER_ARIA_GCM_256_REC_SEQ_SIZE;
2663                 rec_seq = gcm_256_info->rec_seq;
2664                 keysize = TLS_CIPHER_ARIA_GCM_256_KEY_SIZE;
2665                 key = gcm_256_info->key;
2666                 salt = gcm_256_info->salt;
2667                 salt_size = TLS_CIPHER_ARIA_GCM_256_SALT_SIZE;
2668                 cipher_name = "gcm(aria)";
2669                 break;
2670         }
2671         default:
2672                 rc = -EINVAL;
2673                 goto free_priv;
2674         }
2675
2676         if (crypto_info->version == TLS_1_3_VERSION) {
2677                 nonce_size = 0;
2678                 prot->aad_size = TLS_HEADER_SIZE;
2679                 prot->tail_size = 1;
2680         } else {
2681                 prot->aad_size = TLS_AAD_SPACE_SIZE;
2682                 prot->tail_size = 0;
2683         }
2684
2685         /* Sanity-check the sizes for stack allocations. */
2686         if (iv_size > MAX_IV_SIZE || nonce_size > MAX_IV_SIZE ||
2687             rec_seq_size > TLS_MAX_REC_SEQ_SIZE || tag_size != TLS_TAG_SIZE ||
2688             prot->aad_size > TLS_MAX_AAD_SIZE) {
2689                 rc = -EINVAL;
2690                 goto free_priv;
2691         }
2692
2693         prot->version = crypto_info->version;
2694         prot->cipher_type = crypto_info->cipher_type;
2695         prot->prepend_size = TLS_HEADER_SIZE + nonce_size;
2696         prot->tag_size = tag_size;
2697         prot->overhead_size = prot->prepend_size +
2698                               prot->tag_size + prot->tail_size;
2699         prot->iv_size = iv_size;
2700         prot->salt_size = salt_size;
2701         cctx->iv = kmalloc(iv_size + salt_size, GFP_KERNEL);
2702         if (!cctx->iv) {
2703                 rc = -ENOMEM;
2704                 goto free_priv;
2705         }
2706         /* Note: 128 & 256 bit salt are the same size */
2707         prot->rec_seq_size = rec_seq_size;
2708         memcpy(cctx->iv, salt, salt_size);
2709         memcpy(cctx->iv + salt_size, iv, iv_size);
2710         cctx->rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL);
2711         if (!cctx->rec_seq) {
2712                 rc = -ENOMEM;
2713                 goto free_iv;
2714         }
2715
2716         if (!*aead) {
2717                 *aead = crypto_alloc_aead(cipher_name, 0, 0);
2718                 if (IS_ERR(*aead)) {
2719                         rc = PTR_ERR(*aead);
2720                         *aead = NULL;
2721                         goto free_rec_seq;
2722                 }
2723         }
2724
2725         ctx->push_pending_record = tls_sw_push_pending_record;
2726
2727         rc = crypto_aead_setkey(*aead, key, keysize);
2728
2729         if (rc)
2730                 goto free_aead;
2731
2732         rc = crypto_aead_setauthsize(*aead, prot->tag_size);
2733         if (rc)
2734                 goto free_aead;
2735
2736         if (sw_ctx_rx) {
2737                 tfm = crypto_aead_tfm(sw_ctx_rx->aead_recv);
2738
2739                 tls_update_rx_zc_capable(ctx);
2740                 sw_ctx_rx->async_capable =
2741                         crypto_info->version != TLS_1_3_VERSION &&
2742                         !!(tfm->__crt_alg->cra_flags & CRYPTO_ALG_ASYNC);
2743
2744                 rc = tls_strp_init(&sw_ctx_rx->strp, sk);
2745                 if (rc)
2746                         goto free_aead;
2747         }
2748
2749         goto out;
2750
2751 free_aead:
2752         crypto_free_aead(*aead);
2753         *aead = NULL;
2754 free_rec_seq:
2755         kfree(cctx->rec_seq);
2756         cctx->rec_seq = NULL;
2757 free_iv:
2758         kfree(cctx->iv);
2759         cctx->iv = NULL;
2760 free_priv:
2761         if (tx) {
2762                 kfree(ctx->priv_ctx_tx);
2763                 ctx->priv_ctx_tx = NULL;
2764         } else {
2765                 kfree(ctx->priv_ctx_rx);
2766                 ctx->priv_ctx_rx = NULL;
2767         }
2768 out:
2769         return rc;
2770 }
This page took 0.193215 seconds and 4 git commands to generate.