1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie.
6 * kswapd added: 7.1.96 sct
7 * Removed kswapd_ctl limits, and swap out as many pages as needed
8 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Multiqueue VM started 5.8.00, Rik van Riel.
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 #include <linux/sched/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h> /* for buffer_heads_over_limit */
30 #include <linux/mm_inline.h>
31 #include <linux/backing-dev.h>
32 #include <linux/rmap.h>
33 #include <linux/topology.h>
34 #include <linux/cpu.h>
35 #include <linux/cpuset.h>
36 #include <linux/compaction.h>
37 #include <linux/notifier.h>
38 #include <linux/rwsem.h>
39 #include <linux/delay.h>
40 #include <linux/kthread.h>
41 #include <linux/freezer.h>
42 #include <linux/memcontrol.h>
43 #include <linux/migrate.h>
44 #include <linux/delayacct.h>
45 #include <linux/sysctl.h>
46 #include <linux/memory-tiers.h>
47 #include <linux/oom.h>
48 #include <linux/pagevec.h>
49 #include <linux/prefetch.h>
50 #include <linux/printk.h>
51 #include <linux/dax.h>
52 #include <linux/psi.h>
53 #include <linux/pagewalk.h>
54 #include <linux/shmem_fs.h>
55 #include <linux/ctype.h>
56 #include <linux/debugfs.h>
57 #include <linux/khugepaged.h>
59 #include <asm/tlbflush.h>
60 #include <asm/div64.h>
62 #include <linux/swapops.h>
63 #include <linux/balloon_compaction.h>
64 #include <linux/sched/sysctl.h>
69 #define CREATE_TRACE_POINTS
70 #include <trace/events/vmscan.h>
73 /* How many pages shrink_list() should reclaim */
74 unsigned long nr_to_reclaim;
77 * Nodemask of nodes allowed by the caller. If NULL, all nodes
83 * The memory cgroup that hit its limit and as a result is the
84 * primary target of this reclaim invocation.
86 struct mem_cgroup *target_mem_cgroup;
89 * Scan pressure balancing between anon and file LRUs
91 unsigned long anon_cost;
92 unsigned long file_cost;
94 /* Can active folios be deactivated as part of reclaim? */
95 #define DEACTIVATE_ANON 1
96 #define DEACTIVATE_FILE 2
97 unsigned int may_deactivate:2;
98 unsigned int force_deactivate:1;
99 unsigned int skipped_deactivate:1;
101 /* Writepage batching in laptop mode; RECLAIM_WRITE */
102 unsigned int may_writepage:1;
104 /* Can mapped folios be reclaimed? */
105 unsigned int may_unmap:1;
107 /* Can folios be swapped as part of reclaim? */
108 unsigned int may_swap:1;
110 /* Proactive reclaim invoked by userspace through memory.reclaim */
111 unsigned int proactive:1;
114 * Cgroup memory below memory.low is protected as long as we
115 * don't threaten to OOM. If any cgroup is reclaimed at
116 * reduced force or passed over entirely due to its memory.low
117 * setting (memcg_low_skipped), and nothing is reclaimed as a
118 * result, then go back for one more cycle that reclaims the protected
119 * memory (memcg_low_reclaim) to avert OOM.
121 unsigned int memcg_low_reclaim:1;
122 unsigned int memcg_low_skipped:1;
124 unsigned int hibernation_mode:1;
126 /* One of the zones is ready for compaction */
127 unsigned int compaction_ready:1;
129 /* There is easily reclaimable cold cache in the current node */
130 unsigned int cache_trim_mode:1;
132 /* The file folios on the current node are dangerously low */
133 unsigned int file_is_tiny:1;
135 /* Always discard instead of demoting to lower tier memory */
136 unsigned int no_demotion:1;
138 #ifdef CONFIG_LRU_GEN
139 /* help kswapd make better choices among multiple memcgs */
140 unsigned int memcgs_need_aging:1;
141 unsigned long last_reclaimed;
144 /* Allocation order */
147 /* Scan (total_size >> priority) pages at once */
150 /* The highest zone to isolate folios for reclaim from */
153 /* This context's GFP mask */
156 /* Incremented by the number of inactive pages that were scanned */
157 unsigned long nr_scanned;
159 /* Number of pages freed so far during a call to shrink_zones() */
160 unsigned long nr_reclaimed;
164 unsigned int unqueued_dirty;
165 unsigned int congested;
166 unsigned int writeback;
167 unsigned int immediate;
168 unsigned int file_taken;
172 /* for recording the reclaimed slab by now */
173 struct reclaim_state reclaim_state;
176 #ifdef ARCH_HAS_PREFETCHW
177 #define prefetchw_prev_lru_folio(_folio, _base, _field) \
179 if ((_folio)->lru.prev != _base) { \
180 struct folio *prev; \
182 prev = lru_to_folio(&(_folio->lru)); \
183 prefetchw(&prev->_field); \
187 #define prefetchw_prev_lru_folio(_folio, _base, _field) do { } while (0)
191 * From 0 .. 200. Higher means more swappy.
193 int vm_swappiness = 60;
195 static void set_task_reclaim_state(struct task_struct *task,
196 struct reclaim_state *rs)
198 /* Check for an overwrite */
199 WARN_ON_ONCE(rs && task->reclaim_state);
201 /* Check for the nulling of an already-nulled member */
202 WARN_ON_ONCE(!rs && !task->reclaim_state);
204 task->reclaim_state = rs;
207 LIST_HEAD(shrinker_list);
208 DECLARE_RWSEM(shrinker_rwsem);
211 static int shrinker_nr_max;
213 /* The shrinker_info is expanded in a batch of BITS_PER_LONG */
214 static inline int shrinker_map_size(int nr_items)
216 return (DIV_ROUND_UP(nr_items, BITS_PER_LONG) * sizeof(unsigned long));
219 static inline int shrinker_defer_size(int nr_items)
221 return (round_up(nr_items, BITS_PER_LONG) * sizeof(atomic_long_t));
224 static struct shrinker_info *shrinker_info_protected(struct mem_cgroup *memcg,
227 return rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_info,
228 lockdep_is_held(&shrinker_rwsem));
231 static int expand_one_shrinker_info(struct mem_cgroup *memcg,
232 int map_size, int defer_size,
233 int old_map_size, int old_defer_size)
235 struct shrinker_info *new, *old;
236 struct mem_cgroup_per_node *pn;
238 int size = map_size + defer_size;
241 pn = memcg->nodeinfo[nid];
242 old = shrinker_info_protected(memcg, nid);
243 /* Not yet online memcg */
247 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
251 new->nr_deferred = (atomic_long_t *)(new + 1);
252 new->map = (void *)new->nr_deferred + defer_size;
254 /* map: set all old bits, clear all new bits */
255 memset(new->map, (int)0xff, old_map_size);
256 memset((void *)new->map + old_map_size, 0, map_size - old_map_size);
257 /* nr_deferred: copy old values, clear all new values */
258 memcpy(new->nr_deferred, old->nr_deferred, old_defer_size);
259 memset((void *)new->nr_deferred + old_defer_size, 0,
260 defer_size - old_defer_size);
262 rcu_assign_pointer(pn->shrinker_info, new);
263 kvfree_rcu(old, rcu);
269 void free_shrinker_info(struct mem_cgroup *memcg)
271 struct mem_cgroup_per_node *pn;
272 struct shrinker_info *info;
276 pn = memcg->nodeinfo[nid];
277 info = rcu_dereference_protected(pn->shrinker_info, true);
279 rcu_assign_pointer(pn->shrinker_info, NULL);
283 int alloc_shrinker_info(struct mem_cgroup *memcg)
285 struct shrinker_info *info;
286 int nid, size, ret = 0;
287 int map_size, defer_size = 0;
289 down_write(&shrinker_rwsem);
290 map_size = shrinker_map_size(shrinker_nr_max);
291 defer_size = shrinker_defer_size(shrinker_nr_max);
292 size = map_size + defer_size;
294 info = kvzalloc_node(sizeof(*info) + size, GFP_KERNEL, nid);
296 free_shrinker_info(memcg);
300 info->nr_deferred = (atomic_long_t *)(info + 1);
301 info->map = (void *)info->nr_deferred + defer_size;
302 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_info, info);
304 up_write(&shrinker_rwsem);
309 static inline bool need_expand(int nr_max)
311 return round_up(nr_max, BITS_PER_LONG) >
312 round_up(shrinker_nr_max, BITS_PER_LONG);
315 static int expand_shrinker_info(int new_id)
318 int new_nr_max = new_id + 1;
319 int map_size, defer_size = 0;
320 int old_map_size, old_defer_size = 0;
321 struct mem_cgroup *memcg;
323 if (!need_expand(new_nr_max))
326 if (!root_mem_cgroup)
329 lockdep_assert_held(&shrinker_rwsem);
331 map_size = shrinker_map_size(new_nr_max);
332 defer_size = shrinker_defer_size(new_nr_max);
333 old_map_size = shrinker_map_size(shrinker_nr_max);
334 old_defer_size = shrinker_defer_size(shrinker_nr_max);
336 memcg = mem_cgroup_iter(NULL, NULL, NULL);
338 ret = expand_one_shrinker_info(memcg, map_size, defer_size,
339 old_map_size, old_defer_size);
341 mem_cgroup_iter_break(NULL, memcg);
344 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
347 shrinker_nr_max = new_nr_max;
352 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
354 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
355 struct shrinker_info *info;
358 info = rcu_dereference(memcg->nodeinfo[nid]->shrinker_info);
359 /* Pairs with smp mb in shrink_slab() */
360 smp_mb__before_atomic();
361 set_bit(shrinker_id, info->map);
366 static DEFINE_IDR(shrinker_idr);
368 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
370 int id, ret = -ENOMEM;
372 if (mem_cgroup_disabled())
375 down_write(&shrinker_rwsem);
376 /* This may call shrinker, so it must use down_read_trylock() */
377 id = idr_alloc(&shrinker_idr, shrinker, 0, 0, GFP_KERNEL);
381 if (id >= shrinker_nr_max) {
382 if (expand_shrinker_info(id)) {
383 idr_remove(&shrinker_idr, id);
390 up_write(&shrinker_rwsem);
394 static void unregister_memcg_shrinker(struct shrinker *shrinker)
396 int id = shrinker->id;
400 lockdep_assert_held(&shrinker_rwsem);
402 idr_remove(&shrinker_idr, id);
405 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
406 struct mem_cgroup *memcg)
408 struct shrinker_info *info;
410 info = shrinker_info_protected(memcg, nid);
411 return atomic_long_xchg(&info->nr_deferred[shrinker->id], 0);
414 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
415 struct mem_cgroup *memcg)
417 struct shrinker_info *info;
419 info = shrinker_info_protected(memcg, nid);
420 return atomic_long_add_return(nr, &info->nr_deferred[shrinker->id]);
423 void reparent_shrinker_deferred(struct mem_cgroup *memcg)
427 struct mem_cgroup *parent;
428 struct shrinker_info *child_info, *parent_info;
430 parent = parent_mem_cgroup(memcg);
432 parent = root_mem_cgroup;
434 /* Prevent from concurrent shrinker_info expand */
435 down_read(&shrinker_rwsem);
437 child_info = shrinker_info_protected(memcg, nid);
438 parent_info = shrinker_info_protected(parent, nid);
439 for (i = 0; i < shrinker_nr_max; i++) {
440 nr = atomic_long_read(&child_info->nr_deferred[i]);
441 atomic_long_add(nr, &parent_info->nr_deferred[i]);
444 up_read(&shrinker_rwsem);
447 static bool cgroup_reclaim(struct scan_control *sc)
449 return sc->target_mem_cgroup;
453 * writeback_throttling_sane - is the usual dirty throttling mechanism available?
454 * @sc: scan_control in question
456 * The normal page dirty throttling mechanism in balance_dirty_pages() is
457 * completely broken with the legacy memcg and direct stalling in
458 * shrink_folio_list() is used for throttling instead, which lacks all the
459 * niceties such as fairness, adaptive pausing, bandwidth proportional
460 * allocation and configurability.
462 * This function tests whether the vmscan currently in progress can assume
463 * that the normal dirty throttling mechanism is operational.
465 static bool writeback_throttling_sane(struct scan_control *sc)
467 if (!cgroup_reclaim(sc))
469 #ifdef CONFIG_CGROUP_WRITEBACK
470 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
476 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
481 static void unregister_memcg_shrinker(struct shrinker *shrinker)
485 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
486 struct mem_cgroup *memcg)
491 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
492 struct mem_cgroup *memcg)
497 static bool cgroup_reclaim(struct scan_control *sc)
502 static bool writeback_throttling_sane(struct scan_control *sc)
508 static long xchg_nr_deferred(struct shrinker *shrinker,
509 struct shrink_control *sc)
513 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
517 (shrinker->flags & SHRINKER_MEMCG_AWARE))
518 return xchg_nr_deferred_memcg(nid, shrinker,
521 return atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
525 static long add_nr_deferred(long nr, struct shrinker *shrinker,
526 struct shrink_control *sc)
530 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
534 (shrinker->flags & SHRINKER_MEMCG_AWARE))
535 return add_nr_deferred_memcg(nr, nid, shrinker,
538 return atomic_long_add_return(nr, &shrinker->nr_deferred[nid]);
541 static bool can_demote(int nid, struct scan_control *sc)
543 if (!numa_demotion_enabled)
545 if (sc && sc->no_demotion)
547 if (next_demotion_node(nid) == NUMA_NO_NODE)
553 static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg,
555 struct scan_control *sc)
559 * For non-memcg reclaim, is there
560 * space in any swap device?
562 if (get_nr_swap_pages() > 0)
565 /* Is the memcg below its swap limit? */
566 if (mem_cgroup_get_nr_swap_pages(memcg) > 0)
571 * The page can not be swapped.
573 * Can it be reclaimed from this node via demotion?
575 return can_demote(nid, sc);
579 * This misses isolated folios which are not accounted for to save counters.
580 * As the data only determines if reclaim or compaction continues, it is
581 * not expected that isolated folios will be a dominating factor.
583 unsigned long zone_reclaimable_pages(struct zone *zone)
587 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
588 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
589 if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL))
590 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
591 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
597 * lruvec_lru_size - Returns the number of pages on the given LRU list.
598 * @lruvec: lru vector
600 * @zone_idx: zones to consider (use MAX_NR_ZONES - 1 for the whole LRU list)
602 static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru,
605 unsigned long size = 0;
608 for (zid = 0; zid <= zone_idx; zid++) {
609 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
611 if (!managed_zone(zone))
614 if (!mem_cgroup_disabled())
615 size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
617 size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
623 * Add a shrinker callback to be called from the vm.
625 static int __prealloc_shrinker(struct shrinker *shrinker)
630 if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
631 err = prealloc_memcg_shrinker(shrinker);
635 shrinker->flags &= ~SHRINKER_MEMCG_AWARE;
638 size = sizeof(*shrinker->nr_deferred);
639 if (shrinker->flags & SHRINKER_NUMA_AWARE)
642 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
643 if (!shrinker->nr_deferred)
649 #ifdef CONFIG_SHRINKER_DEBUG
650 int prealloc_shrinker(struct shrinker *shrinker, const char *fmt, ...)
656 shrinker->name = kvasprintf_const(GFP_KERNEL, fmt, ap);
661 err = __prealloc_shrinker(shrinker);
663 kfree_const(shrinker->name);
664 shrinker->name = NULL;
670 int prealloc_shrinker(struct shrinker *shrinker, const char *fmt, ...)
672 return __prealloc_shrinker(shrinker);
676 void free_prealloced_shrinker(struct shrinker *shrinker)
678 #ifdef CONFIG_SHRINKER_DEBUG
679 kfree_const(shrinker->name);
680 shrinker->name = NULL;
682 if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
683 down_write(&shrinker_rwsem);
684 unregister_memcg_shrinker(shrinker);
685 up_write(&shrinker_rwsem);
689 kfree(shrinker->nr_deferred);
690 shrinker->nr_deferred = NULL;
693 void register_shrinker_prepared(struct shrinker *shrinker)
695 down_write(&shrinker_rwsem);
696 list_add_tail(&shrinker->list, &shrinker_list);
697 shrinker->flags |= SHRINKER_REGISTERED;
698 shrinker_debugfs_add(shrinker);
699 up_write(&shrinker_rwsem);
702 static int __register_shrinker(struct shrinker *shrinker)
704 int err = __prealloc_shrinker(shrinker);
708 register_shrinker_prepared(shrinker);
712 #ifdef CONFIG_SHRINKER_DEBUG
713 int register_shrinker(struct shrinker *shrinker, const char *fmt, ...)
719 shrinker->name = kvasprintf_const(GFP_KERNEL, fmt, ap);
724 err = __register_shrinker(shrinker);
726 kfree_const(shrinker->name);
727 shrinker->name = NULL;
732 int register_shrinker(struct shrinker *shrinker, const char *fmt, ...)
734 return __register_shrinker(shrinker);
737 EXPORT_SYMBOL(register_shrinker);
742 void unregister_shrinker(struct shrinker *shrinker)
744 struct dentry *debugfs_entry;
746 if (!(shrinker->flags & SHRINKER_REGISTERED))
749 down_write(&shrinker_rwsem);
750 list_del(&shrinker->list);
751 shrinker->flags &= ~SHRINKER_REGISTERED;
752 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
753 unregister_memcg_shrinker(shrinker);
754 debugfs_entry = shrinker_debugfs_remove(shrinker);
755 up_write(&shrinker_rwsem);
757 debugfs_remove_recursive(debugfs_entry);
759 kfree(shrinker->nr_deferred);
760 shrinker->nr_deferred = NULL;
762 EXPORT_SYMBOL(unregister_shrinker);
765 * synchronize_shrinkers - Wait for all running shrinkers to complete.
767 * This is equivalent to calling unregister_shrink() and register_shrinker(),
768 * but atomically and with less overhead. This is useful to guarantee that all
769 * shrinker invocations have seen an update, before freeing memory, similar to
772 void synchronize_shrinkers(void)
774 down_write(&shrinker_rwsem);
775 up_write(&shrinker_rwsem);
777 EXPORT_SYMBOL(synchronize_shrinkers);
779 #define SHRINK_BATCH 128
781 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
782 struct shrinker *shrinker, int priority)
784 unsigned long freed = 0;
785 unsigned long long delta;
790 long batch_size = shrinker->batch ? shrinker->batch
792 long scanned = 0, next_deferred;
794 freeable = shrinker->count_objects(shrinker, shrinkctl);
795 if (freeable == 0 || freeable == SHRINK_EMPTY)
799 * copy the current shrinker scan count into a local variable
800 * and zero it so that other concurrent shrinker invocations
801 * don't also do this scanning work.
803 nr = xchg_nr_deferred(shrinker, shrinkctl);
805 if (shrinker->seeks) {
806 delta = freeable >> priority;
808 do_div(delta, shrinker->seeks);
811 * These objects don't require any IO to create. Trim
812 * them aggressively under memory pressure to keep
813 * them from causing refetches in the IO caches.
815 delta = freeable / 2;
818 total_scan = nr >> priority;
820 total_scan = min(total_scan, (2 * freeable));
822 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
823 freeable, delta, total_scan, priority);
826 * Normally, we should not scan less than batch_size objects in one
827 * pass to avoid too frequent shrinker calls, but if the slab has less
828 * than batch_size objects in total and we are really tight on memory,
829 * we will try to reclaim all available objects, otherwise we can end
830 * up failing allocations although there are plenty of reclaimable
831 * objects spread over several slabs with usage less than the
834 * We detect the "tight on memory" situations by looking at the total
835 * number of objects we want to scan (total_scan). If it is greater
836 * than the total number of objects on slab (freeable), we must be
837 * scanning at high prio and therefore should try to reclaim as much as
840 while (total_scan >= batch_size ||
841 total_scan >= freeable) {
843 unsigned long nr_to_scan = min(batch_size, total_scan);
845 shrinkctl->nr_to_scan = nr_to_scan;
846 shrinkctl->nr_scanned = nr_to_scan;
847 ret = shrinker->scan_objects(shrinker, shrinkctl);
848 if (ret == SHRINK_STOP)
852 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
853 total_scan -= shrinkctl->nr_scanned;
854 scanned += shrinkctl->nr_scanned;
860 * The deferred work is increased by any new work (delta) that wasn't
861 * done, decreased by old deferred work that was done now.
863 * And it is capped to two times of the freeable items.
865 next_deferred = max_t(long, (nr + delta - scanned), 0);
866 next_deferred = min(next_deferred, (2 * freeable));
869 * move the unused scan count back into the shrinker in a
870 * manner that handles concurrent updates.
872 new_nr = add_nr_deferred(next_deferred, shrinker, shrinkctl);
874 trace_mm_shrink_slab_end(shrinker, shrinkctl->nid, freed, nr, new_nr, total_scan);
879 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
880 struct mem_cgroup *memcg, int priority)
882 struct shrinker_info *info;
883 unsigned long ret, freed = 0;
886 if (!mem_cgroup_online(memcg))
889 if (!down_read_trylock(&shrinker_rwsem))
892 info = shrinker_info_protected(memcg, nid);
896 for_each_set_bit(i, info->map, shrinker_nr_max) {
897 struct shrink_control sc = {
898 .gfp_mask = gfp_mask,
902 struct shrinker *shrinker;
904 shrinker = idr_find(&shrinker_idr, i);
905 if (unlikely(!shrinker || !(shrinker->flags & SHRINKER_REGISTERED))) {
907 clear_bit(i, info->map);
911 /* Call non-slab shrinkers even though kmem is disabled */
912 if (!memcg_kmem_enabled() &&
913 !(shrinker->flags & SHRINKER_NONSLAB))
916 ret = do_shrink_slab(&sc, shrinker, priority);
917 if (ret == SHRINK_EMPTY) {
918 clear_bit(i, info->map);
920 * After the shrinker reported that it had no objects to
921 * free, but before we cleared the corresponding bit in
922 * the memcg shrinker map, a new object might have been
923 * added. To make sure, we have the bit set in this
924 * case, we invoke the shrinker one more time and reset
925 * the bit if it reports that it is not empty anymore.
926 * The memory barrier here pairs with the barrier in
927 * set_shrinker_bit():
929 * list_lru_add() shrink_slab_memcg()
930 * list_add_tail() clear_bit()
932 * set_bit() do_shrink_slab()
934 smp_mb__after_atomic();
935 ret = do_shrink_slab(&sc, shrinker, priority);
936 if (ret == SHRINK_EMPTY)
939 set_shrinker_bit(memcg, nid, i);
943 if (rwsem_is_contended(&shrinker_rwsem)) {
949 up_read(&shrinker_rwsem);
952 #else /* CONFIG_MEMCG */
953 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
954 struct mem_cgroup *memcg, int priority)
958 #endif /* CONFIG_MEMCG */
961 * shrink_slab - shrink slab caches
962 * @gfp_mask: allocation context
963 * @nid: node whose slab caches to target
964 * @memcg: memory cgroup whose slab caches to target
965 * @priority: the reclaim priority
967 * Call the shrink functions to age shrinkable caches.
969 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
970 * unaware shrinkers will receive a node id of 0 instead.
972 * @memcg specifies the memory cgroup to target. Unaware shrinkers
973 * are called only if it is the root cgroup.
975 * @priority is sc->priority, we take the number of objects and >> by priority
976 * in order to get the scan target.
978 * Returns the number of reclaimed slab objects.
980 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
981 struct mem_cgroup *memcg,
984 unsigned long ret, freed = 0;
985 struct shrinker *shrinker;
988 * The root memcg might be allocated even though memcg is disabled
989 * via "cgroup_disable=memory" boot parameter. This could make
990 * mem_cgroup_is_root() return false, then just run memcg slab
991 * shrink, but skip global shrink. This may result in premature
994 if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
995 return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
997 if (!down_read_trylock(&shrinker_rwsem))
1000 list_for_each_entry(shrinker, &shrinker_list, list) {
1001 struct shrink_control sc = {
1002 .gfp_mask = gfp_mask,
1007 ret = do_shrink_slab(&sc, shrinker, priority);
1008 if (ret == SHRINK_EMPTY)
1012 * Bail out if someone want to register a new shrinker to
1013 * prevent the registration from being stalled for long periods
1014 * by parallel ongoing shrinking.
1016 if (rwsem_is_contended(&shrinker_rwsem)) {
1017 freed = freed ? : 1;
1022 up_read(&shrinker_rwsem);
1028 static unsigned long drop_slab_node(int nid)
1030 unsigned long freed = 0;
1031 struct mem_cgroup *memcg = NULL;
1033 memcg = mem_cgroup_iter(NULL, NULL, NULL);
1035 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
1036 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
1041 void drop_slab(void)
1045 unsigned long freed;
1049 for_each_online_node(nid) {
1050 if (fatal_signal_pending(current))
1053 freed += drop_slab_node(nid);
1055 } while ((freed >> shift++) > 1);
1058 static int reclaimer_offset(void)
1060 BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD !=
1061 PGDEMOTE_DIRECT - PGDEMOTE_KSWAPD);
1062 BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD !=
1063 PGSCAN_DIRECT - PGSCAN_KSWAPD);
1064 BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD !=
1065 PGDEMOTE_KHUGEPAGED - PGDEMOTE_KSWAPD);
1066 BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD !=
1067 PGSCAN_KHUGEPAGED - PGSCAN_KSWAPD);
1069 if (current_is_kswapd())
1071 if (current_is_khugepaged())
1072 return PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD;
1073 return PGSTEAL_DIRECT - PGSTEAL_KSWAPD;
1076 static inline int is_page_cache_freeable(struct folio *folio)
1079 * A freeable page cache folio is referenced only by the caller
1080 * that isolated the folio, the page cache and optional filesystem
1081 * private data at folio->private.
1083 return folio_ref_count(folio) - folio_test_private(folio) ==
1084 1 + folio_nr_pages(folio);
1088 * We detected a synchronous write error writing a folio out. Probably
1089 * -ENOSPC. We need to propagate that into the address_space for a subsequent
1090 * fsync(), msync() or close().
1092 * The tricky part is that after writepage we cannot touch the mapping: nothing
1093 * prevents it from being freed up. But we have a ref on the folio and once
1094 * that folio is locked, the mapping is pinned.
1096 * We're allowed to run sleeping folio_lock() here because we know the caller has
1099 static void handle_write_error(struct address_space *mapping,
1100 struct folio *folio, int error)
1103 if (folio_mapping(folio) == mapping)
1104 mapping_set_error(mapping, error);
1105 folio_unlock(folio);
1108 static bool skip_throttle_noprogress(pg_data_t *pgdat)
1110 int reclaimable = 0, write_pending = 0;
1114 * If kswapd is disabled, reschedule if necessary but do not
1115 * throttle as the system is likely near OOM.
1117 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
1121 * If there are a lot of dirty/writeback folios then do not
1122 * throttle as throttling will occur when the folios cycle
1123 * towards the end of the LRU if still under writeback.
1125 for (i = 0; i < MAX_NR_ZONES; i++) {
1126 struct zone *zone = pgdat->node_zones + i;
1128 if (!managed_zone(zone))
1131 reclaimable += zone_reclaimable_pages(zone);
1132 write_pending += zone_page_state_snapshot(zone,
1133 NR_ZONE_WRITE_PENDING);
1135 if (2 * write_pending <= reclaimable)
1141 void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason)
1143 wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason];
1148 * Do not throttle IO workers, kthreads other than kswapd or
1149 * workqueues. They may be required for reclaim to make
1150 * forward progress (e.g. journalling workqueues or kthreads).
1152 if (!current_is_kswapd() &&
1153 current->flags & (PF_IO_WORKER|PF_KTHREAD)) {
1159 * These figures are pulled out of thin air.
1160 * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many
1161 * parallel reclaimers which is a short-lived event so the timeout is
1162 * short. Failing to make progress or waiting on writeback are
1163 * potentially long-lived events so use a longer timeout. This is shaky
1164 * logic as a failure to make progress could be due to anything from
1165 * writeback to a slow device to excessive referenced folios at the tail
1166 * of the inactive LRU.
1169 case VMSCAN_THROTTLE_WRITEBACK:
1172 if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) {
1173 WRITE_ONCE(pgdat->nr_reclaim_start,
1174 node_page_state(pgdat, NR_THROTTLED_WRITTEN));
1178 case VMSCAN_THROTTLE_CONGESTED:
1180 case VMSCAN_THROTTLE_NOPROGRESS:
1181 if (skip_throttle_noprogress(pgdat)) {
1189 case VMSCAN_THROTTLE_ISOLATED:
1198 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1199 ret = schedule_timeout(timeout);
1200 finish_wait(wqh, &wait);
1202 if (reason == VMSCAN_THROTTLE_WRITEBACK)
1203 atomic_dec(&pgdat->nr_writeback_throttled);
1205 trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout),
1206 jiffies_to_usecs(timeout - ret),
1211 * Account for folios written if tasks are throttled waiting on dirty
1212 * folios to clean. If enough folios have been cleaned since throttling
1213 * started then wakeup the throttled tasks.
1215 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
1218 unsigned long nr_written;
1220 node_stat_add_folio(folio, NR_THROTTLED_WRITTEN);
1223 * This is an inaccurate read as the per-cpu deltas may not
1224 * be synchronised. However, given that the system is
1225 * writeback throttled, it is not worth taking the penalty
1226 * of getting an accurate count. At worst, the throttle
1227 * timeout guarantees forward progress.
1229 nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) -
1230 READ_ONCE(pgdat->nr_reclaim_start);
1232 if (nr_written > SWAP_CLUSTER_MAX * nr_throttled)
1233 wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]);
1236 /* possible outcome of pageout() */
1238 /* failed to write folio out, folio is locked */
1240 /* move folio to the active list, folio is locked */
1242 /* folio has been sent to the disk successfully, folio is unlocked */
1244 /* folio is clean and locked */
1249 * pageout is called by shrink_folio_list() for each dirty folio.
1250 * Calls ->writepage().
1252 static pageout_t pageout(struct folio *folio, struct address_space *mapping,
1253 struct swap_iocb **plug)
1256 * If the folio is dirty, only perform writeback if that write
1257 * will be non-blocking. To prevent this allocation from being
1258 * stalled by pagecache activity. But note that there may be
1259 * stalls if we need to run get_block(). We could test
1260 * PagePrivate for that.
1262 * If this process is currently in __generic_file_write_iter() against
1263 * this folio's queue, we can perform writeback even if that
1266 * If the folio is swapcache, write it back even if that would
1267 * block, for some throttling. This happens by accident, because
1268 * swap_backing_dev_info is bust: it doesn't reflect the
1269 * congestion state of the swapdevs. Easy to fix, if needed.
1271 if (!is_page_cache_freeable(folio))
1275 * Some data journaling orphaned folios can have
1276 * folio->mapping == NULL while being dirty with clean buffers.
1278 if (folio_test_private(folio)) {
1279 if (try_to_free_buffers(folio)) {
1280 folio_clear_dirty(folio);
1281 pr_info("%s: orphaned folio\n", __func__);
1287 if (mapping->a_ops->writepage == NULL)
1288 return PAGE_ACTIVATE;
1290 if (folio_clear_dirty_for_io(folio)) {
1292 struct writeback_control wbc = {
1293 .sync_mode = WB_SYNC_NONE,
1294 .nr_to_write = SWAP_CLUSTER_MAX,
1296 .range_end = LLONG_MAX,
1301 folio_set_reclaim(folio);
1302 res = mapping->a_ops->writepage(&folio->page, &wbc);
1304 handle_write_error(mapping, folio, res);
1305 if (res == AOP_WRITEPAGE_ACTIVATE) {
1306 folio_clear_reclaim(folio);
1307 return PAGE_ACTIVATE;
1310 if (!folio_test_writeback(folio)) {
1311 /* synchronous write or broken a_ops? */
1312 folio_clear_reclaim(folio);
1314 trace_mm_vmscan_write_folio(folio);
1315 node_stat_add_folio(folio, NR_VMSCAN_WRITE);
1316 return PAGE_SUCCESS;
1323 * Same as remove_mapping, but if the folio is removed from the mapping, it
1324 * gets returned with a refcount of 0.
1326 static int __remove_mapping(struct address_space *mapping, struct folio *folio,
1327 bool reclaimed, struct mem_cgroup *target_memcg)
1330 void *shadow = NULL;
1332 BUG_ON(!folio_test_locked(folio));
1333 BUG_ON(mapping != folio_mapping(folio));
1335 if (!folio_test_swapcache(folio))
1336 spin_lock(&mapping->host->i_lock);
1337 xa_lock_irq(&mapping->i_pages);
1339 * The non racy check for a busy folio.
1341 * Must be careful with the order of the tests. When someone has
1342 * a ref to the folio, it may be possible that they dirty it then
1343 * drop the reference. So if the dirty flag is tested before the
1344 * refcount here, then the following race may occur:
1346 * get_user_pages(&page);
1347 * [user mapping goes away]
1349 * !folio_test_dirty(folio) [good]
1350 * folio_set_dirty(folio);
1352 * !refcount(folio) [good, discard it]
1354 * [oops, our write_to data is lost]
1356 * Reversing the order of the tests ensures such a situation cannot
1357 * escape unnoticed. The smp_rmb is needed to ensure the folio->flags
1358 * load is not satisfied before that of folio->_refcount.
1360 * Note that if the dirty flag is always set via folio_mark_dirty,
1361 * and thus under the i_pages lock, then this ordering is not required.
1363 refcount = 1 + folio_nr_pages(folio);
1364 if (!folio_ref_freeze(folio, refcount))
1366 /* note: atomic_cmpxchg in folio_ref_freeze provides the smp_rmb */
1367 if (unlikely(folio_test_dirty(folio))) {
1368 folio_ref_unfreeze(folio, refcount);
1372 if (folio_test_swapcache(folio)) {
1373 swp_entry_t swap = folio_swap_entry(folio);
1375 if (reclaimed && !mapping_exiting(mapping))
1376 shadow = workingset_eviction(folio, target_memcg);
1377 __delete_from_swap_cache(folio, swap, shadow);
1378 mem_cgroup_swapout(folio, swap);
1379 xa_unlock_irq(&mapping->i_pages);
1380 put_swap_folio(folio, swap);
1382 void (*free_folio)(struct folio *);
1384 free_folio = mapping->a_ops->free_folio;
1386 * Remember a shadow entry for reclaimed file cache in
1387 * order to detect refaults, thus thrashing, later on.
1389 * But don't store shadows in an address space that is
1390 * already exiting. This is not just an optimization,
1391 * inode reclaim needs to empty out the radix tree or
1392 * the nodes are lost. Don't plant shadows behind its
1395 * We also don't store shadows for DAX mappings because the
1396 * only page cache folios found in these are zero pages
1397 * covering holes, and because we don't want to mix DAX
1398 * exceptional entries and shadow exceptional entries in the
1399 * same address_space.
1401 if (reclaimed && folio_is_file_lru(folio) &&
1402 !mapping_exiting(mapping) && !dax_mapping(mapping))
1403 shadow = workingset_eviction(folio, target_memcg);
1404 __filemap_remove_folio(folio, shadow);
1405 xa_unlock_irq(&mapping->i_pages);
1406 if (mapping_shrinkable(mapping))
1407 inode_add_lru(mapping->host);
1408 spin_unlock(&mapping->host->i_lock);
1417 xa_unlock_irq(&mapping->i_pages);
1418 if (!folio_test_swapcache(folio))
1419 spin_unlock(&mapping->host->i_lock);
1424 * remove_mapping() - Attempt to remove a folio from its mapping.
1425 * @mapping: The address space.
1426 * @folio: The folio to remove.
1428 * If the folio is dirty, under writeback or if someone else has a ref
1429 * on it, removal will fail.
1430 * Return: The number of pages removed from the mapping. 0 if the folio
1431 * could not be removed.
1432 * Context: The caller should have a single refcount on the folio and
1435 long remove_mapping(struct address_space *mapping, struct folio *folio)
1437 if (__remove_mapping(mapping, folio, false, NULL)) {
1439 * Unfreezing the refcount with 1 effectively
1440 * drops the pagecache ref for us without requiring another
1443 folio_ref_unfreeze(folio, 1);
1444 return folio_nr_pages(folio);
1450 * folio_putback_lru - Put previously isolated folio onto appropriate LRU list.
1451 * @folio: Folio to be returned to an LRU list.
1453 * Add previously isolated @folio to appropriate LRU list.
1454 * The folio may still be unevictable for other reasons.
1456 * Context: lru_lock must not be held, interrupts must be enabled.
1458 void folio_putback_lru(struct folio *folio)
1460 folio_add_lru(folio);
1461 folio_put(folio); /* drop ref from isolate */
1464 enum folio_references {
1466 FOLIOREF_RECLAIM_CLEAN,
1471 static enum folio_references folio_check_references(struct folio *folio,
1472 struct scan_control *sc)
1474 int referenced_ptes, referenced_folio;
1475 unsigned long vm_flags;
1477 referenced_ptes = folio_referenced(folio, 1, sc->target_mem_cgroup,
1479 referenced_folio = folio_test_clear_referenced(folio);
1482 * The supposedly reclaimable folio was found to be in a VM_LOCKED vma.
1483 * Let the folio, now marked Mlocked, be moved to the unevictable list.
1485 if (vm_flags & VM_LOCKED)
1486 return FOLIOREF_ACTIVATE;
1488 /* rmap lock contention: rotate */
1489 if (referenced_ptes == -1)
1490 return FOLIOREF_KEEP;
1492 if (referenced_ptes) {
1494 * All mapped folios start out with page table
1495 * references from the instantiating fault, so we need
1496 * to look twice if a mapped file/anon folio is used more
1499 * Mark it and spare it for another trip around the
1500 * inactive list. Another page table reference will
1501 * lead to its activation.
1503 * Note: the mark is set for activated folios as well
1504 * so that recently deactivated but used folios are
1505 * quickly recovered.
1507 folio_set_referenced(folio);
1509 if (referenced_folio || referenced_ptes > 1)
1510 return FOLIOREF_ACTIVATE;
1513 * Activate file-backed executable folios after first usage.
1515 if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio))
1516 return FOLIOREF_ACTIVATE;
1518 return FOLIOREF_KEEP;
1521 /* Reclaim if clean, defer dirty folios to writeback */
1522 if (referenced_folio && folio_is_file_lru(folio))
1523 return FOLIOREF_RECLAIM_CLEAN;
1525 return FOLIOREF_RECLAIM;
1528 /* Check if a folio is dirty or under writeback */
1529 static void folio_check_dirty_writeback(struct folio *folio,
1530 bool *dirty, bool *writeback)
1532 struct address_space *mapping;
1535 * Anonymous folios are not handled by flushers and must be written
1536 * from reclaim context. Do not stall reclaim based on them.
1537 * MADV_FREE anonymous folios are put into inactive file list too.
1538 * They could be mistakenly treated as file lru. So further anon
1541 if (!folio_is_file_lru(folio) ||
1542 (folio_test_anon(folio) && !folio_test_swapbacked(folio))) {
1548 /* By default assume that the folio flags are accurate */
1549 *dirty = folio_test_dirty(folio);
1550 *writeback = folio_test_writeback(folio);
1552 /* Verify dirty/writeback state if the filesystem supports it */
1553 if (!folio_test_private(folio))
1556 mapping = folio_mapping(folio);
1557 if (mapping && mapping->a_ops->is_dirty_writeback)
1558 mapping->a_ops->is_dirty_writeback(folio, dirty, writeback);
1561 static struct page *alloc_demote_page(struct page *page, unsigned long private)
1563 struct page *target_page;
1564 nodemask_t *allowed_mask;
1565 struct migration_target_control *mtc;
1567 mtc = (struct migration_target_control *)private;
1569 allowed_mask = mtc->nmask;
1571 * make sure we allocate from the target node first also trying to
1572 * demote or reclaim pages from the target node via kswapd if we are
1573 * low on free memory on target node. If we don't do this and if
1574 * we have free memory on the slower(lower) memtier, we would start
1575 * allocating pages from slower(lower) memory tiers without even forcing
1576 * a demotion of cold pages from the target memtier. This can result
1577 * in the kernel placing hot pages in slower(lower) memory tiers.
1580 mtc->gfp_mask |= __GFP_THISNODE;
1581 target_page = alloc_migration_target(page, (unsigned long)mtc);
1585 mtc->gfp_mask &= ~__GFP_THISNODE;
1586 mtc->nmask = allowed_mask;
1588 return alloc_migration_target(page, (unsigned long)mtc);
1592 * Take folios on @demote_folios and attempt to demote them to another node.
1593 * Folios which are not demoted are left on @demote_folios.
1595 static unsigned int demote_folio_list(struct list_head *demote_folios,
1596 struct pglist_data *pgdat)
1598 int target_nid = next_demotion_node(pgdat->node_id);
1599 unsigned int nr_succeeded;
1600 nodemask_t allowed_mask;
1602 struct migration_target_control mtc = {
1604 * Allocate from 'node', or fail quickly and quietly.
1605 * When this happens, 'page' will likely just be discarded
1606 * instead of migrated.
1608 .gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) | __GFP_NOWARN |
1609 __GFP_NOMEMALLOC | GFP_NOWAIT,
1611 .nmask = &allowed_mask
1614 if (list_empty(demote_folios))
1617 if (target_nid == NUMA_NO_NODE)
1620 node_get_allowed_targets(pgdat, &allowed_mask);
1622 /* Demotion ignores all cpuset and mempolicy settings */
1623 migrate_pages(demote_folios, alloc_demote_page, NULL,
1624 (unsigned long)&mtc, MIGRATE_ASYNC, MR_DEMOTION,
1627 __count_vm_events(PGDEMOTE_KSWAPD + reclaimer_offset(), nr_succeeded);
1629 return nr_succeeded;
1632 static bool may_enter_fs(struct folio *folio, gfp_t gfp_mask)
1634 if (gfp_mask & __GFP_FS)
1636 if (!folio_test_swapcache(folio) || !(gfp_mask & __GFP_IO))
1639 * We can "enter_fs" for swap-cache with only __GFP_IO
1640 * providing this isn't SWP_FS_OPS.
1641 * ->flags can be updated non-atomicially (scan_swap_map_slots),
1642 * but that will never affect SWP_FS_OPS, so the data_race
1645 return !data_race(folio_swap_flags(folio) & SWP_FS_OPS);
1649 * shrink_folio_list() returns the number of reclaimed pages
1651 static unsigned int shrink_folio_list(struct list_head *folio_list,
1652 struct pglist_data *pgdat, struct scan_control *sc,
1653 struct reclaim_stat *stat, bool ignore_references)
1655 LIST_HEAD(ret_folios);
1656 LIST_HEAD(free_folios);
1657 LIST_HEAD(demote_folios);
1658 unsigned int nr_reclaimed = 0;
1659 unsigned int pgactivate = 0;
1660 bool do_demote_pass;
1661 struct swap_iocb *plug = NULL;
1663 memset(stat, 0, sizeof(*stat));
1665 do_demote_pass = can_demote(pgdat->node_id, sc);
1668 while (!list_empty(folio_list)) {
1669 struct address_space *mapping;
1670 struct folio *folio;
1671 enum folio_references references = FOLIOREF_RECLAIM;
1672 bool dirty, writeback;
1673 unsigned int nr_pages;
1677 folio = lru_to_folio(folio_list);
1678 list_del(&folio->lru);
1680 if (!folio_trylock(folio))
1683 VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
1685 nr_pages = folio_nr_pages(folio);
1687 /* Account the number of base pages */
1688 sc->nr_scanned += nr_pages;
1690 if (unlikely(!folio_evictable(folio)))
1691 goto activate_locked;
1693 if (!sc->may_unmap && folio_mapped(folio))
1696 /* folio_update_gen() tried to promote this page? */
1697 if (lru_gen_enabled() && !ignore_references &&
1698 folio_mapped(folio) && folio_test_referenced(folio))
1702 * The number of dirty pages determines if a node is marked
1703 * reclaim_congested. kswapd will stall and start writing
1704 * folios if the tail of the LRU is all dirty unqueued folios.
1706 folio_check_dirty_writeback(folio, &dirty, &writeback);
1707 if (dirty || writeback)
1708 stat->nr_dirty += nr_pages;
1710 if (dirty && !writeback)
1711 stat->nr_unqueued_dirty += nr_pages;
1714 * Treat this folio as congested if folios are cycling
1715 * through the LRU so quickly that the folios marked
1716 * for immediate reclaim are making it to the end of
1717 * the LRU a second time.
1719 if (writeback && folio_test_reclaim(folio))
1720 stat->nr_congested += nr_pages;
1723 * If a folio at the tail of the LRU is under writeback, there
1724 * are three cases to consider.
1726 * 1) If reclaim is encountering an excessive number
1727 * of folios under writeback and this folio has both
1728 * the writeback and reclaim flags set, then it
1729 * indicates that folios are being queued for I/O but
1730 * are being recycled through the LRU before the I/O
1731 * can complete. Waiting on the folio itself risks an
1732 * indefinite stall if it is impossible to writeback
1733 * the folio due to I/O error or disconnected storage
1734 * so instead note that the LRU is being scanned too
1735 * quickly and the caller can stall after the folio
1736 * list has been processed.
1738 * 2) Global or new memcg reclaim encounters a folio that is
1739 * not marked for immediate reclaim, or the caller does not
1740 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1741 * not to fs). In this case mark the folio for immediate
1742 * reclaim and continue scanning.
1744 * Require may_enter_fs() because we would wait on fs, which
1745 * may not have submitted I/O yet. And the loop driver might
1746 * enter reclaim, and deadlock if it waits on a folio for
1747 * which it is needed to do the write (loop masks off
1748 * __GFP_IO|__GFP_FS for this reason); but more thought
1749 * would probably show more reasons.
1751 * 3) Legacy memcg encounters a folio that already has the
1752 * reclaim flag set. memcg does not have any dirty folio
1753 * throttling so we could easily OOM just because too many
1754 * folios are in writeback and there is nothing else to
1755 * reclaim. Wait for the writeback to complete.
1757 * In cases 1) and 2) we activate the folios to get them out of
1758 * the way while we continue scanning for clean folios on the
1759 * inactive list and refilling from the active list. The
1760 * observation here is that waiting for disk writes is more
1761 * expensive than potentially causing reloads down the line.
1762 * Since they're marked for immediate reclaim, they won't put
1763 * memory pressure on the cache working set any longer than it
1764 * takes to write them to disk.
1766 if (folio_test_writeback(folio)) {
1768 if (current_is_kswapd() &&
1769 folio_test_reclaim(folio) &&
1770 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1771 stat->nr_immediate += nr_pages;
1772 goto activate_locked;
1775 } else if (writeback_throttling_sane(sc) ||
1776 !folio_test_reclaim(folio) ||
1777 !may_enter_fs(folio, sc->gfp_mask)) {
1779 * This is slightly racy -
1780 * folio_end_writeback() might have
1781 * just cleared the reclaim flag, then
1782 * setting the reclaim flag here ends up
1783 * interpreted as the readahead flag - but
1784 * that does not matter enough to care.
1785 * What we do want is for this folio to
1786 * have the reclaim flag set next time
1787 * memcg reclaim reaches the tests above,
1788 * so it will then wait for writeback to
1789 * avoid OOM; and it's also appropriate
1790 * in global reclaim.
1792 folio_set_reclaim(folio);
1793 stat->nr_writeback += nr_pages;
1794 goto activate_locked;
1798 folio_unlock(folio);
1799 folio_wait_writeback(folio);
1800 /* then go back and try same folio again */
1801 list_add_tail(&folio->lru, folio_list);
1806 if (!ignore_references)
1807 references = folio_check_references(folio, sc);
1809 switch (references) {
1810 case FOLIOREF_ACTIVATE:
1811 goto activate_locked;
1813 stat->nr_ref_keep += nr_pages;
1815 case FOLIOREF_RECLAIM:
1816 case FOLIOREF_RECLAIM_CLEAN:
1817 ; /* try to reclaim the folio below */
1821 * Before reclaiming the folio, try to relocate
1822 * its contents to another node.
1824 if (do_demote_pass &&
1825 (thp_migration_supported() || !folio_test_large(folio))) {
1826 list_add(&folio->lru, &demote_folios);
1827 folio_unlock(folio);
1832 * Anonymous process memory has backing store?
1833 * Try to allocate it some swap space here.
1834 * Lazyfree folio could be freed directly
1836 if (folio_test_anon(folio) && folio_test_swapbacked(folio)) {
1837 if (!folio_test_swapcache(folio)) {
1838 if (!(sc->gfp_mask & __GFP_IO))
1840 if (folio_maybe_dma_pinned(folio))
1842 if (folio_test_large(folio)) {
1843 /* cannot split folio, skip it */
1844 if (!can_split_folio(folio, NULL))
1845 goto activate_locked;
1847 * Split folios without a PMD map right
1848 * away. Chances are some or all of the
1849 * tail pages can be freed without IO.
1851 if (!folio_entire_mapcount(folio) &&
1852 split_folio_to_list(folio,
1854 goto activate_locked;
1856 if (!add_to_swap(folio)) {
1857 if (!folio_test_large(folio))
1858 goto activate_locked_split;
1859 /* Fallback to swap normal pages */
1860 if (split_folio_to_list(folio,
1862 goto activate_locked;
1863 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1864 count_vm_event(THP_SWPOUT_FALLBACK);
1866 if (!add_to_swap(folio))
1867 goto activate_locked_split;
1870 } else if (folio_test_swapbacked(folio) &&
1871 folio_test_large(folio)) {
1872 /* Split shmem folio */
1873 if (split_folio_to_list(folio, folio_list))
1878 * If the folio was split above, the tail pages will make
1879 * their own pass through this function and be accounted
1882 if ((nr_pages > 1) && !folio_test_large(folio)) {
1883 sc->nr_scanned -= (nr_pages - 1);
1888 * The folio is mapped into the page tables of one or more
1889 * processes. Try to unmap it here.
1891 if (folio_mapped(folio)) {
1892 enum ttu_flags flags = TTU_BATCH_FLUSH;
1893 bool was_swapbacked = folio_test_swapbacked(folio);
1895 if (folio_test_pmd_mappable(folio))
1896 flags |= TTU_SPLIT_HUGE_PMD;
1898 try_to_unmap(folio, flags);
1899 if (folio_mapped(folio)) {
1900 stat->nr_unmap_fail += nr_pages;
1901 if (!was_swapbacked &&
1902 folio_test_swapbacked(folio))
1903 stat->nr_lazyfree_fail += nr_pages;
1904 goto activate_locked;
1908 mapping = folio_mapping(folio);
1909 if (folio_test_dirty(folio)) {
1911 * Only kswapd can writeback filesystem folios
1912 * to avoid risk of stack overflow. But avoid
1913 * injecting inefficient single-folio I/O into
1914 * flusher writeback as much as possible: only
1915 * write folios when we've encountered many
1916 * dirty folios, and when we've already scanned
1917 * the rest of the LRU for clean folios and see
1918 * the same dirty folios again (with the reclaim
1921 if (folio_is_file_lru(folio) &&
1922 (!current_is_kswapd() ||
1923 !folio_test_reclaim(folio) ||
1924 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1926 * Immediately reclaim when written back.
1927 * Similar in principle to deactivate_page()
1928 * except we already have the folio isolated
1929 * and know it's dirty
1931 node_stat_mod_folio(folio, NR_VMSCAN_IMMEDIATE,
1933 folio_set_reclaim(folio);
1935 goto activate_locked;
1938 if (references == FOLIOREF_RECLAIM_CLEAN)
1940 if (!may_enter_fs(folio, sc->gfp_mask))
1942 if (!sc->may_writepage)
1946 * Folio is dirty. Flush the TLB if a writable entry
1947 * potentially exists to avoid CPU writes after I/O
1948 * starts and then write it out here.
1950 try_to_unmap_flush_dirty();
1951 switch (pageout(folio, mapping, &plug)) {
1955 goto activate_locked;
1957 stat->nr_pageout += nr_pages;
1959 if (folio_test_writeback(folio))
1961 if (folio_test_dirty(folio))
1965 * A synchronous write - probably a ramdisk. Go
1966 * ahead and try to reclaim the folio.
1968 if (!folio_trylock(folio))
1970 if (folio_test_dirty(folio) ||
1971 folio_test_writeback(folio))
1973 mapping = folio_mapping(folio);
1976 ; /* try to free the folio below */
1981 * If the folio has buffers, try to free the buffer
1982 * mappings associated with this folio. If we succeed
1983 * we try to free the folio as well.
1985 * We do this even if the folio is dirty.
1986 * filemap_release_folio() does not perform I/O, but it
1987 * is possible for a folio to have the dirty flag set,
1988 * but it is actually clean (all its buffers are clean).
1989 * This happens if the buffers were written out directly,
1990 * with submit_bh(). ext3 will do this, as well as
1991 * the blockdev mapping. filemap_release_folio() will
1992 * discover that cleanness and will drop the buffers
1993 * and mark the folio clean - it can be freed.
1995 * Rarely, folios can have buffers and no ->mapping.
1996 * These are the folios which were not successfully
1997 * invalidated in truncate_cleanup_folio(). We try to
1998 * drop those buffers here and if that worked, and the
1999 * folio is no longer mapped into process address space
2000 * (refcount == 1) it can be freed. Otherwise, leave
2001 * the folio on the LRU so it is swappable.
2003 if (folio_has_private(folio)) {
2004 if (!filemap_release_folio(folio, sc->gfp_mask))
2005 goto activate_locked;
2006 if (!mapping && folio_ref_count(folio) == 1) {
2007 folio_unlock(folio);
2008 if (folio_put_testzero(folio))
2012 * rare race with speculative reference.
2013 * the speculative reference will free
2014 * this folio shortly, so we may
2015 * increment nr_reclaimed here (and
2016 * leave it off the LRU).
2018 nr_reclaimed += nr_pages;
2024 if (folio_test_anon(folio) && !folio_test_swapbacked(folio)) {
2025 /* follow __remove_mapping for reference */
2026 if (!folio_ref_freeze(folio, 1))
2029 * The folio has only one reference left, which is
2030 * from the isolation. After the caller puts the
2031 * folio back on the lru and drops the reference, the
2032 * folio will be freed anyway. It doesn't matter
2033 * which lru it goes on. So we don't bother checking
2034 * the dirty flag here.
2036 count_vm_events(PGLAZYFREED, nr_pages);
2037 count_memcg_folio_events(folio, PGLAZYFREED, nr_pages);
2038 } else if (!mapping || !__remove_mapping(mapping, folio, true,
2039 sc->target_mem_cgroup))
2042 folio_unlock(folio);
2045 * Folio may get swapped out as a whole, need to account
2048 nr_reclaimed += nr_pages;
2051 * Is there need to periodically free_folio_list? It would
2052 * appear not as the counts should be low
2054 if (unlikely(folio_test_large(folio)))
2055 destroy_large_folio(folio);
2057 list_add(&folio->lru, &free_folios);
2060 activate_locked_split:
2062 * The tail pages that are failed to add into swap cache
2063 * reach here. Fixup nr_scanned and nr_pages.
2066 sc->nr_scanned -= (nr_pages - 1);
2070 /* Not a candidate for swapping, so reclaim swap space. */
2071 if (folio_test_swapcache(folio) &&
2072 (mem_cgroup_swap_full(folio) || folio_test_mlocked(folio)))
2073 folio_free_swap(folio);
2074 VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
2075 if (!folio_test_mlocked(folio)) {
2076 int type = folio_is_file_lru(folio);
2077 folio_set_active(folio);
2078 stat->nr_activate[type] += nr_pages;
2079 count_memcg_folio_events(folio, PGACTIVATE, nr_pages);
2082 folio_unlock(folio);
2084 list_add(&folio->lru, &ret_folios);
2085 VM_BUG_ON_FOLIO(folio_test_lru(folio) ||
2086 folio_test_unevictable(folio), folio);
2088 /* 'folio_list' is always empty here */
2090 /* Migrate folios selected for demotion */
2091 nr_reclaimed += demote_folio_list(&demote_folios, pgdat);
2092 /* Folios that could not be demoted are still in @demote_folios */
2093 if (!list_empty(&demote_folios)) {
2094 /* Folios which weren't demoted go back on @folio_list */
2095 list_splice_init(&demote_folios, folio_list);
2098 * goto retry to reclaim the undemoted folios in folio_list if
2101 * Reclaiming directly from top tier nodes is not often desired
2102 * due to it breaking the LRU ordering: in general memory
2103 * should be reclaimed from lower tier nodes and demoted from
2106 * However, disabling reclaim from top tier nodes entirely
2107 * would cause ooms in edge scenarios where lower tier memory
2108 * is unreclaimable for whatever reason, eg memory being
2109 * mlocked or too hot to reclaim. We can disable reclaim
2110 * from top tier nodes in proactive reclaim though as that is
2111 * not real memory pressure.
2113 if (!sc->proactive) {
2114 do_demote_pass = false;
2119 pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
2121 mem_cgroup_uncharge_list(&free_folios);
2122 try_to_unmap_flush();
2123 free_unref_page_list(&free_folios);
2125 list_splice(&ret_folios, folio_list);
2126 count_vm_events(PGACTIVATE, pgactivate);
2129 swap_write_unplug(plug);
2130 return nr_reclaimed;
2133 unsigned int reclaim_clean_pages_from_list(struct zone *zone,
2134 struct list_head *folio_list)
2136 struct scan_control sc = {
2137 .gfp_mask = GFP_KERNEL,
2140 struct reclaim_stat stat;
2141 unsigned int nr_reclaimed;
2142 struct folio *folio, *next;
2143 LIST_HEAD(clean_folios);
2144 unsigned int noreclaim_flag;
2146 list_for_each_entry_safe(folio, next, folio_list, lru) {
2147 if (!folio_test_hugetlb(folio) && folio_is_file_lru(folio) &&
2148 !folio_test_dirty(folio) && !__folio_test_movable(folio) &&
2149 !folio_test_unevictable(folio)) {
2150 folio_clear_active(folio);
2151 list_move(&folio->lru, &clean_folios);
2156 * We should be safe here since we are only dealing with file pages and
2157 * we are not kswapd and therefore cannot write dirty file pages. But
2158 * call memalloc_noreclaim_save() anyway, just in case these conditions
2159 * change in the future.
2161 noreclaim_flag = memalloc_noreclaim_save();
2162 nr_reclaimed = shrink_folio_list(&clean_folios, zone->zone_pgdat, &sc,
2164 memalloc_noreclaim_restore(noreclaim_flag);
2166 list_splice(&clean_folios, folio_list);
2167 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
2168 -(long)nr_reclaimed);
2170 * Since lazyfree pages are isolated from file LRU from the beginning,
2171 * they will rotate back to anonymous LRU in the end if it failed to
2172 * discard so isolated count will be mismatched.
2173 * Compensate the isolated count for both LRU lists.
2175 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
2176 stat.nr_lazyfree_fail);
2177 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
2178 -(long)stat.nr_lazyfree_fail);
2179 return nr_reclaimed;
2183 * Update LRU sizes after isolating pages. The LRU size updates must
2184 * be complete before mem_cgroup_update_lru_size due to a sanity check.
2186 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
2187 enum lru_list lru, unsigned long *nr_zone_taken)
2191 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2192 if (!nr_zone_taken[zid])
2195 update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
2201 * Isolating page from the lruvec to fill in @dst list by nr_to_scan times.
2203 * lruvec->lru_lock is heavily contended. Some of the functions that
2204 * shrink the lists perform better by taking out a batch of pages
2205 * and working on them outside the LRU lock.
2207 * For pagecache intensive workloads, this function is the hottest
2208 * spot in the kernel (apart from copy_*_user functions).
2210 * Lru_lock must be held before calling this function.
2212 * @nr_to_scan: The number of eligible pages to look through on the list.
2213 * @lruvec: The LRU vector to pull pages from.
2214 * @dst: The temp list to put pages on to.
2215 * @nr_scanned: The number of pages that were scanned.
2216 * @sc: The scan_control struct for this reclaim session
2217 * @lru: LRU list id for isolating
2219 * returns how many pages were moved onto *@dst.
2221 static unsigned long isolate_lru_folios(unsigned long nr_to_scan,
2222 struct lruvec *lruvec, struct list_head *dst,
2223 unsigned long *nr_scanned, struct scan_control *sc,
2226 struct list_head *src = &lruvec->lists[lru];
2227 unsigned long nr_taken = 0;
2228 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
2229 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
2230 unsigned long skipped = 0;
2231 unsigned long scan, total_scan, nr_pages;
2232 LIST_HEAD(folios_skipped);
2236 while (scan < nr_to_scan && !list_empty(src)) {
2237 struct list_head *move_to = src;
2238 struct folio *folio;
2240 folio = lru_to_folio(src);
2241 prefetchw_prev_lru_folio(folio, src, flags);
2243 nr_pages = folio_nr_pages(folio);
2244 total_scan += nr_pages;
2246 if (folio_zonenum(folio) > sc->reclaim_idx) {
2247 nr_skipped[folio_zonenum(folio)] += nr_pages;
2248 move_to = &folios_skipped;
2253 * Do not count skipped folios because that makes the function
2254 * return with no isolated folios if the LRU mostly contains
2255 * ineligible folios. This causes the VM to not reclaim any
2256 * folios, triggering a premature OOM.
2257 * Account all pages in a folio.
2261 if (!folio_test_lru(folio))
2263 if (!sc->may_unmap && folio_mapped(folio))
2267 * Be careful not to clear the lru flag until after we're
2268 * sure the folio is not being freed elsewhere -- the
2269 * folio release code relies on it.
2271 if (unlikely(!folio_try_get(folio)))
2274 if (!folio_test_clear_lru(folio)) {
2275 /* Another thread is already isolating this folio */
2280 nr_taken += nr_pages;
2281 nr_zone_taken[folio_zonenum(folio)] += nr_pages;
2284 list_move(&folio->lru, move_to);
2288 * Splice any skipped folios to the start of the LRU list. Note that
2289 * this disrupts the LRU order when reclaiming for lower zones but
2290 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
2291 * scanning would soon rescan the same folios to skip and waste lots
2294 if (!list_empty(&folios_skipped)) {
2297 list_splice(&folios_skipped, src);
2298 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2299 if (!nr_skipped[zid])
2302 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
2303 skipped += nr_skipped[zid];
2306 *nr_scanned = total_scan;
2307 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
2308 total_scan, skipped, nr_taken,
2309 sc->may_unmap ? 0 : ISOLATE_UNMAPPED, lru);
2310 update_lru_sizes(lruvec, lru, nr_zone_taken);
2315 * folio_isolate_lru() - Try to isolate a folio from its LRU list.
2316 * @folio: Folio to isolate from its LRU list.
2318 * Isolate a @folio from an LRU list and adjust the vmstat statistic
2319 * corresponding to whatever LRU list the folio was on.
2321 * The folio will have its LRU flag cleared. If it was found on the
2322 * active list, it will have the Active flag set. If it was found on the
2323 * unevictable list, it will have the Unevictable flag set. These flags
2324 * may need to be cleared by the caller before letting the page go.
2328 * (1) Must be called with an elevated refcount on the folio. This is a
2329 * fundamental difference from isolate_lru_folios() (which is called
2330 * without a stable reference).
2331 * (2) The lru_lock must not be held.
2332 * (3) Interrupts must be enabled.
2334 * Return: 0 if the folio was removed from an LRU list.
2335 * -EBUSY if the folio was not on an LRU list.
2337 int folio_isolate_lru(struct folio *folio)
2341 VM_BUG_ON_FOLIO(!folio_ref_count(folio), folio);
2343 if (folio_test_clear_lru(folio)) {
2344 struct lruvec *lruvec;
2347 lruvec = folio_lruvec_lock_irq(folio);
2348 lruvec_del_folio(lruvec, folio);
2349 unlock_page_lruvec_irq(lruvec);
2357 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
2358 * then get rescheduled. When there are massive number of tasks doing page
2359 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
2360 * the LRU list will go small and be scanned faster than necessary, leading to
2361 * unnecessary swapping, thrashing and OOM.
2363 static int too_many_isolated(struct pglist_data *pgdat, int file,
2364 struct scan_control *sc)
2366 unsigned long inactive, isolated;
2369 if (current_is_kswapd())
2372 if (!writeback_throttling_sane(sc))
2376 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
2377 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
2379 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
2380 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
2384 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
2385 * won't get blocked by normal direct-reclaimers, forming a circular
2388 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
2391 too_many = isolated > inactive;
2393 /* Wake up tasks throttled due to too_many_isolated. */
2395 wake_throttle_isolated(pgdat);
2401 * move_folios_to_lru() moves folios from private @list to appropriate LRU list.
2402 * On return, @list is reused as a list of folios to be freed by the caller.
2404 * Returns the number of pages moved to the given lruvec.
2406 static unsigned int move_folios_to_lru(struct lruvec *lruvec,
2407 struct list_head *list)
2409 int nr_pages, nr_moved = 0;
2410 LIST_HEAD(folios_to_free);
2412 while (!list_empty(list)) {
2413 struct folio *folio = lru_to_folio(list);
2415 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
2416 list_del(&folio->lru);
2417 if (unlikely(!folio_evictable(folio))) {
2418 spin_unlock_irq(&lruvec->lru_lock);
2419 folio_putback_lru(folio);
2420 spin_lock_irq(&lruvec->lru_lock);
2425 * The folio_set_lru needs to be kept here for list integrity.
2427 * #0 move_folios_to_lru #1 release_pages
2428 * if (!folio_put_testzero())
2429 * if (folio_put_testzero())
2430 * !lru //skip lru_lock
2432 * list_add(&folio->lru,)
2433 * list_add(&folio->lru,)
2435 folio_set_lru(folio);
2437 if (unlikely(folio_put_testzero(folio))) {
2438 __folio_clear_lru_flags(folio);
2440 if (unlikely(folio_test_large(folio))) {
2441 spin_unlock_irq(&lruvec->lru_lock);
2442 destroy_large_folio(folio);
2443 spin_lock_irq(&lruvec->lru_lock);
2445 list_add(&folio->lru, &folios_to_free);
2451 * All pages were isolated from the same lruvec (and isolation
2452 * inhibits memcg migration).
2454 VM_BUG_ON_FOLIO(!folio_matches_lruvec(folio, lruvec), folio);
2455 lruvec_add_folio(lruvec, folio);
2456 nr_pages = folio_nr_pages(folio);
2457 nr_moved += nr_pages;
2458 if (folio_test_active(folio))
2459 workingset_age_nonresident(lruvec, nr_pages);
2463 * To save our caller's stack, now use input list for pages to free.
2465 list_splice(&folios_to_free, list);
2471 * If a kernel thread (such as nfsd for loop-back mounts) services a backing
2472 * device by writing to the page cache it sets PF_LOCAL_THROTTLE. In this case
2473 * we should not throttle. Otherwise it is safe to do so.
2475 static int current_may_throttle(void)
2477 return !(current->flags & PF_LOCAL_THROTTLE);
2481 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
2482 * of reclaimed pages
2484 static unsigned long shrink_inactive_list(unsigned long nr_to_scan,
2485 struct lruvec *lruvec, struct scan_control *sc,
2488 LIST_HEAD(folio_list);
2489 unsigned long nr_scanned;
2490 unsigned int nr_reclaimed = 0;
2491 unsigned long nr_taken;
2492 struct reclaim_stat stat;
2493 bool file = is_file_lru(lru);
2494 enum vm_event_item item;
2495 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2496 bool stalled = false;
2498 while (unlikely(too_many_isolated(pgdat, file, sc))) {
2502 /* wait a bit for the reclaimer. */
2504 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
2506 /* We are about to die and free our memory. Return now. */
2507 if (fatal_signal_pending(current))
2508 return SWAP_CLUSTER_MAX;
2513 spin_lock_irq(&lruvec->lru_lock);
2515 nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &folio_list,
2516 &nr_scanned, sc, lru);
2518 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2519 item = PGSCAN_KSWAPD + reclaimer_offset();
2520 if (!cgroup_reclaim(sc))
2521 __count_vm_events(item, nr_scanned);
2522 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
2523 __count_vm_events(PGSCAN_ANON + file, nr_scanned);
2525 spin_unlock_irq(&lruvec->lru_lock);
2530 nr_reclaimed = shrink_folio_list(&folio_list, pgdat, sc, &stat, false);
2532 spin_lock_irq(&lruvec->lru_lock);
2533 move_folios_to_lru(lruvec, &folio_list);
2535 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2536 item = PGSTEAL_KSWAPD + reclaimer_offset();
2537 if (!cgroup_reclaim(sc))
2538 __count_vm_events(item, nr_reclaimed);
2539 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
2540 __count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
2541 spin_unlock_irq(&lruvec->lru_lock);
2543 lru_note_cost(lruvec, file, stat.nr_pageout, nr_scanned - nr_reclaimed);
2544 mem_cgroup_uncharge_list(&folio_list);
2545 free_unref_page_list(&folio_list);
2548 * If dirty folios are scanned that are not queued for IO, it
2549 * implies that flushers are not doing their job. This can
2550 * happen when memory pressure pushes dirty folios to the end of
2551 * the LRU before the dirty limits are breached and the dirty
2552 * data has expired. It can also happen when the proportion of
2553 * dirty folios grows not through writes but through memory
2554 * pressure reclaiming all the clean cache. And in some cases,
2555 * the flushers simply cannot keep up with the allocation
2556 * rate. Nudge the flusher threads in case they are asleep.
2558 if (stat.nr_unqueued_dirty == nr_taken) {
2559 wakeup_flusher_threads(WB_REASON_VMSCAN);
2561 * For cgroupv1 dirty throttling is achieved by waking up
2562 * the kernel flusher here and later waiting on folios
2563 * which are in writeback to finish (see shrink_folio_list()).
2565 * Flusher may not be able to issue writeback quickly
2566 * enough for cgroupv1 writeback throttling to work
2567 * on a large system.
2569 if (!writeback_throttling_sane(sc))
2570 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
2573 sc->nr.dirty += stat.nr_dirty;
2574 sc->nr.congested += stat.nr_congested;
2575 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2576 sc->nr.writeback += stat.nr_writeback;
2577 sc->nr.immediate += stat.nr_immediate;
2578 sc->nr.taken += nr_taken;
2580 sc->nr.file_taken += nr_taken;
2582 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2583 nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2584 return nr_reclaimed;
2588 * shrink_active_list() moves folios from the active LRU to the inactive LRU.
2590 * We move them the other way if the folio is referenced by one or more
2593 * If the folios are mostly unmapped, the processing is fast and it is
2594 * appropriate to hold lru_lock across the whole operation. But if
2595 * the folios are mapped, the processing is slow (folio_referenced()), so
2596 * we should drop lru_lock around each folio. It's impossible to balance
2597 * this, so instead we remove the folios from the LRU while processing them.
2598 * It is safe to rely on the active flag against the non-LRU folios in here
2599 * because nobody will play with that bit on a non-LRU folio.
2601 * The downside is that we have to touch folio->_refcount against each folio.
2602 * But we had to alter folio->flags anyway.
2604 static void shrink_active_list(unsigned long nr_to_scan,
2605 struct lruvec *lruvec,
2606 struct scan_control *sc,
2609 unsigned long nr_taken;
2610 unsigned long nr_scanned;
2611 unsigned long vm_flags;
2612 LIST_HEAD(l_hold); /* The folios which were snipped off */
2613 LIST_HEAD(l_active);
2614 LIST_HEAD(l_inactive);
2615 unsigned nr_deactivate, nr_activate;
2616 unsigned nr_rotated = 0;
2617 int file = is_file_lru(lru);
2618 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2622 spin_lock_irq(&lruvec->lru_lock);
2624 nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &l_hold,
2625 &nr_scanned, sc, lru);
2627 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2629 if (!cgroup_reclaim(sc))
2630 __count_vm_events(PGREFILL, nr_scanned);
2631 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2633 spin_unlock_irq(&lruvec->lru_lock);
2635 while (!list_empty(&l_hold)) {
2636 struct folio *folio;
2639 folio = lru_to_folio(&l_hold);
2640 list_del(&folio->lru);
2642 if (unlikely(!folio_evictable(folio))) {
2643 folio_putback_lru(folio);
2647 if (unlikely(buffer_heads_over_limit)) {
2648 if (folio_test_private(folio) && folio_trylock(folio)) {
2649 if (folio_test_private(folio))
2650 filemap_release_folio(folio, 0);
2651 folio_unlock(folio);
2655 /* Referenced or rmap lock contention: rotate */
2656 if (folio_referenced(folio, 0, sc->target_mem_cgroup,
2659 * Identify referenced, file-backed active folios and
2660 * give them one more trip around the active list. So
2661 * that executable code get better chances to stay in
2662 * memory under moderate memory pressure. Anon folios
2663 * are not likely to be evicted by use-once streaming
2664 * IO, plus JVM can create lots of anon VM_EXEC folios,
2665 * so we ignore them here.
2667 if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) {
2668 nr_rotated += folio_nr_pages(folio);
2669 list_add(&folio->lru, &l_active);
2674 folio_clear_active(folio); /* we are de-activating */
2675 folio_set_workingset(folio);
2676 list_add(&folio->lru, &l_inactive);
2680 * Move folios back to the lru list.
2682 spin_lock_irq(&lruvec->lru_lock);
2684 nr_activate = move_folios_to_lru(lruvec, &l_active);
2685 nr_deactivate = move_folios_to_lru(lruvec, &l_inactive);
2686 /* Keep all free folios in l_active list */
2687 list_splice(&l_inactive, &l_active);
2689 __count_vm_events(PGDEACTIVATE, nr_deactivate);
2690 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2692 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2693 spin_unlock_irq(&lruvec->lru_lock);
2696 lru_note_cost(lruvec, file, 0, nr_rotated);
2697 mem_cgroup_uncharge_list(&l_active);
2698 free_unref_page_list(&l_active);
2699 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2700 nr_deactivate, nr_rotated, sc->priority, file);
2703 static unsigned int reclaim_folio_list(struct list_head *folio_list,
2704 struct pglist_data *pgdat)
2706 struct reclaim_stat dummy_stat;
2707 unsigned int nr_reclaimed;
2708 struct folio *folio;
2709 struct scan_control sc = {
2710 .gfp_mask = GFP_KERNEL,
2717 nr_reclaimed = shrink_folio_list(folio_list, pgdat, &sc, &dummy_stat, false);
2718 while (!list_empty(folio_list)) {
2719 folio = lru_to_folio(folio_list);
2720 list_del(&folio->lru);
2721 folio_putback_lru(folio);
2724 return nr_reclaimed;
2727 unsigned long reclaim_pages(struct list_head *folio_list)
2730 unsigned int nr_reclaimed = 0;
2731 LIST_HEAD(node_folio_list);
2732 unsigned int noreclaim_flag;
2734 if (list_empty(folio_list))
2735 return nr_reclaimed;
2737 noreclaim_flag = memalloc_noreclaim_save();
2739 nid = folio_nid(lru_to_folio(folio_list));
2741 struct folio *folio = lru_to_folio(folio_list);
2743 if (nid == folio_nid(folio)) {
2744 folio_clear_active(folio);
2745 list_move(&folio->lru, &node_folio_list);
2749 nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid));
2750 nid = folio_nid(lru_to_folio(folio_list));
2751 } while (!list_empty(folio_list));
2753 nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid));
2755 memalloc_noreclaim_restore(noreclaim_flag);
2757 return nr_reclaimed;
2760 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2761 struct lruvec *lruvec, struct scan_control *sc)
2763 if (is_active_lru(lru)) {
2764 if (sc->may_deactivate & (1 << is_file_lru(lru)))
2765 shrink_active_list(nr_to_scan, lruvec, sc, lru);
2767 sc->skipped_deactivate = 1;
2771 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2775 * The inactive anon list should be small enough that the VM never has
2776 * to do too much work.
2778 * The inactive file list should be small enough to leave most memory
2779 * to the established workingset on the scan-resistant active list,
2780 * but large enough to avoid thrashing the aggregate readahead window.
2782 * Both inactive lists should also be large enough that each inactive
2783 * folio has a chance to be referenced again before it is reclaimed.
2785 * If that fails and refaulting is observed, the inactive list grows.
2787 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE folios
2788 * on this LRU, maintained by the pageout code. An inactive_ratio
2789 * of 3 means 3:1 or 25% of the folios are kept on the inactive list.
2792 * memory ratio inactive
2793 * -------------------------------------
2802 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
2804 enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2805 unsigned long inactive, active;
2806 unsigned long inactive_ratio;
2809 inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2810 active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
2812 gb = (inactive + active) >> (30 - PAGE_SHIFT);
2814 inactive_ratio = int_sqrt(10 * gb);
2818 return inactive * inactive_ratio < active;
2828 static void prepare_scan_count(pg_data_t *pgdat, struct scan_control *sc)
2831 struct lruvec *target_lruvec;
2833 if (lru_gen_enabled())
2836 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
2839 * Flush the memory cgroup stats, so that we read accurate per-memcg
2840 * lruvec stats for heuristics.
2842 mem_cgroup_flush_stats();
2845 * Determine the scan balance between anon and file LRUs.
2847 spin_lock_irq(&target_lruvec->lru_lock);
2848 sc->anon_cost = target_lruvec->anon_cost;
2849 sc->file_cost = target_lruvec->file_cost;
2850 spin_unlock_irq(&target_lruvec->lru_lock);
2853 * Target desirable inactive:active list ratios for the anon
2854 * and file LRU lists.
2856 if (!sc->force_deactivate) {
2857 unsigned long refaults;
2860 * When refaults are being observed, it means a new
2861 * workingset is being established. Deactivate to get
2862 * rid of any stale active pages quickly.
2864 refaults = lruvec_page_state(target_lruvec,
2865 WORKINGSET_ACTIVATE_ANON);
2866 if (refaults != target_lruvec->refaults[WORKINGSET_ANON] ||
2867 inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
2868 sc->may_deactivate |= DEACTIVATE_ANON;
2870 sc->may_deactivate &= ~DEACTIVATE_ANON;
2872 refaults = lruvec_page_state(target_lruvec,
2873 WORKINGSET_ACTIVATE_FILE);
2874 if (refaults != target_lruvec->refaults[WORKINGSET_FILE] ||
2875 inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
2876 sc->may_deactivate |= DEACTIVATE_FILE;
2878 sc->may_deactivate &= ~DEACTIVATE_FILE;
2880 sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
2883 * If we have plenty of inactive file pages that aren't
2884 * thrashing, try to reclaim those first before touching
2887 file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
2888 if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE))
2889 sc->cache_trim_mode = 1;
2891 sc->cache_trim_mode = 0;
2894 * Prevent the reclaimer from falling into the cache trap: as
2895 * cache pages start out inactive, every cache fault will tip
2896 * the scan balance towards the file LRU. And as the file LRU
2897 * shrinks, so does the window for rotation from references.
2898 * This means we have a runaway feedback loop where a tiny
2899 * thrashing file LRU becomes infinitely more attractive than
2900 * anon pages. Try to detect this based on file LRU size.
2902 if (!cgroup_reclaim(sc)) {
2903 unsigned long total_high_wmark = 0;
2904 unsigned long free, anon;
2907 free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2908 file = node_page_state(pgdat, NR_ACTIVE_FILE) +
2909 node_page_state(pgdat, NR_INACTIVE_FILE);
2911 for (z = 0; z < MAX_NR_ZONES; z++) {
2912 struct zone *zone = &pgdat->node_zones[z];
2914 if (!managed_zone(zone))
2917 total_high_wmark += high_wmark_pages(zone);
2921 * Consider anon: if that's low too, this isn't a
2922 * runaway file reclaim problem, but rather just
2923 * extreme pressure. Reclaim as per usual then.
2925 anon = node_page_state(pgdat, NR_INACTIVE_ANON);
2928 file + free <= total_high_wmark &&
2929 !(sc->may_deactivate & DEACTIVATE_ANON) &&
2930 anon >> sc->priority;
2935 * Determine how aggressively the anon and file LRU lists should be
2938 * nr[0] = anon inactive folios to scan; nr[1] = anon active folios to scan
2939 * nr[2] = file inactive folios to scan; nr[3] = file active folios to scan
2941 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
2944 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2945 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2946 unsigned long anon_cost, file_cost, total_cost;
2947 int swappiness = mem_cgroup_swappiness(memcg);
2948 u64 fraction[ANON_AND_FILE];
2949 u64 denominator = 0; /* gcc */
2950 enum scan_balance scan_balance;
2951 unsigned long ap, fp;
2954 /* If we have no swap space, do not bother scanning anon folios. */
2955 if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) {
2956 scan_balance = SCAN_FILE;
2961 * Global reclaim will swap to prevent OOM even with no
2962 * swappiness, but memcg users want to use this knob to
2963 * disable swapping for individual groups completely when
2964 * using the memory controller's swap limit feature would be
2967 if (cgroup_reclaim(sc) && !swappiness) {
2968 scan_balance = SCAN_FILE;
2973 * Do not apply any pressure balancing cleverness when the
2974 * system is close to OOM, scan both anon and file equally
2975 * (unless the swappiness setting disagrees with swapping).
2977 if (!sc->priority && swappiness) {
2978 scan_balance = SCAN_EQUAL;
2983 * If the system is almost out of file pages, force-scan anon.
2985 if (sc->file_is_tiny) {
2986 scan_balance = SCAN_ANON;
2991 * If there is enough inactive page cache, we do not reclaim
2992 * anything from the anonymous working right now.
2994 if (sc->cache_trim_mode) {
2995 scan_balance = SCAN_FILE;
2999 scan_balance = SCAN_FRACT;
3001 * Calculate the pressure balance between anon and file pages.
3003 * The amount of pressure we put on each LRU is inversely
3004 * proportional to the cost of reclaiming each list, as
3005 * determined by the share of pages that are refaulting, times
3006 * the relative IO cost of bringing back a swapped out
3007 * anonymous page vs reloading a filesystem page (swappiness).
3009 * Although we limit that influence to ensure no list gets
3010 * left behind completely: at least a third of the pressure is
3011 * applied, before swappiness.
3013 * With swappiness at 100, anon and file have equal IO cost.
3015 total_cost = sc->anon_cost + sc->file_cost;
3016 anon_cost = total_cost + sc->anon_cost;
3017 file_cost = total_cost + sc->file_cost;
3018 total_cost = anon_cost + file_cost;
3020 ap = swappiness * (total_cost + 1);
3021 ap /= anon_cost + 1;
3023 fp = (200 - swappiness) * (total_cost + 1);
3024 fp /= file_cost + 1;
3028 denominator = ap + fp;
3030 for_each_evictable_lru(lru) {
3031 int file = is_file_lru(lru);
3032 unsigned long lruvec_size;
3033 unsigned long low, min;
3036 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
3037 mem_cgroup_protection(sc->target_mem_cgroup, memcg,
3042 * Scale a cgroup's reclaim pressure by proportioning
3043 * its current usage to its memory.low or memory.min
3046 * This is important, as otherwise scanning aggression
3047 * becomes extremely binary -- from nothing as we
3048 * approach the memory protection threshold, to totally
3049 * nominal as we exceed it. This results in requiring
3050 * setting extremely liberal protection thresholds. It
3051 * also means we simply get no protection at all if we
3052 * set it too low, which is not ideal.
3054 * If there is any protection in place, we reduce scan
3055 * pressure by how much of the total memory used is
3056 * within protection thresholds.
3058 * There is one special case: in the first reclaim pass,
3059 * we skip over all groups that are within their low
3060 * protection. If that fails to reclaim enough pages to
3061 * satisfy the reclaim goal, we come back and override
3062 * the best-effort low protection. However, we still
3063 * ideally want to honor how well-behaved groups are in
3064 * that case instead of simply punishing them all
3065 * equally. As such, we reclaim them based on how much
3066 * memory they are using, reducing the scan pressure
3067 * again by how much of the total memory used is under
3070 unsigned long cgroup_size = mem_cgroup_size(memcg);
3071 unsigned long protection;
3073 /* memory.low scaling, make sure we retry before OOM */
3074 if (!sc->memcg_low_reclaim && low > min) {
3076 sc->memcg_low_skipped = 1;
3081 /* Avoid TOCTOU with earlier protection check */
3082 cgroup_size = max(cgroup_size, protection);
3084 scan = lruvec_size - lruvec_size * protection /
3088 * Minimally target SWAP_CLUSTER_MAX pages to keep
3089 * reclaim moving forwards, avoiding decrementing
3090 * sc->priority further than desirable.
3092 scan = max(scan, SWAP_CLUSTER_MAX);
3097 scan >>= sc->priority;
3100 * If the cgroup's already been deleted, make sure to
3101 * scrape out the remaining cache.
3103 if (!scan && !mem_cgroup_online(memcg))
3104 scan = min(lruvec_size, SWAP_CLUSTER_MAX);
3106 switch (scan_balance) {
3108 /* Scan lists relative to size */
3112 * Scan types proportional to swappiness and
3113 * their relative recent reclaim efficiency.
3114 * Make sure we don't miss the last page on
3115 * the offlined memory cgroups because of a
3118 scan = mem_cgroup_online(memcg) ?
3119 div64_u64(scan * fraction[file], denominator) :
3120 DIV64_U64_ROUND_UP(scan * fraction[file],
3125 /* Scan one type exclusively */
3126 if ((scan_balance == SCAN_FILE) != file)
3130 /* Look ma, no brain */
3139 * Anonymous LRU management is a waste if there is
3140 * ultimately no way to reclaim the memory.
3142 static bool can_age_anon_pages(struct pglist_data *pgdat,
3143 struct scan_control *sc)
3145 /* Aging the anon LRU is valuable if swap is present: */
3146 if (total_swap_pages > 0)
3149 /* Also valuable if anon pages can be demoted: */
3150 return can_demote(pgdat->node_id, sc);
3153 #ifdef CONFIG_LRU_GEN
3155 #ifdef CONFIG_LRU_GEN_ENABLED
3156 DEFINE_STATIC_KEY_ARRAY_TRUE(lru_gen_caps, NR_LRU_GEN_CAPS);
3157 #define get_cap(cap) static_branch_likely(&lru_gen_caps[cap])
3159 DEFINE_STATIC_KEY_ARRAY_FALSE(lru_gen_caps, NR_LRU_GEN_CAPS);
3160 #define get_cap(cap) static_branch_unlikely(&lru_gen_caps[cap])
3163 /******************************************************************************
3165 ******************************************************************************/
3167 #define LRU_REFS_FLAGS (BIT(PG_referenced) | BIT(PG_workingset))
3169 #define DEFINE_MAX_SEQ(lruvec) \
3170 unsigned long max_seq = READ_ONCE((lruvec)->lrugen.max_seq)
3172 #define DEFINE_MIN_SEQ(lruvec) \
3173 unsigned long min_seq[ANON_AND_FILE] = { \
3174 READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_ANON]), \
3175 READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_FILE]), \
3178 #define for_each_gen_type_zone(gen, type, zone) \
3179 for ((gen) = 0; (gen) < MAX_NR_GENS; (gen)++) \
3180 for ((type) = 0; (type) < ANON_AND_FILE; (type)++) \
3181 for ((zone) = 0; (zone) < MAX_NR_ZONES; (zone)++)
3183 static struct lruvec *get_lruvec(struct mem_cgroup *memcg, int nid)
3185 struct pglist_data *pgdat = NODE_DATA(nid);
3189 struct lruvec *lruvec = &memcg->nodeinfo[nid]->lruvec;
3191 /* see the comment in mem_cgroup_lruvec() */
3193 lruvec->pgdat = pgdat;
3198 VM_WARN_ON_ONCE(!mem_cgroup_disabled());
3200 return &pgdat->__lruvec;
3203 static int get_swappiness(struct lruvec *lruvec, struct scan_control *sc)
3205 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3206 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
3208 if (!can_demote(pgdat->node_id, sc) &&
3209 mem_cgroup_get_nr_swap_pages(memcg) < MIN_LRU_BATCH)
3212 return mem_cgroup_swappiness(memcg);
3215 static int get_nr_gens(struct lruvec *lruvec, int type)
3217 return lruvec->lrugen.max_seq - lruvec->lrugen.min_seq[type] + 1;
3220 static bool __maybe_unused seq_is_valid(struct lruvec *lruvec)
3222 /* see the comment on lru_gen_struct */
3223 return get_nr_gens(lruvec, LRU_GEN_FILE) >= MIN_NR_GENS &&
3224 get_nr_gens(lruvec, LRU_GEN_FILE) <= get_nr_gens(lruvec, LRU_GEN_ANON) &&
3225 get_nr_gens(lruvec, LRU_GEN_ANON) <= MAX_NR_GENS;
3228 /******************************************************************************
3230 ******************************************************************************/
3232 static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg)
3234 static struct lru_gen_mm_list mm_list = {
3235 .fifo = LIST_HEAD_INIT(mm_list.fifo),
3236 .lock = __SPIN_LOCK_UNLOCKED(mm_list.lock),
3241 return &memcg->mm_list;
3243 VM_WARN_ON_ONCE(!mem_cgroup_disabled());
3248 void lru_gen_add_mm(struct mm_struct *mm)
3251 struct mem_cgroup *memcg = get_mem_cgroup_from_mm(mm);
3252 struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
3254 VM_WARN_ON_ONCE(!list_empty(&mm->lru_gen.list));
3256 VM_WARN_ON_ONCE(mm->lru_gen.memcg);
3257 mm->lru_gen.memcg = memcg;
3259 spin_lock(&mm_list->lock);
3261 for_each_node_state(nid, N_MEMORY) {
3262 struct lruvec *lruvec = get_lruvec(memcg, nid);
3264 /* the first addition since the last iteration */
3265 if (lruvec->mm_state.tail == &mm_list->fifo)
3266 lruvec->mm_state.tail = &mm->lru_gen.list;
3269 list_add_tail(&mm->lru_gen.list, &mm_list->fifo);
3271 spin_unlock(&mm_list->lock);
3274 void lru_gen_del_mm(struct mm_struct *mm)
3277 struct lru_gen_mm_list *mm_list;
3278 struct mem_cgroup *memcg = NULL;
3280 if (list_empty(&mm->lru_gen.list))
3284 memcg = mm->lru_gen.memcg;
3286 mm_list = get_mm_list(memcg);
3288 spin_lock(&mm_list->lock);
3290 for_each_node(nid) {
3291 struct lruvec *lruvec = get_lruvec(memcg, nid);
3293 /* where the last iteration ended (exclusive) */
3294 if (lruvec->mm_state.tail == &mm->lru_gen.list)
3295 lruvec->mm_state.tail = lruvec->mm_state.tail->next;
3297 /* where the current iteration continues (inclusive) */
3298 if (lruvec->mm_state.head != &mm->lru_gen.list)
3301 lruvec->mm_state.head = lruvec->mm_state.head->next;
3302 /* the deletion ends the current iteration */
3303 if (lruvec->mm_state.head == &mm_list->fifo)
3304 WRITE_ONCE(lruvec->mm_state.seq, lruvec->mm_state.seq + 1);
3307 list_del_init(&mm->lru_gen.list);
3309 spin_unlock(&mm_list->lock);
3312 mem_cgroup_put(mm->lru_gen.memcg);
3313 mm->lru_gen.memcg = NULL;
3318 void lru_gen_migrate_mm(struct mm_struct *mm)
3320 struct mem_cgroup *memcg;
3321 struct task_struct *task = rcu_dereference_protected(mm->owner, true);
3323 VM_WARN_ON_ONCE(task->mm != mm);
3324 lockdep_assert_held(&task->alloc_lock);
3326 /* for mm_update_next_owner() */
3327 if (mem_cgroup_disabled())
3330 /* migration can happen before addition */
3331 if (!mm->lru_gen.memcg)
3335 memcg = mem_cgroup_from_task(task);
3337 if (memcg == mm->lru_gen.memcg)
3340 VM_WARN_ON_ONCE(list_empty(&mm->lru_gen.list));
3348 * Bloom filters with m=1<<15, k=2 and the false positive rates of ~1/5 when
3349 * n=10,000 and ~1/2 when n=20,000, where, conventionally, m is the number of
3350 * bits in a bitmap, k is the number of hash functions and n is the number of
3353 * Page table walkers use one of the two filters to reduce their search space.
3354 * To get rid of non-leaf entries that no longer have enough leaf entries, the
3355 * aging uses the double-buffering technique to flip to the other filter each
3356 * time it produces a new generation. For non-leaf entries that have enough
3357 * leaf entries, the aging carries them over to the next generation in
3358 * walk_pmd_range(); the eviction also report them when walking the rmap
3359 * in lru_gen_look_around().
3361 * For future optimizations:
3362 * 1. It's not necessary to keep both filters all the time. The spare one can be
3363 * freed after the RCU grace period and reallocated if needed again.
3364 * 2. And when reallocating, it's worth scaling its size according to the number
3365 * of inserted entries in the other filter, to reduce the memory overhead on
3366 * small systems and false positives on large systems.
3367 * 3. Jenkins' hash function is an alternative to Knuth's.
3369 #define BLOOM_FILTER_SHIFT 15
3371 static inline int filter_gen_from_seq(unsigned long seq)
3373 return seq % NR_BLOOM_FILTERS;
3376 static void get_item_key(void *item, int *key)
3378 u32 hash = hash_ptr(item, BLOOM_FILTER_SHIFT * 2);
3380 BUILD_BUG_ON(BLOOM_FILTER_SHIFT * 2 > BITS_PER_TYPE(u32));
3382 key[0] = hash & (BIT(BLOOM_FILTER_SHIFT) - 1);
3383 key[1] = hash >> BLOOM_FILTER_SHIFT;
3386 static void reset_bloom_filter(struct lruvec *lruvec, unsigned long seq)
3388 unsigned long *filter;
3389 int gen = filter_gen_from_seq(seq);
3391 filter = lruvec->mm_state.filters[gen];
3393 bitmap_clear(filter, 0, BIT(BLOOM_FILTER_SHIFT));
3397 filter = bitmap_zalloc(BIT(BLOOM_FILTER_SHIFT),
3398 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
3399 WRITE_ONCE(lruvec->mm_state.filters[gen], filter);
3402 static void update_bloom_filter(struct lruvec *lruvec, unsigned long seq, void *item)
3405 unsigned long *filter;
3406 int gen = filter_gen_from_seq(seq);
3408 filter = READ_ONCE(lruvec->mm_state.filters[gen]);
3412 get_item_key(item, key);
3414 if (!test_bit(key[0], filter))
3415 set_bit(key[0], filter);
3416 if (!test_bit(key[1], filter))
3417 set_bit(key[1], filter);
3420 static bool test_bloom_filter(struct lruvec *lruvec, unsigned long seq, void *item)
3423 unsigned long *filter;
3424 int gen = filter_gen_from_seq(seq);
3426 filter = READ_ONCE(lruvec->mm_state.filters[gen]);
3430 get_item_key(item, key);
3432 return test_bit(key[0], filter) && test_bit(key[1], filter);
3435 static void reset_mm_stats(struct lruvec *lruvec, struct lru_gen_mm_walk *walk, bool last)
3440 lockdep_assert_held(&get_mm_list(lruvec_memcg(lruvec))->lock);
3443 hist = lru_hist_from_seq(walk->max_seq);
3445 for (i = 0; i < NR_MM_STATS; i++) {
3446 WRITE_ONCE(lruvec->mm_state.stats[hist][i],
3447 lruvec->mm_state.stats[hist][i] + walk->mm_stats[i]);
3448 walk->mm_stats[i] = 0;
3452 if (NR_HIST_GENS > 1 && last) {
3453 hist = lru_hist_from_seq(lruvec->mm_state.seq + 1);
3455 for (i = 0; i < NR_MM_STATS; i++)
3456 WRITE_ONCE(lruvec->mm_state.stats[hist][i], 0);
3460 static bool should_skip_mm(struct mm_struct *mm, struct lru_gen_mm_walk *walk)
3463 unsigned long size = 0;
3464 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3465 int key = pgdat->node_id % BITS_PER_TYPE(mm->lru_gen.bitmap);
3467 if (!walk->force_scan && !test_bit(key, &mm->lru_gen.bitmap))
3470 clear_bit(key, &mm->lru_gen.bitmap);
3472 for (type = !walk->can_swap; type < ANON_AND_FILE; type++) {
3473 size += type ? get_mm_counter(mm, MM_FILEPAGES) :
3474 get_mm_counter(mm, MM_ANONPAGES) +
3475 get_mm_counter(mm, MM_SHMEMPAGES);
3478 if (size < MIN_LRU_BATCH)
3481 return !mmget_not_zero(mm);
3484 static bool iterate_mm_list(struct lruvec *lruvec, struct lru_gen_mm_walk *walk,
3485 struct mm_struct **iter)
3489 struct mm_struct *mm = NULL;
3490 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3491 struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
3492 struct lru_gen_mm_state *mm_state = &lruvec->mm_state;
3495 * There are four interesting cases for this page table walker:
3496 * 1. It tries to start a new iteration of mm_list with a stale max_seq;
3497 * there is nothing left to do.
3498 * 2. It's the first of the current generation, and it needs to reset
3499 * the Bloom filter for the next generation.
3500 * 3. It reaches the end of mm_list, and it needs to increment
3501 * mm_state->seq; the iteration is done.
3502 * 4. It's the last of the current generation, and it needs to reset the
3503 * mm stats counters for the next generation.
3505 spin_lock(&mm_list->lock);
3507 VM_WARN_ON_ONCE(mm_state->seq + 1 < walk->max_seq);
3508 VM_WARN_ON_ONCE(*iter && mm_state->seq > walk->max_seq);
3509 VM_WARN_ON_ONCE(*iter && !mm_state->nr_walkers);
3511 if (walk->max_seq <= mm_state->seq) {
3517 if (!mm_state->nr_walkers) {
3518 VM_WARN_ON_ONCE(mm_state->head && mm_state->head != &mm_list->fifo);
3520 mm_state->head = mm_list->fifo.next;
3524 while (!mm && mm_state->head != &mm_list->fifo) {
3525 mm = list_entry(mm_state->head, struct mm_struct, lru_gen.list);
3527 mm_state->head = mm_state->head->next;
3529 /* force scan for those added after the last iteration */
3530 if (!mm_state->tail || mm_state->tail == &mm->lru_gen.list) {
3531 mm_state->tail = mm_state->head;
3532 walk->force_scan = true;
3535 if (should_skip_mm(mm, walk))
3539 if (mm_state->head == &mm_list->fifo)
3540 WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
3543 mm_state->nr_walkers--;
3545 mm_state->nr_walkers++;
3547 if (mm_state->nr_walkers)
3551 reset_mm_stats(lruvec, walk, last);
3553 spin_unlock(&mm_list->lock);
3556 reset_bloom_filter(lruvec, walk->max_seq + 1);
3566 static bool iterate_mm_list_nowalk(struct lruvec *lruvec, unsigned long max_seq)
3568 bool success = false;
3569 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3570 struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
3571 struct lru_gen_mm_state *mm_state = &lruvec->mm_state;
3573 spin_lock(&mm_list->lock);
3575 VM_WARN_ON_ONCE(mm_state->seq + 1 < max_seq);
3577 if (max_seq > mm_state->seq && !mm_state->nr_walkers) {
3578 VM_WARN_ON_ONCE(mm_state->head && mm_state->head != &mm_list->fifo);
3580 WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
3581 reset_mm_stats(lruvec, NULL, true);
3585 spin_unlock(&mm_list->lock);
3590 /******************************************************************************
3591 * refault feedback loop
3592 ******************************************************************************/
3595 * A feedback loop based on Proportional-Integral-Derivative (PID) controller.
3597 * The P term is refaulted/(evicted+protected) from a tier in the generation
3598 * currently being evicted; the I term is the exponential moving average of the
3599 * P term over the generations previously evicted, using the smoothing factor
3600 * 1/2; the D term isn't supported.
3602 * The setpoint (SP) is always the first tier of one type; the process variable
3603 * (PV) is either any tier of the other type or any other tier of the same
3606 * The error is the difference between the SP and the PV; the correction is to
3607 * turn off protection when SP>PV or turn on protection when SP<PV.
3609 * For future optimizations:
3610 * 1. The D term may discount the other two terms over time so that long-lived
3611 * generations can resist stale information.
3614 unsigned long refaulted;
3615 unsigned long total;
3619 static void read_ctrl_pos(struct lruvec *lruvec, int type, int tier, int gain,
3620 struct ctrl_pos *pos)
3622 struct lru_gen_struct *lrugen = &lruvec->lrugen;
3623 int hist = lru_hist_from_seq(lrugen->min_seq[type]);
3625 pos->refaulted = lrugen->avg_refaulted[type][tier] +
3626 atomic_long_read(&lrugen->refaulted[hist][type][tier]);
3627 pos->total = lrugen->avg_total[type][tier] +
3628 atomic_long_read(&lrugen->evicted[hist][type][tier]);
3630 pos->total += lrugen->protected[hist][type][tier - 1];
3634 static void reset_ctrl_pos(struct lruvec *lruvec, int type, bool carryover)
3637 struct lru_gen_struct *lrugen = &lruvec->lrugen;
3638 bool clear = carryover ? NR_HIST_GENS == 1 : NR_HIST_GENS > 1;
3639 unsigned long seq = carryover ? lrugen->min_seq[type] : lrugen->max_seq + 1;
3641 lockdep_assert_held(&lruvec->lru_lock);
3643 if (!carryover && !clear)
3646 hist = lru_hist_from_seq(seq);
3648 for (tier = 0; tier < MAX_NR_TIERS; tier++) {
3652 sum = lrugen->avg_refaulted[type][tier] +
3653 atomic_long_read(&lrugen->refaulted[hist][type][tier]);
3654 WRITE_ONCE(lrugen->avg_refaulted[type][tier], sum / 2);
3656 sum = lrugen->avg_total[type][tier] +
3657 atomic_long_read(&lrugen->evicted[hist][type][tier]);
3659 sum += lrugen->protected[hist][type][tier - 1];
3660 WRITE_ONCE(lrugen->avg_total[type][tier], sum / 2);
3664 atomic_long_set(&lrugen->refaulted[hist][type][tier], 0);
3665 atomic_long_set(&lrugen->evicted[hist][type][tier], 0);
3667 WRITE_ONCE(lrugen->protected[hist][type][tier - 1], 0);
3672 static bool positive_ctrl_err(struct ctrl_pos *sp, struct ctrl_pos *pv)
3675 * Return true if the PV has a limited number of refaults or a lower
3676 * refaulted/total than the SP.
3678 return pv->refaulted < MIN_LRU_BATCH ||
3679 pv->refaulted * (sp->total + MIN_LRU_BATCH) * sp->gain <=
3680 (sp->refaulted + 1) * pv->total * pv->gain;
3683 /******************************************************************************
3685 ******************************************************************************/
3687 /* promote pages accessed through page tables */
3688 static int folio_update_gen(struct folio *folio, int gen)
3690 unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
3692 VM_WARN_ON_ONCE(gen >= MAX_NR_GENS);
3693 VM_WARN_ON_ONCE(!rcu_read_lock_held());
3696 /* lru_gen_del_folio() has isolated this page? */
3697 if (!(old_flags & LRU_GEN_MASK)) {
3698 /* for shrink_folio_list() */
3699 new_flags = old_flags | BIT(PG_referenced);
3703 new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS);
3704 new_flags |= (gen + 1UL) << LRU_GEN_PGOFF;
3705 } while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
3707 return ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
3710 /* protect pages accessed multiple times through file descriptors */
3711 static int folio_inc_gen(struct lruvec *lruvec, struct folio *folio, bool reclaiming)
3713 int type = folio_is_file_lru(folio);
3714 struct lru_gen_struct *lrugen = &lruvec->lrugen;
3715 int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
3716 unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
3718 VM_WARN_ON_ONCE_FOLIO(!(old_flags & LRU_GEN_MASK), folio);
3721 new_gen = ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
3722 /* folio_update_gen() has promoted this page? */
3723 if (new_gen >= 0 && new_gen != old_gen)
3726 new_gen = (old_gen + 1) % MAX_NR_GENS;
3728 new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS);
3729 new_flags |= (new_gen + 1UL) << LRU_GEN_PGOFF;
3730 /* for folio_end_writeback() */
3732 new_flags |= BIT(PG_reclaim);
3733 } while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
3735 lru_gen_update_size(lruvec, folio, old_gen, new_gen);
3740 static void update_batch_size(struct lru_gen_mm_walk *walk, struct folio *folio,
3741 int old_gen, int new_gen)
3743 int type = folio_is_file_lru(folio);
3744 int zone = folio_zonenum(folio);
3745 int delta = folio_nr_pages(folio);
3747 VM_WARN_ON_ONCE(old_gen >= MAX_NR_GENS);
3748 VM_WARN_ON_ONCE(new_gen >= MAX_NR_GENS);
3752 walk->nr_pages[old_gen][type][zone] -= delta;
3753 walk->nr_pages[new_gen][type][zone] += delta;
3756 static void reset_batch_size(struct lruvec *lruvec, struct lru_gen_mm_walk *walk)
3758 int gen, type, zone;
3759 struct lru_gen_struct *lrugen = &lruvec->lrugen;
3763 for_each_gen_type_zone(gen, type, zone) {
3764 enum lru_list lru = type * LRU_INACTIVE_FILE;
3765 int delta = walk->nr_pages[gen][type][zone];
3770 walk->nr_pages[gen][type][zone] = 0;
3771 WRITE_ONCE(lrugen->nr_pages[gen][type][zone],
3772 lrugen->nr_pages[gen][type][zone] + delta);
3774 if (lru_gen_is_active(lruvec, gen))
3776 __update_lru_size(lruvec, lru, zone, delta);
3780 static int should_skip_vma(unsigned long start, unsigned long end, struct mm_walk *args)
3782 struct address_space *mapping;
3783 struct vm_area_struct *vma = args->vma;
3784 struct lru_gen_mm_walk *walk = args->private;
3786 if (!vma_is_accessible(vma))
3789 if (is_vm_hugetlb_page(vma))
3792 if (vma->vm_flags & (VM_LOCKED | VM_SPECIAL | VM_SEQ_READ | VM_RAND_READ))
3795 if (vma == get_gate_vma(vma->vm_mm))
3798 if (vma_is_anonymous(vma))
3799 return !walk->can_swap;
3801 if (WARN_ON_ONCE(!vma->vm_file || !vma->vm_file->f_mapping))
3804 mapping = vma->vm_file->f_mapping;
3805 if (mapping_unevictable(mapping))
3808 if (shmem_mapping(mapping))
3809 return !walk->can_swap;
3811 /* to exclude special mappings like dax, etc. */
3812 return !mapping->a_ops->read_folio;
3816 * Some userspace memory allocators map many single-page VMAs. Instead of
3817 * returning back to the PGD table for each of such VMAs, finish an entire PMD
3818 * table to reduce zigzags and improve cache performance.
3820 static bool get_next_vma(unsigned long mask, unsigned long size, struct mm_walk *args,
3821 unsigned long *vm_start, unsigned long *vm_end)
3823 unsigned long start = round_up(*vm_end, size);
3824 unsigned long end = (start | ~mask) + 1;
3825 VMA_ITERATOR(vmi, args->mm, start);
3827 VM_WARN_ON_ONCE(mask & size);
3828 VM_WARN_ON_ONCE((start & mask) != (*vm_start & mask));
3830 for_each_vma(vmi, args->vma) {
3831 if (end && end <= args->vma->vm_start)
3834 if (should_skip_vma(args->vma->vm_start, args->vma->vm_end, args))
3837 *vm_start = max(start, args->vma->vm_start);
3838 *vm_end = min(end - 1, args->vma->vm_end - 1) + 1;
3846 static unsigned long get_pte_pfn(pte_t pte, struct vm_area_struct *vma, unsigned long addr)
3848 unsigned long pfn = pte_pfn(pte);
3850 VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
3852 if (!pte_present(pte) || is_zero_pfn(pfn))
3855 if (WARN_ON_ONCE(pte_devmap(pte) || pte_special(pte)))
3858 if (WARN_ON_ONCE(!pfn_valid(pfn)))
3864 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
3865 static unsigned long get_pmd_pfn(pmd_t pmd, struct vm_area_struct *vma, unsigned long addr)
3867 unsigned long pfn = pmd_pfn(pmd);
3869 VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
3871 if (!pmd_present(pmd) || is_huge_zero_pmd(pmd))
3874 if (WARN_ON_ONCE(pmd_devmap(pmd)))
3877 if (WARN_ON_ONCE(!pfn_valid(pfn)))
3884 static struct folio *get_pfn_folio(unsigned long pfn, struct mem_cgroup *memcg,
3885 struct pglist_data *pgdat, bool can_swap)
3887 struct folio *folio;
3889 /* try to avoid unnecessary memory loads */
3890 if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
3893 folio = pfn_folio(pfn);
3894 if (folio_nid(folio) != pgdat->node_id)
3897 if (folio_memcg_rcu(folio) != memcg)
3900 /* file VMAs can contain anon pages from COW */
3901 if (!folio_is_file_lru(folio) && !can_swap)
3907 static bool suitable_to_scan(int total, int young)
3909 int n = clamp_t(int, cache_line_size() / sizeof(pte_t), 2, 8);
3911 /* suitable if the average number of young PTEs per cacheline is >=1 */
3912 return young * n >= total;
3915 static bool walk_pte_range(pmd_t *pmd, unsigned long start, unsigned long end,
3916 struct mm_walk *args)
3924 struct lru_gen_mm_walk *walk = args->private;
3925 struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
3926 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3927 int old_gen, new_gen = lru_gen_from_seq(walk->max_seq);
3929 VM_WARN_ON_ONCE(pmd_leaf(*pmd));
3931 ptl = pte_lockptr(args->mm, pmd);
3932 if (!spin_trylock(ptl))
3935 arch_enter_lazy_mmu_mode();
3937 pte = pte_offset_map(pmd, start & PMD_MASK);
3939 for (i = pte_index(start), addr = start; addr != end; i++, addr += PAGE_SIZE) {
3941 struct folio *folio;
3944 walk->mm_stats[MM_LEAF_TOTAL]++;
3946 pfn = get_pte_pfn(pte[i], args->vma, addr);
3950 if (!pte_young(pte[i])) {
3951 walk->mm_stats[MM_LEAF_OLD]++;
3955 folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap);
3959 if (!ptep_test_and_clear_young(args->vma, addr, pte + i))
3960 VM_WARN_ON_ONCE(true);
3963 walk->mm_stats[MM_LEAF_YOUNG]++;
3965 if (pte_dirty(pte[i]) && !folio_test_dirty(folio) &&
3966 !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
3967 !folio_test_swapcache(folio)))
3968 folio_mark_dirty(folio);
3970 old_gen = folio_update_gen(folio, new_gen);
3971 if (old_gen >= 0 && old_gen != new_gen)
3972 update_batch_size(walk, folio, old_gen, new_gen);
3975 if (i < PTRS_PER_PTE && get_next_vma(PMD_MASK, PAGE_SIZE, args, &start, &end))
3980 arch_leave_lazy_mmu_mode();
3983 return suitable_to_scan(total, young);
3986 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
3987 static void walk_pmd_range_locked(pud_t *pud, unsigned long next, struct vm_area_struct *vma,
3988 struct mm_walk *args, unsigned long *bitmap, unsigned long *start)
3993 struct lru_gen_mm_walk *walk = args->private;
3994 struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
3995 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3996 int old_gen, new_gen = lru_gen_from_seq(walk->max_seq);
3998 VM_WARN_ON_ONCE(pud_leaf(*pud));
4000 /* try to batch at most 1+MIN_LRU_BATCH+1 entries */
4006 i = next == -1 ? 0 : pmd_index(next) - pmd_index(*start);
4007 if (i && i <= MIN_LRU_BATCH) {
4008 __set_bit(i - 1, bitmap);
4012 pmd = pmd_offset(pud, *start);
4014 ptl = pmd_lockptr(args->mm, pmd);
4015 if (!spin_trylock(ptl))
4018 arch_enter_lazy_mmu_mode();
4022 struct folio *folio;
4023 unsigned long addr = i ? (*start & PMD_MASK) + i * PMD_SIZE : *start;
4025 pfn = get_pmd_pfn(pmd[i], vma, addr);
4029 if (!pmd_trans_huge(pmd[i])) {
4030 if (arch_has_hw_nonleaf_pmd_young() &&
4031 get_cap(LRU_GEN_NONLEAF_YOUNG))
4032 pmdp_test_and_clear_young(vma, addr, pmd + i);
4036 folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap);
4040 if (!pmdp_test_and_clear_young(vma, addr, pmd + i))
4043 walk->mm_stats[MM_LEAF_YOUNG]++;
4045 if (pmd_dirty(pmd[i]) && !folio_test_dirty(folio) &&
4046 !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
4047 !folio_test_swapcache(folio)))
4048 folio_mark_dirty(folio);
4050 old_gen = folio_update_gen(folio, new_gen);
4051 if (old_gen >= 0 && old_gen != new_gen)
4052 update_batch_size(walk, folio, old_gen, new_gen);
4054 i = i > MIN_LRU_BATCH ? 0 : find_next_bit(bitmap, MIN_LRU_BATCH, i) + 1;
4055 } while (i <= MIN_LRU_BATCH);
4057 arch_leave_lazy_mmu_mode();
4061 bitmap_zero(bitmap, MIN_LRU_BATCH);
4064 static void walk_pmd_range_locked(pud_t *pud, unsigned long next, struct vm_area_struct *vma,
4065 struct mm_walk *args, unsigned long *bitmap, unsigned long *start)
4070 static void walk_pmd_range(pud_t *pud, unsigned long start, unsigned long end,
4071 struct mm_walk *args)
4077 struct vm_area_struct *vma;
4078 unsigned long pos = -1;
4079 struct lru_gen_mm_walk *walk = args->private;
4080 unsigned long bitmap[BITS_TO_LONGS(MIN_LRU_BATCH)] = {};
4082 VM_WARN_ON_ONCE(pud_leaf(*pud));
4085 * Finish an entire PMD in two passes: the first only reaches to PTE
4086 * tables to avoid taking the PMD lock; the second, if necessary, takes
4087 * the PMD lock to clear the accessed bit in PMD entries.
4089 pmd = pmd_offset(pud, start & PUD_MASK);
4091 /* walk_pte_range() may call get_next_vma() */
4093 for (i = pmd_index(start), addr = start; addr != end; i++, addr = next) {
4094 pmd_t val = pmdp_get_lockless(pmd + i);
4096 next = pmd_addr_end(addr, end);
4098 if (!pmd_present(val) || is_huge_zero_pmd(val)) {
4099 walk->mm_stats[MM_LEAF_TOTAL]++;
4103 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4104 if (pmd_trans_huge(val)) {
4105 unsigned long pfn = pmd_pfn(val);
4106 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
4108 walk->mm_stats[MM_LEAF_TOTAL]++;
4110 if (!pmd_young(val)) {
4111 walk->mm_stats[MM_LEAF_OLD]++;
4115 /* try to avoid unnecessary memory loads */
4116 if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
4119 walk_pmd_range_locked(pud, addr, vma, args, bitmap, &pos);
4123 walk->mm_stats[MM_NONLEAF_TOTAL]++;
4125 if (arch_has_hw_nonleaf_pmd_young() &&
4126 get_cap(LRU_GEN_NONLEAF_YOUNG)) {
4127 if (!pmd_young(val))
4130 walk_pmd_range_locked(pud, addr, vma, args, bitmap, &pos);
4133 if (!walk->force_scan && !test_bloom_filter(walk->lruvec, walk->max_seq, pmd + i))
4136 walk->mm_stats[MM_NONLEAF_FOUND]++;
4138 if (!walk_pte_range(&val, addr, next, args))
4141 walk->mm_stats[MM_NONLEAF_ADDED]++;
4143 /* carry over to the next generation */
4144 update_bloom_filter(walk->lruvec, walk->max_seq + 1, pmd + i);
4147 walk_pmd_range_locked(pud, -1, vma, args, bitmap, &pos);
4149 if (i < PTRS_PER_PMD && get_next_vma(PUD_MASK, PMD_SIZE, args, &start, &end))
4153 static int walk_pud_range(p4d_t *p4d, unsigned long start, unsigned long end,
4154 struct mm_walk *args)
4160 struct lru_gen_mm_walk *walk = args->private;
4162 VM_WARN_ON_ONCE(p4d_leaf(*p4d));
4164 pud = pud_offset(p4d, start & P4D_MASK);
4166 for (i = pud_index(start), addr = start; addr != end; i++, addr = next) {
4167 pud_t val = READ_ONCE(pud[i]);
4169 next = pud_addr_end(addr, end);
4171 if (!pud_present(val) || WARN_ON_ONCE(pud_leaf(val)))
4174 walk_pmd_range(&val, addr, next, args);
4176 /* a racy check to curtail the waiting time */
4177 if (wq_has_sleeper(&walk->lruvec->mm_state.wait))
4180 if (need_resched() || walk->batched >= MAX_LRU_BATCH) {
4181 end = (addr | ~PUD_MASK) + 1;
4186 if (i < PTRS_PER_PUD && get_next_vma(P4D_MASK, PUD_SIZE, args, &start, &end))
4189 end = round_up(end, P4D_SIZE);
4191 if (!end || !args->vma)
4194 walk->next_addr = max(end, args->vma->vm_start);
4199 static void walk_mm(struct lruvec *lruvec, struct mm_struct *mm, struct lru_gen_mm_walk *walk)
4201 static const struct mm_walk_ops mm_walk_ops = {
4202 .test_walk = should_skip_vma,
4203 .p4d_entry = walk_pud_range,
4207 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4209 walk->next_addr = FIRST_USER_ADDRESS;
4214 /* folio_update_gen() requires stable folio_memcg() */
4215 if (!mem_cgroup_trylock_pages(memcg))
4218 /* the caller might be holding the lock for write */
4219 if (mmap_read_trylock(mm)) {
4220 err = walk_page_range(mm, walk->next_addr, ULONG_MAX, &mm_walk_ops, walk);
4222 mmap_read_unlock(mm);
4225 mem_cgroup_unlock_pages();
4227 if (walk->batched) {
4228 spin_lock_irq(&lruvec->lru_lock);
4229 reset_batch_size(lruvec, walk);
4230 spin_unlock_irq(&lruvec->lru_lock);
4234 } while (err == -EAGAIN);
4237 static struct lru_gen_mm_walk *set_mm_walk(struct pglist_data *pgdat)
4239 struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
4241 if (pgdat && current_is_kswapd()) {
4242 VM_WARN_ON_ONCE(walk);
4244 walk = &pgdat->mm_walk;
4245 } else if (!pgdat && !walk) {
4246 VM_WARN_ON_ONCE(current_is_kswapd());
4248 walk = kzalloc(sizeof(*walk), __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
4251 current->reclaim_state->mm_walk = walk;
4256 static void clear_mm_walk(void)
4258 struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
4260 VM_WARN_ON_ONCE(walk && memchr_inv(walk->nr_pages, 0, sizeof(walk->nr_pages)));
4261 VM_WARN_ON_ONCE(walk && memchr_inv(walk->mm_stats, 0, sizeof(walk->mm_stats)));
4263 current->reclaim_state->mm_walk = NULL;
4265 if (!current_is_kswapd())
4269 static bool inc_min_seq(struct lruvec *lruvec, int type, bool can_swap)
4272 int remaining = MAX_LRU_BATCH;
4273 struct lru_gen_struct *lrugen = &lruvec->lrugen;
4274 int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
4276 if (type == LRU_GEN_ANON && !can_swap)
4279 /* prevent cold/hot inversion if force_scan is true */
4280 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4281 struct list_head *head = &lrugen->lists[old_gen][type][zone];
4283 while (!list_empty(head)) {
4284 struct folio *folio = lru_to_folio(head);
4286 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
4287 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
4288 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
4289 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
4291 new_gen = folio_inc_gen(lruvec, folio, false);
4292 list_move_tail(&folio->lru, &lrugen->lists[new_gen][type][zone]);
4299 reset_ctrl_pos(lruvec, type, true);
4300 WRITE_ONCE(lrugen->min_seq[type], lrugen->min_seq[type] + 1);
4305 static bool try_to_inc_min_seq(struct lruvec *lruvec, bool can_swap)
4307 int gen, type, zone;
4308 bool success = false;
4309 struct lru_gen_struct *lrugen = &lruvec->lrugen;
4310 DEFINE_MIN_SEQ(lruvec);
4312 VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
4314 /* find the oldest populated generation */
4315 for (type = !can_swap; type < ANON_AND_FILE; type++) {
4316 while (min_seq[type] + MIN_NR_GENS <= lrugen->max_seq) {
4317 gen = lru_gen_from_seq(min_seq[type]);
4319 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4320 if (!list_empty(&lrugen->lists[gen][type][zone]))
4330 /* see the comment on lru_gen_struct */
4332 min_seq[LRU_GEN_ANON] = min(min_seq[LRU_GEN_ANON], min_seq[LRU_GEN_FILE]);
4333 min_seq[LRU_GEN_FILE] = max(min_seq[LRU_GEN_ANON], lrugen->min_seq[LRU_GEN_FILE]);
4336 for (type = !can_swap; type < ANON_AND_FILE; type++) {
4337 if (min_seq[type] == lrugen->min_seq[type])
4340 reset_ctrl_pos(lruvec, type, true);
4341 WRITE_ONCE(lrugen->min_seq[type], min_seq[type]);
4348 static void inc_max_seq(struct lruvec *lruvec, bool can_swap, bool force_scan)
4352 struct lru_gen_struct *lrugen = &lruvec->lrugen;
4354 spin_lock_irq(&lruvec->lru_lock);
4356 VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
4358 for (type = ANON_AND_FILE - 1; type >= 0; type--) {
4359 if (get_nr_gens(lruvec, type) != MAX_NR_GENS)
4362 VM_WARN_ON_ONCE(!force_scan && (type == LRU_GEN_FILE || can_swap));
4364 while (!inc_min_seq(lruvec, type, can_swap)) {
4365 spin_unlock_irq(&lruvec->lru_lock);
4367 spin_lock_irq(&lruvec->lru_lock);
4372 * Update the active/inactive LRU sizes for compatibility. Both sides of
4373 * the current max_seq need to be covered, since max_seq+1 can overlap
4374 * with min_seq[LRU_GEN_ANON] if swapping is constrained. And if they do
4375 * overlap, cold/hot inversion happens.
4377 prev = lru_gen_from_seq(lrugen->max_seq - 1);
4378 next = lru_gen_from_seq(lrugen->max_seq + 1);
4380 for (type = 0; type < ANON_AND_FILE; type++) {
4381 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4382 enum lru_list lru = type * LRU_INACTIVE_FILE;
4383 long delta = lrugen->nr_pages[prev][type][zone] -
4384 lrugen->nr_pages[next][type][zone];
4389 __update_lru_size(lruvec, lru, zone, delta);
4390 __update_lru_size(lruvec, lru + LRU_ACTIVE, zone, -delta);
4394 for (type = 0; type < ANON_AND_FILE; type++)
4395 reset_ctrl_pos(lruvec, type, false);
4397 WRITE_ONCE(lrugen->timestamps[next], jiffies);
4398 /* make sure preceding modifications appear */
4399 smp_store_release(&lrugen->max_seq, lrugen->max_seq + 1);
4401 spin_unlock_irq(&lruvec->lru_lock);
4404 static bool try_to_inc_max_seq(struct lruvec *lruvec, unsigned long max_seq,
4405 struct scan_control *sc, bool can_swap, bool force_scan)
4408 struct lru_gen_mm_walk *walk;
4409 struct mm_struct *mm = NULL;
4410 struct lru_gen_struct *lrugen = &lruvec->lrugen;
4412 VM_WARN_ON_ONCE(max_seq > READ_ONCE(lrugen->max_seq));
4414 /* see the comment in iterate_mm_list() */
4415 if (max_seq <= READ_ONCE(lruvec->mm_state.seq)) {
4421 * If the hardware doesn't automatically set the accessed bit, fallback
4422 * to lru_gen_look_around(), which only clears the accessed bit in a
4423 * handful of PTEs. Spreading the work out over a period of time usually
4424 * is less efficient, but it avoids bursty page faults.
4426 if (!force_scan && !(arch_has_hw_pte_young() && get_cap(LRU_GEN_MM_WALK))) {
4427 success = iterate_mm_list_nowalk(lruvec, max_seq);
4431 walk = set_mm_walk(NULL);
4433 success = iterate_mm_list_nowalk(lruvec, max_seq);
4437 walk->lruvec = lruvec;
4438 walk->max_seq = max_seq;
4439 walk->can_swap = can_swap;
4440 walk->force_scan = force_scan;
4443 success = iterate_mm_list(lruvec, walk, &mm);
4445 walk_mm(lruvec, mm, walk);
4451 if (sc->priority <= DEF_PRIORITY - 2)
4452 wait_event_killable(lruvec->mm_state.wait,
4453 max_seq < READ_ONCE(lrugen->max_seq));
4455 return max_seq < READ_ONCE(lrugen->max_seq);
4458 VM_WARN_ON_ONCE(max_seq != READ_ONCE(lrugen->max_seq));
4460 inc_max_seq(lruvec, can_swap, force_scan);
4461 /* either this sees any waiters or they will see updated max_seq */
4462 if (wq_has_sleeper(&lruvec->mm_state.wait))
4463 wake_up_all(&lruvec->mm_state.wait);
4468 static bool should_run_aging(struct lruvec *lruvec, unsigned long max_seq, unsigned long *min_seq,
4469 struct scan_control *sc, bool can_swap, unsigned long *nr_to_scan)
4471 int gen, type, zone;
4472 unsigned long old = 0;
4473 unsigned long young = 0;
4474 unsigned long total = 0;
4475 struct lru_gen_struct *lrugen = &lruvec->lrugen;
4476 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4478 for (type = !can_swap; type < ANON_AND_FILE; type++) {
4481 for (seq = min_seq[type]; seq <= max_seq; seq++) {
4482 unsigned long size = 0;
4484 gen = lru_gen_from_seq(seq);
4486 for (zone = 0; zone < MAX_NR_ZONES; zone++)
4487 size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
4492 else if (seq + MIN_NR_GENS == max_seq)
4497 /* try to scrape all its memory if this memcg was deleted */
4498 *nr_to_scan = mem_cgroup_online(memcg) ? (total >> sc->priority) : total;
4501 * The aging tries to be lazy to reduce the overhead, while the eviction
4502 * stalls when the number of generations reaches MIN_NR_GENS. Hence, the
4503 * ideal number of generations is MIN_NR_GENS+1.
4505 if (min_seq[!can_swap] + MIN_NR_GENS > max_seq)
4507 if (min_seq[!can_swap] + MIN_NR_GENS < max_seq)
4511 * It's also ideal to spread pages out evenly, i.e., 1/(MIN_NR_GENS+1)
4512 * of the total number of pages for each generation. A reasonable range
4513 * for this average portion is [1/MIN_NR_GENS, 1/(MIN_NR_GENS+2)]. The
4514 * aging cares about the upper bound of hot pages, while the eviction
4515 * cares about the lower bound of cold pages.
4517 if (young * MIN_NR_GENS > total)
4519 if (old * (MIN_NR_GENS + 2) < total)
4525 static bool age_lruvec(struct lruvec *lruvec, struct scan_control *sc, unsigned long min_ttl)
4528 unsigned long nr_to_scan;
4529 int swappiness = get_swappiness(lruvec, sc);
4530 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4531 DEFINE_MAX_SEQ(lruvec);
4532 DEFINE_MIN_SEQ(lruvec);
4534 VM_WARN_ON_ONCE(sc->memcg_low_reclaim);
4536 mem_cgroup_calculate_protection(NULL, memcg);
4538 if (mem_cgroup_below_min(NULL, memcg))
4541 need_aging = should_run_aging(lruvec, max_seq, min_seq, sc, swappiness, &nr_to_scan);
4544 int gen = lru_gen_from_seq(min_seq[LRU_GEN_FILE]);
4545 unsigned long birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
4547 if (time_is_after_jiffies(birth + min_ttl))
4550 /* the size is likely too small to be helpful */
4551 if (!nr_to_scan && sc->priority != DEF_PRIORITY)
4556 try_to_inc_max_seq(lruvec, max_seq, sc, swappiness, false);
4561 /* to protect the working set of the last N jiffies */
4562 static unsigned long lru_gen_min_ttl __read_mostly;
4564 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
4566 struct mem_cgroup *memcg;
4567 bool success = false;
4568 unsigned long min_ttl = READ_ONCE(lru_gen_min_ttl);
4570 VM_WARN_ON_ONCE(!current_is_kswapd());
4572 sc->last_reclaimed = sc->nr_reclaimed;
4575 * To reduce the chance of going into the aging path, which can be
4576 * costly, optimistically skip it if the flag below was cleared in the
4577 * eviction path. This improves the overall performance when multiple
4578 * memcgs are available.
4580 if (!sc->memcgs_need_aging) {
4581 sc->memcgs_need_aging = true;
4587 memcg = mem_cgroup_iter(NULL, NULL, NULL);
4589 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4591 if (age_lruvec(lruvec, sc, min_ttl))
4595 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
4599 /* check the order to exclude compaction-induced reclaim */
4600 if (success || !min_ttl || sc->order)
4604 * The main goal is to OOM kill if every generation from all memcgs is
4605 * younger than min_ttl. However, another possibility is all memcgs are
4606 * either below min or empty.
4608 if (mutex_trylock(&oom_lock)) {
4609 struct oom_control oc = {
4610 .gfp_mask = sc->gfp_mask,
4615 mutex_unlock(&oom_lock);
4620 * This function exploits spatial locality when shrink_folio_list() walks the
4621 * rmap. It scans the adjacent PTEs of a young PTE and promotes hot pages. If
4622 * the scan was done cacheline efficiently, it adds the PMD entry pointing to
4623 * the PTE table to the Bloom filter. This forms a feedback loop between the
4624 * eviction and the aging.
4626 void lru_gen_look_around(struct page_vma_mapped_walk *pvmw)
4630 unsigned long start;
4633 struct lru_gen_mm_walk *walk;
4635 unsigned long bitmap[BITS_TO_LONGS(MIN_LRU_BATCH)] = {};
4636 struct folio *folio = pfn_folio(pvmw->pfn);
4637 struct mem_cgroup *memcg = folio_memcg(folio);
4638 struct pglist_data *pgdat = folio_pgdat(folio);
4639 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4640 DEFINE_MAX_SEQ(lruvec);
4641 int old_gen, new_gen = lru_gen_from_seq(max_seq);
4643 lockdep_assert_held(pvmw->ptl);
4644 VM_WARN_ON_ONCE_FOLIO(folio_test_lru(folio), folio);
4646 if (spin_is_contended(pvmw->ptl))
4649 /* avoid taking the LRU lock under the PTL when possible */
4650 walk = current->reclaim_state ? current->reclaim_state->mm_walk : NULL;
4652 start = max(pvmw->address & PMD_MASK, pvmw->vma->vm_start);
4653 end = min(pvmw->address | ~PMD_MASK, pvmw->vma->vm_end - 1) + 1;
4655 if (end - start > MIN_LRU_BATCH * PAGE_SIZE) {
4656 if (pvmw->address - start < MIN_LRU_BATCH * PAGE_SIZE / 2)
4657 end = start + MIN_LRU_BATCH * PAGE_SIZE;
4658 else if (end - pvmw->address < MIN_LRU_BATCH * PAGE_SIZE / 2)
4659 start = end - MIN_LRU_BATCH * PAGE_SIZE;
4661 start = pvmw->address - MIN_LRU_BATCH * PAGE_SIZE / 2;
4662 end = pvmw->address + MIN_LRU_BATCH * PAGE_SIZE / 2;
4666 pte = pvmw->pte - (pvmw->address - start) / PAGE_SIZE;
4669 arch_enter_lazy_mmu_mode();
4671 for (i = 0, addr = start; addr != end; i++, addr += PAGE_SIZE) {
4674 pfn = get_pte_pfn(pte[i], pvmw->vma, addr);
4678 if (!pte_young(pte[i]))
4681 folio = get_pfn_folio(pfn, memcg, pgdat, !walk || walk->can_swap);
4685 if (!ptep_test_and_clear_young(pvmw->vma, addr, pte + i))
4686 VM_WARN_ON_ONCE(true);
4690 if (pte_dirty(pte[i]) && !folio_test_dirty(folio) &&
4691 !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
4692 !folio_test_swapcache(folio)))
4693 folio_mark_dirty(folio);
4695 old_gen = folio_lru_gen(folio);
4697 folio_set_referenced(folio);
4698 else if (old_gen != new_gen)
4699 __set_bit(i, bitmap);
4702 arch_leave_lazy_mmu_mode();
4705 /* feedback from rmap walkers to page table walkers */
4706 if (suitable_to_scan(i, young))
4707 update_bloom_filter(lruvec, max_seq, pvmw->pmd);
4709 if (!walk && bitmap_weight(bitmap, MIN_LRU_BATCH) < PAGEVEC_SIZE) {
4710 for_each_set_bit(i, bitmap, MIN_LRU_BATCH) {
4711 folio = pfn_folio(pte_pfn(pte[i]));
4712 folio_activate(folio);
4717 /* folio_update_gen() requires stable folio_memcg() */
4718 if (!mem_cgroup_trylock_pages(memcg))
4722 spin_lock_irq(&lruvec->lru_lock);
4723 new_gen = lru_gen_from_seq(lruvec->lrugen.max_seq);
4726 for_each_set_bit(i, bitmap, MIN_LRU_BATCH) {
4727 folio = pfn_folio(pte_pfn(pte[i]));
4728 if (folio_memcg_rcu(folio) != memcg)
4731 old_gen = folio_update_gen(folio, new_gen);
4732 if (old_gen < 0 || old_gen == new_gen)
4736 update_batch_size(walk, folio, old_gen, new_gen);
4738 lru_gen_update_size(lruvec, folio, old_gen, new_gen);
4742 spin_unlock_irq(&lruvec->lru_lock);
4744 mem_cgroup_unlock_pages();
4747 /******************************************************************************
4749 ******************************************************************************/
4751 static bool sort_folio(struct lruvec *lruvec, struct folio *folio, int tier_idx)
4754 int gen = folio_lru_gen(folio);
4755 int type = folio_is_file_lru(folio);
4756 int zone = folio_zonenum(folio);
4757 int delta = folio_nr_pages(folio);
4758 int refs = folio_lru_refs(folio);
4759 int tier = lru_tier_from_refs(refs);
4760 struct lru_gen_struct *lrugen = &lruvec->lrugen;
4762 VM_WARN_ON_ONCE_FOLIO(gen >= MAX_NR_GENS, folio);
4765 if (!folio_evictable(folio)) {
4766 success = lru_gen_del_folio(lruvec, folio, true);
4767 VM_WARN_ON_ONCE_FOLIO(!success, folio);
4768 folio_set_unevictable(folio);
4769 lruvec_add_folio(lruvec, folio);
4770 __count_vm_events(UNEVICTABLE_PGCULLED, delta);
4774 /* dirty lazyfree */
4775 if (type == LRU_GEN_FILE && folio_test_anon(folio) && folio_test_dirty(folio)) {
4776 success = lru_gen_del_folio(lruvec, folio, true);
4777 VM_WARN_ON_ONCE_FOLIO(!success, folio);
4778 folio_set_swapbacked(folio);
4779 lruvec_add_folio_tail(lruvec, folio);
4784 if (gen != lru_gen_from_seq(lrugen->min_seq[type])) {
4785 list_move(&folio->lru, &lrugen->lists[gen][type][zone]);
4790 if (tier > tier_idx) {
4791 int hist = lru_hist_from_seq(lrugen->min_seq[type]);
4793 gen = folio_inc_gen(lruvec, folio, false);
4794 list_move_tail(&folio->lru, &lrugen->lists[gen][type][zone]);
4796 WRITE_ONCE(lrugen->protected[hist][type][tier - 1],
4797 lrugen->protected[hist][type][tier - 1] + delta);
4798 __mod_lruvec_state(lruvec, WORKINGSET_ACTIVATE_BASE + type, delta);
4802 /* waiting for writeback */
4803 if (folio_test_locked(folio) || folio_test_writeback(folio) ||
4804 (type == LRU_GEN_FILE && folio_test_dirty(folio))) {
4805 gen = folio_inc_gen(lruvec, folio, true);
4806 list_move(&folio->lru, &lrugen->lists[gen][type][zone]);
4813 static bool isolate_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc)
4817 /* unmapping inhibited */
4818 if (!sc->may_unmap && folio_mapped(folio))
4821 /* swapping inhibited */
4822 if (!(sc->may_writepage && (sc->gfp_mask & __GFP_IO)) &&
4823 (folio_test_dirty(folio) ||
4824 (folio_test_anon(folio) && !folio_test_swapcache(folio))))
4827 /* raced with release_pages() */
4828 if (!folio_try_get(folio))
4831 /* raced with another isolation */
4832 if (!folio_test_clear_lru(folio)) {
4837 /* see the comment on MAX_NR_TIERS */
4838 if (!folio_test_referenced(folio))
4839 set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS, 0);
4841 /* for shrink_folio_list() */
4842 folio_clear_reclaim(folio);
4843 folio_clear_referenced(folio);
4845 success = lru_gen_del_folio(lruvec, folio, true);
4846 VM_WARN_ON_ONCE_FOLIO(!success, folio);
4851 static int scan_folios(struct lruvec *lruvec, struct scan_control *sc,
4852 int type, int tier, struct list_head *list)
4855 enum vm_event_item item;
4859 int remaining = MAX_LRU_BATCH;
4860 struct lru_gen_struct *lrugen = &lruvec->lrugen;
4861 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4863 VM_WARN_ON_ONCE(!list_empty(list));
4865 if (get_nr_gens(lruvec, type) == MIN_NR_GENS)
4868 gen = lru_gen_from_seq(lrugen->min_seq[type]);
4870 for (zone = sc->reclaim_idx; zone >= 0; zone--) {
4873 struct list_head *head = &lrugen->lists[gen][type][zone];
4875 while (!list_empty(head)) {
4876 struct folio *folio = lru_to_folio(head);
4877 int delta = folio_nr_pages(folio);
4879 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
4880 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
4881 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
4882 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
4886 if (sort_folio(lruvec, folio, tier))
4888 else if (isolate_folio(lruvec, folio, sc)) {
4889 list_add(&folio->lru, list);
4892 list_move(&folio->lru, &moved);
4896 if (!--remaining || max(isolated, skipped) >= MIN_LRU_BATCH)
4901 list_splice(&moved, head);
4902 __count_zid_vm_events(PGSCAN_SKIP, zone, skipped);
4905 if (!remaining || isolated >= MIN_LRU_BATCH)
4909 item = PGSCAN_KSWAPD + reclaimer_offset();
4910 if (!cgroup_reclaim(sc)) {
4911 __count_vm_events(item, isolated);
4912 __count_vm_events(PGREFILL, sorted);
4914 __count_memcg_events(memcg, item, isolated);
4915 __count_memcg_events(memcg, PGREFILL, sorted);
4916 __count_vm_events(PGSCAN_ANON + type, isolated);
4919 * There might not be eligible pages due to reclaim_idx, may_unmap and
4920 * may_writepage. Check the remaining to prevent livelock if it's not
4923 return isolated || !remaining ? scanned : 0;
4926 static int get_tier_idx(struct lruvec *lruvec, int type)
4929 struct ctrl_pos sp, pv;
4932 * To leave a margin for fluctuations, use a larger gain factor (1:2).
4933 * This value is chosen because any other tier would have at least twice
4934 * as many refaults as the first tier.
4936 read_ctrl_pos(lruvec, type, 0, 1, &sp);
4937 for (tier = 1; tier < MAX_NR_TIERS; tier++) {
4938 read_ctrl_pos(lruvec, type, tier, 2, &pv);
4939 if (!positive_ctrl_err(&sp, &pv))
4946 static int get_type_to_scan(struct lruvec *lruvec, int swappiness, int *tier_idx)
4949 struct ctrl_pos sp, pv;
4950 int gain[ANON_AND_FILE] = { swappiness, 200 - swappiness };
4953 * Compare the first tier of anon with that of file to determine which
4954 * type to scan. Also need to compare other tiers of the selected type
4955 * with the first tier of the other type to determine the last tier (of
4956 * the selected type) to evict.
4958 read_ctrl_pos(lruvec, LRU_GEN_ANON, 0, gain[LRU_GEN_ANON], &sp);
4959 read_ctrl_pos(lruvec, LRU_GEN_FILE, 0, gain[LRU_GEN_FILE], &pv);
4960 type = positive_ctrl_err(&sp, &pv);
4962 read_ctrl_pos(lruvec, !type, 0, gain[!type], &sp);
4963 for (tier = 1; tier < MAX_NR_TIERS; tier++) {
4964 read_ctrl_pos(lruvec, type, tier, gain[type], &pv);
4965 if (!positive_ctrl_err(&sp, &pv))
4969 *tier_idx = tier - 1;
4974 static int isolate_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness,
4975 int *type_scanned, struct list_head *list)
4981 DEFINE_MIN_SEQ(lruvec);
4984 * Try to make the obvious choice first. When anon and file are both
4985 * available from the same generation, interpret swappiness 1 as file
4986 * first and 200 as anon first.
4989 type = LRU_GEN_FILE;
4990 else if (min_seq[LRU_GEN_ANON] < min_seq[LRU_GEN_FILE])
4991 type = LRU_GEN_ANON;
4992 else if (swappiness == 1)
4993 type = LRU_GEN_FILE;
4994 else if (swappiness == 200)
4995 type = LRU_GEN_ANON;
4997 type = get_type_to_scan(lruvec, swappiness, &tier);
4999 for (i = !swappiness; i < ANON_AND_FILE; i++) {
5001 tier = get_tier_idx(lruvec, type);
5003 scanned = scan_folios(lruvec, sc, type, tier, list);
5011 *type_scanned = type;
5016 static int evict_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness,
5017 bool *need_swapping)
5024 struct folio *folio;
5026 enum vm_event_item item;
5027 struct reclaim_stat stat;
5028 struct lru_gen_mm_walk *walk;
5029 bool skip_retry = false;
5030 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5031 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
5033 spin_lock_irq(&lruvec->lru_lock);
5035 scanned = isolate_folios(lruvec, sc, swappiness, &type, &list);
5037 scanned += try_to_inc_min_seq(lruvec, swappiness);
5039 if (get_nr_gens(lruvec, !swappiness) == MIN_NR_GENS)
5042 spin_unlock_irq(&lruvec->lru_lock);
5044 if (list_empty(&list))
5047 reclaimed = shrink_folio_list(&list, pgdat, sc, &stat, false);
5048 sc->nr_reclaimed += reclaimed;
5050 list_for_each_entry_safe_reverse(folio, next, &list, lru) {
5051 if (!folio_evictable(folio)) {
5052 list_del(&folio->lru);
5053 folio_putback_lru(folio);
5057 if (folio_test_reclaim(folio) &&
5058 (folio_test_dirty(folio) || folio_test_writeback(folio))) {
5059 /* restore LRU_REFS_FLAGS cleared by isolate_folio() */
5060 if (folio_test_workingset(folio))
5061 folio_set_referenced(folio);
5065 if (skip_retry || folio_test_active(folio) || folio_test_referenced(folio) ||
5066 folio_mapped(folio) || folio_test_locked(folio) ||
5067 folio_test_dirty(folio) || folio_test_writeback(folio)) {
5068 /* don't add rejected folios to the oldest generation */
5069 set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS,
5074 /* retry folios that may have missed folio_rotate_reclaimable() */
5075 list_move(&folio->lru, &clean);
5076 sc->nr_scanned -= folio_nr_pages(folio);
5079 spin_lock_irq(&lruvec->lru_lock);
5081 move_folios_to_lru(lruvec, &list);
5083 walk = current->reclaim_state->mm_walk;
5084 if (walk && walk->batched)
5085 reset_batch_size(lruvec, walk);
5087 item = PGSTEAL_KSWAPD + reclaimer_offset();
5088 if (!cgroup_reclaim(sc))
5089 __count_vm_events(item, reclaimed);
5090 __count_memcg_events(memcg, item, reclaimed);
5091 __count_vm_events(PGSTEAL_ANON + type, reclaimed);
5093 spin_unlock_irq(&lruvec->lru_lock);
5095 mem_cgroup_uncharge_list(&list);
5096 free_unref_page_list(&list);
5098 INIT_LIST_HEAD(&list);
5099 list_splice_init(&clean, &list);
5101 if (!list_empty(&list)) {
5106 if (need_swapping && type == LRU_GEN_ANON)
5107 *need_swapping = true;
5113 * For future optimizations:
5114 * 1. Defer try_to_inc_max_seq() to workqueues to reduce latency for memcg
5117 static unsigned long get_nr_to_scan(struct lruvec *lruvec, struct scan_control *sc,
5118 bool can_swap, bool *need_aging)
5120 unsigned long nr_to_scan;
5121 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5122 DEFINE_MAX_SEQ(lruvec);
5123 DEFINE_MIN_SEQ(lruvec);
5125 if (mem_cgroup_below_min(sc->target_mem_cgroup, memcg) ||
5126 (mem_cgroup_below_low(sc->target_mem_cgroup, memcg) &&
5127 !sc->memcg_low_reclaim))
5130 *need_aging = should_run_aging(lruvec, max_seq, min_seq, sc, can_swap, &nr_to_scan);
5134 /* skip the aging path at the default priority */
5135 if (sc->priority == DEF_PRIORITY)
5138 /* leave the work to lru_gen_age_node() */
5139 if (current_is_kswapd())
5142 if (try_to_inc_max_seq(lruvec, max_seq, sc, can_swap, false))
5145 return min_seq[!can_swap] + MIN_NR_GENS <= max_seq ? nr_to_scan : 0;
5148 static bool should_abort_scan(struct lruvec *lruvec, unsigned long seq,
5149 struct scan_control *sc, bool need_swapping)
5152 DEFINE_MAX_SEQ(lruvec);
5154 if (!current_is_kswapd()) {
5155 /* age each memcg at most once to ensure fairness */
5156 if (max_seq - seq > 1)
5159 /* over-swapping can increase allocation latency */
5160 if (sc->nr_reclaimed >= sc->nr_to_reclaim && need_swapping)
5163 /* give this thread a chance to exit and free its memory */
5164 if (fatal_signal_pending(current)) {
5165 sc->nr_reclaimed += MIN_LRU_BATCH;
5169 if (cgroup_reclaim(sc))
5171 } else if (sc->nr_reclaimed - sc->last_reclaimed < sc->nr_to_reclaim)
5174 /* keep scanning at low priorities to ensure fairness */
5175 if (sc->priority > DEF_PRIORITY - 2)
5179 * A minimum amount of work was done under global memory pressure. For
5180 * kswapd, it may be overshooting. For direct reclaim, the allocation
5181 * may succeed if all suitable zones are somewhat safe. In either case,
5182 * it's better to stop now, and restart later if necessary.
5184 for (i = 0; i <= sc->reclaim_idx; i++) {
5185 unsigned long wmark;
5186 struct zone *zone = lruvec_pgdat(lruvec)->node_zones + i;
5188 if (!managed_zone(zone))
5191 wmark = current_is_kswapd() ? high_wmark_pages(zone) : low_wmark_pages(zone);
5192 if (wmark > zone_page_state(zone, NR_FREE_PAGES))
5196 sc->nr_reclaimed += MIN_LRU_BATCH;
5201 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5203 struct blk_plug plug;
5204 bool need_aging = false;
5205 bool need_swapping = false;
5206 unsigned long scanned = 0;
5207 unsigned long reclaimed = sc->nr_reclaimed;
5208 DEFINE_MAX_SEQ(lruvec);
5212 blk_start_plug(&plug);
5214 set_mm_walk(lruvec_pgdat(lruvec));
5219 unsigned long nr_to_scan;
5222 swappiness = get_swappiness(lruvec, sc);
5223 else if (!cgroup_reclaim(sc) && get_swappiness(lruvec, sc))
5228 nr_to_scan = get_nr_to_scan(lruvec, sc, swappiness, &need_aging);
5232 delta = evict_folios(lruvec, sc, swappiness, &need_swapping);
5237 if (scanned >= nr_to_scan)
5240 if (should_abort_scan(lruvec, max_seq, sc, need_swapping))
5246 /* see the comment in lru_gen_age_node() */
5247 if (sc->nr_reclaimed - reclaimed >= MIN_LRU_BATCH && !need_aging)
5248 sc->memcgs_need_aging = false;
5252 blk_finish_plug(&plug);
5255 /******************************************************************************
5257 ******************************************************************************/
5259 static bool __maybe_unused state_is_valid(struct lruvec *lruvec)
5261 struct lru_gen_struct *lrugen = &lruvec->lrugen;
5263 if (lrugen->enabled) {
5266 for_each_evictable_lru(lru) {
5267 if (!list_empty(&lruvec->lists[lru]))
5271 int gen, type, zone;
5273 for_each_gen_type_zone(gen, type, zone) {
5274 if (!list_empty(&lrugen->lists[gen][type][zone]))
5282 static bool fill_evictable(struct lruvec *lruvec)
5285 int remaining = MAX_LRU_BATCH;
5287 for_each_evictable_lru(lru) {
5288 int type = is_file_lru(lru);
5289 bool active = is_active_lru(lru);
5290 struct list_head *head = &lruvec->lists[lru];
5292 while (!list_empty(head)) {
5294 struct folio *folio = lru_to_folio(head);
5296 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
5297 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio) != active, folio);
5298 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
5299 VM_WARN_ON_ONCE_FOLIO(folio_lru_gen(folio) != -1, folio);
5301 lruvec_del_folio(lruvec, folio);
5302 success = lru_gen_add_folio(lruvec, folio, false);
5303 VM_WARN_ON_ONCE(!success);
5313 static bool drain_evictable(struct lruvec *lruvec)
5315 int gen, type, zone;
5316 int remaining = MAX_LRU_BATCH;
5318 for_each_gen_type_zone(gen, type, zone) {
5319 struct list_head *head = &lruvec->lrugen.lists[gen][type][zone];
5321 while (!list_empty(head)) {
5323 struct folio *folio = lru_to_folio(head);
5325 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
5326 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
5327 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
5328 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
5330 success = lru_gen_del_folio(lruvec, folio, false);
5331 VM_WARN_ON_ONCE(!success);
5332 lruvec_add_folio(lruvec, folio);
5342 static void lru_gen_change_state(bool enabled)
5344 static DEFINE_MUTEX(state_mutex);
5346 struct mem_cgroup *memcg;
5351 mutex_lock(&state_mutex);
5353 if (enabled == lru_gen_enabled())
5357 static_branch_enable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
5359 static_branch_disable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
5361 memcg = mem_cgroup_iter(NULL, NULL, NULL);
5365 for_each_node(nid) {
5366 struct lruvec *lruvec = get_lruvec(memcg, nid);
5368 spin_lock_irq(&lruvec->lru_lock);
5370 VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
5371 VM_WARN_ON_ONCE(!state_is_valid(lruvec));
5373 lruvec->lrugen.enabled = enabled;
5375 while (!(enabled ? fill_evictable(lruvec) : drain_evictable(lruvec))) {
5376 spin_unlock_irq(&lruvec->lru_lock);
5378 spin_lock_irq(&lruvec->lru_lock);
5381 spin_unlock_irq(&lruvec->lru_lock);
5385 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
5387 mutex_unlock(&state_mutex);
5393 /******************************************************************************
5395 ******************************************************************************/
5397 static ssize_t show_min_ttl(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
5399 return sprintf(buf, "%u\n", jiffies_to_msecs(READ_ONCE(lru_gen_min_ttl)));
5402 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5403 static ssize_t store_min_ttl(struct kobject *kobj, struct kobj_attribute *attr,
5404 const char *buf, size_t len)
5408 if (kstrtouint(buf, 0, &msecs))
5411 WRITE_ONCE(lru_gen_min_ttl, msecs_to_jiffies(msecs));
5416 static struct kobj_attribute lru_gen_min_ttl_attr = __ATTR(
5417 min_ttl_ms, 0644, show_min_ttl, store_min_ttl
5420 static ssize_t show_enabled(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
5422 unsigned int caps = 0;
5424 if (get_cap(LRU_GEN_CORE))
5425 caps |= BIT(LRU_GEN_CORE);
5427 if (arch_has_hw_pte_young() && get_cap(LRU_GEN_MM_WALK))
5428 caps |= BIT(LRU_GEN_MM_WALK);
5430 if (arch_has_hw_nonleaf_pmd_young() && get_cap(LRU_GEN_NONLEAF_YOUNG))
5431 caps |= BIT(LRU_GEN_NONLEAF_YOUNG);
5433 return sysfs_emit(buf, "0x%04x\n", caps);
5436 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5437 static ssize_t store_enabled(struct kobject *kobj, struct kobj_attribute *attr,
5438 const char *buf, size_t len)
5443 if (tolower(*buf) == 'n')
5445 else if (tolower(*buf) == 'y')
5447 else if (kstrtouint(buf, 0, &caps))
5450 for (i = 0; i < NR_LRU_GEN_CAPS; i++) {
5451 bool enabled = caps & BIT(i);
5453 if (i == LRU_GEN_CORE)
5454 lru_gen_change_state(enabled);
5456 static_branch_enable(&lru_gen_caps[i]);
5458 static_branch_disable(&lru_gen_caps[i]);
5464 static struct kobj_attribute lru_gen_enabled_attr = __ATTR(
5465 enabled, 0644, show_enabled, store_enabled
5468 static struct attribute *lru_gen_attrs[] = {
5469 &lru_gen_min_ttl_attr.attr,
5470 &lru_gen_enabled_attr.attr,
5474 static struct attribute_group lru_gen_attr_group = {
5476 .attrs = lru_gen_attrs,
5479 /******************************************************************************
5481 ******************************************************************************/
5483 static void *lru_gen_seq_start(struct seq_file *m, loff_t *pos)
5485 struct mem_cgroup *memcg;
5486 loff_t nr_to_skip = *pos;
5488 m->private = kvmalloc(PATH_MAX, GFP_KERNEL);
5490 return ERR_PTR(-ENOMEM);
5492 memcg = mem_cgroup_iter(NULL, NULL, NULL);
5496 for_each_node_state(nid, N_MEMORY) {
5498 return get_lruvec(memcg, nid);
5500 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
5505 static void lru_gen_seq_stop(struct seq_file *m, void *v)
5507 if (!IS_ERR_OR_NULL(v))
5508 mem_cgroup_iter_break(NULL, lruvec_memcg(v));
5514 static void *lru_gen_seq_next(struct seq_file *m, void *v, loff_t *pos)
5516 int nid = lruvec_pgdat(v)->node_id;
5517 struct mem_cgroup *memcg = lruvec_memcg(v);
5521 nid = next_memory_node(nid);
5522 if (nid == MAX_NUMNODES) {
5523 memcg = mem_cgroup_iter(NULL, memcg, NULL);
5527 nid = first_memory_node;
5530 return get_lruvec(memcg, nid);
5533 static void lru_gen_seq_show_full(struct seq_file *m, struct lruvec *lruvec,
5534 unsigned long max_seq, unsigned long *min_seq,
5539 int hist = lru_hist_from_seq(seq);
5540 struct lru_gen_struct *lrugen = &lruvec->lrugen;
5542 for (tier = 0; tier < MAX_NR_TIERS; tier++) {
5543 seq_printf(m, " %10d", tier);
5544 for (type = 0; type < ANON_AND_FILE; type++) {
5545 const char *s = " ";
5546 unsigned long n[3] = {};
5548 if (seq == max_seq) {
5550 n[0] = READ_ONCE(lrugen->avg_refaulted[type][tier]);
5551 n[1] = READ_ONCE(lrugen->avg_total[type][tier]);
5552 } else if (seq == min_seq[type] || NR_HIST_GENS > 1) {
5554 n[0] = atomic_long_read(&lrugen->refaulted[hist][type][tier]);
5555 n[1] = atomic_long_read(&lrugen->evicted[hist][type][tier]);
5557 n[2] = READ_ONCE(lrugen->protected[hist][type][tier - 1]);
5560 for (i = 0; i < 3; i++)
5561 seq_printf(m, " %10lu%c", n[i], s[i]);
5567 for (i = 0; i < NR_MM_STATS; i++) {
5568 const char *s = " ";
5569 unsigned long n = 0;
5571 if (seq == max_seq && NR_HIST_GENS == 1) {
5573 n = READ_ONCE(lruvec->mm_state.stats[hist][i]);
5574 } else if (seq != max_seq && NR_HIST_GENS > 1) {
5576 n = READ_ONCE(lruvec->mm_state.stats[hist][i]);
5579 seq_printf(m, " %10lu%c", n, s[i]);
5584 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5585 static int lru_gen_seq_show(struct seq_file *m, void *v)
5588 bool full = !debugfs_real_fops(m->file)->write;
5589 struct lruvec *lruvec = v;
5590 struct lru_gen_struct *lrugen = &lruvec->lrugen;
5591 int nid = lruvec_pgdat(lruvec)->node_id;
5592 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5593 DEFINE_MAX_SEQ(lruvec);
5594 DEFINE_MIN_SEQ(lruvec);
5596 if (nid == first_memory_node) {
5597 const char *path = memcg ? m->private : "";
5601 cgroup_path(memcg->css.cgroup, m->private, PATH_MAX);
5603 seq_printf(m, "memcg %5hu %s\n", mem_cgroup_id(memcg), path);
5606 seq_printf(m, " node %5d\n", nid);
5609 seq = min_seq[LRU_GEN_ANON];
5610 else if (max_seq >= MAX_NR_GENS)
5611 seq = max_seq - MAX_NR_GENS + 1;
5615 for (; seq <= max_seq; seq++) {
5617 int gen = lru_gen_from_seq(seq);
5618 unsigned long birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
5620 seq_printf(m, " %10lu %10u", seq, jiffies_to_msecs(jiffies - birth));
5622 for (type = 0; type < ANON_AND_FILE; type++) {
5623 unsigned long size = 0;
5624 char mark = full && seq < min_seq[type] ? 'x' : ' ';
5626 for (zone = 0; zone < MAX_NR_ZONES; zone++)
5627 size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
5629 seq_printf(m, " %10lu%c", size, mark);
5635 lru_gen_seq_show_full(m, lruvec, max_seq, min_seq, seq);
5641 static const struct seq_operations lru_gen_seq_ops = {
5642 .start = lru_gen_seq_start,
5643 .stop = lru_gen_seq_stop,
5644 .next = lru_gen_seq_next,
5645 .show = lru_gen_seq_show,
5648 static int run_aging(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc,
5649 bool can_swap, bool force_scan)
5651 DEFINE_MAX_SEQ(lruvec);
5652 DEFINE_MIN_SEQ(lruvec);
5660 if (!force_scan && min_seq[!can_swap] + MAX_NR_GENS - 1 <= max_seq)
5663 try_to_inc_max_seq(lruvec, max_seq, sc, can_swap, force_scan);
5668 static int run_eviction(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc,
5669 int swappiness, unsigned long nr_to_reclaim)
5671 DEFINE_MAX_SEQ(lruvec);
5673 if (seq + MIN_NR_GENS > max_seq)
5676 sc->nr_reclaimed = 0;
5678 while (!signal_pending(current)) {
5679 DEFINE_MIN_SEQ(lruvec);
5681 if (seq < min_seq[!swappiness])
5684 if (sc->nr_reclaimed >= nr_to_reclaim)
5687 if (!evict_folios(lruvec, sc, swappiness, NULL))
5696 static int run_cmd(char cmd, int memcg_id, int nid, unsigned long seq,
5697 struct scan_control *sc, int swappiness, unsigned long opt)
5699 struct lruvec *lruvec;
5701 struct mem_cgroup *memcg = NULL;
5703 if (nid < 0 || nid >= MAX_NUMNODES || !node_state(nid, N_MEMORY))
5706 if (!mem_cgroup_disabled()) {
5708 memcg = mem_cgroup_from_id(memcg_id);
5710 if (memcg && !css_tryget(&memcg->css))
5719 if (memcg_id != mem_cgroup_id(memcg))
5722 lruvec = get_lruvec(memcg, nid);
5725 swappiness = get_swappiness(lruvec, sc);
5726 else if (swappiness > 200)
5731 err = run_aging(lruvec, seq, sc, swappiness, opt);
5734 err = run_eviction(lruvec, seq, sc, swappiness, opt);
5738 mem_cgroup_put(memcg);
5743 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5744 static ssize_t lru_gen_seq_write(struct file *file, const char __user *src,
5745 size_t len, loff_t *pos)
5750 struct blk_plug plug;
5752 struct scan_control sc = {
5753 .may_writepage = true,
5756 .reclaim_idx = MAX_NR_ZONES - 1,
5757 .gfp_mask = GFP_KERNEL,
5760 buf = kvmalloc(len + 1, GFP_KERNEL);
5764 if (copy_from_user(buf, src, len)) {
5769 set_task_reclaim_state(current, &sc.reclaim_state);
5770 flags = memalloc_noreclaim_save();
5771 blk_start_plug(&plug);
5772 if (!set_mm_walk(NULL)) {
5780 while ((cur = strsep(&next, ",;\n"))) {
5784 unsigned int memcg_id;
5787 unsigned int swappiness = -1;
5788 unsigned long opt = -1;
5790 cur = skip_spaces(cur);
5794 n = sscanf(cur, "%c %u %u %lu %n %u %n %lu %n", &cmd, &memcg_id, &nid,
5795 &seq, &end, &swappiness, &end, &opt, &end);
5796 if (n < 4 || cur[end]) {
5801 err = run_cmd(cmd, memcg_id, nid, seq, &sc, swappiness, opt);
5807 blk_finish_plug(&plug);
5808 memalloc_noreclaim_restore(flags);
5809 set_task_reclaim_state(current, NULL);
5816 static int lru_gen_seq_open(struct inode *inode, struct file *file)
5818 return seq_open(file, &lru_gen_seq_ops);
5821 static const struct file_operations lru_gen_rw_fops = {
5822 .open = lru_gen_seq_open,
5824 .write = lru_gen_seq_write,
5825 .llseek = seq_lseek,
5826 .release = seq_release,
5829 static const struct file_operations lru_gen_ro_fops = {
5830 .open = lru_gen_seq_open,
5832 .llseek = seq_lseek,
5833 .release = seq_release,
5836 /******************************************************************************
5838 ******************************************************************************/
5840 void lru_gen_init_lruvec(struct lruvec *lruvec)
5843 int gen, type, zone;
5844 struct lru_gen_struct *lrugen = &lruvec->lrugen;
5846 lrugen->max_seq = MIN_NR_GENS + 1;
5847 lrugen->enabled = lru_gen_enabled();
5849 for (i = 0; i <= MIN_NR_GENS + 1; i++)
5850 lrugen->timestamps[i] = jiffies;
5852 for_each_gen_type_zone(gen, type, zone)
5853 INIT_LIST_HEAD(&lrugen->lists[gen][type][zone]);
5855 lruvec->mm_state.seq = MIN_NR_GENS;
5856 init_waitqueue_head(&lruvec->mm_state.wait);
5860 void lru_gen_init_memcg(struct mem_cgroup *memcg)
5862 INIT_LIST_HEAD(&memcg->mm_list.fifo);
5863 spin_lock_init(&memcg->mm_list.lock);
5866 void lru_gen_exit_memcg(struct mem_cgroup *memcg)
5871 for_each_node(nid) {
5872 struct lruvec *lruvec = get_lruvec(memcg, nid);
5874 VM_WARN_ON_ONCE(memchr_inv(lruvec->lrugen.nr_pages, 0,
5875 sizeof(lruvec->lrugen.nr_pages)));
5877 for (i = 0; i < NR_BLOOM_FILTERS; i++) {
5878 bitmap_free(lruvec->mm_state.filters[i]);
5879 lruvec->mm_state.filters[i] = NULL;
5885 static int __init init_lru_gen(void)
5887 BUILD_BUG_ON(MIN_NR_GENS + 1 >= MAX_NR_GENS);
5888 BUILD_BUG_ON(BIT(LRU_GEN_WIDTH) <= MAX_NR_GENS);
5890 if (sysfs_create_group(mm_kobj, &lru_gen_attr_group))
5891 pr_err("lru_gen: failed to create sysfs group\n");
5893 debugfs_create_file("lru_gen", 0644, NULL, NULL, &lru_gen_rw_fops);
5894 debugfs_create_file("lru_gen_full", 0444, NULL, NULL, &lru_gen_ro_fops);
5898 late_initcall(init_lru_gen);
5900 #else /* !CONFIG_LRU_GEN */
5902 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
5906 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5910 #endif /* CONFIG_LRU_GEN */
5912 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5914 unsigned long nr[NR_LRU_LISTS];
5915 unsigned long targets[NR_LRU_LISTS];
5916 unsigned long nr_to_scan;
5918 unsigned long nr_reclaimed = 0;
5919 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
5920 bool proportional_reclaim;
5921 struct blk_plug plug;
5923 if (lru_gen_enabled()) {
5924 lru_gen_shrink_lruvec(lruvec, sc);
5928 get_scan_count(lruvec, sc, nr);
5930 /* Record the original scan target for proportional adjustments later */
5931 memcpy(targets, nr, sizeof(nr));
5934 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
5935 * event that can occur when there is little memory pressure e.g.
5936 * multiple streaming readers/writers. Hence, we do not abort scanning
5937 * when the requested number of pages are reclaimed when scanning at
5938 * DEF_PRIORITY on the assumption that the fact we are direct
5939 * reclaiming implies that kswapd is not keeping up and it is best to
5940 * do a batch of work at once. For memcg reclaim one check is made to
5941 * abort proportional reclaim if either the file or anon lru has already
5942 * dropped to zero at the first pass.
5944 proportional_reclaim = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
5945 sc->priority == DEF_PRIORITY);
5947 blk_start_plug(&plug);
5948 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
5949 nr[LRU_INACTIVE_FILE]) {
5950 unsigned long nr_anon, nr_file, percentage;
5951 unsigned long nr_scanned;
5953 for_each_evictable_lru(lru) {
5955 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
5956 nr[lru] -= nr_to_scan;
5958 nr_reclaimed += shrink_list(lru, nr_to_scan,
5965 if (nr_reclaimed < nr_to_reclaim || proportional_reclaim)
5969 * For kswapd and memcg, reclaim at least the number of pages
5970 * requested. Ensure that the anon and file LRUs are scanned
5971 * proportionally what was requested by get_scan_count(). We
5972 * stop reclaiming one LRU and reduce the amount scanning
5973 * proportional to the original scan target.
5975 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
5976 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
5979 * It's just vindictive to attack the larger once the smaller
5980 * has gone to zero. And given the way we stop scanning the
5981 * smaller below, this makes sure that we only make one nudge
5982 * towards proportionality once we've got nr_to_reclaim.
5984 if (!nr_file || !nr_anon)
5987 if (nr_file > nr_anon) {
5988 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
5989 targets[LRU_ACTIVE_ANON] + 1;
5991 percentage = nr_anon * 100 / scan_target;
5993 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
5994 targets[LRU_ACTIVE_FILE] + 1;
5996 percentage = nr_file * 100 / scan_target;
5999 /* Stop scanning the smaller of the LRU */
6001 nr[lru + LRU_ACTIVE] = 0;
6004 * Recalculate the other LRU scan count based on its original
6005 * scan target and the percentage scanning already complete
6007 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
6008 nr_scanned = targets[lru] - nr[lru];
6009 nr[lru] = targets[lru] * (100 - percentage) / 100;
6010 nr[lru] -= min(nr[lru], nr_scanned);
6013 nr_scanned = targets[lru] - nr[lru];
6014 nr[lru] = targets[lru] * (100 - percentage) / 100;
6015 nr[lru] -= min(nr[lru], nr_scanned);
6017 blk_finish_plug(&plug);
6018 sc->nr_reclaimed += nr_reclaimed;
6021 * Even if we did not try to evict anon pages at all, we want to
6022 * rebalance the anon lru active/inactive ratio.
6024 if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) &&
6025 inactive_is_low(lruvec, LRU_INACTIVE_ANON))
6026 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
6027 sc, LRU_ACTIVE_ANON);
6030 /* Use reclaim/compaction for costly allocs or under memory pressure */
6031 static bool in_reclaim_compaction(struct scan_control *sc)
6033 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
6034 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
6035 sc->priority < DEF_PRIORITY - 2))
6042 * Reclaim/compaction is used for high-order allocation requests. It reclaims
6043 * order-0 pages before compacting the zone. should_continue_reclaim() returns
6044 * true if more pages should be reclaimed such that when the page allocator
6045 * calls try_to_compact_pages() that it will have enough free pages to succeed.
6046 * It will give up earlier than that if there is difficulty reclaiming pages.
6048 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
6049 unsigned long nr_reclaimed,
6050 struct scan_control *sc)
6052 unsigned long pages_for_compaction;
6053 unsigned long inactive_lru_pages;
6056 /* If not in reclaim/compaction mode, stop */
6057 if (!in_reclaim_compaction(sc))
6061 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
6062 * number of pages that were scanned. This will return to the caller
6063 * with the risk reclaim/compaction and the resulting allocation attempt
6064 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
6065 * allocations through requiring that the full LRU list has been scanned
6066 * first, by assuming that zero delta of sc->nr_scanned means full LRU
6067 * scan, but that approximation was wrong, and there were corner cases
6068 * where always a non-zero amount of pages were scanned.
6073 /* If compaction would go ahead or the allocation would succeed, stop */
6074 for (z = 0; z <= sc->reclaim_idx; z++) {
6075 struct zone *zone = &pgdat->node_zones[z];
6076 if (!managed_zone(zone))
6079 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
6080 case COMPACT_SUCCESS:
6081 case COMPACT_CONTINUE:
6084 /* check next zone */
6090 * If we have not reclaimed enough pages for compaction and the
6091 * inactive lists are large enough, continue reclaiming
6093 pages_for_compaction = compact_gap(sc->order);
6094 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
6095 if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
6096 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
6098 return inactive_lru_pages > pages_for_compaction;
6101 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
6103 struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
6104 struct mem_cgroup *memcg;
6106 memcg = mem_cgroup_iter(target_memcg, NULL, NULL);
6108 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
6109 unsigned long reclaimed;
6110 unsigned long scanned;
6113 * This loop can become CPU-bound when target memcgs
6114 * aren't eligible for reclaim - either because they
6115 * don't have any reclaimable pages, or because their
6116 * memory is explicitly protected. Avoid soft lockups.
6120 mem_cgroup_calculate_protection(target_memcg, memcg);
6122 if (mem_cgroup_below_min(target_memcg, memcg)) {
6125 * If there is no reclaimable memory, OOM.
6128 } else if (mem_cgroup_below_low(target_memcg, memcg)) {
6131 * Respect the protection only as long as
6132 * there is an unprotected supply
6133 * of reclaimable memory from other cgroups.
6135 if (!sc->memcg_low_reclaim) {
6136 sc->memcg_low_skipped = 1;
6139 memcg_memory_event(memcg, MEMCG_LOW);
6142 reclaimed = sc->nr_reclaimed;
6143 scanned = sc->nr_scanned;
6145 shrink_lruvec(lruvec, sc);
6147 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
6150 /* Record the group's reclaim efficiency */
6152 vmpressure(sc->gfp_mask, memcg, false,
6153 sc->nr_scanned - scanned,
6154 sc->nr_reclaimed - reclaimed);
6156 } while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
6159 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
6161 struct reclaim_state *reclaim_state = current->reclaim_state;
6162 unsigned long nr_reclaimed, nr_scanned;
6163 struct lruvec *target_lruvec;
6164 bool reclaimable = false;
6166 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
6169 memset(&sc->nr, 0, sizeof(sc->nr));
6171 nr_reclaimed = sc->nr_reclaimed;
6172 nr_scanned = sc->nr_scanned;
6174 prepare_scan_count(pgdat, sc);
6176 shrink_node_memcgs(pgdat, sc);
6178 if (reclaim_state) {
6179 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
6180 reclaim_state->reclaimed_slab = 0;
6183 /* Record the subtree's reclaim efficiency */
6185 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
6186 sc->nr_scanned - nr_scanned,
6187 sc->nr_reclaimed - nr_reclaimed);
6189 if (sc->nr_reclaimed - nr_reclaimed)
6192 if (current_is_kswapd()) {
6194 * If reclaim is isolating dirty pages under writeback,
6195 * it implies that the long-lived page allocation rate
6196 * is exceeding the page laundering rate. Either the
6197 * global limits are not being effective at throttling
6198 * processes due to the page distribution throughout
6199 * zones or there is heavy usage of a slow backing
6200 * device. The only option is to throttle from reclaim
6201 * context which is not ideal as there is no guarantee
6202 * the dirtying process is throttled in the same way
6203 * balance_dirty_pages() manages.
6205 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
6206 * count the number of pages under pages flagged for
6207 * immediate reclaim and stall if any are encountered
6208 * in the nr_immediate check below.
6210 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
6211 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
6213 /* Allow kswapd to start writing pages during reclaim.*/
6214 if (sc->nr.unqueued_dirty == sc->nr.file_taken)
6215 set_bit(PGDAT_DIRTY, &pgdat->flags);
6218 * If kswapd scans pages marked for immediate
6219 * reclaim and under writeback (nr_immediate), it
6220 * implies that pages are cycling through the LRU
6221 * faster than they are written so forcibly stall
6222 * until some pages complete writeback.
6224 if (sc->nr.immediate)
6225 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
6229 * Tag a node/memcg as congested if all the dirty pages were marked
6230 * for writeback and immediate reclaim (counted in nr.congested).
6232 * Legacy memcg will stall in page writeback so avoid forcibly
6233 * stalling in reclaim_throttle().
6235 if ((current_is_kswapd() ||
6236 (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) &&
6237 sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
6238 set_bit(LRUVEC_CONGESTED, &target_lruvec->flags);
6241 * Stall direct reclaim for IO completions if the lruvec is
6242 * node is congested. Allow kswapd to continue until it
6243 * starts encountering unqueued dirty pages or cycling through
6244 * the LRU too quickly.
6246 if (!current_is_kswapd() && current_may_throttle() &&
6247 !sc->hibernation_mode &&
6248 test_bit(LRUVEC_CONGESTED, &target_lruvec->flags))
6249 reclaim_throttle(pgdat, VMSCAN_THROTTLE_CONGESTED);
6251 if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
6256 * Kswapd gives up on balancing particular nodes after too
6257 * many failures to reclaim anything from them and goes to
6258 * sleep. On reclaim progress, reset the failure counter. A
6259 * successful direct reclaim run will revive a dormant kswapd.
6262 pgdat->kswapd_failures = 0;
6266 * Returns true if compaction should go ahead for a costly-order request, or
6267 * the allocation would already succeed without compaction. Return false if we
6268 * should reclaim first.
6270 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
6272 unsigned long watermark;
6273 enum compact_result suitable;
6275 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
6276 if (suitable == COMPACT_SUCCESS)
6277 /* Allocation should succeed already. Don't reclaim. */
6279 if (suitable == COMPACT_SKIPPED)
6280 /* Compaction cannot yet proceed. Do reclaim. */
6284 * Compaction is already possible, but it takes time to run and there
6285 * are potentially other callers using the pages just freed. So proceed
6286 * with reclaim to make a buffer of free pages available to give
6287 * compaction a reasonable chance of completing and allocating the page.
6288 * Note that we won't actually reclaim the whole buffer in one attempt
6289 * as the target watermark in should_continue_reclaim() is lower. But if
6290 * we are already above the high+gap watermark, don't reclaim at all.
6292 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
6294 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
6297 static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc)
6300 * If reclaim is making progress greater than 12% efficiency then
6301 * wake all the NOPROGRESS throttled tasks.
6303 if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) {
6304 wait_queue_head_t *wqh;
6306 wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS];
6307 if (waitqueue_active(wqh))
6314 * Do not throttle kswapd or cgroup reclaim on NOPROGRESS as it will
6315 * throttle on VMSCAN_THROTTLE_WRITEBACK if there are too many pages
6316 * under writeback and marked for immediate reclaim at the tail of the
6319 if (current_is_kswapd() || cgroup_reclaim(sc))
6322 /* Throttle if making no progress at high prioities. */
6323 if (sc->priority == 1 && !sc->nr_reclaimed)
6324 reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS);
6328 * This is the direct reclaim path, for page-allocating processes. We only
6329 * try to reclaim pages from zones which will satisfy the caller's allocation
6332 * If a zone is deemed to be full of pinned pages then just give it a light
6333 * scan then give up on it.
6335 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
6339 unsigned long nr_soft_reclaimed;
6340 unsigned long nr_soft_scanned;
6342 pg_data_t *last_pgdat = NULL;
6343 pg_data_t *first_pgdat = NULL;
6346 * If the number of buffer_heads in the machine exceeds the maximum
6347 * allowed level, force direct reclaim to scan the highmem zone as
6348 * highmem pages could be pinning lowmem pages storing buffer_heads
6350 orig_mask = sc->gfp_mask;
6351 if (buffer_heads_over_limit) {
6352 sc->gfp_mask |= __GFP_HIGHMEM;
6353 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
6356 for_each_zone_zonelist_nodemask(zone, z, zonelist,
6357 sc->reclaim_idx, sc->nodemask) {
6359 * Take care memory controller reclaiming has small influence
6362 if (!cgroup_reclaim(sc)) {
6363 if (!cpuset_zone_allowed(zone,
6364 GFP_KERNEL | __GFP_HARDWALL))
6368 * If we already have plenty of memory free for
6369 * compaction in this zone, don't free any more.
6370 * Even though compaction is invoked for any
6371 * non-zero order, only frequent costly order
6372 * reclamation is disruptive enough to become a
6373 * noticeable problem, like transparent huge
6376 if (IS_ENABLED(CONFIG_COMPACTION) &&
6377 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
6378 compaction_ready(zone, sc)) {
6379 sc->compaction_ready = true;
6384 * Shrink each node in the zonelist once. If the
6385 * zonelist is ordered by zone (not the default) then a
6386 * node may be shrunk multiple times but in that case
6387 * the user prefers lower zones being preserved.
6389 if (zone->zone_pgdat == last_pgdat)
6393 * This steals pages from memory cgroups over softlimit
6394 * and returns the number of reclaimed pages and
6395 * scanned pages. This works for global memory pressure
6396 * and balancing, not for a memcg's limit.
6398 nr_soft_scanned = 0;
6399 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
6400 sc->order, sc->gfp_mask,
6402 sc->nr_reclaimed += nr_soft_reclaimed;
6403 sc->nr_scanned += nr_soft_scanned;
6404 /* need some check for avoid more shrink_zone() */
6408 first_pgdat = zone->zone_pgdat;
6410 /* See comment about same check for global reclaim above */
6411 if (zone->zone_pgdat == last_pgdat)
6413 last_pgdat = zone->zone_pgdat;
6414 shrink_node(zone->zone_pgdat, sc);
6418 consider_reclaim_throttle(first_pgdat, sc);
6421 * Restore to original mask to avoid the impact on the caller if we
6422 * promoted it to __GFP_HIGHMEM.
6424 sc->gfp_mask = orig_mask;
6427 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
6429 struct lruvec *target_lruvec;
6430 unsigned long refaults;
6432 if (lru_gen_enabled())
6435 target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
6436 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
6437 target_lruvec->refaults[WORKINGSET_ANON] = refaults;
6438 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
6439 target_lruvec->refaults[WORKINGSET_FILE] = refaults;
6443 * This is the main entry point to direct page reclaim.
6445 * If a full scan of the inactive list fails to free enough memory then we
6446 * are "out of memory" and something needs to be killed.
6448 * If the caller is !__GFP_FS then the probability of a failure is reasonably
6449 * high - the zone may be full of dirty or under-writeback pages, which this
6450 * caller can't do much about. We kick the writeback threads and take explicit
6451 * naps in the hope that some of these pages can be written. But if the
6452 * allocating task holds filesystem locks which prevent writeout this might not
6453 * work, and the allocation attempt will fail.
6455 * returns: 0, if no pages reclaimed
6456 * else, the number of pages reclaimed
6458 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
6459 struct scan_control *sc)
6461 int initial_priority = sc->priority;
6462 pg_data_t *last_pgdat;
6466 delayacct_freepages_start();
6468 if (!cgroup_reclaim(sc))
6469 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
6473 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
6476 shrink_zones(zonelist, sc);
6478 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
6481 if (sc->compaction_ready)
6485 * If we're getting trouble reclaiming, start doing
6486 * writepage even in laptop mode.
6488 if (sc->priority < DEF_PRIORITY - 2)
6489 sc->may_writepage = 1;
6490 } while (--sc->priority >= 0);
6493 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
6495 if (zone->zone_pgdat == last_pgdat)
6497 last_pgdat = zone->zone_pgdat;
6499 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
6501 if (cgroup_reclaim(sc)) {
6502 struct lruvec *lruvec;
6504 lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
6506 clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
6510 delayacct_freepages_end();
6512 if (sc->nr_reclaimed)
6513 return sc->nr_reclaimed;
6515 /* Aborted reclaim to try compaction? don't OOM, then */
6516 if (sc->compaction_ready)
6520 * We make inactive:active ratio decisions based on the node's
6521 * composition of memory, but a restrictive reclaim_idx or a
6522 * memory.low cgroup setting can exempt large amounts of
6523 * memory from reclaim. Neither of which are very common, so
6524 * instead of doing costly eligibility calculations of the
6525 * entire cgroup subtree up front, we assume the estimates are
6526 * good, and retry with forcible deactivation if that fails.
6528 if (sc->skipped_deactivate) {
6529 sc->priority = initial_priority;
6530 sc->force_deactivate = 1;
6531 sc->skipped_deactivate = 0;
6535 /* Untapped cgroup reserves? Don't OOM, retry. */
6536 if (sc->memcg_low_skipped) {
6537 sc->priority = initial_priority;
6538 sc->force_deactivate = 0;
6539 sc->memcg_low_reclaim = 1;
6540 sc->memcg_low_skipped = 0;
6547 static bool allow_direct_reclaim(pg_data_t *pgdat)
6550 unsigned long pfmemalloc_reserve = 0;
6551 unsigned long free_pages = 0;
6555 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
6558 for (i = 0; i <= ZONE_NORMAL; i++) {
6559 zone = &pgdat->node_zones[i];
6560 if (!managed_zone(zone))
6563 if (!zone_reclaimable_pages(zone))
6566 pfmemalloc_reserve += min_wmark_pages(zone);
6567 free_pages += zone_page_state(zone, NR_FREE_PAGES);
6570 /* If there are no reserves (unexpected config) then do not throttle */
6571 if (!pfmemalloc_reserve)
6574 wmark_ok = free_pages > pfmemalloc_reserve / 2;
6576 /* kswapd must be awake if processes are being throttled */
6577 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
6578 if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
6579 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
6581 wake_up_interruptible(&pgdat->kswapd_wait);
6588 * Throttle direct reclaimers if backing storage is backed by the network
6589 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
6590 * depleted. kswapd will continue to make progress and wake the processes
6591 * when the low watermark is reached.
6593 * Returns true if a fatal signal was delivered during throttling. If this
6594 * happens, the page allocator should not consider triggering the OOM killer.
6596 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
6597 nodemask_t *nodemask)
6601 pg_data_t *pgdat = NULL;
6604 * Kernel threads should not be throttled as they may be indirectly
6605 * responsible for cleaning pages necessary for reclaim to make forward
6606 * progress. kjournald for example may enter direct reclaim while
6607 * committing a transaction where throttling it could forcing other
6608 * processes to block on log_wait_commit().
6610 if (current->flags & PF_KTHREAD)
6614 * If a fatal signal is pending, this process should not throttle.
6615 * It should return quickly so it can exit and free its memory
6617 if (fatal_signal_pending(current))
6621 * Check if the pfmemalloc reserves are ok by finding the first node
6622 * with a usable ZONE_NORMAL or lower zone. The expectation is that
6623 * GFP_KERNEL will be required for allocating network buffers when
6624 * swapping over the network so ZONE_HIGHMEM is unusable.
6626 * Throttling is based on the first usable node and throttled processes
6627 * wait on a queue until kswapd makes progress and wakes them. There
6628 * is an affinity then between processes waking up and where reclaim
6629 * progress has been made assuming the process wakes on the same node.
6630 * More importantly, processes running on remote nodes will not compete
6631 * for remote pfmemalloc reserves and processes on different nodes
6632 * should make reasonable progress.
6634 for_each_zone_zonelist_nodemask(zone, z, zonelist,
6635 gfp_zone(gfp_mask), nodemask) {
6636 if (zone_idx(zone) > ZONE_NORMAL)
6639 /* Throttle based on the first usable node */
6640 pgdat = zone->zone_pgdat;
6641 if (allow_direct_reclaim(pgdat))
6646 /* If no zone was usable by the allocation flags then do not throttle */
6650 /* Account for the throttling */
6651 count_vm_event(PGSCAN_DIRECT_THROTTLE);
6654 * If the caller cannot enter the filesystem, it's possible that it
6655 * is due to the caller holding an FS lock or performing a journal
6656 * transaction in the case of a filesystem like ext[3|4]. In this case,
6657 * it is not safe to block on pfmemalloc_wait as kswapd could be
6658 * blocked waiting on the same lock. Instead, throttle for up to a
6659 * second before continuing.
6661 if (!(gfp_mask & __GFP_FS))
6662 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
6663 allow_direct_reclaim(pgdat), HZ);
6665 /* Throttle until kswapd wakes the process */
6666 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
6667 allow_direct_reclaim(pgdat));
6669 if (fatal_signal_pending(current))
6676 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
6677 gfp_t gfp_mask, nodemask_t *nodemask)
6679 unsigned long nr_reclaimed;
6680 struct scan_control sc = {
6681 .nr_to_reclaim = SWAP_CLUSTER_MAX,
6682 .gfp_mask = current_gfp_context(gfp_mask),
6683 .reclaim_idx = gfp_zone(gfp_mask),
6685 .nodemask = nodemask,
6686 .priority = DEF_PRIORITY,
6687 .may_writepage = !laptop_mode,
6693 * scan_control uses s8 fields for order, priority, and reclaim_idx.
6694 * Confirm they are large enough for max values.
6696 BUILD_BUG_ON(MAX_ORDER > S8_MAX);
6697 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
6698 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
6701 * Do not enter reclaim if fatal signal was delivered while throttled.
6702 * 1 is returned so that the page allocator does not OOM kill at this
6705 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
6708 set_task_reclaim_state(current, &sc.reclaim_state);
6709 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
6711 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
6713 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
6714 set_task_reclaim_state(current, NULL);
6716 return nr_reclaimed;
6721 /* Only used by soft limit reclaim. Do not reuse for anything else. */
6722 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
6723 gfp_t gfp_mask, bool noswap,
6725 unsigned long *nr_scanned)
6727 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
6728 struct scan_control sc = {
6729 .nr_to_reclaim = SWAP_CLUSTER_MAX,
6730 .target_mem_cgroup = memcg,
6731 .may_writepage = !laptop_mode,
6733 .reclaim_idx = MAX_NR_ZONES - 1,
6734 .may_swap = !noswap,
6737 WARN_ON_ONCE(!current->reclaim_state);
6739 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
6740 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
6742 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
6746 * NOTE: Although we can get the priority field, using it
6747 * here is not a good idea, since it limits the pages we can scan.
6748 * if we don't reclaim here, the shrink_node from balance_pgdat
6749 * will pick up pages from other mem cgroup's as well. We hack
6750 * the priority and make it zero.
6752 shrink_lruvec(lruvec, &sc);
6754 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
6756 *nr_scanned = sc.nr_scanned;
6758 return sc.nr_reclaimed;
6761 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
6762 unsigned long nr_pages,
6764 unsigned int reclaim_options)
6766 unsigned long nr_reclaimed;
6767 unsigned int noreclaim_flag;
6768 struct scan_control sc = {
6769 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
6770 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
6771 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
6772 .reclaim_idx = MAX_NR_ZONES - 1,
6773 .target_mem_cgroup = memcg,
6774 .priority = DEF_PRIORITY,
6775 .may_writepage = !laptop_mode,
6777 .may_swap = !!(reclaim_options & MEMCG_RECLAIM_MAY_SWAP),
6778 .proactive = !!(reclaim_options & MEMCG_RECLAIM_PROACTIVE),
6781 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
6782 * equal pressure on all the nodes. This is based on the assumption that
6783 * the reclaim does not bail out early.
6785 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
6787 set_task_reclaim_state(current, &sc.reclaim_state);
6788 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
6789 noreclaim_flag = memalloc_noreclaim_save();
6791 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
6793 memalloc_noreclaim_restore(noreclaim_flag);
6794 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
6795 set_task_reclaim_state(current, NULL);
6797 return nr_reclaimed;
6801 static void kswapd_age_node(struct pglist_data *pgdat, struct scan_control *sc)
6803 struct mem_cgroup *memcg;
6804 struct lruvec *lruvec;
6806 if (lru_gen_enabled()) {
6807 lru_gen_age_node(pgdat, sc);
6811 if (!can_age_anon_pages(pgdat, sc))
6814 lruvec = mem_cgroup_lruvec(NULL, pgdat);
6815 if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
6818 memcg = mem_cgroup_iter(NULL, NULL, NULL);
6820 lruvec = mem_cgroup_lruvec(memcg, pgdat);
6821 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
6822 sc, LRU_ACTIVE_ANON);
6823 memcg = mem_cgroup_iter(NULL, memcg, NULL);
6827 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
6833 * Check for watermark boosts top-down as the higher zones
6834 * are more likely to be boosted. Both watermarks and boosts
6835 * should not be checked at the same time as reclaim would
6836 * start prematurely when there is no boosting and a lower
6839 for (i = highest_zoneidx; i >= 0; i--) {
6840 zone = pgdat->node_zones + i;
6841 if (!managed_zone(zone))
6844 if (zone->watermark_boost)
6852 * Returns true if there is an eligible zone balanced for the request order
6853 * and highest_zoneidx
6855 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
6858 unsigned long mark = -1;
6862 * Check watermarks bottom-up as lower zones are more likely to
6865 for (i = 0; i <= highest_zoneidx; i++) {
6866 zone = pgdat->node_zones + i;
6868 if (!managed_zone(zone))
6871 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING)
6872 mark = wmark_pages(zone, WMARK_PROMO);
6874 mark = high_wmark_pages(zone);
6875 if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
6880 * If a node has no managed zone within highest_zoneidx, it does not
6881 * need balancing by definition. This can happen if a zone-restricted
6882 * allocation tries to wake a remote kswapd.
6890 /* Clear pgdat state for congested, dirty or under writeback. */
6891 static void clear_pgdat_congested(pg_data_t *pgdat)
6893 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
6895 clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
6896 clear_bit(PGDAT_DIRTY, &pgdat->flags);
6897 clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
6901 * Prepare kswapd for sleeping. This verifies that there are no processes
6902 * waiting in throttle_direct_reclaim() and that watermarks have been met.
6904 * Returns true if kswapd is ready to sleep
6906 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
6907 int highest_zoneidx)
6910 * The throttled processes are normally woken up in balance_pgdat() as
6911 * soon as allow_direct_reclaim() is true. But there is a potential
6912 * race between when kswapd checks the watermarks and a process gets
6913 * throttled. There is also a potential race if processes get
6914 * throttled, kswapd wakes, a large process exits thereby balancing the
6915 * zones, which causes kswapd to exit balance_pgdat() before reaching
6916 * the wake up checks. If kswapd is going to sleep, no process should
6917 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
6918 * the wake up is premature, processes will wake kswapd and get
6919 * throttled again. The difference from wake ups in balance_pgdat() is
6920 * that here we are under prepare_to_wait().
6922 if (waitqueue_active(&pgdat->pfmemalloc_wait))
6923 wake_up_all(&pgdat->pfmemalloc_wait);
6925 /* Hopeless node, leave it to direct reclaim */
6926 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
6929 if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
6930 clear_pgdat_congested(pgdat);
6938 * kswapd shrinks a node of pages that are at or below the highest usable
6939 * zone that is currently unbalanced.
6941 * Returns true if kswapd scanned at least the requested number of pages to
6942 * reclaim or if the lack of progress was due to pages under writeback.
6943 * This is used to determine if the scanning priority needs to be raised.
6945 static bool kswapd_shrink_node(pg_data_t *pgdat,
6946 struct scan_control *sc)
6951 /* Reclaim a number of pages proportional to the number of zones */
6952 sc->nr_to_reclaim = 0;
6953 for (z = 0; z <= sc->reclaim_idx; z++) {
6954 zone = pgdat->node_zones + z;
6955 if (!managed_zone(zone))
6958 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
6962 * Historically care was taken to put equal pressure on all zones but
6963 * now pressure is applied based on node LRU order.
6965 shrink_node(pgdat, sc);
6968 * Fragmentation may mean that the system cannot be rebalanced for
6969 * high-order allocations. If twice the allocation size has been
6970 * reclaimed then recheck watermarks only at order-0 to prevent
6971 * excessive reclaim. Assume that a process requested a high-order
6972 * can direct reclaim/compact.
6974 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
6977 return sc->nr_scanned >= sc->nr_to_reclaim;
6980 /* Page allocator PCP high watermark is lowered if reclaim is active. */
6982 update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active)
6987 for (i = 0; i <= highest_zoneidx; i++) {
6988 zone = pgdat->node_zones + i;
6990 if (!managed_zone(zone))
6994 set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
6996 clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
7001 set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
7003 update_reclaim_active(pgdat, highest_zoneidx, true);
7007 clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
7009 update_reclaim_active(pgdat, highest_zoneidx, false);
7013 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
7014 * that are eligible for use by the caller until at least one zone is
7017 * Returns the order kswapd finished reclaiming at.
7019 * kswapd scans the zones in the highmem->normal->dma direction. It skips
7020 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
7021 * found to have free_pages <= high_wmark_pages(zone), any page in that zone
7022 * or lower is eligible for reclaim until at least one usable zone is
7025 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
7028 unsigned long nr_soft_reclaimed;
7029 unsigned long nr_soft_scanned;
7030 unsigned long pflags;
7031 unsigned long nr_boost_reclaim;
7032 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
7035 struct scan_control sc = {
7036 .gfp_mask = GFP_KERNEL,
7041 set_task_reclaim_state(current, &sc.reclaim_state);
7042 psi_memstall_enter(&pflags);
7043 __fs_reclaim_acquire(_THIS_IP_);
7045 count_vm_event(PAGEOUTRUN);
7048 * Account for the reclaim boost. Note that the zone boost is left in
7049 * place so that parallel allocations that are near the watermark will
7050 * stall or direct reclaim until kswapd is finished.
7052 nr_boost_reclaim = 0;
7053 for (i = 0; i <= highest_zoneidx; i++) {
7054 zone = pgdat->node_zones + i;
7055 if (!managed_zone(zone))
7058 nr_boost_reclaim += zone->watermark_boost;
7059 zone_boosts[i] = zone->watermark_boost;
7061 boosted = nr_boost_reclaim;
7064 set_reclaim_active(pgdat, highest_zoneidx);
7065 sc.priority = DEF_PRIORITY;
7067 unsigned long nr_reclaimed = sc.nr_reclaimed;
7068 bool raise_priority = true;
7072 sc.reclaim_idx = highest_zoneidx;
7075 * If the number of buffer_heads exceeds the maximum allowed
7076 * then consider reclaiming from all zones. This has a dual
7077 * purpose -- on 64-bit systems it is expected that
7078 * buffer_heads are stripped during active rotation. On 32-bit
7079 * systems, highmem pages can pin lowmem memory and shrinking
7080 * buffers can relieve lowmem pressure. Reclaim may still not
7081 * go ahead if all eligible zones for the original allocation
7082 * request are balanced to avoid excessive reclaim from kswapd.
7084 if (buffer_heads_over_limit) {
7085 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
7086 zone = pgdat->node_zones + i;
7087 if (!managed_zone(zone))
7096 * If the pgdat is imbalanced then ignore boosting and preserve
7097 * the watermarks for a later time and restart. Note that the
7098 * zone watermarks will be still reset at the end of balancing
7099 * on the grounds that the normal reclaim should be enough to
7100 * re-evaluate if boosting is required when kswapd next wakes.
7102 balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
7103 if (!balanced && nr_boost_reclaim) {
7104 nr_boost_reclaim = 0;
7109 * If boosting is not active then only reclaim if there are no
7110 * eligible zones. Note that sc.reclaim_idx is not used as
7111 * buffer_heads_over_limit may have adjusted it.
7113 if (!nr_boost_reclaim && balanced)
7116 /* Limit the priority of boosting to avoid reclaim writeback */
7117 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
7118 raise_priority = false;
7121 * Do not writeback or swap pages for boosted reclaim. The
7122 * intent is to relieve pressure not issue sub-optimal IO
7123 * from reclaim context. If no pages are reclaimed, the
7124 * reclaim will be aborted.
7126 sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
7127 sc.may_swap = !nr_boost_reclaim;
7130 * Do some background aging, to give pages a chance to be
7131 * referenced before reclaiming. All pages are rotated
7132 * regardless of classzone as this is about consistent aging.
7134 kswapd_age_node(pgdat, &sc);
7137 * If we're getting trouble reclaiming, start doing writepage
7138 * even in laptop mode.
7140 if (sc.priority < DEF_PRIORITY - 2)
7141 sc.may_writepage = 1;
7143 /* Call soft limit reclaim before calling shrink_node. */
7145 nr_soft_scanned = 0;
7146 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
7147 sc.gfp_mask, &nr_soft_scanned);
7148 sc.nr_reclaimed += nr_soft_reclaimed;
7151 * There should be no need to raise the scanning priority if
7152 * enough pages are already being scanned that that high
7153 * watermark would be met at 100% efficiency.
7155 if (kswapd_shrink_node(pgdat, &sc))
7156 raise_priority = false;
7159 * If the low watermark is met there is no need for processes
7160 * to be throttled on pfmemalloc_wait as they should not be
7161 * able to safely make forward progress. Wake them
7163 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
7164 allow_direct_reclaim(pgdat))
7165 wake_up_all(&pgdat->pfmemalloc_wait);
7167 /* Check if kswapd should be suspending */
7168 __fs_reclaim_release(_THIS_IP_);
7169 ret = try_to_freeze();
7170 __fs_reclaim_acquire(_THIS_IP_);
7171 if (ret || kthread_should_stop())
7175 * Raise priority if scanning rate is too low or there was no
7176 * progress in reclaiming pages
7178 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
7179 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
7182 * If reclaim made no progress for a boost, stop reclaim as
7183 * IO cannot be queued and it could be an infinite loop in
7184 * extreme circumstances.
7186 if (nr_boost_reclaim && !nr_reclaimed)
7189 if (raise_priority || !nr_reclaimed)
7191 } while (sc.priority >= 1);
7193 if (!sc.nr_reclaimed)
7194 pgdat->kswapd_failures++;
7197 clear_reclaim_active(pgdat, highest_zoneidx);
7199 /* If reclaim was boosted, account for the reclaim done in this pass */
7201 unsigned long flags;
7203 for (i = 0; i <= highest_zoneidx; i++) {
7204 if (!zone_boosts[i])
7207 /* Increments are under the zone lock */
7208 zone = pgdat->node_zones + i;
7209 spin_lock_irqsave(&zone->lock, flags);
7210 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
7211 spin_unlock_irqrestore(&zone->lock, flags);
7215 * As there is now likely space, wakeup kcompact to defragment
7218 wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
7221 snapshot_refaults(NULL, pgdat);
7222 __fs_reclaim_release(_THIS_IP_);
7223 psi_memstall_leave(&pflags);
7224 set_task_reclaim_state(current, NULL);
7227 * Return the order kswapd stopped reclaiming at as
7228 * prepare_kswapd_sleep() takes it into account. If another caller
7229 * entered the allocator slow path while kswapd was awake, order will
7230 * remain at the higher level.
7236 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
7237 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
7238 * not a valid index then either kswapd runs for first time or kswapd couldn't
7239 * sleep after previous reclaim attempt (node is still unbalanced). In that
7240 * case return the zone index of the previous kswapd reclaim cycle.
7242 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
7243 enum zone_type prev_highest_zoneidx)
7245 enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
7247 return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
7250 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
7251 unsigned int highest_zoneidx)
7256 if (freezing(current) || kthread_should_stop())
7259 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
7262 * Try to sleep for a short interval. Note that kcompactd will only be
7263 * woken if it is possible to sleep for a short interval. This is
7264 * deliberate on the assumption that if reclaim cannot keep an
7265 * eligible zone balanced that it's also unlikely that compaction will
7268 if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
7270 * Compaction records what page blocks it recently failed to
7271 * isolate pages from and skips them in the future scanning.
7272 * When kswapd is going to sleep, it is reasonable to assume
7273 * that pages and compaction may succeed so reset the cache.
7275 reset_isolation_suitable(pgdat);
7278 * We have freed the memory, now we should compact it to make
7279 * allocation of the requested order possible.
7281 wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
7283 remaining = schedule_timeout(HZ/10);
7286 * If woken prematurely then reset kswapd_highest_zoneidx and
7287 * order. The values will either be from a wakeup request or
7288 * the previous request that slept prematurely.
7291 WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
7292 kswapd_highest_zoneidx(pgdat,
7295 if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
7296 WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
7299 finish_wait(&pgdat->kswapd_wait, &wait);
7300 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
7304 * After a short sleep, check if it was a premature sleep. If not, then
7305 * go fully to sleep until explicitly woken up.
7308 prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
7309 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
7312 * vmstat counters are not perfectly accurate and the estimated
7313 * value for counters such as NR_FREE_PAGES can deviate from the
7314 * true value by nr_online_cpus * threshold. To avoid the zone
7315 * watermarks being breached while under pressure, we reduce the
7316 * per-cpu vmstat threshold while kswapd is awake and restore
7317 * them before going back to sleep.
7319 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
7321 if (!kthread_should_stop())
7324 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
7327 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
7329 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
7331 finish_wait(&pgdat->kswapd_wait, &wait);
7335 * The background pageout daemon, started as a kernel thread
7336 * from the init process.
7338 * This basically trickles out pages so that we have _some_
7339 * free memory available even if there is no other activity
7340 * that frees anything up. This is needed for things like routing
7341 * etc, where we otherwise might have all activity going on in
7342 * asynchronous contexts that cannot page things out.
7344 * If there are applications that are active memory-allocators
7345 * (most normal use), this basically shouldn't matter.
7347 static int kswapd(void *p)
7349 unsigned int alloc_order, reclaim_order;
7350 unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
7351 pg_data_t *pgdat = (pg_data_t *)p;
7352 struct task_struct *tsk = current;
7353 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
7355 if (!cpumask_empty(cpumask))
7356 set_cpus_allowed_ptr(tsk, cpumask);
7359 * Tell the memory management that we're a "memory allocator",
7360 * and that if we need more memory we should get access to it
7361 * regardless (see "__alloc_pages()"). "kswapd" should
7362 * never get caught in the normal page freeing logic.
7364 * (Kswapd normally doesn't need memory anyway, but sometimes
7365 * you need a small amount of memory in order to be able to
7366 * page out something else, and this flag essentially protects
7367 * us from recursively trying to free more memory as we're
7368 * trying to free the first piece of memory in the first place).
7370 tsk->flags |= PF_MEMALLOC | PF_KSWAPD;
7373 WRITE_ONCE(pgdat->kswapd_order, 0);
7374 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
7375 atomic_set(&pgdat->nr_writeback_throttled, 0);
7379 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
7380 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
7384 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
7387 /* Read the new order and highest_zoneidx */
7388 alloc_order = READ_ONCE(pgdat->kswapd_order);
7389 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
7391 WRITE_ONCE(pgdat->kswapd_order, 0);
7392 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
7394 ret = try_to_freeze();
7395 if (kthread_should_stop())
7399 * We can speed up thawing tasks if we don't call balance_pgdat
7400 * after returning from the refrigerator
7406 * Reclaim begins at the requested order but if a high-order
7407 * reclaim fails then kswapd falls back to reclaiming for
7408 * order-0. If that happens, kswapd will consider sleeping
7409 * for the order it finished reclaiming at (reclaim_order)
7410 * but kcompactd is woken to compact for the original
7411 * request (alloc_order).
7413 trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
7415 reclaim_order = balance_pgdat(pgdat, alloc_order,
7417 if (reclaim_order < alloc_order)
7418 goto kswapd_try_sleep;
7421 tsk->flags &= ~(PF_MEMALLOC | PF_KSWAPD);
7427 * A zone is low on free memory or too fragmented for high-order memory. If
7428 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
7429 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim
7430 * has failed or is not needed, still wake up kcompactd if only compaction is
7433 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
7434 enum zone_type highest_zoneidx)
7437 enum zone_type curr_idx;
7439 if (!managed_zone(zone))
7442 if (!cpuset_zone_allowed(zone, gfp_flags))
7445 pgdat = zone->zone_pgdat;
7446 curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
7448 if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
7449 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
7451 if (READ_ONCE(pgdat->kswapd_order) < order)
7452 WRITE_ONCE(pgdat->kswapd_order, order);
7454 if (!waitqueue_active(&pgdat->kswapd_wait))
7457 /* Hopeless node, leave it to direct reclaim if possible */
7458 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
7459 (pgdat_balanced(pgdat, order, highest_zoneidx) &&
7460 !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
7462 * There may be plenty of free memory available, but it's too
7463 * fragmented for high-order allocations. Wake up kcompactd
7464 * and rely on compaction_suitable() to determine if it's
7465 * needed. If it fails, it will defer subsequent attempts to
7466 * ratelimit its work.
7468 if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
7469 wakeup_kcompactd(pgdat, order, highest_zoneidx);
7473 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
7475 wake_up_interruptible(&pgdat->kswapd_wait);
7478 #ifdef CONFIG_HIBERNATION
7480 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
7483 * Rather than trying to age LRUs the aim is to preserve the overall
7484 * LRU order by reclaiming preferentially
7485 * inactive > active > active referenced > active mapped
7487 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
7489 struct scan_control sc = {
7490 .nr_to_reclaim = nr_to_reclaim,
7491 .gfp_mask = GFP_HIGHUSER_MOVABLE,
7492 .reclaim_idx = MAX_NR_ZONES - 1,
7493 .priority = DEF_PRIORITY,
7497 .hibernation_mode = 1,
7499 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7500 unsigned long nr_reclaimed;
7501 unsigned int noreclaim_flag;
7503 fs_reclaim_acquire(sc.gfp_mask);
7504 noreclaim_flag = memalloc_noreclaim_save();
7505 set_task_reclaim_state(current, &sc.reclaim_state);
7507 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
7509 set_task_reclaim_state(current, NULL);
7510 memalloc_noreclaim_restore(noreclaim_flag);
7511 fs_reclaim_release(sc.gfp_mask);
7513 return nr_reclaimed;
7515 #endif /* CONFIG_HIBERNATION */
7518 * This kswapd start function will be called by init and node-hot-add.
7520 void kswapd_run(int nid)
7522 pg_data_t *pgdat = NODE_DATA(nid);
7524 pgdat_kswapd_lock(pgdat);
7525 if (!pgdat->kswapd) {
7526 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
7527 if (IS_ERR(pgdat->kswapd)) {
7528 /* failure at boot is fatal */
7529 BUG_ON(system_state < SYSTEM_RUNNING);
7530 pr_err("Failed to start kswapd on node %d\n", nid);
7531 pgdat->kswapd = NULL;
7534 pgdat_kswapd_unlock(pgdat);
7538 * Called by memory hotplug when all memory in a node is offlined. Caller must
7539 * be holding mem_hotplug_begin/done().
7541 void kswapd_stop(int nid)
7543 pg_data_t *pgdat = NODE_DATA(nid);
7544 struct task_struct *kswapd;
7546 pgdat_kswapd_lock(pgdat);
7547 kswapd = pgdat->kswapd;
7549 kthread_stop(kswapd);
7550 pgdat->kswapd = NULL;
7552 pgdat_kswapd_unlock(pgdat);
7555 static int __init kswapd_init(void)
7560 for_each_node_state(nid, N_MEMORY)
7565 module_init(kswapd_init)
7571 * If non-zero call node_reclaim when the number of free pages falls below
7574 int node_reclaim_mode __read_mostly;
7577 * Priority for NODE_RECLAIM. This determines the fraction of pages
7578 * of a node considered for each zone_reclaim. 4 scans 1/16th of
7581 #define NODE_RECLAIM_PRIORITY 4
7584 * Percentage of pages in a zone that must be unmapped for node_reclaim to
7587 int sysctl_min_unmapped_ratio = 1;
7590 * If the number of slab pages in a zone grows beyond this percentage then
7591 * slab reclaim needs to occur.
7593 int sysctl_min_slab_ratio = 5;
7595 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
7597 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
7598 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
7599 node_page_state(pgdat, NR_ACTIVE_FILE);
7602 * It's possible for there to be more file mapped pages than
7603 * accounted for by the pages on the file LRU lists because
7604 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
7606 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
7609 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
7610 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
7612 unsigned long nr_pagecache_reclaimable;
7613 unsigned long delta = 0;
7616 * If RECLAIM_UNMAP is set, then all file pages are considered
7617 * potentially reclaimable. Otherwise, we have to worry about
7618 * pages like swapcache and node_unmapped_file_pages() provides
7621 if (node_reclaim_mode & RECLAIM_UNMAP)
7622 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
7624 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
7626 /* If we can't clean pages, remove dirty pages from consideration */
7627 if (!(node_reclaim_mode & RECLAIM_WRITE))
7628 delta += node_page_state(pgdat, NR_FILE_DIRTY);
7630 /* Watch for any possible underflows due to delta */
7631 if (unlikely(delta > nr_pagecache_reclaimable))
7632 delta = nr_pagecache_reclaimable;
7634 return nr_pagecache_reclaimable - delta;
7638 * Try to free up some pages from this node through reclaim.
7640 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
7642 /* Minimum pages needed in order to stay on node */
7643 const unsigned long nr_pages = 1 << order;
7644 struct task_struct *p = current;
7645 unsigned int noreclaim_flag;
7646 struct scan_control sc = {
7647 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
7648 .gfp_mask = current_gfp_context(gfp_mask),
7650 .priority = NODE_RECLAIM_PRIORITY,
7651 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
7652 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
7654 .reclaim_idx = gfp_zone(gfp_mask),
7656 unsigned long pflags;
7658 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
7662 psi_memstall_enter(&pflags);
7663 fs_reclaim_acquire(sc.gfp_mask);
7665 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
7667 noreclaim_flag = memalloc_noreclaim_save();
7668 set_task_reclaim_state(p, &sc.reclaim_state);
7670 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages ||
7671 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) > pgdat->min_slab_pages) {
7673 * Free memory by calling shrink node with increasing
7674 * priorities until we have enough memory freed.
7677 shrink_node(pgdat, &sc);
7678 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
7681 set_task_reclaim_state(p, NULL);
7682 memalloc_noreclaim_restore(noreclaim_flag);
7683 fs_reclaim_release(sc.gfp_mask);
7684 psi_memstall_leave(&pflags);
7686 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
7688 return sc.nr_reclaimed >= nr_pages;
7691 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
7696 * Node reclaim reclaims unmapped file backed pages and
7697 * slab pages if we are over the defined limits.
7699 * A small portion of unmapped file backed pages is needed for
7700 * file I/O otherwise pages read by file I/O will be immediately
7701 * thrown out if the node is overallocated. So we do not reclaim
7702 * if less than a specified percentage of the node is used by
7703 * unmapped file backed pages.
7705 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
7706 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
7707 pgdat->min_slab_pages)
7708 return NODE_RECLAIM_FULL;
7711 * Do not scan if the allocation should not be delayed.
7713 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
7714 return NODE_RECLAIM_NOSCAN;
7717 * Only run node reclaim on the local node or on nodes that do not
7718 * have associated processors. This will favor the local processor
7719 * over remote processors and spread off node memory allocations
7720 * as wide as possible.
7722 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
7723 return NODE_RECLAIM_NOSCAN;
7725 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
7726 return NODE_RECLAIM_NOSCAN;
7728 ret = __node_reclaim(pgdat, gfp_mask, order);
7729 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
7732 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
7738 void check_move_unevictable_pages(struct pagevec *pvec)
7740 struct folio_batch fbatch;
7743 folio_batch_init(&fbatch);
7744 for (i = 0; i < pvec->nr; i++) {
7745 struct page *page = pvec->pages[i];
7747 if (PageTransTail(page))
7749 folio_batch_add(&fbatch, page_folio(page));
7751 check_move_unevictable_folios(&fbatch);
7753 EXPORT_SYMBOL_GPL(check_move_unevictable_pages);
7756 * check_move_unevictable_folios - Move evictable folios to appropriate zone
7758 * @fbatch: Batch of lru folios to check.
7760 * Checks folios for evictability, if an evictable folio is in the unevictable
7761 * lru list, moves it to the appropriate evictable lru list. This function
7762 * should be only used for lru folios.
7764 void check_move_unevictable_folios(struct folio_batch *fbatch)
7766 struct lruvec *lruvec = NULL;
7771 for (i = 0; i < fbatch->nr; i++) {
7772 struct folio *folio = fbatch->folios[i];
7773 int nr_pages = folio_nr_pages(folio);
7775 pgscanned += nr_pages;
7777 /* block memcg migration while the folio moves between lrus */
7778 if (!folio_test_clear_lru(folio))
7781 lruvec = folio_lruvec_relock_irq(folio, lruvec);
7782 if (folio_evictable(folio) && folio_test_unevictable(folio)) {
7783 lruvec_del_folio(lruvec, folio);
7784 folio_clear_unevictable(folio);
7785 lruvec_add_folio(lruvec, folio);
7786 pgrescued += nr_pages;
7788 folio_set_lru(folio);
7792 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
7793 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
7794 unlock_page_lruvec_irq(lruvec);
7795 } else if (pgscanned) {
7796 count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
7799 EXPORT_SYMBOL_GPL(check_move_unevictable_folios);