2 * Copyright IBM Corp. 2006
6 #include <linux/bootmem.h>
9 #include <linux/module.h>
10 #include <linux/list.h>
11 #include <linux/hugetlb.h>
12 #include <linux/slab.h>
13 #include <asm/pgalloc.h>
14 #include <asm/pgtable.h>
15 #include <asm/setup.h>
16 #include <asm/tlbflush.h>
17 #include <asm/sections.h>
19 static DEFINE_MUTEX(vmem_mutex);
21 struct memory_segment {
22 struct list_head list;
27 static LIST_HEAD(mem_segs);
29 static void __ref *vmem_alloc_pages(unsigned int order)
31 if (slab_is_available())
32 return (void *)__get_free_pages(GFP_KERNEL, order);
33 return alloc_bootmem_pages((1 << order) * PAGE_SIZE);
36 static inline pud_t *vmem_pud_alloc(void)
41 pud = vmem_alloc_pages(2);
44 clear_table((unsigned long *) pud, _REGION3_ENTRY_EMPTY, PAGE_SIZE * 4);
49 static inline pmd_t *vmem_pmd_alloc(void)
54 pmd = vmem_alloc_pages(2);
57 clear_table((unsigned long *) pmd, _SEGMENT_ENTRY_EMPTY, PAGE_SIZE * 4);
62 static pte_t __ref *vmem_pte_alloc(unsigned long address)
66 if (slab_is_available())
67 pte = (pte_t *) page_table_alloc(&init_mm, address);
69 pte = alloc_bootmem(PTRS_PER_PTE * sizeof(pte_t));
72 clear_table((unsigned long *) pte, _PAGE_TYPE_EMPTY,
73 PTRS_PER_PTE * sizeof(pte_t));
78 * Add a physical memory range to the 1:1 mapping.
80 static int vmem_add_mem(unsigned long start, unsigned long size, int ro)
82 unsigned long end = start + size;
83 unsigned long address = start;
90 while (address < end) {
91 pg_dir = pgd_offset_k(address);
92 if (pgd_none(*pg_dir)) {
93 pu_dir = vmem_pud_alloc();
96 pgd_populate(&init_mm, pg_dir, pu_dir);
98 pu_dir = pud_offset(pg_dir, address);
99 #if defined(CONFIG_64BIT) && !defined(CONFIG_DEBUG_PAGEALLOC)
100 if (MACHINE_HAS_EDAT2 && pud_none(*pu_dir) && address &&
101 !(address & ~PUD_MASK) && (address + PUD_SIZE <= end)) {
102 pud_val(*pu_dir) = __pa(address) |
103 _REGION_ENTRY_TYPE_R3 | _REGION3_ENTRY_LARGE |
104 (ro ? _REGION_ENTRY_RO : 0);
109 if (pud_none(*pu_dir)) {
110 pm_dir = vmem_pmd_alloc();
113 pud_populate(&init_mm, pu_dir, pm_dir);
115 pm_dir = pmd_offset(pu_dir, address);
116 #if defined(CONFIG_64BIT) && !defined(CONFIG_DEBUG_PAGEALLOC)
117 if (MACHINE_HAS_EDAT1 && pmd_none(*pm_dir) && address &&
118 !(address & ~PMD_MASK) && (address + PMD_SIZE <= end)) {
119 pmd_val(*pm_dir) = __pa(address) |
120 _SEGMENT_ENTRY | _SEGMENT_ENTRY_LARGE |
121 (ro ? _SEGMENT_ENTRY_RO : 0);
126 if (pmd_none(*pm_dir)) {
127 pt_dir = vmem_pte_alloc(address);
130 pmd_populate(&init_mm, pm_dir, pt_dir);
133 pt_dir = pte_offset_kernel(pm_dir, address);
134 pte_val(*pt_dir) = __pa(address) | (ro ? _PAGE_RO : 0);
135 address += PAGE_SIZE;
139 flush_tlb_kernel_range(start, end);
144 * Remove a physical memory range from the 1:1 mapping.
145 * Currently only invalidates page table entries.
147 static void vmem_remove_range(unsigned long start, unsigned long size)
149 unsigned long end = start + size;
150 unsigned long address = start;
157 pte_val(pte) = _PAGE_TYPE_EMPTY;
158 while (address < end) {
159 pg_dir = pgd_offset_k(address);
160 if (pgd_none(*pg_dir)) {
161 address += PGDIR_SIZE;
164 pu_dir = pud_offset(pg_dir, address);
165 if (pud_none(*pu_dir)) {
169 if (pud_large(*pu_dir)) {
174 pm_dir = pmd_offset(pu_dir, address);
175 if (pmd_none(*pm_dir)) {
179 if (pmd_large(*pm_dir)) {
184 pt_dir = pte_offset_kernel(pm_dir, address);
186 address += PAGE_SIZE;
188 flush_tlb_kernel_range(start, end);
192 * Add a backed mem_map array to the virtual mem_map array.
194 int __meminit vmemmap_populate(struct page *start, unsigned long nr, int node)
196 unsigned long address, start_addr, end_addr;
203 start_addr = (unsigned long) start;
204 end_addr = (unsigned long) (start + nr);
206 for (address = start_addr; address < end_addr;) {
207 pg_dir = pgd_offset_k(address);
208 if (pgd_none(*pg_dir)) {
209 pu_dir = vmem_pud_alloc();
212 pgd_populate(&init_mm, pg_dir, pu_dir);
215 pu_dir = pud_offset(pg_dir, address);
216 if (pud_none(*pu_dir)) {
217 pm_dir = vmem_pmd_alloc();
220 pud_populate(&init_mm, pu_dir, pm_dir);
223 pm_dir = pmd_offset(pu_dir, address);
224 if (pmd_none(*pm_dir)) {
226 /* Use 1MB frames for vmemmap if available. We always
227 * use large frames even if they are only partially
229 * Otherwise we would have also page tables since
230 * vmemmap_populate gets called for each section
232 if (MACHINE_HAS_EDAT1) {
235 new_page = vmemmap_alloc_block(PMD_SIZE, node);
238 pmd_val(*pm_dir) = __pa(new_page) |
239 _SEGMENT_ENTRY | _SEGMENT_ENTRY_LARGE |
241 address = (address + PMD_SIZE) & PMD_MASK;
245 pt_dir = vmem_pte_alloc(address);
248 pmd_populate(&init_mm, pm_dir, pt_dir);
249 } else if (pmd_large(*pm_dir)) {
250 address = (address + PMD_SIZE) & PMD_MASK;
254 pt_dir = pte_offset_kernel(pm_dir, address);
255 if (pte_none(*pt_dir)) {
256 unsigned long new_page;
258 new_page =__pa(vmem_alloc_pages(0));
261 pte_val(*pt_dir) = __pa(new_page);
263 address += PAGE_SIZE;
265 memset(start, 0, nr * sizeof(struct page));
268 flush_tlb_kernel_range(start_addr, end_addr);
272 void vmemmap_free(struct page *memmap, unsigned long nr_pages)
277 * Add memory segment to the segment list if it doesn't overlap with
278 * an already present segment.
280 static int insert_memory_segment(struct memory_segment *seg)
282 struct memory_segment *tmp;
284 if (seg->start + seg->size > VMEM_MAX_PHYS ||
285 seg->start + seg->size < seg->start)
288 list_for_each_entry(tmp, &mem_segs, list) {
289 if (seg->start >= tmp->start + tmp->size)
291 if (seg->start + seg->size <= tmp->start)
295 list_add(&seg->list, &mem_segs);
300 * Remove memory segment from the segment list.
302 static void remove_memory_segment(struct memory_segment *seg)
304 list_del(&seg->list);
307 static void __remove_shared_memory(struct memory_segment *seg)
309 remove_memory_segment(seg);
310 vmem_remove_range(seg->start, seg->size);
313 int vmem_remove_mapping(unsigned long start, unsigned long size)
315 struct memory_segment *seg;
318 mutex_lock(&vmem_mutex);
321 list_for_each_entry(seg, &mem_segs, list) {
322 if (seg->start == start && seg->size == size)
326 if (seg->start != start || seg->size != size)
330 __remove_shared_memory(seg);
333 mutex_unlock(&vmem_mutex);
337 int vmem_add_mapping(unsigned long start, unsigned long size)
339 struct memory_segment *seg;
342 mutex_lock(&vmem_mutex);
344 seg = kzalloc(sizeof(*seg), GFP_KERNEL);
350 ret = insert_memory_segment(seg);
354 ret = vmem_add_mem(start, size, 0);
360 __remove_shared_memory(seg);
364 mutex_unlock(&vmem_mutex);
369 * map whole physical memory to virtual memory (identity mapping)
370 * we reserve enough space in the vmalloc area for vmemmap to hotplug
371 * additional memory segments.
373 void __init vmem_map_init(void)
375 unsigned long ro_start, ro_end;
376 unsigned long start, end;
379 ro_start = PFN_ALIGN((unsigned long)&_stext);
380 ro_end = (unsigned long)&_eshared & PAGE_MASK;
381 for (i = 0; i < MEMORY_CHUNKS && memory_chunk[i].size > 0; i++) {
382 if (memory_chunk[i].type == CHUNK_CRASHK ||
383 memory_chunk[i].type == CHUNK_OLDMEM)
385 start = memory_chunk[i].addr;
386 end = memory_chunk[i].addr + memory_chunk[i].size;
387 if (start >= ro_end || end <= ro_start)
388 vmem_add_mem(start, end - start, 0);
389 else if (start >= ro_start && end <= ro_end)
390 vmem_add_mem(start, end - start, 1);
391 else if (start >= ro_start) {
392 vmem_add_mem(start, ro_end - start, 1);
393 vmem_add_mem(ro_end, end - ro_end, 0);
394 } else if (end < ro_end) {
395 vmem_add_mem(start, ro_start - start, 0);
396 vmem_add_mem(ro_start, end - ro_start, 1);
398 vmem_add_mem(start, ro_start - start, 0);
399 vmem_add_mem(ro_start, ro_end - ro_start, 1);
400 vmem_add_mem(ro_end, end - ro_end, 0);
406 * Convert memory chunk array to a memory segment list so there is a single
407 * list that contains both r/w memory and shared memory segments.
409 static int __init vmem_convert_memory_chunk(void)
411 struct memory_segment *seg;
414 mutex_lock(&vmem_mutex);
415 for (i = 0; i < MEMORY_CHUNKS; i++) {
416 if (!memory_chunk[i].size)
418 if (memory_chunk[i].type == CHUNK_CRASHK ||
419 memory_chunk[i].type == CHUNK_OLDMEM)
421 seg = kzalloc(sizeof(*seg), GFP_KERNEL);
423 panic("Out of memory...\n");
424 seg->start = memory_chunk[i].addr;
425 seg->size = memory_chunk[i].size;
426 insert_memory_segment(seg);
428 mutex_unlock(&vmem_mutex);
432 core_initcall(vmem_convert_memory_chunk);