4 * Copyright (C) 1992 Rick Sladkey
6 * nfs directory handling functions
8 * 10 Apr 1996 Added silly rename for unlink --okir
9 * 28 Sep 1996 Improved directory cache --okir
11 * Re-implemented silly rename for unlink, newly implemented
12 * silly rename for nfs_rename() following the suggestions
13 * of Olaf Kirch (okir) found in this file.
14 * Following Linus comments on my original hack, this version
15 * depends only on the dcache stuff and doesn't touch the inode
16 * layer (iput() and friends).
17 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM
20 #include <linux/time.h>
21 #include <linux/errno.h>
22 #include <linux/stat.h>
23 #include <linux/fcntl.h>
24 #include <linux/string.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
28 #include <linux/sunrpc/clnt.h>
29 #include <linux/nfs_fs.h>
30 #include <linux/nfs_mount.h>
31 #include <linux/pagemap.h>
32 #include <linux/pagevec.h>
33 #include <linux/namei.h>
34 #include <linux/mount.h>
35 #include <linux/sched.h>
36 #include <linux/kmemleak.h>
37 #include <linux/xattr.h>
39 #include "delegation.h"
44 /* #define NFS_DEBUG_VERBOSE 1 */
46 static int nfs_opendir(struct inode *, struct file *);
47 static int nfs_closedir(struct inode *, struct file *);
48 static int nfs_readdir(struct file *, void *, filldir_t);
49 static struct dentry *nfs_lookup(struct inode *, struct dentry *, struct nameidata *);
50 static int nfs_create(struct inode *, struct dentry *, int, struct nameidata *);
51 static int nfs_mkdir(struct inode *, struct dentry *, int);
52 static int nfs_rmdir(struct inode *, struct dentry *);
53 static int nfs_unlink(struct inode *, struct dentry *);
54 static int nfs_symlink(struct inode *, struct dentry *, const char *);
55 static int nfs_link(struct dentry *, struct inode *, struct dentry *);
56 static int nfs_mknod(struct inode *, struct dentry *, int, dev_t);
57 static int nfs_rename(struct inode *, struct dentry *,
58 struct inode *, struct dentry *);
59 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
60 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
61 static void nfs_readdir_clear_array(struct page*);
63 const struct file_operations nfs_dir_operations = {
64 .llseek = nfs_llseek_dir,
65 .read = generic_read_dir,
66 .readdir = nfs_readdir,
68 .release = nfs_closedir,
69 .fsync = nfs_fsync_dir,
72 const struct inode_operations nfs_dir_inode_operations = {
77 .symlink = nfs_symlink,
82 .permission = nfs_permission,
83 .getattr = nfs_getattr,
84 .setattr = nfs_setattr,
87 const struct address_space_operations nfs_dir_aops = {
88 .freepage = nfs_readdir_clear_array,
92 const struct inode_operations nfs3_dir_inode_operations = {
97 .symlink = nfs_symlink,
101 .rename = nfs_rename,
102 .permission = nfs_permission,
103 .getattr = nfs_getattr,
104 .setattr = nfs_setattr,
105 .listxattr = nfs3_listxattr,
106 .getxattr = nfs3_getxattr,
107 .setxattr = nfs3_setxattr,
108 .removexattr = nfs3_removexattr,
110 #endif /* CONFIG_NFS_V3 */
114 static struct dentry *nfs_atomic_lookup(struct inode *, struct dentry *, struct nameidata *);
115 static int nfs_open_create(struct inode *dir, struct dentry *dentry, int mode, struct nameidata *nd);
116 const struct inode_operations nfs4_dir_inode_operations = {
117 .create = nfs_open_create,
118 .lookup = nfs_atomic_lookup,
120 .unlink = nfs_unlink,
121 .symlink = nfs_symlink,
125 .rename = nfs_rename,
126 .permission = nfs_permission,
127 .getattr = nfs_getattr,
128 .setattr = nfs_setattr,
129 .getxattr = generic_getxattr,
130 .setxattr = generic_setxattr,
131 .listxattr = generic_listxattr,
132 .removexattr = generic_removexattr,
135 #endif /* CONFIG_NFS_V4 */
137 static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct rpc_cred *cred)
139 struct nfs_open_dir_context *ctx;
140 ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
145 ctx->cred = get_rpccred(cred);
147 ctx = ERR_PTR(-ENOMEM);
151 static void put_nfs_open_dir_context(struct nfs_open_dir_context *ctx)
153 put_rpccred(ctx->cred);
161 nfs_opendir(struct inode *inode, struct file *filp)
164 struct nfs_open_dir_context *ctx;
165 struct rpc_cred *cred;
167 dfprintk(FILE, "NFS: open dir(%s/%s)\n",
168 filp->f_path.dentry->d_parent->d_name.name,
169 filp->f_path.dentry->d_name.name);
171 nfs_inc_stats(inode, NFSIOS_VFSOPEN);
173 cred = rpc_lookup_cred();
175 return PTR_ERR(cred);
176 ctx = alloc_nfs_open_dir_context(cred);
181 filp->private_data = ctx;
182 if (filp->f_path.dentry == filp->f_path.mnt->mnt_root) {
183 /* This is a mountpoint, so d_revalidate will never
184 * have been called, so we need to refresh the
185 * inode (for close-open consistency) ourselves.
187 __nfs_revalidate_inode(NFS_SERVER(inode), inode);
195 nfs_closedir(struct inode *inode, struct file *filp)
197 put_nfs_open_dir_context(filp->private_data);
201 struct nfs_cache_array_entry {
205 unsigned char d_type;
208 struct nfs_cache_array {
212 struct nfs_cache_array_entry array[0];
215 typedef int (*decode_dirent_t)(struct xdr_stream *, struct nfs_entry *, int);
219 unsigned long page_index;
222 loff_t current_index;
223 decode_dirent_t decode;
225 unsigned long timestamp;
226 unsigned long gencount;
227 unsigned int cache_entry_index;
230 } nfs_readdir_descriptor_t;
233 * The caller is responsible for calling nfs_readdir_release_array(page)
236 struct nfs_cache_array *nfs_readdir_get_array(struct page *page)
240 return ERR_PTR(-EIO);
243 return ERR_PTR(-ENOMEM);
248 void nfs_readdir_release_array(struct page *page)
254 * we are freeing strings created by nfs_add_to_readdir_array()
257 void nfs_readdir_clear_array(struct page *page)
259 struct nfs_cache_array *array;
262 array = kmap_atomic(page, KM_USER0);
263 for (i = 0; i < array->size; i++)
264 kfree(array->array[i].string.name);
265 kunmap_atomic(array, KM_USER0);
269 * the caller is responsible for freeing qstr.name
270 * when called by nfs_readdir_add_to_array, the strings will be freed in
271 * nfs_clear_readdir_array()
274 int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len)
277 string->name = kmemdup(name, len, GFP_KERNEL);
278 if (string->name == NULL)
281 * Avoid a kmemleak false positive. The pointer to the name is stored
282 * in a page cache page which kmemleak does not scan.
284 kmemleak_not_leak(string->name);
285 string->hash = full_name_hash(name, len);
290 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
292 struct nfs_cache_array *array = nfs_readdir_get_array(page);
293 struct nfs_cache_array_entry *cache_entry;
297 return PTR_ERR(array);
299 cache_entry = &array->array[array->size];
301 /* Check that this entry lies within the page bounds */
303 if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE)
306 cache_entry->cookie = entry->prev_cookie;
307 cache_entry->ino = entry->ino;
308 cache_entry->d_type = entry->d_type;
309 ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len);
312 array->last_cookie = entry->cookie;
315 array->eof_index = array->size;
317 nfs_readdir_release_array(page);
322 int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
324 loff_t diff = desc->file->f_pos - desc->current_index;
326 struct nfs_open_dir_context *ctx = desc->file->private_data;
330 if (diff >= array->size) {
331 if (array->eof_index >= 0)
336 index = (unsigned int)diff;
337 *desc->dir_cookie = array->array[index].cookie;
338 desc->cache_entry_index = index;
347 int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
351 int status = -EAGAIN;
352 struct nfs_open_dir_context *ctx = desc->file->private_data;
354 for (i = 0; i < array->size; i++) {
355 if (array->array[i].cookie == *desc->dir_cookie) {
356 new_pos = desc->current_index + i;
357 if (new_pos < desc->file->f_pos) {
358 ctx->dup_cookie = *desc->dir_cookie;
361 desc->file->f_pos = new_pos;
362 desc->cache_entry_index = i;
366 if (array->eof_index >= 0) {
367 status = -EBADCOOKIE;
368 if (*desc->dir_cookie == array->last_cookie)
375 int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc)
377 struct nfs_cache_array *array;
380 array = nfs_readdir_get_array(desc->page);
382 status = PTR_ERR(array);
386 if (*desc->dir_cookie == 0)
387 status = nfs_readdir_search_for_pos(array, desc);
389 status = nfs_readdir_search_for_cookie(array, desc);
391 if (status == -EAGAIN) {
392 desc->last_cookie = array->last_cookie;
393 desc->current_index += array->size;
396 nfs_readdir_release_array(desc->page);
401 /* Fill a page with xdr information before transferring to the cache page */
403 int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc,
404 struct nfs_entry *entry, struct file *file, struct inode *inode)
406 struct nfs_open_dir_context *ctx = file->private_data;
407 struct rpc_cred *cred = ctx->cred;
408 unsigned long timestamp, gencount;
413 gencount = nfs_inc_attr_generation_counter();
414 error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, entry->cookie, pages,
415 NFS_SERVER(inode)->dtsize, desc->plus);
417 /* We requested READDIRPLUS, but the server doesn't grok it */
418 if (error == -ENOTSUPP && desc->plus) {
419 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
420 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
426 desc->timestamp = timestamp;
427 desc->gencount = gencount;
432 static int xdr_decode(nfs_readdir_descriptor_t *desc,
433 struct nfs_entry *entry, struct xdr_stream *xdr)
437 error = desc->decode(xdr, entry, desc->plus);
440 entry->fattr->time_start = desc->timestamp;
441 entry->fattr->gencount = desc->gencount;
446 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
448 if (dentry->d_inode == NULL)
450 if (nfs_compare_fh(entry->fh, NFS_FH(dentry->d_inode)) != 0)
458 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry)
460 struct qstr filename = {
464 struct dentry *dentry;
465 struct dentry *alias;
466 struct inode *dir = parent->d_inode;
469 if (filename.name[0] == '.') {
470 if (filename.len == 1)
472 if (filename.len == 2 && filename.name[1] == '.')
475 filename.hash = full_name_hash(filename.name, filename.len);
477 dentry = d_lookup(parent, &filename);
478 if (dentry != NULL) {
479 if (nfs_same_file(dentry, entry)) {
480 nfs_refresh_inode(dentry->d_inode, entry->fattr);
488 dentry = d_alloc(parent, &filename);
492 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr);
496 alias = d_materialise_unique(dentry, inode);
500 nfs_set_verifier(alias, nfs_save_change_attribute(dir));
503 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
509 /* Perform conversion from xdr to cache array */
511 int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry,
512 struct page **xdr_pages, struct page *page, unsigned int buflen)
514 struct xdr_stream stream;
516 struct page *scratch;
517 struct nfs_cache_array *array;
518 unsigned int count = 0;
521 scratch = alloc_page(GFP_KERNEL);
525 xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
526 xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE);
529 status = xdr_decode(desc, entry, &stream);
531 if (status == -EAGAIN)
539 nfs_prime_dcache(desc->file->f_path.dentry, entry);
541 status = nfs_readdir_add_to_array(entry, page);
544 } while (!entry->eof);
546 if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) {
547 array = nfs_readdir_get_array(page);
548 if (!IS_ERR(array)) {
549 array->eof_index = array->size;
551 nfs_readdir_release_array(page);
553 status = PTR_ERR(array);
561 void nfs_readdir_free_pagearray(struct page **pages, unsigned int npages)
564 for (i = 0; i < npages; i++)
569 void nfs_readdir_free_large_page(void *ptr, struct page **pages,
572 nfs_readdir_free_pagearray(pages, npages);
576 * nfs_readdir_large_page will allocate pages that must be freed with a call
577 * to nfs_readdir_free_large_page
580 int nfs_readdir_large_page(struct page **pages, unsigned int npages)
584 for (i = 0; i < npages; i++) {
585 struct page *page = alloc_page(GFP_KERNEL);
593 nfs_readdir_free_pagearray(pages, i);
598 int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode)
600 struct page *pages[NFS_MAX_READDIR_PAGES];
601 void *pages_ptr = NULL;
602 struct nfs_entry entry;
603 struct file *file = desc->file;
604 struct nfs_cache_array *array;
605 int status = -ENOMEM;
606 unsigned int array_size = ARRAY_SIZE(pages);
608 entry.prev_cookie = 0;
609 entry.cookie = desc->last_cookie;
611 entry.fh = nfs_alloc_fhandle();
612 entry.fattr = nfs_alloc_fattr();
613 entry.server = NFS_SERVER(inode);
614 if (entry.fh == NULL || entry.fattr == NULL)
617 array = nfs_readdir_get_array(page);
619 status = PTR_ERR(array);
622 memset(array, 0, sizeof(struct nfs_cache_array));
623 array->eof_index = -1;
625 status = nfs_readdir_large_page(pages, array_size);
627 goto out_release_array;
630 status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode);
635 status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen);
637 if (status == -ENOSPC)
641 } while (array->eof_index < 0);
643 nfs_readdir_free_large_page(pages_ptr, pages, array_size);
645 nfs_readdir_release_array(page);
647 nfs_free_fattr(entry.fattr);
648 nfs_free_fhandle(entry.fh);
653 * Now we cache directories properly, by converting xdr information
654 * to an array that can be used for lookups later. This results in
655 * fewer cache pages, since we can store more information on each page.
656 * We only need to convert from xdr once so future lookups are much simpler
659 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page* page)
661 struct inode *inode = desc->file->f_path.dentry->d_inode;
664 ret = nfs_readdir_xdr_to_array(desc, page, inode);
667 SetPageUptodate(page);
669 if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) {
670 /* Should never happen */
671 nfs_zap_mapping(inode, inode->i_mapping);
681 void cache_page_release(nfs_readdir_descriptor_t *desc)
683 if (!desc->page->mapping)
684 nfs_readdir_clear_array(desc->page);
685 page_cache_release(desc->page);
690 struct page *get_cache_page(nfs_readdir_descriptor_t *desc)
692 return read_cache_page(desc->file->f_path.dentry->d_inode->i_mapping,
693 desc->page_index, (filler_t *)nfs_readdir_filler, desc);
697 * Returns 0 if desc->dir_cookie was found on page desc->page_index
700 int find_cache_page(nfs_readdir_descriptor_t *desc)
704 desc->page = get_cache_page(desc);
705 if (IS_ERR(desc->page))
706 return PTR_ERR(desc->page);
708 res = nfs_readdir_search_array(desc);
710 cache_page_release(desc);
714 /* Search for desc->dir_cookie from the beginning of the page cache */
716 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
720 if (desc->page_index == 0) {
721 desc->current_index = 0;
722 desc->last_cookie = 0;
725 res = find_cache_page(desc);
726 } while (res == -EAGAIN);
731 * Once we've found the start of the dirent within a page: fill 'er up...
734 int nfs_do_filldir(nfs_readdir_descriptor_t *desc, void *dirent,
737 struct file *file = desc->file;
740 struct nfs_cache_array *array = NULL;
741 struct nfs_open_dir_context *ctx = file->private_data;
743 if (ctx->duped != 0 && ctx->dup_cookie == *desc->dir_cookie) {
744 if (printk_ratelimit()) {
745 pr_notice("NFS: directory %s/%s contains a readdir loop. "
746 "Please contact your server vendor. "
747 "Offending cookie: %llu\n",
748 file->f_dentry->d_parent->d_name.name,
749 file->f_dentry->d_name.name,
756 array = nfs_readdir_get_array(desc->page);
758 res = PTR_ERR(array);
762 for (i = desc->cache_entry_index; i < array->size; i++) {
763 struct nfs_cache_array_entry *ent;
765 ent = &array->array[i];
766 if (filldir(dirent, ent->string.name, ent->string.len,
767 file->f_pos, nfs_compat_user_ino64(ent->ino),
773 if (i < (array->size-1))
774 *desc->dir_cookie = array->array[i+1].cookie;
776 *desc->dir_cookie = array->last_cookie;
778 if (array->eof_index >= 0)
781 nfs_readdir_release_array(desc->page);
783 cache_page_release(desc);
784 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
785 (unsigned long long)*desc->dir_cookie, res);
790 * If we cannot find a cookie in our cache, we suspect that this is
791 * because it points to a deleted file, so we ask the server to return
792 * whatever it thinks is the next entry. We then feed this to filldir.
793 * If all goes well, we should then be able to find our way round the
794 * cache on the next call to readdir_search_pagecache();
796 * NOTE: we cannot add the anonymous page to the pagecache because
797 * the data it contains might not be page aligned. Besides,
798 * we should already have a complete representation of the
799 * directory in the page cache by the time we get here.
802 int uncached_readdir(nfs_readdir_descriptor_t *desc, void *dirent,
805 struct page *page = NULL;
807 struct inode *inode = desc->file->f_path.dentry->d_inode;
809 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
810 (unsigned long long)*desc->dir_cookie);
812 page = alloc_page(GFP_HIGHUSER);
818 desc->page_index = 0;
819 desc->last_cookie = *desc->dir_cookie;
822 status = nfs_readdir_xdr_to_array(desc, page, inode);
826 status = nfs_do_filldir(desc, dirent, filldir);
829 dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
833 cache_page_release(desc);
837 /* The file offset position represents the dirent entry number. A
838 last cookie cache takes care of the common case of reading the
841 static int nfs_readdir(struct file *filp, void *dirent, filldir_t filldir)
843 struct dentry *dentry = filp->f_path.dentry;
844 struct inode *inode = dentry->d_inode;
845 nfs_readdir_descriptor_t my_desc,
847 struct nfs_open_dir_context *dir_ctx = filp->private_data;
850 dfprintk(FILE, "NFS: readdir(%s/%s) starting at cookie %llu\n",
851 dentry->d_parent->d_name.name, dentry->d_name.name,
852 (long long)filp->f_pos);
853 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
856 * filp->f_pos points to the dirent entry number.
857 * *desc->dir_cookie has the cookie for the next entry. We have
858 * to either find the entry with the appropriate number or
859 * revalidate the cookie.
861 memset(desc, 0, sizeof(*desc));
864 desc->dir_cookie = &dir_ctx->dir_cookie;
865 desc->decode = NFS_PROTO(inode)->decode_dirent;
866 desc->plus = NFS_USE_READDIRPLUS(inode);
868 nfs_block_sillyrename(dentry);
869 res = nfs_revalidate_mapping(inode, filp->f_mapping);
874 res = readdir_search_pagecache(desc);
876 if (res == -EBADCOOKIE) {
878 /* This means either end of directory */
879 if (*desc->dir_cookie && desc->eof == 0) {
880 /* Or that the server has 'lost' a cookie */
881 res = uncached_readdir(desc, dirent, filldir);
887 if (res == -ETOOSMALL && desc->plus) {
888 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
889 nfs_zap_caches(inode);
890 desc->page_index = 0;
898 res = nfs_do_filldir(desc, dirent, filldir);
901 } while (!desc->eof);
903 nfs_unblock_sillyrename(dentry);
906 dfprintk(FILE, "NFS: readdir(%s/%s) returns %d\n",
907 dentry->d_parent->d_name.name, dentry->d_name.name,
912 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int origin)
914 struct dentry *dentry = filp->f_path.dentry;
915 struct inode *inode = dentry->d_inode;
916 struct nfs_open_dir_context *dir_ctx = filp->private_data;
918 dfprintk(FILE, "NFS: llseek dir(%s/%s, %lld, %d)\n",
919 dentry->d_parent->d_name.name,
923 mutex_lock(&inode->i_mutex);
926 offset += filp->f_pos;
934 if (offset != filp->f_pos) {
935 filp->f_pos = offset;
936 dir_ctx->dir_cookie = 0;
940 mutex_unlock(&inode->i_mutex);
945 * All directory operations under NFS are synchronous, so fsync()
946 * is a dummy operation.
948 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
951 struct dentry *dentry = filp->f_path.dentry;
952 struct inode *inode = dentry->d_inode;
954 dfprintk(FILE, "NFS: fsync dir(%s/%s) datasync %d\n",
955 dentry->d_parent->d_name.name, dentry->d_name.name,
958 mutex_lock(&inode->i_mutex);
959 nfs_inc_stats(dentry->d_inode, NFSIOS_VFSFSYNC);
960 mutex_unlock(&inode->i_mutex);
965 * nfs_force_lookup_revalidate - Mark the directory as having changed
966 * @dir - pointer to directory inode
968 * This forces the revalidation code in nfs_lookup_revalidate() to do a
969 * full lookup on all child dentries of 'dir' whenever a change occurs
970 * on the server that might have invalidated our dcache.
972 * The caller should be holding dir->i_lock
974 void nfs_force_lookup_revalidate(struct inode *dir)
976 NFS_I(dir)->cache_change_attribute++;
980 * A check for whether or not the parent directory has changed.
981 * In the case it has, we assume that the dentries are untrustworthy
982 * and may need to be looked up again.
984 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry)
988 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
990 if (!nfs_verify_change_attribute(dir, dentry->d_time))
992 /* Revalidate nfsi->cache_change_attribute before we declare a match */
993 if (nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
995 if (!nfs_verify_change_attribute(dir, dentry->d_time))
1001 * Return the intent data that applies to this particular path component
1003 * Note that the current set of intents only apply to the very last
1004 * component of the path and none of them is set before that last
1007 static inline unsigned int nfs_lookup_check_intent(struct nameidata *nd,
1010 return nd->flags & mask;
1014 * Use intent information to check whether or not we're going to do
1015 * an O_EXCL create using this path component.
1017 static int nfs_is_exclusive_create(struct inode *dir, struct nameidata *nd)
1019 if (NFS_PROTO(dir)->version == 2)
1021 return nd && nfs_lookup_check_intent(nd, LOOKUP_EXCL);
1025 * Inode and filehandle revalidation for lookups.
1027 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1028 * or if the intent information indicates that we're about to open this
1029 * particular file and the "nocto" mount flag is not set.
1033 int nfs_lookup_verify_inode(struct inode *inode, struct nameidata *nd)
1035 struct nfs_server *server = NFS_SERVER(inode);
1037 if (IS_AUTOMOUNT(inode))
1040 /* VFS wants an on-the-wire revalidation */
1041 if (nd->flags & LOOKUP_REVAL)
1043 /* This is an open(2) */
1044 if (nfs_lookup_check_intent(nd, LOOKUP_OPEN) != 0 &&
1045 !(server->flags & NFS_MOUNT_NOCTO) &&
1046 (S_ISREG(inode->i_mode) ||
1047 S_ISDIR(inode->i_mode)))
1051 return nfs_revalidate_inode(server, inode);
1053 return __nfs_revalidate_inode(server, inode);
1057 * We judge how long we want to trust negative
1058 * dentries by looking at the parent inode mtime.
1060 * If parent mtime has changed, we revalidate, else we wait for a
1061 * period corresponding to the parent's attribute cache timeout value.
1064 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1065 struct nameidata *nd)
1067 /* Don't revalidate a negative dentry if we're creating a new file */
1068 if (nd != NULL && nfs_lookup_check_intent(nd, LOOKUP_CREATE) != 0)
1070 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1072 return !nfs_check_verifier(dir, dentry);
1076 * This is called every time the dcache has a lookup hit,
1077 * and we should check whether we can really trust that
1080 * NOTE! The hit can be a negative hit too, don't assume
1083 * If the parent directory is seen to have changed, we throw out the
1084 * cached dentry and do a new lookup.
1086 static int nfs_lookup_revalidate(struct dentry *dentry, struct nameidata *nd)
1089 struct inode *inode;
1090 struct dentry *parent;
1091 struct nfs_fh *fhandle = NULL;
1092 struct nfs_fattr *fattr = NULL;
1095 if (nd->flags & LOOKUP_RCU)
1098 parent = dget_parent(dentry);
1099 dir = parent->d_inode;
1100 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1101 inode = dentry->d_inode;
1104 if (nfs_neg_need_reval(dir, dentry, nd))
1109 if (is_bad_inode(inode)) {
1110 dfprintk(LOOKUPCACHE, "%s: %s/%s has dud inode\n",
1111 __func__, dentry->d_parent->d_name.name,
1112 dentry->d_name.name);
1116 if (nfs_have_delegation(inode, FMODE_READ))
1117 goto out_set_verifier;
1119 /* Force a full look up iff the parent directory has changed */
1120 if (!nfs_is_exclusive_create(dir, nd) && nfs_check_verifier(dir, dentry)) {
1121 if (nfs_lookup_verify_inode(inode, nd))
1122 goto out_zap_parent;
1126 if (NFS_STALE(inode))
1130 fhandle = nfs_alloc_fhandle();
1131 fattr = nfs_alloc_fattr();
1132 if (fhandle == NULL || fattr == NULL)
1135 error = NFS_PROTO(dir)->lookup(NFS_SERVER(dir)->client, dir, &dentry->d_name, fhandle, fattr);
1138 if (nfs_compare_fh(NFS_FH(inode), fhandle))
1140 if ((error = nfs_refresh_inode(inode, fattr)) != 0)
1143 nfs_free_fattr(fattr);
1144 nfs_free_fhandle(fhandle);
1146 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1149 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is valid\n",
1150 __func__, dentry->d_parent->d_name.name,
1151 dentry->d_name.name);
1154 nfs_zap_caches(dir);
1156 nfs_mark_for_revalidate(dir);
1157 if (inode && S_ISDIR(inode->i_mode)) {
1158 /* Purge readdir caches. */
1159 nfs_zap_caches(inode);
1160 /* If we have submounts, don't unhash ! */
1161 if (have_submounts(dentry))
1163 if (dentry->d_flags & DCACHE_DISCONNECTED)
1165 shrink_dcache_parent(dentry);
1168 nfs_free_fattr(fattr);
1169 nfs_free_fhandle(fhandle);
1171 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is invalid\n",
1172 __func__, dentry->d_parent->d_name.name,
1173 dentry->d_name.name);
1176 nfs_free_fattr(fattr);
1177 nfs_free_fhandle(fhandle);
1179 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) lookup returned error %d\n",
1180 __func__, dentry->d_parent->d_name.name,
1181 dentry->d_name.name, error);
1186 * This is called from dput() when d_count is going to 0.
1188 static int nfs_dentry_delete(const struct dentry *dentry)
1190 dfprintk(VFS, "NFS: dentry_delete(%s/%s, %x)\n",
1191 dentry->d_parent->d_name.name, dentry->d_name.name,
1194 /* Unhash any dentry with a stale inode */
1195 if (dentry->d_inode != NULL && NFS_STALE(dentry->d_inode))
1198 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1199 /* Unhash it, so that ->d_iput() would be called */
1202 if (!(dentry->d_sb->s_flags & MS_ACTIVE)) {
1203 /* Unhash it, so that ancestors of killed async unlink
1204 * files will be cleaned up during umount */
1211 static void nfs_drop_nlink(struct inode *inode)
1213 spin_lock(&inode->i_lock);
1214 if (inode->i_nlink > 0)
1216 spin_unlock(&inode->i_lock);
1220 * Called when the dentry loses inode.
1221 * We use it to clean up silly-renamed files.
1223 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1225 if (S_ISDIR(inode->i_mode))
1226 /* drop any readdir cache as it could easily be old */
1227 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
1229 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1231 nfs_complete_unlink(dentry, inode);
1236 static void nfs_d_release(struct dentry *dentry)
1238 /* free cached devname value, if it survived that far */
1239 if (unlikely(dentry->d_fsdata)) {
1240 if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1243 kfree(dentry->d_fsdata);
1247 const struct dentry_operations nfs_dentry_operations = {
1248 .d_revalidate = nfs_lookup_revalidate,
1249 .d_delete = nfs_dentry_delete,
1250 .d_iput = nfs_dentry_iput,
1251 .d_automount = nfs_d_automount,
1252 .d_release = nfs_d_release,
1255 static struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
1258 struct dentry *parent;
1259 struct inode *inode = NULL;
1260 struct nfs_fh *fhandle = NULL;
1261 struct nfs_fattr *fattr = NULL;
1264 dfprintk(VFS, "NFS: lookup(%s/%s)\n",
1265 dentry->d_parent->d_name.name, dentry->d_name.name);
1266 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1268 res = ERR_PTR(-ENAMETOOLONG);
1269 if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1273 * If we're doing an exclusive create, optimize away the lookup
1274 * but don't hash the dentry.
1276 if (nfs_is_exclusive_create(dir, nd)) {
1277 d_instantiate(dentry, NULL);
1282 res = ERR_PTR(-ENOMEM);
1283 fhandle = nfs_alloc_fhandle();
1284 fattr = nfs_alloc_fattr();
1285 if (fhandle == NULL || fattr == NULL)
1288 parent = dentry->d_parent;
1289 /* Protect against concurrent sillydeletes */
1290 nfs_block_sillyrename(parent);
1291 error = NFS_PROTO(dir)->lookup(NFS_SERVER(dir)->client, dir, &dentry->d_name, fhandle, fattr);
1292 if (error == -ENOENT)
1295 res = ERR_PTR(error);
1296 goto out_unblock_sillyrename;
1298 inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1299 res = ERR_CAST(inode);
1301 goto out_unblock_sillyrename;
1304 res = d_materialise_unique(dentry, inode);
1307 goto out_unblock_sillyrename;
1310 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1311 out_unblock_sillyrename:
1312 nfs_unblock_sillyrename(parent);
1314 nfs_free_fattr(fattr);
1315 nfs_free_fhandle(fhandle);
1319 #ifdef CONFIG_NFS_V4
1320 static int nfs_open_revalidate(struct dentry *, struct nameidata *);
1322 const struct dentry_operations nfs4_dentry_operations = {
1323 .d_revalidate = nfs_open_revalidate,
1324 .d_delete = nfs_dentry_delete,
1325 .d_iput = nfs_dentry_iput,
1326 .d_automount = nfs_d_automount,
1327 .d_release = nfs_d_release,
1331 * Use intent information to determine whether we need to substitute
1332 * the NFSv4-style stateful OPEN for the LOOKUP call
1334 static int is_atomic_open(struct nameidata *nd)
1336 if (nd == NULL || nfs_lookup_check_intent(nd, LOOKUP_OPEN) == 0)
1338 /* NFS does not (yet) have a stateful open for directories */
1339 if (nd->flags & LOOKUP_DIRECTORY)
1341 /* Are we trying to write to a read only partition? */
1342 if (__mnt_is_readonly(nd->path.mnt) &&
1343 (nd->intent.open.flags & (O_CREAT|O_TRUNC|O_ACCMODE)))
1348 static fmode_t flags_to_mode(int flags)
1350 fmode_t res = (__force fmode_t)flags & FMODE_EXEC;
1351 if ((flags & O_ACCMODE) != O_WRONLY)
1353 if ((flags & O_ACCMODE) != O_RDONLY)
1358 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags)
1360 struct nfs_open_context *ctx;
1361 struct rpc_cred *cred;
1362 fmode_t fmode = flags_to_mode(open_flags);
1364 cred = rpc_lookup_cred();
1366 return ERR_CAST(cred);
1367 ctx = alloc_nfs_open_context(dentry, cred, fmode);
1370 return ERR_PTR(-ENOMEM);
1374 static int do_open(struct inode *inode, struct file *filp)
1376 nfs_fscache_set_inode_cookie(inode, filp);
1380 static int nfs_intent_set_file(struct nameidata *nd, struct nfs_open_context *ctx)
1385 /* If the open_intent is for execute, we have an extra check to make */
1386 if (ctx->mode & FMODE_EXEC) {
1387 ret = nfs_may_open(ctx->dentry->d_inode,
1389 nd->intent.open.flags);
1393 filp = lookup_instantiate_filp(nd, ctx->dentry, do_open);
1395 ret = PTR_ERR(filp);
1397 nfs_file_set_open_context(filp, ctx);
1399 put_nfs_open_context(ctx);
1403 static struct dentry *nfs_atomic_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
1405 struct nfs_open_context *ctx;
1407 struct dentry *res = NULL;
1408 struct inode *inode;
1412 dfprintk(VFS, "NFS: atomic_lookup(%s/%ld), %s\n",
1413 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1415 /* Check that we are indeed trying to open this file */
1416 if (!is_atomic_open(nd))
1419 if (dentry->d_name.len > NFS_SERVER(dir)->namelen) {
1420 res = ERR_PTR(-ENAMETOOLONG);
1424 /* Let vfs_create() deal with O_EXCL. Instantiate, but don't hash
1426 if (nd->flags & LOOKUP_EXCL) {
1427 d_instantiate(dentry, NULL);
1431 open_flags = nd->intent.open.flags;
1433 ctx = create_nfs_open_context(dentry, open_flags);
1434 res = ERR_CAST(ctx);
1438 if (nd->flags & LOOKUP_CREATE) {
1439 attr.ia_mode = nd->intent.open.create_mode;
1440 attr.ia_valid = ATTR_MODE;
1441 attr.ia_mode &= ~current_umask();
1443 open_flags &= ~(O_EXCL | O_CREAT);
1447 /* Open the file on the server */
1448 nfs_block_sillyrename(dentry->d_parent);
1449 inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr);
1450 if (IS_ERR(inode)) {
1451 nfs_unblock_sillyrename(dentry->d_parent);
1452 put_nfs_open_context(ctx);
1453 switch (PTR_ERR(inode)) {
1454 /* Make a negative dentry */
1456 d_add(dentry, NULL);
1459 /* This turned out not to be a regular file */
1463 if (!(nd->intent.open.flags & O_NOFOLLOW))
1468 res = ERR_CAST(inode);
1472 res = d_add_unique(dentry, inode);
1473 nfs_unblock_sillyrename(dentry->d_parent);
1476 ctx->dentry = dget(res);
1479 err = nfs_intent_set_file(nd, ctx);
1483 return ERR_PTR(err);
1486 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1489 return nfs_lookup(dir, dentry, nd);
1492 static int nfs_open_revalidate(struct dentry *dentry, struct nameidata *nd)
1494 struct dentry *parent = NULL;
1495 struct inode *inode;
1497 struct nfs_open_context *ctx;
1498 int openflags, ret = 0;
1500 if (nd->flags & LOOKUP_RCU)
1503 inode = dentry->d_inode;
1504 if (!is_atomic_open(nd) || d_mountpoint(dentry))
1507 parent = dget_parent(dentry);
1508 dir = parent->d_inode;
1510 /* We can't create new files in nfs_open_revalidate(), so we
1511 * optimize away revalidation of negative dentries.
1513 if (inode == NULL) {
1514 if (!nfs_neg_need_reval(dir, dentry, nd))
1519 /* NFS only supports OPEN on regular files */
1520 if (!S_ISREG(inode->i_mode))
1522 openflags = nd->intent.open.flags;
1523 /* We cannot do exclusive creation on a positive dentry */
1524 if ((openflags & (O_CREAT|O_EXCL)) == (O_CREAT|O_EXCL))
1526 /* We can't create new files, or truncate existing ones here */
1527 openflags &= ~(O_CREAT|O_EXCL|O_TRUNC);
1529 ctx = create_nfs_open_context(dentry, openflags);
1534 * Note: we're not holding inode->i_mutex and so may be racing with
1535 * operations that change the directory. We therefore save the
1536 * change attribute *before* we do the RPC call.
1538 inode = NFS_PROTO(dir)->open_context(dir, ctx, openflags, NULL);
1539 if (IS_ERR(inode)) {
1540 ret = PTR_ERR(inode);
1553 if (inode != dentry->d_inode)
1556 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1557 ret = nfs_intent_set_file(nd, ctx);
1567 put_nfs_open_context(ctx);
1573 return nfs_lookup_revalidate(dentry, nd);
1576 static int nfs_open_create(struct inode *dir, struct dentry *dentry, int mode,
1577 struct nameidata *nd)
1579 struct nfs_open_context *ctx = NULL;
1582 int open_flags = O_CREAT|O_EXCL;
1584 dfprintk(VFS, "NFS: create(%s/%ld), %s\n",
1585 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1587 attr.ia_mode = mode;
1588 attr.ia_valid = ATTR_MODE;
1591 open_flags = nd->intent.open.flags;
1593 ctx = create_nfs_open_context(dentry, open_flags);
1594 error = PTR_ERR(ctx);
1598 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags, ctx);
1602 error = nfs_intent_set_file(nd, ctx);
1606 put_nfs_open_context(ctx);
1610 put_nfs_open_context(ctx);
1617 #endif /* CONFIG_NFSV4 */
1620 * Code common to create, mkdir, and mknod.
1622 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1623 struct nfs_fattr *fattr)
1625 struct dentry *parent = dget_parent(dentry);
1626 struct inode *dir = parent->d_inode;
1627 struct inode *inode;
1628 int error = -EACCES;
1632 /* We may have been initialized further down */
1633 if (dentry->d_inode)
1635 if (fhandle->size == 0) {
1636 error = NFS_PROTO(dir)->lookup(NFS_SERVER(dir)->client, dir, &dentry->d_name, fhandle, fattr);
1640 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1641 if (!(fattr->valid & NFS_ATTR_FATTR)) {
1642 struct nfs_server *server = NFS_SB(dentry->d_sb);
1643 error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr);
1647 inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1648 error = PTR_ERR(inode);
1651 d_add(dentry, inode);
1656 nfs_mark_for_revalidate(dir);
1662 * Following a failed create operation, we drop the dentry rather
1663 * than retain a negative dentry. This avoids a problem in the event
1664 * that the operation succeeded on the server, but an error in the
1665 * reply path made it appear to have failed.
1667 static int nfs_create(struct inode *dir, struct dentry *dentry, int mode,
1668 struct nameidata *nd)
1672 int open_flags = O_CREAT|O_EXCL;
1674 dfprintk(VFS, "NFS: create(%s/%ld), %s\n",
1675 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1677 attr.ia_mode = mode;
1678 attr.ia_valid = ATTR_MODE;
1681 open_flags = nd->intent.open.flags;
1683 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags, NULL);
1693 * See comments for nfs_proc_create regarding failed operations.
1696 nfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t rdev)
1701 dfprintk(VFS, "NFS: mknod(%s/%ld), %s\n",
1702 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1704 if (!new_valid_dev(rdev))
1707 attr.ia_mode = mode;
1708 attr.ia_valid = ATTR_MODE;
1710 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1720 * See comments for nfs_proc_create regarding failed operations.
1722 static int nfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1727 dfprintk(VFS, "NFS: mkdir(%s/%ld), %s\n",
1728 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1730 attr.ia_valid = ATTR_MODE;
1731 attr.ia_mode = mode | S_IFDIR;
1733 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1742 static void nfs_dentry_handle_enoent(struct dentry *dentry)
1744 if (dentry->d_inode != NULL && !d_unhashed(dentry))
1748 static int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1752 dfprintk(VFS, "NFS: rmdir(%s/%ld), %s\n",
1753 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1755 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1756 /* Ensure the VFS deletes this inode */
1757 if (error == 0 && dentry->d_inode != NULL)
1758 clear_nlink(dentry->d_inode);
1759 else if (error == -ENOENT)
1760 nfs_dentry_handle_enoent(dentry);
1766 * Remove a file after making sure there are no pending writes,
1767 * and after checking that the file has only one user.
1769 * We invalidate the attribute cache and free the inode prior to the operation
1770 * to avoid possible races if the server reuses the inode.
1772 static int nfs_safe_remove(struct dentry *dentry)
1774 struct inode *dir = dentry->d_parent->d_inode;
1775 struct inode *inode = dentry->d_inode;
1778 dfprintk(VFS, "NFS: safe_remove(%s/%s)\n",
1779 dentry->d_parent->d_name.name, dentry->d_name.name);
1781 /* If the dentry was sillyrenamed, we simply call d_delete() */
1782 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1787 if (inode != NULL) {
1788 nfs_inode_return_delegation(inode);
1789 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1790 /* The VFS may want to delete this inode */
1792 nfs_drop_nlink(inode);
1793 nfs_mark_for_revalidate(inode);
1795 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1796 if (error == -ENOENT)
1797 nfs_dentry_handle_enoent(dentry);
1802 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode
1803 * belongs to an active ".nfs..." file and we return -EBUSY.
1805 * If sillyrename() returns 0, we do nothing, otherwise we unlink.
1807 static int nfs_unlink(struct inode *dir, struct dentry *dentry)
1810 int need_rehash = 0;
1812 dfprintk(VFS, "NFS: unlink(%s/%ld, %s)\n", dir->i_sb->s_id,
1813 dir->i_ino, dentry->d_name.name);
1815 spin_lock(&dentry->d_lock);
1816 if (dentry->d_count > 1) {
1817 spin_unlock(&dentry->d_lock);
1818 /* Start asynchronous writeout of the inode */
1819 write_inode_now(dentry->d_inode, 0);
1820 error = nfs_sillyrename(dir, dentry);
1823 if (!d_unhashed(dentry)) {
1827 spin_unlock(&dentry->d_lock);
1828 error = nfs_safe_remove(dentry);
1829 if (!error || error == -ENOENT) {
1830 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1831 } else if (need_rehash)
1837 * To create a symbolic link, most file systems instantiate a new inode,
1838 * add a page to it containing the path, then write it out to the disk
1839 * using prepare_write/commit_write.
1841 * Unfortunately the NFS client can't create the in-core inode first
1842 * because it needs a file handle to create an in-core inode (see
1843 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the
1844 * symlink request has completed on the server.
1846 * So instead we allocate a raw page, copy the symname into it, then do
1847 * the SYMLINK request with the page as the buffer. If it succeeds, we
1848 * now have a new file handle and can instantiate an in-core NFS inode
1849 * and move the raw page into its mapping.
1851 static int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1853 struct pagevec lru_pvec;
1857 unsigned int pathlen = strlen(symname);
1860 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s)\n", dir->i_sb->s_id,
1861 dir->i_ino, dentry->d_name.name, symname);
1863 if (pathlen > PAGE_SIZE)
1864 return -ENAMETOOLONG;
1866 attr.ia_mode = S_IFLNK | S_IRWXUGO;
1867 attr.ia_valid = ATTR_MODE;
1869 page = alloc_page(GFP_HIGHUSER);
1873 kaddr = kmap_atomic(page, KM_USER0);
1874 memcpy(kaddr, symname, pathlen);
1875 if (pathlen < PAGE_SIZE)
1876 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1877 kunmap_atomic(kaddr, KM_USER0);
1879 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1881 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s) error %d\n",
1882 dir->i_sb->s_id, dir->i_ino,
1883 dentry->d_name.name, symname, error);
1890 * No big deal if we can't add this page to the page cache here.
1891 * READLINK will get the missing page from the server if needed.
1893 pagevec_init(&lru_pvec, 0);
1894 if (!add_to_page_cache(page, dentry->d_inode->i_mapping, 0,
1896 pagevec_add(&lru_pvec, page);
1897 pagevec_lru_add_file(&lru_pvec);
1898 SetPageUptodate(page);
1907 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1909 struct inode *inode = old_dentry->d_inode;
1912 dfprintk(VFS, "NFS: link(%s/%s -> %s/%s)\n",
1913 old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1914 dentry->d_parent->d_name.name, dentry->d_name.name);
1916 nfs_inode_return_delegation(inode);
1919 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
1922 d_add(dentry, inode);
1929 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
1930 * different file handle for the same inode after a rename (e.g. when
1931 * moving to a different directory). A fail-safe method to do so would
1932 * be to look up old_dir/old_name, create a link to new_dir/new_name and
1933 * rename the old file using the sillyrename stuff. This way, the original
1934 * file in old_dir will go away when the last process iput()s the inode.
1938 * It actually works quite well. One needs to have the possibility for
1939 * at least one ".nfs..." file in each directory the file ever gets
1940 * moved or linked to which happens automagically with the new
1941 * implementation that only depends on the dcache stuff instead of
1942 * using the inode layer
1944 * Unfortunately, things are a little more complicated than indicated
1945 * above. For a cross-directory move, we want to make sure we can get
1946 * rid of the old inode after the operation. This means there must be
1947 * no pending writes (if it's a file), and the use count must be 1.
1948 * If these conditions are met, we can drop the dentries before doing
1951 static int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
1952 struct inode *new_dir, struct dentry *new_dentry)
1954 struct inode *old_inode = old_dentry->d_inode;
1955 struct inode *new_inode = new_dentry->d_inode;
1956 struct dentry *dentry = NULL, *rehash = NULL;
1959 dfprintk(VFS, "NFS: rename(%s/%s -> %s/%s, ct=%d)\n",
1960 old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1961 new_dentry->d_parent->d_name.name, new_dentry->d_name.name,
1962 new_dentry->d_count);
1965 * For non-directories, check whether the target is busy and if so,
1966 * make a copy of the dentry and then do a silly-rename. If the
1967 * silly-rename succeeds, the copied dentry is hashed and becomes
1970 if (new_inode && !S_ISDIR(new_inode->i_mode)) {
1972 * To prevent any new references to the target during the
1973 * rename, we unhash the dentry in advance.
1975 if (!d_unhashed(new_dentry)) {
1977 rehash = new_dentry;
1980 if (new_dentry->d_count > 2) {
1983 /* copy the target dentry's name */
1984 dentry = d_alloc(new_dentry->d_parent,
1985 &new_dentry->d_name);
1989 /* silly-rename the existing target ... */
1990 err = nfs_sillyrename(new_dir, new_dentry);
1994 new_dentry = dentry;
2000 nfs_inode_return_delegation(old_inode);
2001 if (new_inode != NULL)
2002 nfs_inode_return_delegation(new_inode);
2004 error = NFS_PROTO(old_dir)->rename(old_dir, &old_dentry->d_name,
2005 new_dir, &new_dentry->d_name);
2006 nfs_mark_for_revalidate(old_inode);
2011 if (new_inode != NULL)
2012 nfs_drop_nlink(new_inode);
2013 d_move(old_dentry, new_dentry);
2014 nfs_set_verifier(new_dentry,
2015 nfs_save_change_attribute(new_dir));
2016 } else if (error == -ENOENT)
2017 nfs_dentry_handle_enoent(old_dentry);
2019 /* new dentry created? */
2025 static DEFINE_SPINLOCK(nfs_access_lru_lock);
2026 static LIST_HEAD(nfs_access_lru_list);
2027 static atomic_long_t nfs_access_nr_entries;
2029 static void nfs_access_free_entry(struct nfs_access_entry *entry)
2031 put_rpccred(entry->cred);
2033 smp_mb__before_atomic_dec();
2034 atomic_long_dec(&nfs_access_nr_entries);
2035 smp_mb__after_atomic_dec();
2038 static void nfs_access_free_list(struct list_head *head)
2040 struct nfs_access_entry *cache;
2042 while (!list_empty(head)) {
2043 cache = list_entry(head->next, struct nfs_access_entry, lru);
2044 list_del(&cache->lru);
2045 nfs_access_free_entry(cache);
2049 int nfs_access_cache_shrinker(struct shrinker *shrink,
2050 struct shrink_control *sc)
2053 struct nfs_inode *nfsi, *next;
2054 struct nfs_access_entry *cache;
2055 int nr_to_scan = sc->nr_to_scan;
2056 gfp_t gfp_mask = sc->gfp_mask;
2058 if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2059 return (nr_to_scan == 0) ? 0 : -1;
2061 spin_lock(&nfs_access_lru_lock);
2062 list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2063 struct inode *inode;
2065 if (nr_to_scan-- == 0)
2067 inode = &nfsi->vfs_inode;
2068 spin_lock(&inode->i_lock);
2069 if (list_empty(&nfsi->access_cache_entry_lru))
2070 goto remove_lru_entry;
2071 cache = list_entry(nfsi->access_cache_entry_lru.next,
2072 struct nfs_access_entry, lru);
2073 list_move(&cache->lru, &head);
2074 rb_erase(&cache->rb_node, &nfsi->access_cache);
2075 if (!list_empty(&nfsi->access_cache_entry_lru))
2076 list_move_tail(&nfsi->access_cache_inode_lru,
2077 &nfs_access_lru_list);
2080 list_del_init(&nfsi->access_cache_inode_lru);
2081 smp_mb__before_clear_bit();
2082 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2083 smp_mb__after_clear_bit();
2085 spin_unlock(&inode->i_lock);
2087 spin_unlock(&nfs_access_lru_lock);
2088 nfs_access_free_list(&head);
2089 return (atomic_long_read(&nfs_access_nr_entries) / 100) * sysctl_vfs_cache_pressure;
2092 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2094 struct rb_root *root_node = &nfsi->access_cache;
2096 struct nfs_access_entry *entry;
2098 /* Unhook entries from the cache */
2099 while ((n = rb_first(root_node)) != NULL) {
2100 entry = rb_entry(n, struct nfs_access_entry, rb_node);
2101 rb_erase(n, root_node);
2102 list_move(&entry->lru, head);
2104 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2107 void nfs_access_zap_cache(struct inode *inode)
2111 if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2113 /* Remove from global LRU init */
2114 spin_lock(&nfs_access_lru_lock);
2115 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2116 list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2118 spin_lock(&inode->i_lock);
2119 __nfs_access_zap_cache(NFS_I(inode), &head);
2120 spin_unlock(&inode->i_lock);
2121 spin_unlock(&nfs_access_lru_lock);
2122 nfs_access_free_list(&head);
2125 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred)
2127 struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2128 struct nfs_access_entry *entry;
2131 entry = rb_entry(n, struct nfs_access_entry, rb_node);
2133 if (cred < entry->cred)
2135 else if (cred > entry->cred)
2143 static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
2145 struct nfs_inode *nfsi = NFS_I(inode);
2146 struct nfs_access_entry *cache;
2149 spin_lock(&inode->i_lock);
2150 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2152 cache = nfs_access_search_rbtree(inode, cred);
2155 if (!nfs_have_delegated_attributes(inode) &&
2156 !time_in_range_open(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo))
2158 res->jiffies = cache->jiffies;
2159 res->cred = cache->cred;
2160 res->mask = cache->mask;
2161 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2164 spin_unlock(&inode->i_lock);
2167 rb_erase(&cache->rb_node, &nfsi->access_cache);
2168 list_del(&cache->lru);
2169 spin_unlock(&inode->i_lock);
2170 nfs_access_free_entry(cache);
2173 spin_unlock(&inode->i_lock);
2174 nfs_access_zap_cache(inode);
2178 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
2180 struct nfs_inode *nfsi = NFS_I(inode);
2181 struct rb_root *root_node = &nfsi->access_cache;
2182 struct rb_node **p = &root_node->rb_node;
2183 struct rb_node *parent = NULL;
2184 struct nfs_access_entry *entry;
2186 spin_lock(&inode->i_lock);
2187 while (*p != NULL) {
2189 entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2191 if (set->cred < entry->cred)
2192 p = &parent->rb_left;
2193 else if (set->cred > entry->cred)
2194 p = &parent->rb_right;
2198 rb_link_node(&set->rb_node, parent, p);
2199 rb_insert_color(&set->rb_node, root_node);
2200 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2201 spin_unlock(&inode->i_lock);
2204 rb_replace_node(parent, &set->rb_node, root_node);
2205 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2206 list_del(&entry->lru);
2207 spin_unlock(&inode->i_lock);
2208 nfs_access_free_entry(entry);
2211 static void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
2213 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2216 RB_CLEAR_NODE(&cache->rb_node);
2217 cache->jiffies = set->jiffies;
2218 cache->cred = get_rpccred(set->cred);
2219 cache->mask = set->mask;
2221 nfs_access_add_rbtree(inode, cache);
2223 /* Update accounting */
2224 smp_mb__before_atomic_inc();
2225 atomic_long_inc(&nfs_access_nr_entries);
2226 smp_mb__after_atomic_inc();
2228 /* Add inode to global LRU list */
2229 if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2230 spin_lock(&nfs_access_lru_lock);
2231 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2232 list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2233 &nfs_access_lru_list);
2234 spin_unlock(&nfs_access_lru_lock);
2238 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask)
2240 struct nfs_access_entry cache;
2243 status = nfs_access_get_cached(inode, cred, &cache);
2247 /* Be clever: ask server to check for all possible rights */
2248 cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
2250 cache.jiffies = jiffies;
2251 status = NFS_PROTO(inode)->access(inode, &cache);
2253 if (status == -ESTALE) {
2254 nfs_zap_caches(inode);
2255 if (!S_ISDIR(inode->i_mode))
2256 set_bit(NFS_INO_STALE, &NFS_I(inode)->flags);
2260 nfs_access_add_cache(inode, &cache);
2262 if ((mask & ~cache.mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2267 static int nfs_open_permission_mask(int openflags)
2271 if ((openflags & O_ACCMODE) != O_WRONLY)
2273 if ((openflags & O_ACCMODE) != O_RDONLY)
2275 if (openflags & __FMODE_EXEC)
2280 int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags)
2282 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2285 int nfs_permission(struct inode *inode, int mask)
2287 struct rpc_cred *cred;
2290 if (mask & MAY_NOT_BLOCK)
2293 nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2295 if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2297 /* Is this sys_access() ? */
2298 if (mask & (MAY_ACCESS | MAY_CHDIR))
2301 switch (inode->i_mode & S_IFMT) {
2305 /* NFSv4 has atomic_open... */
2306 if (nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN)
2307 && (mask & MAY_OPEN)
2308 && !(mask & MAY_EXEC))
2313 * Optimize away all write operations, since the server
2314 * will check permissions when we perform the op.
2316 if ((mask & MAY_WRITE) && !(mask & MAY_READ))
2321 if (!NFS_PROTO(inode)->access)
2324 cred = rpc_lookup_cred();
2325 if (!IS_ERR(cred)) {
2326 res = nfs_do_access(inode, cred, mask);
2329 res = PTR_ERR(cred);
2331 if (!res && (mask & MAY_EXEC) && !execute_ok(inode))
2334 dfprintk(VFS, "NFS: permission(%s/%ld), mask=0x%x, res=%d\n",
2335 inode->i_sb->s_id, inode->i_ino, mask, res);
2338 res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
2340 res = generic_permission(inode, mask);
2346 * version-control: t
2347 * kept-new-versions: 5