4 * Copyright (C) 1991, 1992, 1999 Linus Torvalds
8 #include <linux/file.h>
9 #include <linux/poll.h>
10 #include <linux/slab.h>
11 #include <linux/module.h>
12 #include <linux/init.h>
14 #include <linux/log2.h>
15 #include <linux/mount.h>
16 #include <linux/magic.h>
17 #include <linux/pipe_fs_i.h>
18 #include <linux/uio.h>
19 #include <linux/highmem.h>
20 #include <linux/pagemap.h>
21 #include <linux/audit.h>
22 #include <linux/syscalls.h>
23 #include <linux/fcntl.h>
24 #include <linux/aio.h>
26 #include <asm/uaccess.h>
27 #include <asm/ioctls.h>
32 * The max size that a non-root user is allowed to grow the pipe. Can
33 * be set by root in /proc/sys/fs/pipe-max-size
35 unsigned int pipe_max_size = 1048576;
38 * Minimum pipe size, as required by POSIX
40 unsigned int pipe_min_size = PAGE_SIZE;
43 * We use a start+len construction, which provides full use of the
45 * -- Florian Coosmann (FGC)
47 * Reads with count = 0 should always return 0.
48 * -- Julian Bradfield 1999-06-07.
50 * FIFOs and Pipes now generate SIGIO for both readers and writers.
53 * pipe_read & write cleanup
57 static void pipe_lock_nested(struct pipe_inode_info *pipe, int subclass)
60 mutex_lock_nested(&pipe->mutex, subclass);
63 void pipe_lock(struct pipe_inode_info *pipe)
66 * pipe_lock() nests non-pipe inode locks (for writing to a file)
68 pipe_lock_nested(pipe, I_MUTEX_PARENT);
70 EXPORT_SYMBOL(pipe_lock);
72 void pipe_unlock(struct pipe_inode_info *pipe)
75 mutex_unlock(&pipe->mutex);
77 EXPORT_SYMBOL(pipe_unlock);
79 static inline void __pipe_lock(struct pipe_inode_info *pipe)
81 mutex_lock_nested(&pipe->mutex, I_MUTEX_PARENT);
84 static inline void __pipe_unlock(struct pipe_inode_info *pipe)
86 mutex_unlock(&pipe->mutex);
89 void pipe_double_lock(struct pipe_inode_info *pipe1,
90 struct pipe_inode_info *pipe2)
92 BUG_ON(pipe1 == pipe2);
95 pipe_lock_nested(pipe1, I_MUTEX_PARENT);
96 pipe_lock_nested(pipe2, I_MUTEX_CHILD);
98 pipe_lock_nested(pipe2, I_MUTEX_PARENT);
99 pipe_lock_nested(pipe1, I_MUTEX_CHILD);
103 /* Drop the inode semaphore and wait for a pipe event, atomically */
104 void pipe_wait(struct pipe_inode_info *pipe)
109 * Pipes are system-local resources, so sleeping on them
110 * is considered a noninteractive wait:
112 prepare_to_wait(&pipe->wait, &wait, TASK_INTERRUPTIBLE);
115 finish_wait(&pipe->wait, &wait);
120 pipe_iov_copy_from_user(void *to, struct iovec *iov, unsigned long len,
126 while (!iov->iov_len)
128 copy = min_t(unsigned long, len, iov->iov_len);
131 if (__copy_from_user_inatomic(to, iov->iov_base, copy))
134 if (copy_from_user(to, iov->iov_base, copy))
139 iov->iov_base += copy;
140 iov->iov_len -= copy;
146 * Pre-fault in the user memory, so we can use atomic copies.
148 static void iov_fault_in_pages_read(struct iovec *iov, unsigned long len)
150 while (!iov->iov_len)
154 unsigned long this_len;
156 this_len = min_t(unsigned long, len, iov->iov_len);
157 fault_in_pages_readable(iov->iov_base, this_len);
163 static void anon_pipe_buf_release(struct pipe_inode_info *pipe,
164 struct pipe_buffer *buf)
166 struct page *page = buf->page;
169 * If nobody else uses this page, and we don't already have a
170 * temporary page, let's keep track of it as a one-deep
171 * allocation cache. (Otherwise just release our reference to it)
173 if (page_count(page) == 1 && !pipe->tmp_page)
174 pipe->tmp_page = page;
176 page_cache_release(page);
180 * generic_pipe_buf_steal - attempt to take ownership of a &pipe_buffer
181 * @pipe: the pipe that the buffer belongs to
182 * @buf: the buffer to attempt to steal
185 * This function attempts to steal the &struct page attached to
186 * @buf. If successful, this function returns 0 and returns with
187 * the page locked. The caller may then reuse the page for whatever
188 * he wishes; the typical use is insertion into a different file
191 int generic_pipe_buf_steal(struct pipe_inode_info *pipe,
192 struct pipe_buffer *buf)
194 struct page *page = buf->page;
197 * A reference of one is golden, that means that the owner of this
198 * page is the only one holding a reference to it. lock the page
201 if (page_count(page) == 1) {
208 EXPORT_SYMBOL(generic_pipe_buf_steal);
211 * generic_pipe_buf_get - get a reference to a &struct pipe_buffer
212 * @pipe: the pipe that the buffer belongs to
213 * @buf: the buffer to get a reference to
216 * This function grabs an extra reference to @buf. It's used in
217 * in the tee() system call, when we duplicate the buffers in one
220 void generic_pipe_buf_get(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
222 page_cache_get(buf->page);
224 EXPORT_SYMBOL(generic_pipe_buf_get);
227 * generic_pipe_buf_confirm - verify contents of the pipe buffer
228 * @info: the pipe that the buffer belongs to
229 * @buf: the buffer to confirm
232 * This function does nothing, because the generic pipe code uses
233 * pages that are always good when inserted into the pipe.
235 int generic_pipe_buf_confirm(struct pipe_inode_info *info,
236 struct pipe_buffer *buf)
240 EXPORT_SYMBOL(generic_pipe_buf_confirm);
243 * generic_pipe_buf_release - put a reference to a &struct pipe_buffer
244 * @pipe: the pipe that the buffer belongs to
245 * @buf: the buffer to put a reference to
248 * This function releases a reference to @buf.
250 void generic_pipe_buf_release(struct pipe_inode_info *pipe,
251 struct pipe_buffer *buf)
253 page_cache_release(buf->page);
255 EXPORT_SYMBOL(generic_pipe_buf_release);
257 static const struct pipe_buf_operations anon_pipe_buf_ops = {
259 .confirm = generic_pipe_buf_confirm,
260 .release = anon_pipe_buf_release,
261 .steal = generic_pipe_buf_steal,
262 .get = generic_pipe_buf_get,
265 static const struct pipe_buf_operations packet_pipe_buf_ops = {
267 .confirm = generic_pipe_buf_confirm,
268 .release = anon_pipe_buf_release,
269 .steal = generic_pipe_buf_steal,
270 .get = generic_pipe_buf_get,
274 pipe_read(struct kiocb *iocb, const struct iovec *_iov,
275 unsigned long nr_segs, loff_t pos)
277 struct file *filp = iocb->ki_filp;
278 struct pipe_inode_info *pipe = filp->private_data;
281 struct iovec *iov = (struct iovec *)_iov;
283 struct iov_iter iter;
285 total_len = iov_length(iov, nr_segs);
286 /* Null read succeeds. */
287 if (unlikely(total_len == 0))
290 iov_iter_init(&iter, iov, nr_segs, total_len, 0);
296 int bufs = pipe->nrbufs;
298 int curbuf = pipe->curbuf;
299 struct pipe_buffer *buf = pipe->bufs + curbuf;
300 const struct pipe_buf_operations *ops = buf->ops;
301 size_t chars = buf->len;
305 if (chars > total_len)
308 error = ops->confirm(pipe, buf);
315 written = copy_page_to_iter(buf->page, buf->offset, chars, &iter);
316 if (unlikely(written < chars)) {
322 buf->offset += chars;
325 /* Was it a packet buffer? Clean up and exit */
326 if (buf->flags & PIPE_BUF_FLAG_PACKET) {
333 ops->release(pipe, buf);
334 curbuf = (curbuf + 1) & (pipe->buffers - 1);
335 pipe->curbuf = curbuf;
336 pipe->nrbufs = --bufs;
341 break; /* common path: read succeeded */
343 if (bufs) /* More to do? */
347 if (!pipe->waiting_writers) {
348 /* syscall merging: Usually we must not sleep
349 * if O_NONBLOCK is set, or if we got some data.
350 * But if a writer sleeps in kernel space, then
351 * we can wait for that data without violating POSIX.
355 if (filp->f_flags & O_NONBLOCK) {
360 if (signal_pending(current)) {
366 wake_up_interruptible_sync_poll(&pipe->wait, POLLOUT | POLLWRNORM);
367 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
373 /* Signal writers asynchronously that there is more room. */
375 wake_up_interruptible_sync_poll(&pipe->wait, POLLOUT | POLLWRNORM);
376 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
383 static inline int is_packetized(struct file *file)
385 return (file->f_flags & O_DIRECT) != 0;
389 pipe_write(struct kiocb *iocb, const struct iovec *_iov,
390 unsigned long nr_segs, loff_t ppos)
392 struct file *filp = iocb->ki_filp;
393 struct pipe_inode_info *pipe = filp->private_data;
396 struct iovec *iov = (struct iovec *)_iov;
400 total_len = iov_length(iov, nr_segs);
401 /* Null write succeeds. */
402 if (unlikely(total_len == 0))
409 if (!pipe->readers) {
410 send_sig(SIGPIPE, current, 0);
415 /* We try to merge small writes */
416 chars = total_len & (PAGE_SIZE-1); /* size of the last buffer */
417 if (pipe->nrbufs && chars != 0) {
418 int lastbuf = (pipe->curbuf + pipe->nrbufs - 1) &
420 struct pipe_buffer *buf = pipe->bufs + lastbuf;
421 const struct pipe_buf_operations *ops = buf->ops;
422 int offset = buf->offset + buf->len;
424 if (ops->can_merge && offset + chars <= PAGE_SIZE) {
425 int error, atomic = 1;
428 error = ops->confirm(pipe, buf);
432 iov_fault_in_pages_read(iov, chars);
435 addr = kmap_atomic(buf->page);
437 addr = kmap(buf->page);
438 error = pipe_iov_copy_from_user(offset + addr, iov,
464 if (!pipe->readers) {
465 send_sig(SIGPIPE, current, 0);
471 if (bufs < pipe->buffers) {
472 int newbuf = (pipe->curbuf + bufs) & (pipe->buffers-1);
473 struct pipe_buffer *buf = pipe->bufs + newbuf;
474 struct page *page = pipe->tmp_page;
476 int error, atomic = 1;
479 page = alloc_page(GFP_HIGHUSER);
480 if (unlikely(!page)) {
481 ret = ret ? : -ENOMEM;
484 pipe->tmp_page = page;
486 /* Always wake up, even if the copy fails. Otherwise
487 * we lock up (O_NONBLOCK-)readers that sleep due to
489 * FIXME! Is this really true?
493 if (chars > total_len)
496 iov_fault_in_pages_read(iov, chars);
499 src = kmap_atomic(page);
503 error = pipe_iov_copy_from_user(src, iov, chars,
510 if (unlikely(error)) {
521 /* Insert it into the buffer array */
523 buf->ops = &anon_pipe_buf_ops;
527 if (is_packetized(filp)) {
528 buf->ops = &packet_pipe_buf_ops;
529 buf->flags = PIPE_BUF_FLAG_PACKET;
531 pipe->nrbufs = ++bufs;
532 pipe->tmp_page = NULL;
538 if (bufs < pipe->buffers)
540 if (filp->f_flags & O_NONBLOCK) {
545 if (signal_pending(current)) {
551 wake_up_interruptible_sync_poll(&pipe->wait, POLLIN | POLLRDNORM);
552 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
555 pipe->waiting_writers++;
557 pipe->waiting_writers--;
562 wake_up_interruptible_sync_poll(&pipe->wait, POLLIN | POLLRDNORM);
563 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
565 if (ret > 0 && sb_start_write_trylock(file_inode(filp)->i_sb)) {
566 int err = file_update_time(filp);
569 sb_end_write(file_inode(filp)->i_sb);
574 static long pipe_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
576 struct pipe_inode_info *pipe = filp->private_data;
577 int count, buf, nrbufs;
584 nrbufs = pipe->nrbufs;
585 while (--nrbufs >= 0) {
586 count += pipe->bufs[buf].len;
587 buf = (buf+1) & (pipe->buffers - 1);
591 return put_user(count, (int __user *)arg);
597 /* No kernel lock held - fine */
599 pipe_poll(struct file *filp, poll_table *wait)
602 struct pipe_inode_info *pipe = filp->private_data;
605 poll_wait(filp, &pipe->wait, wait);
607 /* Reading only -- no need for acquiring the semaphore. */
608 nrbufs = pipe->nrbufs;
610 if (filp->f_mode & FMODE_READ) {
611 mask = (nrbufs > 0) ? POLLIN | POLLRDNORM : 0;
612 if (!pipe->writers && filp->f_version != pipe->w_counter)
616 if (filp->f_mode & FMODE_WRITE) {
617 mask |= (nrbufs < pipe->buffers) ? POLLOUT | POLLWRNORM : 0;
619 * Most Unices do not set POLLERR for FIFOs but on Linux they
620 * behave exactly like pipes for poll().
629 static void put_pipe_info(struct inode *inode, struct pipe_inode_info *pipe)
633 spin_lock(&inode->i_lock);
634 if (!--pipe->files) {
635 inode->i_pipe = NULL;
638 spin_unlock(&inode->i_lock);
641 free_pipe_info(pipe);
645 pipe_release(struct inode *inode, struct file *file)
647 struct pipe_inode_info *pipe = file->private_data;
650 if (file->f_mode & FMODE_READ)
652 if (file->f_mode & FMODE_WRITE)
655 if (pipe->readers || pipe->writers) {
656 wake_up_interruptible_sync_poll(&pipe->wait, POLLIN | POLLOUT | POLLRDNORM | POLLWRNORM | POLLERR | POLLHUP);
657 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
658 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
662 put_pipe_info(inode, pipe);
667 pipe_fasync(int fd, struct file *filp, int on)
669 struct pipe_inode_info *pipe = filp->private_data;
673 if (filp->f_mode & FMODE_READ)
674 retval = fasync_helper(fd, filp, on, &pipe->fasync_readers);
675 if ((filp->f_mode & FMODE_WRITE) && retval >= 0) {
676 retval = fasync_helper(fd, filp, on, &pipe->fasync_writers);
677 if (retval < 0 && (filp->f_mode & FMODE_READ))
678 /* this can happen only if on == T */
679 fasync_helper(-1, filp, 0, &pipe->fasync_readers);
685 struct pipe_inode_info *alloc_pipe_info(void)
687 struct pipe_inode_info *pipe;
689 pipe = kzalloc(sizeof(struct pipe_inode_info), GFP_KERNEL);
691 pipe->bufs = kzalloc(sizeof(struct pipe_buffer) * PIPE_DEF_BUFFERS, GFP_KERNEL);
693 init_waitqueue_head(&pipe->wait);
694 pipe->r_counter = pipe->w_counter = 1;
695 pipe->buffers = PIPE_DEF_BUFFERS;
696 mutex_init(&pipe->mutex);
705 void free_pipe_info(struct pipe_inode_info *pipe)
709 for (i = 0; i < pipe->buffers; i++) {
710 struct pipe_buffer *buf = pipe->bufs + i;
712 buf->ops->release(pipe, buf);
715 __free_page(pipe->tmp_page);
720 static struct vfsmount *pipe_mnt __read_mostly;
723 * pipefs_dname() is called from d_path().
725 static char *pipefs_dname(struct dentry *dentry, char *buffer, int buflen)
727 return dynamic_dname(dentry, buffer, buflen, "pipe:[%lu]",
728 dentry->d_inode->i_ino);
731 static const struct dentry_operations pipefs_dentry_operations = {
732 .d_dname = pipefs_dname,
735 static struct inode * get_pipe_inode(void)
737 struct inode *inode = new_inode_pseudo(pipe_mnt->mnt_sb);
738 struct pipe_inode_info *pipe;
743 inode->i_ino = get_next_ino();
745 pipe = alloc_pipe_info();
749 inode->i_pipe = pipe;
751 pipe->readers = pipe->writers = 1;
752 inode->i_fop = &pipefifo_fops;
755 * Mark the inode dirty from the very beginning,
756 * that way it will never be moved to the dirty
757 * list because "mark_inode_dirty()" will think
758 * that it already _is_ on the dirty list.
760 inode->i_state = I_DIRTY;
761 inode->i_mode = S_IFIFO | S_IRUSR | S_IWUSR;
762 inode->i_uid = current_fsuid();
763 inode->i_gid = current_fsgid();
764 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
775 int create_pipe_files(struct file **res, int flags)
778 struct inode *inode = get_pipe_inode();
781 static struct qstr name = { .name = "" };
787 path.dentry = d_alloc_pseudo(pipe_mnt->mnt_sb, &name);
790 path.mnt = mntget(pipe_mnt);
792 d_instantiate(path.dentry, inode);
795 f = alloc_file(&path, FMODE_WRITE, &pipefifo_fops);
799 f->f_flags = O_WRONLY | (flags & (O_NONBLOCK | O_DIRECT));
800 f->private_data = inode->i_pipe;
802 res[0] = alloc_file(&path, FMODE_READ, &pipefifo_fops);
807 res[0]->private_data = inode->i_pipe;
808 res[0]->f_flags = O_RDONLY | (flags & O_NONBLOCK);
815 free_pipe_info(inode->i_pipe);
820 free_pipe_info(inode->i_pipe);
825 static int __do_pipe_flags(int *fd, struct file **files, int flags)
830 if (flags & ~(O_CLOEXEC | O_NONBLOCK | O_DIRECT))
833 error = create_pipe_files(files, flags);
837 error = get_unused_fd_flags(flags);
842 error = get_unused_fd_flags(flags);
847 audit_fd_pair(fdr, fdw);
860 int do_pipe_flags(int *fd, int flags)
862 struct file *files[2];
863 int error = __do_pipe_flags(fd, files, flags);
865 fd_install(fd[0], files[0]);
866 fd_install(fd[1], files[1]);
872 * sys_pipe() is the normal C calling standard for creating
873 * a pipe. It's not the way Unix traditionally does this, though.
875 SYSCALL_DEFINE2(pipe2, int __user *, fildes, int, flags)
877 struct file *files[2];
881 error = __do_pipe_flags(fd, files, flags);
883 if (unlikely(copy_to_user(fildes, fd, sizeof(fd)))) {
886 put_unused_fd(fd[0]);
887 put_unused_fd(fd[1]);
890 fd_install(fd[0], files[0]);
891 fd_install(fd[1], files[1]);
897 SYSCALL_DEFINE1(pipe, int __user *, fildes)
899 return sys_pipe2(fildes, 0);
902 static int wait_for_partner(struct pipe_inode_info *pipe, unsigned int *cnt)
906 while (cur == *cnt) {
908 if (signal_pending(current))
911 return cur == *cnt ? -ERESTARTSYS : 0;
914 static void wake_up_partner(struct pipe_inode_info *pipe)
916 wake_up_interruptible(&pipe->wait);
919 static int fifo_open(struct inode *inode, struct file *filp)
921 struct pipe_inode_info *pipe;
922 bool is_pipe = inode->i_sb->s_magic == PIPEFS_MAGIC;
927 spin_lock(&inode->i_lock);
929 pipe = inode->i_pipe;
931 spin_unlock(&inode->i_lock);
933 spin_unlock(&inode->i_lock);
934 pipe = alloc_pipe_info();
938 spin_lock(&inode->i_lock);
939 if (unlikely(inode->i_pipe)) {
940 inode->i_pipe->files++;
941 spin_unlock(&inode->i_lock);
942 free_pipe_info(pipe);
943 pipe = inode->i_pipe;
945 inode->i_pipe = pipe;
946 spin_unlock(&inode->i_lock);
949 filp->private_data = pipe;
950 /* OK, we have a pipe and it's pinned down */
954 /* We can only do regular read/write on fifos */
955 filp->f_mode &= (FMODE_READ | FMODE_WRITE);
957 switch (filp->f_mode) {
961 * POSIX.1 says that O_NONBLOCK means return with the FIFO
962 * opened, even when there is no process writing the FIFO.
965 if (pipe->readers++ == 0)
966 wake_up_partner(pipe);
968 if (!is_pipe && !pipe->writers) {
969 if ((filp->f_flags & O_NONBLOCK)) {
970 /* suppress POLLHUP until we have
972 filp->f_version = pipe->w_counter;
974 if (wait_for_partner(pipe, &pipe->w_counter))
983 * POSIX.1 says that O_NONBLOCK means return -1 with
984 * errno=ENXIO when there is no process reading the FIFO.
987 if (!is_pipe && (filp->f_flags & O_NONBLOCK) && !pipe->readers)
991 if (!pipe->writers++)
992 wake_up_partner(pipe);
994 if (!is_pipe && !pipe->readers) {
995 if (wait_for_partner(pipe, &pipe->r_counter))
1000 case FMODE_READ | FMODE_WRITE:
1003 * POSIX.1 leaves this case "undefined" when O_NONBLOCK is set.
1004 * This implementation will NEVER block on a O_RDWR open, since
1005 * the process can at least talk to itself.
1012 if (pipe->readers == 1 || pipe->writers == 1)
1013 wake_up_partner(pipe);
1022 __pipe_unlock(pipe);
1026 if (!--pipe->readers)
1027 wake_up_interruptible(&pipe->wait);
1032 if (!--pipe->writers)
1033 wake_up_interruptible(&pipe->wait);
1038 __pipe_unlock(pipe);
1040 put_pipe_info(inode, pipe);
1044 const struct file_operations pipefifo_fops = {
1046 .llseek = no_llseek,
1047 .read = do_sync_read,
1048 .aio_read = pipe_read,
1049 .write = do_sync_write,
1050 .aio_write = pipe_write,
1052 .unlocked_ioctl = pipe_ioctl,
1053 .release = pipe_release,
1054 .fasync = pipe_fasync,
1058 * Allocate a new array of pipe buffers and copy the info over. Returns the
1059 * pipe size if successful, or return -ERROR on error.
1061 static long pipe_set_size(struct pipe_inode_info *pipe, unsigned long nr_pages)
1063 struct pipe_buffer *bufs;
1066 * We can shrink the pipe, if arg >= pipe->nrbufs. Since we don't
1067 * expect a lot of shrink+grow operations, just free and allocate
1068 * again like we would do for growing. If the pipe currently
1069 * contains more buffers than arg, then return busy.
1071 if (nr_pages < pipe->nrbufs)
1074 bufs = kcalloc(nr_pages, sizeof(*bufs), GFP_KERNEL | __GFP_NOWARN);
1075 if (unlikely(!bufs))
1079 * The pipe array wraps around, so just start the new one at zero
1080 * and adjust the indexes.
1086 tail = pipe->curbuf + pipe->nrbufs;
1087 if (tail < pipe->buffers)
1090 tail &= (pipe->buffers - 1);
1092 head = pipe->nrbufs - tail;
1094 memcpy(bufs, pipe->bufs + pipe->curbuf, head * sizeof(struct pipe_buffer));
1096 memcpy(bufs + head, pipe->bufs, tail * sizeof(struct pipe_buffer));
1102 pipe->buffers = nr_pages;
1103 return nr_pages * PAGE_SIZE;
1107 * Currently we rely on the pipe array holding a power-of-2 number
1110 static inline unsigned int round_pipe_size(unsigned int size)
1112 unsigned long nr_pages;
1114 nr_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1115 return roundup_pow_of_two(nr_pages) << PAGE_SHIFT;
1119 * This should work even if CONFIG_PROC_FS isn't set, as proc_dointvec_minmax
1120 * will return an error.
1122 int pipe_proc_fn(struct ctl_table *table, int write, void __user *buf,
1123 size_t *lenp, loff_t *ppos)
1127 ret = proc_dointvec_minmax(table, write, buf, lenp, ppos);
1128 if (ret < 0 || !write)
1131 pipe_max_size = round_pipe_size(pipe_max_size);
1136 * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same
1137 * location, so checking ->i_pipe is not enough to verify that this is a
1140 struct pipe_inode_info *get_pipe_info(struct file *file)
1142 return file->f_op == &pipefifo_fops ? file->private_data : NULL;
1145 long pipe_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1147 struct pipe_inode_info *pipe;
1150 pipe = get_pipe_info(file);
1157 case F_SETPIPE_SZ: {
1158 unsigned int size, nr_pages;
1160 size = round_pipe_size(arg);
1161 nr_pages = size >> PAGE_SHIFT;
1167 if (!capable(CAP_SYS_RESOURCE) && size > pipe_max_size) {
1171 ret = pipe_set_size(pipe, nr_pages);
1175 ret = pipe->buffers * PAGE_SIZE;
1183 __pipe_unlock(pipe);
1187 static const struct super_operations pipefs_ops = {
1188 .destroy_inode = free_inode_nonrcu,
1189 .statfs = simple_statfs,
1193 * pipefs should _never_ be mounted by userland - too much of security hassle,
1194 * no real gain from having the whole whorehouse mounted. So we don't need
1195 * any operations on the root directory. However, we need a non-trivial
1196 * d_name - pipe: will go nicely and kill the special-casing in procfs.
1198 static struct dentry *pipefs_mount(struct file_system_type *fs_type,
1199 int flags, const char *dev_name, void *data)
1201 return mount_pseudo(fs_type, "pipe:", &pipefs_ops,
1202 &pipefs_dentry_operations, PIPEFS_MAGIC);
1205 static struct file_system_type pipe_fs_type = {
1207 .mount = pipefs_mount,
1208 .kill_sb = kill_anon_super,
1211 static int __init init_pipe_fs(void)
1213 int err = register_filesystem(&pipe_fs_type);
1216 pipe_mnt = kern_mount(&pipe_fs_type);
1217 if (IS_ERR(pipe_mnt)) {
1218 err = PTR_ERR(pipe_mnt);
1219 unregister_filesystem(&pipe_fs_type);
1225 fs_initcall(init_pipe_fs);