]> Git Repo - linux.git/blob - drivers/gpu/drm/i915/gt/intel_engine_cs.c
Backmerge tag 'v6.9-rc5' into drm-next
[linux.git] / drivers / gpu / drm / i915 / gt / intel_engine_cs.c
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2016 Intel Corporation
4  */
5
6 #include <linux/string_helpers.h>
7
8 #include <drm/drm_print.h>
9
10 #include "gem/i915_gem_context.h"
11 #include "gem/i915_gem_internal.h"
12 #include "gt/intel_gt_print.h"
13 #include "gt/intel_gt_regs.h"
14
15 #include "i915_cmd_parser.h"
16 #include "i915_drv.h"
17 #include "i915_irq.h"
18 #include "i915_reg.h"
19 #include "intel_breadcrumbs.h"
20 #include "intel_context.h"
21 #include "intel_engine.h"
22 #include "intel_engine_pm.h"
23 #include "intel_engine_regs.h"
24 #include "intel_engine_user.h"
25 #include "intel_execlists_submission.h"
26 #include "intel_gt.h"
27 #include "intel_gt_mcr.h"
28 #include "intel_gt_pm.h"
29 #include "intel_gt_requests.h"
30 #include "intel_lrc.h"
31 #include "intel_lrc_reg.h"
32 #include "intel_reset.h"
33 #include "intel_ring.h"
34 #include "uc/intel_guc_submission.h"
35
36 /* Haswell does have the CXT_SIZE register however it does not appear to be
37  * valid. Now, docs explain in dwords what is in the context object. The full
38  * size is 70720 bytes, however, the power context and execlist context will
39  * never be saved (power context is stored elsewhere, and execlists don't work
40  * on HSW) - so the final size, including the extra state required for the
41  * Resource Streamer, is 66944 bytes, which rounds to 17 pages.
42  */
43 #define HSW_CXT_TOTAL_SIZE              (17 * PAGE_SIZE)
44
45 #define DEFAULT_LR_CONTEXT_RENDER_SIZE  (22 * PAGE_SIZE)
46 #define GEN8_LR_CONTEXT_RENDER_SIZE     (20 * PAGE_SIZE)
47 #define GEN9_LR_CONTEXT_RENDER_SIZE     (22 * PAGE_SIZE)
48 #define GEN11_LR_CONTEXT_RENDER_SIZE    (14 * PAGE_SIZE)
49
50 #define GEN8_LR_CONTEXT_OTHER_SIZE      (2 * PAGE_SIZE)
51
52 #define MAX_MMIO_BASES 3
53 struct engine_info {
54         u8 class;
55         u8 instance;
56         /* mmio bases table *must* be sorted in reverse graphics_ver order */
57         struct engine_mmio_base {
58                 u32 graphics_ver : 8;
59                 u32 base : 24;
60         } mmio_bases[MAX_MMIO_BASES];
61 };
62
63 static const struct engine_info intel_engines[] = {
64         [RCS0] = {
65                 .class = RENDER_CLASS,
66                 .instance = 0,
67                 .mmio_bases = {
68                         { .graphics_ver = 1, .base = RENDER_RING_BASE }
69                 },
70         },
71         [BCS0] = {
72                 .class = COPY_ENGINE_CLASS,
73                 .instance = 0,
74                 .mmio_bases = {
75                         { .graphics_ver = 6, .base = BLT_RING_BASE }
76                 },
77         },
78         [BCS1] = {
79                 .class = COPY_ENGINE_CLASS,
80                 .instance = 1,
81                 .mmio_bases = {
82                         { .graphics_ver = 12, .base = XEHPC_BCS1_RING_BASE }
83                 },
84         },
85         [BCS2] = {
86                 .class = COPY_ENGINE_CLASS,
87                 .instance = 2,
88                 .mmio_bases = {
89                         { .graphics_ver = 12, .base = XEHPC_BCS2_RING_BASE }
90                 },
91         },
92         [BCS3] = {
93                 .class = COPY_ENGINE_CLASS,
94                 .instance = 3,
95                 .mmio_bases = {
96                         { .graphics_ver = 12, .base = XEHPC_BCS3_RING_BASE }
97                 },
98         },
99         [BCS4] = {
100                 .class = COPY_ENGINE_CLASS,
101                 .instance = 4,
102                 .mmio_bases = {
103                         { .graphics_ver = 12, .base = XEHPC_BCS4_RING_BASE }
104                 },
105         },
106         [BCS5] = {
107                 .class = COPY_ENGINE_CLASS,
108                 .instance = 5,
109                 .mmio_bases = {
110                         { .graphics_ver = 12, .base = XEHPC_BCS5_RING_BASE }
111                 },
112         },
113         [BCS6] = {
114                 .class = COPY_ENGINE_CLASS,
115                 .instance = 6,
116                 .mmio_bases = {
117                         { .graphics_ver = 12, .base = XEHPC_BCS6_RING_BASE }
118                 },
119         },
120         [BCS7] = {
121                 .class = COPY_ENGINE_CLASS,
122                 .instance = 7,
123                 .mmio_bases = {
124                         { .graphics_ver = 12, .base = XEHPC_BCS7_RING_BASE }
125                 },
126         },
127         [BCS8] = {
128                 .class = COPY_ENGINE_CLASS,
129                 .instance = 8,
130                 .mmio_bases = {
131                         { .graphics_ver = 12, .base = XEHPC_BCS8_RING_BASE }
132                 },
133         },
134         [VCS0] = {
135                 .class = VIDEO_DECODE_CLASS,
136                 .instance = 0,
137                 .mmio_bases = {
138                         { .graphics_ver = 11, .base = GEN11_BSD_RING_BASE },
139                         { .graphics_ver = 6, .base = GEN6_BSD_RING_BASE },
140                         { .graphics_ver = 4, .base = BSD_RING_BASE }
141                 },
142         },
143         [VCS1] = {
144                 .class = VIDEO_DECODE_CLASS,
145                 .instance = 1,
146                 .mmio_bases = {
147                         { .graphics_ver = 11, .base = GEN11_BSD2_RING_BASE },
148                         { .graphics_ver = 8, .base = GEN8_BSD2_RING_BASE }
149                 },
150         },
151         [VCS2] = {
152                 .class = VIDEO_DECODE_CLASS,
153                 .instance = 2,
154                 .mmio_bases = {
155                         { .graphics_ver = 11, .base = GEN11_BSD3_RING_BASE }
156                 },
157         },
158         [VCS3] = {
159                 .class = VIDEO_DECODE_CLASS,
160                 .instance = 3,
161                 .mmio_bases = {
162                         { .graphics_ver = 11, .base = GEN11_BSD4_RING_BASE }
163                 },
164         },
165         [VCS4] = {
166                 .class = VIDEO_DECODE_CLASS,
167                 .instance = 4,
168                 .mmio_bases = {
169                         { .graphics_ver = 12, .base = XEHP_BSD5_RING_BASE }
170                 },
171         },
172         [VCS5] = {
173                 .class = VIDEO_DECODE_CLASS,
174                 .instance = 5,
175                 .mmio_bases = {
176                         { .graphics_ver = 12, .base = XEHP_BSD6_RING_BASE }
177                 },
178         },
179         [VCS6] = {
180                 .class = VIDEO_DECODE_CLASS,
181                 .instance = 6,
182                 .mmio_bases = {
183                         { .graphics_ver = 12, .base = XEHP_BSD7_RING_BASE }
184                 },
185         },
186         [VCS7] = {
187                 .class = VIDEO_DECODE_CLASS,
188                 .instance = 7,
189                 .mmio_bases = {
190                         { .graphics_ver = 12, .base = XEHP_BSD8_RING_BASE }
191                 },
192         },
193         [VECS0] = {
194                 .class = VIDEO_ENHANCEMENT_CLASS,
195                 .instance = 0,
196                 .mmio_bases = {
197                         { .graphics_ver = 11, .base = GEN11_VEBOX_RING_BASE },
198                         { .graphics_ver = 7, .base = VEBOX_RING_BASE }
199                 },
200         },
201         [VECS1] = {
202                 .class = VIDEO_ENHANCEMENT_CLASS,
203                 .instance = 1,
204                 .mmio_bases = {
205                         { .graphics_ver = 11, .base = GEN11_VEBOX2_RING_BASE }
206                 },
207         },
208         [VECS2] = {
209                 .class = VIDEO_ENHANCEMENT_CLASS,
210                 .instance = 2,
211                 .mmio_bases = {
212                         { .graphics_ver = 12, .base = XEHP_VEBOX3_RING_BASE }
213                 },
214         },
215         [VECS3] = {
216                 .class = VIDEO_ENHANCEMENT_CLASS,
217                 .instance = 3,
218                 .mmio_bases = {
219                         { .graphics_ver = 12, .base = XEHP_VEBOX4_RING_BASE }
220                 },
221         },
222         [CCS0] = {
223                 .class = COMPUTE_CLASS,
224                 .instance = 0,
225                 .mmio_bases = {
226                         { .graphics_ver = 12, .base = GEN12_COMPUTE0_RING_BASE }
227                 }
228         },
229         [CCS1] = {
230                 .class = COMPUTE_CLASS,
231                 .instance = 1,
232                 .mmio_bases = {
233                         { .graphics_ver = 12, .base = GEN12_COMPUTE1_RING_BASE }
234                 }
235         },
236         [CCS2] = {
237                 .class = COMPUTE_CLASS,
238                 .instance = 2,
239                 .mmio_bases = {
240                         { .graphics_ver = 12, .base = GEN12_COMPUTE2_RING_BASE }
241                 }
242         },
243         [CCS3] = {
244                 .class = COMPUTE_CLASS,
245                 .instance = 3,
246                 .mmio_bases = {
247                         { .graphics_ver = 12, .base = GEN12_COMPUTE3_RING_BASE }
248                 }
249         },
250         [GSC0] = {
251                 .class = OTHER_CLASS,
252                 .instance = OTHER_GSC_INSTANCE,
253                 .mmio_bases = {
254                         { .graphics_ver = 12, .base = MTL_GSC_RING_BASE }
255                 }
256         },
257 };
258
259 /**
260  * intel_engine_context_size() - return the size of the context for an engine
261  * @gt: the gt
262  * @class: engine class
263  *
264  * Each engine class may require a different amount of space for a context
265  * image.
266  *
267  * Return: size (in bytes) of an engine class specific context image
268  *
269  * Note: this size includes the HWSP, which is part of the context image
270  * in LRC mode, but does not include the "shared data page" used with
271  * GuC submission. The caller should account for this if using the GuC.
272  */
273 u32 intel_engine_context_size(struct intel_gt *gt, u8 class)
274 {
275         struct intel_uncore *uncore = gt->uncore;
276         u32 cxt_size;
277
278         BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE);
279
280         switch (class) {
281         case COMPUTE_CLASS:
282                 fallthrough;
283         case RENDER_CLASS:
284                 switch (GRAPHICS_VER(gt->i915)) {
285                 default:
286                         MISSING_CASE(GRAPHICS_VER(gt->i915));
287                         return DEFAULT_LR_CONTEXT_RENDER_SIZE;
288                 case 12:
289                 case 11:
290                         return GEN11_LR_CONTEXT_RENDER_SIZE;
291                 case 9:
292                         return GEN9_LR_CONTEXT_RENDER_SIZE;
293                 case 8:
294                         return GEN8_LR_CONTEXT_RENDER_SIZE;
295                 case 7:
296                         if (IS_HASWELL(gt->i915))
297                                 return HSW_CXT_TOTAL_SIZE;
298
299                         cxt_size = intel_uncore_read(uncore, GEN7_CXT_SIZE);
300                         return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64,
301                                         PAGE_SIZE);
302                 case 6:
303                         cxt_size = intel_uncore_read(uncore, CXT_SIZE);
304                         return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64,
305                                         PAGE_SIZE);
306                 case 5:
307                 case 4:
308                         /*
309                          * There is a discrepancy here between the size reported
310                          * by the register and the size of the context layout
311                          * in the docs. Both are described as authorative!
312                          *
313                          * The discrepancy is on the order of a few cachelines,
314                          * but the total is under one page (4k), which is our
315                          * minimum allocation anyway so it should all come
316                          * out in the wash.
317                          */
318                         cxt_size = intel_uncore_read(uncore, CXT_SIZE) + 1;
319                         gt_dbg(gt, "graphics_ver = %d CXT_SIZE = %d bytes [0x%08x]\n",
320                                GRAPHICS_VER(gt->i915), cxt_size * 64,
321                                cxt_size - 1);
322                         return round_up(cxt_size * 64, PAGE_SIZE);
323                 case 3:
324                 case 2:
325                 /* For the special day when i810 gets merged. */
326                 case 1:
327                         return 0;
328                 }
329                 break;
330         default:
331                 MISSING_CASE(class);
332                 fallthrough;
333         case VIDEO_DECODE_CLASS:
334         case VIDEO_ENHANCEMENT_CLASS:
335         case COPY_ENGINE_CLASS:
336         case OTHER_CLASS:
337                 if (GRAPHICS_VER(gt->i915) < 8)
338                         return 0;
339                 return GEN8_LR_CONTEXT_OTHER_SIZE;
340         }
341 }
342
343 static u32 __engine_mmio_base(struct drm_i915_private *i915,
344                               const struct engine_mmio_base *bases)
345 {
346         int i;
347
348         for (i = 0; i < MAX_MMIO_BASES; i++)
349                 if (GRAPHICS_VER(i915) >= bases[i].graphics_ver)
350                         break;
351
352         GEM_BUG_ON(i == MAX_MMIO_BASES);
353         GEM_BUG_ON(!bases[i].base);
354
355         return bases[i].base;
356 }
357
358 static void __sprint_engine_name(struct intel_engine_cs *engine)
359 {
360         /*
361          * Before we know what the uABI name for this engine will be,
362          * we still would like to keep track of this engine in the debug logs.
363          * We throw in a ' here as a reminder that this isn't its final name.
364          */
365         GEM_WARN_ON(snprintf(engine->name, sizeof(engine->name), "%s'%u",
366                              intel_engine_class_repr(engine->class),
367                              engine->instance) >= sizeof(engine->name));
368 }
369
370 void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask)
371 {
372         /*
373          * Though they added more rings on g4x/ilk, they did not add
374          * per-engine HWSTAM until gen6.
375          */
376         if (GRAPHICS_VER(engine->i915) < 6 && engine->class != RENDER_CLASS)
377                 return;
378
379         if (GRAPHICS_VER(engine->i915) >= 3)
380                 ENGINE_WRITE(engine, RING_HWSTAM, mask);
381         else
382                 ENGINE_WRITE16(engine, RING_HWSTAM, mask);
383 }
384
385 static void intel_engine_sanitize_mmio(struct intel_engine_cs *engine)
386 {
387         /* Mask off all writes into the unknown HWSP */
388         intel_engine_set_hwsp_writemask(engine, ~0u);
389 }
390
391 static void nop_irq_handler(struct intel_engine_cs *engine, u16 iir)
392 {
393         GEM_DEBUG_WARN_ON(iir);
394 }
395
396 static u32 get_reset_domain(u8 ver, enum intel_engine_id id)
397 {
398         u32 reset_domain;
399
400         if (ver >= 11) {
401                 static const u32 engine_reset_domains[] = {
402                         [RCS0]  = GEN11_GRDOM_RENDER,
403                         [BCS0]  = GEN11_GRDOM_BLT,
404                         [BCS1]  = XEHPC_GRDOM_BLT1,
405                         [BCS2]  = XEHPC_GRDOM_BLT2,
406                         [BCS3]  = XEHPC_GRDOM_BLT3,
407                         [BCS4]  = XEHPC_GRDOM_BLT4,
408                         [BCS5]  = XEHPC_GRDOM_BLT5,
409                         [BCS6]  = XEHPC_GRDOM_BLT6,
410                         [BCS7]  = XEHPC_GRDOM_BLT7,
411                         [BCS8]  = XEHPC_GRDOM_BLT8,
412                         [VCS0]  = GEN11_GRDOM_MEDIA,
413                         [VCS1]  = GEN11_GRDOM_MEDIA2,
414                         [VCS2]  = GEN11_GRDOM_MEDIA3,
415                         [VCS3]  = GEN11_GRDOM_MEDIA4,
416                         [VCS4]  = GEN11_GRDOM_MEDIA5,
417                         [VCS5]  = GEN11_GRDOM_MEDIA6,
418                         [VCS6]  = GEN11_GRDOM_MEDIA7,
419                         [VCS7]  = GEN11_GRDOM_MEDIA8,
420                         [VECS0] = GEN11_GRDOM_VECS,
421                         [VECS1] = GEN11_GRDOM_VECS2,
422                         [VECS2] = GEN11_GRDOM_VECS3,
423                         [VECS3] = GEN11_GRDOM_VECS4,
424                         [CCS0]  = GEN11_GRDOM_RENDER,
425                         [CCS1]  = GEN11_GRDOM_RENDER,
426                         [CCS2]  = GEN11_GRDOM_RENDER,
427                         [CCS3]  = GEN11_GRDOM_RENDER,
428                         [GSC0]  = GEN12_GRDOM_GSC,
429                 };
430                 GEM_BUG_ON(id >= ARRAY_SIZE(engine_reset_domains) ||
431                            !engine_reset_domains[id]);
432                 reset_domain = engine_reset_domains[id];
433         } else {
434                 static const u32 engine_reset_domains[] = {
435                         [RCS0]  = GEN6_GRDOM_RENDER,
436                         [BCS0]  = GEN6_GRDOM_BLT,
437                         [VCS0]  = GEN6_GRDOM_MEDIA,
438                         [VCS1]  = GEN8_GRDOM_MEDIA2,
439                         [VECS0] = GEN6_GRDOM_VECS,
440                 };
441                 GEM_BUG_ON(id >= ARRAY_SIZE(engine_reset_domains) ||
442                            !engine_reset_domains[id]);
443                 reset_domain = engine_reset_domains[id];
444         }
445
446         return reset_domain;
447 }
448
449 static int intel_engine_setup(struct intel_gt *gt, enum intel_engine_id id,
450                               u8 logical_instance)
451 {
452         const struct engine_info *info = &intel_engines[id];
453         struct drm_i915_private *i915 = gt->i915;
454         struct intel_engine_cs *engine;
455         u8 guc_class;
456
457         BUILD_BUG_ON(MAX_ENGINE_CLASS >= BIT(GEN11_ENGINE_CLASS_WIDTH));
458         BUILD_BUG_ON(MAX_ENGINE_INSTANCE >= BIT(GEN11_ENGINE_INSTANCE_WIDTH));
459         BUILD_BUG_ON(I915_MAX_VCS > (MAX_ENGINE_INSTANCE + 1));
460         BUILD_BUG_ON(I915_MAX_VECS > (MAX_ENGINE_INSTANCE + 1));
461
462         if (GEM_DEBUG_WARN_ON(id >= ARRAY_SIZE(gt->engine)))
463                 return -EINVAL;
464
465         if (GEM_DEBUG_WARN_ON(info->class > MAX_ENGINE_CLASS))
466                 return -EINVAL;
467
468         if (GEM_DEBUG_WARN_ON(info->instance > MAX_ENGINE_INSTANCE))
469                 return -EINVAL;
470
471         if (GEM_DEBUG_WARN_ON(gt->engine_class[info->class][info->instance]))
472                 return -EINVAL;
473
474         engine = kzalloc(sizeof(*engine), GFP_KERNEL);
475         if (!engine)
476                 return -ENOMEM;
477
478         BUILD_BUG_ON(BITS_PER_TYPE(engine->mask) < I915_NUM_ENGINES);
479
480         INIT_LIST_HEAD(&engine->pinned_contexts_list);
481         engine->id = id;
482         engine->legacy_idx = INVALID_ENGINE;
483         engine->mask = BIT(id);
484         engine->reset_domain = get_reset_domain(GRAPHICS_VER(gt->i915),
485                                                 id);
486         engine->i915 = i915;
487         engine->gt = gt;
488         engine->uncore = gt->uncore;
489         guc_class = engine_class_to_guc_class(info->class);
490         engine->guc_id = MAKE_GUC_ID(guc_class, info->instance);
491         engine->mmio_base = __engine_mmio_base(i915, info->mmio_bases);
492
493         engine->irq_handler = nop_irq_handler;
494
495         engine->class = info->class;
496         engine->instance = info->instance;
497         engine->logical_mask = BIT(logical_instance);
498         __sprint_engine_name(engine);
499
500         if ((engine->class == COMPUTE_CLASS || engine->class == RENDER_CLASS) &&
501             __ffs(CCS_MASK(engine->gt) | RCS_MASK(engine->gt)) == engine->instance)
502                 engine->flags |= I915_ENGINE_FIRST_RENDER_COMPUTE;
503
504         /* features common between engines sharing EUs */
505         if (engine->class == RENDER_CLASS || engine->class == COMPUTE_CLASS) {
506                 engine->flags |= I915_ENGINE_HAS_RCS_REG_STATE;
507                 engine->flags |= I915_ENGINE_HAS_EU_PRIORITY;
508         }
509
510         engine->props.heartbeat_interval_ms =
511                 CONFIG_DRM_I915_HEARTBEAT_INTERVAL;
512         engine->props.max_busywait_duration_ns =
513                 CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT;
514         engine->props.preempt_timeout_ms =
515                 CONFIG_DRM_I915_PREEMPT_TIMEOUT;
516         engine->props.stop_timeout_ms =
517                 CONFIG_DRM_I915_STOP_TIMEOUT;
518         engine->props.timeslice_duration_ms =
519                 CONFIG_DRM_I915_TIMESLICE_DURATION;
520
521         /*
522          * Mid-thread pre-emption is not available in Gen12. Unfortunately,
523          * some compute workloads run quite long threads. That means they get
524          * reset due to not pre-empting in a timely manner. So, bump the
525          * pre-emption timeout value to be much higher for compute engines.
526          */
527         if (GRAPHICS_VER(i915) == 12 && (engine->flags & I915_ENGINE_HAS_RCS_REG_STATE))
528                 engine->props.preempt_timeout_ms = CONFIG_DRM_I915_PREEMPT_TIMEOUT_COMPUTE;
529
530         /* Cap properties according to any system limits */
531 #define CLAMP_PROP(field) \
532         do { \
533                 u64 clamp = intel_clamp_##field(engine, engine->props.field); \
534                 if (clamp != engine->props.field) { \
535                         drm_notice(&engine->i915->drm, \
536                                    "Warning, clamping %s to %lld to prevent overflow\n", \
537                                    #field, clamp); \
538                         engine->props.field = clamp; \
539                 } \
540         } while (0)
541
542         CLAMP_PROP(heartbeat_interval_ms);
543         CLAMP_PROP(max_busywait_duration_ns);
544         CLAMP_PROP(preempt_timeout_ms);
545         CLAMP_PROP(stop_timeout_ms);
546         CLAMP_PROP(timeslice_duration_ms);
547
548 #undef CLAMP_PROP
549
550         engine->defaults = engine->props; /* never to change again */
551
552         engine->context_size = intel_engine_context_size(gt, engine->class);
553         if (WARN_ON(engine->context_size > BIT(20)))
554                 engine->context_size = 0;
555         if (engine->context_size)
556                 DRIVER_CAPS(i915)->has_logical_contexts = true;
557
558         ewma__engine_latency_init(&engine->latency);
559
560         ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier);
561
562         /* Scrub mmio state on takeover */
563         intel_engine_sanitize_mmio(engine);
564
565         gt->engine_class[info->class][info->instance] = engine;
566         gt->engine[id] = engine;
567
568         return 0;
569 }
570
571 u64 intel_clamp_heartbeat_interval_ms(struct intel_engine_cs *engine, u64 value)
572 {
573         value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT));
574
575         return value;
576 }
577
578 u64 intel_clamp_max_busywait_duration_ns(struct intel_engine_cs *engine, u64 value)
579 {
580         value = min(value, jiffies_to_nsecs(2));
581
582         return value;
583 }
584
585 u64 intel_clamp_preempt_timeout_ms(struct intel_engine_cs *engine, u64 value)
586 {
587         /*
588          * NB: The GuC API only supports 32bit values. However, the limit is further
589          * reduced due to internal calculations which would otherwise overflow.
590          */
591         if (intel_guc_submission_is_wanted(&engine->gt->uc.guc))
592                 value = min_t(u64, value, guc_policy_max_preempt_timeout_ms());
593
594         value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT));
595
596         return value;
597 }
598
599 u64 intel_clamp_stop_timeout_ms(struct intel_engine_cs *engine, u64 value)
600 {
601         value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT));
602
603         return value;
604 }
605
606 u64 intel_clamp_timeslice_duration_ms(struct intel_engine_cs *engine, u64 value)
607 {
608         /*
609          * NB: The GuC API only supports 32bit values. However, the limit is further
610          * reduced due to internal calculations which would otherwise overflow.
611          */
612         if (intel_guc_submission_is_wanted(&engine->gt->uc.guc))
613                 value = min_t(u64, value, guc_policy_max_exec_quantum_ms());
614
615         value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT));
616
617         return value;
618 }
619
620 static void __setup_engine_capabilities(struct intel_engine_cs *engine)
621 {
622         struct drm_i915_private *i915 = engine->i915;
623
624         if (engine->class == VIDEO_DECODE_CLASS) {
625                 /*
626                  * HEVC support is present on first engine instance
627                  * before Gen11 and on all instances afterwards.
628                  */
629                 if (GRAPHICS_VER(i915) >= 11 ||
630                     (GRAPHICS_VER(i915) >= 9 && engine->instance == 0))
631                         engine->uabi_capabilities |=
632                                 I915_VIDEO_CLASS_CAPABILITY_HEVC;
633
634                 /*
635                  * SFC block is present only on even logical engine
636                  * instances.
637                  */
638                 if ((GRAPHICS_VER(i915) >= 11 &&
639                      (engine->gt->info.vdbox_sfc_access &
640                       BIT(engine->instance))) ||
641                     (GRAPHICS_VER(i915) >= 9 && engine->instance == 0))
642                         engine->uabi_capabilities |=
643                                 I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
644         } else if (engine->class == VIDEO_ENHANCEMENT_CLASS) {
645                 if (GRAPHICS_VER(i915) >= 9 &&
646                     engine->gt->info.sfc_mask & BIT(engine->instance))
647                         engine->uabi_capabilities |=
648                                 I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
649         }
650 }
651
652 static void intel_setup_engine_capabilities(struct intel_gt *gt)
653 {
654         struct intel_engine_cs *engine;
655         enum intel_engine_id id;
656
657         for_each_engine(engine, gt, id)
658                 __setup_engine_capabilities(engine);
659 }
660
661 /**
662  * intel_engines_release() - free the resources allocated for Command Streamers
663  * @gt: pointer to struct intel_gt
664  */
665 void intel_engines_release(struct intel_gt *gt)
666 {
667         struct intel_engine_cs *engine;
668         enum intel_engine_id id;
669
670         /*
671          * Before we release the resources held by engine, we must be certain
672          * that the HW is no longer accessing them -- having the GPU scribble
673          * to or read from a page being used for something else causes no end
674          * of fun.
675          *
676          * The GPU should be reset by this point, but assume the worst just
677          * in case we aborted before completely initialising the engines.
678          */
679         GEM_BUG_ON(intel_gt_pm_is_awake(gt));
680         if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display)
681                 __intel_gt_reset(gt, ALL_ENGINES);
682
683         /* Decouple the backend; but keep the layout for late GPU resets */
684         for_each_engine(engine, gt, id) {
685                 if (!engine->release)
686                         continue;
687
688                 intel_wakeref_wait_for_idle(&engine->wakeref);
689                 GEM_BUG_ON(intel_engine_pm_is_awake(engine));
690
691                 engine->release(engine);
692                 engine->release = NULL;
693
694                 memset(&engine->reset, 0, sizeof(engine->reset));
695         }
696 }
697
698 void intel_engine_free_request_pool(struct intel_engine_cs *engine)
699 {
700         if (!engine->request_pool)
701                 return;
702
703         kmem_cache_free(i915_request_slab_cache(), engine->request_pool);
704 }
705
706 void intel_engines_free(struct intel_gt *gt)
707 {
708         struct intel_engine_cs *engine;
709         enum intel_engine_id id;
710
711         /* Free the requests! dma-resv keeps fences around for an eternity */
712         rcu_barrier();
713
714         for_each_engine(engine, gt, id) {
715                 intel_engine_free_request_pool(engine);
716                 kfree(engine);
717                 gt->engine[id] = NULL;
718         }
719 }
720
721 static
722 bool gen11_vdbox_has_sfc(struct intel_gt *gt,
723                          unsigned int physical_vdbox,
724                          unsigned int logical_vdbox, u16 vdbox_mask)
725 {
726         struct drm_i915_private *i915 = gt->i915;
727
728         /*
729          * In Gen11, only even numbered logical VDBOXes are hooked
730          * up to an SFC (Scaler & Format Converter) unit.
731          * In Gen12, Even numbered physical instance always are connected
732          * to an SFC. Odd numbered physical instances have SFC only if
733          * previous even instance is fused off.
734          *
735          * Starting with Xe_HP, there's also a dedicated SFC_ENABLE field
736          * in the fuse register that tells us whether a specific SFC is present.
737          */
738         if ((gt->info.sfc_mask & BIT(physical_vdbox / 2)) == 0)
739                 return false;
740         else if (MEDIA_VER(i915) >= 12)
741                 return (physical_vdbox % 2 == 0) ||
742                         !(BIT(physical_vdbox - 1) & vdbox_mask);
743         else if (MEDIA_VER(i915) == 11)
744                 return logical_vdbox % 2 == 0;
745
746         return false;
747 }
748
749 static void engine_mask_apply_media_fuses(struct intel_gt *gt)
750 {
751         struct drm_i915_private *i915 = gt->i915;
752         unsigned int logical_vdbox = 0;
753         unsigned int i;
754         u32 media_fuse, fuse1;
755         u16 vdbox_mask;
756         u16 vebox_mask;
757
758         if (MEDIA_VER(gt->i915) < 11)
759                 return;
760
761         /*
762          * On newer platforms the fusing register is called 'enable' and has
763          * enable semantics, while on older platforms it is called 'disable'
764          * and bits have disable semantices.
765          */
766         media_fuse = intel_uncore_read(gt->uncore, GEN11_GT_VEBOX_VDBOX_DISABLE);
767         if (MEDIA_VER_FULL(i915) < IP_VER(12, 55))
768                 media_fuse = ~media_fuse;
769
770         vdbox_mask = media_fuse & GEN11_GT_VDBOX_DISABLE_MASK;
771         vebox_mask = (media_fuse & GEN11_GT_VEBOX_DISABLE_MASK) >>
772                       GEN11_GT_VEBOX_DISABLE_SHIFT;
773
774         if (MEDIA_VER_FULL(i915) >= IP_VER(12, 55)) {
775                 fuse1 = intel_uncore_read(gt->uncore, HSW_PAVP_FUSE1);
776                 gt->info.sfc_mask = REG_FIELD_GET(XEHP_SFC_ENABLE_MASK, fuse1);
777         } else {
778                 gt->info.sfc_mask = ~0;
779         }
780
781         for (i = 0; i < I915_MAX_VCS; i++) {
782                 if (!HAS_ENGINE(gt, _VCS(i))) {
783                         vdbox_mask &= ~BIT(i);
784                         continue;
785                 }
786
787                 if (!(BIT(i) & vdbox_mask)) {
788                         gt->info.engine_mask &= ~BIT(_VCS(i));
789                         gt_dbg(gt, "vcs%u fused off\n", i);
790                         continue;
791                 }
792
793                 if (gen11_vdbox_has_sfc(gt, i, logical_vdbox, vdbox_mask))
794                         gt->info.vdbox_sfc_access |= BIT(i);
795                 logical_vdbox++;
796         }
797         gt_dbg(gt, "vdbox enable: %04x, instances: %04lx\n", vdbox_mask, VDBOX_MASK(gt));
798         GEM_BUG_ON(vdbox_mask != VDBOX_MASK(gt));
799
800         for (i = 0; i < I915_MAX_VECS; i++) {
801                 if (!HAS_ENGINE(gt, _VECS(i))) {
802                         vebox_mask &= ~BIT(i);
803                         continue;
804                 }
805
806                 if (!(BIT(i) & vebox_mask)) {
807                         gt->info.engine_mask &= ~BIT(_VECS(i));
808                         gt_dbg(gt, "vecs%u fused off\n", i);
809                 }
810         }
811         gt_dbg(gt, "vebox enable: %04x, instances: %04lx\n", vebox_mask, VEBOX_MASK(gt));
812         GEM_BUG_ON(vebox_mask != VEBOX_MASK(gt));
813 }
814
815 static void engine_mask_apply_compute_fuses(struct intel_gt *gt)
816 {
817         struct drm_i915_private *i915 = gt->i915;
818         struct intel_gt_info *info = &gt->info;
819         int ss_per_ccs = info->sseu.max_subslices / I915_MAX_CCS;
820         unsigned long ccs_mask;
821         unsigned int i;
822
823         if (GRAPHICS_VER(i915) < 11)
824                 return;
825
826         if (hweight32(CCS_MASK(gt)) <= 1)
827                 return;
828
829         ccs_mask = intel_slicemask_from_xehp_dssmask(info->sseu.compute_subslice_mask,
830                                                      ss_per_ccs);
831         /*
832          * If all DSS in a quadrant are fused off, the corresponding CCS
833          * engine is not available for use.
834          */
835         for_each_clear_bit(i, &ccs_mask, I915_MAX_CCS) {
836                 info->engine_mask &= ~BIT(_CCS(i));
837                 gt_dbg(gt, "ccs%u fused off\n", i);
838         }
839 }
840
841 /*
842  * Determine which engines are fused off in our particular hardware.
843  * Note that we have a catch-22 situation where we need to be able to access
844  * the blitter forcewake domain to read the engine fuses, but at the same time
845  * we need to know which engines are available on the system to know which
846  * forcewake domains are present. We solve this by intializing the forcewake
847  * domains based on the full engine mask in the platform capabilities before
848  * calling this function and pruning the domains for fused-off engines
849  * afterwards.
850  */
851 static intel_engine_mask_t init_engine_mask(struct intel_gt *gt)
852 {
853         struct intel_gt_info *info = &gt->info;
854
855         GEM_BUG_ON(!info->engine_mask);
856
857         engine_mask_apply_media_fuses(gt);
858         engine_mask_apply_compute_fuses(gt);
859
860         /*
861          * The only use of the GSC CS is to load and communicate with the GSC
862          * FW, so we have no use for it if we don't have the FW.
863          *
864          * IMPORTANT: in cases where we don't have the GSC FW, we have a
865          * catch-22 situation that breaks media C6 due to 2 requirements:
866          * 1) once turned on, the GSC power well will not go to sleep unless the
867          *    GSC FW is loaded.
868          * 2) to enable idling (which is required for media C6) we need to
869          *    initialize the IDLE_MSG register for the GSC CS and do at least 1
870          *    submission, which will wake up the GSC power well.
871          */
872         if (__HAS_ENGINE(info->engine_mask, GSC0) && !intel_uc_wants_gsc_uc(&gt->uc)) {
873                 gt_notice(gt, "No GSC FW selected, disabling GSC CS and media C6\n");
874                 info->engine_mask &= ~BIT(GSC0);
875         }
876
877         /*
878          * Do not create the command streamer for CCS slices beyond the first.
879          * All the workload submitted to the first engine will be shared among
880          * all the slices.
881          *
882          * Once the user will be allowed to customize the CCS mode, then this
883          * check needs to be removed.
884          */
885         if (IS_DG2(gt->i915)) {
886                 u8 first_ccs = __ffs(CCS_MASK(gt));
887
888                 /* Mask off all the CCS engine */
889                 info->engine_mask &= ~GENMASK(CCS3, CCS0);
890                 /* Put back in the first CCS engine */
891                 info->engine_mask |= BIT(_CCS(first_ccs));
892         }
893
894         return info->engine_mask;
895 }
896
897 static void populate_logical_ids(struct intel_gt *gt, u8 *logical_ids,
898                                  u8 class, const u8 *map, u8 num_instances)
899 {
900         int i, j;
901         u8 current_logical_id = 0;
902
903         for (j = 0; j < num_instances; ++j) {
904                 for (i = 0; i < ARRAY_SIZE(intel_engines); ++i) {
905                         if (!HAS_ENGINE(gt, i) ||
906                             intel_engines[i].class != class)
907                                 continue;
908
909                         if (intel_engines[i].instance == map[j]) {
910                                 logical_ids[intel_engines[i].instance] =
911                                         current_logical_id++;
912                                 break;
913                         }
914                 }
915         }
916 }
917
918 static void setup_logical_ids(struct intel_gt *gt, u8 *logical_ids, u8 class)
919 {
920         /*
921          * Logical to physical mapping is needed for proper support
922          * to split-frame feature.
923          */
924         if (MEDIA_VER(gt->i915) >= 11 && class == VIDEO_DECODE_CLASS) {
925                 const u8 map[] = { 0, 2, 4, 6, 1, 3, 5, 7 };
926
927                 populate_logical_ids(gt, logical_ids, class,
928                                      map, ARRAY_SIZE(map));
929         } else {
930                 int i;
931                 u8 map[MAX_ENGINE_INSTANCE + 1];
932
933                 for (i = 0; i < MAX_ENGINE_INSTANCE + 1; ++i)
934                         map[i] = i;
935                 populate_logical_ids(gt, logical_ids, class,
936                                      map, ARRAY_SIZE(map));
937         }
938 }
939
940 /**
941  * intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers
942  * @gt: pointer to struct intel_gt
943  *
944  * Return: non-zero if the initialization failed.
945  */
946 int intel_engines_init_mmio(struct intel_gt *gt)
947 {
948         struct drm_i915_private *i915 = gt->i915;
949         const unsigned int engine_mask = init_engine_mask(gt);
950         unsigned int mask = 0;
951         unsigned int i, class;
952         u8 logical_ids[MAX_ENGINE_INSTANCE + 1];
953         int err;
954
955         drm_WARN_ON(&i915->drm, engine_mask == 0);
956         drm_WARN_ON(&i915->drm, engine_mask &
957                     GENMASK(BITS_PER_TYPE(mask) - 1, I915_NUM_ENGINES));
958
959         if (i915_inject_probe_failure(i915))
960                 return -ENODEV;
961
962         for (class = 0; class < MAX_ENGINE_CLASS + 1; ++class) {
963                 setup_logical_ids(gt, logical_ids, class);
964
965                 for (i = 0; i < ARRAY_SIZE(intel_engines); ++i) {
966                         u8 instance = intel_engines[i].instance;
967
968                         if (intel_engines[i].class != class ||
969                             !HAS_ENGINE(gt, i))
970                                 continue;
971
972                         err = intel_engine_setup(gt, i,
973                                                  logical_ids[instance]);
974                         if (err)
975                                 goto cleanup;
976
977                         mask |= BIT(i);
978                 }
979         }
980
981         /*
982          * Catch failures to update intel_engines table when the new engines
983          * are added to the driver by a warning and disabling the forgotten
984          * engines.
985          */
986         if (drm_WARN_ON(&i915->drm, mask != engine_mask))
987                 gt->info.engine_mask = mask;
988
989         gt->info.num_engines = hweight32(mask);
990
991         intel_gt_check_and_clear_faults(gt);
992
993         intel_setup_engine_capabilities(gt);
994
995         intel_uncore_prune_engine_fw_domains(gt->uncore, gt);
996
997         return 0;
998
999 cleanup:
1000         intel_engines_free(gt);
1001         return err;
1002 }
1003
1004 void intel_engine_init_execlists(struct intel_engine_cs *engine)
1005 {
1006         struct intel_engine_execlists * const execlists = &engine->execlists;
1007
1008         execlists->port_mask = 1;
1009         GEM_BUG_ON(!is_power_of_2(execlists_num_ports(execlists)));
1010         GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS);
1011
1012         memset(execlists->pending, 0, sizeof(execlists->pending));
1013         execlists->active =
1014                 memset(execlists->inflight, 0, sizeof(execlists->inflight));
1015 }
1016
1017 static void cleanup_status_page(struct intel_engine_cs *engine)
1018 {
1019         struct i915_vma *vma;
1020
1021         /* Prevent writes into HWSP after returning the page to the system */
1022         intel_engine_set_hwsp_writemask(engine, ~0u);
1023
1024         vma = fetch_and_zero(&engine->status_page.vma);
1025         if (!vma)
1026                 return;
1027
1028         if (!HWS_NEEDS_PHYSICAL(engine->i915))
1029                 i915_vma_unpin(vma);
1030
1031         i915_gem_object_unpin_map(vma->obj);
1032         i915_gem_object_put(vma->obj);
1033 }
1034
1035 static int pin_ggtt_status_page(struct intel_engine_cs *engine,
1036                                 struct i915_gem_ww_ctx *ww,
1037                                 struct i915_vma *vma)
1038 {
1039         unsigned int flags;
1040
1041         if (!HAS_LLC(engine->i915) && i915_ggtt_has_aperture(engine->gt->ggtt))
1042                 /*
1043                  * On g33, we cannot place HWS above 256MiB, so
1044                  * restrict its pinning to the low mappable arena.
1045                  * Though this restriction is not documented for
1046                  * gen4, gen5, or byt, they also behave similarly
1047                  * and hang if the HWS is placed at the top of the
1048                  * GTT. To generalise, it appears that all !llc
1049                  * platforms have issues with us placing the HWS
1050                  * above the mappable region (even though we never
1051                  * actually map it).
1052                  */
1053                 flags = PIN_MAPPABLE;
1054         else
1055                 flags = PIN_HIGH;
1056
1057         return i915_ggtt_pin(vma, ww, 0, flags);
1058 }
1059
1060 static int init_status_page(struct intel_engine_cs *engine)
1061 {
1062         struct drm_i915_gem_object *obj;
1063         struct i915_gem_ww_ctx ww;
1064         struct i915_vma *vma;
1065         void *vaddr;
1066         int ret;
1067
1068         INIT_LIST_HEAD(&engine->status_page.timelines);
1069
1070         /*
1071          * Though the HWS register does support 36bit addresses, historically
1072          * we have had hangs and corruption reported due to wild writes if
1073          * the HWS is placed above 4G. We only allow objects to be allocated
1074          * in GFP_DMA32 for i965, and no earlier physical address users had
1075          * access to more than 4G.
1076          */
1077         obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE);
1078         if (IS_ERR(obj)) {
1079                 gt_err(engine->gt, "Failed to allocate status page\n");
1080                 return PTR_ERR(obj);
1081         }
1082
1083         i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC);
1084
1085         vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
1086         if (IS_ERR(vma)) {
1087                 ret = PTR_ERR(vma);
1088                 goto err_put;
1089         }
1090
1091         i915_gem_ww_ctx_init(&ww, true);
1092 retry:
1093         ret = i915_gem_object_lock(obj, &ww);
1094         if (!ret && !HWS_NEEDS_PHYSICAL(engine->i915))
1095                 ret = pin_ggtt_status_page(engine, &ww, vma);
1096         if (ret)
1097                 goto err;
1098
1099         vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
1100         if (IS_ERR(vaddr)) {
1101                 ret = PTR_ERR(vaddr);
1102                 goto err_unpin;
1103         }
1104
1105         engine->status_page.addr = memset(vaddr, 0, PAGE_SIZE);
1106         engine->status_page.vma = vma;
1107
1108 err_unpin:
1109         if (ret)
1110                 i915_vma_unpin(vma);
1111 err:
1112         if (ret == -EDEADLK) {
1113                 ret = i915_gem_ww_ctx_backoff(&ww);
1114                 if (!ret)
1115                         goto retry;
1116         }
1117         i915_gem_ww_ctx_fini(&ww);
1118 err_put:
1119         if (ret)
1120                 i915_gem_object_put(obj);
1121         return ret;
1122 }
1123
1124 static int intel_engine_init_tlb_invalidation(struct intel_engine_cs *engine)
1125 {
1126         static const union intel_engine_tlb_inv_reg gen8_regs[] = {
1127                 [RENDER_CLASS].reg              = GEN8_RTCR,
1128                 [VIDEO_DECODE_CLASS].reg        = GEN8_M1TCR, /* , GEN8_M2TCR */
1129                 [VIDEO_ENHANCEMENT_CLASS].reg   = GEN8_VTCR,
1130                 [COPY_ENGINE_CLASS].reg         = GEN8_BTCR,
1131         };
1132         static const union intel_engine_tlb_inv_reg gen12_regs[] = {
1133                 [RENDER_CLASS].reg              = GEN12_GFX_TLB_INV_CR,
1134                 [VIDEO_DECODE_CLASS].reg        = GEN12_VD_TLB_INV_CR,
1135                 [VIDEO_ENHANCEMENT_CLASS].reg   = GEN12_VE_TLB_INV_CR,
1136                 [COPY_ENGINE_CLASS].reg         = GEN12_BLT_TLB_INV_CR,
1137                 [COMPUTE_CLASS].reg             = GEN12_COMPCTX_TLB_INV_CR,
1138         };
1139         static const union intel_engine_tlb_inv_reg xehp_regs[] = {
1140                 [RENDER_CLASS].mcr_reg            = XEHP_GFX_TLB_INV_CR,
1141                 [VIDEO_DECODE_CLASS].mcr_reg      = XEHP_VD_TLB_INV_CR,
1142                 [VIDEO_ENHANCEMENT_CLASS].mcr_reg = XEHP_VE_TLB_INV_CR,
1143                 [COPY_ENGINE_CLASS].mcr_reg       = XEHP_BLT_TLB_INV_CR,
1144                 [COMPUTE_CLASS].mcr_reg           = XEHP_COMPCTX_TLB_INV_CR,
1145         };
1146         static const union intel_engine_tlb_inv_reg xelpmp_regs[] = {
1147                 [VIDEO_DECODE_CLASS].reg          = GEN12_VD_TLB_INV_CR,
1148                 [VIDEO_ENHANCEMENT_CLASS].reg     = GEN12_VE_TLB_INV_CR,
1149                 [OTHER_CLASS].reg                 = XELPMP_GSC_TLB_INV_CR,
1150         };
1151         struct drm_i915_private *i915 = engine->i915;
1152         const unsigned int instance = engine->instance;
1153         const unsigned int class = engine->class;
1154         const union intel_engine_tlb_inv_reg *regs;
1155         union intel_engine_tlb_inv_reg reg;
1156         unsigned int num = 0;
1157         u32 val;
1158
1159         /*
1160          * New platforms should not be added with catch-all-newer (>=)
1161          * condition so that any later platform added triggers the below warning
1162          * and in turn mandates a human cross-check of whether the invalidation
1163          * flows have compatible semantics.
1164          *
1165          * For instance with the 11.00 -> 12.00 transition three out of five
1166          * respective engine registers were moved to masked type. Then after the
1167          * 12.00 -> 12.50 transition multi cast handling is required too.
1168          */
1169
1170         if (engine->gt->type == GT_MEDIA) {
1171                 if (MEDIA_VER_FULL(i915) == IP_VER(13, 0)) {
1172                         regs = xelpmp_regs;
1173                         num = ARRAY_SIZE(xelpmp_regs);
1174                 }
1175         } else {
1176                 if (GRAPHICS_VER_FULL(i915) == IP_VER(12, 74) ||
1177                     GRAPHICS_VER_FULL(i915) == IP_VER(12, 71) ||
1178                     GRAPHICS_VER_FULL(i915) == IP_VER(12, 70) ||
1179                     GRAPHICS_VER_FULL(i915) == IP_VER(12, 55)) {
1180                         regs = xehp_regs;
1181                         num = ARRAY_SIZE(xehp_regs);
1182                 } else if (GRAPHICS_VER_FULL(i915) == IP_VER(12, 0) ||
1183                            GRAPHICS_VER_FULL(i915) == IP_VER(12, 10)) {
1184                         regs = gen12_regs;
1185                         num = ARRAY_SIZE(gen12_regs);
1186                 } else if (GRAPHICS_VER(i915) >= 8 && GRAPHICS_VER(i915) <= 11) {
1187                         regs = gen8_regs;
1188                         num = ARRAY_SIZE(gen8_regs);
1189                 } else if (GRAPHICS_VER(i915) < 8) {
1190                         return 0;
1191                 }
1192         }
1193
1194         if (gt_WARN_ONCE(engine->gt, !num,
1195                          "Platform does not implement TLB invalidation!"))
1196                 return -ENODEV;
1197
1198         if (gt_WARN_ON_ONCE(engine->gt,
1199                             class >= num ||
1200                             (!regs[class].reg.reg &&
1201                              !regs[class].mcr_reg.reg)))
1202                 return -ERANGE;
1203
1204         reg = regs[class];
1205
1206         if (regs == xelpmp_regs && class == OTHER_CLASS) {
1207                 /*
1208                  * There's only a single GSC instance, but it uses register bit
1209                  * 1 instead of either 0 or OTHER_GSC_INSTANCE.
1210                  */
1211                 GEM_WARN_ON(instance != OTHER_GSC_INSTANCE);
1212                 val = 1;
1213         } else if (regs == gen8_regs && class == VIDEO_DECODE_CLASS && instance == 1) {
1214                 reg.reg = GEN8_M2TCR;
1215                 val = 0;
1216         } else {
1217                 val = instance;
1218         }
1219
1220         val = BIT(val);
1221
1222         engine->tlb_inv.mcr = regs == xehp_regs;
1223         engine->tlb_inv.reg = reg;
1224         engine->tlb_inv.done = val;
1225
1226         if (GRAPHICS_VER(i915) >= 12 &&
1227             (engine->class == VIDEO_DECODE_CLASS ||
1228              engine->class == VIDEO_ENHANCEMENT_CLASS ||
1229              engine->class == COMPUTE_CLASS ||
1230              engine->class == OTHER_CLASS))
1231                 engine->tlb_inv.request = _MASKED_BIT_ENABLE(val);
1232         else
1233                 engine->tlb_inv.request = val;
1234
1235         return 0;
1236 }
1237
1238 static int engine_setup_common(struct intel_engine_cs *engine)
1239 {
1240         int err;
1241
1242         init_llist_head(&engine->barrier_tasks);
1243
1244         err = intel_engine_init_tlb_invalidation(engine);
1245         if (err)
1246                 return err;
1247
1248         err = init_status_page(engine);
1249         if (err)
1250                 return err;
1251
1252         engine->breadcrumbs = intel_breadcrumbs_create(engine);
1253         if (!engine->breadcrumbs) {
1254                 err = -ENOMEM;
1255                 goto err_status;
1256         }
1257
1258         engine->sched_engine = i915_sched_engine_create(ENGINE_PHYSICAL);
1259         if (!engine->sched_engine) {
1260                 err = -ENOMEM;
1261                 goto err_sched_engine;
1262         }
1263         engine->sched_engine->private_data = engine;
1264
1265         err = intel_engine_init_cmd_parser(engine);
1266         if (err)
1267                 goto err_cmd_parser;
1268
1269         intel_engine_init_execlists(engine);
1270         intel_engine_init__pm(engine);
1271         intel_engine_init_retire(engine);
1272
1273         /* Use the whole device by default */
1274         engine->sseu =
1275                 intel_sseu_from_device_info(&engine->gt->info.sseu);
1276
1277         intel_engine_init_workarounds(engine);
1278         intel_engine_init_whitelist(engine);
1279         intel_engine_init_ctx_wa(engine);
1280
1281         if (GRAPHICS_VER(engine->i915) >= 12)
1282                 engine->flags |= I915_ENGINE_HAS_RELATIVE_MMIO;
1283
1284         return 0;
1285
1286 err_cmd_parser:
1287         i915_sched_engine_put(engine->sched_engine);
1288 err_sched_engine:
1289         intel_breadcrumbs_put(engine->breadcrumbs);
1290 err_status:
1291         cleanup_status_page(engine);
1292         return err;
1293 }
1294
1295 struct measure_breadcrumb {
1296         struct i915_request rq;
1297         struct intel_ring ring;
1298         u32 cs[2048];
1299 };
1300
1301 static int measure_breadcrumb_dw(struct intel_context *ce)
1302 {
1303         struct intel_engine_cs *engine = ce->engine;
1304         struct measure_breadcrumb *frame;
1305         int dw;
1306
1307         GEM_BUG_ON(!engine->gt->scratch);
1308
1309         frame = kzalloc(sizeof(*frame), GFP_KERNEL);
1310         if (!frame)
1311                 return -ENOMEM;
1312
1313         frame->rq.i915 = engine->i915;
1314         frame->rq.engine = engine;
1315         frame->rq.context = ce;
1316         rcu_assign_pointer(frame->rq.timeline, ce->timeline);
1317         frame->rq.hwsp_seqno = ce->timeline->hwsp_seqno;
1318
1319         frame->ring.vaddr = frame->cs;
1320         frame->ring.size = sizeof(frame->cs);
1321         frame->ring.wrap =
1322                 BITS_PER_TYPE(frame->ring.size) - ilog2(frame->ring.size);
1323         frame->ring.effective_size = frame->ring.size;
1324         intel_ring_update_space(&frame->ring);
1325         frame->rq.ring = &frame->ring;
1326
1327         mutex_lock(&ce->timeline->mutex);
1328         spin_lock_irq(&engine->sched_engine->lock);
1329
1330         dw = engine->emit_fini_breadcrumb(&frame->rq, frame->cs) - frame->cs;
1331
1332         spin_unlock_irq(&engine->sched_engine->lock);
1333         mutex_unlock(&ce->timeline->mutex);
1334
1335         GEM_BUG_ON(dw & 1); /* RING_TAIL must be qword aligned */
1336
1337         kfree(frame);
1338         return dw;
1339 }
1340
1341 struct intel_context *
1342 intel_engine_create_pinned_context(struct intel_engine_cs *engine,
1343                                    struct i915_address_space *vm,
1344                                    unsigned int ring_size,
1345                                    unsigned int hwsp,
1346                                    struct lock_class_key *key,
1347                                    const char *name)
1348 {
1349         struct intel_context *ce;
1350         int err;
1351
1352         ce = intel_context_create(engine);
1353         if (IS_ERR(ce))
1354                 return ce;
1355
1356         __set_bit(CONTEXT_BARRIER_BIT, &ce->flags);
1357         ce->timeline = page_pack_bits(NULL, hwsp);
1358         ce->ring = NULL;
1359         ce->ring_size = ring_size;
1360
1361         i915_vm_put(ce->vm);
1362         ce->vm = i915_vm_get(vm);
1363
1364         err = intel_context_pin(ce); /* perma-pin so it is always available */
1365         if (err) {
1366                 intel_context_put(ce);
1367                 return ERR_PTR(err);
1368         }
1369
1370         list_add_tail(&ce->pinned_contexts_link, &engine->pinned_contexts_list);
1371
1372         /*
1373          * Give our perma-pinned kernel timelines a separate lockdep class,
1374          * so that we can use them from within the normal user timelines
1375          * should we need to inject GPU operations during their request
1376          * construction.
1377          */
1378         lockdep_set_class_and_name(&ce->timeline->mutex, key, name);
1379
1380         return ce;
1381 }
1382
1383 void intel_engine_destroy_pinned_context(struct intel_context *ce)
1384 {
1385         struct intel_engine_cs *engine = ce->engine;
1386         struct i915_vma *hwsp = engine->status_page.vma;
1387
1388         GEM_BUG_ON(ce->timeline->hwsp_ggtt != hwsp);
1389
1390         mutex_lock(&hwsp->vm->mutex);
1391         list_del(&ce->timeline->engine_link);
1392         mutex_unlock(&hwsp->vm->mutex);
1393
1394         list_del(&ce->pinned_contexts_link);
1395         intel_context_unpin(ce);
1396         intel_context_put(ce);
1397 }
1398
1399 static struct intel_context *
1400 create_ggtt_bind_context(struct intel_engine_cs *engine)
1401 {
1402         static struct lock_class_key kernel;
1403
1404         /*
1405          * MI_UPDATE_GTT can insert up to 511 PTE entries and there could be multiple
1406          * bind requets at a time so get a bigger ring.
1407          */
1408         return intel_engine_create_pinned_context(engine, engine->gt->vm, SZ_512K,
1409                                                   I915_GEM_HWS_GGTT_BIND_ADDR,
1410                                                   &kernel, "ggtt_bind_context");
1411 }
1412
1413 static struct intel_context *
1414 create_kernel_context(struct intel_engine_cs *engine)
1415 {
1416         static struct lock_class_key kernel;
1417
1418         return intel_engine_create_pinned_context(engine, engine->gt->vm, SZ_4K,
1419                                                   I915_GEM_HWS_SEQNO_ADDR,
1420                                                   &kernel, "kernel_context");
1421 }
1422
1423 /*
1424  * engine_init_common - initialize engine state which might require hw access
1425  * @engine: Engine to initialize.
1426  *
1427  * Initializes @engine@ structure members shared between legacy and execlists
1428  * submission modes which do require hardware access.
1429  *
1430  * Typcally done at later stages of submission mode specific engine setup.
1431  *
1432  * Returns zero on success or an error code on failure.
1433  */
1434 static int engine_init_common(struct intel_engine_cs *engine)
1435 {
1436         struct intel_context *ce, *bce = NULL;
1437         int ret;
1438
1439         engine->set_default_submission(engine);
1440
1441         /*
1442          * We may need to do things with the shrinker which
1443          * require us to immediately switch back to the default
1444          * context. This can cause a problem as pinning the
1445          * default context also requires GTT space which may not
1446          * be available. To avoid this we always pin the default
1447          * context.
1448          */
1449         ce = create_kernel_context(engine);
1450         if (IS_ERR(ce))
1451                 return PTR_ERR(ce);
1452         /*
1453          * Create a separate pinned context for GGTT update with blitter engine
1454          * if a platform require such service. MI_UPDATE_GTT works on other
1455          * engines as well but BCS should be less busy engine so pick that for
1456          * GGTT updates.
1457          */
1458         if (i915_ggtt_require_binder(engine->i915) && engine->id == BCS0) {
1459                 bce = create_ggtt_bind_context(engine);
1460                 if (IS_ERR(bce)) {
1461                         ret = PTR_ERR(bce);
1462                         goto err_ce_context;
1463                 }
1464         }
1465
1466         ret = measure_breadcrumb_dw(ce);
1467         if (ret < 0)
1468                 goto err_bce_context;
1469
1470         engine->emit_fini_breadcrumb_dw = ret;
1471         engine->kernel_context = ce;
1472         engine->bind_context = bce;
1473
1474         return 0;
1475
1476 err_bce_context:
1477         if (bce)
1478                 intel_engine_destroy_pinned_context(bce);
1479 err_ce_context:
1480         intel_engine_destroy_pinned_context(ce);
1481         return ret;
1482 }
1483
1484 int intel_engines_init(struct intel_gt *gt)
1485 {
1486         int (*setup)(struct intel_engine_cs *engine);
1487         struct intel_engine_cs *engine;
1488         enum intel_engine_id id;
1489         int err;
1490
1491         if (intel_uc_uses_guc_submission(&gt->uc)) {
1492                 gt->submission_method = INTEL_SUBMISSION_GUC;
1493                 setup = intel_guc_submission_setup;
1494         } else if (HAS_EXECLISTS(gt->i915)) {
1495                 gt->submission_method = INTEL_SUBMISSION_ELSP;
1496                 setup = intel_execlists_submission_setup;
1497         } else {
1498                 gt->submission_method = INTEL_SUBMISSION_RING;
1499                 setup = intel_ring_submission_setup;
1500         }
1501
1502         for_each_engine(engine, gt, id) {
1503                 err = engine_setup_common(engine);
1504                 if (err)
1505                         return err;
1506
1507                 err = setup(engine);
1508                 if (err) {
1509                         intel_engine_cleanup_common(engine);
1510                         return err;
1511                 }
1512
1513                 /* The backend should now be responsible for cleanup */
1514                 GEM_BUG_ON(engine->release == NULL);
1515
1516                 err = engine_init_common(engine);
1517                 if (err)
1518                         return err;
1519
1520                 intel_engine_add_user(engine);
1521         }
1522
1523         return 0;
1524 }
1525
1526 /**
1527  * intel_engine_cleanup_common - cleans up the engine state created by
1528  *                                the common initiailizers.
1529  * @engine: Engine to cleanup.
1530  *
1531  * This cleans up everything created by the common helpers.
1532  */
1533 void intel_engine_cleanup_common(struct intel_engine_cs *engine)
1534 {
1535         GEM_BUG_ON(!list_empty(&engine->sched_engine->requests));
1536
1537         i915_sched_engine_put(engine->sched_engine);
1538         intel_breadcrumbs_put(engine->breadcrumbs);
1539
1540         intel_engine_fini_retire(engine);
1541         intel_engine_cleanup_cmd_parser(engine);
1542
1543         if (engine->default_state)
1544                 fput(engine->default_state);
1545
1546         if (engine->kernel_context)
1547                 intel_engine_destroy_pinned_context(engine->kernel_context);
1548
1549         if (engine->bind_context)
1550                 intel_engine_destroy_pinned_context(engine->bind_context);
1551
1552
1553         GEM_BUG_ON(!llist_empty(&engine->barrier_tasks));
1554         cleanup_status_page(engine);
1555
1556         intel_wa_list_free(&engine->ctx_wa_list);
1557         intel_wa_list_free(&engine->wa_list);
1558         intel_wa_list_free(&engine->whitelist);
1559 }
1560
1561 /**
1562  * intel_engine_resume - re-initializes the HW state of the engine
1563  * @engine: Engine to resume.
1564  *
1565  * Returns zero on success or an error code on failure.
1566  */
1567 int intel_engine_resume(struct intel_engine_cs *engine)
1568 {
1569         intel_engine_apply_workarounds(engine);
1570         intel_engine_apply_whitelist(engine);
1571
1572         return engine->resume(engine);
1573 }
1574
1575 u64 intel_engine_get_active_head(const struct intel_engine_cs *engine)
1576 {
1577         struct drm_i915_private *i915 = engine->i915;
1578
1579         u64 acthd;
1580
1581         if (GRAPHICS_VER(i915) >= 8)
1582                 acthd = ENGINE_READ64(engine, RING_ACTHD, RING_ACTHD_UDW);
1583         else if (GRAPHICS_VER(i915) >= 4)
1584                 acthd = ENGINE_READ(engine, RING_ACTHD);
1585         else
1586                 acthd = ENGINE_READ(engine, ACTHD);
1587
1588         return acthd;
1589 }
1590
1591 u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine)
1592 {
1593         u64 bbaddr;
1594
1595         if (GRAPHICS_VER(engine->i915) >= 8)
1596                 bbaddr = ENGINE_READ64(engine, RING_BBADDR, RING_BBADDR_UDW);
1597         else
1598                 bbaddr = ENGINE_READ(engine, RING_BBADDR);
1599
1600         return bbaddr;
1601 }
1602
1603 static unsigned long stop_timeout(const struct intel_engine_cs *engine)
1604 {
1605         if (in_atomic() || irqs_disabled()) /* inside atomic preempt-reset? */
1606                 return 0;
1607
1608         /*
1609          * If we are doing a normal GPU reset, we can take our time and allow
1610          * the engine to quiesce. We've stopped submission to the engine, and
1611          * if we wait long enough an innocent context should complete and
1612          * leave the engine idle. So they should not be caught unaware by
1613          * the forthcoming GPU reset (which usually follows the stop_cs)!
1614          */
1615         return READ_ONCE(engine->props.stop_timeout_ms);
1616 }
1617
1618 static int __intel_engine_stop_cs(struct intel_engine_cs *engine,
1619                                   int fast_timeout_us,
1620                                   int slow_timeout_ms)
1621 {
1622         struct intel_uncore *uncore = engine->uncore;
1623         const i915_reg_t mode = RING_MI_MODE(engine->mmio_base);
1624         int err;
1625
1626         intel_uncore_write_fw(uncore, mode, _MASKED_BIT_ENABLE(STOP_RING));
1627
1628         /*
1629          * Wa_22011802037: Prior to doing a reset, ensure CS is
1630          * stopped, set ring stop bit and prefetch disable bit to halt CS
1631          */
1632         if (intel_engine_reset_needs_wa_22011802037(engine->gt))
1633                 intel_uncore_write_fw(uncore, RING_MODE_GEN7(engine->mmio_base),
1634                                       _MASKED_BIT_ENABLE(GEN12_GFX_PREFETCH_DISABLE));
1635
1636         err = __intel_wait_for_register_fw(engine->uncore, mode,
1637                                            MODE_IDLE, MODE_IDLE,
1638                                            fast_timeout_us,
1639                                            slow_timeout_ms,
1640                                            NULL);
1641
1642         /* A final mmio read to let GPU writes be hopefully flushed to memory */
1643         intel_uncore_posting_read_fw(uncore, mode);
1644         return err;
1645 }
1646
1647 int intel_engine_stop_cs(struct intel_engine_cs *engine)
1648 {
1649         int err = 0;
1650
1651         if (GRAPHICS_VER(engine->i915) < 3)
1652                 return -ENODEV;
1653
1654         ENGINE_TRACE(engine, "\n");
1655         /*
1656          * TODO: Find out why occasionally stopping the CS times out. Seen
1657          * especially with gem_eio tests.
1658          *
1659          * Occasionally trying to stop the cs times out, but does not adversely
1660          * affect functionality. The timeout is set as a config parameter that
1661          * defaults to 100ms. In most cases the follow up operation is to wait
1662          * for pending MI_FORCE_WAKES. The assumption is that this timeout is
1663          * sufficient for any pending MI_FORCEWAKEs to complete. Once root
1664          * caused, the caller must check and handle the return from this
1665          * function.
1666          */
1667         if (__intel_engine_stop_cs(engine, 1000, stop_timeout(engine))) {
1668                 ENGINE_TRACE(engine,
1669                              "timed out on STOP_RING -> IDLE; HEAD:%04x, TAIL:%04x\n",
1670                              ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR,
1671                              ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR);
1672
1673                 /*
1674                  * Sometimes we observe that the idle flag is not
1675                  * set even though the ring is empty. So double
1676                  * check before giving up.
1677                  */
1678                 if ((ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR) !=
1679                     (ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR))
1680                         err = -ETIMEDOUT;
1681         }
1682
1683         return err;
1684 }
1685
1686 void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine)
1687 {
1688         ENGINE_TRACE(engine, "\n");
1689
1690         ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
1691 }
1692
1693 static u32 __cs_pending_mi_force_wakes(struct intel_engine_cs *engine)
1694 {
1695         static const i915_reg_t _reg[I915_NUM_ENGINES] = {
1696                 [RCS0] = MSG_IDLE_CS,
1697                 [BCS0] = MSG_IDLE_BCS,
1698                 [VCS0] = MSG_IDLE_VCS0,
1699                 [VCS1] = MSG_IDLE_VCS1,
1700                 [VCS2] = MSG_IDLE_VCS2,
1701                 [VCS3] = MSG_IDLE_VCS3,
1702                 [VCS4] = MSG_IDLE_VCS4,
1703                 [VCS5] = MSG_IDLE_VCS5,
1704                 [VCS6] = MSG_IDLE_VCS6,
1705                 [VCS7] = MSG_IDLE_VCS7,
1706                 [VECS0] = MSG_IDLE_VECS0,
1707                 [VECS1] = MSG_IDLE_VECS1,
1708                 [VECS2] = MSG_IDLE_VECS2,
1709                 [VECS3] = MSG_IDLE_VECS3,
1710                 [CCS0] = MSG_IDLE_CS,
1711                 [CCS1] = MSG_IDLE_CS,
1712                 [CCS2] = MSG_IDLE_CS,
1713                 [CCS3] = MSG_IDLE_CS,
1714         };
1715         u32 val;
1716
1717         if (!_reg[engine->id].reg)
1718                 return 0;
1719
1720         val = intel_uncore_read(engine->uncore, _reg[engine->id]);
1721
1722         /* bits[29:25] & bits[13:9] >> shift */
1723         return (val & (val >> 16) & MSG_IDLE_FW_MASK) >> MSG_IDLE_FW_SHIFT;
1724 }
1725
1726 static void __gpm_wait_for_fw_complete(struct intel_gt *gt, u32 fw_mask)
1727 {
1728         int ret;
1729
1730         /* Ensure GPM receives fw up/down after CS is stopped */
1731         udelay(1);
1732
1733         /* Wait for forcewake request to complete in GPM */
1734         ret =  __intel_wait_for_register_fw(gt->uncore,
1735                                             GEN9_PWRGT_DOMAIN_STATUS,
1736                                             fw_mask, fw_mask, 5000, 0, NULL);
1737
1738         /* Ensure CS receives fw ack from GPM */
1739         udelay(1);
1740
1741         if (ret)
1742                 GT_TRACE(gt, "Failed to complete pending forcewake %d\n", ret);
1743 }
1744
1745 /*
1746  * Wa_22011802037:gen12: In addition to stopping the cs, we need to wait for any
1747  * pending MI_FORCE_WAKEUP requests that the CS has initiated to complete. The
1748  * pending status is indicated by bits[13:9] (masked by bits[29:25]) in the
1749  * MSG_IDLE register. There's one MSG_IDLE register per reset domain. Since we
1750  * are concerned only with the gt reset here, we use a logical OR of pending
1751  * forcewakeups from all reset domains and then wait for them to complete by
1752  * querying PWRGT_DOMAIN_STATUS.
1753  */
1754 void intel_engine_wait_for_pending_mi_fw(struct intel_engine_cs *engine)
1755 {
1756         u32 fw_pending = __cs_pending_mi_force_wakes(engine);
1757
1758         if (fw_pending)
1759                 __gpm_wait_for_fw_complete(engine->gt, fw_pending);
1760 }
1761
1762 /* NB: please notice the memset */
1763 void intel_engine_get_instdone(const struct intel_engine_cs *engine,
1764                                struct intel_instdone *instdone)
1765 {
1766         struct drm_i915_private *i915 = engine->i915;
1767         struct intel_uncore *uncore = engine->uncore;
1768         u32 mmio_base = engine->mmio_base;
1769         int slice;
1770         int subslice;
1771         int iter;
1772
1773         memset(instdone, 0, sizeof(*instdone));
1774
1775         if (GRAPHICS_VER(i915) >= 8) {
1776                 instdone->instdone =
1777                         intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1778
1779                 if (engine->id != RCS0)
1780                         return;
1781
1782                 instdone->slice_common =
1783                         intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1784                 if (GRAPHICS_VER(i915) >= 12) {
1785                         instdone->slice_common_extra[0] =
1786                                 intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA);
1787                         instdone->slice_common_extra[1] =
1788                                 intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA2);
1789                 }
1790
1791                 for_each_ss_steering(iter, engine->gt, slice, subslice) {
1792                         instdone->sampler[slice][subslice] =
1793                                 intel_gt_mcr_read(engine->gt,
1794                                                   GEN8_SAMPLER_INSTDONE,
1795                                                   slice, subslice);
1796                         instdone->row[slice][subslice] =
1797                                 intel_gt_mcr_read(engine->gt,
1798                                                   GEN8_ROW_INSTDONE,
1799                                                   slice, subslice);
1800                 }
1801
1802                 if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 55)) {
1803                         for_each_ss_steering(iter, engine->gt, slice, subslice)
1804                                 instdone->geom_svg[slice][subslice] =
1805                                         intel_gt_mcr_read(engine->gt,
1806                                                           XEHPG_INSTDONE_GEOM_SVG,
1807                                                           slice, subslice);
1808                 }
1809         } else if (GRAPHICS_VER(i915) >= 7) {
1810                 instdone->instdone =
1811                         intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1812
1813                 if (engine->id != RCS0)
1814                         return;
1815
1816                 instdone->slice_common =
1817                         intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1818                 instdone->sampler[0][0] =
1819                         intel_uncore_read(uncore, GEN7_SAMPLER_INSTDONE);
1820                 instdone->row[0][0] =
1821                         intel_uncore_read(uncore, GEN7_ROW_INSTDONE);
1822         } else if (GRAPHICS_VER(i915) >= 4) {
1823                 instdone->instdone =
1824                         intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1825                 if (engine->id == RCS0)
1826                         /* HACK: Using the wrong struct member */
1827                         instdone->slice_common =
1828                                 intel_uncore_read(uncore, GEN4_INSTDONE1);
1829         } else {
1830                 instdone->instdone = intel_uncore_read(uncore, GEN2_INSTDONE);
1831         }
1832 }
1833
1834 static bool ring_is_idle(struct intel_engine_cs *engine)
1835 {
1836         bool idle = true;
1837
1838         if (I915_SELFTEST_ONLY(!engine->mmio_base))
1839                 return true;
1840
1841         if (!intel_engine_pm_get_if_awake(engine))
1842                 return true;
1843
1844         /* First check that no commands are left in the ring */
1845         if ((ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) !=
1846             (ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR))
1847                 idle = false;
1848
1849         /* No bit for gen2, so assume the CS parser is idle */
1850         if (GRAPHICS_VER(engine->i915) > 2 &&
1851             !(ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE))
1852                 idle = false;
1853
1854         intel_engine_pm_put(engine);
1855
1856         return idle;
1857 }
1858
1859 void __intel_engine_flush_submission(struct intel_engine_cs *engine, bool sync)
1860 {
1861         struct tasklet_struct *t = &engine->sched_engine->tasklet;
1862
1863         if (!t->callback)
1864                 return;
1865
1866         local_bh_disable();
1867         if (tasklet_trylock(t)) {
1868                 /* Must wait for any GPU reset in progress. */
1869                 if (__tasklet_is_enabled(t))
1870                         t->callback(t);
1871                 tasklet_unlock(t);
1872         }
1873         local_bh_enable();
1874
1875         /* Synchronise and wait for the tasklet on another CPU */
1876         if (sync)
1877                 tasklet_unlock_wait(t);
1878 }
1879
1880 /**
1881  * intel_engine_is_idle() - Report if the engine has finished process all work
1882  * @engine: the intel_engine_cs
1883  *
1884  * Return true if there are no requests pending, nothing left to be submitted
1885  * to hardware, and that the engine is idle.
1886  */
1887 bool intel_engine_is_idle(struct intel_engine_cs *engine)
1888 {
1889         /* More white lies, if wedged, hw state is inconsistent */
1890         if (intel_gt_is_wedged(engine->gt))
1891                 return true;
1892
1893         if (!intel_engine_pm_is_awake(engine))
1894                 return true;
1895
1896         /* Waiting to drain ELSP? */
1897         intel_synchronize_hardirq(engine->i915);
1898         intel_engine_flush_submission(engine);
1899
1900         /* ELSP is empty, but there are ready requests? E.g. after reset */
1901         if (!i915_sched_engine_is_empty(engine->sched_engine))
1902                 return false;
1903
1904         /* Ring stopped? */
1905         return ring_is_idle(engine);
1906 }
1907
1908 bool intel_engines_are_idle(struct intel_gt *gt)
1909 {
1910         struct intel_engine_cs *engine;
1911         enum intel_engine_id id;
1912
1913         /*
1914          * If the driver is wedged, HW state may be very inconsistent and
1915          * report that it is still busy, even though we have stopped using it.
1916          */
1917         if (intel_gt_is_wedged(gt))
1918                 return true;
1919
1920         /* Already parked (and passed an idleness test); must still be idle */
1921         if (!READ_ONCE(gt->awake))
1922                 return true;
1923
1924         for_each_engine(engine, gt, id) {
1925                 if (!intel_engine_is_idle(engine))
1926                         return false;
1927         }
1928
1929         return true;
1930 }
1931
1932 bool intel_engine_irq_enable(struct intel_engine_cs *engine)
1933 {
1934         if (!engine->irq_enable)
1935                 return false;
1936
1937         /* Caller disables interrupts */
1938         spin_lock(engine->gt->irq_lock);
1939         engine->irq_enable(engine);
1940         spin_unlock(engine->gt->irq_lock);
1941
1942         return true;
1943 }
1944
1945 void intel_engine_irq_disable(struct intel_engine_cs *engine)
1946 {
1947         if (!engine->irq_disable)
1948                 return;
1949
1950         /* Caller disables interrupts */
1951         spin_lock(engine->gt->irq_lock);
1952         engine->irq_disable(engine);
1953         spin_unlock(engine->gt->irq_lock);
1954 }
1955
1956 void intel_engines_reset_default_submission(struct intel_gt *gt)
1957 {
1958         struct intel_engine_cs *engine;
1959         enum intel_engine_id id;
1960
1961         for_each_engine(engine, gt, id) {
1962                 if (engine->sanitize)
1963                         engine->sanitize(engine);
1964
1965                 engine->set_default_submission(engine);
1966         }
1967 }
1968
1969 bool intel_engine_can_store_dword(struct intel_engine_cs *engine)
1970 {
1971         switch (GRAPHICS_VER(engine->i915)) {
1972         case 2:
1973                 return false; /* uses physical not virtual addresses */
1974         case 3:
1975                 /* maybe only uses physical not virtual addresses */
1976                 return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915));
1977         case 4:
1978                 return !IS_I965G(engine->i915); /* who knows! */
1979         case 6:
1980                 return engine->class != VIDEO_DECODE_CLASS; /* b0rked */
1981         default:
1982                 return true;
1983         }
1984 }
1985
1986 static struct intel_timeline *get_timeline(struct i915_request *rq)
1987 {
1988         struct intel_timeline *tl;
1989
1990         /*
1991          * Even though we are holding the engine->sched_engine->lock here, there
1992          * is no control over the submission queue per-se and we are
1993          * inspecting the active state at a random point in time, with an
1994          * unknown queue. Play safe and make sure the timeline remains valid.
1995          * (Only being used for pretty printing, one extra kref shouldn't
1996          * cause a camel stampede!)
1997          */
1998         rcu_read_lock();
1999         tl = rcu_dereference(rq->timeline);
2000         if (!kref_get_unless_zero(&tl->kref))
2001                 tl = NULL;
2002         rcu_read_unlock();
2003
2004         return tl;
2005 }
2006
2007 static int print_ring(char *buf, int sz, struct i915_request *rq)
2008 {
2009         int len = 0;
2010
2011         if (!i915_request_signaled(rq)) {
2012                 struct intel_timeline *tl = get_timeline(rq);
2013
2014                 len = scnprintf(buf, sz,
2015                                 "ring:{start:%08x, hwsp:%08x, seqno:%08x, runtime:%llums}, ",
2016                                 i915_ggtt_offset(rq->ring->vma),
2017                                 tl ? tl->hwsp_offset : 0,
2018                                 hwsp_seqno(rq),
2019                                 DIV_ROUND_CLOSEST_ULL(intel_context_get_total_runtime_ns(rq->context),
2020                                                       1000 * 1000));
2021
2022                 if (tl)
2023                         intel_timeline_put(tl);
2024         }
2025
2026         return len;
2027 }
2028
2029 static void hexdump(struct drm_printer *m, const void *buf, size_t len)
2030 {
2031         const size_t rowsize = 8 * sizeof(u32);
2032         const void *prev = NULL;
2033         bool skip = false;
2034         size_t pos;
2035
2036         for (pos = 0; pos < len; pos += rowsize) {
2037                 char line[128];
2038
2039                 if (prev && !memcmp(prev, buf + pos, rowsize)) {
2040                         if (!skip) {
2041                                 drm_printf(m, "*\n");
2042                                 skip = true;
2043                         }
2044                         continue;
2045                 }
2046
2047                 WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos,
2048                                                 rowsize, sizeof(u32),
2049                                                 line, sizeof(line),
2050                                                 false) >= sizeof(line));
2051                 drm_printf(m, "[%04zx] %s\n", pos, line);
2052
2053                 prev = buf + pos;
2054                 skip = false;
2055         }
2056 }
2057
2058 static const char *repr_timer(const struct timer_list *t)
2059 {
2060         if (!READ_ONCE(t->expires))
2061                 return "inactive";
2062
2063         if (timer_pending(t))
2064                 return "active";
2065
2066         return "expired";
2067 }
2068
2069 static void intel_engine_print_registers(struct intel_engine_cs *engine,
2070                                          struct drm_printer *m)
2071 {
2072         struct drm_i915_private *i915 = engine->i915;
2073         struct intel_engine_execlists * const execlists = &engine->execlists;
2074         u64 addr;
2075
2076         if (engine->id == RENDER_CLASS && IS_GRAPHICS_VER(i915, 4, 7))
2077                 drm_printf(m, "\tCCID: 0x%08x\n", ENGINE_READ(engine, CCID));
2078         if (HAS_EXECLISTS(i915)) {
2079                 drm_printf(m, "\tEL_STAT_HI: 0x%08x\n",
2080                            ENGINE_READ(engine, RING_EXECLIST_STATUS_HI));
2081                 drm_printf(m, "\tEL_STAT_LO: 0x%08x\n",
2082                            ENGINE_READ(engine, RING_EXECLIST_STATUS_LO));
2083         }
2084         drm_printf(m, "\tRING_START: 0x%08x\n",
2085                    ENGINE_READ(engine, RING_START));
2086         drm_printf(m, "\tRING_HEAD:  0x%08x\n",
2087                    ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR);
2088         drm_printf(m, "\tRING_TAIL:  0x%08x\n",
2089                    ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR);
2090         drm_printf(m, "\tRING_CTL:   0x%08x%s\n",
2091                    ENGINE_READ(engine, RING_CTL),
2092                    ENGINE_READ(engine, RING_CTL) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : "");
2093         if (GRAPHICS_VER(engine->i915) > 2) {
2094                 drm_printf(m, "\tRING_MODE:  0x%08x%s\n",
2095                            ENGINE_READ(engine, RING_MI_MODE),
2096                            ENGINE_READ(engine, RING_MI_MODE) & (MODE_IDLE) ? " [idle]" : "");
2097         }
2098
2099         if (GRAPHICS_VER(i915) >= 6) {
2100                 drm_printf(m, "\tRING_IMR:   0x%08x\n",
2101                            ENGINE_READ(engine, RING_IMR));
2102                 drm_printf(m, "\tRING_ESR:   0x%08x\n",
2103                            ENGINE_READ(engine, RING_ESR));
2104                 drm_printf(m, "\tRING_EMR:   0x%08x\n",
2105                            ENGINE_READ(engine, RING_EMR));
2106                 drm_printf(m, "\tRING_EIR:   0x%08x\n",
2107                            ENGINE_READ(engine, RING_EIR));
2108         }
2109
2110         addr = intel_engine_get_active_head(engine);
2111         drm_printf(m, "\tACTHD:  0x%08x_%08x\n",
2112                    upper_32_bits(addr), lower_32_bits(addr));
2113         addr = intel_engine_get_last_batch_head(engine);
2114         drm_printf(m, "\tBBADDR: 0x%08x_%08x\n",
2115                    upper_32_bits(addr), lower_32_bits(addr));
2116         if (GRAPHICS_VER(i915) >= 8)
2117                 addr = ENGINE_READ64(engine, RING_DMA_FADD, RING_DMA_FADD_UDW);
2118         else if (GRAPHICS_VER(i915) >= 4)
2119                 addr = ENGINE_READ(engine, RING_DMA_FADD);
2120         else
2121                 addr = ENGINE_READ(engine, DMA_FADD_I8XX);
2122         drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n",
2123                    upper_32_bits(addr), lower_32_bits(addr));
2124         if (GRAPHICS_VER(i915) >= 4) {
2125                 drm_printf(m, "\tIPEIR: 0x%08x\n",
2126                            ENGINE_READ(engine, RING_IPEIR));
2127                 drm_printf(m, "\tIPEHR: 0x%08x\n",
2128                            ENGINE_READ(engine, RING_IPEHR));
2129         } else {
2130                 drm_printf(m, "\tIPEIR: 0x%08x\n", ENGINE_READ(engine, IPEIR));
2131                 drm_printf(m, "\tIPEHR: 0x%08x\n", ENGINE_READ(engine, IPEHR));
2132         }
2133
2134         if (HAS_EXECLISTS(i915) && !intel_engine_uses_guc(engine)) {
2135                 struct i915_request * const *port, *rq;
2136                 const u32 *hws =
2137                         &engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
2138                 const u8 num_entries = execlists->csb_size;
2139                 unsigned int idx;
2140                 u8 read, write;
2141
2142                 drm_printf(m, "\tExeclist tasklet queued? %s (%s), preempt? %s, timeslice? %s\n",
2143                            str_yes_no(test_bit(TASKLET_STATE_SCHED, &engine->sched_engine->tasklet.state)),
2144                            str_enabled_disabled(!atomic_read(&engine->sched_engine->tasklet.count)),
2145                            repr_timer(&engine->execlists.preempt),
2146                            repr_timer(&engine->execlists.timer));
2147
2148                 read = execlists->csb_head;
2149                 write = READ_ONCE(*execlists->csb_write);
2150
2151                 drm_printf(m, "\tExeclist status: 0x%08x %08x; CSB read:%d, write:%d, entries:%d\n",
2152                            ENGINE_READ(engine, RING_EXECLIST_STATUS_LO),
2153                            ENGINE_READ(engine, RING_EXECLIST_STATUS_HI),
2154                            read, write, num_entries);
2155
2156                 if (read >= num_entries)
2157                         read = 0;
2158                 if (write >= num_entries)
2159                         write = 0;
2160                 if (read > write)
2161                         write += num_entries;
2162                 while (read < write) {
2163                         idx = ++read % num_entries;
2164                         drm_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n",
2165                                    idx, hws[idx * 2], hws[idx * 2 + 1]);
2166                 }
2167
2168                 i915_sched_engine_active_lock_bh(engine->sched_engine);
2169                 rcu_read_lock();
2170                 for (port = execlists->active; (rq = *port); port++) {
2171                         char hdr[160];
2172                         int len;
2173
2174                         len = scnprintf(hdr, sizeof(hdr),
2175                                         "\t\tActive[%d]:  ccid:%08x%s%s, ",
2176                                         (int)(port - execlists->active),
2177                                         rq->context->lrc.ccid,
2178                                         intel_context_is_closed(rq->context) ? "!" : "",
2179                                         intel_context_is_banned(rq->context) ? "*" : "");
2180                         len += print_ring(hdr + len, sizeof(hdr) - len, rq);
2181                         scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
2182                         i915_request_show(m, rq, hdr, 0);
2183                 }
2184                 for (port = execlists->pending; (rq = *port); port++) {
2185                         char hdr[160];
2186                         int len;
2187
2188                         len = scnprintf(hdr, sizeof(hdr),
2189                                         "\t\tPending[%d]: ccid:%08x%s%s, ",
2190                                         (int)(port - execlists->pending),
2191                                         rq->context->lrc.ccid,
2192                                         intel_context_is_closed(rq->context) ? "!" : "",
2193                                         intel_context_is_banned(rq->context) ? "*" : "");
2194                         len += print_ring(hdr + len, sizeof(hdr) - len, rq);
2195                         scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
2196                         i915_request_show(m, rq, hdr, 0);
2197                 }
2198                 rcu_read_unlock();
2199                 i915_sched_engine_active_unlock_bh(engine->sched_engine);
2200         } else if (GRAPHICS_VER(i915) > 6) {
2201                 drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
2202                            ENGINE_READ(engine, RING_PP_DIR_BASE));
2203                 drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
2204                            ENGINE_READ(engine, RING_PP_DIR_BASE_READ));
2205                 drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
2206                            ENGINE_READ(engine, RING_PP_DIR_DCLV));
2207         }
2208 }
2209
2210 static void print_request_ring(struct drm_printer *m, struct i915_request *rq)
2211 {
2212         struct i915_vma_resource *vma_res = rq->batch_res;
2213         void *ring;
2214         int size;
2215
2216         drm_printf(m,
2217                    "[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]:\n",
2218                    rq->head, rq->postfix, rq->tail,
2219                    vma_res ? upper_32_bits(vma_res->start) : ~0u,
2220                    vma_res ? lower_32_bits(vma_res->start) : ~0u);
2221
2222         size = rq->tail - rq->head;
2223         if (rq->tail < rq->head)
2224                 size += rq->ring->size;
2225
2226         ring = kmalloc(size, GFP_ATOMIC);
2227         if (ring) {
2228                 const void *vaddr = rq->ring->vaddr;
2229                 unsigned int head = rq->head;
2230                 unsigned int len = 0;
2231
2232                 if (rq->tail < head) {
2233                         len = rq->ring->size - head;
2234                         memcpy(ring, vaddr + head, len);
2235                         head = 0;
2236                 }
2237                 memcpy(ring + len, vaddr + head, size - len);
2238
2239                 hexdump(m, ring, size);
2240                 kfree(ring);
2241         }
2242 }
2243
2244 static unsigned long read_ul(void *p, size_t x)
2245 {
2246         return *(unsigned long *)(p + x);
2247 }
2248
2249 static void print_properties(struct intel_engine_cs *engine,
2250                              struct drm_printer *m)
2251 {
2252         static const struct pmap {
2253                 size_t offset;
2254                 const char *name;
2255         } props[] = {
2256 #define P(x) { \
2257         .offset = offsetof(typeof(engine->props), x), \
2258         .name = #x \
2259 }
2260                 P(heartbeat_interval_ms),
2261                 P(max_busywait_duration_ns),
2262                 P(preempt_timeout_ms),
2263                 P(stop_timeout_ms),
2264                 P(timeslice_duration_ms),
2265
2266                 {},
2267 #undef P
2268         };
2269         const struct pmap *p;
2270
2271         drm_printf(m, "\tProperties:\n");
2272         for (p = props; p->name; p++)
2273                 drm_printf(m, "\t\t%s: %lu [default %lu]\n",
2274                            p->name,
2275                            read_ul(&engine->props, p->offset),
2276                            read_ul(&engine->defaults, p->offset));
2277 }
2278
2279 static void engine_dump_request(struct i915_request *rq, struct drm_printer *m, const char *msg)
2280 {
2281         struct intel_timeline *tl = get_timeline(rq);
2282
2283         i915_request_show(m, rq, msg, 0);
2284
2285         drm_printf(m, "\t\tring->start:  0x%08x\n",
2286                    i915_ggtt_offset(rq->ring->vma));
2287         drm_printf(m, "\t\tring->head:   0x%08x\n",
2288                    rq->ring->head);
2289         drm_printf(m, "\t\tring->tail:   0x%08x\n",
2290                    rq->ring->tail);
2291         drm_printf(m, "\t\tring->emit:   0x%08x\n",
2292                    rq->ring->emit);
2293         drm_printf(m, "\t\tring->space:  0x%08x\n",
2294                    rq->ring->space);
2295
2296         if (tl) {
2297                 drm_printf(m, "\t\tring->hwsp:   0x%08x\n",
2298                            tl->hwsp_offset);
2299                 intel_timeline_put(tl);
2300         }
2301
2302         print_request_ring(m, rq);
2303
2304         if (rq->context->lrc_reg_state) {
2305                 drm_printf(m, "Logical Ring Context:\n");
2306                 hexdump(m, rq->context->lrc_reg_state, PAGE_SIZE);
2307         }
2308 }
2309
2310 void intel_engine_dump_active_requests(struct list_head *requests,
2311                                        struct i915_request *hung_rq,
2312                                        struct drm_printer *m)
2313 {
2314         struct i915_request *rq;
2315         const char *msg;
2316         enum i915_request_state state;
2317
2318         list_for_each_entry(rq, requests, sched.link) {
2319                 if (rq == hung_rq)
2320                         continue;
2321
2322                 state = i915_test_request_state(rq);
2323                 if (state < I915_REQUEST_QUEUED)
2324                         continue;
2325
2326                 if (state == I915_REQUEST_ACTIVE)
2327                         msg = "\t\tactive on engine";
2328                 else
2329                         msg = "\t\tactive in queue";
2330
2331                 engine_dump_request(rq, m, msg);
2332         }
2333 }
2334
2335 static void engine_dump_active_requests(struct intel_engine_cs *engine,
2336                                         struct drm_printer *m)
2337 {
2338         struct intel_context *hung_ce = NULL;
2339         struct i915_request *hung_rq = NULL;
2340
2341         /*
2342          * No need for an engine->irq_seqno_barrier() before the seqno reads.
2343          * The GPU is still running so requests are still executing and any
2344          * hardware reads will be out of date by the time they are reported.
2345          * But the intention here is just to report an instantaneous snapshot
2346          * so that's fine.
2347          */
2348         intel_engine_get_hung_entity(engine, &hung_ce, &hung_rq);
2349
2350         drm_printf(m, "\tRequests:\n");
2351
2352         if (hung_rq)
2353                 engine_dump_request(hung_rq, m, "\t\thung");
2354         else if (hung_ce)
2355                 drm_printf(m, "\t\tGot hung ce but no hung rq!\n");
2356
2357         if (intel_uc_uses_guc_submission(&engine->gt->uc))
2358                 intel_guc_dump_active_requests(engine, hung_rq, m);
2359         else
2360                 intel_execlists_dump_active_requests(engine, hung_rq, m);
2361
2362         if (hung_rq)
2363                 i915_request_put(hung_rq);
2364 }
2365
2366 void intel_engine_dump(struct intel_engine_cs *engine,
2367                        struct drm_printer *m,
2368                        const char *header, ...)
2369 {
2370         struct i915_gpu_error * const error = &engine->i915->gpu_error;
2371         struct i915_request *rq;
2372         intel_wakeref_t wakeref;
2373         ktime_t dummy;
2374
2375         if (header) {
2376                 va_list ap;
2377
2378                 va_start(ap, header);
2379                 drm_vprintf(m, header, &ap);
2380                 va_end(ap);
2381         }
2382
2383         if (intel_gt_is_wedged(engine->gt))
2384                 drm_printf(m, "*** WEDGED ***\n");
2385
2386         drm_printf(m, "\tAwake? %d\n", atomic_read(&engine->wakeref.count));
2387         drm_printf(m, "\tBarriers?: %s\n",
2388                    str_yes_no(!llist_empty(&engine->barrier_tasks)));
2389         drm_printf(m, "\tLatency: %luus\n",
2390                    ewma__engine_latency_read(&engine->latency));
2391         if (intel_engine_supports_stats(engine))
2392                 drm_printf(m, "\tRuntime: %llums\n",
2393                            ktime_to_ms(intel_engine_get_busy_time(engine,
2394                                                                   &dummy)));
2395         drm_printf(m, "\tForcewake: %x domains, %d active\n",
2396                    engine->fw_domain, READ_ONCE(engine->fw_active));
2397
2398         rcu_read_lock();
2399         rq = READ_ONCE(engine->heartbeat.systole);
2400         if (rq)
2401                 drm_printf(m, "\tHeartbeat: %d ms ago\n",
2402                            jiffies_to_msecs(jiffies - rq->emitted_jiffies));
2403         rcu_read_unlock();
2404         drm_printf(m, "\tReset count: %d (global %d)\n",
2405                    i915_reset_engine_count(error, engine),
2406                    i915_reset_count(error));
2407         print_properties(engine, m);
2408
2409         engine_dump_active_requests(engine, m);
2410
2411         drm_printf(m, "\tMMIO base:  0x%08x\n", engine->mmio_base);
2412         wakeref = intel_runtime_pm_get_if_in_use(engine->uncore->rpm);
2413         if (wakeref) {
2414                 intel_engine_print_registers(engine, m);
2415                 intel_runtime_pm_put(engine->uncore->rpm, wakeref);
2416         } else {
2417                 drm_printf(m, "\tDevice is asleep; skipping register dump\n");
2418         }
2419
2420         intel_execlists_show_requests(engine, m, i915_request_show, 8);
2421
2422         drm_printf(m, "HWSP:\n");
2423         hexdump(m, engine->status_page.addr, PAGE_SIZE);
2424
2425         drm_printf(m, "Idle? %s\n", str_yes_no(intel_engine_is_idle(engine)));
2426
2427         intel_engine_print_breadcrumbs(engine, m);
2428 }
2429
2430 /**
2431  * intel_engine_get_busy_time() - Return current accumulated engine busyness
2432  * @engine: engine to report on
2433  * @now: monotonic timestamp of sampling
2434  *
2435  * Returns accumulated time @engine was busy since engine stats were enabled.
2436  */
2437 ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine, ktime_t *now)
2438 {
2439         return engine->busyness(engine, now);
2440 }
2441
2442 struct intel_context *
2443 intel_engine_create_virtual(struct intel_engine_cs **siblings,
2444                             unsigned int count, unsigned long flags)
2445 {
2446         if (count == 0)
2447                 return ERR_PTR(-EINVAL);
2448
2449         if (count == 1 && !(flags & FORCE_VIRTUAL))
2450                 return intel_context_create(siblings[0]);
2451
2452         GEM_BUG_ON(!siblings[0]->cops->create_virtual);
2453         return siblings[0]->cops->create_virtual(siblings, count, flags);
2454 }
2455
2456 static struct i915_request *engine_execlist_find_hung_request(struct intel_engine_cs *engine)
2457 {
2458         struct i915_request *request, *active = NULL;
2459
2460         /*
2461          * This search does not work in GuC submission mode. However, the GuC
2462          * will report the hanging context directly to the driver itself. So
2463          * the driver should never get here when in GuC mode.
2464          */
2465         GEM_BUG_ON(intel_uc_uses_guc_submission(&engine->gt->uc));
2466
2467         /*
2468          * We are called by the error capture, reset and to dump engine
2469          * state at random points in time. In particular, note that neither is
2470          * crucially ordered with an interrupt. After a hang, the GPU is dead
2471          * and we assume that no more writes can happen (we waited long enough
2472          * for all writes that were in transaction to be flushed) - adding an
2473          * extra delay for a recent interrupt is pointless. Hence, we do
2474          * not need an engine->irq_seqno_barrier() before the seqno reads.
2475          * At all other times, we must assume the GPU is still running, but
2476          * we only care about the snapshot of this moment.
2477          */
2478         lockdep_assert_held(&engine->sched_engine->lock);
2479
2480         rcu_read_lock();
2481         request = execlists_active(&engine->execlists);
2482         if (request) {
2483                 struct intel_timeline *tl = request->context->timeline;
2484
2485                 list_for_each_entry_from_reverse(request, &tl->requests, link) {
2486                         if (__i915_request_is_complete(request))
2487                                 break;
2488
2489                         active = request;
2490                 }
2491         }
2492         rcu_read_unlock();
2493         if (active)
2494                 return active;
2495
2496         list_for_each_entry(request, &engine->sched_engine->requests,
2497                             sched.link) {
2498                 if (i915_test_request_state(request) != I915_REQUEST_ACTIVE)
2499                         continue;
2500
2501                 active = request;
2502                 break;
2503         }
2504
2505         return active;
2506 }
2507
2508 void intel_engine_get_hung_entity(struct intel_engine_cs *engine,
2509                                   struct intel_context **ce, struct i915_request **rq)
2510 {
2511         unsigned long flags;
2512
2513         *ce = intel_engine_get_hung_context(engine);
2514         if (*ce) {
2515                 intel_engine_clear_hung_context(engine);
2516
2517                 *rq = intel_context_get_active_request(*ce);
2518                 return;
2519         }
2520
2521         /*
2522          * Getting here with GuC enabled means it is a forced error capture
2523          * with no actual hang. So, no need to attempt the execlist search.
2524          */
2525         if (intel_uc_uses_guc_submission(&engine->gt->uc))
2526                 return;
2527
2528         spin_lock_irqsave(&engine->sched_engine->lock, flags);
2529         *rq = engine_execlist_find_hung_request(engine);
2530         if (*rq)
2531                 *rq = i915_request_get_rcu(*rq);
2532         spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
2533 }
2534
2535 void xehp_enable_ccs_engines(struct intel_engine_cs *engine)
2536 {
2537         /*
2538          * If there are any non-fused-off CCS engines, we need to enable CCS
2539          * support in the RCU_MODE register.  This only needs to be done once,
2540          * so for simplicity we'll take care of this in the RCS engine's
2541          * resume handler; since the RCS and all CCS engines belong to the
2542          * same reset domain and are reset together, this will also take care
2543          * of re-applying the setting after i915-triggered resets.
2544          */
2545         if (!CCS_MASK(engine->gt))
2546                 return;
2547
2548         intel_uncore_write(engine->uncore, GEN12_RCU_MODE,
2549                            _MASKED_BIT_ENABLE(GEN12_RCU_MODE_CCS_ENABLE));
2550 }
2551
2552 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2553 #include "mock_engine.c"
2554 #include "selftest_engine.c"
2555 #include "selftest_engine_cs.c"
2556 #endif
This page took 0.180143 seconds and 4 git commands to generate.