1 // SPDX-License-Identifier: MIT
3 * Copyright © 2016 Intel Corporation
6 #include <linux/string_helpers.h>
8 #include <drm/drm_print.h>
10 #include "gem/i915_gem_context.h"
11 #include "gem/i915_gem_internal.h"
12 #include "gt/intel_gt_print.h"
13 #include "gt/intel_gt_regs.h"
15 #include "i915_cmd_parser.h"
19 #include "intel_breadcrumbs.h"
20 #include "intel_context.h"
21 #include "intel_engine.h"
22 #include "intel_engine_pm.h"
23 #include "intel_engine_regs.h"
24 #include "intel_engine_user.h"
25 #include "intel_execlists_submission.h"
27 #include "intel_gt_mcr.h"
28 #include "intel_gt_pm.h"
29 #include "intel_gt_requests.h"
30 #include "intel_lrc.h"
31 #include "intel_lrc_reg.h"
32 #include "intel_reset.h"
33 #include "intel_ring.h"
34 #include "uc/intel_guc_submission.h"
36 /* Haswell does have the CXT_SIZE register however it does not appear to be
37 * valid. Now, docs explain in dwords what is in the context object. The full
38 * size is 70720 bytes, however, the power context and execlist context will
39 * never be saved (power context is stored elsewhere, and execlists don't work
40 * on HSW) - so the final size, including the extra state required for the
41 * Resource Streamer, is 66944 bytes, which rounds to 17 pages.
43 #define HSW_CXT_TOTAL_SIZE (17 * PAGE_SIZE)
45 #define DEFAULT_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
46 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
47 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
48 #define GEN11_LR_CONTEXT_RENDER_SIZE (14 * PAGE_SIZE)
50 #define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
52 #define MAX_MMIO_BASES 3
56 /* mmio bases table *must* be sorted in reverse graphics_ver order */
57 struct engine_mmio_base {
60 } mmio_bases[MAX_MMIO_BASES];
63 static const struct engine_info intel_engines[] = {
65 .class = RENDER_CLASS,
68 { .graphics_ver = 1, .base = RENDER_RING_BASE }
72 .class = COPY_ENGINE_CLASS,
75 { .graphics_ver = 6, .base = BLT_RING_BASE }
79 .class = COPY_ENGINE_CLASS,
82 { .graphics_ver = 12, .base = XEHPC_BCS1_RING_BASE }
86 .class = COPY_ENGINE_CLASS,
89 { .graphics_ver = 12, .base = XEHPC_BCS2_RING_BASE }
93 .class = COPY_ENGINE_CLASS,
96 { .graphics_ver = 12, .base = XEHPC_BCS3_RING_BASE }
100 .class = COPY_ENGINE_CLASS,
103 { .graphics_ver = 12, .base = XEHPC_BCS4_RING_BASE }
107 .class = COPY_ENGINE_CLASS,
110 { .graphics_ver = 12, .base = XEHPC_BCS5_RING_BASE }
114 .class = COPY_ENGINE_CLASS,
117 { .graphics_ver = 12, .base = XEHPC_BCS6_RING_BASE }
121 .class = COPY_ENGINE_CLASS,
124 { .graphics_ver = 12, .base = XEHPC_BCS7_RING_BASE }
128 .class = COPY_ENGINE_CLASS,
131 { .graphics_ver = 12, .base = XEHPC_BCS8_RING_BASE }
135 .class = VIDEO_DECODE_CLASS,
138 { .graphics_ver = 11, .base = GEN11_BSD_RING_BASE },
139 { .graphics_ver = 6, .base = GEN6_BSD_RING_BASE },
140 { .graphics_ver = 4, .base = BSD_RING_BASE }
144 .class = VIDEO_DECODE_CLASS,
147 { .graphics_ver = 11, .base = GEN11_BSD2_RING_BASE },
148 { .graphics_ver = 8, .base = GEN8_BSD2_RING_BASE }
152 .class = VIDEO_DECODE_CLASS,
155 { .graphics_ver = 11, .base = GEN11_BSD3_RING_BASE }
159 .class = VIDEO_DECODE_CLASS,
162 { .graphics_ver = 11, .base = GEN11_BSD4_RING_BASE }
166 .class = VIDEO_DECODE_CLASS,
169 { .graphics_ver = 12, .base = XEHP_BSD5_RING_BASE }
173 .class = VIDEO_DECODE_CLASS,
176 { .graphics_ver = 12, .base = XEHP_BSD6_RING_BASE }
180 .class = VIDEO_DECODE_CLASS,
183 { .graphics_ver = 12, .base = XEHP_BSD7_RING_BASE }
187 .class = VIDEO_DECODE_CLASS,
190 { .graphics_ver = 12, .base = XEHP_BSD8_RING_BASE }
194 .class = VIDEO_ENHANCEMENT_CLASS,
197 { .graphics_ver = 11, .base = GEN11_VEBOX_RING_BASE },
198 { .graphics_ver = 7, .base = VEBOX_RING_BASE }
202 .class = VIDEO_ENHANCEMENT_CLASS,
205 { .graphics_ver = 11, .base = GEN11_VEBOX2_RING_BASE }
209 .class = VIDEO_ENHANCEMENT_CLASS,
212 { .graphics_ver = 12, .base = XEHP_VEBOX3_RING_BASE }
216 .class = VIDEO_ENHANCEMENT_CLASS,
219 { .graphics_ver = 12, .base = XEHP_VEBOX4_RING_BASE }
223 .class = COMPUTE_CLASS,
226 { .graphics_ver = 12, .base = GEN12_COMPUTE0_RING_BASE }
230 .class = COMPUTE_CLASS,
233 { .graphics_ver = 12, .base = GEN12_COMPUTE1_RING_BASE }
237 .class = COMPUTE_CLASS,
240 { .graphics_ver = 12, .base = GEN12_COMPUTE2_RING_BASE }
244 .class = COMPUTE_CLASS,
247 { .graphics_ver = 12, .base = GEN12_COMPUTE3_RING_BASE }
251 .class = OTHER_CLASS,
252 .instance = OTHER_GSC_INSTANCE,
254 { .graphics_ver = 12, .base = MTL_GSC_RING_BASE }
260 * intel_engine_context_size() - return the size of the context for an engine
262 * @class: engine class
264 * Each engine class may require a different amount of space for a context
267 * Return: size (in bytes) of an engine class specific context image
269 * Note: this size includes the HWSP, which is part of the context image
270 * in LRC mode, but does not include the "shared data page" used with
271 * GuC submission. The caller should account for this if using the GuC.
273 u32 intel_engine_context_size(struct intel_gt *gt, u8 class)
275 struct intel_uncore *uncore = gt->uncore;
278 BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE);
284 switch (GRAPHICS_VER(gt->i915)) {
286 MISSING_CASE(GRAPHICS_VER(gt->i915));
287 return DEFAULT_LR_CONTEXT_RENDER_SIZE;
290 return GEN11_LR_CONTEXT_RENDER_SIZE;
292 return GEN9_LR_CONTEXT_RENDER_SIZE;
294 return GEN8_LR_CONTEXT_RENDER_SIZE;
296 if (IS_HASWELL(gt->i915))
297 return HSW_CXT_TOTAL_SIZE;
299 cxt_size = intel_uncore_read(uncore, GEN7_CXT_SIZE);
300 return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64,
303 cxt_size = intel_uncore_read(uncore, CXT_SIZE);
304 return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64,
309 * There is a discrepancy here between the size reported
310 * by the register and the size of the context layout
311 * in the docs. Both are described as authorative!
313 * The discrepancy is on the order of a few cachelines,
314 * but the total is under one page (4k), which is our
315 * minimum allocation anyway so it should all come
318 cxt_size = intel_uncore_read(uncore, CXT_SIZE) + 1;
319 gt_dbg(gt, "graphics_ver = %d CXT_SIZE = %d bytes [0x%08x]\n",
320 GRAPHICS_VER(gt->i915), cxt_size * 64,
322 return round_up(cxt_size * 64, PAGE_SIZE);
325 /* For the special day when i810 gets merged. */
333 case VIDEO_DECODE_CLASS:
334 case VIDEO_ENHANCEMENT_CLASS:
335 case COPY_ENGINE_CLASS:
337 if (GRAPHICS_VER(gt->i915) < 8)
339 return GEN8_LR_CONTEXT_OTHER_SIZE;
343 static u32 __engine_mmio_base(struct drm_i915_private *i915,
344 const struct engine_mmio_base *bases)
348 for (i = 0; i < MAX_MMIO_BASES; i++)
349 if (GRAPHICS_VER(i915) >= bases[i].graphics_ver)
352 GEM_BUG_ON(i == MAX_MMIO_BASES);
353 GEM_BUG_ON(!bases[i].base);
355 return bases[i].base;
358 static void __sprint_engine_name(struct intel_engine_cs *engine)
361 * Before we know what the uABI name for this engine will be,
362 * we still would like to keep track of this engine in the debug logs.
363 * We throw in a ' here as a reminder that this isn't its final name.
365 GEM_WARN_ON(snprintf(engine->name, sizeof(engine->name), "%s'%u",
366 intel_engine_class_repr(engine->class),
367 engine->instance) >= sizeof(engine->name));
370 void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask)
373 * Though they added more rings on g4x/ilk, they did not add
374 * per-engine HWSTAM until gen6.
376 if (GRAPHICS_VER(engine->i915) < 6 && engine->class != RENDER_CLASS)
379 if (GRAPHICS_VER(engine->i915) >= 3)
380 ENGINE_WRITE(engine, RING_HWSTAM, mask);
382 ENGINE_WRITE16(engine, RING_HWSTAM, mask);
385 static void intel_engine_sanitize_mmio(struct intel_engine_cs *engine)
387 /* Mask off all writes into the unknown HWSP */
388 intel_engine_set_hwsp_writemask(engine, ~0u);
391 static void nop_irq_handler(struct intel_engine_cs *engine, u16 iir)
393 GEM_DEBUG_WARN_ON(iir);
396 static u32 get_reset_domain(u8 ver, enum intel_engine_id id)
401 static const u32 engine_reset_domains[] = {
402 [RCS0] = GEN11_GRDOM_RENDER,
403 [BCS0] = GEN11_GRDOM_BLT,
404 [BCS1] = XEHPC_GRDOM_BLT1,
405 [BCS2] = XEHPC_GRDOM_BLT2,
406 [BCS3] = XEHPC_GRDOM_BLT3,
407 [BCS4] = XEHPC_GRDOM_BLT4,
408 [BCS5] = XEHPC_GRDOM_BLT5,
409 [BCS6] = XEHPC_GRDOM_BLT6,
410 [BCS7] = XEHPC_GRDOM_BLT7,
411 [BCS8] = XEHPC_GRDOM_BLT8,
412 [VCS0] = GEN11_GRDOM_MEDIA,
413 [VCS1] = GEN11_GRDOM_MEDIA2,
414 [VCS2] = GEN11_GRDOM_MEDIA3,
415 [VCS3] = GEN11_GRDOM_MEDIA4,
416 [VCS4] = GEN11_GRDOM_MEDIA5,
417 [VCS5] = GEN11_GRDOM_MEDIA6,
418 [VCS6] = GEN11_GRDOM_MEDIA7,
419 [VCS7] = GEN11_GRDOM_MEDIA8,
420 [VECS0] = GEN11_GRDOM_VECS,
421 [VECS1] = GEN11_GRDOM_VECS2,
422 [VECS2] = GEN11_GRDOM_VECS3,
423 [VECS3] = GEN11_GRDOM_VECS4,
424 [CCS0] = GEN11_GRDOM_RENDER,
425 [CCS1] = GEN11_GRDOM_RENDER,
426 [CCS2] = GEN11_GRDOM_RENDER,
427 [CCS3] = GEN11_GRDOM_RENDER,
428 [GSC0] = GEN12_GRDOM_GSC,
430 GEM_BUG_ON(id >= ARRAY_SIZE(engine_reset_domains) ||
431 !engine_reset_domains[id]);
432 reset_domain = engine_reset_domains[id];
434 static const u32 engine_reset_domains[] = {
435 [RCS0] = GEN6_GRDOM_RENDER,
436 [BCS0] = GEN6_GRDOM_BLT,
437 [VCS0] = GEN6_GRDOM_MEDIA,
438 [VCS1] = GEN8_GRDOM_MEDIA2,
439 [VECS0] = GEN6_GRDOM_VECS,
441 GEM_BUG_ON(id >= ARRAY_SIZE(engine_reset_domains) ||
442 !engine_reset_domains[id]);
443 reset_domain = engine_reset_domains[id];
449 static int intel_engine_setup(struct intel_gt *gt, enum intel_engine_id id,
452 const struct engine_info *info = &intel_engines[id];
453 struct drm_i915_private *i915 = gt->i915;
454 struct intel_engine_cs *engine;
457 BUILD_BUG_ON(MAX_ENGINE_CLASS >= BIT(GEN11_ENGINE_CLASS_WIDTH));
458 BUILD_BUG_ON(MAX_ENGINE_INSTANCE >= BIT(GEN11_ENGINE_INSTANCE_WIDTH));
459 BUILD_BUG_ON(I915_MAX_VCS > (MAX_ENGINE_INSTANCE + 1));
460 BUILD_BUG_ON(I915_MAX_VECS > (MAX_ENGINE_INSTANCE + 1));
462 if (GEM_DEBUG_WARN_ON(id >= ARRAY_SIZE(gt->engine)))
465 if (GEM_DEBUG_WARN_ON(info->class > MAX_ENGINE_CLASS))
468 if (GEM_DEBUG_WARN_ON(info->instance > MAX_ENGINE_INSTANCE))
471 if (GEM_DEBUG_WARN_ON(gt->engine_class[info->class][info->instance]))
474 engine = kzalloc(sizeof(*engine), GFP_KERNEL);
478 BUILD_BUG_ON(BITS_PER_TYPE(engine->mask) < I915_NUM_ENGINES);
480 INIT_LIST_HEAD(&engine->pinned_contexts_list);
482 engine->legacy_idx = INVALID_ENGINE;
483 engine->mask = BIT(id);
484 engine->reset_domain = get_reset_domain(GRAPHICS_VER(gt->i915),
488 engine->uncore = gt->uncore;
489 guc_class = engine_class_to_guc_class(info->class);
490 engine->guc_id = MAKE_GUC_ID(guc_class, info->instance);
491 engine->mmio_base = __engine_mmio_base(i915, info->mmio_bases);
493 engine->irq_handler = nop_irq_handler;
495 engine->class = info->class;
496 engine->instance = info->instance;
497 engine->logical_mask = BIT(logical_instance);
498 __sprint_engine_name(engine);
500 if ((engine->class == COMPUTE_CLASS || engine->class == RENDER_CLASS) &&
501 __ffs(CCS_MASK(engine->gt) | RCS_MASK(engine->gt)) == engine->instance)
502 engine->flags |= I915_ENGINE_FIRST_RENDER_COMPUTE;
504 /* features common between engines sharing EUs */
505 if (engine->class == RENDER_CLASS || engine->class == COMPUTE_CLASS) {
506 engine->flags |= I915_ENGINE_HAS_RCS_REG_STATE;
507 engine->flags |= I915_ENGINE_HAS_EU_PRIORITY;
510 engine->props.heartbeat_interval_ms =
511 CONFIG_DRM_I915_HEARTBEAT_INTERVAL;
512 engine->props.max_busywait_duration_ns =
513 CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT;
514 engine->props.preempt_timeout_ms =
515 CONFIG_DRM_I915_PREEMPT_TIMEOUT;
516 engine->props.stop_timeout_ms =
517 CONFIG_DRM_I915_STOP_TIMEOUT;
518 engine->props.timeslice_duration_ms =
519 CONFIG_DRM_I915_TIMESLICE_DURATION;
522 * Mid-thread pre-emption is not available in Gen12. Unfortunately,
523 * some compute workloads run quite long threads. That means they get
524 * reset due to not pre-empting in a timely manner. So, bump the
525 * pre-emption timeout value to be much higher for compute engines.
527 if (GRAPHICS_VER(i915) == 12 && (engine->flags & I915_ENGINE_HAS_RCS_REG_STATE))
528 engine->props.preempt_timeout_ms = CONFIG_DRM_I915_PREEMPT_TIMEOUT_COMPUTE;
530 /* Cap properties according to any system limits */
531 #define CLAMP_PROP(field) \
533 u64 clamp = intel_clamp_##field(engine, engine->props.field); \
534 if (clamp != engine->props.field) { \
535 drm_notice(&engine->i915->drm, \
536 "Warning, clamping %s to %lld to prevent overflow\n", \
538 engine->props.field = clamp; \
542 CLAMP_PROP(heartbeat_interval_ms);
543 CLAMP_PROP(max_busywait_duration_ns);
544 CLAMP_PROP(preempt_timeout_ms);
545 CLAMP_PROP(stop_timeout_ms);
546 CLAMP_PROP(timeslice_duration_ms);
550 engine->defaults = engine->props; /* never to change again */
552 engine->context_size = intel_engine_context_size(gt, engine->class);
553 if (WARN_ON(engine->context_size > BIT(20)))
554 engine->context_size = 0;
555 if (engine->context_size)
556 DRIVER_CAPS(i915)->has_logical_contexts = true;
558 ewma__engine_latency_init(&engine->latency);
560 ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier);
562 /* Scrub mmio state on takeover */
563 intel_engine_sanitize_mmio(engine);
565 gt->engine_class[info->class][info->instance] = engine;
566 gt->engine[id] = engine;
571 u64 intel_clamp_heartbeat_interval_ms(struct intel_engine_cs *engine, u64 value)
573 value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT));
578 u64 intel_clamp_max_busywait_duration_ns(struct intel_engine_cs *engine, u64 value)
580 value = min(value, jiffies_to_nsecs(2));
585 u64 intel_clamp_preempt_timeout_ms(struct intel_engine_cs *engine, u64 value)
588 * NB: The GuC API only supports 32bit values. However, the limit is further
589 * reduced due to internal calculations which would otherwise overflow.
591 if (intel_guc_submission_is_wanted(&engine->gt->uc.guc))
592 value = min_t(u64, value, guc_policy_max_preempt_timeout_ms());
594 value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT));
599 u64 intel_clamp_stop_timeout_ms(struct intel_engine_cs *engine, u64 value)
601 value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT));
606 u64 intel_clamp_timeslice_duration_ms(struct intel_engine_cs *engine, u64 value)
609 * NB: The GuC API only supports 32bit values. However, the limit is further
610 * reduced due to internal calculations which would otherwise overflow.
612 if (intel_guc_submission_is_wanted(&engine->gt->uc.guc))
613 value = min_t(u64, value, guc_policy_max_exec_quantum_ms());
615 value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT));
620 static void __setup_engine_capabilities(struct intel_engine_cs *engine)
622 struct drm_i915_private *i915 = engine->i915;
624 if (engine->class == VIDEO_DECODE_CLASS) {
626 * HEVC support is present on first engine instance
627 * before Gen11 and on all instances afterwards.
629 if (GRAPHICS_VER(i915) >= 11 ||
630 (GRAPHICS_VER(i915) >= 9 && engine->instance == 0))
631 engine->uabi_capabilities |=
632 I915_VIDEO_CLASS_CAPABILITY_HEVC;
635 * SFC block is present only on even logical engine
638 if ((GRAPHICS_VER(i915) >= 11 &&
639 (engine->gt->info.vdbox_sfc_access &
640 BIT(engine->instance))) ||
641 (GRAPHICS_VER(i915) >= 9 && engine->instance == 0))
642 engine->uabi_capabilities |=
643 I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
644 } else if (engine->class == VIDEO_ENHANCEMENT_CLASS) {
645 if (GRAPHICS_VER(i915) >= 9 &&
646 engine->gt->info.sfc_mask & BIT(engine->instance))
647 engine->uabi_capabilities |=
648 I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
652 static void intel_setup_engine_capabilities(struct intel_gt *gt)
654 struct intel_engine_cs *engine;
655 enum intel_engine_id id;
657 for_each_engine(engine, gt, id)
658 __setup_engine_capabilities(engine);
662 * intel_engines_release() - free the resources allocated for Command Streamers
663 * @gt: pointer to struct intel_gt
665 void intel_engines_release(struct intel_gt *gt)
667 struct intel_engine_cs *engine;
668 enum intel_engine_id id;
671 * Before we release the resources held by engine, we must be certain
672 * that the HW is no longer accessing them -- having the GPU scribble
673 * to or read from a page being used for something else causes no end
676 * The GPU should be reset by this point, but assume the worst just
677 * in case we aborted before completely initialising the engines.
679 GEM_BUG_ON(intel_gt_pm_is_awake(gt));
680 if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display)
681 __intel_gt_reset(gt, ALL_ENGINES);
683 /* Decouple the backend; but keep the layout for late GPU resets */
684 for_each_engine(engine, gt, id) {
685 if (!engine->release)
688 intel_wakeref_wait_for_idle(&engine->wakeref);
689 GEM_BUG_ON(intel_engine_pm_is_awake(engine));
691 engine->release(engine);
692 engine->release = NULL;
694 memset(&engine->reset, 0, sizeof(engine->reset));
698 void intel_engine_free_request_pool(struct intel_engine_cs *engine)
700 if (!engine->request_pool)
703 kmem_cache_free(i915_request_slab_cache(), engine->request_pool);
706 void intel_engines_free(struct intel_gt *gt)
708 struct intel_engine_cs *engine;
709 enum intel_engine_id id;
711 /* Free the requests! dma-resv keeps fences around for an eternity */
714 for_each_engine(engine, gt, id) {
715 intel_engine_free_request_pool(engine);
717 gt->engine[id] = NULL;
722 bool gen11_vdbox_has_sfc(struct intel_gt *gt,
723 unsigned int physical_vdbox,
724 unsigned int logical_vdbox, u16 vdbox_mask)
726 struct drm_i915_private *i915 = gt->i915;
729 * In Gen11, only even numbered logical VDBOXes are hooked
730 * up to an SFC (Scaler & Format Converter) unit.
731 * In Gen12, Even numbered physical instance always are connected
732 * to an SFC. Odd numbered physical instances have SFC only if
733 * previous even instance is fused off.
735 * Starting with Xe_HP, there's also a dedicated SFC_ENABLE field
736 * in the fuse register that tells us whether a specific SFC is present.
738 if ((gt->info.sfc_mask & BIT(physical_vdbox / 2)) == 0)
740 else if (MEDIA_VER(i915) >= 12)
741 return (physical_vdbox % 2 == 0) ||
742 !(BIT(physical_vdbox - 1) & vdbox_mask);
743 else if (MEDIA_VER(i915) == 11)
744 return logical_vdbox % 2 == 0;
749 static void engine_mask_apply_media_fuses(struct intel_gt *gt)
751 struct drm_i915_private *i915 = gt->i915;
752 unsigned int logical_vdbox = 0;
754 u32 media_fuse, fuse1;
758 if (MEDIA_VER(gt->i915) < 11)
762 * On newer platforms the fusing register is called 'enable' and has
763 * enable semantics, while on older platforms it is called 'disable'
764 * and bits have disable semantices.
766 media_fuse = intel_uncore_read(gt->uncore, GEN11_GT_VEBOX_VDBOX_DISABLE);
767 if (MEDIA_VER_FULL(i915) < IP_VER(12, 55))
768 media_fuse = ~media_fuse;
770 vdbox_mask = media_fuse & GEN11_GT_VDBOX_DISABLE_MASK;
771 vebox_mask = (media_fuse & GEN11_GT_VEBOX_DISABLE_MASK) >>
772 GEN11_GT_VEBOX_DISABLE_SHIFT;
774 if (MEDIA_VER_FULL(i915) >= IP_VER(12, 55)) {
775 fuse1 = intel_uncore_read(gt->uncore, HSW_PAVP_FUSE1);
776 gt->info.sfc_mask = REG_FIELD_GET(XEHP_SFC_ENABLE_MASK, fuse1);
778 gt->info.sfc_mask = ~0;
781 for (i = 0; i < I915_MAX_VCS; i++) {
782 if (!HAS_ENGINE(gt, _VCS(i))) {
783 vdbox_mask &= ~BIT(i);
787 if (!(BIT(i) & vdbox_mask)) {
788 gt->info.engine_mask &= ~BIT(_VCS(i));
789 gt_dbg(gt, "vcs%u fused off\n", i);
793 if (gen11_vdbox_has_sfc(gt, i, logical_vdbox, vdbox_mask))
794 gt->info.vdbox_sfc_access |= BIT(i);
797 gt_dbg(gt, "vdbox enable: %04x, instances: %04lx\n", vdbox_mask, VDBOX_MASK(gt));
798 GEM_BUG_ON(vdbox_mask != VDBOX_MASK(gt));
800 for (i = 0; i < I915_MAX_VECS; i++) {
801 if (!HAS_ENGINE(gt, _VECS(i))) {
802 vebox_mask &= ~BIT(i);
806 if (!(BIT(i) & vebox_mask)) {
807 gt->info.engine_mask &= ~BIT(_VECS(i));
808 gt_dbg(gt, "vecs%u fused off\n", i);
811 gt_dbg(gt, "vebox enable: %04x, instances: %04lx\n", vebox_mask, VEBOX_MASK(gt));
812 GEM_BUG_ON(vebox_mask != VEBOX_MASK(gt));
815 static void engine_mask_apply_compute_fuses(struct intel_gt *gt)
817 struct drm_i915_private *i915 = gt->i915;
818 struct intel_gt_info *info = >->info;
819 int ss_per_ccs = info->sseu.max_subslices / I915_MAX_CCS;
820 unsigned long ccs_mask;
823 if (GRAPHICS_VER(i915) < 11)
826 if (hweight32(CCS_MASK(gt)) <= 1)
829 ccs_mask = intel_slicemask_from_xehp_dssmask(info->sseu.compute_subslice_mask,
832 * If all DSS in a quadrant are fused off, the corresponding CCS
833 * engine is not available for use.
835 for_each_clear_bit(i, &ccs_mask, I915_MAX_CCS) {
836 info->engine_mask &= ~BIT(_CCS(i));
837 gt_dbg(gt, "ccs%u fused off\n", i);
842 * Determine which engines are fused off in our particular hardware.
843 * Note that we have a catch-22 situation where we need to be able to access
844 * the blitter forcewake domain to read the engine fuses, but at the same time
845 * we need to know which engines are available on the system to know which
846 * forcewake domains are present. We solve this by intializing the forcewake
847 * domains based on the full engine mask in the platform capabilities before
848 * calling this function and pruning the domains for fused-off engines
851 static intel_engine_mask_t init_engine_mask(struct intel_gt *gt)
853 struct intel_gt_info *info = >->info;
855 GEM_BUG_ON(!info->engine_mask);
857 engine_mask_apply_media_fuses(gt);
858 engine_mask_apply_compute_fuses(gt);
861 * The only use of the GSC CS is to load and communicate with the GSC
862 * FW, so we have no use for it if we don't have the FW.
864 * IMPORTANT: in cases where we don't have the GSC FW, we have a
865 * catch-22 situation that breaks media C6 due to 2 requirements:
866 * 1) once turned on, the GSC power well will not go to sleep unless the
868 * 2) to enable idling (which is required for media C6) we need to
869 * initialize the IDLE_MSG register for the GSC CS and do at least 1
870 * submission, which will wake up the GSC power well.
872 if (__HAS_ENGINE(info->engine_mask, GSC0) && !intel_uc_wants_gsc_uc(>->uc)) {
873 gt_notice(gt, "No GSC FW selected, disabling GSC CS and media C6\n");
874 info->engine_mask &= ~BIT(GSC0);
878 * Do not create the command streamer for CCS slices beyond the first.
879 * All the workload submitted to the first engine will be shared among
882 * Once the user will be allowed to customize the CCS mode, then this
883 * check needs to be removed.
885 if (IS_DG2(gt->i915)) {
886 u8 first_ccs = __ffs(CCS_MASK(gt));
888 /* Mask off all the CCS engine */
889 info->engine_mask &= ~GENMASK(CCS3, CCS0);
890 /* Put back in the first CCS engine */
891 info->engine_mask |= BIT(_CCS(first_ccs));
894 return info->engine_mask;
897 static void populate_logical_ids(struct intel_gt *gt, u8 *logical_ids,
898 u8 class, const u8 *map, u8 num_instances)
901 u8 current_logical_id = 0;
903 for (j = 0; j < num_instances; ++j) {
904 for (i = 0; i < ARRAY_SIZE(intel_engines); ++i) {
905 if (!HAS_ENGINE(gt, i) ||
906 intel_engines[i].class != class)
909 if (intel_engines[i].instance == map[j]) {
910 logical_ids[intel_engines[i].instance] =
911 current_logical_id++;
918 static void setup_logical_ids(struct intel_gt *gt, u8 *logical_ids, u8 class)
921 * Logical to physical mapping is needed for proper support
922 * to split-frame feature.
924 if (MEDIA_VER(gt->i915) >= 11 && class == VIDEO_DECODE_CLASS) {
925 const u8 map[] = { 0, 2, 4, 6, 1, 3, 5, 7 };
927 populate_logical_ids(gt, logical_ids, class,
928 map, ARRAY_SIZE(map));
931 u8 map[MAX_ENGINE_INSTANCE + 1];
933 for (i = 0; i < MAX_ENGINE_INSTANCE + 1; ++i)
935 populate_logical_ids(gt, logical_ids, class,
936 map, ARRAY_SIZE(map));
941 * intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers
942 * @gt: pointer to struct intel_gt
944 * Return: non-zero if the initialization failed.
946 int intel_engines_init_mmio(struct intel_gt *gt)
948 struct drm_i915_private *i915 = gt->i915;
949 const unsigned int engine_mask = init_engine_mask(gt);
950 unsigned int mask = 0;
951 unsigned int i, class;
952 u8 logical_ids[MAX_ENGINE_INSTANCE + 1];
955 drm_WARN_ON(&i915->drm, engine_mask == 0);
956 drm_WARN_ON(&i915->drm, engine_mask &
957 GENMASK(BITS_PER_TYPE(mask) - 1, I915_NUM_ENGINES));
959 if (i915_inject_probe_failure(i915))
962 for (class = 0; class < MAX_ENGINE_CLASS + 1; ++class) {
963 setup_logical_ids(gt, logical_ids, class);
965 for (i = 0; i < ARRAY_SIZE(intel_engines); ++i) {
966 u8 instance = intel_engines[i].instance;
968 if (intel_engines[i].class != class ||
972 err = intel_engine_setup(gt, i,
973 logical_ids[instance]);
982 * Catch failures to update intel_engines table when the new engines
983 * are added to the driver by a warning and disabling the forgotten
986 if (drm_WARN_ON(&i915->drm, mask != engine_mask))
987 gt->info.engine_mask = mask;
989 gt->info.num_engines = hweight32(mask);
991 intel_gt_check_and_clear_faults(gt);
993 intel_setup_engine_capabilities(gt);
995 intel_uncore_prune_engine_fw_domains(gt->uncore, gt);
1000 intel_engines_free(gt);
1004 void intel_engine_init_execlists(struct intel_engine_cs *engine)
1006 struct intel_engine_execlists * const execlists = &engine->execlists;
1008 execlists->port_mask = 1;
1009 GEM_BUG_ON(!is_power_of_2(execlists_num_ports(execlists)));
1010 GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS);
1012 memset(execlists->pending, 0, sizeof(execlists->pending));
1014 memset(execlists->inflight, 0, sizeof(execlists->inflight));
1017 static void cleanup_status_page(struct intel_engine_cs *engine)
1019 struct i915_vma *vma;
1021 /* Prevent writes into HWSP after returning the page to the system */
1022 intel_engine_set_hwsp_writemask(engine, ~0u);
1024 vma = fetch_and_zero(&engine->status_page.vma);
1028 if (!HWS_NEEDS_PHYSICAL(engine->i915))
1029 i915_vma_unpin(vma);
1031 i915_gem_object_unpin_map(vma->obj);
1032 i915_gem_object_put(vma->obj);
1035 static int pin_ggtt_status_page(struct intel_engine_cs *engine,
1036 struct i915_gem_ww_ctx *ww,
1037 struct i915_vma *vma)
1041 if (!HAS_LLC(engine->i915) && i915_ggtt_has_aperture(engine->gt->ggtt))
1043 * On g33, we cannot place HWS above 256MiB, so
1044 * restrict its pinning to the low mappable arena.
1045 * Though this restriction is not documented for
1046 * gen4, gen5, or byt, they also behave similarly
1047 * and hang if the HWS is placed at the top of the
1048 * GTT. To generalise, it appears that all !llc
1049 * platforms have issues with us placing the HWS
1050 * above the mappable region (even though we never
1053 flags = PIN_MAPPABLE;
1057 return i915_ggtt_pin(vma, ww, 0, flags);
1060 static int init_status_page(struct intel_engine_cs *engine)
1062 struct drm_i915_gem_object *obj;
1063 struct i915_gem_ww_ctx ww;
1064 struct i915_vma *vma;
1068 INIT_LIST_HEAD(&engine->status_page.timelines);
1071 * Though the HWS register does support 36bit addresses, historically
1072 * we have had hangs and corruption reported due to wild writes if
1073 * the HWS is placed above 4G. We only allow objects to be allocated
1074 * in GFP_DMA32 for i965, and no earlier physical address users had
1075 * access to more than 4G.
1077 obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE);
1079 gt_err(engine->gt, "Failed to allocate status page\n");
1080 return PTR_ERR(obj);
1083 i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC);
1085 vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
1091 i915_gem_ww_ctx_init(&ww, true);
1093 ret = i915_gem_object_lock(obj, &ww);
1094 if (!ret && !HWS_NEEDS_PHYSICAL(engine->i915))
1095 ret = pin_ggtt_status_page(engine, &ww, vma);
1099 vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
1100 if (IS_ERR(vaddr)) {
1101 ret = PTR_ERR(vaddr);
1105 engine->status_page.addr = memset(vaddr, 0, PAGE_SIZE);
1106 engine->status_page.vma = vma;
1110 i915_vma_unpin(vma);
1112 if (ret == -EDEADLK) {
1113 ret = i915_gem_ww_ctx_backoff(&ww);
1117 i915_gem_ww_ctx_fini(&ww);
1120 i915_gem_object_put(obj);
1124 static int intel_engine_init_tlb_invalidation(struct intel_engine_cs *engine)
1126 static const union intel_engine_tlb_inv_reg gen8_regs[] = {
1127 [RENDER_CLASS].reg = GEN8_RTCR,
1128 [VIDEO_DECODE_CLASS].reg = GEN8_M1TCR, /* , GEN8_M2TCR */
1129 [VIDEO_ENHANCEMENT_CLASS].reg = GEN8_VTCR,
1130 [COPY_ENGINE_CLASS].reg = GEN8_BTCR,
1132 static const union intel_engine_tlb_inv_reg gen12_regs[] = {
1133 [RENDER_CLASS].reg = GEN12_GFX_TLB_INV_CR,
1134 [VIDEO_DECODE_CLASS].reg = GEN12_VD_TLB_INV_CR,
1135 [VIDEO_ENHANCEMENT_CLASS].reg = GEN12_VE_TLB_INV_CR,
1136 [COPY_ENGINE_CLASS].reg = GEN12_BLT_TLB_INV_CR,
1137 [COMPUTE_CLASS].reg = GEN12_COMPCTX_TLB_INV_CR,
1139 static const union intel_engine_tlb_inv_reg xehp_regs[] = {
1140 [RENDER_CLASS].mcr_reg = XEHP_GFX_TLB_INV_CR,
1141 [VIDEO_DECODE_CLASS].mcr_reg = XEHP_VD_TLB_INV_CR,
1142 [VIDEO_ENHANCEMENT_CLASS].mcr_reg = XEHP_VE_TLB_INV_CR,
1143 [COPY_ENGINE_CLASS].mcr_reg = XEHP_BLT_TLB_INV_CR,
1144 [COMPUTE_CLASS].mcr_reg = XEHP_COMPCTX_TLB_INV_CR,
1146 static const union intel_engine_tlb_inv_reg xelpmp_regs[] = {
1147 [VIDEO_DECODE_CLASS].reg = GEN12_VD_TLB_INV_CR,
1148 [VIDEO_ENHANCEMENT_CLASS].reg = GEN12_VE_TLB_INV_CR,
1149 [OTHER_CLASS].reg = XELPMP_GSC_TLB_INV_CR,
1151 struct drm_i915_private *i915 = engine->i915;
1152 const unsigned int instance = engine->instance;
1153 const unsigned int class = engine->class;
1154 const union intel_engine_tlb_inv_reg *regs;
1155 union intel_engine_tlb_inv_reg reg;
1156 unsigned int num = 0;
1160 * New platforms should not be added with catch-all-newer (>=)
1161 * condition so that any later platform added triggers the below warning
1162 * and in turn mandates a human cross-check of whether the invalidation
1163 * flows have compatible semantics.
1165 * For instance with the 11.00 -> 12.00 transition three out of five
1166 * respective engine registers were moved to masked type. Then after the
1167 * 12.00 -> 12.50 transition multi cast handling is required too.
1170 if (engine->gt->type == GT_MEDIA) {
1171 if (MEDIA_VER_FULL(i915) == IP_VER(13, 0)) {
1173 num = ARRAY_SIZE(xelpmp_regs);
1176 if (GRAPHICS_VER_FULL(i915) == IP_VER(12, 74) ||
1177 GRAPHICS_VER_FULL(i915) == IP_VER(12, 71) ||
1178 GRAPHICS_VER_FULL(i915) == IP_VER(12, 70) ||
1179 GRAPHICS_VER_FULL(i915) == IP_VER(12, 55)) {
1181 num = ARRAY_SIZE(xehp_regs);
1182 } else if (GRAPHICS_VER_FULL(i915) == IP_VER(12, 0) ||
1183 GRAPHICS_VER_FULL(i915) == IP_VER(12, 10)) {
1185 num = ARRAY_SIZE(gen12_regs);
1186 } else if (GRAPHICS_VER(i915) >= 8 && GRAPHICS_VER(i915) <= 11) {
1188 num = ARRAY_SIZE(gen8_regs);
1189 } else if (GRAPHICS_VER(i915) < 8) {
1194 if (gt_WARN_ONCE(engine->gt, !num,
1195 "Platform does not implement TLB invalidation!"))
1198 if (gt_WARN_ON_ONCE(engine->gt,
1200 (!regs[class].reg.reg &&
1201 !regs[class].mcr_reg.reg)))
1206 if (regs == xelpmp_regs && class == OTHER_CLASS) {
1208 * There's only a single GSC instance, but it uses register bit
1209 * 1 instead of either 0 or OTHER_GSC_INSTANCE.
1211 GEM_WARN_ON(instance != OTHER_GSC_INSTANCE);
1213 } else if (regs == gen8_regs && class == VIDEO_DECODE_CLASS && instance == 1) {
1214 reg.reg = GEN8_M2TCR;
1222 engine->tlb_inv.mcr = regs == xehp_regs;
1223 engine->tlb_inv.reg = reg;
1224 engine->tlb_inv.done = val;
1226 if (GRAPHICS_VER(i915) >= 12 &&
1227 (engine->class == VIDEO_DECODE_CLASS ||
1228 engine->class == VIDEO_ENHANCEMENT_CLASS ||
1229 engine->class == COMPUTE_CLASS ||
1230 engine->class == OTHER_CLASS))
1231 engine->tlb_inv.request = _MASKED_BIT_ENABLE(val);
1233 engine->tlb_inv.request = val;
1238 static int engine_setup_common(struct intel_engine_cs *engine)
1242 init_llist_head(&engine->barrier_tasks);
1244 err = intel_engine_init_tlb_invalidation(engine);
1248 err = init_status_page(engine);
1252 engine->breadcrumbs = intel_breadcrumbs_create(engine);
1253 if (!engine->breadcrumbs) {
1258 engine->sched_engine = i915_sched_engine_create(ENGINE_PHYSICAL);
1259 if (!engine->sched_engine) {
1261 goto err_sched_engine;
1263 engine->sched_engine->private_data = engine;
1265 err = intel_engine_init_cmd_parser(engine);
1267 goto err_cmd_parser;
1269 intel_engine_init_execlists(engine);
1270 intel_engine_init__pm(engine);
1271 intel_engine_init_retire(engine);
1273 /* Use the whole device by default */
1275 intel_sseu_from_device_info(&engine->gt->info.sseu);
1277 intel_engine_init_workarounds(engine);
1278 intel_engine_init_whitelist(engine);
1279 intel_engine_init_ctx_wa(engine);
1281 if (GRAPHICS_VER(engine->i915) >= 12)
1282 engine->flags |= I915_ENGINE_HAS_RELATIVE_MMIO;
1287 i915_sched_engine_put(engine->sched_engine);
1289 intel_breadcrumbs_put(engine->breadcrumbs);
1291 cleanup_status_page(engine);
1295 struct measure_breadcrumb {
1296 struct i915_request rq;
1297 struct intel_ring ring;
1301 static int measure_breadcrumb_dw(struct intel_context *ce)
1303 struct intel_engine_cs *engine = ce->engine;
1304 struct measure_breadcrumb *frame;
1307 GEM_BUG_ON(!engine->gt->scratch);
1309 frame = kzalloc(sizeof(*frame), GFP_KERNEL);
1313 frame->rq.i915 = engine->i915;
1314 frame->rq.engine = engine;
1315 frame->rq.context = ce;
1316 rcu_assign_pointer(frame->rq.timeline, ce->timeline);
1317 frame->rq.hwsp_seqno = ce->timeline->hwsp_seqno;
1319 frame->ring.vaddr = frame->cs;
1320 frame->ring.size = sizeof(frame->cs);
1322 BITS_PER_TYPE(frame->ring.size) - ilog2(frame->ring.size);
1323 frame->ring.effective_size = frame->ring.size;
1324 intel_ring_update_space(&frame->ring);
1325 frame->rq.ring = &frame->ring;
1327 mutex_lock(&ce->timeline->mutex);
1328 spin_lock_irq(&engine->sched_engine->lock);
1330 dw = engine->emit_fini_breadcrumb(&frame->rq, frame->cs) - frame->cs;
1332 spin_unlock_irq(&engine->sched_engine->lock);
1333 mutex_unlock(&ce->timeline->mutex);
1335 GEM_BUG_ON(dw & 1); /* RING_TAIL must be qword aligned */
1341 struct intel_context *
1342 intel_engine_create_pinned_context(struct intel_engine_cs *engine,
1343 struct i915_address_space *vm,
1344 unsigned int ring_size,
1346 struct lock_class_key *key,
1349 struct intel_context *ce;
1352 ce = intel_context_create(engine);
1356 __set_bit(CONTEXT_BARRIER_BIT, &ce->flags);
1357 ce->timeline = page_pack_bits(NULL, hwsp);
1359 ce->ring_size = ring_size;
1361 i915_vm_put(ce->vm);
1362 ce->vm = i915_vm_get(vm);
1364 err = intel_context_pin(ce); /* perma-pin so it is always available */
1366 intel_context_put(ce);
1367 return ERR_PTR(err);
1370 list_add_tail(&ce->pinned_contexts_link, &engine->pinned_contexts_list);
1373 * Give our perma-pinned kernel timelines a separate lockdep class,
1374 * so that we can use them from within the normal user timelines
1375 * should we need to inject GPU operations during their request
1378 lockdep_set_class_and_name(&ce->timeline->mutex, key, name);
1383 void intel_engine_destroy_pinned_context(struct intel_context *ce)
1385 struct intel_engine_cs *engine = ce->engine;
1386 struct i915_vma *hwsp = engine->status_page.vma;
1388 GEM_BUG_ON(ce->timeline->hwsp_ggtt != hwsp);
1390 mutex_lock(&hwsp->vm->mutex);
1391 list_del(&ce->timeline->engine_link);
1392 mutex_unlock(&hwsp->vm->mutex);
1394 list_del(&ce->pinned_contexts_link);
1395 intel_context_unpin(ce);
1396 intel_context_put(ce);
1399 static struct intel_context *
1400 create_ggtt_bind_context(struct intel_engine_cs *engine)
1402 static struct lock_class_key kernel;
1405 * MI_UPDATE_GTT can insert up to 511 PTE entries and there could be multiple
1406 * bind requets at a time so get a bigger ring.
1408 return intel_engine_create_pinned_context(engine, engine->gt->vm, SZ_512K,
1409 I915_GEM_HWS_GGTT_BIND_ADDR,
1410 &kernel, "ggtt_bind_context");
1413 static struct intel_context *
1414 create_kernel_context(struct intel_engine_cs *engine)
1416 static struct lock_class_key kernel;
1418 return intel_engine_create_pinned_context(engine, engine->gt->vm, SZ_4K,
1419 I915_GEM_HWS_SEQNO_ADDR,
1420 &kernel, "kernel_context");
1424 * engine_init_common - initialize engine state which might require hw access
1425 * @engine: Engine to initialize.
1427 * Initializes @engine@ structure members shared between legacy and execlists
1428 * submission modes which do require hardware access.
1430 * Typcally done at later stages of submission mode specific engine setup.
1432 * Returns zero on success or an error code on failure.
1434 static int engine_init_common(struct intel_engine_cs *engine)
1436 struct intel_context *ce, *bce = NULL;
1439 engine->set_default_submission(engine);
1442 * We may need to do things with the shrinker which
1443 * require us to immediately switch back to the default
1444 * context. This can cause a problem as pinning the
1445 * default context also requires GTT space which may not
1446 * be available. To avoid this we always pin the default
1449 ce = create_kernel_context(engine);
1453 * Create a separate pinned context for GGTT update with blitter engine
1454 * if a platform require such service. MI_UPDATE_GTT works on other
1455 * engines as well but BCS should be less busy engine so pick that for
1458 if (i915_ggtt_require_binder(engine->i915) && engine->id == BCS0) {
1459 bce = create_ggtt_bind_context(engine);
1462 goto err_ce_context;
1466 ret = measure_breadcrumb_dw(ce);
1468 goto err_bce_context;
1470 engine->emit_fini_breadcrumb_dw = ret;
1471 engine->kernel_context = ce;
1472 engine->bind_context = bce;
1478 intel_engine_destroy_pinned_context(bce);
1480 intel_engine_destroy_pinned_context(ce);
1484 int intel_engines_init(struct intel_gt *gt)
1486 int (*setup)(struct intel_engine_cs *engine);
1487 struct intel_engine_cs *engine;
1488 enum intel_engine_id id;
1491 if (intel_uc_uses_guc_submission(>->uc)) {
1492 gt->submission_method = INTEL_SUBMISSION_GUC;
1493 setup = intel_guc_submission_setup;
1494 } else if (HAS_EXECLISTS(gt->i915)) {
1495 gt->submission_method = INTEL_SUBMISSION_ELSP;
1496 setup = intel_execlists_submission_setup;
1498 gt->submission_method = INTEL_SUBMISSION_RING;
1499 setup = intel_ring_submission_setup;
1502 for_each_engine(engine, gt, id) {
1503 err = engine_setup_common(engine);
1507 err = setup(engine);
1509 intel_engine_cleanup_common(engine);
1513 /* The backend should now be responsible for cleanup */
1514 GEM_BUG_ON(engine->release == NULL);
1516 err = engine_init_common(engine);
1520 intel_engine_add_user(engine);
1527 * intel_engine_cleanup_common - cleans up the engine state created by
1528 * the common initiailizers.
1529 * @engine: Engine to cleanup.
1531 * This cleans up everything created by the common helpers.
1533 void intel_engine_cleanup_common(struct intel_engine_cs *engine)
1535 GEM_BUG_ON(!list_empty(&engine->sched_engine->requests));
1537 i915_sched_engine_put(engine->sched_engine);
1538 intel_breadcrumbs_put(engine->breadcrumbs);
1540 intel_engine_fini_retire(engine);
1541 intel_engine_cleanup_cmd_parser(engine);
1543 if (engine->default_state)
1544 fput(engine->default_state);
1546 if (engine->kernel_context)
1547 intel_engine_destroy_pinned_context(engine->kernel_context);
1549 if (engine->bind_context)
1550 intel_engine_destroy_pinned_context(engine->bind_context);
1553 GEM_BUG_ON(!llist_empty(&engine->barrier_tasks));
1554 cleanup_status_page(engine);
1556 intel_wa_list_free(&engine->ctx_wa_list);
1557 intel_wa_list_free(&engine->wa_list);
1558 intel_wa_list_free(&engine->whitelist);
1562 * intel_engine_resume - re-initializes the HW state of the engine
1563 * @engine: Engine to resume.
1565 * Returns zero on success or an error code on failure.
1567 int intel_engine_resume(struct intel_engine_cs *engine)
1569 intel_engine_apply_workarounds(engine);
1570 intel_engine_apply_whitelist(engine);
1572 return engine->resume(engine);
1575 u64 intel_engine_get_active_head(const struct intel_engine_cs *engine)
1577 struct drm_i915_private *i915 = engine->i915;
1581 if (GRAPHICS_VER(i915) >= 8)
1582 acthd = ENGINE_READ64(engine, RING_ACTHD, RING_ACTHD_UDW);
1583 else if (GRAPHICS_VER(i915) >= 4)
1584 acthd = ENGINE_READ(engine, RING_ACTHD);
1586 acthd = ENGINE_READ(engine, ACTHD);
1591 u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine)
1595 if (GRAPHICS_VER(engine->i915) >= 8)
1596 bbaddr = ENGINE_READ64(engine, RING_BBADDR, RING_BBADDR_UDW);
1598 bbaddr = ENGINE_READ(engine, RING_BBADDR);
1603 static unsigned long stop_timeout(const struct intel_engine_cs *engine)
1605 if (in_atomic() || irqs_disabled()) /* inside atomic preempt-reset? */
1609 * If we are doing a normal GPU reset, we can take our time and allow
1610 * the engine to quiesce. We've stopped submission to the engine, and
1611 * if we wait long enough an innocent context should complete and
1612 * leave the engine idle. So they should not be caught unaware by
1613 * the forthcoming GPU reset (which usually follows the stop_cs)!
1615 return READ_ONCE(engine->props.stop_timeout_ms);
1618 static int __intel_engine_stop_cs(struct intel_engine_cs *engine,
1619 int fast_timeout_us,
1620 int slow_timeout_ms)
1622 struct intel_uncore *uncore = engine->uncore;
1623 const i915_reg_t mode = RING_MI_MODE(engine->mmio_base);
1626 intel_uncore_write_fw(uncore, mode, _MASKED_BIT_ENABLE(STOP_RING));
1629 * Wa_22011802037: Prior to doing a reset, ensure CS is
1630 * stopped, set ring stop bit and prefetch disable bit to halt CS
1632 if (intel_engine_reset_needs_wa_22011802037(engine->gt))
1633 intel_uncore_write_fw(uncore, RING_MODE_GEN7(engine->mmio_base),
1634 _MASKED_BIT_ENABLE(GEN12_GFX_PREFETCH_DISABLE));
1636 err = __intel_wait_for_register_fw(engine->uncore, mode,
1637 MODE_IDLE, MODE_IDLE,
1642 /* A final mmio read to let GPU writes be hopefully flushed to memory */
1643 intel_uncore_posting_read_fw(uncore, mode);
1647 int intel_engine_stop_cs(struct intel_engine_cs *engine)
1651 if (GRAPHICS_VER(engine->i915) < 3)
1654 ENGINE_TRACE(engine, "\n");
1656 * TODO: Find out why occasionally stopping the CS times out. Seen
1657 * especially with gem_eio tests.
1659 * Occasionally trying to stop the cs times out, but does not adversely
1660 * affect functionality. The timeout is set as a config parameter that
1661 * defaults to 100ms. In most cases the follow up operation is to wait
1662 * for pending MI_FORCE_WAKES. The assumption is that this timeout is
1663 * sufficient for any pending MI_FORCEWAKEs to complete. Once root
1664 * caused, the caller must check and handle the return from this
1667 if (__intel_engine_stop_cs(engine, 1000, stop_timeout(engine))) {
1668 ENGINE_TRACE(engine,
1669 "timed out on STOP_RING -> IDLE; HEAD:%04x, TAIL:%04x\n",
1670 ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR,
1671 ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR);
1674 * Sometimes we observe that the idle flag is not
1675 * set even though the ring is empty. So double
1676 * check before giving up.
1678 if ((ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR) !=
1679 (ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR))
1686 void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine)
1688 ENGINE_TRACE(engine, "\n");
1690 ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
1693 static u32 __cs_pending_mi_force_wakes(struct intel_engine_cs *engine)
1695 static const i915_reg_t _reg[I915_NUM_ENGINES] = {
1696 [RCS0] = MSG_IDLE_CS,
1697 [BCS0] = MSG_IDLE_BCS,
1698 [VCS0] = MSG_IDLE_VCS0,
1699 [VCS1] = MSG_IDLE_VCS1,
1700 [VCS2] = MSG_IDLE_VCS2,
1701 [VCS3] = MSG_IDLE_VCS3,
1702 [VCS4] = MSG_IDLE_VCS4,
1703 [VCS5] = MSG_IDLE_VCS5,
1704 [VCS6] = MSG_IDLE_VCS6,
1705 [VCS7] = MSG_IDLE_VCS7,
1706 [VECS0] = MSG_IDLE_VECS0,
1707 [VECS1] = MSG_IDLE_VECS1,
1708 [VECS2] = MSG_IDLE_VECS2,
1709 [VECS3] = MSG_IDLE_VECS3,
1710 [CCS0] = MSG_IDLE_CS,
1711 [CCS1] = MSG_IDLE_CS,
1712 [CCS2] = MSG_IDLE_CS,
1713 [CCS3] = MSG_IDLE_CS,
1717 if (!_reg[engine->id].reg)
1720 val = intel_uncore_read(engine->uncore, _reg[engine->id]);
1722 /* bits[29:25] & bits[13:9] >> shift */
1723 return (val & (val >> 16) & MSG_IDLE_FW_MASK) >> MSG_IDLE_FW_SHIFT;
1726 static void __gpm_wait_for_fw_complete(struct intel_gt *gt, u32 fw_mask)
1730 /* Ensure GPM receives fw up/down after CS is stopped */
1733 /* Wait for forcewake request to complete in GPM */
1734 ret = __intel_wait_for_register_fw(gt->uncore,
1735 GEN9_PWRGT_DOMAIN_STATUS,
1736 fw_mask, fw_mask, 5000, 0, NULL);
1738 /* Ensure CS receives fw ack from GPM */
1742 GT_TRACE(gt, "Failed to complete pending forcewake %d\n", ret);
1746 * Wa_22011802037:gen12: In addition to stopping the cs, we need to wait for any
1747 * pending MI_FORCE_WAKEUP requests that the CS has initiated to complete. The
1748 * pending status is indicated by bits[13:9] (masked by bits[29:25]) in the
1749 * MSG_IDLE register. There's one MSG_IDLE register per reset domain. Since we
1750 * are concerned only with the gt reset here, we use a logical OR of pending
1751 * forcewakeups from all reset domains and then wait for them to complete by
1752 * querying PWRGT_DOMAIN_STATUS.
1754 void intel_engine_wait_for_pending_mi_fw(struct intel_engine_cs *engine)
1756 u32 fw_pending = __cs_pending_mi_force_wakes(engine);
1759 __gpm_wait_for_fw_complete(engine->gt, fw_pending);
1762 /* NB: please notice the memset */
1763 void intel_engine_get_instdone(const struct intel_engine_cs *engine,
1764 struct intel_instdone *instdone)
1766 struct drm_i915_private *i915 = engine->i915;
1767 struct intel_uncore *uncore = engine->uncore;
1768 u32 mmio_base = engine->mmio_base;
1773 memset(instdone, 0, sizeof(*instdone));
1775 if (GRAPHICS_VER(i915) >= 8) {
1776 instdone->instdone =
1777 intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1779 if (engine->id != RCS0)
1782 instdone->slice_common =
1783 intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1784 if (GRAPHICS_VER(i915) >= 12) {
1785 instdone->slice_common_extra[0] =
1786 intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA);
1787 instdone->slice_common_extra[1] =
1788 intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA2);
1791 for_each_ss_steering(iter, engine->gt, slice, subslice) {
1792 instdone->sampler[slice][subslice] =
1793 intel_gt_mcr_read(engine->gt,
1794 GEN8_SAMPLER_INSTDONE,
1796 instdone->row[slice][subslice] =
1797 intel_gt_mcr_read(engine->gt,
1802 if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 55)) {
1803 for_each_ss_steering(iter, engine->gt, slice, subslice)
1804 instdone->geom_svg[slice][subslice] =
1805 intel_gt_mcr_read(engine->gt,
1806 XEHPG_INSTDONE_GEOM_SVG,
1809 } else if (GRAPHICS_VER(i915) >= 7) {
1810 instdone->instdone =
1811 intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1813 if (engine->id != RCS0)
1816 instdone->slice_common =
1817 intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1818 instdone->sampler[0][0] =
1819 intel_uncore_read(uncore, GEN7_SAMPLER_INSTDONE);
1820 instdone->row[0][0] =
1821 intel_uncore_read(uncore, GEN7_ROW_INSTDONE);
1822 } else if (GRAPHICS_VER(i915) >= 4) {
1823 instdone->instdone =
1824 intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1825 if (engine->id == RCS0)
1826 /* HACK: Using the wrong struct member */
1827 instdone->slice_common =
1828 intel_uncore_read(uncore, GEN4_INSTDONE1);
1830 instdone->instdone = intel_uncore_read(uncore, GEN2_INSTDONE);
1834 static bool ring_is_idle(struct intel_engine_cs *engine)
1838 if (I915_SELFTEST_ONLY(!engine->mmio_base))
1841 if (!intel_engine_pm_get_if_awake(engine))
1844 /* First check that no commands are left in the ring */
1845 if ((ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) !=
1846 (ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR))
1849 /* No bit for gen2, so assume the CS parser is idle */
1850 if (GRAPHICS_VER(engine->i915) > 2 &&
1851 !(ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE))
1854 intel_engine_pm_put(engine);
1859 void __intel_engine_flush_submission(struct intel_engine_cs *engine, bool sync)
1861 struct tasklet_struct *t = &engine->sched_engine->tasklet;
1867 if (tasklet_trylock(t)) {
1868 /* Must wait for any GPU reset in progress. */
1869 if (__tasklet_is_enabled(t))
1875 /* Synchronise and wait for the tasklet on another CPU */
1877 tasklet_unlock_wait(t);
1881 * intel_engine_is_idle() - Report if the engine has finished process all work
1882 * @engine: the intel_engine_cs
1884 * Return true if there are no requests pending, nothing left to be submitted
1885 * to hardware, and that the engine is idle.
1887 bool intel_engine_is_idle(struct intel_engine_cs *engine)
1889 /* More white lies, if wedged, hw state is inconsistent */
1890 if (intel_gt_is_wedged(engine->gt))
1893 if (!intel_engine_pm_is_awake(engine))
1896 /* Waiting to drain ELSP? */
1897 intel_synchronize_hardirq(engine->i915);
1898 intel_engine_flush_submission(engine);
1900 /* ELSP is empty, but there are ready requests? E.g. after reset */
1901 if (!i915_sched_engine_is_empty(engine->sched_engine))
1905 return ring_is_idle(engine);
1908 bool intel_engines_are_idle(struct intel_gt *gt)
1910 struct intel_engine_cs *engine;
1911 enum intel_engine_id id;
1914 * If the driver is wedged, HW state may be very inconsistent and
1915 * report that it is still busy, even though we have stopped using it.
1917 if (intel_gt_is_wedged(gt))
1920 /* Already parked (and passed an idleness test); must still be idle */
1921 if (!READ_ONCE(gt->awake))
1924 for_each_engine(engine, gt, id) {
1925 if (!intel_engine_is_idle(engine))
1932 bool intel_engine_irq_enable(struct intel_engine_cs *engine)
1934 if (!engine->irq_enable)
1937 /* Caller disables interrupts */
1938 spin_lock(engine->gt->irq_lock);
1939 engine->irq_enable(engine);
1940 spin_unlock(engine->gt->irq_lock);
1945 void intel_engine_irq_disable(struct intel_engine_cs *engine)
1947 if (!engine->irq_disable)
1950 /* Caller disables interrupts */
1951 spin_lock(engine->gt->irq_lock);
1952 engine->irq_disable(engine);
1953 spin_unlock(engine->gt->irq_lock);
1956 void intel_engines_reset_default_submission(struct intel_gt *gt)
1958 struct intel_engine_cs *engine;
1959 enum intel_engine_id id;
1961 for_each_engine(engine, gt, id) {
1962 if (engine->sanitize)
1963 engine->sanitize(engine);
1965 engine->set_default_submission(engine);
1969 bool intel_engine_can_store_dword(struct intel_engine_cs *engine)
1971 switch (GRAPHICS_VER(engine->i915)) {
1973 return false; /* uses physical not virtual addresses */
1975 /* maybe only uses physical not virtual addresses */
1976 return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915));
1978 return !IS_I965G(engine->i915); /* who knows! */
1980 return engine->class != VIDEO_DECODE_CLASS; /* b0rked */
1986 static struct intel_timeline *get_timeline(struct i915_request *rq)
1988 struct intel_timeline *tl;
1991 * Even though we are holding the engine->sched_engine->lock here, there
1992 * is no control over the submission queue per-se and we are
1993 * inspecting the active state at a random point in time, with an
1994 * unknown queue. Play safe and make sure the timeline remains valid.
1995 * (Only being used for pretty printing, one extra kref shouldn't
1996 * cause a camel stampede!)
1999 tl = rcu_dereference(rq->timeline);
2000 if (!kref_get_unless_zero(&tl->kref))
2007 static int print_ring(char *buf, int sz, struct i915_request *rq)
2011 if (!i915_request_signaled(rq)) {
2012 struct intel_timeline *tl = get_timeline(rq);
2014 len = scnprintf(buf, sz,
2015 "ring:{start:%08x, hwsp:%08x, seqno:%08x, runtime:%llums}, ",
2016 i915_ggtt_offset(rq->ring->vma),
2017 tl ? tl->hwsp_offset : 0,
2019 DIV_ROUND_CLOSEST_ULL(intel_context_get_total_runtime_ns(rq->context),
2023 intel_timeline_put(tl);
2029 static void hexdump(struct drm_printer *m, const void *buf, size_t len)
2031 const size_t rowsize = 8 * sizeof(u32);
2032 const void *prev = NULL;
2036 for (pos = 0; pos < len; pos += rowsize) {
2039 if (prev && !memcmp(prev, buf + pos, rowsize)) {
2041 drm_printf(m, "*\n");
2047 WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos,
2048 rowsize, sizeof(u32),
2050 false) >= sizeof(line));
2051 drm_printf(m, "[%04zx] %s\n", pos, line);
2058 static const char *repr_timer(const struct timer_list *t)
2060 if (!READ_ONCE(t->expires))
2063 if (timer_pending(t))
2069 static void intel_engine_print_registers(struct intel_engine_cs *engine,
2070 struct drm_printer *m)
2072 struct drm_i915_private *i915 = engine->i915;
2073 struct intel_engine_execlists * const execlists = &engine->execlists;
2076 if (engine->id == RENDER_CLASS && IS_GRAPHICS_VER(i915, 4, 7))
2077 drm_printf(m, "\tCCID: 0x%08x\n", ENGINE_READ(engine, CCID));
2078 if (HAS_EXECLISTS(i915)) {
2079 drm_printf(m, "\tEL_STAT_HI: 0x%08x\n",
2080 ENGINE_READ(engine, RING_EXECLIST_STATUS_HI));
2081 drm_printf(m, "\tEL_STAT_LO: 0x%08x\n",
2082 ENGINE_READ(engine, RING_EXECLIST_STATUS_LO));
2084 drm_printf(m, "\tRING_START: 0x%08x\n",
2085 ENGINE_READ(engine, RING_START));
2086 drm_printf(m, "\tRING_HEAD: 0x%08x\n",
2087 ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR);
2088 drm_printf(m, "\tRING_TAIL: 0x%08x\n",
2089 ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR);
2090 drm_printf(m, "\tRING_CTL: 0x%08x%s\n",
2091 ENGINE_READ(engine, RING_CTL),
2092 ENGINE_READ(engine, RING_CTL) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : "");
2093 if (GRAPHICS_VER(engine->i915) > 2) {
2094 drm_printf(m, "\tRING_MODE: 0x%08x%s\n",
2095 ENGINE_READ(engine, RING_MI_MODE),
2096 ENGINE_READ(engine, RING_MI_MODE) & (MODE_IDLE) ? " [idle]" : "");
2099 if (GRAPHICS_VER(i915) >= 6) {
2100 drm_printf(m, "\tRING_IMR: 0x%08x\n",
2101 ENGINE_READ(engine, RING_IMR));
2102 drm_printf(m, "\tRING_ESR: 0x%08x\n",
2103 ENGINE_READ(engine, RING_ESR));
2104 drm_printf(m, "\tRING_EMR: 0x%08x\n",
2105 ENGINE_READ(engine, RING_EMR));
2106 drm_printf(m, "\tRING_EIR: 0x%08x\n",
2107 ENGINE_READ(engine, RING_EIR));
2110 addr = intel_engine_get_active_head(engine);
2111 drm_printf(m, "\tACTHD: 0x%08x_%08x\n",
2112 upper_32_bits(addr), lower_32_bits(addr));
2113 addr = intel_engine_get_last_batch_head(engine);
2114 drm_printf(m, "\tBBADDR: 0x%08x_%08x\n",
2115 upper_32_bits(addr), lower_32_bits(addr));
2116 if (GRAPHICS_VER(i915) >= 8)
2117 addr = ENGINE_READ64(engine, RING_DMA_FADD, RING_DMA_FADD_UDW);
2118 else if (GRAPHICS_VER(i915) >= 4)
2119 addr = ENGINE_READ(engine, RING_DMA_FADD);
2121 addr = ENGINE_READ(engine, DMA_FADD_I8XX);
2122 drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n",
2123 upper_32_bits(addr), lower_32_bits(addr));
2124 if (GRAPHICS_VER(i915) >= 4) {
2125 drm_printf(m, "\tIPEIR: 0x%08x\n",
2126 ENGINE_READ(engine, RING_IPEIR));
2127 drm_printf(m, "\tIPEHR: 0x%08x\n",
2128 ENGINE_READ(engine, RING_IPEHR));
2130 drm_printf(m, "\tIPEIR: 0x%08x\n", ENGINE_READ(engine, IPEIR));
2131 drm_printf(m, "\tIPEHR: 0x%08x\n", ENGINE_READ(engine, IPEHR));
2134 if (HAS_EXECLISTS(i915) && !intel_engine_uses_guc(engine)) {
2135 struct i915_request * const *port, *rq;
2137 &engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
2138 const u8 num_entries = execlists->csb_size;
2142 drm_printf(m, "\tExeclist tasklet queued? %s (%s), preempt? %s, timeslice? %s\n",
2143 str_yes_no(test_bit(TASKLET_STATE_SCHED, &engine->sched_engine->tasklet.state)),
2144 str_enabled_disabled(!atomic_read(&engine->sched_engine->tasklet.count)),
2145 repr_timer(&engine->execlists.preempt),
2146 repr_timer(&engine->execlists.timer));
2148 read = execlists->csb_head;
2149 write = READ_ONCE(*execlists->csb_write);
2151 drm_printf(m, "\tExeclist status: 0x%08x %08x; CSB read:%d, write:%d, entries:%d\n",
2152 ENGINE_READ(engine, RING_EXECLIST_STATUS_LO),
2153 ENGINE_READ(engine, RING_EXECLIST_STATUS_HI),
2154 read, write, num_entries);
2156 if (read >= num_entries)
2158 if (write >= num_entries)
2161 write += num_entries;
2162 while (read < write) {
2163 idx = ++read % num_entries;
2164 drm_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n",
2165 idx, hws[idx * 2], hws[idx * 2 + 1]);
2168 i915_sched_engine_active_lock_bh(engine->sched_engine);
2170 for (port = execlists->active; (rq = *port); port++) {
2174 len = scnprintf(hdr, sizeof(hdr),
2175 "\t\tActive[%d]: ccid:%08x%s%s, ",
2176 (int)(port - execlists->active),
2177 rq->context->lrc.ccid,
2178 intel_context_is_closed(rq->context) ? "!" : "",
2179 intel_context_is_banned(rq->context) ? "*" : "");
2180 len += print_ring(hdr + len, sizeof(hdr) - len, rq);
2181 scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
2182 i915_request_show(m, rq, hdr, 0);
2184 for (port = execlists->pending; (rq = *port); port++) {
2188 len = scnprintf(hdr, sizeof(hdr),
2189 "\t\tPending[%d]: ccid:%08x%s%s, ",
2190 (int)(port - execlists->pending),
2191 rq->context->lrc.ccid,
2192 intel_context_is_closed(rq->context) ? "!" : "",
2193 intel_context_is_banned(rq->context) ? "*" : "");
2194 len += print_ring(hdr + len, sizeof(hdr) - len, rq);
2195 scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
2196 i915_request_show(m, rq, hdr, 0);
2199 i915_sched_engine_active_unlock_bh(engine->sched_engine);
2200 } else if (GRAPHICS_VER(i915) > 6) {
2201 drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
2202 ENGINE_READ(engine, RING_PP_DIR_BASE));
2203 drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
2204 ENGINE_READ(engine, RING_PP_DIR_BASE_READ));
2205 drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
2206 ENGINE_READ(engine, RING_PP_DIR_DCLV));
2210 static void print_request_ring(struct drm_printer *m, struct i915_request *rq)
2212 struct i915_vma_resource *vma_res = rq->batch_res;
2217 "[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]:\n",
2218 rq->head, rq->postfix, rq->tail,
2219 vma_res ? upper_32_bits(vma_res->start) : ~0u,
2220 vma_res ? lower_32_bits(vma_res->start) : ~0u);
2222 size = rq->tail - rq->head;
2223 if (rq->tail < rq->head)
2224 size += rq->ring->size;
2226 ring = kmalloc(size, GFP_ATOMIC);
2228 const void *vaddr = rq->ring->vaddr;
2229 unsigned int head = rq->head;
2230 unsigned int len = 0;
2232 if (rq->tail < head) {
2233 len = rq->ring->size - head;
2234 memcpy(ring, vaddr + head, len);
2237 memcpy(ring + len, vaddr + head, size - len);
2239 hexdump(m, ring, size);
2244 static unsigned long read_ul(void *p, size_t x)
2246 return *(unsigned long *)(p + x);
2249 static void print_properties(struct intel_engine_cs *engine,
2250 struct drm_printer *m)
2252 static const struct pmap {
2257 .offset = offsetof(typeof(engine->props), x), \
2260 P(heartbeat_interval_ms),
2261 P(max_busywait_duration_ns),
2262 P(preempt_timeout_ms),
2264 P(timeslice_duration_ms),
2269 const struct pmap *p;
2271 drm_printf(m, "\tProperties:\n");
2272 for (p = props; p->name; p++)
2273 drm_printf(m, "\t\t%s: %lu [default %lu]\n",
2275 read_ul(&engine->props, p->offset),
2276 read_ul(&engine->defaults, p->offset));
2279 static void engine_dump_request(struct i915_request *rq, struct drm_printer *m, const char *msg)
2281 struct intel_timeline *tl = get_timeline(rq);
2283 i915_request_show(m, rq, msg, 0);
2285 drm_printf(m, "\t\tring->start: 0x%08x\n",
2286 i915_ggtt_offset(rq->ring->vma));
2287 drm_printf(m, "\t\tring->head: 0x%08x\n",
2289 drm_printf(m, "\t\tring->tail: 0x%08x\n",
2291 drm_printf(m, "\t\tring->emit: 0x%08x\n",
2293 drm_printf(m, "\t\tring->space: 0x%08x\n",
2297 drm_printf(m, "\t\tring->hwsp: 0x%08x\n",
2299 intel_timeline_put(tl);
2302 print_request_ring(m, rq);
2304 if (rq->context->lrc_reg_state) {
2305 drm_printf(m, "Logical Ring Context:\n");
2306 hexdump(m, rq->context->lrc_reg_state, PAGE_SIZE);
2310 void intel_engine_dump_active_requests(struct list_head *requests,
2311 struct i915_request *hung_rq,
2312 struct drm_printer *m)
2314 struct i915_request *rq;
2316 enum i915_request_state state;
2318 list_for_each_entry(rq, requests, sched.link) {
2322 state = i915_test_request_state(rq);
2323 if (state < I915_REQUEST_QUEUED)
2326 if (state == I915_REQUEST_ACTIVE)
2327 msg = "\t\tactive on engine";
2329 msg = "\t\tactive in queue";
2331 engine_dump_request(rq, m, msg);
2335 static void engine_dump_active_requests(struct intel_engine_cs *engine,
2336 struct drm_printer *m)
2338 struct intel_context *hung_ce = NULL;
2339 struct i915_request *hung_rq = NULL;
2342 * No need for an engine->irq_seqno_barrier() before the seqno reads.
2343 * The GPU is still running so requests are still executing and any
2344 * hardware reads will be out of date by the time they are reported.
2345 * But the intention here is just to report an instantaneous snapshot
2348 intel_engine_get_hung_entity(engine, &hung_ce, &hung_rq);
2350 drm_printf(m, "\tRequests:\n");
2353 engine_dump_request(hung_rq, m, "\t\thung");
2355 drm_printf(m, "\t\tGot hung ce but no hung rq!\n");
2357 if (intel_uc_uses_guc_submission(&engine->gt->uc))
2358 intel_guc_dump_active_requests(engine, hung_rq, m);
2360 intel_execlists_dump_active_requests(engine, hung_rq, m);
2363 i915_request_put(hung_rq);
2366 void intel_engine_dump(struct intel_engine_cs *engine,
2367 struct drm_printer *m,
2368 const char *header, ...)
2370 struct i915_gpu_error * const error = &engine->i915->gpu_error;
2371 struct i915_request *rq;
2372 intel_wakeref_t wakeref;
2378 va_start(ap, header);
2379 drm_vprintf(m, header, &ap);
2383 if (intel_gt_is_wedged(engine->gt))
2384 drm_printf(m, "*** WEDGED ***\n");
2386 drm_printf(m, "\tAwake? %d\n", atomic_read(&engine->wakeref.count));
2387 drm_printf(m, "\tBarriers?: %s\n",
2388 str_yes_no(!llist_empty(&engine->barrier_tasks)));
2389 drm_printf(m, "\tLatency: %luus\n",
2390 ewma__engine_latency_read(&engine->latency));
2391 if (intel_engine_supports_stats(engine))
2392 drm_printf(m, "\tRuntime: %llums\n",
2393 ktime_to_ms(intel_engine_get_busy_time(engine,
2395 drm_printf(m, "\tForcewake: %x domains, %d active\n",
2396 engine->fw_domain, READ_ONCE(engine->fw_active));
2399 rq = READ_ONCE(engine->heartbeat.systole);
2401 drm_printf(m, "\tHeartbeat: %d ms ago\n",
2402 jiffies_to_msecs(jiffies - rq->emitted_jiffies));
2404 drm_printf(m, "\tReset count: %d (global %d)\n",
2405 i915_reset_engine_count(error, engine),
2406 i915_reset_count(error));
2407 print_properties(engine, m);
2409 engine_dump_active_requests(engine, m);
2411 drm_printf(m, "\tMMIO base: 0x%08x\n", engine->mmio_base);
2412 wakeref = intel_runtime_pm_get_if_in_use(engine->uncore->rpm);
2414 intel_engine_print_registers(engine, m);
2415 intel_runtime_pm_put(engine->uncore->rpm, wakeref);
2417 drm_printf(m, "\tDevice is asleep; skipping register dump\n");
2420 intel_execlists_show_requests(engine, m, i915_request_show, 8);
2422 drm_printf(m, "HWSP:\n");
2423 hexdump(m, engine->status_page.addr, PAGE_SIZE);
2425 drm_printf(m, "Idle? %s\n", str_yes_no(intel_engine_is_idle(engine)));
2427 intel_engine_print_breadcrumbs(engine, m);
2431 * intel_engine_get_busy_time() - Return current accumulated engine busyness
2432 * @engine: engine to report on
2433 * @now: monotonic timestamp of sampling
2435 * Returns accumulated time @engine was busy since engine stats were enabled.
2437 ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine, ktime_t *now)
2439 return engine->busyness(engine, now);
2442 struct intel_context *
2443 intel_engine_create_virtual(struct intel_engine_cs **siblings,
2444 unsigned int count, unsigned long flags)
2447 return ERR_PTR(-EINVAL);
2449 if (count == 1 && !(flags & FORCE_VIRTUAL))
2450 return intel_context_create(siblings[0]);
2452 GEM_BUG_ON(!siblings[0]->cops->create_virtual);
2453 return siblings[0]->cops->create_virtual(siblings, count, flags);
2456 static struct i915_request *engine_execlist_find_hung_request(struct intel_engine_cs *engine)
2458 struct i915_request *request, *active = NULL;
2461 * This search does not work in GuC submission mode. However, the GuC
2462 * will report the hanging context directly to the driver itself. So
2463 * the driver should never get here when in GuC mode.
2465 GEM_BUG_ON(intel_uc_uses_guc_submission(&engine->gt->uc));
2468 * We are called by the error capture, reset and to dump engine
2469 * state at random points in time. In particular, note that neither is
2470 * crucially ordered with an interrupt. After a hang, the GPU is dead
2471 * and we assume that no more writes can happen (we waited long enough
2472 * for all writes that were in transaction to be flushed) - adding an
2473 * extra delay for a recent interrupt is pointless. Hence, we do
2474 * not need an engine->irq_seqno_barrier() before the seqno reads.
2475 * At all other times, we must assume the GPU is still running, but
2476 * we only care about the snapshot of this moment.
2478 lockdep_assert_held(&engine->sched_engine->lock);
2481 request = execlists_active(&engine->execlists);
2483 struct intel_timeline *tl = request->context->timeline;
2485 list_for_each_entry_from_reverse(request, &tl->requests, link) {
2486 if (__i915_request_is_complete(request))
2496 list_for_each_entry(request, &engine->sched_engine->requests,
2498 if (i915_test_request_state(request) != I915_REQUEST_ACTIVE)
2508 void intel_engine_get_hung_entity(struct intel_engine_cs *engine,
2509 struct intel_context **ce, struct i915_request **rq)
2511 unsigned long flags;
2513 *ce = intel_engine_get_hung_context(engine);
2515 intel_engine_clear_hung_context(engine);
2517 *rq = intel_context_get_active_request(*ce);
2522 * Getting here with GuC enabled means it is a forced error capture
2523 * with no actual hang. So, no need to attempt the execlist search.
2525 if (intel_uc_uses_guc_submission(&engine->gt->uc))
2528 spin_lock_irqsave(&engine->sched_engine->lock, flags);
2529 *rq = engine_execlist_find_hung_request(engine);
2531 *rq = i915_request_get_rcu(*rq);
2532 spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
2535 void xehp_enable_ccs_engines(struct intel_engine_cs *engine)
2538 * If there are any non-fused-off CCS engines, we need to enable CCS
2539 * support in the RCU_MODE register. This only needs to be done once,
2540 * so for simplicity we'll take care of this in the RCS engine's
2541 * resume handler; since the RCS and all CCS engines belong to the
2542 * same reset domain and are reset together, this will also take care
2543 * of re-applying the setting after i915-triggered resets.
2545 if (!CCS_MASK(engine->gt))
2548 intel_uncore_write(engine->uncore, GEN12_RCU_MODE,
2549 _MASKED_BIT_ENABLE(GEN12_RCU_MODE_CCS_ENABLE));
2552 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2553 #include "mock_engine.c"
2554 #include "selftest_engine.c"
2555 #include "selftest_engine_cs.c"