1 /* SPDX-License-Identifier: GPL-2.0-only */
3 * Copyright (C) 2012 Regents of the University of California
6 #ifndef _ASM_RISCV_PGTABLE_H
7 #define _ASM_RISCV_PGTABLE_H
9 #include <linux/mmzone.h>
10 #include <linux/sizes.h>
12 #include <asm/pgtable-bits.h>
15 #define KERNEL_LINK_ADDR PAGE_OFFSET
16 #define KERN_VIRT_SIZE (UL(-1))
19 #define ADDRESS_SPACE_END (UL(-1))
22 /* Leave 2GB for kernel and BPF at the end of the address space */
23 #define KERNEL_LINK_ADDR (ADDRESS_SPACE_END - SZ_2G + 1)
25 #define KERNEL_LINK_ADDR PAGE_OFFSET
28 /* Number of entries in the page global directory */
29 #define PTRS_PER_PGD (PAGE_SIZE / sizeof(pgd_t))
30 /* Number of entries in the page table */
31 #define PTRS_PER_PTE (PAGE_SIZE / sizeof(pte_t))
34 * Half of the kernel address space (1/4 of the entries of the page global
35 * directory) is for the direct mapping.
37 #define KERN_VIRT_SIZE ((PTRS_PER_PGD / 2 * PGDIR_SIZE) / 2)
39 #define VMALLOC_SIZE (KERN_VIRT_SIZE >> 1)
40 #define VMALLOC_END PAGE_OFFSET
41 #define VMALLOC_START (PAGE_OFFSET - VMALLOC_SIZE)
43 #define BPF_JIT_REGION_SIZE (SZ_128M)
45 #define BPF_JIT_REGION_START (BPF_JIT_REGION_END - BPF_JIT_REGION_SIZE)
46 #define BPF_JIT_REGION_END (MODULES_END)
48 #define BPF_JIT_REGION_START (PAGE_OFFSET - BPF_JIT_REGION_SIZE)
49 #define BPF_JIT_REGION_END (VMALLOC_END)
52 /* Modules always live before the kernel */
54 /* This is used to define the end of the KASAN shadow region */
55 #define MODULES_LOWEST_VADDR (KERNEL_LINK_ADDR - SZ_2G)
56 #define MODULES_VADDR (PFN_ALIGN((unsigned long)&_end) - SZ_2G)
57 #define MODULES_END (PFN_ALIGN((unsigned long)&_start))
61 * Roughly size the vmemmap space to be large enough to fit enough
62 * struct pages to map half the virtual address space. Then
63 * position vmemmap directly below the VMALLOC region.
66 #define VA_BITS (pgtable_l5_enabled ? \
67 57 : (pgtable_l4_enabled ? 48 : 39))
72 #define VMEMMAP_SHIFT \
73 (VA_BITS - PAGE_SHIFT - 1 + STRUCT_PAGE_MAX_SHIFT)
74 #define VMEMMAP_SIZE BIT(VMEMMAP_SHIFT)
75 #define VMEMMAP_END VMALLOC_START
76 #define VMEMMAP_START (VMALLOC_START - VMEMMAP_SIZE)
79 * Define vmemmap for pfn_to_page & page_to_pfn calls. Needed if kernel
80 * is configured with CONFIG_SPARSEMEM_VMEMMAP enabled.
82 #define vmemmap ((struct page *)VMEMMAP_START)
84 #define PCI_IO_SIZE SZ_16M
85 #define PCI_IO_END VMEMMAP_START
86 #define PCI_IO_START (PCI_IO_END - PCI_IO_SIZE)
88 #define FIXADDR_TOP PCI_IO_START
90 #define FIXADDR_SIZE PMD_SIZE
92 #define FIXADDR_SIZE PGDIR_SIZE
94 #define FIXADDR_START (FIXADDR_TOP - FIXADDR_SIZE)
98 #ifdef CONFIG_XIP_KERNEL
99 #define XIP_OFFSET SZ_32M
100 #define XIP_OFFSET_MASK (SZ_32M - 1)
107 #include <asm/page.h>
108 #include <asm/tlbflush.h>
109 #include <linux/mm_types.h>
111 #define __page_val_to_pfn(_val) (((_val) & _PAGE_PFN_MASK) >> _PAGE_PFN_SHIFT)
114 #include <asm/pgtable-64.h>
116 #include <asm/pgtable-32.h>
117 #endif /* CONFIG_64BIT */
119 #include <linux/page_table_check.h>
121 #ifdef CONFIG_XIP_KERNEL
122 #define XIP_FIXUP(addr) ({ \
123 uintptr_t __a = (uintptr_t)(addr); \
124 (__a >= CONFIG_XIP_PHYS_ADDR && \
125 __a < CONFIG_XIP_PHYS_ADDR + XIP_OFFSET * 2) ? \
126 __a - CONFIG_XIP_PHYS_ADDR + CONFIG_PHYS_RAM_BASE - XIP_OFFSET :\
130 #define XIP_FIXUP(addr) (addr)
131 #endif /* CONFIG_XIP_KERNEL */
133 struct pt_alloc_ops {
134 pte_t *(*get_pte_virt)(phys_addr_t pa);
135 phys_addr_t (*alloc_pte)(uintptr_t va);
136 #ifndef __PAGETABLE_PMD_FOLDED
137 pmd_t *(*get_pmd_virt)(phys_addr_t pa);
138 phys_addr_t (*alloc_pmd)(uintptr_t va);
139 pud_t *(*get_pud_virt)(phys_addr_t pa);
140 phys_addr_t (*alloc_pud)(uintptr_t va);
141 p4d_t *(*get_p4d_virt)(phys_addr_t pa);
142 phys_addr_t (*alloc_p4d)(uintptr_t va);
146 extern struct pt_alloc_ops pt_ops __initdata;
149 /* Number of PGD entries that a user-mode program can use */
150 #define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE)
152 /* Page protection bits */
153 #define _PAGE_BASE (_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_USER)
155 #define PAGE_NONE __pgprot(_PAGE_PROT_NONE | _PAGE_READ)
156 #define PAGE_READ __pgprot(_PAGE_BASE | _PAGE_READ)
157 #define PAGE_WRITE __pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_WRITE)
158 #define PAGE_EXEC __pgprot(_PAGE_BASE | _PAGE_EXEC)
159 #define PAGE_READ_EXEC __pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC)
160 #define PAGE_WRITE_EXEC __pgprot(_PAGE_BASE | _PAGE_READ | \
161 _PAGE_EXEC | _PAGE_WRITE)
163 #define PAGE_COPY PAGE_READ
164 #define PAGE_COPY_EXEC PAGE_EXEC
165 #define PAGE_COPY_READ_EXEC PAGE_READ_EXEC
166 #define PAGE_SHARED PAGE_WRITE
167 #define PAGE_SHARED_EXEC PAGE_WRITE_EXEC
169 #define _PAGE_KERNEL (_PAGE_READ \
176 #define PAGE_KERNEL __pgprot(_PAGE_KERNEL)
177 #define PAGE_KERNEL_READ __pgprot(_PAGE_KERNEL & ~_PAGE_WRITE)
178 #define PAGE_KERNEL_EXEC __pgprot(_PAGE_KERNEL | _PAGE_EXEC)
179 #define PAGE_KERNEL_READ_EXEC __pgprot((_PAGE_KERNEL & ~_PAGE_WRITE) \
182 #define PAGE_TABLE __pgprot(_PAGE_TABLE)
184 #define _PAGE_IOREMAP ((_PAGE_KERNEL & ~_PAGE_MTMASK) | _PAGE_IO)
185 #define PAGE_KERNEL_IO __pgprot(_PAGE_IOREMAP)
187 extern pgd_t swapper_pg_dir[];
189 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
190 static inline int pmd_present(pmd_t pmd)
193 * Checking for _PAGE_LEAF is needed too because:
194 * When splitting a THP, split_huge_page() will temporarily clear
195 * the present bit, in this situation, pmd_present() and
196 * pmd_trans_huge() still needs to return true.
198 return (pmd_val(pmd) & (_PAGE_PRESENT | _PAGE_PROT_NONE | _PAGE_LEAF));
201 static inline int pmd_present(pmd_t pmd)
203 return (pmd_val(pmd) & (_PAGE_PRESENT | _PAGE_PROT_NONE));
207 static inline int pmd_none(pmd_t pmd)
209 return (pmd_val(pmd) == 0);
212 static inline int pmd_bad(pmd_t pmd)
214 return !pmd_present(pmd) || (pmd_val(pmd) & _PAGE_LEAF);
217 #define pmd_leaf pmd_leaf
218 static inline int pmd_leaf(pmd_t pmd)
220 return pmd_present(pmd) && (pmd_val(pmd) & _PAGE_LEAF);
223 static inline void set_pmd(pmd_t *pmdp, pmd_t pmd)
228 static inline void pmd_clear(pmd_t *pmdp)
230 set_pmd(pmdp, __pmd(0));
233 static inline pgd_t pfn_pgd(unsigned long pfn, pgprot_t prot)
235 unsigned long prot_val = pgprot_val(prot);
237 ALT_THEAD_PMA(prot_val);
239 return __pgd((pfn << _PAGE_PFN_SHIFT) | prot_val);
242 static inline unsigned long _pgd_pfn(pgd_t pgd)
244 return __page_val_to_pfn(pgd_val(pgd));
247 static inline struct page *pmd_page(pmd_t pmd)
249 return pfn_to_page(__page_val_to_pfn(pmd_val(pmd)));
252 static inline unsigned long pmd_page_vaddr(pmd_t pmd)
254 return (unsigned long)pfn_to_virt(__page_val_to_pfn(pmd_val(pmd)));
257 static inline pte_t pmd_pte(pmd_t pmd)
259 return __pte(pmd_val(pmd));
262 static inline pte_t pud_pte(pud_t pud)
264 return __pte(pud_val(pud));
267 /* Yields the page frame number (PFN) of a page table entry */
268 static inline unsigned long pte_pfn(pte_t pte)
270 return __page_val_to_pfn(pte_val(pte));
273 #define pte_page(x) pfn_to_page(pte_pfn(x))
275 /* Constructs a page table entry */
276 static inline pte_t pfn_pte(unsigned long pfn, pgprot_t prot)
278 unsigned long prot_val = pgprot_val(prot);
280 ALT_THEAD_PMA(prot_val);
282 return __pte((pfn << _PAGE_PFN_SHIFT) | prot_val);
285 #define mk_pte(page, prot) pfn_pte(page_to_pfn(page), prot)
287 static inline int pte_present(pte_t pte)
289 return (pte_val(pte) & (_PAGE_PRESENT | _PAGE_PROT_NONE));
292 static inline int pte_none(pte_t pte)
294 return (pte_val(pte) == 0);
297 static inline int pte_write(pte_t pte)
299 return pte_val(pte) & _PAGE_WRITE;
302 static inline int pte_exec(pte_t pte)
304 return pte_val(pte) & _PAGE_EXEC;
307 static inline int pte_user(pte_t pte)
309 return pte_val(pte) & _PAGE_USER;
312 static inline int pte_huge(pte_t pte)
314 return pte_present(pte) && (pte_val(pte) & _PAGE_LEAF);
317 static inline int pte_dirty(pte_t pte)
319 return pte_val(pte) & _PAGE_DIRTY;
322 static inline int pte_young(pte_t pte)
324 return pte_val(pte) & _PAGE_ACCESSED;
327 static inline int pte_special(pte_t pte)
329 return pte_val(pte) & _PAGE_SPECIAL;
332 /* static inline pte_t pte_rdprotect(pte_t pte) */
334 static inline pte_t pte_wrprotect(pte_t pte)
336 return __pte(pte_val(pte) & ~(_PAGE_WRITE));
339 /* static inline pte_t pte_mkread(pte_t pte) */
341 static inline pte_t pte_mkwrite(pte_t pte)
343 return __pte(pte_val(pte) | _PAGE_WRITE);
346 /* static inline pte_t pte_mkexec(pte_t pte) */
348 static inline pte_t pte_mkdirty(pte_t pte)
350 return __pte(pte_val(pte) | _PAGE_DIRTY);
353 static inline pte_t pte_mkclean(pte_t pte)
355 return __pte(pte_val(pte) & ~(_PAGE_DIRTY));
358 static inline pte_t pte_mkyoung(pte_t pte)
360 return __pte(pte_val(pte) | _PAGE_ACCESSED);
363 static inline pte_t pte_mkold(pte_t pte)
365 return __pte(pte_val(pte) & ~(_PAGE_ACCESSED));
368 static inline pte_t pte_mkspecial(pte_t pte)
370 return __pte(pte_val(pte) | _PAGE_SPECIAL);
373 static inline pte_t pte_mkhuge(pte_t pte)
378 #ifdef CONFIG_NUMA_BALANCING
380 * See the comment in include/asm-generic/pgtable.h
382 static inline int pte_protnone(pte_t pte)
384 return (pte_val(pte) & (_PAGE_PRESENT | _PAGE_PROT_NONE)) == _PAGE_PROT_NONE;
387 static inline int pmd_protnone(pmd_t pmd)
389 return pte_protnone(pmd_pte(pmd));
393 /* Modify page protection bits */
394 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
396 unsigned long newprot_val = pgprot_val(newprot);
398 ALT_THEAD_PMA(newprot_val);
400 return __pte((pte_val(pte) & _PAGE_CHG_MASK) | newprot_val);
403 #define pgd_ERROR(e) \
404 pr_err("%s:%d: bad pgd " PTE_FMT ".\n", __FILE__, __LINE__, pgd_val(e))
407 /* Commit new configuration to MMU hardware */
408 static inline void update_mmu_cache(struct vm_area_struct *vma,
409 unsigned long address, pte_t *ptep)
412 * The kernel assumes that TLBs don't cache invalid entries, but
413 * in RISC-V, SFENCE.VMA specifies an ordering constraint, not a
414 * cache flush; it is necessary even after writing invalid entries.
415 * Relying on flush_tlb_fix_spurious_fault would suffice, but
416 * the extra traps reduce performance. So, eagerly SFENCE.VMA.
418 local_flush_tlb_page(address);
421 #define __HAVE_ARCH_UPDATE_MMU_TLB
422 #define update_mmu_tlb update_mmu_cache
424 static inline void update_mmu_cache_pmd(struct vm_area_struct *vma,
425 unsigned long address, pmd_t *pmdp)
427 pte_t *ptep = (pte_t *)pmdp;
429 update_mmu_cache(vma, address, ptep);
432 #define __HAVE_ARCH_PTE_SAME
433 static inline int pte_same(pte_t pte_a, pte_t pte_b)
435 return pte_val(pte_a) == pte_val(pte_b);
439 * Certain architectures need to do special things when PTEs within
440 * a page table are directly modified. Thus, the following hook is
443 static inline void set_pte(pte_t *ptep, pte_t pteval)
448 void flush_icache_pte(pte_t pte);
450 static inline void __set_pte_at(struct mm_struct *mm,
451 unsigned long addr, pte_t *ptep, pte_t pteval)
453 if (pte_present(pteval) && pte_exec(pteval))
454 flush_icache_pte(pteval);
456 set_pte(ptep, pteval);
459 static inline void set_pte_at(struct mm_struct *mm,
460 unsigned long addr, pte_t *ptep, pte_t pteval)
462 page_table_check_pte_set(mm, addr, ptep, pteval);
463 __set_pte_at(mm, addr, ptep, pteval);
466 static inline void pte_clear(struct mm_struct *mm,
467 unsigned long addr, pte_t *ptep)
469 __set_pte_at(mm, addr, ptep, __pte(0));
472 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
473 static inline int ptep_set_access_flags(struct vm_area_struct *vma,
474 unsigned long address, pte_t *ptep,
475 pte_t entry, int dirty)
477 if (!pte_same(*ptep, entry))
478 set_pte_at(vma->vm_mm, address, ptep, entry);
480 * update_mmu_cache will unconditionally execute, handling both
481 * the case that the PTE changed and the spurious fault case.
486 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
487 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
488 unsigned long address, pte_t *ptep)
490 pte_t pte = __pte(atomic_long_xchg((atomic_long_t *)ptep, 0));
492 page_table_check_pte_clear(mm, address, pte);
497 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
498 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
499 unsigned long address,
502 if (!pte_young(*ptep))
504 return test_and_clear_bit(_PAGE_ACCESSED_OFFSET, &pte_val(*ptep));
507 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
508 static inline void ptep_set_wrprotect(struct mm_struct *mm,
509 unsigned long address, pte_t *ptep)
511 atomic_long_and(~(unsigned long)_PAGE_WRITE, (atomic_long_t *)ptep);
514 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
515 static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
516 unsigned long address, pte_t *ptep)
519 * This comment is borrowed from x86, but applies equally to RISC-V:
521 * Clearing the accessed bit without a TLB flush
522 * doesn't cause data corruption. [ It could cause incorrect
523 * page aging and the (mistaken) reclaim of hot pages, but the
524 * chance of that should be relatively low. ]
526 * So as a performance optimization don't flush the TLB when
527 * clearing the accessed bit, it will eventually be flushed by
528 * a context switch or a VM operation anyway. [ In the rare
529 * event of it not getting flushed for a long time the delay
530 * shouldn't really matter because there's no real memory
531 * pressure for swapout to react to. ]
533 return ptep_test_and_clear_young(vma, address, ptep);
536 #define pgprot_noncached pgprot_noncached
537 static inline pgprot_t pgprot_noncached(pgprot_t _prot)
539 unsigned long prot = pgprot_val(_prot);
541 prot &= ~_PAGE_MTMASK;
544 return __pgprot(prot);
547 #define pgprot_writecombine pgprot_writecombine
548 static inline pgprot_t pgprot_writecombine(pgprot_t _prot)
550 unsigned long prot = pgprot_val(_prot);
552 prot &= ~_PAGE_MTMASK;
553 prot |= _PAGE_NOCACHE;
555 return __pgprot(prot);
561 static inline pmd_t pte_pmd(pte_t pte)
563 return __pmd(pte_val(pte));
566 static inline pmd_t pmd_mkhuge(pmd_t pmd)
571 static inline pmd_t pmd_mkinvalid(pmd_t pmd)
573 return __pmd(pmd_val(pmd) & ~(_PAGE_PRESENT|_PAGE_PROT_NONE));
576 #define __pmd_to_phys(pmd) (__page_val_to_pfn(pmd_val(pmd)) << PAGE_SHIFT)
578 static inline unsigned long pmd_pfn(pmd_t pmd)
580 return ((__pmd_to_phys(pmd) & PMD_MASK) >> PAGE_SHIFT);
583 #define __pud_to_phys(pud) (__page_val_to_pfn(pud_val(pud)) << PAGE_SHIFT)
585 static inline unsigned long pud_pfn(pud_t pud)
587 return ((__pud_to_phys(pud) & PUD_MASK) >> PAGE_SHIFT);
590 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
592 return pte_pmd(pte_modify(pmd_pte(pmd), newprot));
595 #define pmd_write pmd_write
596 static inline int pmd_write(pmd_t pmd)
598 return pte_write(pmd_pte(pmd));
601 static inline int pmd_dirty(pmd_t pmd)
603 return pte_dirty(pmd_pte(pmd));
606 #define pmd_young pmd_young
607 static inline int pmd_young(pmd_t pmd)
609 return pte_young(pmd_pte(pmd));
612 static inline int pmd_user(pmd_t pmd)
614 return pte_user(pmd_pte(pmd));
617 static inline pmd_t pmd_mkold(pmd_t pmd)
619 return pte_pmd(pte_mkold(pmd_pte(pmd)));
622 static inline pmd_t pmd_mkyoung(pmd_t pmd)
624 return pte_pmd(pte_mkyoung(pmd_pte(pmd)));
627 static inline pmd_t pmd_mkwrite(pmd_t pmd)
629 return pte_pmd(pte_mkwrite(pmd_pte(pmd)));
632 static inline pmd_t pmd_wrprotect(pmd_t pmd)
634 return pte_pmd(pte_wrprotect(pmd_pte(pmd)));
637 static inline pmd_t pmd_mkclean(pmd_t pmd)
639 return pte_pmd(pte_mkclean(pmd_pte(pmd)));
642 static inline pmd_t pmd_mkdirty(pmd_t pmd)
644 return pte_pmd(pte_mkdirty(pmd_pte(pmd)));
647 static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
648 pmd_t *pmdp, pmd_t pmd)
650 page_table_check_pmd_set(mm, addr, pmdp, pmd);
651 return __set_pte_at(mm, addr, (pte_t *)pmdp, pmd_pte(pmd));
654 static inline void set_pud_at(struct mm_struct *mm, unsigned long addr,
655 pud_t *pudp, pud_t pud)
657 page_table_check_pud_set(mm, addr, pudp, pud);
658 return __set_pte_at(mm, addr, (pte_t *)pudp, pud_pte(pud));
661 #ifdef CONFIG_PAGE_TABLE_CHECK
662 static inline bool pte_user_accessible_page(pte_t pte)
664 return pte_present(pte) && pte_user(pte);
667 static inline bool pmd_user_accessible_page(pmd_t pmd)
669 return pmd_leaf(pmd) && pmd_user(pmd);
672 static inline bool pud_user_accessible_page(pud_t pud)
674 return pud_leaf(pud) && pud_user(pud);
678 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
679 static inline int pmd_trans_huge(pmd_t pmd)
681 return pmd_leaf(pmd);
684 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
685 static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
686 unsigned long address, pmd_t *pmdp,
687 pmd_t entry, int dirty)
689 return ptep_set_access_flags(vma, address, (pte_t *)pmdp, pmd_pte(entry), dirty);
692 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
693 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
694 unsigned long address, pmd_t *pmdp)
696 return ptep_test_and_clear_young(vma, address, (pte_t *)pmdp);
699 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
700 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
701 unsigned long address, pmd_t *pmdp)
703 pmd_t pmd = __pmd(atomic_long_xchg((atomic_long_t *)pmdp, 0));
705 page_table_check_pmd_clear(mm, address, pmd);
710 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
711 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
712 unsigned long address, pmd_t *pmdp)
714 ptep_set_wrprotect(mm, address, (pte_t *)pmdp);
717 #define pmdp_establish pmdp_establish
718 static inline pmd_t pmdp_establish(struct vm_area_struct *vma,
719 unsigned long address, pmd_t *pmdp, pmd_t pmd)
721 page_table_check_pmd_set(vma->vm_mm, address, pmdp, pmd);
722 return __pmd(atomic_long_xchg((atomic_long_t *)pmdp, pmd_val(pmd)));
725 #define pmdp_collapse_flush pmdp_collapse_flush
726 extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
727 unsigned long address, pmd_t *pmdp);
728 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
731 * Encode/decode swap entries and swap PTEs. Swap PTEs are all PTEs that
732 * are !pte_none() && !pte_present().
734 * Format of swap PTE:
735 * bit 0: _PAGE_PRESENT (zero)
736 * bit 1 to 3: _PAGE_LEAF (zero)
737 * bit 5: _PAGE_PROT_NONE (zero)
738 * bit 6: exclusive marker
739 * bits 7 to 11: swap type
740 * bits 11 to XLEN-1: swap offset
742 #define __SWP_TYPE_SHIFT 7
743 #define __SWP_TYPE_BITS 5
744 #define __SWP_TYPE_MASK ((1UL << __SWP_TYPE_BITS) - 1)
745 #define __SWP_OFFSET_SHIFT (__SWP_TYPE_BITS + __SWP_TYPE_SHIFT)
747 #define MAX_SWAPFILES_CHECK() \
748 BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS)
750 #define __swp_type(x) (((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK)
751 #define __swp_offset(x) ((x).val >> __SWP_OFFSET_SHIFT)
752 #define __swp_entry(type, offset) ((swp_entry_t) \
753 { (((type) & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT) | \
754 ((offset) << __SWP_OFFSET_SHIFT) })
756 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
757 #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
759 static inline int pte_swp_exclusive(pte_t pte)
761 return pte_val(pte) & _PAGE_SWP_EXCLUSIVE;
764 static inline pte_t pte_swp_mkexclusive(pte_t pte)
766 return __pte(pte_val(pte) | _PAGE_SWP_EXCLUSIVE);
769 static inline pte_t pte_swp_clear_exclusive(pte_t pte)
771 return __pte(pte_val(pte) & ~_PAGE_SWP_EXCLUSIVE);
774 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
775 #define __pmd_to_swp_entry(pmd) ((swp_entry_t) { pmd_val(pmd) })
776 #define __swp_entry_to_pmd(swp) __pmd((swp).val)
777 #endif /* CONFIG_ARCH_ENABLE_THP_MIGRATION */
780 * In the RV64 Linux scheme, we give the user half of the virtual-address space
781 * and give the kernel the other (upper) half.
784 #define KERN_VIRT_START (-(BIT(VA_BITS)) + TASK_SIZE)
786 #define KERN_VIRT_START FIXADDR_START
790 * Task size is 0x4000000000 for RV64 or 0x9fc00000 for RV32.
791 * Note that PGDIR_SIZE must evenly divide TASK_SIZE.
793 * - 0x9fc00000 (~2.5GB) for RV32.
794 * - 0x4000000000 ( 256GB) for RV64 using SV39 mmu
795 * - 0x800000000000 ( 128TB) for RV64 using SV48 mmu
797 * Note that PGDIR_SIZE must evenly divide TASK_SIZE since "RISC-V
798 * Instruction Set Manual Volume II: Privileged Architecture" states that
799 * "load and store effective addresses, which are 64bits, must have bits
800 * 63–48 all equal to bit 47, or else a page-fault exception will occur."
803 #define TASK_SIZE_64 (PGDIR_SIZE * PTRS_PER_PGD / 2)
804 #define TASK_SIZE_MIN (PGDIR_SIZE_L3 * PTRS_PER_PGD / 2)
807 #define TASK_SIZE_32 (_AC(0x80000000, UL) - PAGE_SIZE)
808 #define TASK_SIZE (test_thread_flag(TIF_32BIT) ? \
809 TASK_SIZE_32 : TASK_SIZE_64)
811 #define TASK_SIZE TASK_SIZE_64
815 #define TASK_SIZE FIXADDR_START
816 #define TASK_SIZE_MIN TASK_SIZE
819 #else /* CONFIG_MMU */
821 #define PAGE_SHARED __pgprot(0)
822 #define PAGE_KERNEL __pgprot(0)
823 #define swapper_pg_dir NULL
824 #define TASK_SIZE 0xffffffffUL
825 #define VMALLOC_START 0
826 #define VMALLOC_END TASK_SIZE
828 #endif /* !CONFIG_MMU */
830 extern char _start[];
831 extern void *_dtb_early_va;
832 extern uintptr_t _dtb_early_pa;
833 #if defined(CONFIG_XIP_KERNEL) && defined(CONFIG_MMU)
834 #define dtb_early_va (*(void **)XIP_FIXUP(&_dtb_early_va))
835 #define dtb_early_pa (*(uintptr_t *)XIP_FIXUP(&_dtb_early_pa))
837 #define dtb_early_va _dtb_early_va
838 #define dtb_early_pa _dtb_early_pa
839 #endif /* CONFIG_XIP_KERNEL */
840 extern u64 satp_mode;
841 extern bool pgtable_l4_enabled;
843 void paging_init(void);
844 void misc_mem_init(void);
847 * ZERO_PAGE is a global shared page that is always zero,
848 * used for zero-mapped memory areas, etc.
850 extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)];
851 #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
853 #endif /* !__ASSEMBLY__ */
855 #endif /* _ASM_RISCV_PGTABLE_H */