1 #ifndef _INTEL_RINGBUFFER_H_
2 #define _INTEL_RINGBUFFER_H_
4 #include <linux/hashtable.h>
5 #include "i915_gem_batch_pool.h"
6 #include "i915_gem_request.h"
7 #include "i915_gem_timeline.h"
8 #include "i915_selftest.h"
12 #define I915_CMD_HASH_ORDER 9
14 /* Early gen2 devices have a cacheline of just 32 bytes, using 64 is overkill,
15 * but keeps the logic simple. Indeed, the whole purpose of this macro is just
16 * to give some inclination as to some of the magic values used in the various
19 #define CACHELINE_BYTES 64
20 #define CACHELINE_DWORDS (CACHELINE_BYTES / sizeof(uint32_t))
22 struct intel_hw_status_page {
28 #define I915_READ_TAIL(engine) I915_READ(RING_TAIL((engine)->mmio_base))
29 #define I915_WRITE_TAIL(engine, val) I915_WRITE(RING_TAIL((engine)->mmio_base), val)
31 #define I915_READ_START(engine) I915_READ(RING_START((engine)->mmio_base))
32 #define I915_WRITE_START(engine, val) I915_WRITE(RING_START((engine)->mmio_base), val)
34 #define I915_READ_HEAD(engine) I915_READ(RING_HEAD((engine)->mmio_base))
35 #define I915_WRITE_HEAD(engine, val) I915_WRITE(RING_HEAD((engine)->mmio_base), val)
37 #define I915_READ_CTL(engine) I915_READ(RING_CTL((engine)->mmio_base))
38 #define I915_WRITE_CTL(engine, val) I915_WRITE(RING_CTL((engine)->mmio_base), val)
40 #define I915_READ_IMR(engine) I915_READ(RING_IMR((engine)->mmio_base))
41 #define I915_WRITE_IMR(engine, val) I915_WRITE(RING_IMR((engine)->mmio_base), val)
43 #define I915_READ_MODE(engine) I915_READ(RING_MI_MODE((engine)->mmio_base))
44 #define I915_WRITE_MODE(engine, val) I915_WRITE(RING_MI_MODE((engine)->mmio_base), val)
46 /* seqno size is actually only a uint32, but since we plan to use MI_FLUSH_DW to
47 * do the writes, and that must have qw aligned offsets, simply pretend it's 8b.
49 #define gen8_semaphore_seqno_size sizeof(uint64_t)
50 #define GEN8_SEMAPHORE_OFFSET(__from, __to) \
51 (((__from) * I915_NUM_ENGINES + (__to)) * gen8_semaphore_seqno_size)
52 #define GEN8_SIGNAL_OFFSET(__ring, to) \
53 (dev_priv->semaphore->node.start + \
54 GEN8_SEMAPHORE_OFFSET((__ring)->id, (to)))
55 #define GEN8_WAIT_OFFSET(__ring, from) \
56 (dev_priv->semaphore->node.start + \
57 GEN8_SEMAPHORE_OFFSET(from, (__ring)->id))
59 enum intel_engine_hangcheck_action {
64 ENGINE_ACTIVE_SUBUNITS,
69 static inline const char *
70 hangcheck_action_to_str(const enum intel_engine_hangcheck_action a)
77 case ENGINE_ACTIVE_SEQNO:
78 return "active seqno";
79 case ENGINE_ACTIVE_HEAD:
81 case ENGINE_ACTIVE_SUBUNITS:
82 return "active subunits";
83 case ENGINE_WAIT_KICK:
92 #define I915_MAX_SLICES 3
93 #define I915_MAX_SUBSLICES 3
95 #define instdone_slice_mask(dev_priv__) \
96 (INTEL_GEN(dev_priv__) == 7 ? \
97 1 : INTEL_INFO(dev_priv__)->sseu.slice_mask)
99 #define instdone_subslice_mask(dev_priv__) \
100 (INTEL_GEN(dev_priv__) == 7 ? \
101 1 : INTEL_INFO(dev_priv__)->sseu.subslice_mask)
103 #define for_each_instdone_slice_subslice(dev_priv__, slice__, subslice__) \
104 for ((slice__) = 0, (subslice__) = 0; \
105 (slice__) < I915_MAX_SLICES; \
106 (subslice__) = ((subslice__) + 1) < I915_MAX_SUBSLICES ? (subslice__) + 1 : 0, \
107 (slice__) += ((subslice__) == 0)) \
108 for_each_if((BIT(slice__) & instdone_slice_mask(dev_priv__)) && \
109 (BIT(subslice__) & instdone_subslice_mask(dev_priv__)))
111 struct intel_instdone {
113 /* The following exist only in the RCS engine */
115 u32 sampler[I915_MAX_SLICES][I915_MAX_SUBSLICES];
116 u32 row[I915_MAX_SLICES][I915_MAX_SUBSLICES];
119 struct intel_engine_hangcheck {
122 enum intel_engine_hangcheck_action action;
123 unsigned long action_timestamp;
125 struct intel_instdone instdone;
126 struct drm_i915_gem_request *active_request;
131 struct i915_vma *vma;
134 struct list_head request_list;
145 struct i915_gem_context;
146 struct drm_i915_reg_table;
149 * we use a single page to load ctx workarounds so all of these
150 * values are referred in terms of dwords
152 * struct i915_wa_ctx_bb:
153 * offset: specifies batch starting position, also helpful in case
154 * if we want to have multiple batches at different offsets based on
155 * some criteria. It is not a requirement at the moment but provides
156 * an option for future use.
157 * size: size of the batch in DWORDS
159 struct i915_ctx_workarounds {
160 struct i915_wa_ctx_bb {
163 } indirect_ctx, per_ctx;
164 struct i915_vma *vma;
167 struct drm_i915_gem_request;
170 * Engine IDs definitions.
171 * Keep instances of the same type engine together.
173 enum intel_engine_id {
178 #define _VCS(n) (VCS + (n))
182 struct i915_priolist {
184 struct list_head requests;
189 * struct intel_engine_execlists - execlist submission queue and port state
191 * The struct intel_engine_execlists represents the combined logical state of
192 * driver and the hardware state for execlist mode of submission.
194 struct intel_engine_execlists {
196 * @tasklet: softirq tasklet for bottom handler
198 struct tasklet_struct tasklet;
201 * @default_priolist: priority list for I915_PRIORITY_NORMAL
203 struct i915_priolist default_priolist;
206 * @no_priolist: priority lists disabled
211 * @port: execlist port states
213 * For each hardware ELSP (ExecList Submission Port) we keep
214 * track of the last request and the number of times we submitted
215 * that port to hw. We then count the number of times the hw reports
216 * a context completion or preemption. As only one context can
217 * be active on hw, we limit resubmission of context to port[0]. This
218 * is called Lite Restore, of the context.
220 struct execlist_port {
222 * @request_count: combined request and submission count
224 struct drm_i915_gem_request *request_count;
225 #define EXECLIST_COUNT_BITS 2
226 #define port_request(p) ptr_mask_bits((p)->request_count, EXECLIST_COUNT_BITS)
227 #define port_count(p) ptr_unmask_bits((p)->request_count, EXECLIST_COUNT_BITS)
228 #define port_pack(rq, count) ptr_pack_bits(rq, count, EXECLIST_COUNT_BITS)
229 #define port_unpack(p, count) ptr_unpack_bits((p)->request_count, count, EXECLIST_COUNT_BITS)
230 #define port_set(p, packed) ((p)->request_count = (packed))
231 #define port_isset(p) ((p)->request_count)
232 #define port_index(p, execlists) ((p) - (execlists)->port)
235 * @context_id: context ID for port
237 GEM_DEBUG_DECL(u32 context_id);
239 #define EXECLIST_MAX_PORTS 2
240 } port[EXECLIST_MAX_PORTS];
243 * @active: is the HW active? We consider the HW as active after
244 * submitting any context for execution and until we have seen the
245 * last context completion event. After that, we do not expect any
246 * more events until we submit, and so can park the HW.
248 * As we have a small number of different sources from which we feed
249 * the HW, we track the state of each inside a single bitfield.
252 #define EXECLISTS_ACTIVE_USER 0
253 #define EXECLISTS_ACTIVE_PREEMPT 1
256 * @port_mask: number of execlist ports - 1
258 unsigned int port_mask;
261 * @queue: queue of requests, in priority lists
263 struct rb_root queue;
266 * @first: leftmost level in priority @queue
268 struct rb_node *first;
271 * @fw_domains: forcewake domains for irq tasklet
273 unsigned int fw_domains;
276 * @csb_head: context status buffer head
278 unsigned int csb_head;
281 * @csb_use_mmio: access csb through mmio, instead of hwsp
286 #define INTEL_ENGINE_CS_MAX_NAME 8
288 struct intel_engine_cs {
289 struct drm_i915_private *i915;
290 char name[INTEL_ENGINE_CS_MAX_NAME];
292 enum intel_engine_id id;
303 unsigned int irq_shift;
305 struct intel_ring *buffer;
306 struct intel_timeline *timeline;
308 struct drm_i915_gem_object *default_state;
311 unsigned long irq_posted;
312 #define ENGINE_IRQ_BREADCRUMB 0
313 #define ENGINE_IRQ_EXECLIST 1
315 /* Rather than have every client wait upon all user interrupts,
316 * with the herd waking after every interrupt and each doing the
317 * heavyweight seqno dance, we delegate the task (of being the
318 * bottom-half of the user interrupt) to the first client. After
319 * every interrupt, we wake up one client, who does the heavyweight
320 * coherent seqno read and either goes back to sleep (if incomplete),
321 * or wakes up all the completed clients in parallel, before then
322 * transferring the bottom-half status to the next client in the queue.
324 * Compared to walking the entire list of waiters in a single dedicated
325 * bottom-half, we reduce the latency of the first waiter by avoiding
326 * a context switch, but incur additional coherent seqno reads when
327 * following the chain of request breadcrumbs. Since it is most likely
328 * that we have a single client waiting on each seqno, then reducing
329 * the overhead of waking that client is much preferred.
331 struct intel_breadcrumbs {
332 spinlock_t irq_lock; /* protects irq_*; irqsafe */
333 struct intel_wait *irq_wait; /* oldest waiter by retirement */
335 spinlock_t rb_lock; /* protects the rb and wraps irq_lock */
336 struct rb_root waiters; /* sorted by retirement, priority */
337 struct rb_root signals; /* sorted by retirement */
338 struct task_struct *signaler; /* used for fence signalling */
339 struct drm_i915_gem_request __rcu *first_signal;
340 struct timer_list fake_irq; /* used after a missed interrupt */
341 struct timer_list hangcheck; /* detect missed interrupts */
343 unsigned int hangcheck_interrupts;
344 unsigned int irq_enabled;
347 I915_SELFTEST_DECLARE(bool mock : 1);
351 * A pool of objects to use as shadow copies of client batch buffers
352 * when the command parser is enabled. Prevents the client from
353 * modifying the batch contents after software parsing.
355 struct i915_gem_batch_pool batch_pool;
357 struct intel_hw_status_page status_page;
358 struct i915_ctx_workarounds wa_ctx;
359 struct i915_vma *scratch;
361 u32 irq_keep_mask; /* always keep these interrupts */
362 u32 irq_enable_mask; /* bitmask to enable ring interrupt */
363 void (*irq_enable)(struct intel_engine_cs *engine);
364 void (*irq_disable)(struct intel_engine_cs *engine);
366 int (*init_hw)(struct intel_engine_cs *engine);
367 void (*reset_hw)(struct intel_engine_cs *engine,
368 struct drm_i915_gem_request *req);
370 void (*park)(struct intel_engine_cs *engine);
371 void (*unpark)(struct intel_engine_cs *engine);
373 void (*set_default_submission)(struct intel_engine_cs *engine);
375 struct intel_ring *(*context_pin)(struct intel_engine_cs *engine,
376 struct i915_gem_context *ctx);
377 void (*context_unpin)(struct intel_engine_cs *engine,
378 struct i915_gem_context *ctx);
379 int (*request_alloc)(struct drm_i915_gem_request *req);
380 int (*init_context)(struct drm_i915_gem_request *req);
382 int (*emit_flush)(struct drm_i915_gem_request *request,
384 #define EMIT_INVALIDATE BIT(0)
385 #define EMIT_FLUSH BIT(1)
386 #define EMIT_BARRIER (EMIT_INVALIDATE | EMIT_FLUSH)
387 int (*emit_bb_start)(struct drm_i915_gem_request *req,
388 u64 offset, u32 length,
389 unsigned int dispatch_flags);
390 #define I915_DISPATCH_SECURE BIT(0)
391 #define I915_DISPATCH_PINNED BIT(1)
392 #define I915_DISPATCH_RS BIT(2)
393 void (*emit_breadcrumb)(struct drm_i915_gem_request *req,
395 int emit_breadcrumb_sz;
397 /* Pass the request to the hardware queue (e.g. directly into
398 * the legacy ringbuffer or to the end of an execlist).
400 * This is called from an atomic context with irqs disabled; must
403 void (*submit_request)(struct drm_i915_gem_request *req);
405 /* Call when the priority on a request has changed and it and its
406 * dependencies may need rescheduling. Note the request itself may
407 * not be ready to run!
409 * Called under the struct_mutex.
411 void (*schedule)(struct drm_i915_gem_request *request,
415 * Cancel all requests on the hardware, or queued for execution.
416 * This should only cancel the ready requests that have been
417 * submitted to the engine (via the engine->submit_request callback).
418 * This is called when marking the device as wedged.
420 void (*cancel_requests)(struct intel_engine_cs *engine);
422 /* Some chipsets are not quite as coherent as advertised and need
423 * an expensive kick to force a true read of the up-to-date seqno.
424 * However, the up-to-date seqno is not always required and the last
425 * seen value is good enough. Note that the seqno will always be
426 * monotonic, even if not coherent.
428 void (*irq_seqno_barrier)(struct intel_engine_cs *engine);
429 void (*cleanup)(struct intel_engine_cs *engine);
431 /* GEN8 signal/wait table - never trust comments!
432 * signal to signal to signal to signal to signal to
433 * RCS VCS BCS VECS VCS2
434 * --------------------------------------------------------------------
435 * RCS | NOP (0x00) | VCS (0x08) | BCS (0x10) | VECS (0x18) | VCS2 (0x20) |
436 * |-------------------------------------------------------------------
437 * VCS | RCS (0x28) | NOP (0x30) | BCS (0x38) | VECS (0x40) | VCS2 (0x48) |
438 * |-------------------------------------------------------------------
439 * BCS | RCS (0x50) | VCS (0x58) | NOP (0x60) | VECS (0x68) | VCS2 (0x70) |
440 * |-------------------------------------------------------------------
441 * VECS | RCS (0x78) | VCS (0x80) | BCS (0x88) | NOP (0x90) | VCS2 (0x98) |
442 * |-------------------------------------------------------------------
443 * VCS2 | RCS (0xa0) | VCS (0xa8) | BCS (0xb0) | VECS (0xb8) | NOP (0xc0) |
444 * |-------------------------------------------------------------------
447 * f(x, y) := (x->id * NUM_RINGS * seqno_size) + (seqno_size * y->id)
448 * ie. transpose of g(x, y)
450 * sync from sync from sync from sync from sync from
451 * RCS VCS BCS VECS VCS2
452 * --------------------------------------------------------------------
453 * RCS | NOP (0x00) | VCS (0x28) | BCS (0x50) | VECS (0x78) | VCS2 (0xa0) |
454 * |-------------------------------------------------------------------
455 * VCS | RCS (0x08) | NOP (0x30) | BCS (0x58) | VECS (0x80) | VCS2 (0xa8) |
456 * |-------------------------------------------------------------------
457 * BCS | RCS (0x10) | VCS (0x38) | NOP (0x60) | VECS (0x88) | VCS2 (0xb0) |
458 * |-------------------------------------------------------------------
459 * VECS | RCS (0x18) | VCS (0x40) | BCS (0x68) | NOP (0x90) | VCS2 (0xb8) |
460 * |-------------------------------------------------------------------
461 * VCS2 | RCS (0x20) | VCS (0x48) | BCS (0x70) | VECS (0x98) | NOP (0xc0) |
462 * |-------------------------------------------------------------------
465 * g(x, y) := (y->id * NUM_RINGS * seqno_size) + (seqno_size * x->id)
466 * ie. transpose of f(x, y)
470 #define GEN6_SEMAPHORE_LAST VECS_HW
471 #define GEN6_NUM_SEMAPHORES (GEN6_SEMAPHORE_LAST + 1)
472 #define GEN6_SEMAPHORES_MASK GENMASK(GEN6_SEMAPHORE_LAST, 0)
474 /* our mbox written by others */
475 u32 wait[GEN6_NUM_SEMAPHORES];
476 /* mboxes this ring signals to */
477 i915_reg_t signal[GEN6_NUM_SEMAPHORES];
479 u64 signal_ggtt[I915_NUM_ENGINES];
483 int (*sync_to)(struct drm_i915_gem_request *req,
484 struct drm_i915_gem_request *signal);
485 u32 *(*signal)(struct drm_i915_gem_request *req, u32 *cs);
488 struct intel_engine_execlists execlists;
490 /* Contexts are pinned whilst they are active on the GPU. The last
491 * context executed remains active whilst the GPU is idle - the
492 * switch away and write to the context object only occurs on the
493 * next execution. Contexts are only unpinned on retirement of the
494 * following request ensuring that we can always write to the object
495 * on the context switch even after idling. Across suspend, we switch
496 * to the kernel context and trash it as the save may not happen
497 * before the hardware is powered down.
499 struct i915_gem_context *last_retired_context;
501 /* We track the current MI_SET_CONTEXT in order to eliminate
502 * redudant context switches. This presumes that requests are not
503 * reordered! Or when they are the tracking is updated along with
504 * the emission of individual requests into the legacy command
507 struct i915_gem_context *legacy_active_context;
509 /* status_notifier: list of callbacks for context-switch changes */
510 struct atomic_notifier_head context_status_notifier;
512 struct intel_engine_hangcheck hangcheck;
514 bool needs_cmd_parser;
517 * Table of commands the command parser needs to know about
520 DECLARE_HASHTABLE(cmd_hash, I915_CMD_HASH_ORDER);
523 * Table of registers allowed in commands that read/write registers.
525 const struct drm_i915_reg_table *reg_tables;
529 * Returns the bitmask for the length field of the specified command.
530 * Return 0 for an unrecognized/invalid command.
532 * If the command parser finds an entry for a command in the engine's
533 * cmd_tables, it gets the command's length based on the table entry.
534 * If not, it calls this function to determine the per-engine length
535 * field encoding for the command (i.e. different opcode ranges use
536 * certain bits to encode the command length in the header).
538 u32 (*get_cmd_length_mask)(u32 cmd_header);
542 execlists_set_active(struct intel_engine_execlists *execlists,
545 __set_bit(bit, (unsigned long *)&execlists->active);
549 execlists_clear_active(struct intel_engine_execlists *execlists,
552 __clear_bit(bit, (unsigned long *)&execlists->active);
556 execlists_is_active(const struct intel_engine_execlists *execlists,
559 return test_bit(bit, (unsigned long *)&execlists->active);
563 execlists_cancel_port_requests(struct intel_engine_execlists * const execlists);
566 execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists);
568 static inline unsigned int
569 execlists_num_ports(const struct intel_engine_execlists * const execlists)
571 return execlists->port_mask + 1;
575 execlists_port_complete(struct intel_engine_execlists * const execlists,
576 struct execlist_port * const port)
578 const unsigned int m = execlists->port_mask;
580 GEM_BUG_ON(port_index(port, execlists) != 0);
581 GEM_BUG_ON(!execlists_is_active(execlists, EXECLISTS_ACTIVE_USER));
583 memmove(port, port + 1, m * sizeof(struct execlist_port));
584 memset(port + m, 0, sizeof(struct execlist_port));
587 static inline unsigned int
588 intel_engine_flag(const struct intel_engine_cs *engine)
590 return BIT(engine->id);
594 intel_read_status_page(struct intel_engine_cs *engine, int reg)
596 /* Ensure that the compiler doesn't optimize away the load. */
597 return READ_ONCE(engine->status_page.page_addr[reg]);
601 intel_write_status_page(struct intel_engine_cs *engine, int reg, u32 value)
603 /* Writing into the status page should be done sparingly. Since
604 * we do when we are uncertain of the device state, we take a bit
605 * of extra paranoia to try and ensure that the HWS takes the value
606 * we give and that it doesn't end up trapped inside the CPU!
608 if (static_cpu_has(X86_FEATURE_CLFLUSH)) {
610 clflush(&engine->status_page.page_addr[reg]);
611 engine->status_page.page_addr[reg] = value;
612 clflush(&engine->status_page.page_addr[reg]);
615 WRITE_ONCE(engine->status_page.page_addr[reg], value);
620 * Reads a dword out of the status page, which is written to from the command
621 * queue by automatic updates, MI_REPORT_HEAD, MI_STORE_DATA_INDEX, or
624 * The following dwords have a reserved meaning:
625 * 0x00: ISR copy, updated when an ISR bit not set in the HWSTAM changes.
626 * 0x04: ring 0 head pointer
627 * 0x05: ring 1 head pointer (915-class)
628 * 0x06: ring 2 head pointer (915-class)
629 * 0x10-0x1b: Context status DWords (GM45)
630 * 0x1f: Last written status offset. (GM45)
631 * 0x20-0x2f: Reserved (Gen6+)
633 * The area from dword 0x30 to 0x3ff is available for driver usage.
635 #define I915_GEM_HWS_INDEX 0x30
636 #define I915_GEM_HWS_INDEX_ADDR (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)
637 #define I915_GEM_HWS_PREEMPT_INDEX 0x32
638 #define I915_GEM_HWS_PREEMPT_ADDR (I915_GEM_HWS_PREEMPT_INDEX << MI_STORE_DWORD_INDEX_SHIFT)
639 #define I915_GEM_HWS_SCRATCH_INDEX 0x40
640 #define I915_GEM_HWS_SCRATCH_ADDR (I915_GEM_HWS_SCRATCH_INDEX << MI_STORE_DWORD_INDEX_SHIFT)
642 #define I915_HWS_CSB_BUF0_INDEX 0x10
643 #define I915_HWS_CSB_WRITE_INDEX 0x1f
644 #define CNL_HWS_CSB_WRITE_INDEX 0x2f
647 intel_engine_create_ring(struct intel_engine_cs *engine, int size);
648 int intel_ring_pin(struct intel_ring *ring,
649 struct drm_i915_private *i915,
650 unsigned int offset_bias);
651 void intel_ring_reset(struct intel_ring *ring, u32 tail);
652 unsigned int intel_ring_update_space(struct intel_ring *ring);
653 void intel_ring_unpin(struct intel_ring *ring);
654 void intel_ring_free(struct intel_ring *ring);
656 void intel_engine_stop(struct intel_engine_cs *engine);
657 void intel_engine_cleanup(struct intel_engine_cs *engine);
659 void intel_legacy_submission_resume(struct drm_i915_private *dev_priv);
661 int __must_check intel_ring_cacheline_align(struct drm_i915_gem_request *req);
663 int intel_ring_wait_for_space(struct intel_ring *ring, unsigned int bytes);
664 u32 __must_check *intel_ring_begin(struct drm_i915_gem_request *req,
668 intel_ring_advance(struct drm_i915_gem_request *req, u32 *cs)
672 * This serves as a placeholder in the code so that the reader
673 * can compare against the preceding intel_ring_begin() and
674 * check that the number of dwords emitted matches the space
675 * reserved for the command packet (i.e. the value passed to
676 * intel_ring_begin()).
678 GEM_BUG_ON((req->ring->vaddr + req->ring->emit) != cs);
682 intel_ring_wrap(const struct intel_ring *ring, u32 pos)
684 return pos & (ring->size - 1);
688 intel_ring_offset(const struct drm_i915_gem_request *req, void *addr)
690 /* Don't write ring->size (equivalent to 0) as that hangs some GPUs. */
691 u32 offset = addr - req->ring->vaddr;
692 GEM_BUG_ON(offset > req->ring->size);
693 return intel_ring_wrap(req->ring, offset);
697 assert_ring_tail_valid(const struct intel_ring *ring, unsigned int tail)
699 /* We could combine these into a single tail operation, but keeping
700 * them as seperate tests will help identify the cause should one
703 GEM_BUG_ON(!IS_ALIGNED(tail, 8));
704 GEM_BUG_ON(tail >= ring->size);
708 * Gen2 BSpec "1. Programming Environment" / 1.4.4.6
709 * Gen3 BSpec "1c Memory Interface Functions" / 2.3.4.5
710 * Gen4+ BSpec "1c Memory Interface and Command Stream" / 5.3.4.5
711 * "If the Ring Buffer Head Pointer and the Tail Pointer are on the
712 * same cacheline, the Head Pointer must not be greater than the Tail
715 * We use ring->head as the last known location of the actual RING_HEAD,
716 * it may have advanced but in the worst case it is equally the same
717 * as ring->head and so we should never program RING_TAIL to advance
718 * into the same cacheline as ring->head.
720 #define cacheline(a) round_down(a, CACHELINE_BYTES)
721 GEM_BUG_ON(cacheline(tail) == cacheline(ring->head) &&
726 static inline unsigned int
727 intel_ring_set_tail(struct intel_ring *ring, unsigned int tail)
729 /* Whilst writes to the tail are strictly order, there is no
730 * serialisation between readers and the writers. The tail may be
731 * read by i915_gem_request_retire() just as it is being updated
732 * by execlists, as although the breadcrumb is complete, the context
733 * switch hasn't been seen.
735 assert_ring_tail_valid(ring, tail);
740 void intel_engine_init_global_seqno(struct intel_engine_cs *engine, u32 seqno);
742 void intel_engine_setup_common(struct intel_engine_cs *engine);
743 int intel_engine_init_common(struct intel_engine_cs *engine);
744 int intel_engine_create_scratch(struct intel_engine_cs *engine, int size);
745 void intel_engine_cleanup_common(struct intel_engine_cs *engine);
747 int intel_init_render_ring_buffer(struct intel_engine_cs *engine);
748 int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine);
749 int intel_init_blt_ring_buffer(struct intel_engine_cs *engine);
750 int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine);
752 u64 intel_engine_get_active_head(struct intel_engine_cs *engine);
753 u64 intel_engine_get_last_batch_head(struct intel_engine_cs *engine);
755 static inline u32 intel_engine_get_seqno(struct intel_engine_cs *engine)
757 return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
760 static inline u32 intel_engine_last_submit(struct intel_engine_cs *engine)
762 /* We are only peeking at the tail of the submit queue (and not the
763 * queue itself) in order to gain a hint as to the current active
764 * state of the engine. Callers are not expected to be taking
765 * engine->timeline->lock, nor are they expected to be concerned
766 * wtih serialising this hint with anything, so document it as
767 * a hint and nothing more.
769 return READ_ONCE(engine->timeline->seqno);
772 int init_workarounds_ring(struct intel_engine_cs *engine);
773 int intel_ring_workarounds_emit(struct drm_i915_gem_request *req);
775 void intel_engine_get_instdone(struct intel_engine_cs *engine,
776 struct intel_instdone *instdone);
779 * Arbitrary size for largest possible 'add request' sequence. The code paths
780 * are complex and variable. Empirical measurement shows that the worst case
781 * is BDW at 192 bytes (6 + 6 + 36 dwords), then ILK at 136 bytes. However,
782 * we need to allocate double the largest single packet within that emission
783 * to account for tail wraparound (so 6 + 6 + 72 dwords for BDW).
785 #define MIN_SPACE_FOR_ADD_REQUEST 336
787 static inline u32 intel_hws_seqno_address(struct intel_engine_cs *engine)
789 return engine->status_page.ggtt_offset + I915_GEM_HWS_INDEX_ADDR;
792 static inline u32 intel_hws_preempt_done_address(struct intel_engine_cs *engine)
794 return engine->status_page.ggtt_offset + I915_GEM_HWS_PREEMPT_ADDR;
797 /* intel_breadcrumbs.c -- user interrupt bottom-half for waiters */
798 int intel_engine_init_breadcrumbs(struct intel_engine_cs *engine);
800 static inline void intel_wait_init(struct intel_wait *wait,
801 struct drm_i915_gem_request *rq)
807 static inline void intel_wait_init_for_seqno(struct intel_wait *wait, u32 seqno)
813 static inline bool intel_wait_has_seqno(const struct intel_wait *wait)
819 intel_wait_update_seqno(struct intel_wait *wait, u32 seqno)
822 return intel_wait_has_seqno(wait);
826 intel_wait_update_request(struct intel_wait *wait,
827 const struct drm_i915_gem_request *rq)
829 return intel_wait_update_seqno(wait, i915_gem_request_global_seqno(rq));
833 intel_wait_check_seqno(const struct intel_wait *wait, u32 seqno)
835 return wait->seqno == seqno;
839 intel_wait_check_request(const struct intel_wait *wait,
840 const struct drm_i915_gem_request *rq)
842 return intel_wait_check_seqno(wait, i915_gem_request_global_seqno(rq));
845 static inline bool intel_wait_complete(const struct intel_wait *wait)
847 return RB_EMPTY_NODE(&wait->node);
850 bool intel_engine_add_wait(struct intel_engine_cs *engine,
851 struct intel_wait *wait);
852 void intel_engine_remove_wait(struct intel_engine_cs *engine,
853 struct intel_wait *wait);
854 void intel_engine_enable_signaling(struct drm_i915_gem_request *request,
856 void intel_engine_cancel_signaling(struct drm_i915_gem_request *request);
858 static inline bool intel_engine_has_waiter(const struct intel_engine_cs *engine)
860 return READ_ONCE(engine->breadcrumbs.irq_wait);
863 unsigned int intel_engine_wakeup(struct intel_engine_cs *engine);
864 #define ENGINE_WAKEUP_WAITER BIT(0)
865 #define ENGINE_WAKEUP_ASLEEP BIT(1)
867 void intel_engine_pin_breadcrumbs_irq(struct intel_engine_cs *engine);
868 void intel_engine_unpin_breadcrumbs_irq(struct intel_engine_cs *engine);
870 void __intel_engine_disarm_breadcrumbs(struct intel_engine_cs *engine);
871 void intel_engine_disarm_breadcrumbs(struct intel_engine_cs *engine);
873 void intel_engine_reset_breadcrumbs(struct intel_engine_cs *engine);
874 void intel_engine_fini_breadcrumbs(struct intel_engine_cs *engine);
875 bool intel_breadcrumbs_busy(struct intel_engine_cs *engine);
877 static inline u32 *gen8_emit_pipe_control(u32 *batch, u32 flags, u32 offset)
879 memset(batch, 0, 6 * sizeof(u32));
881 batch[0] = GFX_OP_PIPE_CONTROL(6);
889 gen8_emit_ggtt_write_rcs(u32 *cs, u32 value, u32 gtt_offset)
891 /* We're using qword write, offset should be aligned to 8 bytes. */
892 GEM_BUG_ON(!IS_ALIGNED(gtt_offset, 8));
894 /* w/a for post sync ops following a GPGPU operation we
895 * need a prior CS_STALL, which is emitted by the flush
896 * following the batch.
898 *cs++ = GFX_OP_PIPE_CONTROL(6);
899 *cs++ = PIPE_CONTROL_GLOBAL_GTT_IVB | PIPE_CONTROL_CS_STALL |
900 PIPE_CONTROL_QW_WRITE;
904 /* We're thrashing one dword of HWS. */
911 gen8_emit_ggtt_write(u32 *cs, u32 value, u32 gtt_offset)
913 /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
914 GEM_BUG_ON(gtt_offset & (1 << 5));
915 /* Offset should be aligned to 8 bytes for both (QW/DW) write types */
916 GEM_BUG_ON(!IS_ALIGNED(gtt_offset, 8));
918 *cs++ = (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW;
919 *cs++ = gtt_offset | MI_FLUSH_DW_USE_GTT;
926 bool intel_engine_is_idle(struct intel_engine_cs *engine);
927 bool intel_engines_are_idle(struct drm_i915_private *dev_priv);
929 bool intel_engine_has_kernel_context(const struct intel_engine_cs *engine);
931 void intel_engines_park(struct drm_i915_private *i915);
932 void intel_engines_unpark(struct drm_i915_private *i915);
934 void intel_engines_reset_default_submission(struct drm_i915_private *i915);
935 unsigned int intel_engines_has_context_isolation(struct drm_i915_private *i915);
937 bool intel_engine_can_store_dword(struct intel_engine_cs *engine);
939 void intel_engine_dump(struct intel_engine_cs *engine, struct drm_printer *p);
941 #endif /* _INTEL_RINGBUFFER_H_ */