]> Git Repo - linux.git/blob - drivers/usb/gadget/mv_udc_core.c
selinux: Remove security_ops extern
[linux.git] / drivers / usb / gadget / mv_udc_core.c
1 /*
2  * Copyright (C) 2011 Marvell International Ltd. All rights reserved.
3  * Author: Chao Xie <[email protected]>
4  *         Neil Zhang <[email protected]>
5  *
6  * This program is free software; you can redistribute  it and/or modify it
7  * under  the terms of  the GNU General  Public License as published by the
8  * Free Software Foundation;  either version 2 of the  License, or (at your
9  * option) any later version.
10  */
11
12 #include <linux/module.h>
13 #include <linux/pci.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/dmapool.h>
16 #include <linux/kernel.h>
17 #include <linux/delay.h>
18 #include <linux/ioport.h>
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/errno.h>
22 #include <linux/err.h>
23 #include <linux/timer.h>
24 #include <linux/list.h>
25 #include <linux/interrupt.h>
26 #include <linux/moduleparam.h>
27 #include <linux/device.h>
28 #include <linux/usb/ch9.h>
29 #include <linux/usb/gadget.h>
30 #include <linux/usb/otg.h>
31 #include <linux/pm.h>
32 #include <linux/io.h>
33 #include <linux/irq.h>
34 #include <linux/platform_device.h>
35 #include <linux/clk.h>
36 #include <linux/platform_data/mv_usb.h>
37 #include <asm/unaligned.h>
38
39 #include "mv_udc.h"
40
41 #define DRIVER_DESC             "Marvell PXA USB Device Controller driver"
42 #define DRIVER_VERSION          "8 Nov 2010"
43
44 #define ep_dir(ep)      (((ep)->ep_num == 0) ? \
45                                 ((ep)->udc->ep0_dir) : ((ep)->direction))
46
47 /* timeout value -- usec */
48 #define RESET_TIMEOUT           10000
49 #define FLUSH_TIMEOUT           10000
50 #define EPSTATUS_TIMEOUT        10000
51 #define PRIME_TIMEOUT           10000
52 #define READSAFE_TIMEOUT        1000
53
54 #define LOOPS_USEC_SHIFT        1
55 #define LOOPS_USEC              (1 << LOOPS_USEC_SHIFT)
56 #define LOOPS(timeout)          ((timeout) >> LOOPS_USEC_SHIFT)
57
58 static DECLARE_COMPLETION(release_done);
59
60 static const char driver_name[] = "mv_udc";
61 static const char driver_desc[] = DRIVER_DESC;
62
63 static void nuke(struct mv_ep *ep, int status);
64 static void stop_activity(struct mv_udc *udc, struct usb_gadget_driver *driver);
65
66 /* for endpoint 0 operations */
67 static const struct usb_endpoint_descriptor mv_ep0_desc = {
68         .bLength =              USB_DT_ENDPOINT_SIZE,
69         .bDescriptorType =      USB_DT_ENDPOINT,
70         .bEndpointAddress =     0,
71         .bmAttributes =         USB_ENDPOINT_XFER_CONTROL,
72         .wMaxPacketSize =       EP0_MAX_PKT_SIZE,
73 };
74
75 static void ep0_reset(struct mv_udc *udc)
76 {
77         struct mv_ep *ep;
78         u32 epctrlx;
79         int i = 0;
80
81         /* ep0 in and out */
82         for (i = 0; i < 2; i++) {
83                 ep = &udc->eps[i];
84                 ep->udc = udc;
85
86                 /* ep0 dQH */
87                 ep->dqh = &udc->ep_dqh[i];
88
89                 /* configure ep0 endpoint capabilities in dQH */
90                 ep->dqh->max_packet_length =
91                         (EP0_MAX_PKT_SIZE << EP_QUEUE_HEAD_MAX_PKT_LEN_POS)
92                         | EP_QUEUE_HEAD_IOS;
93
94                 ep->dqh->next_dtd_ptr = EP_QUEUE_HEAD_NEXT_TERMINATE;
95
96                 epctrlx = readl(&udc->op_regs->epctrlx[0]);
97                 if (i) {        /* TX */
98                         epctrlx |= EPCTRL_TX_ENABLE
99                                 | (USB_ENDPOINT_XFER_CONTROL
100                                         << EPCTRL_TX_EP_TYPE_SHIFT);
101
102                 } else {        /* RX */
103                         epctrlx |= EPCTRL_RX_ENABLE
104                                 | (USB_ENDPOINT_XFER_CONTROL
105                                         << EPCTRL_RX_EP_TYPE_SHIFT);
106                 }
107
108                 writel(epctrlx, &udc->op_regs->epctrlx[0]);
109         }
110 }
111
112 /* protocol ep0 stall, will automatically be cleared on new transaction */
113 static void ep0_stall(struct mv_udc *udc)
114 {
115         u32     epctrlx;
116
117         /* set TX and RX to stall */
118         epctrlx = readl(&udc->op_regs->epctrlx[0]);
119         epctrlx |= EPCTRL_RX_EP_STALL | EPCTRL_TX_EP_STALL;
120         writel(epctrlx, &udc->op_regs->epctrlx[0]);
121
122         /* update ep0 state */
123         udc->ep0_state = WAIT_FOR_SETUP;
124         udc->ep0_dir = EP_DIR_OUT;
125 }
126
127 static int process_ep_req(struct mv_udc *udc, int index,
128         struct mv_req *curr_req)
129 {
130         struct mv_dtd   *curr_dtd;
131         struct mv_dqh   *curr_dqh;
132         int td_complete, actual, remaining_length;
133         int i, direction;
134         int retval = 0;
135         u32 errors;
136         u32 bit_pos;
137
138         curr_dqh = &udc->ep_dqh[index];
139         direction = index % 2;
140
141         curr_dtd = curr_req->head;
142         td_complete = 0;
143         actual = curr_req->req.length;
144
145         for (i = 0; i < curr_req->dtd_count; i++) {
146                 if (curr_dtd->size_ioc_sts & DTD_STATUS_ACTIVE) {
147                         dev_dbg(&udc->dev->dev, "%s, dTD not completed\n",
148                                 udc->eps[index].name);
149                         return 1;
150                 }
151
152                 errors = curr_dtd->size_ioc_sts & DTD_ERROR_MASK;
153                 if (!errors) {
154                         remaining_length =
155                                 (curr_dtd->size_ioc_sts & DTD_PACKET_SIZE)
156                                         >> DTD_LENGTH_BIT_POS;
157                         actual -= remaining_length;
158
159                         if (remaining_length) {
160                                 if (direction) {
161                                         dev_dbg(&udc->dev->dev,
162                                                 "TX dTD remains data\n");
163                                         retval = -EPROTO;
164                                         break;
165                                 } else
166                                         break;
167                         }
168                 } else {
169                         dev_info(&udc->dev->dev,
170                                 "complete_tr error: ep=%d %s: error = 0x%x\n",
171                                 index >> 1, direction ? "SEND" : "RECV",
172                                 errors);
173                         if (errors & DTD_STATUS_HALTED) {
174                                 /* Clear the errors and Halt condition */
175                                 curr_dqh->size_ioc_int_sts &= ~errors;
176                                 retval = -EPIPE;
177                         } else if (errors & DTD_STATUS_DATA_BUFF_ERR) {
178                                 retval = -EPROTO;
179                         } else if (errors & DTD_STATUS_TRANSACTION_ERR) {
180                                 retval = -EILSEQ;
181                         }
182                 }
183                 if (i != curr_req->dtd_count - 1)
184                         curr_dtd = (struct mv_dtd *)curr_dtd->next_dtd_virt;
185         }
186         if (retval)
187                 return retval;
188
189         if (direction == EP_DIR_OUT)
190                 bit_pos = 1 << curr_req->ep->ep_num;
191         else
192                 bit_pos = 1 << (16 + curr_req->ep->ep_num);
193
194         while ((curr_dqh->curr_dtd_ptr == curr_dtd->td_dma)) {
195                 if (curr_dtd->dtd_next == EP_QUEUE_HEAD_NEXT_TERMINATE) {
196                         while (readl(&udc->op_regs->epstatus) & bit_pos)
197                                 udelay(1);
198                         break;
199                 }
200                 udelay(1);
201         }
202
203         curr_req->req.actual = actual;
204
205         return 0;
206 }
207
208 /*
209  * done() - retire a request; caller blocked irqs
210  * @status : request status to be set, only works when
211  * request is still in progress.
212  */
213 static void done(struct mv_ep *ep, struct mv_req *req, int status)
214         __releases(&ep->udc->lock)
215         __acquires(&ep->udc->lock)
216 {
217         struct mv_udc *udc = NULL;
218         unsigned char stopped = ep->stopped;
219         struct mv_dtd *curr_td, *next_td;
220         int j;
221
222         udc = (struct mv_udc *)ep->udc;
223         /* Removed the req from fsl_ep->queue */
224         list_del_init(&req->queue);
225
226         /* req.status should be set as -EINPROGRESS in ep_queue() */
227         if (req->req.status == -EINPROGRESS)
228                 req->req.status = status;
229         else
230                 status = req->req.status;
231
232         /* Free dtd for the request */
233         next_td = req->head;
234         for (j = 0; j < req->dtd_count; j++) {
235                 curr_td = next_td;
236                 if (j != req->dtd_count - 1)
237                         next_td = curr_td->next_dtd_virt;
238                 dma_pool_free(udc->dtd_pool, curr_td, curr_td->td_dma);
239         }
240
241         usb_gadget_unmap_request(&udc->gadget, &req->req, ep_dir(ep));
242
243         if (status && (status != -ESHUTDOWN))
244                 dev_info(&udc->dev->dev, "complete %s req %p stat %d len %u/%u",
245                         ep->ep.name, &req->req, status,
246                         req->req.actual, req->req.length);
247
248         ep->stopped = 1;
249
250         spin_unlock(&ep->udc->lock);
251         /*
252          * complete() is from gadget layer,
253          * eg fsg->bulk_in_complete()
254          */
255         if (req->req.complete)
256                 req->req.complete(&ep->ep, &req->req);
257
258         spin_lock(&ep->udc->lock);
259         ep->stopped = stopped;
260 }
261
262 static int queue_dtd(struct mv_ep *ep, struct mv_req *req)
263 {
264         struct mv_udc *udc;
265         struct mv_dqh *dqh;
266         u32 bit_pos, direction;
267         u32 usbcmd, epstatus;
268         unsigned int loops;
269         int retval = 0;
270
271         udc = ep->udc;
272         direction = ep_dir(ep);
273         dqh = &(udc->ep_dqh[ep->ep_num * 2 + direction]);
274         bit_pos = 1 << (((direction == EP_DIR_OUT) ? 0 : 16) + ep->ep_num);
275
276         /* check if the pipe is empty */
277         if (!(list_empty(&ep->queue))) {
278                 struct mv_req *lastreq;
279                 lastreq = list_entry(ep->queue.prev, struct mv_req, queue);
280                 lastreq->tail->dtd_next =
281                         req->head->td_dma & EP_QUEUE_HEAD_NEXT_POINTER_MASK;
282
283                 wmb();
284
285                 if (readl(&udc->op_regs->epprime) & bit_pos)
286                         goto done;
287
288                 loops = LOOPS(READSAFE_TIMEOUT);
289                 while (1) {
290                         /* start with setting the semaphores */
291                         usbcmd = readl(&udc->op_regs->usbcmd);
292                         usbcmd |= USBCMD_ATDTW_TRIPWIRE_SET;
293                         writel(usbcmd, &udc->op_regs->usbcmd);
294
295                         /* read the endpoint status */
296                         epstatus = readl(&udc->op_regs->epstatus) & bit_pos;
297
298                         /*
299                          * Reread the ATDTW semaphore bit to check if it is
300                          * cleared. When hardware see a hazard, it will clear
301                          * the bit or else we remain set to 1 and we can
302                          * proceed with priming of endpoint if not already
303                          * primed.
304                          */
305                         if (readl(&udc->op_regs->usbcmd)
306                                 & USBCMD_ATDTW_TRIPWIRE_SET)
307                                 break;
308
309                         loops--;
310                         if (loops == 0) {
311                                 dev_err(&udc->dev->dev,
312                                         "Timeout for ATDTW_TRIPWIRE...\n");
313                                 retval = -ETIME;
314                                 goto done;
315                         }
316                         udelay(LOOPS_USEC);
317                 }
318
319                 /* Clear the semaphore */
320                 usbcmd = readl(&udc->op_regs->usbcmd);
321                 usbcmd &= USBCMD_ATDTW_TRIPWIRE_CLEAR;
322                 writel(usbcmd, &udc->op_regs->usbcmd);
323
324                 if (epstatus)
325                         goto done;
326         }
327
328         /* Write dQH next pointer and terminate bit to 0 */
329         dqh->next_dtd_ptr = req->head->td_dma
330                                 & EP_QUEUE_HEAD_NEXT_POINTER_MASK;
331
332         /* clear active and halt bit, in case set from a previous error */
333         dqh->size_ioc_int_sts &= ~(DTD_STATUS_ACTIVE | DTD_STATUS_HALTED);
334
335         /* Ensure that updates to the QH will occure before priming. */
336         wmb();
337
338         /* Prime the Endpoint */
339         writel(bit_pos, &udc->op_regs->epprime);
340
341 done:
342         return retval;
343 }
344
345 static struct mv_dtd *build_dtd(struct mv_req *req, unsigned *length,
346                 dma_addr_t *dma, int *is_last)
347 {
348         struct mv_dtd *dtd;
349         struct mv_udc *udc;
350         struct mv_dqh *dqh;
351         u32 temp, mult = 0;
352
353         /* how big will this transfer be? */
354         if (usb_endpoint_xfer_isoc(req->ep->ep.desc)) {
355                 dqh = req->ep->dqh;
356                 mult = (dqh->max_packet_length >> EP_QUEUE_HEAD_MULT_POS)
357                                 & 0x3;
358                 *length = min(req->req.length - req->req.actual,
359                                 (unsigned)(mult * req->ep->ep.maxpacket));
360         } else
361                 *length = min(req->req.length - req->req.actual,
362                                 (unsigned)EP_MAX_LENGTH_TRANSFER);
363
364         udc = req->ep->udc;
365
366         /*
367          * Be careful that no _GFP_HIGHMEM is set,
368          * or we can not use dma_to_virt
369          */
370         dtd = dma_pool_alloc(udc->dtd_pool, GFP_ATOMIC, dma);
371         if (dtd == NULL)
372                 return dtd;
373
374         dtd->td_dma = *dma;
375         /* initialize buffer page pointers */
376         temp = (u32)(req->req.dma + req->req.actual);
377         dtd->buff_ptr0 = cpu_to_le32(temp);
378         temp &= ~0xFFF;
379         dtd->buff_ptr1 = cpu_to_le32(temp + 0x1000);
380         dtd->buff_ptr2 = cpu_to_le32(temp + 0x2000);
381         dtd->buff_ptr3 = cpu_to_le32(temp + 0x3000);
382         dtd->buff_ptr4 = cpu_to_le32(temp + 0x4000);
383
384         req->req.actual += *length;
385
386         /* zlp is needed if req->req.zero is set */
387         if (req->req.zero) {
388                 if (*length == 0 || (*length % req->ep->ep.maxpacket) != 0)
389                         *is_last = 1;
390                 else
391                         *is_last = 0;
392         } else if (req->req.length == req->req.actual)
393                 *is_last = 1;
394         else
395                 *is_last = 0;
396
397         /* Fill in the transfer size; set active bit */
398         temp = ((*length << DTD_LENGTH_BIT_POS) | DTD_STATUS_ACTIVE);
399
400         /* Enable interrupt for the last dtd of a request */
401         if (*is_last && !req->req.no_interrupt)
402                 temp |= DTD_IOC;
403
404         temp |= mult << 10;
405
406         dtd->size_ioc_sts = temp;
407
408         mb();
409
410         return dtd;
411 }
412
413 /* generate dTD linked list for a request */
414 static int req_to_dtd(struct mv_req *req)
415 {
416         unsigned count;
417         int is_last, is_first = 1;
418         struct mv_dtd *dtd, *last_dtd = NULL;
419         struct mv_udc *udc;
420         dma_addr_t dma;
421
422         udc = req->ep->udc;
423
424         do {
425                 dtd = build_dtd(req, &count, &dma, &is_last);
426                 if (dtd == NULL)
427                         return -ENOMEM;
428
429                 if (is_first) {
430                         is_first = 0;
431                         req->head = dtd;
432                 } else {
433                         last_dtd->dtd_next = dma;
434                         last_dtd->next_dtd_virt = dtd;
435                 }
436                 last_dtd = dtd;
437                 req->dtd_count++;
438         } while (!is_last);
439
440         /* set terminate bit to 1 for the last dTD */
441         dtd->dtd_next = DTD_NEXT_TERMINATE;
442
443         req->tail = dtd;
444
445         return 0;
446 }
447
448 static int mv_ep_enable(struct usb_ep *_ep,
449                 const struct usb_endpoint_descriptor *desc)
450 {
451         struct mv_udc *udc;
452         struct mv_ep *ep;
453         struct mv_dqh *dqh;
454         u16 max = 0;
455         u32 bit_pos, epctrlx, direction;
456         unsigned char zlt = 0, ios = 0, mult = 0;
457         unsigned long flags;
458
459         ep = container_of(_ep, struct mv_ep, ep);
460         udc = ep->udc;
461
462         if (!_ep || !desc
463                         || desc->bDescriptorType != USB_DT_ENDPOINT)
464                 return -EINVAL;
465
466         if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN)
467                 return -ESHUTDOWN;
468
469         direction = ep_dir(ep);
470         max = usb_endpoint_maxp(desc);
471
472         /*
473          * disable HW zero length termination select
474          * driver handles zero length packet through req->req.zero
475          */
476         zlt = 1;
477
478         bit_pos = 1 << ((direction == EP_DIR_OUT ? 0 : 16) + ep->ep_num);
479
480         /* Check if the Endpoint is Primed */
481         if ((readl(&udc->op_regs->epprime) & bit_pos)
482                 || (readl(&udc->op_regs->epstatus) & bit_pos)) {
483                 dev_info(&udc->dev->dev,
484                         "ep=%d %s: Init ERROR: ENDPTPRIME=0x%x,"
485                         " ENDPTSTATUS=0x%x, bit_pos=0x%x\n",
486                         (unsigned)ep->ep_num, direction ? "SEND" : "RECV",
487                         (unsigned)readl(&udc->op_regs->epprime),
488                         (unsigned)readl(&udc->op_regs->epstatus),
489                         (unsigned)bit_pos);
490                 goto en_done;
491         }
492         /* Set the max packet length, interrupt on Setup and Mult fields */
493         switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
494         case USB_ENDPOINT_XFER_BULK:
495                 zlt = 1;
496                 mult = 0;
497                 break;
498         case USB_ENDPOINT_XFER_CONTROL:
499                 ios = 1;
500         case USB_ENDPOINT_XFER_INT:
501                 mult = 0;
502                 break;
503         case USB_ENDPOINT_XFER_ISOC:
504                 /* Calculate transactions needed for high bandwidth iso */
505                 mult = (unsigned char)(1 + ((max >> 11) & 0x03));
506                 max = max & 0x7ff;      /* bit 0~10 */
507                 /* 3 transactions at most */
508                 if (mult > 3)
509                         goto en_done;
510                 break;
511         default:
512                 goto en_done;
513         }
514
515         spin_lock_irqsave(&udc->lock, flags);
516         /* Get the endpoint queue head address */
517         dqh = ep->dqh;
518         dqh->max_packet_length = (max << EP_QUEUE_HEAD_MAX_PKT_LEN_POS)
519                 | (mult << EP_QUEUE_HEAD_MULT_POS)
520                 | (zlt ? EP_QUEUE_HEAD_ZLT_SEL : 0)
521                 | (ios ? EP_QUEUE_HEAD_IOS : 0);
522         dqh->next_dtd_ptr = 1;
523         dqh->size_ioc_int_sts = 0;
524
525         ep->ep.maxpacket = max;
526         ep->ep.desc = desc;
527         ep->stopped = 0;
528
529         /* Enable the endpoint for Rx or Tx and set the endpoint type */
530         epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
531         if (direction == EP_DIR_IN) {
532                 epctrlx &= ~EPCTRL_TX_ALL_MASK;
533                 epctrlx |= EPCTRL_TX_ENABLE | EPCTRL_TX_DATA_TOGGLE_RST
534                         | ((desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK)
535                                 << EPCTRL_TX_EP_TYPE_SHIFT);
536         } else {
537                 epctrlx &= ~EPCTRL_RX_ALL_MASK;
538                 epctrlx |= EPCTRL_RX_ENABLE | EPCTRL_RX_DATA_TOGGLE_RST
539                         | ((desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK)
540                                 << EPCTRL_RX_EP_TYPE_SHIFT);
541         }
542         writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
543
544         /*
545          * Implement Guideline (GL# USB-7) The unused endpoint type must
546          * be programmed to bulk.
547          */
548         epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
549         if ((epctrlx & EPCTRL_RX_ENABLE) == 0) {
550                 epctrlx |= (USB_ENDPOINT_XFER_BULK
551                                 << EPCTRL_RX_EP_TYPE_SHIFT);
552                 writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
553         }
554
555         epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
556         if ((epctrlx & EPCTRL_TX_ENABLE) == 0) {
557                 epctrlx |= (USB_ENDPOINT_XFER_BULK
558                                 << EPCTRL_TX_EP_TYPE_SHIFT);
559                 writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
560         }
561
562         spin_unlock_irqrestore(&udc->lock, flags);
563
564         return 0;
565 en_done:
566         return -EINVAL;
567 }
568
569 static int  mv_ep_disable(struct usb_ep *_ep)
570 {
571         struct mv_udc *udc;
572         struct mv_ep *ep;
573         struct mv_dqh *dqh;
574         u32 bit_pos, epctrlx, direction;
575         unsigned long flags;
576
577         ep = container_of(_ep, struct mv_ep, ep);
578         if ((_ep == NULL) || !ep->ep.desc)
579                 return -EINVAL;
580
581         udc = ep->udc;
582
583         /* Get the endpoint queue head address */
584         dqh = ep->dqh;
585
586         spin_lock_irqsave(&udc->lock, flags);
587
588         direction = ep_dir(ep);
589         bit_pos = 1 << ((direction == EP_DIR_OUT ? 0 : 16) + ep->ep_num);
590
591         /* Reset the max packet length and the interrupt on Setup */
592         dqh->max_packet_length = 0;
593
594         /* Disable the endpoint for Rx or Tx and reset the endpoint type */
595         epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
596         epctrlx &= ~((direction == EP_DIR_IN)
597                         ? (EPCTRL_TX_ENABLE | EPCTRL_TX_TYPE)
598                         : (EPCTRL_RX_ENABLE | EPCTRL_RX_TYPE));
599         writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
600
601         /* nuke all pending requests (does flush) */
602         nuke(ep, -ESHUTDOWN);
603
604         ep->ep.desc = NULL;
605         ep->stopped = 1;
606
607         spin_unlock_irqrestore(&udc->lock, flags);
608
609         return 0;
610 }
611
612 static struct usb_request *
613 mv_alloc_request(struct usb_ep *_ep, gfp_t gfp_flags)
614 {
615         struct mv_req *req = NULL;
616
617         req = kzalloc(sizeof *req, gfp_flags);
618         if (!req)
619                 return NULL;
620
621         req->req.dma = DMA_ADDR_INVALID;
622         INIT_LIST_HEAD(&req->queue);
623
624         return &req->req;
625 }
626
627 static void mv_free_request(struct usb_ep *_ep, struct usb_request *_req)
628 {
629         struct mv_req *req = NULL;
630
631         req = container_of(_req, struct mv_req, req);
632
633         if (_req)
634                 kfree(req);
635 }
636
637 static void mv_ep_fifo_flush(struct usb_ep *_ep)
638 {
639         struct mv_udc *udc;
640         u32 bit_pos, direction;
641         struct mv_ep *ep;
642         unsigned int loops;
643
644         if (!_ep)
645                 return;
646
647         ep = container_of(_ep, struct mv_ep, ep);
648         if (!ep->ep.desc)
649                 return;
650
651         udc = ep->udc;
652         direction = ep_dir(ep);
653
654         if (ep->ep_num == 0)
655                 bit_pos = (1 << 16) | 1;
656         else if (direction == EP_DIR_OUT)
657                 bit_pos = 1 << ep->ep_num;
658         else
659                 bit_pos = 1 << (16 + ep->ep_num);
660
661         loops = LOOPS(EPSTATUS_TIMEOUT);
662         do {
663                 unsigned int inter_loops;
664
665                 if (loops == 0) {
666                         dev_err(&udc->dev->dev,
667                                 "TIMEOUT for ENDPTSTATUS=0x%x, bit_pos=0x%x\n",
668                                 (unsigned)readl(&udc->op_regs->epstatus),
669                                 (unsigned)bit_pos);
670                         return;
671                 }
672                 /* Write 1 to the Flush register */
673                 writel(bit_pos, &udc->op_regs->epflush);
674
675                 /* Wait until flushing completed */
676                 inter_loops = LOOPS(FLUSH_TIMEOUT);
677                 while (readl(&udc->op_regs->epflush)) {
678                         /*
679                          * ENDPTFLUSH bit should be cleared to indicate this
680                          * operation is complete
681                          */
682                         if (inter_loops == 0) {
683                                 dev_err(&udc->dev->dev,
684                                         "TIMEOUT for ENDPTFLUSH=0x%x,"
685                                         "bit_pos=0x%x\n",
686                                         (unsigned)readl(&udc->op_regs->epflush),
687                                         (unsigned)bit_pos);
688                                 return;
689                         }
690                         inter_loops--;
691                         udelay(LOOPS_USEC);
692                 }
693                 loops--;
694         } while (readl(&udc->op_regs->epstatus) & bit_pos);
695 }
696
697 /* queues (submits) an I/O request to an endpoint */
698 static int
699 mv_ep_queue(struct usb_ep *_ep, struct usb_request *_req, gfp_t gfp_flags)
700 {
701         struct mv_ep *ep = container_of(_ep, struct mv_ep, ep);
702         struct mv_req *req = container_of(_req, struct mv_req, req);
703         struct mv_udc *udc = ep->udc;
704         unsigned long flags;
705         int retval;
706
707         /* catch various bogus parameters */
708         if (!_req || !req->req.complete || !req->req.buf
709                         || !list_empty(&req->queue)) {
710                 dev_err(&udc->dev->dev, "%s, bad params", __func__);
711                 return -EINVAL;
712         }
713         if (unlikely(!_ep || !ep->ep.desc)) {
714                 dev_err(&udc->dev->dev, "%s, bad ep", __func__);
715                 return -EINVAL;
716         }
717
718         udc = ep->udc;
719         if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN)
720                 return -ESHUTDOWN;
721
722         req->ep = ep;
723
724         /* map virtual address to hardware */
725         retval = usb_gadget_map_request(&udc->gadget, _req, ep_dir(ep));
726         if (retval)
727                 return retval;
728
729         req->req.status = -EINPROGRESS;
730         req->req.actual = 0;
731         req->dtd_count = 0;
732
733         spin_lock_irqsave(&udc->lock, flags);
734
735         /* build dtds and push them to device queue */
736         if (!req_to_dtd(req)) {
737                 retval = queue_dtd(ep, req);
738                 if (retval) {
739                         spin_unlock_irqrestore(&udc->lock, flags);
740                         dev_err(&udc->dev->dev, "Failed to queue dtd\n");
741                         goto err_unmap_dma;
742                 }
743         } else {
744                 spin_unlock_irqrestore(&udc->lock, flags);
745                 dev_err(&udc->dev->dev, "Failed to dma_pool_alloc\n");
746                 retval = -ENOMEM;
747                 goto err_unmap_dma;
748         }
749
750         /* Update ep0 state */
751         if (ep->ep_num == 0)
752                 udc->ep0_state = DATA_STATE_XMIT;
753
754         /* irq handler advances the queue */
755         list_add_tail(&req->queue, &ep->queue);
756         spin_unlock_irqrestore(&udc->lock, flags);
757
758         return 0;
759
760 err_unmap_dma:
761         usb_gadget_unmap_request(&udc->gadget, _req, ep_dir(ep));
762
763         return retval;
764 }
765
766 static void mv_prime_ep(struct mv_ep *ep, struct mv_req *req)
767 {
768         struct mv_dqh *dqh = ep->dqh;
769         u32 bit_pos;
770
771         /* Write dQH next pointer and terminate bit to 0 */
772         dqh->next_dtd_ptr = req->head->td_dma
773                 & EP_QUEUE_HEAD_NEXT_POINTER_MASK;
774
775         /* clear active and halt bit, in case set from a previous error */
776         dqh->size_ioc_int_sts &= ~(DTD_STATUS_ACTIVE | DTD_STATUS_HALTED);
777
778         /* Ensure that updates to the QH will occure before priming. */
779         wmb();
780
781         bit_pos = 1 << (((ep_dir(ep) == EP_DIR_OUT) ? 0 : 16) + ep->ep_num);
782
783         /* Prime the Endpoint */
784         writel(bit_pos, &ep->udc->op_regs->epprime);
785 }
786
787 /* dequeues (cancels, unlinks) an I/O request from an endpoint */
788 static int mv_ep_dequeue(struct usb_ep *_ep, struct usb_request *_req)
789 {
790         struct mv_ep *ep = container_of(_ep, struct mv_ep, ep);
791         struct mv_req *req;
792         struct mv_udc *udc = ep->udc;
793         unsigned long flags;
794         int stopped, ret = 0;
795         u32 epctrlx;
796
797         if (!_ep || !_req)
798                 return -EINVAL;
799
800         spin_lock_irqsave(&ep->udc->lock, flags);
801         stopped = ep->stopped;
802
803         /* Stop the ep before we deal with the queue */
804         ep->stopped = 1;
805         epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
806         if (ep_dir(ep) == EP_DIR_IN)
807                 epctrlx &= ~EPCTRL_TX_ENABLE;
808         else
809                 epctrlx &= ~EPCTRL_RX_ENABLE;
810         writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
811
812         /* make sure it's actually queued on this endpoint */
813         list_for_each_entry(req, &ep->queue, queue) {
814                 if (&req->req == _req)
815                         break;
816         }
817         if (&req->req != _req) {
818                 ret = -EINVAL;
819                 goto out;
820         }
821
822         /* The request is in progress, or completed but not dequeued */
823         if (ep->queue.next == &req->queue) {
824                 _req->status = -ECONNRESET;
825                 mv_ep_fifo_flush(_ep);  /* flush current transfer */
826
827                 /* The request isn't the last request in this ep queue */
828                 if (req->queue.next != &ep->queue) {
829                         struct mv_req *next_req;
830
831                         next_req = list_entry(req->queue.next,
832                                 struct mv_req, queue);
833
834                         /* Point the QH to the first TD of next request */
835                         mv_prime_ep(ep, next_req);
836                 } else {
837                         struct mv_dqh *qh;
838
839                         qh = ep->dqh;
840                         qh->next_dtd_ptr = 1;
841                         qh->size_ioc_int_sts = 0;
842                 }
843
844                 /* The request hasn't been processed, patch up the TD chain */
845         } else {
846                 struct mv_req *prev_req;
847
848                 prev_req = list_entry(req->queue.prev, struct mv_req, queue);
849                 writel(readl(&req->tail->dtd_next),
850                                 &prev_req->tail->dtd_next);
851
852         }
853
854         done(ep, req, -ECONNRESET);
855
856         /* Enable EP */
857 out:
858         epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
859         if (ep_dir(ep) == EP_DIR_IN)
860                 epctrlx |= EPCTRL_TX_ENABLE;
861         else
862                 epctrlx |= EPCTRL_RX_ENABLE;
863         writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
864         ep->stopped = stopped;
865
866         spin_unlock_irqrestore(&ep->udc->lock, flags);
867         return ret;
868 }
869
870 static void ep_set_stall(struct mv_udc *udc, u8 ep_num, u8 direction, int stall)
871 {
872         u32 epctrlx;
873
874         epctrlx = readl(&udc->op_regs->epctrlx[ep_num]);
875
876         if (stall) {
877                 if (direction == EP_DIR_IN)
878                         epctrlx |= EPCTRL_TX_EP_STALL;
879                 else
880                         epctrlx |= EPCTRL_RX_EP_STALL;
881         } else {
882                 if (direction == EP_DIR_IN) {
883                         epctrlx &= ~EPCTRL_TX_EP_STALL;
884                         epctrlx |= EPCTRL_TX_DATA_TOGGLE_RST;
885                 } else {
886                         epctrlx &= ~EPCTRL_RX_EP_STALL;
887                         epctrlx |= EPCTRL_RX_DATA_TOGGLE_RST;
888                 }
889         }
890         writel(epctrlx, &udc->op_regs->epctrlx[ep_num]);
891 }
892
893 static int ep_is_stall(struct mv_udc *udc, u8 ep_num, u8 direction)
894 {
895         u32 epctrlx;
896
897         epctrlx = readl(&udc->op_regs->epctrlx[ep_num]);
898
899         if (direction == EP_DIR_OUT)
900                 return (epctrlx & EPCTRL_RX_EP_STALL) ? 1 : 0;
901         else
902                 return (epctrlx & EPCTRL_TX_EP_STALL) ? 1 : 0;
903 }
904
905 static int mv_ep_set_halt_wedge(struct usb_ep *_ep, int halt, int wedge)
906 {
907         struct mv_ep *ep;
908         unsigned long flags = 0;
909         int status = 0;
910         struct mv_udc *udc;
911
912         ep = container_of(_ep, struct mv_ep, ep);
913         udc = ep->udc;
914         if (!_ep || !ep->ep.desc) {
915                 status = -EINVAL;
916                 goto out;
917         }
918
919         if (ep->ep.desc->bmAttributes == USB_ENDPOINT_XFER_ISOC) {
920                 status = -EOPNOTSUPP;
921                 goto out;
922         }
923
924         /*
925          * Attempt to halt IN ep will fail if any transfer requests
926          * are still queue
927          */
928         if (halt && (ep_dir(ep) == EP_DIR_IN) && !list_empty(&ep->queue)) {
929                 status = -EAGAIN;
930                 goto out;
931         }
932
933         spin_lock_irqsave(&ep->udc->lock, flags);
934         ep_set_stall(udc, ep->ep_num, ep_dir(ep), halt);
935         if (halt && wedge)
936                 ep->wedge = 1;
937         else if (!halt)
938                 ep->wedge = 0;
939         spin_unlock_irqrestore(&ep->udc->lock, flags);
940
941         if (ep->ep_num == 0) {
942                 udc->ep0_state = WAIT_FOR_SETUP;
943                 udc->ep0_dir = EP_DIR_OUT;
944         }
945 out:
946         return status;
947 }
948
949 static int mv_ep_set_halt(struct usb_ep *_ep, int halt)
950 {
951         return mv_ep_set_halt_wedge(_ep, halt, 0);
952 }
953
954 static int mv_ep_set_wedge(struct usb_ep *_ep)
955 {
956         return mv_ep_set_halt_wedge(_ep, 1, 1);
957 }
958
959 static struct usb_ep_ops mv_ep_ops = {
960         .enable         = mv_ep_enable,
961         .disable        = mv_ep_disable,
962
963         .alloc_request  = mv_alloc_request,
964         .free_request   = mv_free_request,
965
966         .queue          = mv_ep_queue,
967         .dequeue        = mv_ep_dequeue,
968
969         .set_wedge      = mv_ep_set_wedge,
970         .set_halt       = mv_ep_set_halt,
971         .fifo_flush     = mv_ep_fifo_flush,     /* flush fifo */
972 };
973
974 static void udc_clock_enable(struct mv_udc *udc)
975 {
976         clk_prepare_enable(udc->clk);
977 }
978
979 static void udc_clock_disable(struct mv_udc *udc)
980 {
981         clk_disable_unprepare(udc->clk);
982 }
983
984 static void udc_stop(struct mv_udc *udc)
985 {
986         u32 tmp;
987
988         /* Disable interrupts */
989         tmp = readl(&udc->op_regs->usbintr);
990         tmp &= ~(USBINTR_INT_EN | USBINTR_ERR_INT_EN |
991                 USBINTR_PORT_CHANGE_DETECT_EN | USBINTR_RESET_EN);
992         writel(tmp, &udc->op_regs->usbintr);
993
994         udc->stopped = 1;
995
996         /* Reset the Run the bit in the command register to stop VUSB */
997         tmp = readl(&udc->op_regs->usbcmd);
998         tmp &= ~USBCMD_RUN_STOP;
999         writel(tmp, &udc->op_regs->usbcmd);
1000 }
1001
1002 static void udc_start(struct mv_udc *udc)
1003 {
1004         u32 usbintr;
1005
1006         usbintr = USBINTR_INT_EN | USBINTR_ERR_INT_EN
1007                 | USBINTR_PORT_CHANGE_DETECT_EN
1008                 | USBINTR_RESET_EN | USBINTR_DEVICE_SUSPEND;
1009         /* Enable interrupts */
1010         writel(usbintr, &udc->op_regs->usbintr);
1011
1012         udc->stopped = 0;
1013
1014         /* Set the Run bit in the command register */
1015         writel(USBCMD_RUN_STOP, &udc->op_regs->usbcmd);
1016 }
1017
1018 static int udc_reset(struct mv_udc *udc)
1019 {
1020         unsigned int loops;
1021         u32 tmp, portsc;
1022
1023         /* Stop the controller */
1024         tmp = readl(&udc->op_regs->usbcmd);
1025         tmp &= ~USBCMD_RUN_STOP;
1026         writel(tmp, &udc->op_regs->usbcmd);
1027
1028         /* Reset the controller to get default values */
1029         writel(USBCMD_CTRL_RESET, &udc->op_regs->usbcmd);
1030
1031         /* wait for reset to complete */
1032         loops = LOOPS(RESET_TIMEOUT);
1033         while (readl(&udc->op_regs->usbcmd) & USBCMD_CTRL_RESET) {
1034                 if (loops == 0) {
1035                         dev_err(&udc->dev->dev,
1036                                 "Wait for RESET completed TIMEOUT\n");
1037                         return -ETIMEDOUT;
1038                 }
1039                 loops--;
1040                 udelay(LOOPS_USEC);
1041         }
1042
1043         /* set controller to device mode */
1044         tmp = readl(&udc->op_regs->usbmode);
1045         tmp |= USBMODE_CTRL_MODE_DEVICE;
1046
1047         /* turn setup lockout off, require setup tripwire in usbcmd */
1048         tmp |= USBMODE_SETUP_LOCK_OFF;
1049
1050         writel(tmp, &udc->op_regs->usbmode);
1051
1052         writel(0x0, &udc->op_regs->epsetupstat);
1053
1054         /* Configure the Endpoint List Address */
1055         writel(udc->ep_dqh_dma & USB_EP_LIST_ADDRESS_MASK,
1056                 &udc->op_regs->eplistaddr);
1057
1058         portsc = readl(&udc->op_regs->portsc[0]);
1059         if (readl(&udc->cap_regs->hcsparams) & HCSPARAMS_PPC)
1060                 portsc &= (~PORTSCX_W1C_BITS | ~PORTSCX_PORT_POWER);
1061
1062         if (udc->force_fs)
1063                 portsc |= PORTSCX_FORCE_FULL_SPEED_CONNECT;
1064         else
1065                 portsc &= (~PORTSCX_FORCE_FULL_SPEED_CONNECT);
1066
1067         writel(portsc, &udc->op_regs->portsc[0]);
1068
1069         tmp = readl(&udc->op_regs->epctrlx[0]);
1070         tmp &= ~(EPCTRL_TX_EP_STALL | EPCTRL_RX_EP_STALL);
1071         writel(tmp, &udc->op_regs->epctrlx[0]);
1072
1073         return 0;
1074 }
1075
1076 static int mv_udc_enable_internal(struct mv_udc *udc)
1077 {
1078         int retval;
1079
1080         if (udc->active)
1081                 return 0;
1082
1083         dev_dbg(&udc->dev->dev, "enable udc\n");
1084         udc_clock_enable(udc);
1085         if (udc->pdata->phy_init) {
1086                 retval = udc->pdata->phy_init(udc->phy_regs);
1087                 if (retval) {
1088                         dev_err(&udc->dev->dev,
1089                                 "init phy error %d\n", retval);
1090                         udc_clock_disable(udc);
1091                         return retval;
1092                 }
1093         }
1094         udc->active = 1;
1095
1096         return 0;
1097 }
1098
1099 static int mv_udc_enable(struct mv_udc *udc)
1100 {
1101         if (udc->clock_gating)
1102                 return mv_udc_enable_internal(udc);
1103
1104         return 0;
1105 }
1106
1107 static void mv_udc_disable_internal(struct mv_udc *udc)
1108 {
1109         if (udc->active) {
1110                 dev_dbg(&udc->dev->dev, "disable udc\n");
1111                 if (udc->pdata->phy_deinit)
1112                         udc->pdata->phy_deinit(udc->phy_regs);
1113                 udc_clock_disable(udc);
1114                 udc->active = 0;
1115         }
1116 }
1117
1118 static void mv_udc_disable(struct mv_udc *udc)
1119 {
1120         if (udc->clock_gating)
1121                 mv_udc_disable_internal(udc);
1122 }
1123
1124 static int mv_udc_get_frame(struct usb_gadget *gadget)
1125 {
1126         struct mv_udc *udc;
1127         u16     retval;
1128
1129         if (!gadget)
1130                 return -ENODEV;
1131
1132         udc = container_of(gadget, struct mv_udc, gadget);
1133
1134         retval = readl(&udc->op_regs->frindex) & USB_FRINDEX_MASKS;
1135
1136         return retval;
1137 }
1138
1139 /* Tries to wake up the host connected to this gadget */
1140 static int mv_udc_wakeup(struct usb_gadget *gadget)
1141 {
1142         struct mv_udc *udc = container_of(gadget, struct mv_udc, gadget);
1143         u32 portsc;
1144
1145         /* Remote wakeup feature not enabled by host */
1146         if (!udc->remote_wakeup)
1147                 return -ENOTSUPP;
1148
1149         portsc = readl(&udc->op_regs->portsc);
1150         /* not suspended? */
1151         if (!(portsc & PORTSCX_PORT_SUSPEND))
1152                 return 0;
1153         /* trigger force resume */
1154         portsc |= PORTSCX_PORT_FORCE_RESUME;
1155         writel(portsc, &udc->op_regs->portsc[0]);
1156         return 0;
1157 }
1158
1159 static int mv_udc_vbus_session(struct usb_gadget *gadget, int is_active)
1160 {
1161         struct mv_udc *udc;
1162         unsigned long flags;
1163         int retval = 0;
1164
1165         udc = container_of(gadget, struct mv_udc, gadget);
1166         spin_lock_irqsave(&udc->lock, flags);
1167
1168         udc->vbus_active = (is_active != 0);
1169
1170         dev_dbg(&udc->dev->dev, "%s: softconnect %d, vbus_active %d\n",
1171                 __func__, udc->softconnect, udc->vbus_active);
1172
1173         if (udc->driver && udc->softconnect && udc->vbus_active) {
1174                 retval = mv_udc_enable(udc);
1175                 if (retval == 0) {
1176                         /* Clock is disabled, need re-init registers */
1177                         udc_reset(udc);
1178                         ep0_reset(udc);
1179                         udc_start(udc);
1180                 }
1181         } else if (udc->driver && udc->softconnect) {
1182                 if (!udc->active)
1183                         goto out;
1184
1185                 /* stop all the transfer in queue*/
1186                 stop_activity(udc, udc->driver);
1187                 udc_stop(udc);
1188                 mv_udc_disable(udc);
1189         }
1190
1191 out:
1192         spin_unlock_irqrestore(&udc->lock, flags);
1193         return retval;
1194 }
1195
1196 static int mv_udc_pullup(struct usb_gadget *gadget, int is_on)
1197 {
1198         struct mv_udc *udc;
1199         unsigned long flags;
1200         int retval = 0;
1201
1202         udc = container_of(gadget, struct mv_udc, gadget);
1203         spin_lock_irqsave(&udc->lock, flags);
1204
1205         udc->softconnect = (is_on != 0);
1206
1207         dev_dbg(&udc->dev->dev, "%s: softconnect %d, vbus_active %d\n",
1208                         __func__, udc->softconnect, udc->vbus_active);
1209
1210         if (udc->driver && udc->softconnect && udc->vbus_active) {
1211                 retval = mv_udc_enable(udc);
1212                 if (retval == 0) {
1213                         /* Clock is disabled, need re-init registers */
1214                         udc_reset(udc);
1215                         ep0_reset(udc);
1216                         udc_start(udc);
1217                 }
1218         } else if (udc->driver && udc->vbus_active) {
1219                 /* stop all the transfer in queue*/
1220                 stop_activity(udc, udc->driver);
1221                 udc_stop(udc);
1222                 mv_udc_disable(udc);
1223         }
1224
1225         spin_unlock_irqrestore(&udc->lock, flags);
1226         return retval;
1227 }
1228
1229 static int mv_udc_start(struct usb_gadget *, struct usb_gadget_driver *);
1230 static int mv_udc_stop(struct usb_gadget *, struct usb_gadget_driver *);
1231 /* device controller usb_gadget_ops structure */
1232 static const struct usb_gadget_ops mv_ops = {
1233
1234         /* returns the current frame number */
1235         .get_frame      = mv_udc_get_frame,
1236
1237         /* tries to wake up the host connected to this gadget */
1238         .wakeup         = mv_udc_wakeup,
1239
1240         /* notify controller that VBUS is powered or not */
1241         .vbus_session   = mv_udc_vbus_session,
1242
1243         /* D+ pullup, software-controlled connect/disconnect to USB host */
1244         .pullup         = mv_udc_pullup,
1245         .udc_start      = mv_udc_start,
1246         .udc_stop       = mv_udc_stop,
1247 };
1248
1249 static int eps_init(struct mv_udc *udc)
1250 {
1251         struct mv_ep    *ep;
1252         char name[14];
1253         int i;
1254
1255         /* initialize ep0 */
1256         ep = &udc->eps[0];
1257         ep->udc = udc;
1258         strncpy(ep->name, "ep0", sizeof(ep->name));
1259         ep->ep.name = ep->name;
1260         ep->ep.ops = &mv_ep_ops;
1261         ep->wedge = 0;
1262         ep->stopped = 0;
1263         usb_ep_set_maxpacket_limit(&ep->ep, EP0_MAX_PKT_SIZE);
1264         ep->ep_num = 0;
1265         ep->ep.desc = &mv_ep0_desc;
1266         INIT_LIST_HEAD(&ep->queue);
1267
1268         ep->ep_type = USB_ENDPOINT_XFER_CONTROL;
1269
1270         /* initialize other endpoints */
1271         for (i = 2; i < udc->max_eps * 2; i++) {
1272                 ep = &udc->eps[i];
1273                 if (i % 2) {
1274                         snprintf(name, sizeof(name), "ep%din", i / 2);
1275                         ep->direction = EP_DIR_IN;
1276                 } else {
1277                         snprintf(name, sizeof(name), "ep%dout", i / 2);
1278                         ep->direction = EP_DIR_OUT;
1279                 }
1280                 ep->udc = udc;
1281                 strncpy(ep->name, name, sizeof(ep->name));
1282                 ep->ep.name = ep->name;
1283
1284                 ep->ep.ops = &mv_ep_ops;
1285                 ep->stopped = 0;
1286                 usb_ep_set_maxpacket_limit(&ep->ep, (unsigned short) ~0);
1287                 ep->ep_num = i / 2;
1288
1289                 INIT_LIST_HEAD(&ep->queue);
1290                 list_add_tail(&ep->ep.ep_list, &udc->gadget.ep_list);
1291
1292                 ep->dqh = &udc->ep_dqh[i];
1293         }
1294
1295         return 0;
1296 }
1297
1298 /* delete all endpoint requests, called with spinlock held */
1299 static void nuke(struct mv_ep *ep, int status)
1300 {
1301         /* called with spinlock held */
1302         ep->stopped = 1;
1303
1304         /* endpoint fifo flush */
1305         mv_ep_fifo_flush(&ep->ep);
1306
1307         while (!list_empty(&ep->queue)) {
1308                 struct mv_req *req = NULL;
1309                 req = list_entry(ep->queue.next, struct mv_req, queue);
1310                 done(ep, req, status);
1311         }
1312 }
1313
1314 /* stop all USB activities */
1315 static void stop_activity(struct mv_udc *udc, struct usb_gadget_driver *driver)
1316 {
1317         struct mv_ep    *ep;
1318
1319         nuke(&udc->eps[0], -ESHUTDOWN);
1320
1321         list_for_each_entry(ep, &udc->gadget.ep_list, ep.ep_list) {
1322                 nuke(ep, -ESHUTDOWN);
1323         }
1324
1325         /* report disconnect; the driver is already quiesced */
1326         if (driver) {
1327                 spin_unlock(&udc->lock);
1328                 driver->disconnect(&udc->gadget);
1329                 spin_lock(&udc->lock);
1330         }
1331 }
1332
1333 static int mv_udc_start(struct usb_gadget *gadget,
1334                 struct usb_gadget_driver *driver)
1335 {
1336         struct mv_udc *udc;
1337         int retval = 0;
1338         unsigned long flags;
1339
1340         udc = container_of(gadget, struct mv_udc, gadget);
1341
1342         if (udc->driver)
1343                 return -EBUSY;
1344
1345         spin_lock_irqsave(&udc->lock, flags);
1346
1347         /* hook up the driver ... */
1348         driver->driver.bus = NULL;
1349         udc->driver = driver;
1350
1351         udc->usb_state = USB_STATE_ATTACHED;
1352         udc->ep0_state = WAIT_FOR_SETUP;
1353         udc->ep0_dir = EP_DIR_OUT;
1354
1355         spin_unlock_irqrestore(&udc->lock, flags);
1356
1357         if (udc->transceiver) {
1358                 retval = otg_set_peripheral(udc->transceiver->otg,
1359                                         &udc->gadget);
1360                 if (retval) {
1361                         dev_err(&udc->dev->dev,
1362                                 "unable to register peripheral to otg\n");
1363                         udc->driver = NULL;
1364                         return retval;
1365                 }
1366         }
1367
1368         /* pullup is always on */
1369         mv_udc_pullup(&udc->gadget, 1);
1370
1371         /* When boot with cable attached, there will be no vbus irq occurred */
1372         if (udc->qwork)
1373                 queue_work(udc->qwork, &udc->vbus_work);
1374
1375         return 0;
1376 }
1377
1378 static int mv_udc_stop(struct usb_gadget *gadget,
1379                 struct usb_gadget_driver *driver)
1380 {
1381         struct mv_udc *udc;
1382         unsigned long flags;
1383
1384         udc = container_of(gadget, struct mv_udc, gadget);
1385
1386         spin_lock_irqsave(&udc->lock, flags);
1387
1388         mv_udc_enable(udc);
1389         udc_stop(udc);
1390
1391         /* stop all usb activities */
1392         udc->gadget.speed = USB_SPEED_UNKNOWN;
1393         stop_activity(udc, driver);
1394         mv_udc_disable(udc);
1395
1396         spin_unlock_irqrestore(&udc->lock, flags);
1397
1398         /* unbind gadget driver */
1399         udc->driver = NULL;
1400
1401         return 0;
1402 }
1403
1404 static void mv_set_ptc(struct mv_udc *udc, u32 mode)
1405 {
1406         u32 portsc;
1407
1408         portsc = readl(&udc->op_regs->portsc[0]);
1409         portsc |= mode << 16;
1410         writel(portsc, &udc->op_regs->portsc[0]);
1411 }
1412
1413 static void prime_status_complete(struct usb_ep *ep, struct usb_request *_req)
1414 {
1415         struct mv_ep *mvep = container_of(ep, struct mv_ep, ep);
1416         struct mv_req *req = container_of(_req, struct mv_req, req);
1417         struct mv_udc *udc;
1418         unsigned long flags;
1419
1420         udc = mvep->udc;
1421
1422         dev_info(&udc->dev->dev, "switch to test mode %d\n", req->test_mode);
1423
1424         spin_lock_irqsave(&udc->lock, flags);
1425         if (req->test_mode) {
1426                 mv_set_ptc(udc, req->test_mode);
1427                 req->test_mode = 0;
1428         }
1429         spin_unlock_irqrestore(&udc->lock, flags);
1430 }
1431
1432 static int
1433 udc_prime_status(struct mv_udc *udc, u8 direction, u16 status, bool empty)
1434 {
1435         int retval = 0;
1436         struct mv_req *req;
1437         struct mv_ep *ep;
1438
1439         ep = &udc->eps[0];
1440         udc->ep0_dir = direction;
1441         udc->ep0_state = WAIT_FOR_OUT_STATUS;
1442
1443         req = udc->status_req;
1444
1445         /* fill in the reqest structure */
1446         if (empty == false) {
1447                 *((u16 *) req->req.buf) = cpu_to_le16(status);
1448                 req->req.length = 2;
1449         } else
1450                 req->req.length = 0;
1451
1452         req->ep = ep;
1453         req->req.status = -EINPROGRESS;
1454         req->req.actual = 0;
1455         if (udc->test_mode) {
1456                 req->req.complete = prime_status_complete;
1457                 req->test_mode = udc->test_mode;
1458                 udc->test_mode = 0;
1459         } else
1460                 req->req.complete = NULL;
1461         req->dtd_count = 0;
1462
1463         if (req->req.dma == DMA_ADDR_INVALID) {
1464                 req->req.dma = dma_map_single(ep->udc->gadget.dev.parent,
1465                                 req->req.buf, req->req.length,
1466                                 ep_dir(ep) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1467                 req->mapped = 1;
1468         }
1469
1470         /* prime the data phase */
1471         if (!req_to_dtd(req)) {
1472                 retval = queue_dtd(ep, req);
1473                 if (retval) {
1474                         dev_err(&udc->dev->dev,
1475                                 "Failed to queue dtd when prime status\n");
1476                         goto out;
1477                 }
1478         } else{ /* no mem */
1479                 retval = -ENOMEM;
1480                 dev_err(&udc->dev->dev,
1481                         "Failed to dma_pool_alloc when prime status\n");
1482                 goto out;
1483         }
1484
1485         list_add_tail(&req->queue, &ep->queue);
1486
1487         return 0;
1488 out:
1489         usb_gadget_unmap_request(&udc->gadget, &req->req, ep_dir(ep));
1490
1491         return retval;
1492 }
1493
1494 static void mv_udc_testmode(struct mv_udc *udc, u16 index)
1495 {
1496         if (index <= TEST_FORCE_EN) {
1497                 udc->test_mode = index;
1498                 if (udc_prime_status(udc, EP_DIR_IN, 0, true))
1499                         ep0_stall(udc);
1500         } else
1501                 dev_err(&udc->dev->dev,
1502                         "This test mode(%d) is not supported\n", index);
1503 }
1504
1505 static void ch9setaddress(struct mv_udc *udc, struct usb_ctrlrequest *setup)
1506 {
1507         udc->dev_addr = (u8)setup->wValue;
1508
1509         /* update usb state */
1510         udc->usb_state = USB_STATE_ADDRESS;
1511
1512         if (udc_prime_status(udc, EP_DIR_IN, 0, true))
1513                 ep0_stall(udc);
1514 }
1515
1516 static void ch9getstatus(struct mv_udc *udc, u8 ep_num,
1517         struct usb_ctrlrequest *setup)
1518 {
1519         u16 status = 0;
1520         int retval;
1521
1522         if ((setup->bRequestType & (USB_DIR_IN | USB_TYPE_MASK))
1523                 != (USB_DIR_IN | USB_TYPE_STANDARD))
1524                 return;
1525
1526         if ((setup->bRequestType & USB_RECIP_MASK) == USB_RECIP_DEVICE) {
1527                 status = 1 << USB_DEVICE_SELF_POWERED;
1528                 status |= udc->remote_wakeup << USB_DEVICE_REMOTE_WAKEUP;
1529         } else if ((setup->bRequestType & USB_RECIP_MASK)
1530                         == USB_RECIP_INTERFACE) {
1531                 /* get interface status */
1532                 status = 0;
1533         } else if ((setup->bRequestType & USB_RECIP_MASK)
1534                         == USB_RECIP_ENDPOINT) {
1535                 u8 ep_num, direction;
1536
1537                 ep_num = setup->wIndex & USB_ENDPOINT_NUMBER_MASK;
1538                 direction = (setup->wIndex & USB_ENDPOINT_DIR_MASK)
1539                                 ? EP_DIR_IN : EP_DIR_OUT;
1540                 status = ep_is_stall(udc, ep_num, direction)
1541                                 << USB_ENDPOINT_HALT;
1542         }
1543
1544         retval = udc_prime_status(udc, EP_DIR_IN, status, false);
1545         if (retval)
1546                 ep0_stall(udc);
1547         else
1548                 udc->ep0_state = DATA_STATE_XMIT;
1549 }
1550
1551 static void ch9clearfeature(struct mv_udc *udc, struct usb_ctrlrequest *setup)
1552 {
1553         u8 ep_num;
1554         u8 direction;
1555         struct mv_ep *ep;
1556
1557         if ((setup->bRequestType & (USB_TYPE_MASK | USB_RECIP_MASK))
1558                 == ((USB_TYPE_STANDARD | USB_RECIP_DEVICE))) {
1559                 switch (setup->wValue) {
1560                 case USB_DEVICE_REMOTE_WAKEUP:
1561                         udc->remote_wakeup = 0;
1562                         break;
1563                 default:
1564                         goto out;
1565                 }
1566         } else if ((setup->bRequestType & (USB_TYPE_MASK | USB_RECIP_MASK))
1567                 == ((USB_TYPE_STANDARD | USB_RECIP_ENDPOINT))) {
1568                 switch (setup->wValue) {
1569                 case USB_ENDPOINT_HALT:
1570                         ep_num = setup->wIndex & USB_ENDPOINT_NUMBER_MASK;
1571                         direction = (setup->wIndex & USB_ENDPOINT_DIR_MASK)
1572                                 ? EP_DIR_IN : EP_DIR_OUT;
1573                         if (setup->wValue != 0 || setup->wLength != 0
1574                                 || ep_num > udc->max_eps)
1575                                 goto out;
1576                         ep = &udc->eps[ep_num * 2 + direction];
1577                         if (ep->wedge == 1)
1578                                 break;
1579                         spin_unlock(&udc->lock);
1580                         ep_set_stall(udc, ep_num, direction, 0);
1581                         spin_lock(&udc->lock);
1582                         break;
1583                 default:
1584                         goto out;
1585                 }
1586         } else
1587                 goto out;
1588
1589         if (udc_prime_status(udc, EP_DIR_IN, 0, true))
1590                 ep0_stall(udc);
1591 out:
1592         return;
1593 }
1594
1595 static void ch9setfeature(struct mv_udc *udc, struct usb_ctrlrequest *setup)
1596 {
1597         u8 ep_num;
1598         u8 direction;
1599
1600         if ((setup->bRequestType & (USB_TYPE_MASK | USB_RECIP_MASK))
1601                 == ((USB_TYPE_STANDARD | USB_RECIP_DEVICE))) {
1602                 switch (setup->wValue) {
1603                 case USB_DEVICE_REMOTE_WAKEUP:
1604                         udc->remote_wakeup = 1;
1605                         break;
1606                 case USB_DEVICE_TEST_MODE:
1607                         if (setup->wIndex & 0xFF
1608                                 ||  udc->gadget.speed != USB_SPEED_HIGH)
1609                                 ep0_stall(udc);
1610
1611                         if (udc->usb_state != USB_STATE_CONFIGURED
1612                                 && udc->usb_state != USB_STATE_ADDRESS
1613                                 && udc->usb_state != USB_STATE_DEFAULT)
1614                                 ep0_stall(udc);
1615
1616                         mv_udc_testmode(udc, (setup->wIndex >> 8));
1617                         goto out;
1618                 default:
1619                         goto out;
1620                 }
1621         } else if ((setup->bRequestType & (USB_TYPE_MASK | USB_RECIP_MASK))
1622                 == ((USB_TYPE_STANDARD | USB_RECIP_ENDPOINT))) {
1623                 switch (setup->wValue) {
1624                 case USB_ENDPOINT_HALT:
1625                         ep_num = setup->wIndex & USB_ENDPOINT_NUMBER_MASK;
1626                         direction = (setup->wIndex & USB_ENDPOINT_DIR_MASK)
1627                                 ? EP_DIR_IN : EP_DIR_OUT;
1628                         if (setup->wValue != 0 || setup->wLength != 0
1629                                 || ep_num > udc->max_eps)
1630                                 goto out;
1631                         spin_unlock(&udc->lock);
1632                         ep_set_stall(udc, ep_num, direction, 1);
1633                         spin_lock(&udc->lock);
1634                         break;
1635                 default:
1636                         goto out;
1637                 }
1638         } else
1639                 goto out;
1640
1641         if (udc_prime_status(udc, EP_DIR_IN, 0, true))
1642                 ep0_stall(udc);
1643 out:
1644         return;
1645 }
1646
1647 static void handle_setup_packet(struct mv_udc *udc, u8 ep_num,
1648         struct usb_ctrlrequest *setup)
1649         __releases(&ep->udc->lock)
1650         __acquires(&ep->udc->lock)
1651 {
1652         bool delegate = false;
1653
1654         nuke(&udc->eps[ep_num * 2 + EP_DIR_OUT], -ESHUTDOWN);
1655
1656         dev_dbg(&udc->dev->dev, "SETUP %02x.%02x v%04x i%04x l%04x\n",
1657                         setup->bRequestType, setup->bRequest,
1658                         setup->wValue, setup->wIndex, setup->wLength);
1659         /* We process some stardard setup requests here */
1660         if ((setup->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
1661                 switch (setup->bRequest) {
1662                 case USB_REQ_GET_STATUS:
1663                         ch9getstatus(udc, ep_num, setup);
1664                         break;
1665
1666                 case USB_REQ_SET_ADDRESS:
1667                         ch9setaddress(udc, setup);
1668                         break;
1669
1670                 case USB_REQ_CLEAR_FEATURE:
1671                         ch9clearfeature(udc, setup);
1672                         break;
1673
1674                 case USB_REQ_SET_FEATURE:
1675                         ch9setfeature(udc, setup);
1676                         break;
1677
1678                 default:
1679                         delegate = true;
1680                 }
1681         } else
1682                 delegate = true;
1683
1684         /* delegate USB standard requests to the gadget driver */
1685         if (delegate == true) {
1686                 /* USB requests handled by gadget */
1687                 if (setup->wLength) {
1688                         /* DATA phase from gadget, STATUS phase from udc */
1689                         udc->ep0_dir = (setup->bRequestType & USB_DIR_IN)
1690                                         ?  EP_DIR_IN : EP_DIR_OUT;
1691                         spin_unlock(&udc->lock);
1692                         if (udc->driver->setup(&udc->gadget,
1693                                 &udc->local_setup_buff) < 0)
1694                                 ep0_stall(udc);
1695                         spin_lock(&udc->lock);
1696                         udc->ep0_state = (setup->bRequestType & USB_DIR_IN)
1697                                         ?  DATA_STATE_XMIT : DATA_STATE_RECV;
1698                 } else {
1699                         /* no DATA phase, IN STATUS phase from gadget */
1700                         udc->ep0_dir = EP_DIR_IN;
1701                         spin_unlock(&udc->lock);
1702                         if (udc->driver->setup(&udc->gadget,
1703                                 &udc->local_setup_buff) < 0)
1704                                 ep0_stall(udc);
1705                         spin_lock(&udc->lock);
1706                         udc->ep0_state = WAIT_FOR_OUT_STATUS;
1707                 }
1708         }
1709 }
1710
1711 /* complete DATA or STATUS phase of ep0 prime status phase if needed */
1712 static void ep0_req_complete(struct mv_udc *udc,
1713         struct mv_ep *ep0, struct mv_req *req)
1714 {
1715         u32 new_addr;
1716
1717         if (udc->usb_state == USB_STATE_ADDRESS) {
1718                 /* set the new address */
1719                 new_addr = (u32)udc->dev_addr;
1720                 writel(new_addr << USB_DEVICE_ADDRESS_BIT_SHIFT,
1721                         &udc->op_regs->deviceaddr);
1722         }
1723
1724         done(ep0, req, 0);
1725
1726         switch (udc->ep0_state) {
1727         case DATA_STATE_XMIT:
1728                 /* receive status phase */
1729                 if (udc_prime_status(udc, EP_DIR_OUT, 0, true))
1730                         ep0_stall(udc);
1731                 break;
1732         case DATA_STATE_RECV:
1733                 /* send status phase */
1734                 if (udc_prime_status(udc, EP_DIR_IN, 0 , true))
1735                         ep0_stall(udc);
1736                 break;
1737         case WAIT_FOR_OUT_STATUS:
1738                 udc->ep0_state = WAIT_FOR_SETUP;
1739                 break;
1740         case WAIT_FOR_SETUP:
1741                 dev_err(&udc->dev->dev, "unexpect ep0 packets\n");
1742                 break;
1743         default:
1744                 ep0_stall(udc);
1745                 break;
1746         }
1747 }
1748
1749 static void get_setup_data(struct mv_udc *udc, u8 ep_num, u8 *buffer_ptr)
1750 {
1751         u32 temp;
1752         struct mv_dqh *dqh;
1753
1754         dqh = &udc->ep_dqh[ep_num * 2 + EP_DIR_OUT];
1755
1756         /* Clear bit in ENDPTSETUPSTAT */
1757         writel((1 << ep_num), &udc->op_regs->epsetupstat);
1758
1759         /* while a hazard exists when setup package arrives */
1760         do {
1761                 /* Set Setup Tripwire */
1762                 temp = readl(&udc->op_regs->usbcmd);
1763                 writel(temp | USBCMD_SETUP_TRIPWIRE_SET, &udc->op_regs->usbcmd);
1764
1765                 /* Copy the setup packet to local buffer */
1766                 memcpy(buffer_ptr, (u8 *) dqh->setup_buffer, 8);
1767         } while (!(readl(&udc->op_regs->usbcmd) & USBCMD_SETUP_TRIPWIRE_SET));
1768
1769         /* Clear Setup Tripwire */
1770         temp = readl(&udc->op_regs->usbcmd);
1771         writel(temp & ~USBCMD_SETUP_TRIPWIRE_SET, &udc->op_regs->usbcmd);
1772 }
1773
1774 static void irq_process_tr_complete(struct mv_udc *udc)
1775 {
1776         u32 tmp, bit_pos;
1777         int i, ep_num = 0, direction = 0;
1778         struct mv_ep    *curr_ep;
1779         struct mv_req *curr_req, *temp_req;
1780         int status;
1781
1782         /*
1783          * We use separate loops for ENDPTSETUPSTAT and ENDPTCOMPLETE
1784          * because the setup packets are to be read ASAP
1785          */
1786
1787         /* Process all Setup packet received interrupts */
1788         tmp = readl(&udc->op_regs->epsetupstat);
1789
1790         if (tmp) {
1791                 for (i = 0; i < udc->max_eps; i++) {
1792                         if (tmp & (1 << i)) {
1793                                 get_setup_data(udc, i,
1794                                         (u8 *)(&udc->local_setup_buff));
1795                                 handle_setup_packet(udc, i,
1796                                         &udc->local_setup_buff);
1797                         }
1798                 }
1799         }
1800
1801         /* Don't clear the endpoint setup status register here.
1802          * It is cleared as a setup packet is read out of the buffer
1803          */
1804
1805         /* Process non-setup transaction complete interrupts */
1806         tmp = readl(&udc->op_regs->epcomplete);
1807
1808         if (!tmp)
1809                 return;
1810
1811         writel(tmp, &udc->op_regs->epcomplete);
1812
1813         for (i = 0; i < udc->max_eps * 2; i++) {
1814                 ep_num = i >> 1;
1815                 direction = i % 2;
1816
1817                 bit_pos = 1 << (ep_num + 16 * direction);
1818
1819                 if (!(bit_pos & tmp))
1820                         continue;
1821
1822                 if (i == 1)
1823                         curr_ep = &udc->eps[0];
1824                 else
1825                         curr_ep = &udc->eps[i];
1826                 /* process the req queue until an uncomplete request */
1827                 list_for_each_entry_safe(curr_req, temp_req,
1828                         &curr_ep->queue, queue) {
1829                         status = process_ep_req(udc, i, curr_req);
1830                         if (status)
1831                                 break;
1832
1833                         /* write back status to req */
1834                         curr_req->req.status = status;
1835
1836                         /* ep0 request completion */
1837                         if (ep_num == 0) {
1838                                 ep0_req_complete(udc, curr_ep, curr_req);
1839                                 break;
1840                         } else {
1841                                 done(curr_ep, curr_req, status);
1842                         }
1843                 }
1844         }
1845 }
1846
1847 static void irq_process_reset(struct mv_udc *udc)
1848 {
1849         u32 tmp;
1850         unsigned int loops;
1851
1852         udc->ep0_dir = EP_DIR_OUT;
1853         udc->ep0_state = WAIT_FOR_SETUP;
1854         udc->remote_wakeup = 0;         /* default to 0 on reset */
1855
1856         /* The address bits are past bit 25-31. Set the address */
1857         tmp = readl(&udc->op_regs->deviceaddr);
1858         tmp &= ~(USB_DEVICE_ADDRESS_MASK);
1859         writel(tmp, &udc->op_regs->deviceaddr);
1860
1861         /* Clear all the setup token semaphores */
1862         tmp = readl(&udc->op_regs->epsetupstat);
1863         writel(tmp, &udc->op_regs->epsetupstat);
1864
1865         /* Clear all the endpoint complete status bits */
1866         tmp = readl(&udc->op_regs->epcomplete);
1867         writel(tmp, &udc->op_regs->epcomplete);
1868
1869         /* wait until all endptprime bits cleared */
1870         loops = LOOPS(PRIME_TIMEOUT);
1871         while (readl(&udc->op_regs->epprime) & 0xFFFFFFFF) {
1872                 if (loops == 0) {
1873                         dev_err(&udc->dev->dev,
1874                                 "Timeout for ENDPTPRIME = 0x%x\n",
1875                                 readl(&udc->op_regs->epprime));
1876                         break;
1877                 }
1878                 loops--;
1879                 udelay(LOOPS_USEC);
1880         }
1881
1882         /* Write 1s to the Flush register */
1883         writel((u32)~0, &udc->op_regs->epflush);
1884
1885         if (readl(&udc->op_regs->portsc[0]) & PORTSCX_PORT_RESET) {
1886                 dev_info(&udc->dev->dev, "usb bus reset\n");
1887                 udc->usb_state = USB_STATE_DEFAULT;
1888                 /* reset all the queues, stop all USB activities */
1889                 stop_activity(udc, udc->driver);
1890         } else {
1891                 dev_info(&udc->dev->dev, "USB reset portsc 0x%x\n",
1892                         readl(&udc->op_regs->portsc));
1893
1894                 /*
1895                  * re-initialize
1896                  * controller reset
1897                  */
1898                 udc_reset(udc);
1899
1900                 /* reset all the queues, stop all USB activities */
1901                 stop_activity(udc, udc->driver);
1902
1903                 /* reset ep0 dQH and endptctrl */
1904                 ep0_reset(udc);
1905
1906                 /* enable interrupt and set controller to run state */
1907                 udc_start(udc);
1908
1909                 udc->usb_state = USB_STATE_ATTACHED;
1910         }
1911 }
1912
1913 static void handle_bus_resume(struct mv_udc *udc)
1914 {
1915         udc->usb_state = udc->resume_state;
1916         udc->resume_state = 0;
1917
1918         /* report resume to the driver */
1919         if (udc->driver) {
1920                 if (udc->driver->resume) {
1921                         spin_unlock(&udc->lock);
1922                         udc->driver->resume(&udc->gadget);
1923                         spin_lock(&udc->lock);
1924                 }
1925         }
1926 }
1927
1928 static void irq_process_suspend(struct mv_udc *udc)
1929 {
1930         udc->resume_state = udc->usb_state;
1931         udc->usb_state = USB_STATE_SUSPENDED;
1932
1933         if (udc->driver->suspend) {
1934                 spin_unlock(&udc->lock);
1935                 udc->driver->suspend(&udc->gadget);
1936                 spin_lock(&udc->lock);
1937         }
1938 }
1939
1940 static void irq_process_port_change(struct mv_udc *udc)
1941 {
1942         u32 portsc;
1943
1944         portsc = readl(&udc->op_regs->portsc[0]);
1945         if (!(portsc & PORTSCX_PORT_RESET)) {
1946                 /* Get the speed */
1947                 u32 speed = portsc & PORTSCX_PORT_SPEED_MASK;
1948                 switch (speed) {
1949                 case PORTSCX_PORT_SPEED_HIGH:
1950                         udc->gadget.speed = USB_SPEED_HIGH;
1951                         break;
1952                 case PORTSCX_PORT_SPEED_FULL:
1953                         udc->gadget.speed = USB_SPEED_FULL;
1954                         break;
1955                 case PORTSCX_PORT_SPEED_LOW:
1956                         udc->gadget.speed = USB_SPEED_LOW;
1957                         break;
1958                 default:
1959                         udc->gadget.speed = USB_SPEED_UNKNOWN;
1960                         break;
1961                 }
1962         }
1963
1964         if (portsc & PORTSCX_PORT_SUSPEND) {
1965                 udc->resume_state = udc->usb_state;
1966                 udc->usb_state = USB_STATE_SUSPENDED;
1967                 if (udc->driver->suspend) {
1968                         spin_unlock(&udc->lock);
1969                         udc->driver->suspend(&udc->gadget);
1970                         spin_lock(&udc->lock);
1971                 }
1972         }
1973
1974         if (!(portsc & PORTSCX_PORT_SUSPEND)
1975                 && udc->usb_state == USB_STATE_SUSPENDED) {
1976                 handle_bus_resume(udc);
1977         }
1978
1979         if (!udc->resume_state)
1980                 udc->usb_state = USB_STATE_DEFAULT;
1981 }
1982
1983 static void irq_process_error(struct mv_udc *udc)
1984 {
1985         /* Increment the error count */
1986         udc->errors++;
1987 }
1988
1989 static irqreturn_t mv_udc_irq(int irq, void *dev)
1990 {
1991         struct mv_udc *udc = (struct mv_udc *)dev;
1992         u32 status, intr;
1993
1994         /* Disable ISR when stopped bit is set */
1995         if (udc->stopped)
1996                 return IRQ_NONE;
1997
1998         spin_lock(&udc->lock);
1999
2000         status = readl(&udc->op_regs->usbsts);
2001         intr = readl(&udc->op_regs->usbintr);
2002         status &= intr;
2003
2004         if (status == 0) {
2005                 spin_unlock(&udc->lock);
2006                 return IRQ_NONE;
2007         }
2008
2009         /* Clear all the interrupts occurred */
2010         writel(status, &udc->op_regs->usbsts);
2011
2012         if (status & USBSTS_ERR)
2013                 irq_process_error(udc);
2014
2015         if (status & USBSTS_RESET)
2016                 irq_process_reset(udc);
2017
2018         if (status & USBSTS_PORT_CHANGE)
2019                 irq_process_port_change(udc);
2020
2021         if (status & USBSTS_INT)
2022                 irq_process_tr_complete(udc);
2023
2024         if (status & USBSTS_SUSPEND)
2025                 irq_process_suspend(udc);
2026
2027         spin_unlock(&udc->lock);
2028
2029         return IRQ_HANDLED;
2030 }
2031
2032 static irqreturn_t mv_udc_vbus_irq(int irq, void *dev)
2033 {
2034         struct mv_udc *udc = (struct mv_udc *)dev;
2035
2036         /* polling VBUS and init phy may cause too much time*/
2037         if (udc->qwork)
2038                 queue_work(udc->qwork, &udc->vbus_work);
2039
2040         return IRQ_HANDLED;
2041 }
2042
2043 static void mv_udc_vbus_work(struct work_struct *work)
2044 {
2045         struct mv_udc *udc;
2046         unsigned int vbus;
2047
2048         udc = container_of(work, struct mv_udc, vbus_work);
2049         if (!udc->pdata->vbus)
2050                 return;
2051
2052         vbus = udc->pdata->vbus->poll();
2053         dev_info(&udc->dev->dev, "vbus is %d\n", vbus);
2054
2055         if (vbus == VBUS_HIGH)
2056                 mv_udc_vbus_session(&udc->gadget, 1);
2057         else if (vbus == VBUS_LOW)
2058                 mv_udc_vbus_session(&udc->gadget, 0);
2059 }
2060
2061 /* release device structure */
2062 static void gadget_release(struct device *_dev)
2063 {
2064         struct mv_udc *udc;
2065
2066         udc = dev_get_drvdata(_dev);
2067
2068         complete(udc->done);
2069 }
2070
2071 static int mv_udc_remove(struct platform_device *pdev)
2072 {
2073         struct mv_udc *udc;
2074
2075         udc = platform_get_drvdata(pdev);
2076
2077         usb_del_gadget_udc(&udc->gadget);
2078
2079         if (udc->qwork) {
2080                 flush_workqueue(udc->qwork);
2081                 destroy_workqueue(udc->qwork);
2082         }
2083
2084         /* free memory allocated in probe */
2085         if (udc->dtd_pool)
2086                 dma_pool_destroy(udc->dtd_pool);
2087
2088         if (udc->ep_dqh)
2089                 dma_free_coherent(&pdev->dev, udc->ep_dqh_size,
2090                         udc->ep_dqh, udc->ep_dqh_dma);
2091
2092         mv_udc_disable(udc);
2093
2094         /* free dev, wait for the release() finished */
2095         wait_for_completion(udc->done);
2096
2097         return 0;
2098 }
2099
2100 static int mv_udc_probe(struct platform_device *pdev)
2101 {
2102         struct mv_usb_platform_data *pdata = dev_get_platdata(&pdev->dev);
2103         struct mv_udc *udc;
2104         int retval = 0;
2105         struct resource *r;
2106         size_t size;
2107
2108         if (pdata == NULL) {
2109                 dev_err(&pdev->dev, "missing platform_data\n");
2110                 return -ENODEV;
2111         }
2112
2113         udc = devm_kzalloc(&pdev->dev, sizeof(*udc), GFP_KERNEL);
2114         if (udc == NULL) {
2115                 dev_err(&pdev->dev, "failed to allocate memory for udc\n");
2116                 return -ENOMEM;
2117         }
2118
2119         udc->done = &release_done;
2120         udc->pdata = dev_get_platdata(&pdev->dev);
2121         spin_lock_init(&udc->lock);
2122
2123         udc->dev = pdev;
2124
2125         if (pdata->mode == MV_USB_MODE_OTG) {
2126                 udc->transceiver = devm_usb_get_phy(&pdev->dev,
2127                                         USB_PHY_TYPE_USB2);
2128                 if (IS_ERR(udc->transceiver)) {
2129                         retval = PTR_ERR(udc->transceiver);
2130
2131                         if (retval == -ENXIO)
2132                                 return retval;
2133
2134                         udc->transceiver = NULL;
2135                         return -EPROBE_DEFER;
2136                 }
2137         }
2138
2139         /* udc only have one sysclk. */
2140         udc->clk = devm_clk_get(&pdev->dev, NULL);
2141         if (IS_ERR(udc->clk))
2142                 return PTR_ERR(udc->clk);
2143
2144         r = platform_get_resource_byname(udc->dev, IORESOURCE_MEM, "capregs");
2145         if (r == NULL) {
2146                 dev_err(&pdev->dev, "no I/O memory resource defined\n");
2147                 return -ENODEV;
2148         }
2149
2150         udc->cap_regs = (struct mv_cap_regs __iomem *)
2151                 devm_ioremap(&pdev->dev, r->start, resource_size(r));
2152         if (udc->cap_regs == NULL) {
2153                 dev_err(&pdev->dev, "failed to map I/O memory\n");
2154                 return -EBUSY;
2155         }
2156
2157         r = platform_get_resource_byname(udc->dev, IORESOURCE_MEM, "phyregs");
2158         if (r == NULL) {
2159                 dev_err(&pdev->dev, "no phy I/O memory resource defined\n");
2160                 return -ENODEV;
2161         }
2162
2163         udc->phy_regs = ioremap(r->start, resource_size(r));
2164         if (udc->phy_regs == NULL) {
2165                 dev_err(&pdev->dev, "failed to map phy I/O memory\n");
2166                 return -EBUSY;
2167         }
2168
2169         /* we will acces controller register, so enable the clk */
2170         retval = mv_udc_enable_internal(udc);
2171         if (retval)
2172                 return retval;
2173
2174         udc->op_regs =
2175                 (struct mv_op_regs __iomem *)((unsigned long)udc->cap_regs
2176                 + (readl(&udc->cap_regs->caplength_hciversion)
2177                         & CAPLENGTH_MASK));
2178         udc->max_eps = readl(&udc->cap_regs->dccparams) & DCCPARAMS_DEN_MASK;
2179
2180         /*
2181          * some platform will use usb to download image, it may not disconnect
2182          * usb gadget before loading kernel. So first stop udc here.
2183          */
2184         udc_stop(udc);
2185         writel(0xFFFFFFFF, &udc->op_regs->usbsts);
2186
2187         size = udc->max_eps * sizeof(struct mv_dqh) *2;
2188         size = (size + DQH_ALIGNMENT - 1) & ~(DQH_ALIGNMENT - 1);
2189         udc->ep_dqh = dma_alloc_coherent(&pdev->dev, size,
2190                                         &udc->ep_dqh_dma, GFP_KERNEL);
2191
2192         if (udc->ep_dqh == NULL) {
2193                 dev_err(&pdev->dev, "allocate dQH memory failed\n");
2194                 retval = -ENOMEM;
2195                 goto err_disable_clock;
2196         }
2197         udc->ep_dqh_size = size;
2198
2199         /* create dTD dma_pool resource */
2200         udc->dtd_pool = dma_pool_create("mv_dtd",
2201                         &pdev->dev,
2202                         sizeof(struct mv_dtd),
2203                         DTD_ALIGNMENT,
2204                         DMA_BOUNDARY);
2205
2206         if (!udc->dtd_pool) {
2207                 retval = -ENOMEM;
2208                 goto err_free_dma;
2209         }
2210
2211         size = udc->max_eps * sizeof(struct mv_ep) *2;
2212         udc->eps = devm_kzalloc(&pdev->dev, size, GFP_KERNEL);
2213         if (udc->eps == NULL) {
2214                 dev_err(&pdev->dev, "allocate ep memory failed\n");
2215                 retval = -ENOMEM;
2216                 goto err_destroy_dma;
2217         }
2218
2219         /* initialize ep0 status request structure */
2220         udc->status_req = devm_kzalloc(&pdev->dev, sizeof(struct mv_req),
2221                                         GFP_KERNEL);
2222         if (!udc->status_req) {
2223                 dev_err(&pdev->dev, "allocate status_req memory failed\n");
2224                 retval = -ENOMEM;
2225                 goto err_destroy_dma;
2226         }
2227         INIT_LIST_HEAD(&udc->status_req->queue);
2228
2229         /* allocate a small amount of memory to get valid address */
2230         udc->status_req->req.buf = kzalloc(8, GFP_KERNEL);
2231         udc->status_req->req.dma = DMA_ADDR_INVALID;
2232
2233         udc->resume_state = USB_STATE_NOTATTACHED;
2234         udc->usb_state = USB_STATE_POWERED;
2235         udc->ep0_dir = EP_DIR_OUT;
2236         udc->remote_wakeup = 0;
2237
2238         r = platform_get_resource(udc->dev, IORESOURCE_IRQ, 0);
2239         if (r == NULL) {
2240                 dev_err(&pdev->dev, "no IRQ resource defined\n");
2241                 retval = -ENODEV;
2242                 goto err_destroy_dma;
2243         }
2244         udc->irq = r->start;
2245         if (devm_request_irq(&pdev->dev, udc->irq, mv_udc_irq,
2246                 IRQF_SHARED, driver_name, udc)) {
2247                 dev_err(&pdev->dev, "Request irq %d for UDC failed\n",
2248                         udc->irq);
2249                 retval = -ENODEV;
2250                 goto err_destroy_dma;
2251         }
2252
2253         /* initialize gadget structure */
2254         udc->gadget.ops = &mv_ops;      /* usb_gadget_ops */
2255         udc->gadget.ep0 = &udc->eps[0].ep;      /* gadget ep0 */
2256         INIT_LIST_HEAD(&udc->gadget.ep_list);   /* ep_list */
2257         udc->gadget.speed = USB_SPEED_UNKNOWN;  /* speed */
2258         udc->gadget.max_speed = USB_SPEED_HIGH; /* support dual speed */
2259
2260         /* the "gadget" abstracts/virtualizes the controller */
2261         udc->gadget.name = driver_name;         /* gadget name */
2262
2263         eps_init(udc);
2264
2265         /* VBUS detect: we can disable/enable clock on demand.*/
2266         if (udc->transceiver)
2267                 udc->clock_gating = 1;
2268         else if (pdata->vbus) {
2269                 udc->clock_gating = 1;
2270                 retval = devm_request_threaded_irq(&pdev->dev,
2271                                 pdata->vbus->irq, NULL,
2272                                 mv_udc_vbus_irq, IRQF_ONESHOT, "vbus", udc);
2273                 if (retval) {
2274                         dev_info(&pdev->dev,
2275                                 "Can not request irq for VBUS, "
2276                                 "disable clock gating\n");
2277                         udc->clock_gating = 0;
2278                 }
2279
2280                 udc->qwork = create_singlethread_workqueue("mv_udc_queue");
2281                 if (!udc->qwork) {
2282                         dev_err(&pdev->dev, "cannot create workqueue\n");
2283                         retval = -ENOMEM;
2284                         goto err_destroy_dma;
2285                 }
2286
2287                 INIT_WORK(&udc->vbus_work, mv_udc_vbus_work);
2288         }
2289
2290         /*
2291          * When clock gating is supported, we can disable clk and phy.
2292          * If not, it means that VBUS detection is not supported, we
2293          * have to enable vbus active all the time to let controller work.
2294          */
2295         if (udc->clock_gating)
2296                 mv_udc_disable_internal(udc);
2297         else
2298                 udc->vbus_active = 1;
2299
2300         retval = usb_add_gadget_udc_release(&pdev->dev, &udc->gadget,
2301                         gadget_release);
2302         if (retval)
2303                 goto err_create_workqueue;
2304
2305         platform_set_drvdata(pdev, udc);
2306         dev_info(&pdev->dev, "successful probe UDC device %s clock gating.\n",
2307                 udc->clock_gating ? "with" : "without");
2308
2309         return 0;
2310
2311 err_create_workqueue:
2312         destroy_workqueue(udc->qwork);
2313 err_destroy_dma:
2314         dma_pool_destroy(udc->dtd_pool);
2315 err_free_dma:
2316         dma_free_coherent(&pdev->dev, udc->ep_dqh_size,
2317                         udc->ep_dqh, udc->ep_dqh_dma);
2318 err_disable_clock:
2319         mv_udc_disable_internal(udc);
2320
2321         return retval;
2322 }
2323
2324 #ifdef CONFIG_PM
2325 static int mv_udc_suspend(struct device *dev)
2326 {
2327         struct mv_udc *udc;
2328
2329         udc = dev_get_drvdata(dev);
2330
2331         /* if OTG is enabled, the following will be done in OTG driver*/
2332         if (udc->transceiver)
2333                 return 0;
2334
2335         if (udc->pdata->vbus && udc->pdata->vbus->poll)
2336                 if (udc->pdata->vbus->poll() == VBUS_HIGH) {
2337                         dev_info(&udc->dev->dev, "USB cable is connected!\n");
2338                         return -EAGAIN;
2339                 }
2340
2341         /*
2342          * only cable is unplugged, udc can suspend.
2343          * So do not care about clock_gating == 1.
2344          */
2345         if (!udc->clock_gating) {
2346                 udc_stop(udc);
2347
2348                 spin_lock_irq(&udc->lock);
2349                 /* stop all usb activities */
2350                 stop_activity(udc, udc->driver);
2351                 spin_unlock_irq(&udc->lock);
2352
2353                 mv_udc_disable_internal(udc);
2354         }
2355
2356         return 0;
2357 }
2358
2359 static int mv_udc_resume(struct device *dev)
2360 {
2361         struct mv_udc *udc;
2362         int retval;
2363
2364         udc = dev_get_drvdata(dev);
2365
2366         /* if OTG is enabled, the following will be done in OTG driver*/
2367         if (udc->transceiver)
2368                 return 0;
2369
2370         if (!udc->clock_gating) {
2371                 retval = mv_udc_enable_internal(udc);
2372                 if (retval)
2373                         return retval;
2374
2375                 if (udc->driver && udc->softconnect) {
2376                         udc_reset(udc);
2377                         ep0_reset(udc);
2378                         udc_start(udc);
2379                 }
2380         }
2381
2382         return 0;
2383 }
2384
2385 static const struct dev_pm_ops mv_udc_pm_ops = {
2386         .suspend        = mv_udc_suspend,
2387         .resume         = mv_udc_resume,
2388 };
2389 #endif
2390
2391 static void mv_udc_shutdown(struct platform_device *pdev)
2392 {
2393         struct mv_udc *udc;
2394         u32 mode;
2395
2396         udc = platform_get_drvdata(pdev);
2397         /* reset controller mode to IDLE */
2398         mv_udc_enable(udc);
2399         mode = readl(&udc->op_regs->usbmode);
2400         mode &= ~3;
2401         writel(mode, &udc->op_regs->usbmode);
2402         mv_udc_disable(udc);
2403 }
2404
2405 static struct platform_driver udc_driver = {
2406         .probe          = mv_udc_probe,
2407         .remove         = mv_udc_remove,
2408         .shutdown       = mv_udc_shutdown,
2409         .driver         = {
2410                 .owner  = THIS_MODULE,
2411                 .name   = "mv-udc",
2412 #ifdef CONFIG_PM
2413                 .pm     = &mv_udc_pm_ops,
2414 #endif
2415         },
2416 };
2417
2418 module_platform_driver(udc_driver);
2419 MODULE_ALIAS("platform:mv-udc");
2420 MODULE_DESCRIPTION(DRIVER_DESC);
2421 MODULE_AUTHOR("Chao Xie <[email protected]>");
2422 MODULE_VERSION(DRIVER_VERSION);
2423 MODULE_LICENSE("GPL");
This page took 0.17541 seconds and 4 git commands to generate.