1 // SPDX-License-Identifier: GPL-2.0+
3 * linux/fs/jbd2/commit.c
7 * Copyright 1998 Red Hat corp --- All Rights Reserved
9 * Journal commit routines for the generic filesystem journaling code;
10 * part of the ext2fs journaling system.
13 #include <linux/time.h>
15 #include <linux/jbd2.h>
16 #include <linux/errno.h>
17 #include <linux/slab.h>
19 #include <linux/pagemap.h>
20 #include <linux/jiffies.h>
21 #include <linux/crc32.h>
22 #include <linux/writeback.h>
23 #include <linux/backing-dev.h>
24 #include <linux/bio.h>
25 #include <linux/blkdev.h>
26 #include <linux/bitops.h>
27 #include <trace/events/jbd2.h>
30 * IO end handler for temporary buffer_heads handling writes to the journal.
32 static void journal_end_buffer_io_sync(struct buffer_head *bh, int uptodate)
34 struct buffer_head *orig_bh = bh->b_private;
38 set_buffer_uptodate(bh);
40 clear_buffer_uptodate(bh);
42 clear_bit_unlock(BH_Shadow, &orig_bh->b_state);
43 smp_mb__after_atomic();
44 wake_up_bit(&orig_bh->b_state, BH_Shadow);
50 * When an ext4 file is truncated, it is possible that some pages are not
51 * successfully freed, because they are attached to a committing transaction.
52 * After the transaction commits, these pages are left on the LRU, with no
53 * ->mapping, and with attached buffers. These pages are trivially reclaimable
54 * by the VM, but their apparent absence upsets the VM accounting, and it makes
55 * the numbers in /proc/meminfo look odd.
57 * So here, we have a buffer which has just come off the forget list. Look to
58 * see if we can strip all buffers from the backing page.
60 * Called under lock_journal(), and possibly under journal_datalist_lock. The
61 * caller provided us with a ref against the buffer, and we drop that here.
63 static void release_buffer_page(struct buffer_head *bh)
70 if (atomic_read(&bh->b_count) != 1)
75 folio = page_folio(page);
79 /* OK, it's a truncated page */
80 if (!folio_trylock(folio))
85 try_to_free_buffers(folio);
94 static void jbd2_commit_block_csum_set(journal_t *j, struct buffer_head *bh)
96 struct commit_header *h;
99 if (!jbd2_journal_has_csum_v2or3(j))
102 h = (struct commit_header *)(bh->b_data);
103 h->h_chksum_type = 0;
104 h->h_chksum_size = 0;
106 csum = jbd2_chksum(j, j->j_csum_seed, bh->b_data, j->j_blocksize);
107 h->h_chksum[0] = cpu_to_be32(csum);
111 * Done it all: now submit the commit record. We should have
112 * cleaned up our previous buffers by now, so if we are in abort
113 * mode we can now just skip the rest of the journal write
116 * Returns 1 if the journal needs to be aborted or 0 on success
118 static int journal_submit_commit_record(journal_t *journal,
119 transaction_t *commit_transaction,
120 struct buffer_head **cbh,
123 struct commit_header *tmp;
124 struct buffer_head *bh;
125 struct timespec64 now;
126 blk_opf_t write_flags = REQ_OP_WRITE | REQ_SYNC;
130 if (is_journal_aborted(journal))
133 bh = jbd2_journal_get_descriptor_buffer(commit_transaction,
138 tmp = (struct commit_header *)bh->b_data;
139 ktime_get_coarse_real_ts64(&now);
140 tmp->h_commit_sec = cpu_to_be64(now.tv_sec);
141 tmp->h_commit_nsec = cpu_to_be32(now.tv_nsec);
143 if (jbd2_has_feature_checksum(journal)) {
144 tmp->h_chksum_type = JBD2_CRC32_CHKSUM;
145 tmp->h_chksum_size = JBD2_CRC32_CHKSUM_SIZE;
146 tmp->h_chksum[0] = cpu_to_be32(crc32_sum);
148 jbd2_commit_block_csum_set(journal, bh);
150 BUFFER_TRACE(bh, "submit commit block");
152 clear_buffer_dirty(bh);
153 set_buffer_uptodate(bh);
154 bh->b_end_io = journal_end_buffer_io_sync;
156 if (journal->j_flags & JBD2_BARRIER &&
157 !jbd2_has_feature_async_commit(journal))
158 write_flags |= REQ_PREFLUSH | REQ_FUA;
160 submit_bh(write_flags, bh);
166 * This function along with journal_submit_commit_record
167 * allows to write the commit record asynchronously.
169 static int journal_wait_on_commit_record(journal_t *journal,
170 struct buffer_head *bh)
174 clear_buffer_dirty(bh);
177 if (unlikely(!buffer_uptodate(bh)))
179 put_bh(bh); /* One for getblk() */
185 * write the filemap data using writepage() address_space_operations.
186 * We don't do block allocation here even for delalloc. We don't
187 * use writepages() because with delayed allocation we may be doing
188 * block allocation in writepages().
190 int jbd2_journal_submit_inode_data_buffers(struct jbd2_inode *jinode)
192 struct address_space *mapping = jinode->i_vfs_inode->i_mapping;
193 struct writeback_control wbc = {
194 .sync_mode = WB_SYNC_ALL,
195 .nr_to_write = mapping->nrpages * 2,
196 .range_start = jinode->i_dirty_start,
197 .range_end = jinode->i_dirty_end,
201 * submit the inode data buffers. We use writepage
202 * instead of writepages. Because writepages can do
203 * block allocation with delalloc. We need to write
204 * only allocated blocks here.
206 return generic_writepages(mapping, &wbc);
209 /* Send all the data buffers related to an inode */
210 int jbd2_submit_inode_data(struct jbd2_inode *jinode)
213 if (!jinode || !(jinode->i_flags & JI_WRITE_DATA))
216 trace_jbd2_submit_inode_data(jinode->i_vfs_inode);
217 return jbd2_journal_submit_inode_data_buffers(jinode);
220 EXPORT_SYMBOL(jbd2_submit_inode_data);
222 int jbd2_wait_inode_data(journal_t *journal, struct jbd2_inode *jinode)
224 if (!jinode || !(jinode->i_flags & JI_WAIT_DATA) ||
225 !jinode->i_vfs_inode || !jinode->i_vfs_inode->i_mapping)
227 return filemap_fdatawait_range_keep_errors(
228 jinode->i_vfs_inode->i_mapping, jinode->i_dirty_start,
229 jinode->i_dirty_end);
231 EXPORT_SYMBOL(jbd2_wait_inode_data);
234 * Submit all the data buffers of inode associated with the transaction to
237 * We are in a committing transaction. Therefore no new inode can be added to
238 * our inode list. We use JI_COMMIT_RUNNING flag to protect inode we currently
239 * operate on from being released while we write out pages.
241 static int journal_submit_data_buffers(journal_t *journal,
242 transaction_t *commit_transaction)
244 struct jbd2_inode *jinode;
247 spin_lock(&journal->j_list_lock);
248 list_for_each_entry(jinode, &commit_transaction->t_inode_list, i_list) {
249 if (!(jinode->i_flags & JI_WRITE_DATA))
251 jinode->i_flags |= JI_COMMIT_RUNNING;
252 spin_unlock(&journal->j_list_lock);
253 /* submit the inode data buffers. */
254 trace_jbd2_submit_inode_data(jinode->i_vfs_inode);
255 if (journal->j_submit_inode_data_buffers) {
256 err = journal->j_submit_inode_data_buffers(jinode);
260 spin_lock(&journal->j_list_lock);
261 J_ASSERT(jinode->i_transaction == commit_transaction);
262 jinode->i_flags &= ~JI_COMMIT_RUNNING;
264 wake_up_bit(&jinode->i_flags, __JI_COMMIT_RUNNING);
266 spin_unlock(&journal->j_list_lock);
270 int jbd2_journal_finish_inode_data_buffers(struct jbd2_inode *jinode)
272 struct address_space *mapping = jinode->i_vfs_inode->i_mapping;
274 return filemap_fdatawait_range_keep_errors(mapping,
275 jinode->i_dirty_start,
276 jinode->i_dirty_end);
280 * Wait for data submitted for writeout, refile inodes to proper
281 * transaction if needed.
284 static int journal_finish_inode_data_buffers(journal_t *journal,
285 transaction_t *commit_transaction)
287 struct jbd2_inode *jinode, *next_i;
290 /* For locking, see the comment in journal_submit_data_buffers() */
291 spin_lock(&journal->j_list_lock);
292 list_for_each_entry(jinode, &commit_transaction->t_inode_list, i_list) {
293 if (!(jinode->i_flags & JI_WAIT_DATA))
295 jinode->i_flags |= JI_COMMIT_RUNNING;
296 spin_unlock(&journal->j_list_lock);
297 /* wait for the inode data buffers writeout. */
298 if (journal->j_finish_inode_data_buffers) {
299 err = journal->j_finish_inode_data_buffers(jinode);
303 spin_lock(&journal->j_list_lock);
304 jinode->i_flags &= ~JI_COMMIT_RUNNING;
306 wake_up_bit(&jinode->i_flags, __JI_COMMIT_RUNNING);
309 /* Now refile inode to proper lists */
310 list_for_each_entry_safe(jinode, next_i,
311 &commit_transaction->t_inode_list, i_list) {
312 list_del(&jinode->i_list);
313 if (jinode->i_next_transaction) {
314 jinode->i_transaction = jinode->i_next_transaction;
315 jinode->i_next_transaction = NULL;
316 list_add(&jinode->i_list,
317 &jinode->i_transaction->t_inode_list);
319 jinode->i_transaction = NULL;
320 jinode->i_dirty_start = 0;
321 jinode->i_dirty_end = 0;
324 spin_unlock(&journal->j_list_lock);
329 static __u32 jbd2_checksum_data(__u32 crc32_sum, struct buffer_head *bh)
331 struct page *page = bh->b_page;
335 addr = kmap_atomic(page);
336 checksum = crc32_be(crc32_sum,
337 (void *)(addr + offset_in_page(bh->b_data)), bh->b_size);
343 static void write_tag_block(journal_t *j, journal_block_tag_t *tag,
344 unsigned long long block)
346 tag->t_blocknr = cpu_to_be32(block & (u32)~0);
347 if (jbd2_has_feature_64bit(j))
348 tag->t_blocknr_high = cpu_to_be32((block >> 31) >> 1);
351 static void jbd2_block_tag_csum_set(journal_t *j, journal_block_tag_t *tag,
352 struct buffer_head *bh, __u32 sequence)
354 journal_block_tag3_t *tag3 = (journal_block_tag3_t *)tag;
355 struct page *page = bh->b_page;
360 if (!jbd2_journal_has_csum_v2or3(j))
363 seq = cpu_to_be32(sequence);
364 addr = kmap_atomic(page);
365 csum32 = jbd2_chksum(j, j->j_csum_seed, (__u8 *)&seq, sizeof(seq));
366 csum32 = jbd2_chksum(j, csum32, addr + offset_in_page(bh->b_data),
370 if (jbd2_has_feature_csum3(j))
371 tag3->t_checksum = cpu_to_be32(csum32);
373 tag->t_checksum = cpu_to_be16(csum32);
376 * jbd2_journal_commit_transaction
378 * The primary function for committing a transaction to the log. This
379 * function is called by the journal thread to begin a complete commit.
381 void jbd2_journal_commit_transaction(journal_t *journal)
383 struct transaction_stats_s stats;
384 transaction_t *commit_transaction;
385 struct journal_head *jh;
386 struct buffer_head *descriptor;
387 struct buffer_head **wbuf = journal->j_wbuf;
391 unsigned long long blocknr;
395 journal_block_tag_t *tag = NULL;
400 int tag_bytes = journal_tag_bytes(journal);
401 struct buffer_head *cbh = NULL; /* For transactional checksums */
402 __u32 crc32_sum = ~0;
403 struct blk_plug plug;
404 /* Tail of the journal */
405 unsigned long first_block;
412 if (jbd2_journal_has_csum_v2or3(journal))
413 csum_size = sizeof(struct jbd2_journal_block_tail);
416 * First job: lock down the current transaction and wait for
417 * all outstanding updates to complete.
420 /* Do we need to erase the effects of a prior jbd2_journal_flush? */
421 if (journal->j_flags & JBD2_FLUSHED) {
422 jbd2_debug(3, "super block updated\n");
423 mutex_lock_io(&journal->j_checkpoint_mutex);
425 * We hold j_checkpoint_mutex so tail cannot change under us.
426 * We don't need any special data guarantees for writing sb
427 * since journal is empty and it is ok for write to be
428 * flushed only with transaction commit.
430 jbd2_journal_update_sb_log_tail(journal,
431 journal->j_tail_sequence,
434 mutex_unlock(&journal->j_checkpoint_mutex);
436 jbd2_debug(3, "superblock not updated\n");
439 J_ASSERT(journal->j_running_transaction != NULL);
440 J_ASSERT(journal->j_committing_transaction == NULL);
442 write_lock(&journal->j_state_lock);
443 journal->j_flags |= JBD2_FULL_COMMIT_ONGOING;
444 while (journal->j_flags & JBD2_FAST_COMMIT_ONGOING) {
447 prepare_to_wait(&journal->j_fc_wait, &wait,
448 TASK_UNINTERRUPTIBLE);
449 write_unlock(&journal->j_state_lock);
451 write_lock(&journal->j_state_lock);
452 finish_wait(&journal->j_fc_wait, &wait);
454 * TODO: by blocking fast commits here, we are increasing
455 * fsync() latency slightly. Strictly speaking, we don't need
456 * to block fast commits until the transaction enters T_FLUSH
457 * state. So an optimization is possible where we block new fast
458 * commits here and wait for existing ones to complete
459 * just before we enter T_FLUSH. That way, the existing fast
460 * commits and this full commit can proceed parallely.
463 write_unlock(&journal->j_state_lock);
465 commit_transaction = journal->j_running_transaction;
467 trace_jbd2_start_commit(journal, commit_transaction);
468 jbd2_debug(1, "JBD2: starting commit of transaction %d\n",
469 commit_transaction->t_tid);
471 write_lock(&journal->j_state_lock);
472 journal->j_fc_off = 0;
473 J_ASSERT(commit_transaction->t_state == T_RUNNING);
474 commit_transaction->t_state = T_LOCKED;
476 trace_jbd2_commit_locking(journal, commit_transaction);
477 stats.run.rs_wait = commit_transaction->t_max_wait;
478 stats.run.rs_request_delay = 0;
479 stats.run.rs_locked = jiffies;
480 if (commit_transaction->t_requested)
481 stats.run.rs_request_delay =
482 jbd2_time_diff(commit_transaction->t_requested,
483 stats.run.rs_locked);
484 stats.run.rs_running = jbd2_time_diff(commit_transaction->t_start,
485 stats.run.rs_locked);
487 // waits for any t_updates to finish
488 jbd2_journal_wait_updates(journal);
490 commit_transaction->t_state = T_SWITCH;
492 J_ASSERT (atomic_read(&commit_transaction->t_outstanding_credits) <=
493 journal->j_max_transaction_buffers);
496 * First thing we are allowed to do is to discard any remaining
497 * BJ_Reserved buffers. Note, it is _not_ permissible to assume
498 * that there are no such buffers: if a large filesystem
499 * operation like a truncate needs to split itself over multiple
500 * transactions, then it may try to do a jbd2_journal_restart() while
501 * there are still BJ_Reserved buffers outstanding. These must
502 * be released cleanly from the current transaction.
504 * In this case, the filesystem must still reserve write access
505 * again before modifying the buffer in the new transaction, but
506 * we do not require it to remember exactly which old buffers it
507 * has reserved. This is consistent with the existing behaviour
508 * that multiple jbd2_journal_get_write_access() calls to the same
509 * buffer are perfectly permissible.
510 * We use journal->j_state_lock here to serialize processing of
511 * t_reserved_list with eviction of buffers from journal_unmap_buffer().
513 while (commit_transaction->t_reserved_list) {
514 jh = commit_transaction->t_reserved_list;
515 JBUFFER_TRACE(jh, "reserved, unused: refile");
517 * A jbd2_journal_get_undo_access()+jbd2_journal_release_buffer() may
518 * leave undo-committed data.
520 if (jh->b_committed_data) {
521 struct buffer_head *bh = jh2bh(jh);
523 spin_lock(&jh->b_state_lock);
524 jbd2_free(jh->b_committed_data, bh->b_size);
525 jh->b_committed_data = NULL;
526 spin_unlock(&jh->b_state_lock);
528 jbd2_journal_refile_buffer(journal, jh);
531 write_unlock(&journal->j_state_lock);
533 * Now try to drop any written-back buffers from the journal's
534 * checkpoint lists. We do this *before* commit because it potentially
537 spin_lock(&journal->j_list_lock);
538 __jbd2_journal_clean_checkpoint_list(journal, false);
539 spin_unlock(&journal->j_list_lock);
541 jbd2_debug(3, "JBD2: commit phase 1\n");
544 * Clear revoked flag to reflect there is no revoked buffers
545 * in the next transaction which is going to be started.
547 jbd2_clear_buffer_revoked_flags(journal);
550 * Switch to a new revoke table.
552 jbd2_journal_switch_revoke_table(journal);
554 write_lock(&journal->j_state_lock);
556 * Reserved credits cannot be claimed anymore, free them
558 atomic_sub(atomic_read(&journal->j_reserved_credits),
559 &commit_transaction->t_outstanding_credits);
561 trace_jbd2_commit_flushing(journal, commit_transaction);
562 stats.run.rs_flushing = jiffies;
563 stats.run.rs_locked = jbd2_time_diff(stats.run.rs_locked,
564 stats.run.rs_flushing);
566 commit_transaction->t_state = T_FLUSH;
567 journal->j_committing_transaction = commit_transaction;
568 journal->j_running_transaction = NULL;
569 start_time = ktime_get();
570 commit_transaction->t_log_start = journal->j_head;
571 wake_up_all(&journal->j_wait_transaction_locked);
572 write_unlock(&journal->j_state_lock);
574 jbd2_debug(3, "JBD2: commit phase 2a\n");
577 * Now start flushing things to disk, in the order they appear
578 * on the transaction lists. Data blocks go first.
580 err = journal_submit_data_buffers(journal, commit_transaction);
582 jbd2_journal_abort(journal, err);
584 blk_start_plug(&plug);
585 jbd2_journal_write_revoke_records(commit_transaction, &log_bufs);
587 jbd2_debug(3, "JBD2: commit phase 2b\n");
590 * Way to go: we have now written out all of the data for a
591 * transaction! Now comes the tricky part: we need to write out
592 * metadata. Loop over the transaction's entire buffer list:
594 write_lock(&journal->j_state_lock);
595 commit_transaction->t_state = T_COMMIT;
596 write_unlock(&journal->j_state_lock);
598 trace_jbd2_commit_logging(journal, commit_transaction);
599 stats.run.rs_logging = jiffies;
600 stats.run.rs_flushing = jbd2_time_diff(stats.run.rs_flushing,
601 stats.run.rs_logging);
602 stats.run.rs_blocks = commit_transaction->t_nr_buffers;
603 stats.run.rs_blocks_logged = 0;
605 J_ASSERT(commit_transaction->t_nr_buffers <=
606 atomic_read(&commit_transaction->t_outstanding_credits));
611 while (commit_transaction->t_buffers) {
613 /* Find the next buffer to be journaled... */
615 jh = commit_transaction->t_buffers;
617 /* If we're in abort mode, we just un-journal the buffer and
620 if (is_journal_aborted(journal)) {
621 clear_buffer_jbddirty(jh2bh(jh));
622 JBUFFER_TRACE(jh, "journal is aborting: refile");
623 jbd2_buffer_abort_trigger(jh,
625 jh->b_frozen_triggers :
627 jbd2_journal_refile_buffer(journal, jh);
628 /* If that was the last one, we need to clean up
629 * any descriptor buffers which may have been
630 * already allocated, even if we are now
632 if (!commit_transaction->t_buffers)
633 goto start_journal_io;
637 /* Make sure we have a descriptor block in which to
638 record the metadata buffer. */
641 J_ASSERT (bufs == 0);
643 jbd2_debug(4, "JBD2: get descriptor\n");
645 descriptor = jbd2_journal_get_descriptor_buffer(
647 JBD2_DESCRIPTOR_BLOCK);
649 jbd2_journal_abort(journal, -EIO);
653 jbd2_debug(4, "JBD2: got buffer %llu (%p)\n",
654 (unsigned long long)descriptor->b_blocknr,
656 tagp = &descriptor->b_data[sizeof(journal_header_t)];
657 space_left = descriptor->b_size -
658 sizeof(journal_header_t);
660 set_buffer_jwrite(descriptor);
661 set_buffer_dirty(descriptor);
662 wbuf[bufs++] = descriptor;
664 /* Record it so that we can wait for IO
666 BUFFER_TRACE(descriptor, "ph3: file as descriptor");
667 jbd2_file_log_bh(&log_bufs, descriptor);
670 /* Where is the buffer to be written? */
672 err = jbd2_journal_next_log_block(journal, &blocknr);
673 /* If the block mapping failed, just abandon the buffer
674 and repeat this loop: we'll fall into the
675 refile-on-abort condition above. */
677 jbd2_journal_abort(journal, err);
682 * start_this_handle() uses t_outstanding_credits to determine
683 * the free space in the log.
685 atomic_dec(&commit_transaction->t_outstanding_credits);
687 /* Bump b_count to prevent truncate from stumbling over
688 the shadowed buffer! @@@ This can go if we ever get
689 rid of the shadow pairing of buffers. */
690 atomic_inc(&jh2bh(jh)->b_count);
693 * Make a temporary IO buffer with which to write it out
694 * (this will requeue the metadata buffer to BJ_Shadow).
696 set_bit(BH_JWrite, &jh2bh(jh)->b_state);
697 JBUFFER_TRACE(jh, "ph3: write metadata");
698 flags = jbd2_journal_write_metadata_buffer(commit_transaction,
699 jh, &wbuf[bufs], blocknr);
701 jbd2_journal_abort(journal, flags);
704 jbd2_file_log_bh(&io_bufs, wbuf[bufs]);
706 /* Record the new block's tag in the current descriptor
711 tag_flag |= JBD2_FLAG_ESCAPE;
713 tag_flag |= JBD2_FLAG_SAME_UUID;
715 tag = (journal_block_tag_t *) tagp;
716 write_tag_block(journal, tag, jh2bh(jh)->b_blocknr);
717 tag->t_flags = cpu_to_be16(tag_flag);
718 jbd2_block_tag_csum_set(journal, tag, wbuf[bufs],
719 commit_transaction->t_tid);
721 space_left -= tag_bytes;
725 memcpy (tagp, journal->j_uuid, 16);
731 /* If there's no more to do, or if the descriptor is full,
734 if (bufs == journal->j_wbufsize ||
735 commit_transaction->t_buffers == NULL ||
736 space_left < tag_bytes + 16 + csum_size) {
738 jbd2_debug(4, "JBD2: Submit %d IOs\n", bufs);
740 /* Write an end-of-descriptor marker before
741 submitting the IOs. "tag" still points to
742 the last tag we set up. */
744 tag->t_flags |= cpu_to_be16(JBD2_FLAG_LAST_TAG);
747 jbd2_descriptor_block_csum_set(journal,
750 for (i = 0; i < bufs; i++) {
751 struct buffer_head *bh = wbuf[i];
755 if (jbd2_has_feature_checksum(journal)) {
757 jbd2_checksum_data(crc32_sum, bh);
761 clear_buffer_dirty(bh);
762 set_buffer_uptodate(bh);
763 bh->b_end_io = journal_end_buffer_io_sync;
764 submit_bh(REQ_OP_WRITE | REQ_SYNC, bh);
768 /* Force a new descriptor to be generated next
769 time round the loop. */
775 err = journal_finish_inode_data_buffers(journal, commit_transaction);
778 "JBD2: Detected IO errors while flushing file data "
779 "on %s\n", journal->j_devname);
780 if (journal->j_flags & JBD2_ABORT_ON_SYNCDATA_ERR)
781 jbd2_journal_abort(journal, err);
786 * Get current oldest transaction in the log before we issue flush
787 * to the filesystem device. After the flush we can be sure that
788 * blocks of all older transactions are checkpointed to persistent
789 * storage and we will be safe to update journal start in the
790 * superblock with the numbers we get here.
793 jbd2_journal_get_log_tail(journal, &first_tid, &first_block);
795 write_lock(&journal->j_state_lock);
797 long freed = first_block - journal->j_tail;
799 if (first_block < journal->j_tail)
800 freed += journal->j_last - journal->j_first;
801 /* Update tail only if we free significant amount of space */
802 if (freed < jbd2_journal_get_max_txn_bufs(journal))
805 J_ASSERT(commit_transaction->t_state == T_COMMIT);
806 commit_transaction->t_state = T_COMMIT_DFLUSH;
807 write_unlock(&journal->j_state_lock);
810 * If the journal is not located on the file system device,
811 * then we must flush the file system device before we issue
814 if (commit_transaction->t_need_data_flush &&
815 (journal->j_fs_dev != journal->j_dev) &&
816 (journal->j_flags & JBD2_BARRIER))
817 blkdev_issue_flush(journal->j_fs_dev);
819 /* Done it all: now write the commit record asynchronously. */
820 if (jbd2_has_feature_async_commit(journal)) {
821 err = journal_submit_commit_record(journal, commit_transaction,
824 jbd2_journal_abort(journal, err);
827 blk_finish_plug(&plug);
829 /* Lo and behold: we have just managed to send a transaction to
830 the log. Before we can commit it, wait for the IO so far to
831 complete. Control buffers being written are on the
832 transaction's t_log_list queue, and metadata buffers are on
835 Wait for the buffers in reverse order. That way we are
836 less likely to be woken up until all IOs have completed, and
837 so we incur less scheduling load.
840 jbd2_debug(3, "JBD2: commit phase 3\n");
842 while (!list_empty(&io_bufs)) {
843 struct buffer_head *bh = list_entry(io_bufs.prev,
850 if (unlikely(!buffer_uptodate(bh)))
852 jbd2_unfile_log_bh(bh);
853 stats.run.rs_blocks_logged++;
856 * The list contains temporary buffer heads created by
857 * jbd2_journal_write_metadata_buffer().
859 BUFFER_TRACE(bh, "dumping temporary bh");
861 J_ASSERT_BH(bh, atomic_read(&bh->b_count) == 0);
862 free_buffer_head(bh);
864 /* We also have to refile the corresponding shadowed buffer */
865 jh = commit_transaction->t_shadow_list->b_tprev;
867 clear_buffer_jwrite(bh);
868 J_ASSERT_BH(bh, buffer_jbddirty(bh));
869 J_ASSERT_BH(bh, !buffer_shadow(bh));
871 /* The metadata is now released for reuse, but we need
872 to remember it against this transaction so that when
873 we finally commit, we can do any checkpointing
875 JBUFFER_TRACE(jh, "file as BJ_Forget");
876 jbd2_journal_file_buffer(jh, commit_transaction, BJ_Forget);
877 JBUFFER_TRACE(jh, "brelse shadowed buffer");
881 J_ASSERT (commit_transaction->t_shadow_list == NULL);
883 jbd2_debug(3, "JBD2: commit phase 4\n");
885 /* Here we wait for the revoke record and descriptor record buffers */
886 while (!list_empty(&log_bufs)) {
887 struct buffer_head *bh;
889 bh = list_entry(log_bufs.prev, struct buffer_head, b_assoc_buffers);
893 if (unlikely(!buffer_uptodate(bh)))
896 BUFFER_TRACE(bh, "ph5: control buffer writeout done: unfile");
897 clear_buffer_jwrite(bh);
898 jbd2_unfile_log_bh(bh);
899 stats.run.rs_blocks_logged++;
900 __brelse(bh); /* One for getblk */
901 /* AKPM: bforget here */
905 jbd2_journal_abort(journal, err);
907 jbd2_debug(3, "JBD2: commit phase 5\n");
908 write_lock(&journal->j_state_lock);
909 J_ASSERT(commit_transaction->t_state == T_COMMIT_DFLUSH);
910 commit_transaction->t_state = T_COMMIT_JFLUSH;
911 write_unlock(&journal->j_state_lock);
913 if (!jbd2_has_feature_async_commit(journal)) {
914 err = journal_submit_commit_record(journal, commit_transaction,
917 jbd2_journal_abort(journal, err);
920 err = journal_wait_on_commit_record(journal, cbh);
921 stats.run.rs_blocks_logged++;
922 if (jbd2_has_feature_async_commit(journal) &&
923 journal->j_flags & JBD2_BARRIER) {
924 blkdev_issue_flush(journal->j_dev);
928 jbd2_journal_abort(journal, err);
931 atomic_read(&commit_transaction->t_outstanding_credits) < 0);
934 * Now disk caches for filesystem device are flushed so we are safe to
935 * erase checkpointed transactions from the log by updating journal
939 jbd2_update_log_tail(journal, first_tid, first_block);
941 /* End of a transaction! Finally, we can do checkpoint
942 processing: any buffers committed as a result of this
943 transaction can be removed from any checkpoint list it was on
946 jbd2_debug(3, "JBD2: commit phase 6\n");
948 J_ASSERT(list_empty(&commit_transaction->t_inode_list));
949 J_ASSERT(commit_transaction->t_buffers == NULL);
950 J_ASSERT(commit_transaction->t_checkpoint_list == NULL);
951 J_ASSERT(commit_transaction->t_shadow_list == NULL);
955 * As there are other places (journal_unmap_buffer()) adding buffers
956 * to this list we have to be careful and hold the j_list_lock.
958 spin_lock(&journal->j_list_lock);
959 while (commit_transaction->t_forget) {
960 transaction_t *cp_transaction;
961 struct buffer_head *bh;
965 jh = commit_transaction->t_forget;
966 spin_unlock(&journal->j_list_lock);
969 * Get a reference so that bh cannot be freed before we are
973 spin_lock(&jh->b_state_lock);
974 J_ASSERT_JH(jh, jh->b_transaction == commit_transaction);
977 * If there is undo-protected committed data against
978 * this buffer, then we can remove it now. If it is a
979 * buffer needing such protection, the old frozen_data
980 * field now points to a committed version of the
981 * buffer, so rotate that field to the new committed
984 * Otherwise, we can just throw away the frozen data now.
986 * We also know that the frozen data has already fired
987 * its triggers if they exist, so we can clear that too.
989 if (jh->b_committed_data) {
990 jbd2_free(jh->b_committed_data, bh->b_size);
991 jh->b_committed_data = NULL;
992 if (jh->b_frozen_data) {
993 jh->b_committed_data = jh->b_frozen_data;
994 jh->b_frozen_data = NULL;
995 jh->b_frozen_triggers = NULL;
997 } else if (jh->b_frozen_data) {
998 jbd2_free(jh->b_frozen_data, bh->b_size);
999 jh->b_frozen_data = NULL;
1000 jh->b_frozen_triggers = NULL;
1003 spin_lock(&journal->j_list_lock);
1004 cp_transaction = jh->b_cp_transaction;
1005 if (cp_transaction) {
1006 JBUFFER_TRACE(jh, "remove from old cp transaction");
1007 cp_transaction->t_chp_stats.cs_dropped++;
1008 __jbd2_journal_remove_checkpoint(jh);
1011 /* Only re-checkpoint the buffer_head if it is marked
1012 * dirty. If the buffer was added to the BJ_Forget list
1013 * by jbd2_journal_forget, it may no longer be dirty and
1014 * there's no point in keeping a checkpoint record for
1018 * A buffer which has been freed while still being journaled
1019 * by a previous transaction, refile the buffer to BJ_Forget of
1020 * the running transaction. If the just committed transaction
1021 * contains "add to orphan" operation, we can completely
1022 * invalidate the buffer now. We are rather through in that
1023 * since the buffer may be still accessible when blocksize <
1024 * pagesize and it is attached to the last partial page.
1026 if (buffer_freed(bh) && !jh->b_next_transaction) {
1027 struct address_space *mapping;
1029 clear_buffer_freed(bh);
1030 clear_buffer_jbddirty(bh);
1033 * Block device buffers need to stay mapped all the
1034 * time, so it is enough to clear buffer_jbddirty and
1035 * buffer_freed bits. For the file mapping buffers (i.e.
1036 * journalled data) we need to unmap buffer and clear
1037 * more bits. We also need to be careful about the check
1038 * because the data page mapping can get cleared under
1039 * our hands. Note that if mapping == NULL, we don't
1040 * need to make buffer unmapped because the page is
1041 * already detached from the mapping and buffers cannot
1044 mapping = READ_ONCE(bh->b_page->mapping);
1045 if (mapping && !sb_is_blkdev_sb(mapping->host->i_sb)) {
1046 clear_buffer_mapped(bh);
1047 clear_buffer_new(bh);
1048 clear_buffer_req(bh);
1053 if (buffer_jbddirty(bh)) {
1054 JBUFFER_TRACE(jh, "add to new checkpointing trans");
1055 __jbd2_journal_insert_checkpoint(jh, commit_transaction);
1056 if (is_journal_aborted(journal))
1057 clear_buffer_jbddirty(bh);
1059 J_ASSERT_BH(bh, !buffer_dirty(bh));
1061 * The buffer on BJ_Forget list and not jbddirty means
1062 * it has been freed by this transaction and hence it
1063 * could not have been reallocated until this
1064 * transaction has committed. *BUT* it could be
1065 * reallocated once we have written all the data to
1066 * disk and before we process the buffer on BJ_Forget
1069 if (!jh->b_next_transaction)
1072 JBUFFER_TRACE(jh, "refile or unfile buffer");
1073 drop_ref = __jbd2_journal_refile_buffer(jh);
1074 spin_unlock(&jh->b_state_lock);
1076 jbd2_journal_put_journal_head(jh);
1078 release_buffer_page(bh); /* Drops bh reference */
1081 cond_resched_lock(&journal->j_list_lock);
1083 spin_unlock(&journal->j_list_lock);
1085 * This is a bit sleazy. We use j_list_lock to protect transition
1086 * of a transaction into T_FINISHED state and calling
1087 * __jbd2_journal_drop_transaction(). Otherwise we could race with
1088 * other checkpointing code processing the transaction...
1090 write_lock(&journal->j_state_lock);
1091 spin_lock(&journal->j_list_lock);
1093 * Now recheck if some buffers did not get attached to the transaction
1094 * while the lock was dropped...
1096 if (commit_transaction->t_forget) {
1097 spin_unlock(&journal->j_list_lock);
1098 write_unlock(&journal->j_state_lock);
1102 /* Add the transaction to the checkpoint list
1103 * __journal_remove_checkpoint() can not destroy transaction
1104 * under us because it is not marked as T_FINISHED yet */
1105 if (journal->j_checkpoint_transactions == NULL) {
1106 journal->j_checkpoint_transactions = commit_transaction;
1107 commit_transaction->t_cpnext = commit_transaction;
1108 commit_transaction->t_cpprev = commit_transaction;
1110 commit_transaction->t_cpnext =
1111 journal->j_checkpoint_transactions;
1112 commit_transaction->t_cpprev =
1113 commit_transaction->t_cpnext->t_cpprev;
1114 commit_transaction->t_cpnext->t_cpprev =
1116 commit_transaction->t_cpprev->t_cpnext =
1119 spin_unlock(&journal->j_list_lock);
1121 /* Done with this transaction! */
1123 jbd2_debug(3, "JBD2: commit phase 7\n");
1125 J_ASSERT(commit_transaction->t_state == T_COMMIT_JFLUSH);
1127 commit_transaction->t_start = jiffies;
1128 stats.run.rs_logging = jbd2_time_diff(stats.run.rs_logging,
1129 commit_transaction->t_start);
1132 * File the transaction statistics
1134 stats.ts_tid = commit_transaction->t_tid;
1135 stats.run.rs_handle_count =
1136 atomic_read(&commit_transaction->t_handle_count);
1137 trace_jbd2_run_stats(journal->j_fs_dev->bd_dev,
1138 commit_transaction->t_tid, &stats.run);
1139 stats.ts_requested = (commit_transaction->t_requested) ? 1 : 0;
1141 commit_transaction->t_state = T_COMMIT_CALLBACK;
1142 J_ASSERT(commit_transaction == journal->j_committing_transaction);
1143 journal->j_commit_sequence = commit_transaction->t_tid;
1144 journal->j_committing_transaction = NULL;
1145 commit_time = ktime_to_ns(ktime_sub(ktime_get(), start_time));
1148 * weight the commit time higher than the average time so we don't
1149 * react too strongly to vast changes in the commit time
1151 if (likely(journal->j_average_commit_time))
1152 journal->j_average_commit_time = (commit_time +
1153 journal->j_average_commit_time*3) / 4;
1155 journal->j_average_commit_time = commit_time;
1157 write_unlock(&journal->j_state_lock);
1159 if (journal->j_commit_callback)
1160 journal->j_commit_callback(journal, commit_transaction);
1161 if (journal->j_fc_cleanup_callback)
1162 journal->j_fc_cleanup_callback(journal, 1, commit_transaction->t_tid);
1164 trace_jbd2_end_commit(journal, commit_transaction);
1165 jbd2_debug(1, "JBD2: commit %d complete, head %d\n",
1166 journal->j_commit_sequence, journal->j_tail_sequence);
1168 write_lock(&journal->j_state_lock);
1169 journal->j_flags &= ~JBD2_FULL_COMMIT_ONGOING;
1170 journal->j_flags &= ~JBD2_FAST_COMMIT_ONGOING;
1171 spin_lock(&journal->j_list_lock);
1172 commit_transaction->t_state = T_FINISHED;
1173 /* Check if the transaction can be dropped now that we are finished */
1174 if (commit_transaction->t_checkpoint_list == NULL &&
1175 commit_transaction->t_checkpoint_io_list == NULL) {
1176 __jbd2_journal_drop_transaction(journal, commit_transaction);
1177 jbd2_journal_free_transaction(commit_transaction);
1179 spin_unlock(&journal->j_list_lock);
1180 write_unlock(&journal->j_state_lock);
1181 wake_up(&journal->j_wait_done_commit);
1182 wake_up(&journal->j_fc_wait);
1185 * Calculate overall stats
1187 spin_lock(&journal->j_history_lock);
1188 journal->j_stats.ts_tid++;
1189 journal->j_stats.ts_requested += stats.ts_requested;
1190 journal->j_stats.run.rs_wait += stats.run.rs_wait;
1191 journal->j_stats.run.rs_request_delay += stats.run.rs_request_delay;
1192 journal->j_stats.run.rs_running += stats.run.rs_running;
1193 journal->j_stats.run.rs_locked += stats.run.rs_locked;
1194 journal->j_stats.run.rs_flushing += stats.run.rs_flushing;
1195 journal->j_stats.run.rs_logging += stats.run.rs_logging;
1196 journal->j_stats.run.rs_handle_count += stats.run.rs_handle_count;
1197 journal->j_stats.run.rs_blocks += stats.run.rs_blocks;
1198 journal->j_stats.run.rs_blocks_logged += stats.run.rs_blocks_logged;
1199 spin_unlock(&journal->j_history_lock);