1 // SPDX-License-Identifier: GPL-2.0-only
3 * This file is part of UBIFS.
5 * Copyright (C) 2006-2008 Nokia Corporation.
7 * Authors: Artem Bityutskiy (Битюцкий Артём)
12 * This file implements UBIFS journal.
14 * The journal consists of 2 parts - the log and bud LEBs. The log has fixed
15 * length and position, while a bud logical eraseblock is any LEB in the main
16 * area. Buds contain file system data - data nodes, inode nodes, etc. The log
17 * contains only references to buds and some other stuff like commit
18 * start node. The idea is that when we commit the journal, we do
19 * not copy the data, the buds just become indexed. Since after the commit the
20 * nodes in bud eraseblocks become leaf nodes of the file system index tree, we
21 * use term "bud". Analogy is obvious, bud eraseblocks contain nodes which will
22 * become leafs in the future.
24 * The journal is multi-headed because we want to write data to the journal as
25 * optimally as possible. It is nice to have nodes belonging to the same inode
26 * in one LEB, so we may write data owned by different inodes to different
27 * journal heads, although at present only one data head is used.
29 * For recovery reasons, the base head contains all inode nodes, all directory
30 * entry nodes and all truncate nodes. This means that the other heads contain
33 * Bud LEBs may be half-indexed. For example, if the bud was not full at the
34 * time of commit, the bud is retained to continue to be used in the journal,
35 * even though the "front" of the LEB is now indexed. In that case, the log
36 * reference contains the offset where the bud starts for the purposes of the
39 * The journal size has to be limited, because the larger is the journal, the
40 * longer it takes to mount UBIFS (scanning the journal) and the more memory it
41 * takes (indexing in the TNC).
43 * All the journal write operations like 'ubifs_jnl_update()' here, which write
44 * multiple UBIFS nodes to the journal at one go, are atomic with respect to
45 * unclean reboots. Should the unclean reboot happen, the recovery code drops
52 * zero_ino_node_unused - zero out unused fields of an on-flash inode node.
53 * @ino: the inode to zero out
55 static inline void zero_ino_node_unused(struct ubifs_ino_node *ino)
57 memset(ino->padding1, 0, 4);
58 memset(ino->padding2, 0, 26);
62 * zero_dent_node_unused - zero out unused fields of an on-flash directory
64 * @dent: the directory entry to zero out
66 static inline void zero_dent_node_unused(struct ubifs_dent_node *dent)
72 * zero_trun_node_unused - zero out unused fields of an on-flash truncation
74 * @trun: the truncation node to zero out
76 static inline void zero_trun_node_unused(struct ubifs_trun_node *trun)
78 memset(trun->padding, 0, 12);
81 static void ubifs_add_auth_dirt(struct ubifs_info *c, int lnum)
83 if (ubifs_authenticated(c))
84 ubifs_add_dirt(c, lnum, ubifs_auth_node_sz(c));
88 * reserve_space - reserve space in the journal.
89 * @c: UBIFS file-system description object
90 * @jhead: journal head number
93 * This function reserves space in journal head @head. If the reservation
94 * succeeded, the journal head stays locked and later has to be unlocked using
95 * 'release_head()'. Returns zero in case of success, %-EAGAIN if commit has to
96 * be done, and other negative error codes in case of other failures.
98 static int reserve_space(struct ubifs_info *c, int jhead, int len)
100 int err = 0, err1, retries = 0, avail, lnum, offs, squeeze;
101 struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf;
104 * Typically, the base head has smaller nodes written to it, so it is
105 * better to try to allocate space at the ends of eraseblocks. This is
106 * what the squeeze parameter does.
108 ubifs_assert(c, !c->ro_media && !c->ro_mount);
109 squeeze = (jhead == BASEHD);
111 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
118 avail = c->leb_size - wbuf->offs - wbuf->used;
119 if (wbuf->lnum != -1 && avail >= len)
123 * Write buffer wasn't seek'ed or there is no enough space - look for an
124 * LEB with some empty space.
126 lnum = ubifs_find_free_space(c, len, &offs, squeeze);
135 * No free space, we have to run garbage collector to make
136 * some. But the write-buffer mutex has to be unlocked because
139 dbg_jnl("no free space in jhead %s, run GC", dbg_jhead(jhead));
140 mutex_unlock(&wbuf->io_mutex);
142 lnum = ubifs_garbage_collect(c, 0);
149 * GC could not make a free LEB. But someone else may
150 * have allocated new bud for this journal head,
151 * because we dropped @wbuf->io_mutex, so try once
154 dbg_jnl("GC couldn't make a free LEB for jhead %s",
157 dbg_jnl("retry (%d)", retries);
161 dbg_jnl("return -ENOSPC");
165 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
166 dbg_jnl("got LEB %d for jhead %s", lnum, dbg_jhead(jhead));
167 avail = c->leb_size - wbuf->offs - wbuf->used;
169 if (wbuf->lnum != -1 && avail >= len) {
171 * Someone else has switched the journal head and we have
172 * enough space now. This happens when more than one process is
173 * trying to write to the same journal head at the same time.
175 dbg_jnl("return LEB %d back, already have LEB %d:%d",
176 lnum, wbuf->lnum, wbuf->offs + wbuf->used);
177 err = ubifs_return_leb(c, lnum);
187 * Make sure we synchronize the write-buffer before we add the new bud
188 * to the log. Otherwise we may have a power cut after the log
189 * reference node for the last bud (@lnum) is written but before the
190 * write-buffer data are written to the next-to-last bud
191 * (@wbuf->lnum). And the effect would be that the recovery would see
192 * that there is corruption in the next-to-last bud.
194 err = ubifs_wbuf_sync_nolock(wbuf);
197 err = ubifs_add_bud_to_log(c, jhead, lnum, offs);
200 err = ubifs_wbuf_seek_nolock(wbuf, lnum, offs);
207 mutex_unlock(&wbuf->io_mutex);
211 /* An error occurred and the LEB has to be returned to lprops */
212 ubifs_assert(c, err < 0);
213 err1 = ubifs_return_leb(c, lnum);
214 if (err1 && err == -EAGAIN)
216 * Return original error code only if it is not %-EAGAIN,
217 * which is not really an error. Otherwise, return the error
218 * code of 'ubifs_return_leb()'.
221 mutex_unlock(&wbuf->io_mutex);
225 static int ubifs_hash_nodes(struct ubifs_info *c, void *node,
226 int len, struct shash_desc *hash)
228 int auth_node_size = ubifs_auth_node_sz(c);
232 const struct ubifs_ch *ch = node;
233 int nodelen = le32_to_cpu(ch->len);
235 ubifs_assert(c, len >= auth_node_size);
237 if (len == auth_node_size)
240 ubifs_assert(c, len > nodelen);
241 ubifs_assert(c, ch->magic == cpu_to_le32(UBIFS_NODE_MAGIC));
243 err = ubifs_shash_update(c, hash, (void *)node, nodelen);
247 node += ALIGN(nodelen, 8);
248 len -= ALIGN(nodelen, 8);
251 return ubifs_prepare_auth_node(c, node, hash);
255 * write_head - write data to a journal head.
256 * @c: UBIFS file-system description object
257 * @jhead: journal head
258 * @buf: buffer to write
259 * @len: length to write
260 * @lnum: LEB number written is returned here
261 * @offs: offset written is returned here
262 * @sync: non-zero if the write-buffer has to by synchronized
264 * This function writes data to the reserved space of journal head @jhead.
265 * Returns zero in case of success and a negative error code in case of
268 static int write_head(struct ubifs_info *c, int jhead, void *buf, int len,
269 int *lnum, int *offs, int sync)
272 struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf;
274 ubifs_assert(c, jhead != GCHD);
276 *lnum = c->jheads[jhead].wbuf.lnum;
277 *offs = c->jheads[jhead].wbuf.offs + c->jheads[jhead].wbuf.used;
278 dbg_jnl("jhead %s, LEB %d:%d, len %d",
279 dbg_jhead(jhead), *lnum, *offs, len);
281 if (ubifs_authenticated(c)) {
282 err = ubifs_hash_nodes(c, buf, len, c->jheads[jhead].log_hash);
287 err = ubifs_wbuf_write_nolock(wbuf, buf, len);
291 err = ubifs_wbuf_sync_nolock(wbuf);
296 * __queue_and_wait - queue a task and wait until the task is waked up.
297 * @c: UBIFS file-system description object
299 * This function adds current task in queue and waits until the task is waked
300 * up. This function should be called with @c->reserve_space_wq locked.
302 static void __queue_and_wait(struct ubifs_info *c)
306 __add_wait_queue_entry_tail_exclusive(&c->reserve_space_wq, &wait);
307 set_current_state(TASK_UNINTERRUPTIBLE);
308 spin_unlock(&c->reserve_space_wq.lock);
311 finish_wait(&c->reserve_space_wq, &wait);
315 * wait_for_reservation - try queuing current task to wait until waked up.
316 * @c: UBIFS file-system description object
318 * This function queues current task to wait until waked up, if queuing is
319 * started(@c->need_wait_space is not %0). Returns %true if current task is
320 * added in queue, otherwise %false is returned.
322 static bool wait_for_reservation(struct ubifs_info *c)
324 if (likely(atomic_read(&c->need_wait_space) == 0))
325 /* Quick path to check whether queuing is started. */
328 spin_lock(&c->reserve_space_wq.lock);
329 if (atomic_read(&c->need_wait_space) == 0) {
330 /* Queuing is not started, don't queue current task. */
331 spin_unlock(&c->reserve_space_wq.lock);
340 * wake_up_reservation - wake up first task in queue or stop queuing.
341 * @c: UBIFS file-system description object
343 * This function wakes up the first task in queue if it exists, or stops
344 * queuing if no tasks in queue.
346 static void wake_up_reservation(struct ubifs_info *c)
348 spin_lock(&c->reserve_space_wq.lock);
349 if (waitqueue_active(&c->reserve_space_wq))
350 wake_up_locked(&c->reserve_space_wq);
353 * Compared with wait_for_reservation(), set @c->need_wait_space
354 * under the protection of wait queue lock, which can avoid that
355 * @c->need_wait_space is set to 0 after new task queued.
357 atomic_set(&c->need_wait_space, 0);
358 spin_unlock(&c->reserve_space_wq.lock);
362 * wake_up_reservation - add current task in queue or start queuing.
363 * @c: UBIFS file-system description object
365 * This function starts queuing if queuing is not started, otherwise adds
366 * current task in queue.
368 static void add_or_start_queue(struct ubifs_info *c)
370 spin_lock(&c->reserve_space_wq.lock);
371 if (atomic_cmpxchg(&c->need_wait_space, 0, 1) == 0) {
372 /* Starts queuing, task can go on directly. */
373 spin_unlock(&c->reserve_space_wq.lock);
378 * There are at least two tasks have retried more than 32 times
379 * at certain point, first task has started queuing, just queue
386 * make_reservation - reserve journal space.
387 * @c: UBIFS file-system description object
388 * @jhead: journal head
389 * @len: how many bytes to reserve
391 * This function makes space reservation in journal head @jhead. The function
392 * takes the commit lock and locks the journal head, and the caller has to
393 * unlock the head and finish the reservation with 'finish_reservation()'.
394 * Returns zero in case of success and a negative error code in case of
397 * Note, the journal head may be unlocked as soon as the data is written, while
398 * the commit lock has to be released after the data has been added to the
401 static int make_reservation(struct ubifs_info *c, int jhead, int len)
403 int err, cmt_retries = 0, nospc_retries = 0;
404 bool blocked = wait_for_reservation(c);
407 down_read(&c->commit_sem);
408 err = reserve_space(c, jhead, len);
410 /* c->commit_sem will get released via finish_reservation(). */
413 up_read(&c->commit_sem);
415 if (err == -ENOSPC) {
417 * GC could not make any progress. We should try to commit
418 * because it could make some dirty space and GC would make
419 * progress, so make the error -EAGAIN so that the below
420 * will commit and re-try.
423 dbg_jnl("no space, retry");
431 * -EAGAIN means that the journal is full or too large, or the above
432 * code wants to do one commit. Do this and re-try.
434 if (cmt_retries > 128) {
436 * This should not happen unless:
437 * 1. The journal size limitations are too tough.
438 * 2. The budgeting is incorrect. We always have to be able to
439 * write to the media, because all operations are budgeted.
440 * Deletions are not budgeted, though, but we reserve an
441 * extra LEB for them.
443 ubifs_err(c, "stuck in space allocation, nospc_retries %d",
447 } else if (cmt_retries > 32) {
449 * It's almost impossible to happen, unless there are many tasks
450 * making reservation concurrently and someone task has retried
451 * gc + commit for many times, generated available space during
452 * this period are grabbed by other tasks.
453 * But if it happens, start queuing up all tasks that will make
454 * space reservation, then there is only one task making space
455 * reservation at any time, and it can always make success under
456 * the premise of correct budgeting.
458 ubifs_warn(c, "too many space allocation cmt_retries (%d) "
459 "nospc_retries (%d), start queuing tasks",
460 cmt_retries, nospc_retries);
464 add_or_start_queue(c);
468 dbg_jnl("-EAGAIN, commit and retry (retried %d times)",
472 err = ubifs_run_commit(c);
478 ubifs_err(c, "cannot reserve %d bytes in jhead %d, error %d",
480 if (err == -ENOSPC) {
481 /* This are some budgeting problems, print useful information */
482 down_write(&c->commit_sem);
484 ubifs_dump_budg(c, &c->bi);
485 ubifs_dump_lprops(c);
486 cmt_retries = dbg_check_lprops(c);
487 up_write(&c->commit_sem);
492 * Only tasks that have ever started queuing or ever been queued
493 * can wake up other queued tasks, which can make sure that
494 * there is only one task waked up to make space reservation.
496 * task A task B task C
497 * make_reservation make_reservation
499 * wake_up_reservation
500 * atomic_cmpxchg // 0, start queuing
502 * wait_for_reservation
505 * if (blocked) // false
506 * // So that task C won't be waked up to race with task B
508 wake_up_reservation(c);
514 * release_head - release a journal head.
515 * @c: UBIFS file-system description object
516 * @jhead: journal head
518 * This function releases journal head @jhead which was locked by
519 * the 'make_reservation()' function. It has to be called after each successful
520 * 'make_reservation()' invocation.
522 static inline void release_head(struct ubifs_info *c, int jhead)
524 mutex_unlock(&c->jheads[jhead].wbuf.io_mutex);
528 * finish_reservation - finish a reservation.
529 * @c: UBIFS file-system description object
531 * This function finishes journal space reservation. It must be called after
532 * 'make_reservation()'.
534 static void finish_reservation(struct ubifs_info *c)
536 up_read(&c->commit_sem);
540 * get_dent_type - translate VFS inode mode to UBIFS directory entry type.
543 static int get_dent_type(int mode)
545 switch (mode & S_IFMT) {
547 return UBIFS_ITYPE_REG;
549 return UBIFS_ITYPE_DIR;
551 return UBIFS_ITYPE_LNK;
553 return UBIFS_ITYPE_BLK;
555 return UBIFS_ITYPE_CHR;
557 return UBIFS_ITYPE_FIFO;
559 return UBIFS_ITYPE_SOCK;
567 * pack_inode - pack an inode node.
568 * @c: UBIFS file-system description object
569 * @ino: buffer in which to pack inode node
570 * @inode: inode to pack
571 * @last: indicates the last node of the group
573 static void pack_inode(struct ubifs_info *c, struct ubifs_ino_node *ino,
574 const struct inode *inode, int last)
576 int data_len = 0, last_reference = !inode->i_nlink;
577 struct ubifs_inode *ui = ubifs_inode(inode);
579 ino->ch.node_type = UBIFS_INO_NODE;
580 ino_key_init_flash(c, &ino->key, inode->i_ino);
581 ino->creat_sqnum = cpu_to_le64(ui->creat_sqnum);
582 ino->atime_sec = cpu_to_le64(inode_get_atime_sec(inode));
583 ino->atime_nsec = cpu_to_le32(inode_get_atime_nsec(inode));
584 ino->ctime_sec = cpu_to_le64(inode_get_ctime_sec(inode));
585 ino->ctime_nsec = cpu_to_le32(inode_get_ctime_nsec(inode));
586 ino->mtime_sec = cpu_to_le64(inode_get_mtime_sec(inode));
587 ino->mtime_nsec = cpu_to_le32(inode_get_mtime_nsec(inode));
588 ino->uid = cpu_to_le32(i_uid_read(inode));
589 ino->gid = cpu_to_le32(i_gid_read(inode));
590 ino->mode = cpu_to_le32(inode->i_mode);
591 ino->flags = cpu_to_le32(ui->flags);
592 ino->size = cpu_to_le64(ui->ui_size);
593 ino->nlink = cpu_to_le32(inode->i_nlink);
594 ino->compr_type = cpu_to_le16(ui->compr_type);
595 ino->data_len = cpu_to_le32(ui->data_len);
596 ino->xattr_cnt = cpu_to_le32(ui->xattr_cnt);
597 ino->xattr_size = cpu_to_le32(ui->xattr_size);
598 ino->xattr_names = cpu_to_le32(ui->xattr_names);
599 zero_ino_node_unused(ino);
602 * Drop the attached data if this is a deletion inode, the data is not
605 if (!last_reference) {
606 memcpy(ino->data, ui->data, ui->data_len);
607 data_len = ui->data_len;
610 ubifs_prep_grp_node(c, ino, UBIFS_INO_NODE_SZ + data_len, last);
614 * mark_inode_clean - mark UBIFS inode as clean.
615 * @c: UBIFS file-system description object
616 * @ui: UBIFS inode to mark as clean
618 * This helper function marks UBIFS inode @ui as clean by cleaning the
619 * @ui->dirty flag and releasing its budget. Note, VFS may still treat the
620 * inode as dirty and try to write it back, but 'ubifs_write_inode()' would
623 static void mark_inode_clean(struct ubifs_info *c, struct ubifs_inode *ui)
626 ubifs_release_dirty_inode_budget(c, ui);
630 static void set_dent_cookie(struct ubifs_info *c, struct ubifs_dent_node *dent)
633 dent->cookie = (__force __le32) get_random_u32();
639 * ubifs_jnl_update - update inode.
640 * @c: UBIFS file-system description object
641 * @dir: parent inode or host inode in case of extended attributes
642 * @nm: directory entry name
643 * @inode: inode to update
644 * @deletion: indicates a directory entry deletion i.e unlink or rmdir
645 * @xent: non-zero if the directory entry is an extended attribute entry
647 * This function updates an inode by writing a directory entry (or extended
648 * attribute entry), the inode itself, and the parent directory inode (or the
649 * host inode) to the journal.
651 * The function writes the host inode @dir last, which is important in case of
652 * extended attributes. Indeed, then we guarantee that if the host inode gets
653 * synchronized (with 'fsync()'), and the write-buffer it sits in gets flushed,
654 * the extended attribute inode gets flushed too. And this is exactly what the
655 * user expects - synchronizing the host inode synchronizes its extended
656 * attributes. Similarly, this guarantees that if @dir is synchronized, its
657 * directory entry corresponding to @nm gets synchronized too.
659 * If the inode (@inode) or the parent directory (@dir) are synchronous, this
660 * function synchronizes the write-buffer.
662 * This function marks the @dir and @inode inodes as clean and returns zero on
663 * success. In case of failure, a negative error code is returned.
665 int ubifs_jnl_update(struct ubifs_info *c, const struct inode *dir,
666 const struct fscrypt_name *nm, const struct inode *inode,
667 int deletion, int xent)
669 int err, dlen, ilen, len, lnum, ino_offs, dent_offs, orphan_added = 0;
670 int aligned_dlen, aligned_ilen, sync = IS_DIRSYNC(dir);
671 int last_reference = !!(deletion && inode->i_nlink == 0);
672 struct ubifs_inode *ui = ubifs_inode(inode);
673 struct ubifs_inode *host_ui = ubifs_inode(dir);
674 struct ubifs_dent_node *dent;
675 struct ubifs_ino_node *ino;
676 union ubifs_key dent_key, ino_key;
677 u8 hash_dent[UBIFS_HASH_ARR_SZ];
678 u8 hash_ino[UBIFS_HASH_ARR_SZ];
679 u8 hash_ino_host[UBIFS_HASH_ARR_SZ];
681 ubifs_assert(c, mutex_is_locked(&host_ui->ui_mutex));
683 dlen = UBIFS_DENT_NODE_SZ + fname_len(nm) + 1;
684 ilen = UBIFS_INO_NODE_SZ;
687 * If the last reference to the inode is being deleted, then there is
688 * no need to attach and write inode data, it is being deleted anyway.
689 * And if the inode is being deleted, no need to synchronize
690 * write-buffer even if the inode is synchronous.
692 if (!last_reference) {
693 ilen += ui->data_len;
694 sync |= IS_SYNC(inode);
697 aligned_dlen = ALIGN(dlen, 8);
698 aligned_ilen = ALIGN(ilen, 8);
700 len = aligned_dlen + aligned_ilen + UBIFS_INO_NODE_SZ;
701 /* Make sure to also account for extended attributes */
702 if (ubifs_authenticated(c))
703 len += ALIGN(host_ui->data_len, 8) + ubifs_auth_node_sz(c);
705 len += host_ui->data_len;
707 dent = kzalloc(len, GFP_NOFS);
711 /* Make reservation before allocating sequence numbers */
712 err = make_reservation(c, BASEHD, len);
717 dent->ch.node_type = UBIFS_DENT_NODE;
718 if (fname_name(nm) == NULL)
719 dent_key_init_hash(c, &dent_key, dir->i_ino, nm->hash);
721 dent_key_init(c, &dent_key, dir->i_ino, nm);
723 dent->ch.node_type = UBIFS_XENT_NODE;
724 xent_key_init(c, &dent_key, dir->i_ino, nm);
727 key_write(c, &dent_key, dent->key);
728 dent->inum = deletion ? 0 : cpu_to_le64(inode->i_ino);
729 dent->type = get_dent_type(inode->i_mode);
730 dent->nlen = cpu_to_le16(fname_len(nm));
731 memcpy(dent->name, fname_name(nm), fname_len(nm));
732 dent->name[fname_len(nm)] = '\0';
733 set_dent_cookie(c, dent);
735 zero_dent_node_unused(dent);
736 ubifs_prep_grp_node(c, dent, dlen, 0);
737 err = ubifs_node_calc_hash(c, dent, hash_dent);
741 ino = (void *)dent + aligned_dlen;
742 pack_inode(c, ino, inode, 0);
743 err = ubifs_node_calc_hash(c, ino, hash_ino);
747 ino = (void *)ino + aligned_ilen;
748 pack_inode(c, ino, dir, 1);
749 err = ubifs_node_calc_hash(c, ino, hash_ino_host);
753 if (last_reference) {
754 err = ubifs_add_orphan(c, inode->i_ino);
756 release_head(c, BASEHD);
759 ui->del_cmtno = c->cmt_no;
763 err = write_head(c, BASEHD, dent, len, &lnum, &dent_offs, sync);
767 struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
769 ubifs_wbuf_add_ino_nolock(wbuf, inode->i_ino);
770 ubifs_wbuf_add_ino_nolock(wbuf, dir->i_ino);
772 release_head(c, BASEHD);
774 ubifs_add_auth_dirt(c, lnum);
777 if (fname_name(nm) == NULL)
778 err = ubifs_tnc_remove_dh(c, &dent_key, nm->minor_hash);
780 err = ubifs_tnc_remove_nm(c, &dent_key, nm);
783 err = ubifs_add_dirt(c, lnum, dlen);
785 err = ubifs_tnc_add_nm(c, &dent_key, lnum, dent_offs, dlen,
791 * Note, we do not remove the inode from TNC even if the last reference
792 * to it has just been deleted, because the inode may still be opened.
793 * Instead, the inode has been added to orphan lists and the orphan
794 * subsystem will take further care about it.
796 ino_key_init(c, &ino_key, inode->i_ino);
797 ino_offs = dent_offs + aligned_dlen;
798 err = ubifs_tnc_add(c, &ino_key, lnum, ino_offs, ilen, hash_ino);
802 ino_key_init(c, &ino_key, dir->i_ino);
803 ino_offs += aligned_ilen;
804 err = ubifs_tnc_add(c, &ino_key, lnum, ino_offs,
805 UBIFS_INO_NODE_SZ + host_ui->data_len, hash_ino_host);
809 finish_reservation(c);
810 spin_lock(&ui->ui_lock);
811 ui->synced_i_size = ui->ui_size;
812 spin_unlock(&ui->ui_lock);
814 spin_lock(&host_ui->ui_lock);
815 host_ui->synced_i_size = host_ui->ui_size;
816 spin_unlock(&host_ui->ui_lock);
818 mark_inode_clean(c, ui);
819 mark_inode_clean(c, host_ui);
823 finish_reservation(c);
829 release_head(c, BASEHD);
832 ubifs_ro_mode(c, err);
834 ubifs_delete_orphan(c, inode->i_ino);
835 finish_reservation(c);
840 * ubifs_jnl_write_data - write a data node to the journal.
841 * @c: UBIFS file-system description object
842 * @inode: inode the data node belongs to
844 * @buf: buffer to write
845 * @len: data length (must not exceed %UBIFS_BLOCK_SIZE)
847 * This function writes a data node to the journal. Returns %0 if the data node
848 * was successfully written, and a negative error code in case of failure.
850 int ubifs_jnl_write_data(struct ubifs_info *c, const struct inode *inode,
851 const union ubifs_key *key, const void *buf, int len)
853 struct ubifs_data_node *data;
854 int err, lnum, offs, compr_type, out_len, compr_len, auth_len;
855 int dlen = COMPRESSED_DATA_NODE_BUF_SZ, allocated = 1;
857 struct ubifs_inode *ui = ubifs_inode(inode);
858 bool encrypted = IS_ENCRYPTED(inode);
859 u8 hash[UBIFS_HASH_ARR_SZ];
861 dbg_jnlk(key, "ino %lu, blk %u, len %d, key ",
862 (unsigned long)key_inum(c, key), key_block(c, key), len);
863 ubifs_assert(c, len <= UBIFS_BLOCK_SIZE);
866 dlen += UBIFS_CIPHER_BLOCK_SIZE;
868 auth_len = ubifs_auth_node_sz(c);
870 data = kmalloc(dlen + auth_len, GFP_NOFS | __GFP_NOWARN);
873 * Fall-back to the write reserve buffer. Note, we might be
874 * currently on the memory reclaim path, when the kernel is
875 * trying to free some memory by writing out dirty pages. The
876 * write reserve buffer helps us to guarantee that we are
877 * always able to write the data.
880 mutex_lock(&c->write_reserve_mutex);
881 data = c->write_reserve_buf;
884 data->ch.node_type = UBIFS_DATA_NODE;
885 key_write(c, key, &data->key);
886 data->size = cpu_to_le32(len);
888 if (!(ui->flags & UBIFS_COMPR_FL))
889 /* Compression is disabled for this inode */
890 compr_type = UBIFS_COMPR_NONE;
892 compr_type = ui->compr_type;
894 out_len = compr_len = dlen - UBIFS_DATA_NODE_SZ;
895 ubifs_compress(c, buf, len, &data->data, &compr_len, &compr_type);
896 ubifs_assert(c, compr_len <= UBIFS_BLOCK_SIZE);
899 err = ubifs_encrypt(inode, data, compr_len, &out_len, key_block(c, key));
904 data->compr_size = 0;
908 dlen = UBIFS_DATA_NODE_SZ + out_len;
909 if (ubifs_authenticated(c))
910 write_len = ALIGN(dlen, 8) + auth_len;
914 data->compr_type = cpu_to_le16(compr_type);
916 /* Make reservation before allocating sequence numbers */
917 err = make_reservation(c, DATAHD, write_len);
921 ubifs_prepare_node(c, data, dlen, 0);
922 err = write_head(c, DATAHD, data, write_len, &lnum, &offs, 0);
926 err = ubifs_node_calc_hash(c, data, hash);
930 ubifs_wbuf_add_ino_nolock(&c->jheads[DATAHD].wbuf, key_inum(c, key));
931 release_head(c, DATAHD);
933 ubifs_add_auth_dirt(c, lnum);
935 err = ubifs_tnc_add(c, key, lnum, offs, dlen, hash);
939 finish_reservation(c);
941 mutex_unlock(&c->write_reserve_mutex);
947 release_head(c, DATAHD);
949 ubifs_ro_mode(c, err);
950 finish_reservation(c);
953 mutex_unlock(&c->write_reserve_mutex);
960 * ubifs_jnl_write_inode - flush inode to the journal.
961 * @c: UBIFS file-system description object
962 * @inode: inode to flush
964 * This function writes inode @inode to the journal. If the inode is
965 * synchronous, it also synchronizes the write-buffer. Returns zero in case of
966 * success and a negative error code in case of failure.
968 int ubifs_jnl_write_inode(struct ubifs_info *c, const struct inode *inode)
971 struct ubifs_ino_node *ino, *ino_start;
972 struct ubifs_inode *ui = ubifs_inode(inode);
973 int sync = 0, write_len = 0, ilen = UBIFS_INO_NODE_SZ;
974 int last_reference = !inode->i_nlink;
975 int kill_xattrs = ui->xattr_cnt && last_reference;
976 u8 hash[UBIFS_HASH_ARR_SZ];
978 dbg_jnl("ino %lu, nlink %u", inode->i_ino, inode->i_nlink);
981 * If the inode is being deleted, do not write the attached data. No
982 * need to synchronize the write-buffer either.
984 if (!last_reference) {
985 ilen += ui->data_len;
986 sync = IS_SYNC(inode);
987 } else if (kill_xattrs) {
988 write_len += UBIFS_INO_NODE_SZ * ui->xattr_cnt;
991 if (ubifs_authenticated(c))
992 write_len += ALIGN(ilen, 8) + ubifs_auth_node_sz(c);
996 ino_start = ino = kmalloc(write_len, GFP_NOFS);
1000 /* Make reservation before allocating sequence numbers */
1001 err = make_reservation(c, BASEHD, write_len);
1006 union ubifs_key key;
1007 struct fscrypt_name nm = {0};
1009 struct ubifs_dent_node *xent, *pxent = NULL;
1011 if (ui->xattr_cnt > ubifs_xattr_max_cnt(c)) {
1013 ubifs_err(c, "Cannot delete inode, it has too much xattrs!");
1017 lowest_xent_key(c, &key, inode->i_ino);
1019 xent = ubifs_tnc_next_ent(c, &key, &nm);
1021 err = PTR_ERR(xent);
1029 fname_name(&nm) = xent->name;
1030 fname_len(&nm) = le16_to_cpu(xent->nlen);
1032 xino = ubifs_iget(c->vfs_sb, le64_to_cpu(xent->inum));
1034 err = PTR_ERR(xino);
1035 ubifs_err(c, "dead directory entry '%s', error %d",
1037 ubifs_ro_mode(c, err);
1042 ubifs_assert(c, ubifs_inode(xino)->xattr);
1045 pack_inode(c, ino, xino, 0);
1046 ino = (void *)ino + UBIFS_INO_NODE_SZ;
1051 key_read(c, &xent->key, &key);
1056 pack_inode(c, ino, inode, 1);
1057 err = ubifs_node_calc_hash(c, ino, hash);
1061 err = write_head(c, BASEHD, ino_start, write_len, &lnum, &offs, sync);
1065 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf,
1067 release_head(c, BASEHD);
1069 if (last_reference) {
1070 err = ubifs_tnc_remove_ino(c, inode->i_ino);
1073 ubifs_delete_orphan(c, inode->i_ino);
1074 err = ubifs_add_dirt(c, lnum, write_len);
1076 union ubifs_key key;
1078 ubifs_add_auth_dirt(c, lnum);
1080 ino_key_init(c, &key, inode->i_ino);
1081 err = ubifs_tnc_add(c, &key, lnum, offs, ilen, hash);
1086 finish_reservation(c);
1087 spin_lock(&ui->ui_lock);
1088 ui->synced_i_size = ui->ui_size;
1089 spin_unlock(&ui->ui_lock);
1094 release_head(c, BASEHD);
1096 ubifs_ro_mode(c, err);
1097 finish_reservation(c);
1104 * ubifs_jnl_delete_inode - delete an inode.
1105 * @c: UBIFS file-system description object
1106 * @inode: inode to delete
1108 * This function deletes inode @inode which includes removing it from orphans,
1109 * deleting it from TNC and, in some cases, writing a deletion inode to the
1112 * When regular file inodes are unlinked or a directory inode is removed, the
1113 * 'ubifs_jnl_update()' function writes a corresponding deletion inode and
1114 * direntry to the media, and adds the inode to orphans. After this, when the
1115 * last reference to this inode has been dropped, this function is called. In
1116 * general, it has to write one more deletion inode to the media, because if
1117 * a commit happened between 'ubifs_jnl_update()' and
1118 * 'ubifs_jnl_delete_inode()', the deletion inode is not in the journal
1119 * anymore, and in fact it might not be on the flash anymore, because it might
1120 * have been garbage-collected already. And for optimization reasons UBIFS does
1121 * not read the orphan area if it has been unmounted cleanly, so it would have
1122 * no indication in the journal that there is a deleted inode which has to be
1125 * However, if there was no commit between 'ubifs_jnl_update()' and
1126 * 'ubifs_jnl_delete_inode()', then there is no need to write the deletion
1127 * inode to the media for the second time. And this is quite a typical case.
1129 * This function returns zero in case of success and a negative error code in
1132 int ubifs_jnl_delete_inode(struct ubifs_info *c, const struct inode *inode)
1135 struct ubifs_inode *ui = ubifs_inode(inode);
1137 ubifs_assert(c, inode->i_nlink == 0);
1139 if (ui->xattr_cnt || ui->del_cmtno != c->cmt_no)
1140 /* A commit happened for sure or inode hosts xattrs */
1141 return ubifs_jnl_write_inode(c, inode);
1143 down_read(&c->commit_sem);
1145 * Check commit number again, because the first test has been done
1146 * without @c->commit_sem, so a commit might have happened.
1148 if (ui->del_cmtno != c->cmt_no) {
1149 up_read(&c->commit_sem);
1150 return ubifs_jnl_write_inode(c, inode);
1153 err = ubifs_tnc_remove_ino(c, inode->i_ino);
1155 ubifs_ro_mode(c, err);
1157 ubifs_delete_orphan(c, inode->i_ino);
1158 up_read(&c->commit_sem);
1163 * ubifs_jnl_xrename - cross rename two directory entries.
1164 * @c: UBIFS file-system description object
1165 * @fst_dir: parent inode of 1st directory entry to exchange
1166 * @fst_inode: 1st inode to exchange
1167 * @fst_nm: name of 1st inode to exchange
1168 * @snd_dir: parent inode of 2nd directory entry to exchange
1169 * @snd_inode: 2nd inode to exchange
1170 * @snd_nm: name of 2nd inode to exchange
1171 * @sync: non-zero if the write-buffer has to be synchronized
1173 * This function implements the cross rename operation which may involve
1174 * writing 2 inodes and 2 directory entries. It marks the written inodes as clean
1175 * and returns zero on success. In case of failure, a negative error code is
1178 int ubifs_jnl_xrename(struct ubifs_info *c, const struct inode *fst_dir,
1179 const struct inode *fst_inode,
1180 const struct fscrypt_name *fst_nm,
1181 const struct inode *snd_dir,
1182 const struct inode *snd_inode,
1183 const struct fscrypt_name *snd_nm, int sync)
1185 union ubifs_key key;
1186 struct ubifs_dent_node *dent1, *dent2;
1187 int err, dlen1, dlen2, lnum, offs, len, plen = UBIFS_INO_NODE_SZ;
1188 int aligned_dlen1, aligned_dlen2;
1189 int twoparents = (fst_dir != snd_dir);
1191 u8 hash_dent1[UBIFS_HASH_ARR_SZ];
1192 u8 hash_dent2[UBIFS_HASH_ARR_SZ];
1193 u8 hash_p1[UBIFS_HASH_ARR_SZ];
1194 u8 hash_p2[UBIFS_HASH_ARR_SZ];
1196 ubifs_assert(c, ubifs_inode(fst_dir)->data_len == 0);
1197 ubifs_assert(c, ubifs_inode(snd_dir)->data_len == 0);
1198 ubifs_assert(c, mutex_is_locked(&ubifs_inode(fst_dir)->ui_mutex));
1199 ubifs_assert(c, mutex_is_locked(&ubifs_inode(snd_dir)->ui_mutex));
1201 dlen1 = UBIFS_DENT_NODE_SZ + fname_len(snd_nm) + 1;
1202 dlen2 = UBIFS_DENT_NODE_SZ + fname_len(fst_nm) + 1;
1203 aligned_dlen1 = ALIGN(dlen1, 8);
1204 aligned_dlen2 = ALIGN(dlen2, 8);
1206 len = aligned_dlen1 + aligned_dlen2 + ALIGN(plen, 8);
1210 len += ubifs_auth_node_sz(c);
1212 dent1 = kzalloc(len, GFP_NOFS);
1216 /* Make reservation before allocating sequence numbers */
1217 err = make_reservation(c, BASEHD, len);
1221 /* Make new dent for 1st entry */
1222 dent1->ch.node_type = UBIFS_DENT_NODE;
1223 dent_key_init_flash(c, &dent1->key, snd_dir->i_ino, snd_nm);
1224 dent1->inum = cpu_to_le64(fst_inode->i_ino);
1225 dent1->type = get_dent_type(fst_inode->i_mode);
1226 dent1->nlen = cpu_to_le16(fname_len(snd_nm));
1227 memcpy(dent1->name, fname_name(snd_nm), fname_len(snd_nm));
1228 dent1->name[fname_len(snd_nm)] = '\0';
1229 set_dent_cookie(c, dent1);
1230 zero_dent_node_unused(dent1);
1231 ubifs_prep_grp_node(c, dent1, dlen1, 0);
1232 err = ubifs_node_calc_hash(c, dent1, hash_dent1);
1236 /* Make new dent for 2nd entry */
1237 dent2 = (void *)dent1 + aligned_dlen1;
1238 dent2->ch.node_type = UBIFS_DENT_NODE;
1239 dent_key_init_flash(c, &dent2->key, fst_dir->i_ino, fst_nm);
1240 dent2->inum = cpu_to_le64(snd_inode->i_ino);
1241 dent2->type = get_dent_type(snd_inode->i_mode);
1242 dent2->nlen = cpu_to_le16(fname_len(fst_nm));
1243 memcpy(dent2->name, fname_name(fst_nm), fname_len(fst_nm));
1244 dent2->name[fname_len(fst_nm)] = '\0';
1245 set_dent_cookie(c, dent2);
1246 zero_dent_node_unused(dent2);
1247 ubifs_prep_grp_node(c, dent2, dlen2, 0);
1248 err = ubifs_node_calc_hash(c, dent2, hash_dent2);
1252 p = (void *)dent2 + aligned_dlen2;
1254 pack_inode(c, p, fst_dir, 1);
1255 err = ubifs_node_calc_hash(c, p, hash_p1);
1259 pack_inode(c, p, fst_dir, 0);
1260 err = ubifs_node_calc_hash(c, p, hash_p1);
1263 p += ALIGN(plen, 8);
1264 pack_inode(c, p, snd_dir, 1);
1265 err = ubifs_node_calc_hash(c, p, hash_p2);
1270 err = write_head(c, BASEHD, dent1, len, &lnum, &offs, sync);
1274 struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
1276 ubifs_wbuf_add_ino_nolock(wbuf, fst_dir->i_ino);
1277 ubifs_wbuf_add_ino_nolock(wbuf, snd_dir->i_ino);
1279 release_head(c, BASEHD);
1281 ubifs_add_auth_dirt(c, lnum);
1283 dent_key_init(c, &key, snd_dir->i_ino, snd_nm);
1284 err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen1, hash_dent1, snd_nm);
1288 offs += aligned_dlen1;
1289 dent_key_init(c, &key, fst_dir->i_ino, fst_nm);
1290 err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen2, hash_dent2, fst_nm);
1294 offs += aligned_dlen2;
1296 ino_key_init(c, &key, fst_dir->i_ino);
1297 err = ubifs_tnc_add(c, &key, lnum, offs, plen, hash_p1);
1302 offs += ALIGN(plen, 8);
1303 ino_key_init(c, &key, snd_dir->i_ino);
1304 err = ubifs_tnc_add(c, &key, lnum, offs, plen, hash_p2);
1309 finish_reservation(c);
1311 mark_inode_clean(c, ubifs_inode(fst_dir));
1313 mark_inode_clean(c, ubifs_inode(snd_dir));
1318 release_head(c, BASEHD);
1320 ubifs_ro_mode(c, err);
1321 finish_reservation(c);
1328 * ubifs_jnl_rename - rename a directory entry.
1329 * @c: UBIFS file-system description object
1330 * @old_dir: parent inode of directory entry to rename
1331 * @old_inode: directory entry's inode to rename
1332 * @old_nm: name of the old directory entry to rename
1333 * @new_dir: parent inode of directory entry to rename
1334 * @new_inode: new directory entry's inode (or directory entry's inode to
1336 * @new_nm: new name of the new directory entry
1337 * @whiteout: whiteout inode
1338 * @sync: non-zero if the write-buffer has to be synchronized
1340 * This function implements the re-name operation which may involve writing up
1341 * to 4 inodes(new inode, whiteout inode, old and new parent directory inodes)
1342 * and 2 directory entries. It marks the written inodes as clean and returns
1343 * zero on success. In case of failure, a negative error code is returned.
1345 int ubifs_jnl_rename(struct ubifs_info *c, const struct inode *old_dir,
1346 const struct inode *old_inode,
1347 const struct fscrypt_name *old_nm,
1348 const struct inode *new_dir,
1349 const struct inode *new_inode,
1350 const struct fscrypt_name *new_nm,
1351 const struct inode *whiteout, int sync)
1354 union ubifs_key key;
1355 struct ubifs_dent_node *dent, *dent2;
1356 int err, dlen1, dlen2, ilen, wlen, lnum, offs, len, orphan_added = 0;
1357 int aligned_dlen1, aligned_dlen2, plen = UBIFS_INO_NODE_SZ;
1358 int last_reference = !!(new_inode && new_inode->i_nlink == 0);
1359 int move = (old_dir != new_dir);
1360 struct ubifs_inode *new_ui, *whiteout_ui;
1361 u8 hash_old_dir[UBIFS_HASH_ARR_SZ];
1362 u8 hash_new_dir[UBIFS_HASH_ARR_SZ];
1363 u8 hash_new_inode[UBIFS_HASH_ARR_SZ];
1364 u8 hash_whiteout_inode[UBIFS_HASH_ARR_SZ];
1365 u8 hash_dent1[UBIFS_HASH_ARR_SZ];
1366 u8 hash_dent2[UBIFS_HASH_ARR_SZ];
1368 ubifs_assert(c, ubifs_inode(old_dir)->data_len == 0);
1369 ubifs_assert(c, ubifs_inode(new_dir)->data_len == 0);
1370 ubifs_assert(c, mutex_is_locked(&ubifs_inode(old_dir)->ui_mutex));
1371 ubifs_assert(c, mutex_is_locked(&ubifs_inode(new_dir)->ui_mutex));
1373 dlen1 = UBIFS_DENT_NODE_SZ + fname_len(new_nm) + 1;
1374 dlen2 = UBIFS_DENT_NODE_SZ + fname_len(old_nm) + 1;
1376 new_ui = ubifs_inode(new_inode);
1377 ubifs_assert(c, mutex_is_locked(&new_ui->ui_mutex));
1378 ilen = UBIFS_INO_NODE_SZ;
1379 if (!last_reference)
1380 ilen += new_ui->data_len;
1385 whiteout_ui = ubifs_inode(whiteout);
1386 ubifs_assert(c, mutex_is_locked(&whiteout_ui->ui_mutex));
1387 ubifs_assert(c, whiteout->i_nlink == 1);
1388 ubifs_assert(c, !whiteout_ui->dirty);
1389 wlen = UBIFS_INO_NODE_SZ;
1390 wlen += whiteout_ui->data_len;
1394 aligned_dlen1 = ALIGN(dlen1, 8);
1395 aligned_dlen2 = ALIGN(dlen2, 8);
1396 len = aligned_dlen1 + aligned_dlen2 + ALIGN(ilen, 8) +
1397 ALIGN(wlen, 8) + ALIGN(plen, 8);
1401 len += ubifs_auth_node_sz(c);
1403 dent = kzalloc(len, GFP_NOFS);
1407 /* Make reservation before allocating sequence numbers */
1408 err = make_reservation(c, BASEHD, len);
1413 dent->ch.node_type = UBIFS_DENT_NODE;
1414 dent_key_init_flash(c, &dent->key, new_dir->i_ino, new_nm);
1415 dent->inum = cpu_to_le64(old_inode->i_ino);
1416 dent->type = get_dent_type(old_inode->i_mode);
1417 dent->nlen = cpu_to_le16(fname_len(new_nm));
1418 memcpy(dent->name, fname_name(new_nm), fname_len(new_nm));
1419 dent->name[fname_len(new_nm)] = '\0';
1420 set_dent_cookie(c, dent);
1421 zero_dent_node_unused(dent);
1422 ubifs_prep_grp_node(c, dent, dlen1, 0);
1423 err = ubifs_node_calc_hash(c, dent, hash_dent1);
1427 dent2 = (void *)dent + aligned_dlen1;
1428 dent2->ch.node_type = UBIFS_DENT_NODE;
1429 dent_key_init_flash(c, &dent2->key, old_dir->i_ino, old_nm);
1432 dent2->inum = cpu_to_le64(whiteout->i_ino);
1433 dent2->type = get_dent_type(whiteout->i_mode);
1435 /* Make deletion dent */
1437 dent2->type = DT_UNKNOWN;
1439 dent2->nlen = cpu_to_le16(fname_len(old_nm));
1440 memcpy(dent2->name, fname_name(old_nm), fname_len(old_nm));
1441 dent2->name[fname_len(old_nm)] = '\0';
1442 set_dent_cookie(c, dent2);
1443 zero_dent_node_unused(dent2);
1444 ubifs_prep_grp_node(c, dent2, dlen2, 0);
1445 err = ubifs_node_calc_hash(c, dent2, hash_dent2);
1449 p = (void *)dent2 + aligned_dlen2;
1451 pack_inode(c, p, new_inode, 0);
1452 err = ubifs_node_calc_hash(c, p, hash_new_inode);
1456 p += ALIGN(ilen, 8);
1460 pack_inode(c, p, whiteout, 0);
1461 err = ubifs_node_calc_hash(c, p, hash_whiteout_inode);
1465 p += ALIGN(wlen, 8);
1469 pack_inode(c, p, old_dir, 1);
1470 err = ubifs_node_calc_hash(c, p, hash_old_dir);
1474 pack_inode(c, p, old_dir, 0);
1475 err = ubifs_node_calc_hash(c, p, hash_old_dir);
1479 p += ALIGN(plen, 8);
1480 pack_inode(c, p, new_dir, 1);
1481 err = ubifs_node_calc_hash(c, p, hash_new_dir);
1486 if (last_reference) {
1487 err = ubifs_add_orphan(c, new_inode->i_ino);
1489 release_head(c, BASEHD);
1492 new_ui->del_cmtno = c->cmt_no;
1496 err = write_head(c, BASEHD, dent, len, &lnum, &offs, sync);
1500 struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
1502 ubifs_wbuf_add_ino_nolock(wbuf, new_dir->i_ino);
1503 ubifs_wbuf_add_ino_nolock(wbuf, old_dir->i_ino);
1505 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf,
1508 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf,
1511 release_head(c, BASEHD);
1513 ubifs_add_auth_dirt(c, lnum);
1515 dent_key_init(c, &key, new_dir->i_ino, new_nm);
1516 err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen1, hash_dent1, new_nm);
1520 offs += aligned_dlen1;
1522 dent_key_init(c, &key, old_dir->i_ino, old_nm);
1523 err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen2, hash_dent2, old_nm);
1527 err = ubifs_add_dirt(c, lnum, dlen2);
1531 dent_key_init(c, &key, old_dir->i_ino, old_nm);
1532 err = ubifs_tnc_remove_nm(c, &key, old_nm);
1537 offs += aligned_dlen2;
1539 ino_key_init(c, &key, new_inode->i_ino);
1540 err = ubifs_tnc_add(c, &key, lnum, offs, ilen, hash_new_inode);
1543 offs += ALIGN(ilen, 8);
1547 ino_key_init(c, &key, whiteout->i_ino);
1548 err = ubifs_tnc_add(c, &key, lnum, offs, wlen,
1549 hash_whiteout_inode);
1552 offs += ALIGN(wlen, 8);
1555 ino_key_init(c, &key, old_dir->i_ino);
1556 err = ubifs_tnc_add(c, &key, lnum, offs, plen, hash_old_dir);
1561 offs += ALIGN(plen, 8);
1562 ino_key_init(c, &key, new_dir->i_ino);
1563 err = ubifs_tnc_add(c, &key, lnum, offs, plen, hash_new_dir);
1568 finish_reservation(c);
1570 mark_inode_clean(c, new_ui);
1571 spin_lock(&new_ui->ui_lock);
1572 new_ui->synced_i_size = new_ui->ui_size;
1573 spin_unlock(&new_ui->ui_lock);
1576 * No need to mark whiteout inode clean.
1577 * Whiteout doesn't have non-zero size, no need to update
1578 * synced_i_size for whiteout_ui.
1580 mark_inode_clean(c, ubifs_inode(old_dir));
1582 mark_inode_clean(c, ubifs_inode(new_dir));
1587 release_head(c, BASEHD);
1589 ubifs_ro_mode(c, err);
1591 ubifs_delete_orphan(c, new_inode->i_ino);
1593 finish_reservation(c);
1600 * truncate_data_node - re-compress/encrypt a truncated data node.
1601 * @c: UBIFS file-system description object
1602 * @inode: inode which refers to the data node
1603 * @block: data block number
1604 * @dn: data node to re-compress
1605 * @new_len: new length
1606 * @dn_size: size of the data node @dn in memory
1608 * This function is used when an inode is truncated and the last data node of
1609 * the inode has to be re-compressed/encrypted and re-written.
1611 static int truncate_data_node(const struct ubifs_info *c, const struct inode *inode,
1612 unsigned int block, struct ubifs_data_node *dn,
1613 int *new_len, int dn_size)
1616 int err, dlen, compr_type, out_len, data_size;
1618 out_len = le32_to_cpu(dn->size);
1619 buf = kmalloc_array(out_len, WORST_COMPR_FACTOR, GFP_NOFS);
1623 dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
1624 data_size = dn_size - UBIFS_DATA_NODE_SZ;
1625 compr_type = le16_to_cpu(dn->compr_type);
1627 if (IS_ENCRYPTED(inode)) {
1628 err = ubifs_decrypt(inode, dn, &dlen, block);
1633 if (compr_type == UBIFS_COMPR_NONE) {
1636 err = ubifs_decompress(c, &dn->data, dlen, buf, &out_len, compr_type);
1640 ubifs_compress(c, buf, *new_len, &dn->data, &out_len, &compr_type);
1643 if (IS_ENCRYPTED(inode)) {
1644 err = ubifs_encrypt(inode, dn, out_len, &data_size, block);
1648 out_len = data_size;
1653 ubifs_assert(c, out_len <= UBIFS_BLOCK_SIZE);
1654 dn->compr_type = cpu_to_le16(compr_type);
1655 dn->size = cpu_to_le32(*new_len);
1656 *new_len = UBIFS_DATA_NODE_SZ + out_len;
1664 * ubifs_jnl_truncate - update the journal for a truncation.
1665 * @c: UBIFS file-system description object
1666 * @inode: inode to truncate
1667 * @old_size: old size
1668 * @new_size: new size
1670 * When the size of a file decreases due to truncation, a truncation node is
1671 * written, the journal tree is updated, and the last data block is re-written
1672 * if it has been affected. The inode is also updated in order to synchronize
1673 * the new inode size.
1675 * This function marks the inode as clean and returns zero on success. In case
1676 * of failure, a negative error code is returned.
1678 int ubifs_jnl_truncate(struct ubifs_info *c, const struct inode *inode,
1679 loff_t old_size, loff_t new_size)
1681 union ubifs_key key, to_key;
1682 struct ubifs_ino_node *ino;
1683 struct ubifs_trun_node *trun;
1684 struct ubifs_data_node *dn;
1685 int err, dlen, len, lnum, offs, bit, sz, sync = IS_SYNC(inode);
1687 struct ubifs_inode *ui = ubifs_inode(inode);
1688 ino_t inum = inode->i_ino;
1690 u8 hash_ino[UBIFS_HASH_ARR_SZ];
1691 u8 hash_dn[UBIFS_HASH_ARR_SZ];
1693 dbg_jnl("ino %lu, size %lld -> %lld",
1694 (unsigned long)inum, old_size, new_size);
1695 ubifs_assert(c, !ui->data_len);
1696 ubifs_assert(c, S_ISREG(inode->i_mode));
1697 ubifs_assert(c, mutex_is_locked(&ui->ui_mutex));
1699 dn_size = COMPRESSED_DATA_NODE_BUF_SZ;
1701 if (IS_ENCRYPTED(inode))
1702 dn_size += UBIFS_CIPHER_BLOCK_SIZE;
1704 sz = UBIFS_TRUN_NODE_SZ + UBIFS_INO_NODE_SZ +
1705 dn_size + ubifs_auth_node_sz(c);
1707 ino = kmalloc(sz, GFP_NOFS);
1711 trun = (void *)ino + UBIFS_INO_NODE_SZ;
1712 trun->ch.node_type = UBIFS_TRUN_NODE;
1713 trun->inum = cpu_to_le32(inum);
1714 trun->old_size = cpu_to_le64(old_size);
1715 trun->new_size = cpu_to_le64(new_size);
1716 zero_trun_node_unused(trun);
1718 dlen = new_size & (UBIFS_BLOCK_SIZE - 1);
1720 /* Get last data block so it can be truncated */
1721 dn = (void *)trun + UBIFS_TRUN_NODE_SZ;
1722 blk = new_size >> UBIFS_BLOCK_SHIFT;
1723 data_key_init(c, &key, inum, blk);
1724 dbg_jnlk(&key, "last block key ");
1725 err = ubifs_tnc_lookup(c, &key, dn);
1727 dlen = 0; /* Not found (so it is a hole) */
1731 int dn_len = le32_to_cpu(dn->size);
1733 if (dn_len <= 0 || dn_len > UBIFS_BLOCK_SIZE) {
1734 ubifs_err(c, "bad data node (block %u, inode %lu)",
1736 ubifs_dump_node(c, dn, dn_size);
1742 dlen = 0; /* Nothing to do */
1744 err = truncate_data_node(c, inode, blk, dn,
1752 /* Must make reservation before allocating sequence numbers */
1753 len = UBIFS_TRUN_NODE_SZ + UBIFS_INO_NODE_SZ;
1755 if (ubifs_authenticated(c))
1756 len += ALIGN(dlen, 8) + ubifs_auth_node_sz(c);
1760 err = make_reservation(c, BASEHD, len);
1764 pack_inode(c, ino, inode, 0);
1765 err = ubifs_node_calc_hash(c, ino, hash_ino);
1769 ubifs_prep_grp_node(c, trun, UBIFS_TRUN_NODE_SZ, dlen ? 0 : 1);
1771 ubifs_prep_grp_node(c, dn, dlen, 1);
1772 err = ubifs_node_calc_hash(c, dn, hash_dn);
1777 err = write_head(c, BASEHD, ino, len, &lnum, &offs, sync);
1781 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, inum);
1782 release_head(c, BASEHD);
1784 ubifs_add_auth_dirt(c, lnum);
1787 sz = offs + UBIFS_INO_NODE_SZ + UBIFS_TRUN_NODE_SZ;
1788 err = ubifs_tnc_add(c, &key, lnum, sz, dlen, hash_dn);
1793 ino_key_init(c, &key, inum);
1794 err = ubifs_tnc_add(c, &key, lnum, offs, UBIFS_INO_NODE_SZ, hash_ino);
1798 err = ubifs_add_dirt(c, lnum, UBIFS_TRUN_NODE_SZ);
1802 bit = new_size & (UBIFS_BLOCK_SIZE - 1);
1803 blk = (new_size >> UBIFS_BLOCK_SHIFT) + (bit ? 1 : 0);
1804 data_key_init(c, &key, inum, blk);
1806 bit = old_size & (UBIFS_BLOCK_SIZE - 1);
1807 blk = (old_size >> UBIFS_BLOCK_SHIFT) - (bit ? 0 : 1);
1808 data_key_init(c, &to_key, inum, blk);
1810 err = ubifs_tnc_remove_range(c, &key, &to_key);
1814 finish_reservation(c);
1815 spin_lock(&ui->ui_lock);
1816 ui->synced_i_size = ui->ui_size;
1817 spin_unlock(&ui->ui_lock);
1818 mark_inode_clean(c, ui);
1823 release_head(c, BASEHD);
1825 ubifs_ro_mode(c, err);
1826 finish_reservation(c);
1834 * ubifs_jnl_delete_xattr - delete an extended attribute.
1835 * @c: UBIFS file-system description object
1837 * @inode: extended attribute inode
1838 * @nm: extended attribute entry name
1840 * This function delete an extended attribute which is very similar to
1841 * un-linking regular files - it writes a deletion xentry, a deletion inode and
1842 * updates the target inode. Returns zero in case of success and a negative
1843 * error code in case of failure.
1845 int ubifs_jnl_delete_xattr(struct ubifs_info *c, const struct inode *host,
1846 const struct inode *inode,
1847 const struct fscrypt_name *nm)
1849 int err, xlen, hlen, len, lnum, xent_offs, aligned_xlen, write_len;
1850 struct ubifs_dent_node *xent;
1851 struct ubifs_ino_node *ino;
1852 union ubifs_key xent_key, key1, key2;
1853 int sync = IS_DIRSYNC(host);
1854 struct ubifs_inode *host_ui = ubifs_inode(host);
1855 u8 hash[UBIFS_HASH_ARR_SZ];
1857 ubifs_assert(c, inode->i_nlink == 0);
1858 ubifs_assert(c, mutex_is_locked(&host_ui->ui_mutex));
1861 * Since we are deleting the inode, we do not bother to attach any data
1862 * to it and assume its length is %UBIFS_INO_NODE_SZ.
1864 xlen = UBIFS_DENT_NODE_SZ + fname_len(nm) + 1;
1865 aligned_xlen = ALIGN(xlen, 8);
1866 hlen = host_ui->data_len + UBIFS_INO_NODE_SZ;
1867 len = aligned_xlen + UBIFS_INO_NODE_SZ + ALIGN(hlen, 8);
1869 write_len = len + ubifs_auth_node_sz(c);
1871 xent = kzalloc(write_len, GFP_NOFS);
1875 /* Make reservation before allocating sequence numbers */
1876 err = make_reservation(c, BASEHD, write_len);
1882 xent->ch.node_type = UBIFS_XENT_NODE;
1883 xent_key_init(c, &xent_key, host->i_ino, nm);
1884 key_write(c, &xent_key, xent->key);
1886 xent->type = get_dent_type(inode->i_mode);
1887 xent->nlen = cpu_to_le16(fname_len(nm));
1888 memcpy(xent->name, fname_name(nm), fname_len(nm));
1889 xent->name[fname_len(nm)] = '\0';
1890 zero_dent_node_unused(xent);
1891 ubifs_prep_grp_node(c, xent, xlen, 0);
1893 ino = (void *)xent + aligned_xlen;
1894 pack_inode(c, ino, inode, 0);
1895 ino = (void *)ino + UBIFS_INO_NODE_SZ;
1896 pack_inode(c, ino, host, 1);
1897 err = ubifs_node_calc_hash(c, ino, hash);
1901 err = write_head(c, BASEHD, xent, write_len, &lnum, &xent_offs, sync);
1903 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, host->i_ino);
1904 release_head(c, BASEHD);
1906 ubifs_add_auth_dirt(c, lnum);
1911 /* Remove the extended attribute entry from TNC */
1912 err = ubifs_tnc_remove_nm(c, &xent_key, nm);
1915 err = ubifs_add_dirt(c, lnum, xlen);
1920 * Remove all nodes belonging to the extended attribute inode from TNC.
1921 * Well, there actually must be only one node - the inode itself.
1923 lowest_ino_key(c, &key1, inode->i_ino);
1924 highest_ino_key(c, &key2, inode->i_ino);
1925 err = ubifs_tnc_remove_range(c, &key1, &key2);
1928 err = ubifs_add_dirt(c, lnum, UBIFS_INO_NODE_SZ);
1932 /* And update TNC with the new host inode position */
1933 ino_key_init(c, &key1, host->i_ino);
1934 err = ubifs_tnc_add(c, &key1, lnum, xent_offs + len - hlen, hlen, hash);
1938 finish_reservation(c);
1939 spin_lock(&host_ui->ui_lock);
1940 host_ui->synced_i_size = host_ui->ui_size;
1941 spin_unlock(&host_ui->ui_lock);
1942 mark_inode_clean(c, host_ui);
1947 release_head(c, BASEHD);
1949 ubifs_ro_mode(c, err);
1950 finish_reservation(c);
1955 * ubifs_jnl_change_xattr - change an extended attribute.
1956 * @c: UBIFS file-system description object
1957 * @inode: extended attribute inode
1960 * This function writes the updated version of an extended attribute inode and
1961 * the host inode to the journal (to the base head). The host inode is written
1962 * after the extended attribute inode in order to guarantee that the extended
1963 * attribute will be flushed when the inode is synchronized by 'fsync()' and
1964 * consequently, the write-buffer is synchronized. This function returns zero
1965 * in case of success and a negative error code in case of failure.
1967 int ubifs_jnl_change_xattr(struct ubifs_info *c, const struct inode *inode,
1968 const struct inode *host)
1970 int err, len1, len2, aligned_len, aligned_len1, lnum, offs;
1971 struct ubifs_inode *host_ui = ubifs_inode(host);
1972 struct ubifs_ino_node *ino;
1973 union ubifs_key key;
1974 int sync = IS_DIRSYNC(host);
1975 u8 hash_host[UBIFS_HASH_ARR_SZ];
1976 u8 hash[UBIFS_HASH_ARR_SZ];
1978 dbg_jnl("ino %lu, ino %lu", host->i_ino, inode->i_ino);
1979 ubifs_assert(c, inode->i_nlink > 0);
1980 ubifs_assert(c, mutex_is_locked(&host_ui->ui_mutex));
1982 len1 = UBIFS_INO_NODE_SZ + host_ui->data_len;
1983 len2 = UBIFS_INO_NODE_SZ + ubifs_inode(inode)->data_len;
1984 aligned_len1 = ALIGN(len1, 8);
1985 aligned_len = aligned_len1 + ALIGN(len2, 8);
1987 aligned_len += ubifs_auth_node_sz(c);
1989 ino = kzalloc(aligned_len, GFP_NOFS);
1993 /* Make reservation before allocating sequence numbers */
1994 err = make_reservation(c, BASEHD, aligned_len);
1998 pack_inode(c, ino, host, 0);
1999 err = ubifs_node_calc_hash(c, ino, hash_host);
2002 pack_inode(c, (void *)ino + aligned_len1, inode, 1);
2003 err = ubifs_node_calc_hash(c, (void *)ino + aligned_len1, hash);
2007 err = write_head(c, BASEHD, ino, aligned_len, &lnum, &offs, 0);
2008 if (!sync && !err) {
2009 struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
2011 ubifs_wbuf_add_ino_nolock(wbuf, host->i_ino);
2012 ubifs_wbuf_add_ino_nolock(wbuf, inode->i_ino);
2014 release_head(c, BASEHD);
2018 ubifs_add_auth_dirt(c, lnum);
2020 ino_key_init(c, &key, host->i_ino);
2021 err = ubifs_tnc_add(c, &key, lnum, offs, len1, hash_host);
2025 ino_key_init(c, &key, inode->i_ino);
2026 err = ubifs_tnc_add(c, &key, lnum, offs + aligned_len1, len2, hash);
2030 finish_reservation(c);
2031 spin_lock(&host_ui->ui_lock);
2032 host_ui->synced_i_size = host_ui->ui_size;
2033 spin_unlock(&host_ui->ui_lock);
2034 mark_inode_clean(c, host_ui);
2039 release_head(c, BASEHD);
2041 ubifs_ro_mode(c, err);
2042 finish_reservation(c);