]> Git Repo - linux.git/blame - mm/memblock.c
Merge tag 'fbdev-for-6.12-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/delle...
[linux.git] / mm / memblock.c
CommitLineData
2874c5fd 1// SPDX-License-Identifier: GPL-2.0-or-later
95f72d1e
YL
2/*
3 * Procedures for maintaining information about logical memory blocks.
4 *
5 * Peter Bergner, IBM Corp. June 2001.
6 * Copyright (C) 2001 Peter Bergner.
95f72d1e
YL
7 */
8
9#include <linux/kernel.h>
142b45a7 10#include <linux/slab.h>
95f72d1e
YL
11#include <linux/init.h>
12#include <linux/bitops.h>
449e8df3 13#include <linux/poison.h>
c196f76f 14#include <linux/pfn.h>
6d03b885 15#include <linux/debugfs.h>
514c6032 16#include <linux/kmemleak.h>
6d03b885 17#include <linux/seq_file.h>
95f72d1e
YL
18#include <linux/memblock.h>
19
c4c5ad6b 20#include <asm/sections.h>
26f09e9b
SS
21#include <linux/io.h>
22
23#include "internal.h"
79442ed1 24
8a5b403d
AB
25#define INIT_MEMBLOCK_REGIONS 128
26#define INIT_PHYSMEM_REGIONS 4
27
28#ifndef INIT_MEMBLOCK_RESERVED_REGIONS
29# define INIT_MEMBLOCK_RESERVED_REGIONS INIT_MEMBLOCK_REGIONS
30#endif
31
450d0e74
ZG
32#ifndef INIT_MEMBLOCK_MEMORY_REGIONS
33#define INIT_MEMBLOCK_MEMORY_REGIONS INIT_MEMBLOCK_REGIONS
34#endif
35
3e039c5c
MR
36/**
37 * DOC: memblock overview
38 *
39 * Memblock is a method of managing memory regions during the early
40 * boot period when the usual kernel memory allocators are not up and
41 * running.
42 *
43 * Memblock views the system memory as collections of contiguous
44 * regions. There are several types of these collections:
45 *
46 * * ``memory`` - describes the physical memory available to the
47 * kernel; this may differ from the actual physical memory installed
48 * in the system, for instance when the memory is restricted with
49 * ``mem=`` command line parameter
50 * * ``reserved`` - describes the regions that were allocated
77649905
DH
51 * * ``physmem`` - describes the actual physical memory available during
52 * boot regardless of the possible restrictions and memory hot(un)plug;
53 * the ``physmem`` type is only available on some architectures.
3e039c5c 54 *
9303c9d5 55 * Each region is represented by struct memblock_region that
3e039c5c 56 * defines the region extents, its attributes and NUMA node id on NUMA
1bf162e4
MCC
57 * systems. Every memory type is described by the struct memblock_type
58 * which contains an array of memory regions along with
77649905 59 * the allocator metadata. The "memory" and "reserved" types are nicely
9303c9d5 60 * wrapped with struct memblock. This structure is statically
77649905 61 * initialized at build time. The region arrays are initially sized to
450d0e74
ZG
62 * %INIT_MEMBLOCK_MEMORY_REGIONS for "memory" and
63 * %INIT_MEMBLOCK_RESERVED_REGIONS for "reserved". The region array
64 * for "physmem" is initially sized to %INIT_PHYSMEM_REGIONS.
6e5af9a8
C
65 * The memblock_allow_resize() enables automatic resizing of the region
66 * arrays during addition of new regions. This feature should be used
67 * with care so that memory allocated for the region array will not
68 * overlap with areas that should be reserved, for example initrd.
3e039c5c
MR
69 *
70 * The early architecture setup should tell memblock what the physical
6e5af9a8
C
71 * memory layout is by using memblock_add() or memblock_add_node()
72 * functions. The first function does not assign the region to a NUMA
73 * node and it is appropriate for UMA systems. Yet, it is possible to
74 * use it on NUMA systems as well and assign the region to a NUMA node
75 * later in the setup process using memblock_set_node(). The
76 * memblock_add_node() performs such an assignment directly.
3e039c5c 77 *
a2974133
MR
78 * Once memblock is setup the memory can be allocated using one of the
79 * API variants:
80 *
6e5af9a8
C
81 * * memblock_phys_alloc*() - these functions return the **physical**
82 * address of the allocated memory
83 * * memblock_alloc*() - these functions return the **virtual** address
84 * of the allocated memory.
a2974133 85 *
df1758d9 86 * Note, that both API variants use implicit assumptions about allowed
a2974133 87 * memory ranges and the fallback methods. Consult the documentation
6e5af9a8
C
88 * of memblock_alloc_internal() and memblock_alloc_range_nid()
89 * functions for more elaborate description.
3e039c5c 90 *
6e5af9a8
C
91 * As the system boot progresses, the architecture specific mem_init()
92 * function frees all the memory to the buddy page allocator.
3e039c5c 93 *
6e5af9a8 94 * Unless an architecture enables %CONFIG_ARCH_KEEP_MEMBLOCK, the
77649905
DH
95 * memblock data structures (except "physmem") will be discarded after the
96 * system initialization completes.
3e039c5c
MR
97 */
98
a9ee6cf5 99#ifndef CONFIG_NUMA
bda49a81
MR
100struct pglist_data __refdata contig_page_data;
101EXPORT_SYMBOL(contig_page_data);
102#endif
103
104unsigned long max_low_pfn;
105unsigned long min_low_pfn;
106unsigned long max_pfn;
107unsigned long long max_possible_pfn;
108
450d0e74 109static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_MEMORY_REGIONS] __initdata_memblock;
8a5b403d 110static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_RESERVED_REGIONS] __initdata_memblock;
70210ed9 111#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
77649905 112static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS];
70210ed9 113#endif
fe091c20
TH
114
115struct memblock memblock __initdata_memblock = {
116 .memory.regions = memblock_memory_init_regions,
450d0e74 117 .memory.max = INIT_MEMBLOCK_MEMORY_REGIONS,
0262d9c8 118 .memory.name = "memory",
fe091c20
TH
119
120 .reserved.regions = memblock_reserved_init_regions,
8a5b403d 121 .reserved.max = INIT_MEMBLOCK_RESERVED_REGIONS,
0262d9c8 122 .reserved.name = "reserved",
fe091c20 123
79442ed1 124 .bottom_up = false,
fe091c20
TH
125 .current_limit = MEMBLOCK_ALLOC_ANYWHERE,
126};
95f72d1e 127
77649905
DH
128#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
129struct memblock_type physmem = {
130 .regions = memblock_physmem_init_regions,
77649905
DH
131 .max = INIT_PHYSMEM_REGIONS,
132 .name = "physmem",
133};
134#endif
135
9f3d5eaa
MR
136/*
137 * keep a pointer to &memblock.memory in the text section to use it in
138 * __next_mem_range() and its helpers.
139 * For architectures that do not keep memblock data after init, this
140 * pointer will be reset to NULL at memblock_discard()
141 */
142static __refdata struct memblock_type *memblock_memory = &memblock.memory;
143
cd991db8
MR
144#define for_each_memblock_type(i, memblock_type, rgn) \
145 for (i = 0, rgn = &memblock_type->regions[0]; \
146 i < memblock_type->cnt; \
147 i++, rgn = &memblock_type->regions[i])
148
87c55870
MR
149#define memblock_dbg(fmt, ...) \
150 do { \
151 if (memblock_debug) \
152 pr_info(fmt, ##__VA_ARGS__); \
153 } while (0)
154
155static int memblock_debug __initdata_memblock;
fc493f83 156static bool system_has_some_mirror __initdata_memblock;
1aadc056 157static int memblock_can_resize __initdata_memblock;
fc493f83
CM
158static int memblock_memory_in_slab __initdata_memblock;
159static int memblock_reserved_in_slab __initdata_memblock;
95f72d1e 160
0db31d63
MW
161bool __init_memblock memblock_has_mirror(void)
162{
163 return system_has_some_mirror;
164}
165
c366ea89 166static enum memblock_flags __init_memblock choose_memblock_flags(void)
a3f5bafc
TL
167{
168 return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
169}
170
eb18f1b5
TH
171/* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
172static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
173{
1c4bc43d 174 return *size = min(*size, PHYS_ADDR_MAX - base);
eb18f1b5
TH
175}
176
6ed311b2
BH
177/*
178 * Address comparison utilities
179 */
9b99c17f
AS
180unsigned long __init_memblock
181memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1, phys_addr_t base2,
182 phys_addr_t size2)
95f72d1e
YL
183{
184 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
185}
186
95cf82ec 187bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
2d7d3eb2 188 phys_addr_t base, phys_addr_t size)
6ed311b2
BH
189{
190 unsigned long i;
191
023accf5
MR
192 memblock_cap_size(base, &size);
193
f14516fb
AK
194 for (i = 0; i < type->cnt; i++)
195 if (memblock_addrs_overlap(base, size, type->regions[i].base,
196 type->regions[i].size))
1eb0a28d
WY
197 return true;
198 return false;
6ed311b2
BH
199}
200
47cec443 201/**
79442ed1
TC
202 * __memblock_find_range_bottom_up - find free area utility in bottom-up
203 * @start: start of candidate range
47cec443
MR
204 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
205 * %MEMBLOCK_ALLOC_ACCESSIBLE
79442ed1
TC
206 * @size: size of free area to find
207 * @align: alignment of free area to find
b1154233 208 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
fc6daaf9 209 * @flags: pick from blocks based on memory attributes
79442ed1
TC
210 *
211 * Utility called from memblock_find_in_range_node(), find free area bottom-up.
212 *
47cec443 213 * Return:
79442ed1
TC
214 * Found address on success, 0 on failure.
215 */
216static phys_addr_t __init_memblock
217__memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
fc6daaf9 218 phys_addr_t size, phys_addr_t align, int nid,
e1720fee 219 enum memblock_flags flags)
79442ed1
TC
220{
221 phys_addr_t this_start, this_end, cand;
222 u64 i;
223
fc6daaf9 224 for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
79442ed1
TC
225 this_start = clamp(this_start, start, end);
226 this_end = clamp(this_end, start, end);
227
228 cand = round_up(this_start, align);
229 if (cand < this_end && this_end - cand >= size)
230 return cand;
231 }
232
233 return 0;
234}
235
7bd0b0f0 236/**
1402899e 237 * __memblock_find_range_top_down - find free area utility, in top-down
7bd0b0f0 238 * @start: start of candidate range
47cec443
MR
239 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
240 * %MEMBLOCK_ALLOC_ACCESSIBLE
7bd0b0f0
TH
241 * @size: size of free area to find
242 * @align: alignment of free area to find
b1154233 243 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
fc6daaf9 244 * @flags: pick from blocks based on memory attributes
7bd0b0f0 245 *
1402899e 246 * Utility called from memblock_find_in_range_node(), find free area top-down.
7bd0b0f0 247 *
47cec443 248 * Return:
79442ed1 249 * Found address on success, 0 on failure.
6ed311b2 250 */
1402899e
TC
251static phys_addr_t __init_memblock
252__memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
fc6daaf9 253 phys_addr_t size, phys_addr_t align, int nid,
e1720fee 254 enum memblock_flags flags)
f7210e6c
TC
255{
256 phys_addr_t this_start, this_end, cand;
257 u64 i;
258
fc6daaf9
TL
259 for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
260 NULL) {
f7210e6c
TC
261 this_start = clamp(this_start, start, end);
262 this_end = clamp(this_end, start, end);
263
264 if (this_end < size)
265 continue;
266
267 cand = round_down(this_end - size, align);
268 if (cand >= this_start)
269 return cand;
270 }
1402899e 271
f7210e6c
TC
272 return 0;
273}
6ed311b2 274
1402899e
TC
275/**
276 * memblock_find_in_range_node - find free area in given range and node
1402899e
TC
277 * @size: size of free area to find
278 * @align: alignment of free area to find
87029ee9 279 * @start: start of candidate range
47cec443
MR
280 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
281 * %MEMBLOCK_ALLOC_ACCESSIBLE
b1154233 282 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
fc6daaf9 283 * @flags: pick from blocks based on memory attributes
1402899e
TC
284 *
285 * Find @size free area aligned to @align in the specified range and node.
286 *
47cec443 287 * Return:
79442ed1 288 * Found address on success, 0 on failure.
1402899e 289 */
c366ea89 290static phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
87029ee9 291 phys_addr_t align, phys_addr_t start,
e1720fee
MR
292 phys_addr_t end, int nid,
293 enum memblock_flags flags)
1402899e
TC
294{
295 /* pump up @end */
fed84c78 296 if (end == MEMBLOCK_ALLOC_ACCESSIBLE ||
c6975d7c 297 end == MEMBLOCK_ALLOC_NOLEAKTRACE)
1402899e
TC
298 end = memblock.current_limit;
299
300 /* avoid allocating the first page */
301 start = max_t(phys_addr_t, start, PAGE_SIZE);
302 end = max(start, end);
303
2dcb3964
RG
304 if (memblock_bottom_up())
305 return __memblock_find_range_bottom_up(start, end, size, align,
306 nid, flags);
307 else
308 return __memblock_find_range_top_down(start, end, size, align,
309 nid, flags);
1402899e
TC
310}
311
7bd0b0f0
TH
312/**
313 * memblock_find_in_range - find free area in given range
314 * @start: start of candidate range
47cec443
MR
315 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
316 * %MEMBLOCK_ALLOC_ACCESSIBLE
7bd0b0f0
TH
317 * @size: size of free area to find
318 * @align: alignment of free area to find
319 *
320 * Find @size free area aligned to @align in the specified range.
321 *
47cec443 322 * Return:
79442ed1 323 * Found address on success, 0 on failure.
fc769a8e 324 */
a7259df7 325static phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
7bd0b0f0
TH
326 phys_addr_t end, phys_addr_t size,
327 phys_addr_t align)
6ed311b2 328{
a3f5bafc 329 phys_addr_t ret;
e1720fee 330 enum memblock_flags flags = choose_memblock_flags();
a3f5bafc
TL
331
332again:
333 ret = memblock_find_in_range_node(size, align, start, end,
334 NUMA_NO_NODE, flags);
335
336 if (!ret && (flags & MEMBLOCK_MIRROR)) {
14d9a675 337 pr_warn_ratelimited("Could not allocate %pap bytes of mirrored memory\n",
a3f5bafc
TL
338 &size);
339 flags &= ~MEMBLOCK_MIRROR;
340 goto again;
341 }
342
343 return ret;
6ed311b2
BH
344}
345
10d06439 346static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
95f72d1e 347{
1440c4e2 348 type->total_size -= type->regions[r].size;
7c0caeb8
TH
349 memmove(&type->regions[r], &type->regions[r + 1],
350 (type->cnt - (r + 1)) * sizeof(type->regions[r]));
e3239ff9 351 type->cnt--;
95f72d1e 352
8f7a6605
BH
353 /* Special case for empty arrays */
354 if (type->cnt == 0) {
1440c4e2 355 WARN_ON(type->total_size != 0);
8f7a6605
BH
356 type->regions[0].base = 0;
357 type->regions[0].size = 0;
66a20757 358 type->regions[0].flags = 0;
7c0caeb8 359 memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
8f7a6605 360 }
95f72d1e
YL
361}
362
350e88ba 363#ifndef CONFIG_ARCH_KEEP_MEMBLOCK
3010f876 364/**
47cec443 365 * memblock_discard - discard memory and reserved arrays if they were allocated
3010f876
PT
366 */
367void __init memblock_discard(void)
5e270e25 368{
3010f876 369 phys_addr_t addr, size;
5e270e25 370
3010f876
PT
371 if (memblock.reserved.regions != memblock_reserved_init_regions) {
372 addr = __pa(memblock.reserved.regions);
373 size = PAGE_ALIGN(sizeof(struct memblock_region) *
374 memblock.reserved.max);
c94afc46
ML
375 if (memblock_reserved_in_slab)
376 kfree(memblock.reserved.regions);
377 else
378 memblock_free_late(addr, size);
3010f876 379 }
5e270e25 380
91b540f9 381 if (memblock.memory.regions != memblock_memory_init_regions) {
3010f876
PT
382 addr = __pa(memblock.memory.regions);
383 size = PAGE_ALIGN(sizeof(struct memblock_region) *
384 memblock.memory.max);
c94afc46
ML
385 if (memblock_memory_in_slab)
386 kfree(memblock.memory.regions);
387 else
388 memblock_free_late(addr, size);
3010f876 389 }
9f3d5eaa
MR
390
391 memblock_memory = NULL;
5e270e25 392}
5e270e25
PH
393#endif
394
48c3b583
GP
395/**
396 * memblock_double_array - double the size of the memblock regions array
397 * @type: memblock type of the regions array being doubled
398 * @new_area_start: starting address of memory range to avoid overlap with
399 * @new_area_size: size of memory range to avoid overlap with
400 *
401 * Double the size of the @type regions array. If memblock is being used to
402 * allocate memory for a new reserved regions array and there is a previously
47cec443 403 * allocated memory range [@new_area_start, @new_area_start + @new_area_size]
48c3b583
GP
404 * waiting to be reserved, ensure the memory used by the new array does
405 * not overlap.
406 *
47cec443 407 * Return:
48c3b583
GP
408 * 0 on success, -1 on failure.
409 */
410static int __init_memblock memblock_double_array(struct memblock_type *type,
411 phys_addr_t new_area_start,
412 phys_addr_t new_area_size)
142b45a7
BH
413{
414 struct memblock_region *new_array, *old_array;
29f67386 415 phys_addr_t old_alloc_size, new_alloc_size;
a36aab89 416 phys_addr_t old_size, new_size, addr, new_end;
142b45a7 417 int use_slab = slab_is_available();
181eb394 418 int *in_slab;
142b45a7
BH
419
420 /* We don't allow resizing until we know about the reserved regions
421 * of memory that aren't suitable for allocation
422 */
423 if (!memblock_can_resize)
e96c6b8f 424 panic("memblock: cannot resize %s array\n", type->name);
142b45a7 425
142b45a7
BH
426 /* Calculate new doubled size */
427 old_size = type->max * sizeof(struct memblock_region);
428 new_size = old_size << 1;
29f67386
YL
429 /*
430 * We need to allocated new one align to PAGE_SIZE,
431 * so we can free them completely later.
432 */
433 old_alloc_size = PAGE_ALIGN(old_size);
434 new_alloc_size = PAGE_ALIGN(new_size);
142b45a7 435
181eb394
GS
436 /* Retrieve the slab flag */
437 if (type == &memblock.memory)
438 in_slab = &memblock_memory_in_slab;
439 else
440 in_slab = &memblock_reserved_in_slab;
441
a2974133 442 /* Try to find some space for it */
142b45a7
BH
443 if (use_slab) {
444 new_array = kmalloc(new_size, GFP_KERNEL);
1f5026a7 445 addr = new_array ? __pa(new_array) : 0;
4e2f0775 446 } else {
48c3b583
GP
447 /* only exclude range when trying to double reserved.regions */
448 if (type != &memblock.reserved)
449 new_area_start = new_area_size = 0;
450
451 addr = memblock_find_in_range(new_area_start + new_area_size,
452 memblock.current_limit,
29f67386 453 new_alloc_size, PAGE_SIZE);
48c3b583
GP
454 if (!addr && new_area_size)
455 addr = memblock_find_in_range(0,
fd07383b
AM
456 min(new_area_start, memblock.current_limit),
457 new_alloc_size, PAGE_SIZE);
48c3b583 458
15674868 459 new_array = addr ? __va(addr) : NULL;
4e2f0775 460 }
1f5026a7 461 if (!addr) {
142b45a7 462 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
0262d9c8 463 type->name, type->max, type->max * 2);
142b45a7
BH
464 return -1;
465 }
142b45a7 466
a36aab89
MR
467 new_end = addr + new_size - 1;
468 memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]",
469 type->name, type->max * 2, &addr, &new_end);
ea9e4376 470
fd07383b
AM
471 /*
472 * Found space, we now need to move the array over before we add the
473 * reserved region since it may be our reserved array itself that is
474 * full.
142b45a7
BH
475 */
476 memcpy(new_array, type->regions, old_size);
477 memset(new_array + type->max, 0, old_size);
478 old_array = type->regions;
479 type->regions = new_array;
480 type->max <<= 1;
481
fd07383b 482 /* Free old array. We needn't free it if the array is the static one */
181eb394
GS
483 if (*in_slab)
484 kfree(old_array);
485 else if (old_array != memblock_memory_init_regions &&
486 old_array != memblock_reserved_init_regions)
4421cca0 487 memblock_free(old_array, old_alloc_size);
142b45a7 488
fd07383b
AM
489 /*
490 * Reserve the new array if that comes from the memblock. Otherwise, we
491 * needn't do it
181eb394
GS
492 */
493 if (!use_slab)
29f67386 494 BUG_ON(memblock_reserve(addr, new_alloc_size));
181eb394
GS
495
496 /* Update slab flag */
497 *in_slab = use_slab;
498
142b45a7
BH
499 return 0;
500}
501
784656f9
TH
502/**
503 * memblock_merge_regions - merge neighboring compatible regions
504 * @type: memblock type to scan
2fe03412
PZ
505 * @start_rgn: start scanning from (@start_rgn - 1)
506 * @end_rgn: end scanning at (@end_rgn - 1)
507 * Scan @type and merge neighboring compatible regions in [@start_rgn - 1, @end_rgn)
784656f9 508 */
2fe03412
PZ
509static void __init_memblock memblock_merge_regions(struct memblock_type *type,
510 unsigned long start_rgn,
511 unsigned long end_rgn)
95f72d1e 512{
784656f9 513 int i = 0;
2fe03412
PZ
514 if (start_rgn)
515 i = start_rgn - 1;
516 end_rgn = min(end_rgn, type->cnt - 1);
517 while (i < end_rgn) {
784656f9
TH
518 struct memblock_region *this = &type->regions[i];
519 struct memblock_region *next = &type->regions[i + 1];
95f72d1e 520
7c0caeb8
TH
521 if (this->base + this->size != next->base ||
522 memblock_get_region_node(this) !=
66a20757
TC
523 memblock_get_region_node(next) ||
524 this->flags != next->flags) {
784656f9
TH
525 BUG_ON(this->base + this->size > next->base);
526 i++;
527 continue;
8f7a6605
BH
528 }
529
784656f9 530 this->size += next->size;
c0232ae8
LF
531 /* move forward from next + 1, index of which is i + 2 */
532 memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
784656f9 533 type->cnt--;
2fe03412 534 end_rgn--;
95f72d1e 535 }
784656f9 536}
95f72d1e 537
784656f9
TH
538/**
539 * memblock_insert_region - insert new memblock region
209ff86d
TC
540 * @type: memblock type to insert into
541 * @idx: index for the insertion point
542 * @base: base address of the new region
543 * @size: size of the new region
544 * @nid: node id of the new region
66a20757 545 * @flags: flags of the new region
784656f9 546 *
47cec443 547 * Insert new memblock region [@base, @base + @size) into @type at @idx.
412d0008 548 * @type must already have extra room to accommodate the new region.
784656f9
TH
549 */
550static void __init_memblock memblock_insert_region(struct memblock_type *type,
551 int idx, phys_addr_t base,
66a20757 552 phys_addr_t size,
e1720fee
MR
553 int nid,
554 enum memblock_flags flags)
784656f9
TH
555{
556 struct memblock_region *rgn = &type->regions[idx];
557
558 BUG_ON(type->cnt >= type->max);
559 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
560 rgn->base = base;
561 rgn->size = size;
66a20757 562 rgn->flags = flags;
7c0caeb8 563 memblock_set_region_node(rgn, nid);
784656f9 564 type->cnt++;
1440c4e2 565 type->total_size += size;
784656f9
TH
566}
567
568/**
f1af9d3a 569 * memblock_add_range - add new memblock region
784656f9
TH
570 * @type: memblock type to add new region into
571 * @base: base address of the new region
572 * @size: size of the new region
7fb0bc3f 573 * @nid: nid of the new region
66a20757 574 * @flags: flags of the new region
784656f9 575 *
47cec443 576 * Add new memblock region [@base, @base + @size) into @type. The new region
784656f9
TH
577 * is allowed to overlap with existing ones - overlaps don't affect already
578 * existing regions. @type is guaranteed to be minimal (all neighbouring
579 * compatible regions are merged) after the addition.
580 *
47cec443 581 * Return:
784656f9
TH
582 * 0 on success, -errno on failure.
583 */
02634a44 584static int __init_memblock memblock_add_range(struct memblock_type *type,
66a20757 585 phys_addr_t base, phys_addr_t size,
e1720fee 586 int nid, enum memblock_flags flags)
784656f9
TH
587{
588 bool insert = false;
eb18f1b5
TH
589 phys_addr_t obase = base;
590 phys_addr_t end = base + memblock_cap_size(base, &size);
2fe03412 591 int idx, nr_new, start_rgn = -1, end_rgn;
8c9c1701 592 struct memblock_region *rgn;
784656f9 593
b3dc627c
TH
594 if (!size)
595 return 0;
596
784656f9
TH
597 /* special case for empty array */
598 if (type->regions[0].size == 0) {
721f4a65 599 WARN_ON(type->cnt != 0 || type->total_size);
8f7a6605
BH
600 type->regions[0].base = base;
601 type->regions[0].size = size;
66a20757 602 type->regions[0].flags = flags;
7fb0bc3f 603 memblock_set_region_node(&type->regions[0], nid);
1440c4e2 604 type->total_size = size;
721f4a65 605 type->cnt = 1;
8f7a6605 606 return 0;
95f72d1e 607 }
28e1a8f4
JT
608
609 /*
610 * The worst case is when new range overlaps all existing regions,
611 * then we'll need type->cnt + 1 empty regions in @type. So if
ad500fb2 612 * type->cnt * 2 + 1 is less than or equal to type->max, we know
28e1a8f4
JT
613 * that there is enough empty regions in @type, and we can insert
614 * regions directly.
615 */
ad500fb2 616 if (type->cnt * 2 + 1 <= type->max)
28e1a8f4
JT
617 insert = true;
618
784656f9
TH
619repeat:
620 /*
621 * The following is executed twice. Once with %false @insert and
622 * then with %true. The first counts the number of regions needed
412d0008 623 * to accommodate the new area. The second actually inserts them.
142b45a7 624 */
784656f9
TH
625 base = obase;
626 nr_new = 0;
95f72d1e 627
66e8b438 628 for_each_memblock_type(idx, type, rgn) {
784656f9
TH
629 phys_addr_t rbase = rgn->base;
630 phys_addr_t rend = rbase + rgn->size;
631
632 if (rbase >= end)
95f72d1e 633 break;
784656f9
TH
634 if (rend <= base)
635 continue;
636 /*
637 * @rgn overlaps. If it separates the lower part of new
638 * area, insert that portion.
639 */
640 if (rbase > base) {
a9ee6cf5 641#ifdef CONFIG_NUMA
c0a29498
WY
642 WARN_ON(nid != memblock_get_region_node(rgn));
643#endif
4fcab5f4 644 WARN_ON(flags != rgn->flags);
784656f9 645 nr_new++;
2fe03412
PZ
646 if (insert) {
647 if (start_rgn == -1)
648 start_rgn = idx;
649 end_rgn = idx + 1;
8c9c1701 650 memblock_insert_region(type, idx++, base,
66a20757
TC
651 rbase - base, nid,
652 flags);
2fe03412 653 }
95f72d1e 654 }
784656f9
TH
655 /* area below @rend is dealt with, forget about it */
656 base = min(rend, end);
95f72d1e 657 }
784656f9
TH
658
659 /* insert the remaining portion */
660 if (base < end) {
661 nr_new++;
2fe03412
PZ
662 if (insert) {
663 if (start_rgn == -1)
664 start_rgn = idx;
665 end_rgn = idx + 1;
8c9c1701 666 memblock_insert_region(type, idx, base, end - base,
66a20757 667 nid, flags);
2fe03412 668 }
95f72d1e 669 }
95f72d1e 670
ef3cc4db 671 if (!nr_new)
672 return 0;
673
784656f9
TH
674 /*
675 * If this was the first round, resize array and repeat for actual
676 * insertions; otherwise, merge and return.
142b45a7 677 */
784656f9
TH
678 if (!insert) {
679 while (type->cnt + nr_new > type->max)
48c3b583 680 if (memblock_double_array(type, obase, size) < 0)
784656f9
TH
681 return -ENOMEM;
682 insert = true;
683 goto repeat;
684 } else {
2fe03412 685 memblock_merge_regions(type, start_rgn, end_rgn);
784656f9 686 return 0;
142b45a7 687 }
95f72d1e
YL
688}
689
48a833cc
MR
690/**
691 * memblock_add_node - add new memblock region within a NUMA node
692 * @base: base address of the new region
693 * @size: size of the new region
694 * @nid: nid of the new region
952eea9b 695 * @flags: flags of the new region
48a833cc
MR
696 *
697 * Add new memblock region [@base, @base + @size) to the "memory"
698 * type. See memblock_add_range() description for mode details
699 *
700 * Return:
701 * 0 on success, -errno on failure.
702 */
7fb0bc3f 703int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
952eea9b 704 int nid, enum memblock_flags flags)
7fb0bc3f 705{
00974b9a
GU
706 phys_addr_t end = base + size - 1;
707
952eea9b
DH
708 memblock_dbg("%s: [%pa-%pa] nid=%d flags=%x %pS\n", __func__,
709 &base, &end, nid, flags, (void *)_RET_IP_);
00974b9a 710
952eea9b 711 return memblock_add_range(&memblock.memory, base, size, nid, flags);
7fb0bc3f
TH
712}
713
48a833cc
MR
714/**
715 * memblock_add - add new memblock region
716 * @base: base address of the new region
717 * @size: size of the new region
718 *
719 * Add new memblock region [@base, @base + @size) to the "memory"
720 * type. See memblock_add_range() description for mode details
721 *
722 * Return:
723 * 0 on success, -errno on failure.
724 */
f705ac4b 725int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
6a4055bc 726{
5d63f81c
MC
727 phys_addr_t end = base + size - 1;
728
a090d711 729 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
5d63f81c 730 &base, &end, (void *)_RET_IP_);
6a4055bc 731
f705ac4b 732 return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
95f72d1e
YL
733}
734
ff6c3d81
LN
735/**
736 * memblock_validate_numa_coverage - check if amount of memory with
737 * no node ID assigned is less than a threshold
738 * @threshold_bytes: maximal number of pages that can have unassigned node
739 * ID (in bytes).
740 *
741 * A buggy firmware may report memory that does not belong to any node.
742 * Check if amount of such memory is below @threshold_bytes.
743 *
744 * Return: true on success, false on failure.
745 */
746bool __init_memblock memblock_validate_numa_coverage(unsigned long threshold_bytes)
747{
748 unsigned long nr_pages = 0;
749 unsigned long start_pfn, end_pfn, mem_size_mb;
750 int nid, i;
751
752 /* calculate lose page */
753 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
8043832e 754 if (!numa_valid_node(nid))
ff6c3d81
LN
755 nr_pages += end_pfn - start_pfn;
756 }
757
758 if ((nr_pages << PAGE_SHIFT) >= threshold_bytes) {
759 mem_size_mb = memblock_phys_mem_size() >> 20;
760 pr_err("NUMA: no nodes coverage for %luMB of %luMB RAM\n",
761 (nr_pages << PAGE_SHIFT) >> 20, mem_size_mb);
762 return false;
763 }
764
765 return true;
766}
767
768
6a9ceb31
TH
769/**
770 * memblock_isolate_range - isolate given range into disjoint memblocks
771 * @type: memblock type to isolate range for
772 * @base: base of range to isolate
773 * @size: size of range to isolate
774 * @start_rgn: out parameter for the start of isolated region
775 * @end_rgn: out parameter for the end of isolated region
776 *
777 * Walk @type and ensure that regions don't cross the boundaries defined by
47cec443 778 * [@base, @base + @size). Crossing regions are split at the boundaries,
6a9ceb31 779 * which may create at most two more regions. The index of the first
3aca2cea
WY
780 * region inside the range is returned in *@start_rgn and the index of the
781 * first region after the range is returned in *@end_rgn.
6a9ceb31 782 *
47cec443 783 * Return:
6a9ceb31
TH
784 * 0 on success, -errno on failure.
785 */
786static int __init_memblock memblock_isolate_range(struct memblock_type *type,
787 phys_addr_t base, phys_addr_t size,
788 int *start_rgn, int *end_rgn)
789{
eb18f1b5 790 phys_addr_t end = base + memblock_cap_size(base, &size);
8c9c1701
AK
791 int idx;
792 struct memblock_region *rgn;
6a9ceb31
TH
793
794 *start_rgn = *end_rgn = 0;
795
b3dc627c
TH
796 if (!size)
797 return 0;
798
6a9ceb31
TH
799 /* we'll create at most two more regions */
800 while (type->cnt + 2 > type->max)
48c3b583 801 if (memblock_double_array(type, base, size) < 0)
6a9ceb31
TH
802 return -ENOMEM;
803
66e8b438 804 for_each_memblock_type(idx, type, rgn) {
6a9ceb31
TH
805 phys_addr_t rbase = rgn->base;
806 phys_addr_t rend = rbase + rgn->size;
807
808 if (rbase >= end)
809 break;
810 if (rend <= base)
811 continue;
812
813 if (rbase < base) {
814 /*
815 * @rgn intersects from below. Split and continue
816 * to process the next region - the new top half.
817 */
818 rgn->base = base;
1440c4e2
TH
819 rgn->size -= base - rbase;
820 type->total_size -= base - rbase;
8c9c1701 821 memblock_insert_region(type, idx, rbase, base - rbase,
66a20757
TC
822 memblock_get_region_node(rgn),
823 rgn->flags);
6a9ceb31
TH
824 } else if (rend > end) {
825 /*
826 * @rgn intersects from above. Split and redo the
827 * current region - the new bottom half.
828 */
829 rgn->base = end;
1440c4e2
TH
830 rgn->size -= end - rbase;
831 type->total_size -= end - rbase;
8c9c1701 832 memblock_insert_region(type, idx--, rbase, end - rbase,
66a20757
TC
833 memblock_get_region_node(rgn),
834 rgn->flags);
6a9ceb31
TH
835 } else {
836 /* @rgn is fully contained, record it */
837 if (!*end_rgn)
8c9c1701
AK
838 *start_rgn = idx;
839 *end_rgn = idx + 1;
6a9ceb31
TH
840 }
841 }
842
843 return 0;
844}
6a9ceb31 845
35bd16a2 846static int __init_memblock memblock_remove_range(struct memblock_type *type,
f1af9d3a 847 phys_addr_t base, phys_addr_t size)
95f72d1e 848{
71936180
TH
849 int start_rgn, end_rgn;
850 int i, ret;
95f72d1e 851
71936180
TH
852 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
853 if (ret)
854 return ret;
95f72d1e 855
71936180
TH
856 for (i = end_rgn - 1; i >= start_rgn; i--)
857 memblock_remove_region(type, i);
8f7a6605 858 return 0;
95f72d1e
YL
859}
860
581adcbe 861int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
95f72d1e 862{
25cf23d7
MK
863 phys_addr_t end = base + size - 1;
864
a090d711 865 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
25cf23d7
MK
866 &base, &end, (void *)_RET_IP_);
867
f1af9d3a 868 return memblock_remove_range(&memblock.memory, base, size);
95f72d1e
YL
869}
870
77e02cf5 871/**
4421cca0 872 * memblock_free - free boot memory allocation
77e02cf5
LT
873 * @ptr: starting address of the boot memory allocation
874 * @size: size of the boot memory block in bytes
875 *
876 * Free boot memory block previously allocated by memblock_alloc_xx() API.
877 * The freeing memory will not be released to the buddy allocator.
878 */
4421cca0 879void __init_memblock memblock_free(void *ptr, size_t size)
77e02cf5
LT
880{
881 if (ptr)
3ecc6834 882 memblock_phys_free(__pa(ptr), size);
77e02cf5
LT
883}
884
4d72868c 885/**
3ecc6834 886 * memblock_phys_free - free boot memory block
4d72868c
MR
887 * @base: phys starting address of the boot memory block
888 * @size: size of the boot memory block in bytes
889 *
fa81ab49 890 * Free boot memory block previously allocated by memblock_phys_alloc_xx() API.
4d72868c
MR
891 * The freeing memory will not be released to the buddy allocator.
892 */
3ecc6834 893int __init_memblock memblock_phys_free(phys_addr_t base, phys_addr_t size)
95f72d1e 894{
5d63f81c
MC
895 phys_addr_t end = base + size - 1;
896
a090d711 897 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
5d63f81c 898 &base, &end, (void *)_RET_IP_);
24aa0788 899
9099daed 900 kmemleak_free_part_phys(base, size);
f1af9d3a 901 return memblock_remove_range(&memblock.reserved, base, size);
95f72d1e
YL
902}
903
f705ac4b 904int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
95f72d1e 905{
5d63f81c
MC
906 phys_addr_t end = base + size - 1;
907
a090d711 908 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
5d63f81c 909 &base, &end, (void *)_RET_IP_);
95f72d1e 910
f705ac4b 911 return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
95f72d1e
YL
912}
913
02634a44
AK
914#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
915int __init_memblock memblock_physmem_add(phys_addr_t base, phys_addr_t size)
916{
917 phys_addr_t end = base + size - 1;
918
919 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
920 &base, &end, (void *)_RET_IP_);
921
77649905 922 return memblock_add_range(&physmem, base, size, MAX_NUMNODES, 0);
02634a44
AK
923}
924#endif
925
66b16edf 926/**
47cec443 927 * memblock_setclr_flag - set or clear flag for a memory region
ee8d2071 928 * @type: memblock type to set/clear flag for
47cec443
MR
929 * @base: base address of the region
930 * @size: size of the region
931 * @set: set or clear the flag
8958b249 932 * @flag: the flag to update
66b16edf 933 *
4308ce17 934 * This function isolates region [@base, @base + @size), and sets/clears flag
66b16edf 935 *
47cec443 936 * Return: 0 on success, -errno on failure.
66b16edf 937 */
ee8d2071
UA
938static int __init_memblock memblock_setclr_flag(struct memblock_type *type,
939 phys_addr_t base, phys_addr_t size, int set, int flag)
66b16edf 940{
66b16edf
TC
941 int i, ret, start_rgn, end_rgn;
942
943 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
944 if (ret)
945 return ret;
946
fe145124
MR
947 for (i = start_rgn; i < end_rgn; i++) {
948 struct memblock_region *r = &type->regions[i];
949
4308ce17 950 if (set)
fe145124 951 r->flags |= flag;
4308ce17 952 else
fe145124
MR
953 r->flags &= ~flag;
954 }
66b16edf 955
2fe03412 956 memblock_merge_regions(type, start_rgn, end_rgn);
66b16edf
TC
957 return 0;
958}
959
960/**
4308ce17 961 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
66b16edf
TC
962 * @base: the base phys addr of the region
963 * @size: the size of the region
964 *
47cec443 965 * Return: 0 on success, -errno on failure.
4308ce17
TL
966 */
967int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
968{
ee8d2071 969 return memblock_setclr_flag(&memblock.memory, base, size, 1, MEMBLOCK_HOTPLUG);
4308ce17
TL
970}
971
972/**
973 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
974 * @base: the base phys addr of the region
975 * @size: the size of the region
66b16edf 976 *
47cec443 977 * Return: 0 on success, -errno on failure.
66b16edf
TC
978 */
979int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
980{
ee8d2071 981 return memblock_setclr_flag(&memblock.memory, base, size, 0, MEMBLOCK_HOTPLUG);
66b16edf
TC
982}
983
a3f5bafc
TL
984/**
985 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
986 * @base: the base phys addr of the region
987 * @size: the size of the region
988 *
47cec443 989 * Return: 0 on success, -errno on failure.
a3f5bafc
TL
990 */
991int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
992{
902c2d91
MW
993 if (!mirrored_kernelcore)
994 return 0;
995
a3f5bafc
TL
996 system_has_some_mirror = true;
997
ee8d2071 998 return memblock_setclr_flag(&memblock.memory, base, size, 1, MEMBLOCK_MIRROR);
a3f5bafc
TL
999}
1000
bf3d3cc5
AB
1001/**
1002 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
1003 * @base: the base phys addr of the region
1004 * @size: the size of the region
1005 *
9092d4f7
MR
1006 * The memory regions marked with %MEMBLOCK_NOMAP will not be added to the
1007 * direct mapping of the physical memory. These regions will still be
1008 * covered by the memory map. The struct page representing NOMAP memory
1009 * frames in the memory map will be PageReserved()
1010 *
658aafc8
MR
1011 * Note: if the memory being marked %MEMBLOCK_NOMAP was allocated from
1012 * memblock, the caller must inform kmemleak to ignore that memory
1013 *
47cec443 1014 * Return: 0 on success, -errno on failure.
bf3d3cc5
AB
1015 */
1016int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
1017{
ee8d2071 1018 return memblock_setclr_flag(&memblock.memory, base, size, 1, MEMBLOCK_NOMAP);
bf3d3cc5 1019}
a3f5bafc 1020
4c546b8a
AT
1021/**
1022 * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
1023 * @base: the base phys addr of the region
1024 * @size: the size of the region
1025 *
47cec443 1026 * Return: 0 on success, -errno on failure.
4c546b8a
AT
1027 */
1028int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size)
1029{
ee8d2071 1030 return memblock_setclr_flag(&memblock.memory, base, size, 0, MEMBLOCK_NOMAP);
4c546b8a
AT
1031}
1032
77e6c43e
UA
1033/**
1034 * memblock_reserved_mark_noinit - Mark a reserved memory region with flag
1035 * MEMBLOCK_RSRV_NOINIT which results in the struct pages not being initialized
1036 * for this region.
1037 * @base: the base phys addr of the region
1038 * @size: the size of the region
1039 *
1040 * struct pages will not be initialized for reserved memory regions marked with
1041 * %MEMBLOCK_RSRV_NOINIT.
1042 *
1043 * Return: 0 on success, -errno on failure.
1044 */
1045int __init_memblock memblock_reserved_mark_noinit(phys_addr_t base, phys_addr_t size)
1046{
1047 return memblock_setclr_flag(&memblock.reserved, base, size, 1,
1048 MEMBLOCK_RSRV_NOINIT);
1049}
1050
9f3d5eaa
MR
1051static bool should_skip_region(struct memblock_type *type,
1052 struct memblock_region *m,
1053 int nid, int flags)
c9a688a3
MR
1054{
1055 int m_nid = memblock_get_region_node(m);
1056
9f3d5eaa
MR
1057 /* we never skip regions when iterating memblock.reserved or physmem */
1058 if (type != memblock_memory)
1059 return false;
1060
c9a688a3 1061 /* only memory regions are associated with nodes, check it */
8043832e 1062 if (numa_valid_node(nid) && nid != m_nid)
c9a688a3
MR
1063 return true;
1064
1065 /* skip hotpluggable memory regions if needed */
79e482e9
MR
1066 if (movable_node_is_enabled() && memblock_is_hotpluggable(m) &&
1067 !(flags & MEMBLOCK_HOTPLUG))
c9a688a3
MR
1068 return true;
1069
1070 /* if we want mirror memory skip non-mirror memory regions */
1071 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
1072 return true;
1073
1074 /* skip nomap memory unless we were asked for it explicitly */
1075 if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
1076 return true;
1077
f7892d8e
DH
1078 /* skip driver-managed memory unless we were asked for it explicitly */
1079 if (!(flags & MEMBLOCK_DRIVER_MANAGED) && memblock_is_driver_managed(m))
1080 return true;
1081
c9a688a3
MR
1082 return false;
1083}
1084
35fd0808 1085/**
a2974133 1086 * __next_mem_range - next function for for_each_free_mem_range() etc.
35fd0808 1087 * @idx: pointer to u64 loop variable
b1154233 1088 * @nid: node selector, %NUMA_NO_NODE for all nodes
fc6daaf9 1089 * @flags: pick from blocks based on memory attributes
f1af9d3a
PH
1090 * @type_a: pointer to memblock_type from where the range is taken
1091 * @type_b: pointer to memblock_type which excludes memory from being taken
dad7557e
WL
1092 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1093 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1094 * @out_nid: ptr to int for nid of the range, can be %NULL
35fd0808 1095 *
f1af9d3a 1096 * Find the first area from *@idx which matches @nid, fill the out
35fd0808 1097 * parameters, and update *@idx for the next iteration. The lower 32bit of
f1af9d3a
PH
1098 * *@idx contains index into type_a and the upper 32bit indexes the
1099 * areas before each region in type_b. For example, if type_b regions
35fd0808
TH
1100 * look like the following,
1101 *
1102 * 0:[0-16), 1:[32-48), 2:[128-130)
1103 *
1104 * The upper 32bit indexes the following regions.
1105 *
1106 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
1107 *
1108 * As both region arrays are sorted, the function advances the two indices
1109 * in lockstep and returns each intersection.
1110 */
77649905
DH
1111void __next_mem_range(u64 *idx, int nid, enum memblock_flags flags,
1112 struct memblock_type *type_a,
1113 struct memblock_type *type_b, phys_addr_t *out_start,
1114 phys_addr_t *out_end, int *out_nid)
35fd0808 1115{
f1af9d3a
PH
1116 int idx_a = *idx & 0xffffffff;
1117 int idx_b = *idx >> 32;
b1154233 1118
f1af9d3a
PH
1119 for (; idx_a < type_a->cnt; idx_a++) {
1120 struct memblock_region *m = &type_a->regions[idx_a];
1121
35fd0808
TH
1122 phys_addr_t m_start = m->base;
1123 phys_addr_t m_end = m->base + m->size;
f1af9d3a 1124 int m_nid = memblock_get_region_node(m);
35fd0808 1125
9f3d5eaa 1126 if (should_skip_region(type_a, m, nid, flags))
bf3d3cc5
AB
1127 continue;
1128
f1af9d3a
PH
1129 if (!type_b) {
1130 if (out_start)
1131 *out_start = m_start;
1132 if (out_end)
1133 *out_end = m_end;
1134 if (out_nid)
1135 *out_nid = m_nid;
1136 idx_a++;
1137 *idx = (u32)idx_a | (u64)idx_b << 32;
1138 return;
1139 }
1140
1141 /* scan areas before each reservation */
1142 for (; idx_b < type_b->cnt + 1; idx_b++) {
1143 struct memblock_region *r;
1144 phys_addr_t r_start;
1145 phys_addr_t r_end;
1146
1147 r = &type_b->regions[idx_b];
1148 r_start = idx_b ? r[-1].base + r[-1].size : 0;
1149 r_end = idx_b < type_b->cnt ?
1c4bc43d 1150 r->base : PHYS_ADDR_MAX;
35fd0808 1151
f1af9d3a
PH
1152 /*
1153 * if idx_b advanced past idx_a,
1154 * break out to advance idx_a
1155 */
35fd0808
TH
1156 if (r_start >= m_end)
1157 break;
1158 /* if the two regions intersect, we're done */
1159 if (m_start < r_end) {
1160 if (out_start)
f1af9d3a
PH
1161 *out_start =
1162 max(m_start, r_start);
35fd0808
TH
1163 if (out_end)
1164 *out_end = min(m_end, r_end);
1165 if (out_nid)
f1af9d3a 1166 *out_nid = m_nid;
35fd0808 1167 /*
f1af9d3a
PH
1168 * The region which ends first is
1169 * advanced for the next iteration.
35fd0808
TH
1170 */
1171 if (m_end <= r_end)
f1af9d3a 1172 idx_a++;
35fd0808 1173 else
f1af9d3a
PH
1174 idx_b++;
1175 *idx = (u32)idx_a | (u64)idx_b << 32;
35fd0808
TH
1176 return;
1177 }
1178 }
1179 }
1180
1181 /* signal end of iteration */
1182 *idx = ULLONG_MAX;
1183}
1184
7bd0b0f0 1185/**
f1af9d3a
PH
1186 * __next_mem_range_rev - generic next function for for_each_*_range_rev()
1187 *
7bd0b0f0 1188 * @idx: pointer to u64 loop variable
ad5ea8cd 1189 * @nid: node selector, %NUMA_NO_NODE for all nodes
fc6daaf9 1190 * @flags: pick from blocks based on memory attributes
f1af9d3a
PH
1191 * @type_a: pointer to memblock_type from where the range is taken
1192 * @type_b: pointer to memblock_type which excludes memory from being taken
dad7557e
WL
1193 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1194 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1195 * @out_nid: ptr to int for nid of the range, can be %NULL
7bd0b0f0 1196 *
47cec443
MR
1197 * Finds the next range from type_a which is not marked as unsuitable
1198 * in type_b.
1199 *
f1af9d3a 1200 * Reverse of __next_mem_range().
7bd0b0f0 1201 */
e1720fee
MR
1202void __init_memblock __next_mem_range_rev(u64 *idx, int nid,
1203 enum memblock_flags flags,
f1af9d3a
PH
1204 struct memblock_type *type_a,
1205 struct memblock_type *type_b,
1206 phys_addr_t *out_start,
1207 phys_addr_t *out_end, int *out_nid)
7bd0b0f0 1208{
f1af9d3a
PH
1209 int idx_a = *idx & 0xffffffff;
1210 int idx_b = *idx >> 32;
b1154233 1211
7bd0b0f0 1212 if (*idx == (u64)ULLONG_MAX) {
f1af9d3a 1213 idx_a = type_a->cnt - 1;
e47608ab 1214 if (type_b != NULL)
1215 idx_b = type_b->cnt;
1216 else
1217 idx_b = 0;
7bd0b0f0
TH
1218 }
1219
f1af9d3a
PH
1220 for (; idx_a >= 0; idx_a--) {
1221 struct memblock_region *m = &type_a->regions[idx_a];
1222
7bd0b0f0
TH
1223 phys_addr_t m_start = m->base;
1224 phys_addr_t m_end = m->base + m->size;
f1af9d3a 1225 int m_nid = memblock_get_region_node(m);
7bd0b0f0 1226
9f3d5eaa 1227 if (should_skip_region(type_a, m, nid, flags))
bf3d3cc5
AB
1228 continue;
1229
f1af9d3a
PH
1230 if (!type_b) {
1231 if (out_start)
1232 *out_start = m_start;
1233 if (out_end)
1234 *out_end = m_end;
1235 if (out_nid)
1236 *out_nid = m_nid;
fb399b48 1237 idx_a--;
f1af9d3a
PH
1238 *idx = (u32)idx_a | (u64)idx_b << 32;
1239 return;
1240 }
1241
1242 /* scan areas before each reservation */
1243 for (; idx_b >= 0; idx_b--) {
1244 struct memblock_region *r;
1245 phys_addr_t r_start;
1246 phys_addr_t r_end;
1247
1248 r = &type_b->regions[idx_b];
1249 r_start = idx_b ? r[-1].base + r[-1].size : 0;
1250 r_end = idx_b < type_b->cnt ?
1c4bc43d 1251 r->base : PHYS_ADDR_MAX;
f1af9d3a
PH
1252 /*
1253 * if idx_b advanced past idx_a,
1254 * break out to advance idx_a
1255 */
7bd0b0f0 1256
7bd0b0f0
TH
1257 if (r_end <= m_start)
1258 break;
1259 /* if the two regions intersect, we're done */
1260 if (m_end > r_start) {
1261 if (out_start)
1262 *out_start = max(m_start, r_start);
1263 if (out_end)
1264 *out_end = min(m_end, r_end);
1265 if (out_nid)
f1af9d3a 1266 *out_nid = m_nid;
7bd0b0f0 1267 if (m_start >= r_start)
f1af9d3a 1268 idx_a--;
7bd0b0f0 1269 else
f1af9d3a
PH
1270 idx_b--;
1271 *idx = (u32)idx_a | (u64)idx_b << 32;
7bd0b0f0
TH
1272 return;
1273 }
1274 }
1275 }
f1af9d3a 1276 /* signal end of iteration */
7bd0b0f0
TH
1277 *idx = ULLONG_MAX;
1278}
1279
7c0caeb8 1280/*
45e79815 1281 * Common iterator interface used to define for_each_mem_pfn_range().
7c0caeb8
TH
1282 */
1283void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1284 unsigned long *out_start_pfn,
1285 unsigned long *out_end_pfn, int *out_nid)
1286{
1287 struct memblock_type *type = &memblock.memory;
1288 struct memblock_region *r;
d622abf7 1289 int r_nid;
7c0caeb8
TH
1290
1291 while (++*idx < type->cnt) {
1292 r = &type->regions[*idx];
d622abf7 1293 r_nid = memblock_get_region_node(r);
7c0caeb8
TH
1294
1295 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1296 continue;
8043832e 1297 if (!numa_valid_node(nid) || nid == r_nid)
7c0caeb8
TH
1298 break;
1299 }
1300 if (*idx >= type->cnt) {
1301 *idx = -1;
1302 return;
1303 }
1304
1305 if (out_start_pfn)
1306 *out_start_pfn = PFN_UP(r->base);
1307 if (out_end_pfn)
1308 *out_end_pfn = PFN_DOWN(r->base + r->size);
1309 if (out_nid)
d622abf7 1310 *out_nid = r_nid;
7c0caeb8
TH
1311}
1312
1313/**
1314 * memblock_set_node - set node ID on memblock regions
1315 * @base: base of area to set node ID for
1316 * @size: size of area to set node ID for
e7e8de59 1317 * @type: memblock type to set node ID for
7c0caeb8
TH
1318 * @nid: node ID to set
1319 *
47cec443 1320 * Set the nid of memblock @type regions in [@base, @base + @size) to @nid.
7c0caeb8
TH
1321 * Regions which cross the area boundaries are split as necessary.
1322 *
47cec443 1323 * Return:
7c0caeb8
TH
1324 * 0 on success, -errno on failure.
1325 */
1326int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
e7e8de59 1327 struct memblock_type *type, int nid)
7c0caeb8 1328{
a9ee6cf5 1329#ifdef CONFIG_NUMA
6a9ceb31
TH
1330 int start_rgn, end_rgn;
1331 int i, ret;
7c0caeb8 1332
6a9ceb31
TH
1333 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1334 if (ret)
1335 return ret;
7c0caeb8 1336
6a9ceb31 1337 for (i = start_rgn; i < end_rgn; i++)
e9d24ad3 1338 memblock_set_region_node(&type->regions[i], nid);
7c0caeb8 1339
2fe03412 1340 memblock_merge_regions(type, start_rgn, end_rgn);
3f08a302 1341#endif
7c0caeb8
TH
1342 return 0;
1343}
3f08a302 1344
837566e7
AD
1345#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1346/**
1347 * __next_mem_pfn_range_in_zone - iterator for for_each_*_range_in_zone()
1348 *
1349 * @idx: pointer to u64 loop variable
1350 * @zone: zone in which all of the memory blocks reside
1351 * @out_spfn: ptr to ulong for start pfn of the range, can be %NULL
1352 * @out_epfn: ptr to ulong for end pfn of the range, can be %NULL
1353 *
1354 * This function is meant to be a zone/pfn specific wrapper for the
1355 * for_each_mem_range type iterators. Specifically they are used in the
1356 * deferred memory init routines and as such we were duplicating much of
1357 * this logic throughout the code. So instead of having it in multiple
1358 * locations it seemed like it would make more sense to centralize this to
1359 * one new iterator that does everything they need.
1360 */
1361void __init_memblock
1362__next_mem_pfn_range_in_zone(u64 *idx, struct zone *zone,
1363 unsigned long *out_spfn, unsigned long *out_epfn)
1364{
1365 int zone_nid = zone_to_nid(zone);
1366 phys_addr_t spa, epa;
837566e7
AD
1367
1368 __next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1369 &memblock.memory, &memblock.reserved,
f30b002c 1370 &spa, &epa, NULL);
837566e7
AD
1371
1372 while (*idx != U64_MAX) {
1373 unsigned long epfn = PFN_DOWN(epa);
1374 unsigned long spfn = PFN_UP(spa);
1375
1376 /*
1377 * Verify the end is at least past the start of the zone and
1378 * that we have at least one PFN to initialize.
1379 */
1380 if (zone->zone_start_pfn < epfn && spfn < epfn) {
1381 /* if we went too far just stop searching */
1382 if (zone_end_pfn(zone) <= spfn) {
1383 *idx = U64_MAX;
1384 break;
1385 }
1386
1387 if (out_spfn)
1388 *out_spfn = max(zone->zone_start_pfn, spfn);
1389 if (out_epfn)
1390 *out_epfn = min(zone_end_pfn(zone), epfn);
1391
1392 return;
1393 }
1394
1395 __next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1396 &memblock.memory, &memblock.reserved,
f30b002c 1397 &spa, &epa, NULL);
837566e7
AD
1398 }
1399
1400 /* signal end of iteration */
1401 if (out_spfn)
1402 *out_spfn = ULONG_MAX;
1403 if (out_epfn)
1404 *out_epfn = 0;
1405}
1406
1407#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
7c0caeb8 1408
92d12f95
MR
1409/**
1410 * memblock_alloc_range_nid - allocate boot memory block
1411 * @size: size of memory block to be allocated in bytes
1412 * @align: alignment of the region and block's size
1413 * @start: the lower bound of the memory region to allocate (phys address)
1414 * @end: the upper bound of the memory region to allocate (phys address)
1415 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
0ac398b1 1416 * @exact_nid: control the allocation fall back to other nodes
92d12f95
MR
1417 *
1418 * The allocation is performed from memory region limited by
95830666 1419 * memblock.current_limit if @end == %MEMBLOCK_ALLOC_ACCESSIBLE.
92d12f95 1420 *
0ac398b1
YY
1421 * If the specified node can not hold the requested memory and @exact_nid
1422 * is false, the allocation falls back to any node in the system.
92d12f95
MR
1423 *
1424 * For systems with memory mirroring, the allocation is attempted first
1425 * from the regions with mirroring enabled and then retried from any
1426 * memory region.
1427 *
c200d900
PW
1428 * In addition, function using kmemleak_alloc_phys for allocated boot
1429 * memory block, it is never reported as leaks.
92d12f95
MR
1430 *
1431 * Return:
1432 * Physical address of allocated memory block on success, %0 on failure.
1433 */
8676af1f 1434phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
2bfc2862 1435 phys_addr_t align, phys_addr_t start,
0ac398b1
YY
1436 phys_addr_t end, int nid,
1437 bool exact_nid)
95f72d1e 1438{
92d12f95 1439 enum memblock_flags flags = choose_memblock_flags();
6ed311b2 1440 phys_addr_t found;
95f72d1e 1441
94ff46de
JG
1442 /*
1443 * Detect any accidental use of these APIs after slab is ready, as at
1444 * this moment memblock may be deinitialized already and its
1445 * internal data may be destroyed (after execution of memblock_free_all)
1446 */
1447 if (WARN_ON_ONCE(slab_is_available())) {
1448 void *vaddr = kzalloc_node(size, GFP_NOWAIT, nid);
1449
1450 return vaddr ? virt_to_phys(vaddr) : 0;
1451 }
1452
2f770806
MR
1453 if (!align) {
1454 /* Can't use WARNs this early in boot on powerpc */
1455 dump_stack();
1456 align = SMP_CACHE_BYTES;
1457 }
1458
92d12f95 1459again:
fc6daaf9
TL
1460 found = memblock_find_in_range_node(size, align, start, end, nid,
1461 flags);
92d12f95
MR
1462 if (found && !memblock_reserve(found, size))
1463 goto done;
1464
8043832e 1465 if (numa_valid_node(nid) && !exact_nid) {
92d12f95
MR
1466 found = memblock_find_in_range_node(size, align, start,
1467 end, NUMA_NO_NODE,
1468 flags);
1469 if (found && !memblock_reserve(found, size))
1470 goto done;
1471 }
1472
1473 if (flags & MEMBLOCK_MIRROR) {
1474 flags &= ~MEMBLOCK_MIRROR;
14d9a675 1475 pr_warn_ratelimited("Could not allocate %pap bytes of mirrored memory\n",
92d12f95
MR
1476 &size);
1477 goto again;
1478 }
1479
1480 return 0;
1481
1482done:
c6975d7c
QC
1483 /*
1484 * Skip kmemleak for those places like kasan_init() and
1485 * early_pgtable_alloc() due to high volume.
1486 */
1487 if (end != MEMBLOCK_ALLOC_NOLEAKTRACE)
aedf95ea 1488 /*
c200d900
PW
1489 * Memblock allocated blocks are never reported as
1490 * leaks. This is because many of these blocks are
1491 * only referred via the physical address which is
1492 * not looked up by kmemleak.
aedf95ea 1493 */
c200d900 1494 kmemleak_alloc_phys(found, size, 0);
92d12f95 1495
dcdfdd40
KS
1496 /*
1497 * Some Virtual Machine platforms, such as Intel TDX or AMD SEV-SNP,
1498 * require memory to be accepted before it can be used by the
1499 * guest.
1500 *
1501 * Accept the memory of the allocated buffer.
1502 */
1503 accept_memory(found, found + size);
1504
92d12f95 1505 return found;
95f72d1e
YL
1506}
1507
a2974133
MR
1508/**
1509 * memblock_phys_alloc_range - allocate a memory block inside specified range
1510 * @size: size of memory block to be allocated in bytes
1511 * @align: alignment of the region and block's size
1512 * @start: the lower bound of the memory region to allocate (physical address)
1513 * @end: the upper bound of the memory region to allocate (physical address)
1514 *
1515 * Allocate @size bytes in the between @start and @end.
1516 *
1517 * Return: physical address of the allocated memory block on success,
1518 * %0 on failure.
1519 */
8a770c2a
MR
1520phys_addr_t __init memblock_phys_alloc_range(phys_addr_t size,
1521 phys_addr_t align,
1522 phys_addr_t start,
1523 phys_addr_t end)
2bfc2862 1524{
b5cf2d6c
FM
1525 memblock_dbg("%s: %llu bytes align=0x%llx from=%pa max_addr=%pa %pS\n",
1526 __func__, (u64)size, (u64)align, &start, &end,
1527 (void *)_RET_IP_);
0ac398b1
YY
1528 return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
1529 false);
7bd0b0f0
TH
1530}
1531
a2974133 1532/**
17cbe038 1533 * memblock_phys_alloc_try_nid - allocate a memory block from specified NUMA node
a2974133
MR
1534 * @size: size of memory block to be allocated in bytes
1535 * @align: alignment of the region and block's size
1536 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1537 *
1538 * Allocates memory block from the specified NUMA node. If the node
1539 * has no available memory, attempts to allocated from any node in the
1540 * system.
1541 *
1542 * Return: physical address of the allocated memory block on success,
1543 * %0 on failure.
1544 */
9a8dd708 1545phys_addr_t __init memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
9d1e2492 1546{
33755574 1547 return memblock_alloc_range_nid(size, align, 0,
0ac398b1 1548 MEMBLOCK_ALLOC_ACCESSIBLE, nid, false);
95f72d1e
YL
1549}
1550
26f09e9b 1551/**
eb31d559 1552 * memblock_alloc_internal - allocate boot memory block
26f09e9b
SS
1553 * @size: size of memory block to be allocated in bytes
1554 * @align: alignment of the region and block's size
1555 * @min_addr: the lower bound of the memory region to allocate (phys address)
1556 * @max_addr: the upper bound of the memory region to allocate (phys address)
1557 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
0ac398b1 1558 * @exact_nid: control the allocation fall back to other nodes
26f09e9b 1559 *
92d12f95
MR
1560 * Allocates memory block using memblock_alloc_range_nid() and
1561 * converts the returned physical address to virtual.
26f09e9b 1562 *
92d12f95
MR
1563 * The @min_addr limit is dropped if it can not be satisfied and the allocation
1564 * will fall back to memory below @min_addr. Other constraints, such
1565 * as node and mirrored memory will be handled again in
1566 * memblock_alloc_range_nid().
26f09e9b 1567 *
47cec443 1568 * Return:
26f09e9b
SS
1569 * Virtual address of allocated memory block on success, NULL on failure.
1570 */
eb31d559 1571static void * __init memblock_alloc_internal(
26f09e9b
SS
1572 phys_addr_t size, phys_addr_t align,
1573 phys_addr_t min_addr, phys_addr_t max_addr,
0ac398b1 1574 int nid, bool exact_nid)
26f09e9b
SS
1575{
1576 phys_addr_t alloc;
26f09e9b 1577
26f09e9b 1578
f3057ad7
MR
1579 if (max_addr > memblock.current_limit)
1580 max_addr = memblock.current_limit;
1581
0ac398b1
YY
1582 alloc = memblock_alloc_range_nid(size, align, min_addr, max_addr, nid,
1583 exact_nid);
26f09e9b 1584
92d12f95
MR
1585 /* retry allocation without lower limit */
1586 if (!alloc && min_addr)
0ac398b1
YY
1587 alloc = memblock_alloc_range_nid(size, align, 0, max_addr, nid,
1588 exact_nid);
26f09e9b 1589
92d12f95
MR
1590 if (!alloc)
1591 return NULL;
26f09e9b 1592
92d12f95 1593 return phys_to_virt(alloc);
26f09e9b
SS
1594}
1595
0ac398b1
YY
1596/**
1597 * memblock_alloc_exact_nid_raw - allocate boot memory block on the exact node
1598 * without zeroing memory
1599 * @size: size of memory block to be allocated in bytes
1600 * @align: alignment of the region and block's size
1601 * @min_addr: the lower bound of the memory region from where the allocation
1602 * is preferred (phys address)
1603 * @max_addr: the upper bound of the memory region from where the allocation
1604 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1605 * allocate only from memory limited by memblock.current_limit value
1606 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1607 *
1608 * Public function, provides additional debug information (including caller
1609 * info), if enabled. Does not zero allocated memory.
1610 *
1611 * Return:
1612 * Virtual address of allocated memory block on success, NULL on failure.
1613 */
1614void * __init memblock_alloc_exact_nid_raw(
1615 phys_addr_t size, phys_addr_t align,
1616 phys_addr_t min_addr, phys_addr_t max_addr,
1617 int nid)
1618{
0ac398b1
YY
1619 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1620 __func__, (u64)size, (u64)align, nid, &min_addr,
1621 &max_addr, (void *)_RET_IP_);
1622
08678804
MR
1623 return memblock_alloc_internal(size, align, min_addr, max_addr, nid,
1624 true);
0ac398b1
YY
1625}
1626
ea1f5f37 1627/**
eb31d559 1628 * memblock_alloc_try_nid_raw - allocate boot memory block without zeroing
ea1f5f37
PT
1629 * memory and without panicking
1630 * @size: size of memory block to be allocated in bytes
1631 * @align: alignment of the region and block's size
1632 * @min_addr: the lower bound of the memory region from where the allocation
1633 * is preferred (phys address)
1634 * @max_addr: the upper bound of the memory region from where the allocation
97ad1087 1635 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
ea1f5f37
PT
1636 * allocate only from memory limited by memblock.current_limit value
1637 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1638 *
1639 * Public function, provides additional debug information (including caller
1640 * info), if enabled. Does not zero allocated memory, does not panic if request
1641 * cannot be satisfied.
1642 *
47cec443 1643 * Return:
ea1f5f37
PT
1644 * Virtual address of allocated memory block on success, NULL on failure.
1645 */
eb31d559 1646void * __init memblock_alloc_try_nid_raw(
ea1f5f37
PT
1647 phys_addr_t size, phys_addr_t align,
1648 phys_addr_t min_addr, phys_addr_t max_addr,
1649 int nid)
1650{
d75f773c 1651 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
a36aab89
MR
1652 __func__, (u64)size, (u64)align, nid, &min_addr,
1653 &max_addr, (void *)_RET_IP_);
ea1f5f37 1654
08678804
MR
1655 return memblock_alloc_internal(size, align, min_addr, max_addr, nid,
1656 false);
ea1f5f37
PT
1657}
1658
26f09e9b 1659/**
c0dbe825 1660 * memblock_alloc_try_nid - allocate boot memory block
26f09e9b
SS
1661 * @size: size of memory block to be allocated in bytes
1662 * @align: alignment of the region and block's size
1663 * @min_addr: the lower bound of the memory region from where the allocation
1664 * is preferred (phys address)
1665 * @max_addr: the upper bound of the memory region from where the allocation
97ad1087 1666 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
26f09e9b
SS
1667 * allocate only from memory limited by memblock.current_limit value
1668 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1669 *
c0dbe825
MR
1670 * Public function, provides additional debug information (including caller
1671 * info), if enabled. This function zeroes the allocated memory.
26f09e9b 1672 *
47cec443 1673 * Return:
26f09e9b
SS
1674 * Virtual address of allocated memory block on success, NULL on failure.
1675 */
eb31d559 1676void * __init memblock_alloc_try_nid(
26f09e9b
SS
1677 phys_addr_t size, phys_addr_t align,
1678 phys_addr_t min_addr, phys_addr_t max_addr,
1679 int nid)
1680{
1681 void *ptr;
1682
d75f773c 1683 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
a36aab89
MR
1684 __func__, (u64)size, (u64)align, nid, &min_addr,
1685 &max_addr, (void *)_RET_IP_);
eb31d559 1686 ptr = memblock_alloc_internal(size, align,
0ac398b1 1687 min_addr, max_addr, nid, false);
c0dbe825 1688 if (ptr)
ea1f5f37 1689 memset(ptr, 0, size);
26f09e9b 1690
c0dbe825 1691 return ptr;
26f09e9b
SS
1692}
1693
48a833cc 1694/**
621d9739 1695 * memblock_free_late - free pages directly to buddy allocator
48a833cc 1696 * @base: phys starting address of the boot memory block
26f09e9b
SS
1697 * @size: size of the boot memory block in bytes
1698 *
a2974133 1699 * This is only useful when the memblock allocator has already been torn
26f09e9b 1700 * down, but we are still initializing the system. Pages are released directly
a2974133 1701 * to the buddy allocator.
26f09e9b 1702 */
621d9739 1703void __init memblock_free_late(phys_addr_t base, phys_addr_t size)
26f09e9b 1704{
a36aab89 1705 phys_addr_t cursor, end;
26f09e9b 1706
a36aab89 1707 end = base + size - 1;
d75f773c 1708 memblock_dbg("%s: [%pa-%pa] %pS\n",
a36aab89 1709 __func__, &base, &end, (void *)_RET_IP_);
9099daed 1710 kmemleak_free_part_phys(base, size);
26f09e9b
SS
1711 cursor = PFN_UP(base);
1712 end = PFN_DOWN(base + size);
1713
1714 for (; cursor < end; cursor++) {
647037ad 1715 memblock_free_pages(pfn_to_page(cursor), cursor, 0);
ca79b0c2 1716 totalram_pages_inc();
26f09e9b
SS
1717 }
1718}
9d1e2492
BH
1719
1720/*
1721 * Remaining API functions
1722 */
1723
1f1ffb8a 1724phys_addr_t __init_memblock memblock_phys_mem_size(void)
95f72d1e 1725{
1440c4e2 1726 return memblock.memory.total_size;
95f72d1e
YL
1727}
1728
8907de5d
SD
1729phys_addr_t __init_memblock memblock_reserved_size(void)
1730{
1731 return memblock.reserved.total_size;
1732}
1733
0a93ebef
SR
1734/* lowest address */
1735phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1736{
1737 return memblock.memory.regions[0].base;
1738}
1739
10d06439 1740phys_addr_t __init_memblock memblock_end_of_DRAM(void)
95f72d1e
YL
1741{
1742 int idx = memblock.memory.cnt - 1;
1743
e3239ff9 1744 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
95f72d1e
YL
1745}
1746
a571d4eb 1747static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
95f72d1e 1748{
1c4bc43d 1749 phys_addr_t max_addr = PHYS_ADDR_MAX;
136199f0 1750 struct memblock_region *r;
95f72d1e 1751
a571d4eb
DC
1752 /*
1753 * translate the memory @limit size into the max address within one of
1754 * the memory memblock regions, if the @limit exceeds the total size
1c4bc43d 1755 * of those regions, max_addr will keep original value PHYS_ADDR_MAX
a571d4eb 1756 */
cc6de168 1757 for_each_mem_region(r) {
c0ce8fef
TH
1758 if (limit <= r->size) {
1759 max_addr = r->base + limit;
1760 break;
95f72d1e 1761 }
c0ce8fef 1762 limit -= r->size;
95f72d1e 1763 }
c0ce8fef 1764
a571d4eb
DC
1765 return max_addr;
1766}
1767
1768void __init memblock_enforce_memory_limit(phys_addr_t limit)
1769{
49aef717 1770 phys_addr_t max_addr;
a571d4eb
DC
1771
1772 if (!limit)
1773 return;
1774
1775 max_addr = __find_max_addr(limit);
1776
1777 /* @limit exceeds the total size of the memory, do nothing */
1c4bc43d 1778 if (max_addr == PHYS_ADDR_MAX)
a571d4eb
DC
1779 return;
1780
c0ce8fef 1781 /* truncate both memory and reserved regions */
f1af9d3a 1782 memblock_remove_range(&memblock.memory, max_addr,
1c4bc43d 1783 PHYS_ADDR_MAX);
f1af9d3a 1784 memblock_remove_range(&memblock.reserved, max_addr,
1c4bc43d 1785 PHYS_ADDR_MAX);
95f72d1e
YL
1786}
1787
c9ca9b4e
AT
1788void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size)
1789{
1790 int start_rgn, end_rgn;
1791 int i, ret;
1792
1793 if (!size)
1794 return;
1795
5173ed72 1796 if (!memblock_memory->total_size) {
e888fa7b
GU
1797 pr_warn("%s: No memory registered yet\n", __func__);
1798 return;
1799 }
1800
c9ca9b4e
AT
1801 ret = memblock_isolate_range(&memblock.memory, base, size,
1802 &start_rgn, &end_rgn);
1803 if (ret)
1804 return;
1805
1806 /* remove all the MAP regions */
1807 for (i = memblock.memory.cnt - 1; i >= end_rgn; i--)
1808 if (!memblock_is_nomap(&memblock.memory.regions[i]))
1809 memblock_remove_region(&memblock.memory, i);
1810
1811 for (i = start_rgn - 1; i >= 0; i--)
1812 if (!memblock_is_nomap(&memblock.memory.regions[i]))
1813 memblock_remove_region(&memblock.memory, i);
1814
1815 /* truncate the reserved regions */
1816 memblock_remove_range(&memblock.reserved, 0, base);
1817 memblock_remove_range(&memblock.reserved,
1c4bc43d 1818 base + size, PHYS_ADDR_MAX);
c9ca9b4e
AT
1819}
1820
a571d4eb
DC
1821void __init memblock_mem_limit_remove_map(phys_addr_t limit)
1822{
a571d4eb 1823 phys_addr_t max_addr;
a571d4eb
DC
1824
1825 if (!limit)
1826 return;
1827
1828 max_addr = __find_max_addr(limit);
1829
1830 /* @limit exceeds the total size of the memory, do nothing */
1c4bc43d 1831 if (max_addr == PHYS_ADDR_MAX)
a571d4eb
DC
1832 return;
1833
c9ca9b4e 1834 memblock_cap_memory_range(0, max_addr);
a571d4eb
DC
1835}
1836
cd79481d 1837static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
72d4b0b4
BH
1838{
1839 unsigned int left = 0, right = type->cnt;
1840
1841 do {
1842 unsigned int mid = (right + left) / 2;
1843
1844 if (addr < type->regions[mid].base)
1845 right = mid;
1846 else if (addr >= (type->regions[mid].base +
1847 type->regions[mid].size))
1848 left = mid + 1;
1849 else
1850 return mid;
1851 } while (left < right);
1852 return -1;
1853}
1854
f5a222dc 1855bool __init_memblock memblock_is_reserved(phys_addr_t addr)
95f72d1e 1856{
72d4b0b4
BH
1857 return memblock_search(&memblock.reserved, addr) != -1;
1858}
95f72d1e 1859
b4ad0c7e 1860bool __init_memblock memblock_is_memory(phys_addr_t addr)
72d4b0b4
BH
1861{
1862 return memblock_search(&memblock.memory, addr) != -1;
1863}
1864
937f0c26 1865bool __init_memblock memblock_is_map_memory(phys_addr_t addr)
bf3d3cc5
AB
1866{
1867 int i = memblock_search(&memblock.memory, addr);
1868
1869 if (i == -1)
1870 return false;
1871 return !memblock_is_nomap(&memblock.memory.regions[i]);
1872}
1873
e76b63f8
YL
1874int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1875 unsigned long *start_pfn, unsigned long *end_pfn)
1876{
1877 struct memblock_type *type = &memblock.memory;
16763230 1878 int mid = memblock_search(type, PFN_PHYS(pfn));
e76b63f8
YL
1879
1880 if (mid == -1)
2159bd4e 1881 return NUMA_NO_NODE;
e76b63f8 1882
f7e2f7e8
FF
1883 *start_pfn = PFN_DOWN(type->regions[mid].base);
1884 *end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
e76b63f8 1885
d622abf7 1886 return memblock_get_region_node(&type->regions[mid]);
e76b63f8 1887}
e76b63f8 1888
eab30949
SB
1889/**
1890 * memblock_is_region_memory - check if a region is a subset of memory
1891 * @base: base of region to check
1892 * @size: size of region to check
1893 *
47cec443 1894 * Check if the region [@base, @base + @size) is a subset of a memory block.
eab30949 1895 *
47cec443 1896 * Return:
eab30949
SB
1897 * 0 if false, non-zero if true
1898 */
937f0c26 1899bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
72d4b0b4 1900{
abb65272 1901 int idx = memblock_search(&memblock.memory, base);
eb18f1b5 1902 phys_addr_t end = base + memblock_cap_size(base, &size);
72d4b0b4
BH
1903
1904 if (idx == -1)
937f0c26 1905 return false;
ef415ef4 1906 return (memblock.memory.regions[idx].base +
eb18f1b5 1907 memblock.memory.regions[idx].size) >= end;
95f72d1e
YL
1908}
1909
eab30949
SB
1910/**
1911 * memblock_is_region_reserved - check if a region intersects reserved memory
1912 * @base: base of region to check
1913 * @size: size of region to check
1914 *
47cec443
MR
1915 * Check if the region [@base, @base + @size) intersects a reserved
1916 * memory block.
eab30949 1917 *
47cec443 1918 * Return:
c5c5c9d1 1919 * True if they intersect, false if not.
eab30949 1920 */
c5c5c9d1 1921bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
95f72d1e 1922{
c5c5c9d1 1923 return memblock_overlaps_region(&memblock.reserved, base, size);
95f72d1e
YL
1924}
1925
6ede1fd3
YL
1926void __init_memblock memblock_trim_memory(phys_addr_t align)
1927{
6ede1fd3 1928 phys_addr_t start, end, orig_start, orig_end;
136199f0 1929 struct memblock_region *r;
6ede1fd3 1930
cc6de168 1931 for_each_mem_region(r) {
136199f0
EM
1932 orig_start = r->base;
1933 orig_end = r->base + r->size;
6ede1fd3
YL
1934 start = round_up(orig_start, align);
1935 end = round_down(orig_end, align);
1936
1937 if (start == orig_start && end == orig_end)
1938 continue;
1939
1940 if (start < end) {
136199f0
EM
1941 r->base = start;
1942 r->size = end - start;
6ede1fd3 1943 } else {
136199f0
EM
1944 memblock_remove_region(&memblock.memory,
1945 r - memblock.memory.regions);
1946 r--;
6ede1fd3
YL
1947 }
1948 }
1949}
e63075a3 1950
3661ca66 1951void __init_memblock memblock_set_current_limit(phys_addr_t limit)
e63075a3
BH
1952{
1953 memblock.current_limit = limit;
1954}
1955
fec51014
LA
1956phys_addr_t __init_memblock memblock_get_current_limit(void)
1957{
1958 return memblock.current_limit;
1959}
1960
0262d9c8 1961static void __init_memblock memblock_dump(struct memblock_type *type)
6ed311b2 1962{
5d63f81c 1963 phys_addr_t base, end, size;
e1720fee 1964 enum memblock_flags flags;
8c9c1701
AK
1965 int idx;
1966 struct memblock_region *rgn;
6ed311b2 1967
0262d9c8 1968 pr_info(" %s.cnt = 0x%lx\n", type->name, type->cnt);
6ed311b2 1969
66e8b438 1970 for_each_memblock_type(idx, type, rgn) {
7c0caeb8
TH
1971 char nid_buf[32] = "";
1972
1973 base = rgn->base;
1974 size = rgn->size;
5d63f81c 1975 end = base + size - 1;
66a20757 1976 flags = rgn->flags;
a9ee6cf5 1977#ifdef CONFIG_NUMA
8043832e 1978 if (numa_valid_node(memblock_get_region_node(rgn)))
7c0caeb8
TH
1979 snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1980 memblock_get_region_node(rgn));
1981#endif
e1720fee 1982 pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n",
0262d9c8 1983 type->name, idx, &base, &end, &size, nid_buf, flags);
6ed311b2
BH
1984 }
1985}
1986
87c55870 1987static void __init_memblock __memblock_dump_all(void)
6ed311b2 1988{
6ed311b2 1989 pr_info("MEMBLOCK configuration:\n");
5d63f81c
MC
1990 pr_info(" memory size = %pa reserved size = %pa\n",
1991 &memblock.memory.total_size,
1992 &memblock.reserved.total_size);
6ed311b2 1993
0262d9c8
HC
1994 memblock_dump(&memblock.memory);
1995 memblock_dump(&memblock.reserved);
409efd4c 1996#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
77649905 1997 memblock_dump(&physmem);
409efd4c 1998#endif
6ed311b2
BH
1999}
2000
87c55870
MR
2001void __init_memblock memblock_dump_all(void)
2002{
2003 if (memblock_debug)
2004 __memblock_dump_all();
2005}
2006
1aadc056 2007void __init memblock_allow_resize(void)
6ed311b2 2008{
142b45a7 2009 memblock_can_resize = 1;
6ed311b2
BH
2010}
2011
6ed311b2
BH
2012static int __init early_memblock(char *p)
2013{
2014 if (p && strstr(p, "debug"))
2015 memblock_debug = 1;
2016 return 0;
2017}
2018early_param("memblock", early_memblock);
2019
4f5b0c17
MR
2020static void __init free_memmap(unsigned long start_pfn, unsigned long end_pfn)
2021{
2022 struct page *start_pg, *end_pg;
2023 phys_addr_t pg, pgend;
2024
2025 /*
2026 * Convert start_pfn/end_pfn to a struct page pointer.
2027 */
2028 start_pg = pfn_to_page(start_pfn - 1) + 1;
2029 end_pg = pfn_to_page(end_pfn - 1) + 1;
2030
2031 /*
2032 * Convert to physical addresses, and round start upwards and end
2033 * downwards.
2034 */
2035 pg = PAGE_ALIGN(__pa(start_pg));
b73f6b98 2036 pgend = PAGE_ALIGN_DOWN(__pa(end_pg));
4f5b0c17
MR
2037
2038 /*
2039 * If there are free pages between these, free the section of the
2040 * memmap array.
2041 */
2042 if (pg < pgend)
3ecc6834 2043 memblock_phys_free(pg, pgend - pg);
4f5b0c17
MR
2044}
2045
2046/*
2047 * The mem_map array can get very big. Free the unused area of the memory map.
2048 */
2049static void __init free_unused_memmap(void)
2050{
2051 unsigned long start, end, prev_end = 0;
2052 int i;
2053
2054 if (!IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) ||
2055 IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
2056 return;
2057
2058 /*
2059 * This relies on each bank being in address order.
2060 * The banks are sorted previously in bootmem_init().
2061 */
2062 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, NULL) {
2063#ifdef CONFIG_SPARSEMEM
2064 /*
2065 * Take care not to free memmap entries that don't exist
2066 * due to SPARSEMEM sections which aren't present.
2067 */
2068 start = min(start, ALIGN(prev_end, PAGES_PER_SECTION));
f921f53e 2069#endif
4f5b0c17 2070 /*
e2a86800
MR
2071 * Align down here since many operations in VM subsystem
2072 * presume that there are no holes in the memory map inside
2073 * a pageblock
4f5b0c17 2074 */
4f9bc69a 2075 start = pageblock_start_pfn(start);
4f5b0c17
MR
2076
2077 /*
2078 * If we had a previous bank, and there is a space
2079 * between the current bank and the previous, free it.
2080 */
2081 if (prev_end && prev_end < start)
2082 free_memmap(prev_end, start);
2083
2084 /*
e2a86800
MR
2085 * Align up here since many operations in VM subsystem
2086 * presume that there are no holes in the memory map inside
2087 * a pageblock
4f5b0c17 2088 */
5f7fa13f 2089 prev_end = pageblock_align(end);
4f5b0c17
MR
2090 }
2091
2092#ifdef CONFIG_SPARSEMEM
f921f53e 2093 if (!IS_ALIGNED(prev_end, PAGES_PER_SECTION)) {
5f7fa13f 2094 prev_end = pageblock_align(end);
4f5b0c17 2095 free_memmap(prev_end, ALIGN(prev_end, PAGES_PER_SECTION));
f921f53e 2096 }
4f5b0c17
MR
2097#endif
2098}
2099
bda49a81
MR
2100static void __init __free_pages_memory(unsigned long start, unsigned long end)
2101{
2102 int order;
2103
2104 while (start < end) {
59f876fb
KS
2105 /*
2106 * Free the pages in the largest chunks alignment allows.
2107 *
2108 * __ffs() behaviour is undefined for 0. start == 0 is
5e0a760b
KS
2109 * MAX_PAGE_ORDER-aligned, set order to MAX_PAGE_ORDER for
2110 * the case.
59f876fb
KS
2111 */
2112 if (start)
5e0a760b 2113 order = min_t(int, MAX_PAGE_ORDER, __ffs(start));
59f876fb 2114 else
5e0a760b 2115 order = MAX_PAGE_ORDER;
bda49a81
MR
2116
2117 while (start + (1UL << order) > end)
2118 order--;
2119
2120 memblock_free_pages(pfn_to_page(start), start, order);
2121
2122 start += (1UL << order);
2123 }
2124}
2125
2126static unsigned long __init __free_memory_core(phys_addr_t start,
2127 phys_addr_t end)
2128{
2129 unsigned long start_pfn = PFN_UP(start);
2130 unsigned long end_pfn = min_t(unsigned long,
2131 PFN_DOWN(end), max_low_pfn);
2132
2133 if (start_pfn >= end_pfn)
2134 return 0;
2135
2136 __free_pages_memory(start_pfn, end_pfn);
2137
2138 return end_pfn - start_pfn;
2139}
2140
9092d4f7
MR
2141static void __init memmap_init_reserved_pages(void)
2142{
2143 struct memblock_region *region;
2144 phys_addr_t start, end;
61167ad5
YD
2145 int nid;
2146
2147 /*
2148 * set nid on all reserved pages and also treat struct
2149 * pages for the NOMAP regions as PageReserved
2150 */
2151 for_each_mem_region(region) {
2152 nid = memblock_get_region_node(region);
2153 start = region->base;
2154 end = start + region->size;
2155
2156 if (memblock_is_nomap(region))
2157 reserve_bootmem_region(start, end, nid);
2158
2159 memblock_set_node(start, end, &memblock.reserved, nid);
2160 }
9092d4f7 2161
77e6c43e
UA
2162 /*
2163 * initialize struct pages for reserved regions that don't have
2164 * the MEMBLOCK_RSRV_NOINIT flag set
2165 */
61167ad5 2166 for_each_reserved_mem_region(region) {
77e6c43e
UA
2167 if (!memblock_is_reserved_noinit(region)) {
2168 nid = memblock_get_region_node(region);
2169 start = region->base;
2170 end = start + region->size;
9092d4f7 2171
8043832e 2172 if (!numa_valid_node(nid))
6a9531c3
YD
2173 nid = early_pfn_to_nid(PFN_DOWN(start));
2174
77e6c43e
UA
2175 reserve_bootmem_region(start, end, nid);
2176 }
9092d4f7
MR
2177 }
2178}
2179
bda49a81
MR
2180static unsigned long __init free_low_memory_core_early(void)
2181{
2182 unsigned long count = 0;
2183 phys_addr_t start, end;
2184 u64 i;
2185
2186 memblock_clear_hotplug(0, -1);
2187
9092d4f7 2188 memmap_init_reserved_pages();
bda49a81
MR
2189
2190 /*
2191 * We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id
2192 * because in some case like Node0 doesn't have RAM installed
2193 * low ram will be on Node1
2194 */
2195 for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end,
2196 NULL)
2197 count += __free_memory_core(start, end);
2198
2199 return count;
2200}
2201
2202static int reset_managed_pages_done __initdata;
2203
a668968f 2204static void __init reset_node_managed_pages(pg_data_t *pgdat)
bda49a81
MR
2205{
2206 struct zone *z;
2207
2208 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
9705bea5 2209 atomic_long_set(&z->managed_pages, 0);
bda49a81
MR
2210}
2211
2212void __init reset_all_zones_managed_pages(void)
2213{
2214 struct pglist_data *pgdat;
2215
2216 if (reset_managed_pages_done)
2217 return;
2218
2219 for_each_online_pgdat(pgdat)
2220 reset_node_managed_pages(pgdat);
2221
2222 reset_managed_pages_done = 1;
2223}
2224
2225/**
2226 * memblock_free_all - release free pages to the buddy allocator
bda49a81 2227 */
097d43d8 2228void __init memblock_free_all(void)
bda49a81
MR
2229{
2230 unsigned long pages;
2231
4f5b0c17 2232 free_unused_memmap();
bda49a81
MR
2233 reset_all_zones_managed_pages();
2234
2235 pages = free_low_memory_core_early();
ca79b0c2 2236 totalram_pages_add(pages);
bda49a81
MR
2237}
2238
1e4c64b7
SRG
2239/* Keep a table to reserve named memory */
2240#define RESERVE_MEM_MAX_ENTRIES 8
2241#define RESERVE_MEM_NAME_SIZE 16
2242struct reserve_mem_table {
2243 char name[RESERVE_MEM_NAME_SIZE];
2244 phys_addr_t start;
2245 phys_addr_t size;
2246};
2247static struct reserve_mem_table reserved_mem_table[RESERVE_MEM_MAX_ENTRIES];
2248static int reserved_mem_count;
2249
2250/* Add wildcard region with a lookup name */
2251static void __init reserved_mem_add(phys_addr_t start, phys_addr_t size,
2252 const char *name)
2253{
2254 struct reserve_mem_table *map;
2255
2256 map = &reserved_mem_table[reserved_mem_count++];
2257 map->start = start;
2258 map->size = size;
2259 strscpy(map->name, name);
2260}
2261
2262/**
2263 * reserve_mem_find_by_name - Find reserved memory region with a given name
2264 * @name: The name that is attached to a reserved memory region
2265 * @start: If found, holds the start address
2266 * @size: If found, holds the size of the address.
2267 *
2268 * @start and @size are only updated if @name is found.
2269 *
2270 * Returns: 1 if found or 0 if not found.
2271 */
2272int reserve_mem_find_by_name(const char *name, phys_addr_t *start, phys_addr_t *size)
2273{
2274 struct reserve_mem_table *map;
2275 int i;
2276
2277 for (i = 0; i < reserved_mem_count; i++) {
2278 map = &reserved_mem_table[i];
2279 if (!map->size)
2280 continue;
2281 if (strcmp(name, map->name) == 0) {
2282 *start = map->start;
2283 *size = map->size;
2284 return 1;
2285 }
2286 }
2287 return 0;
2288}
2289EXPORT_SYMBOL_GPL(reserve_mem_find_by_name);
2290
2291/*
2292 * Parse reserve_mem=nn:align:name
2293 */
2294static int __init reserve_mem(char *p)
2295{
2296 phys_addr_t start, size, align, tmp;
2297 char *name;
2298 char *oldp;
2299 int len;
2300
2301 if (!p)
2302 return -EINVAL;
2303
2304 /* Check if there's room for more reserved memory */
2305 if (reserved_mem_count >= RESERVE_MEM_MAX_ENTRIES)
2306 return -EBUSY;
2307
2308 oldp = p;
2309 size = memparse(p, &p);
2310 if (!size || p == oldp)
2311 return -EINVAL;
2312
2313 if (*p != ':')
2314 return -EINVAL;
2315
2316 align = memparse(p+1, &p);
2317 if (*p != ':')
2318 return -EINVAL;
2319
2320 /*
2321 * memblock_phys_alloc() doesn't like a zero size align,
2322 * but it is OK for this command to have it.
2323 */
2324 if (align < SMP_CACHE_BYTES)
2325 align = SMP_CACHE_BYTES;
2326
2327 name = p + 1;
2328 len = strlen(name);
2329
2330 /* name needs to have length but not too big */
2331 if (!len || len >= RESERVE_MEM_NAME_SIZE)
2332 return -EINVAL;
2333
2334 /* Make sure that name has text */
2335 for (p = name; *p; p++) {
2336 if (!isspace(*p))
2337 break;
2338 }
2339 if (!*p)
2340 return -EINVAL;
2341
2342 /* Make sure the name is not already used */
2343 if (reserve_mem_find_by_name(name, &start, &tmp))
2344 return -EBUSY;
2345
2346 start = memblock_phys_alloc(size, align);
2347 if (!start)
2348 return -ENOMEM;
2349
2350 reserved_mem_add(start, size, name);
2351
2352 return 1;
2353}
2354__setup("reserve_mem=", reserve_mem);
2355
350e88ba 2356#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_ARCH_KEEP_MEMBLOCK)
493f349e
YG
2357static const char * const flagname[] = {
2358 [ilog2(MEMBLOCK_HOTPLUG)] = "HOTPLUG",
2359 [ilog2(MEMBLOCK_MIRROR)] = "MIRROR",
2360 [ilog2(MEMBLOCK_NOMAP)] = "NOMAP",
2361 [ilog2(MEMBLOCK_DRIVER_MANAGED)] = "DRV_MNG",
4f155af0 2362 [ilog2(MEMBLOCK_RSRV_NOINIT)] = "RSV_NIT",
493f349e 2363};
6d03b885
BH
2364
2365static int memblock_debug_show(struct seq_file *m, void *private)
2366{
2367 struct memblock_type *type = m->private;
2368 struct memblock_region *reg;
de649e7f 2369 int i, j, nid;
493f349e 2370 unsigned int count = ARRAY_SIZE(flagname);
5d63f81c 2371 phys_addr_t end;
6d03b885
BH
2372
2373 for (i = 0; i < type->cnt; i++) {
2374 reg = &type->regions[i];
5d63f81c 2375 end = reg->base + reg->size - 1;
de649e7f 2376 nid = memblock_get_region_node(reg);
6d03b885 2377
5d63f81c 2378 seq_printf(m, "%4d: ", i);
493f349e 2379 seq_printf(m, "%pa..%pa ", &reg->base, &end);
8043832e 2380 if (numa_valid_node(nid))
de649e7f
YG
2381 seq_printf(m, "%4d ", nid);
2382 else
2383 seq_printf(m, "%4c ", 'x');
493f349e
YG
2384 if (reg->flags) {
2385 for (j = 0; j < count; j++) {
2386 if (reg->flags & (1U << j)) {
2387 seq_printf(m, "%s\n", flagname[j]);
2388 break;
2389 }
2390 }
2391 if (j == count)
2392 seq_printf(m, "%s\n", "UNKNOWN");
2393 } else {
2394 seq_printf(m, "%s\n", "NONE");
2395 }
6d03b885
BH
2396 }
2397 return 0;
2398}
5ad35093 2399DEFINE_SHOW_ATTRIBUTE(memblock_debug);
6d03b885
BH
2400
2401static int __init memblock_init_debugfs(void)
2402{
2403 struct dentry *root = debugfs_create_dir("memblock", NULL);
d9f7979c 2404
0825a6f9
JP
2405 debugfs_create_file("memory", 0444, root,
2406 &memblock.memory, &memblock_debug_fops);
2407 debugfs_create_file("reserved", 0444, root,
2408 &memblock.reserved, &memblock_debug_fops);
70210ed9 2409#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
77649905
DH
2410 debugfs_create_file("physmem", 0444, root, &physmem,
2411 &memblock_debug_fops);
70210ed9 2412#endif
6d03b885
BH
2413
2414 return 0;
2415}
2416__initcall(memblock_init_debugfs);
2417
2418#endif /* CONFIG_DEBUG_FS */
This page took 1.37608 seconds and 4 git commands to generate.