]>
Commit | Line | Data |
---|---|---|
95f72d1e YL |
1 | /* |
2 | * Procedures for maintaining information about logical memory blocks. | |
3 | * | |
4 | * Peter Bergner, IBM Corp. June 2001. | |
5 | * Copyright (C) 2001 Peter Bergner. | |
6 | * | |
7 | * This program is free software; you can redistribute it and/or | |
8 | * modify it under the terms of the GNU General Public License | |
9 | * as published by the Free Software Foundation; either version | |
10 | * 2 of the License, or (at your option) any later version. | |
11 | */ | |
12 | ||
13 | #include <linux/kernel.h> | |
142b45a7 | 14 | #include <linux/slab.h> |
95f72d1e YL |
15 | #include <linux/init.h> |
16 | #include <linux/bitops.h> | |
449e8df3 | 17 | #include <linux/poison.h> |
c196f76f | 18 | #include <linux/pfn.h> |
6d03b885 BH |
19 | #include <linux/debugfs.h> |
20 | #include <linux/seq_file.h> | |
95f72d1e YL |
21 | #include <linux/memblock.h> |
22 | ||
79442ed1 | 23 | #include <asm-generic/sections.h> |
26f09e9b SS |
24 | #include <linux/io.h> |
25 | ||
26 | #include "internal.h" | |
79442ed1 | 27 | |
fe091c20 TH |
28 | static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock; |
29 | static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock; | |
70210ed9 PH |
30 | #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP |
31 | static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS] __initdata_memblock; | |
32 | #endif | |
fe091c20 TH |
33 | |
34 | struct memblock memblock __initdata_memblock = { | |
35 | .memory.regions = memblock_memory_init_regions, | |
36 | .memory.cnt = 1, /* empty dummy entry */ | |
37 | .memory.max = INIT_MEMBLOCK_REGIONS, | |
38 | ||
39 | .reserved.regions = memblock_reserved_init_regions, | |
40 | .reserved.cnt = 1, /* empty dummy entry */ | |
41 | .reserved.max = INIT_MEMBLOCK_REGIONS, | |
42 | ||
70210ed9 PH |
43 | #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP |
44 | .physmem.regions = memblock_physmem_init_regions, | |
45 | .physmem.cnt = 1, /* empty dummy entry */ | |
46 | .physmem.max = INIT_PHYSMEM_REGIONS, | |
47 | #endif | |
48 | ||
79442ed1 | 49 | .bottom_up = false, |
fe091c20 TH |
50 | .current_limit = MEMBLOCK_ALLOC_ANYWHERE, |
51 | }; | |
95f72d1e | 52 | |
10d06439 | 53 | int memblock_debug __initdata_memblock; |
55ac590c TC |
54 | #ifdef CONFIG_MOVABLE_NODE |
55 | bool movable_node_enabled __initdata_memblock = false; | |
56 | #endif | |
1aadc056 | 57 | static int memblock_can_resize __initdata_memblock; |
181eb394 GS |
58 | static int memblock_memory_in_slab __initdata_memblock = 0; |
59 | static int memblock_reserved_in_slab __initdata_memblock = 0; | |
95f72d1e | 60 | |
142b45a7 | 61 | /* inline so we don't get a warning when pr_debug is compiled out */ |
c2233116 RP |
62 | static __init_memblock const char * |
63 | memblock_type_name(struct memblock_type *type) | |
142b45a7 BH |
64 | { |
65 | if (type == &memblock.memory) | |
66 | return "memory"; | |
67 | else if (type == &memblock.reserved) | |
68 | return "reserved"; | |
69 | else | |
70 | return "unknown"; | |
71 | } | |
72 | ||
eb18f1b5 TH |
73 | /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */ |
74 | static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size) | |
75 | { | |
76 | return *size = min(*size, (phys_addr_t)ULLONG_MAX - base); | |
77 | } | |
78 | ||
6ed311b2 BH |
79 | /* |
80 | * Address comparison utilities | |
81 | */ | |
10d06439 | 82 | static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1, |
2898cc4c | 83 | phys_addr_t base2, phys_addr_t size2) |
95f72d1e YL |
84 | { |
85 | return ((base1 < (base2 + size2)) && (base2 < (base1 + size1))); | |
86 | } | |
87 | ||
2d7d3eb2 HS |
88 | static long __init_memblock memblock_overlaps_region(struct memblock_type *type, |
89 | phys_addr_t base, phys_addr_t size) | |
6ed311b2 BH |
90 | { |
91 | unsigned long i; | |
92 | ||
93 | for (i = 0; i < type->cnt; i++) { | |
94 | phys_addr_t rgnbase = type->regions[i].base; | |
95 | phys_addr_t rgnsize = type->regions[i].size; | |
96 | if (memblock_addrs_overlap(base, size, rgnbase, rgnsize)) | |
97 | break; | |
98 | } | |
99 | ||
100 | return (i < type->cnt) ? i : -1; | |
101 | } | |
102 | ||
79442ed1 TC |
103 | /* |
104 | * __memblock_find_range_bottom_up - find free area utility in bottom-up | |
105 | * @start: start of candidate range | |
106 | * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE} | |
107 | * @size: size of free area to find | |
108 | * @align: alignment of free area to find | |
b1154233 | 109 | * @nid: nid of the free area to find, %NUMA_NO_NODE for any node |
79442ed1 TC |
110 | * |
111 | * Utility called from memblock_find_in_range_node(), find free area bottom-up. | |
112 | * | |
113 | * RETURNS: | |
114 | * Found address on success, 0 on failure. | |
115 | */ | |
116 | static phys_addr_t __init_memblock | |
117 | __memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end, | |
118 | phys_addr_t size, phys_addr_t align, int nid) | |
119 | { | |
120 | phys_addr_t this_start, this_end, cand; | |
121 | u64 i; | |
122 | ||
123 | for_each_free_mem_range(i, nid, &this_start, &this_end, NULL) { | |
124 | this_start = clamp(this_start, start, end); | |
125 | this_end = clamp(this_end, start, end); | |
126 | ||
127 | cand = round_up(this_start, align); | |
128 | if (cand < this_end && this_end - cand >= size) | |
129 | return cand; | |
130 | } | |
131 | ||
132 | return 0; | |
133 | } | |
134 | ||
7bd0b0f0 | 135 | /** |
1402899e | 136 | * __memblock_find_range_top_down - find free area utility, in top-down |
7bd0b0f0 TH |
137 | * @start: start of candidate range |
138 | * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE} | |
139 | * @size: size of free area to find | |
140 | * @align: alignment of free area to find | |
b1154233 | 141 | * @nid: nid of the free area to find, %NUMA_NO_NODE for any node |
7bd0b0f0 | 142 | * |
1402899e | 143 | * Utility called from memblock_find_in_range_node(), find free area top-down. |
7bd0b0f0 TH |
144 | * |
145 | * RETURNS: | |
79442ed1 | 146 | * Found address on success, 0 on failure. |
6ed311b2 | 147 | */ |
1402899e TC |
148 | static phys_addr_t __init_memblock |
149 | __memblock_find_range_top_down(phys_addr_t start, phys_addr_t end, | |
150 | phys_addr_t size, phys_addr_t align, int nid) | |
f7210e6c TC |
151 | { |
152 | phys_addr_t this_start, this_end, cand; | |
153 | u64 i; | |
154 | ||
f7210e6c TC |
155 | for_each_free_mem_range_reverse(i, nid, &this_start, &this_end, NULL) { |
156 | this_start = clamp(this_start, start, end); | |
157 | this_end = clamp(this_end, start, end); | |
158 | ||
159 | if (this_end < size) | |
160 | continue; | |
161 | ||
162 | cand = round_down(this_end - size, align); | |
163 | if (cand >= this_start) | |
164 | return cand; | |
165 | } | |
1402899e | 166 | |
f7210e6c TC |
167 | return 0; |
168 | } | |
6ed311b2 | 169 | |
1402899e TC |
170 | /** |
171 | * memblock_find_in_range_node - find free area in given range and node | |
1402899e TC |
172 | * @size: size of free area to find |
173 | * @align: alignment of free area to find | |
87029ee9 GS |
174 | * @start: start of candidate range |
175 | * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE} | |
b1154233 | 176 | * @nid: nid of the free area to find, %NUMA_NO_NODE for any node |
1402899e TC |
177 | * |
178 | * Find @size free area aligned to @align in the specified range and node. | |
179 | * | |
79442ed1 TC |
180 | * When allocation direction is bottom-up, the @start should be greater |
181 | * than the end of the kernel image. Otherwise, it will be trimmed. The | |
182 | * reason is that we want the bottom-up allocation just near the kernel | |
183 | * image so it is highly likely that the allocated memory and the kernel | |
184 | * will reside in the same node. | |
185 | * | |
186 | * If bottom-up allocation failed, will try to allocate memory top-down. | |
187 | * | |
1402899e | 188 | * RETURNS: |
79442ed1 | 189 | * Found address on success, 0 on failure. |
1402899e | 190 | */ |
87029ee9 GS |
191 | phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size, |
192 | phys_addr_t align, phys_addr_t start, | |
193 | phys_addr_t end, int nid) | |
1402899e | 194 | { |
0cfb8f0c | 195 | phys_addr_t kernel_end, ret; |
79442ed1 | 196 | |
1402899e TC |
197 | /* pump up @end */ |
198 | if (end == MEMBLOCK_ALLOC_ACCESSIBLE) | |
199 | end = memblock.current_limit; | |
200 | ||
201 | /* avoid allocating the first page */ | |
202 | start = max_t(phys_addr_t, start, PAGE_SIZE); | |
203 | end = max(start, end); | |
79442ed1 TC |
204 | kernel_end = __pa_symbol(_end); |
205 | ||
206 | /* | |
207 | * try bottom-up allocation only when bottom-up mode | |
208 | * is set and @end is above the kernel image. | |
209 | */ | |
210 | if (memblock_bottom_up() && end > kernel_end) { | |
211 | phys_addr_t bottom_up_start; | |
212 | ||
213 | /* make sure we will allocate above the kernel */ | |
214 | bottom_up_start = max(start, kernel_end); | |
215 | ||
216 | /* ok, try bottom-up allocation first */ | |
217 | ret = __memblock_find_range_bottom_up(bottom_up_start, end, | |
218 | size, align, nid); | |
219 | if (ret) | |
220 | return ret; | |
221 | ||
222 | /* | |
223 | * we always limit bottom-up allocation above the kernel, | |
224 | * but top-down allocation doesn't have the limit, so | |
225 | * retrying top-down allocation may succeed when bottom-up | |
226 | * allocation failed. | |
227 | * | |
228 | * bottom-up allocation is expected to be fail very rarely, | |
229 | * so we use WARN_ONCE() here to see the stack trace if | |
230 | * fail happens. | |
231 | */ | |
232 | WARN_ONCE(1, "memblock: bottom-up allocation failed, " | |
233 | "memory hotunplug may be affected\n"); | |
234 | } | |
1402899e TC |
235 | |
236 | return __memblock_find_range_top_down(start, end, size, align, nid); | |
237 | } | |
238 | ||
7bd0b0f0 TH |
239 | /** |
240 | * memblock_find_in_range - find free area in given range | |
241 | * @start: start of candidate range | |
242 | * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE} | |
243 | * @size: size of free area to find | |
244 | * @align: alignment of free area to find | |
245 | * | |
246 | * Find @size free area aligned to @align in the specified range. | |
247 | * | |
248 | * RETURNS: | |
79442ed1 | 249 | * Found address on success, 0 on failure. |
fc769a8e | 250 | */ |
7bd0b0f0 TH |
251 | phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start, |
252 | phys_addr_t end, phys_addr_t size, | |
253 | phys_addr_t align) | |
6ed311b2 | 254 | { |
87029ee9 | 255 | return memblock_find_in_range_node(size, align, start, end, |
b1154233 | 256 | NUMA_NO_NODE); |
6ed311b2 BH |
257 | } |
258 | ||
10d06439 | 259 | static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r) |
95f72d1e | 260 | { |
1440c4e2 | 261 | type->total_size -= type->regions[r].size; |
7c0caeb8 TH |
262 | memmove(&type->regions[r], &type->regions[r + 1], |
263 | (type->cnt - (r + 1)) * sizeof(type->regions[r])); | |
e3239ff9 | 264 | type->cnt--; |
95f72d1e | 265 | |
8f7a6605 BH |
266 | /* Special case for empty arrays */ |
267 | if (type->cnt == 0) { | |
1440c4e2 | 268 | WARN_ON(type->total_size != 0); |
8f7a6605 BH |
269 | type->cnt = 1; |
270 | type->regions[0].base = 0; | |
271 | type->regions[0].size = 0; | |
66a20757 | 272 | type->regions[0].flags = 0; |
7c0caeb8 | 273 | memblock_set_region_node(&type->regions[0], MAX_NUMNODES); |
8f7a6605 | 274 | } |
95f72d1e YL |
275 | } |
276 | ||
354f17e1 PH |
277 | #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK |
278 | ||
29f67386 YL |
279 | phys_addr_t __init_memblock get_allocated_memblock_reserved_regions_info( |
280 | phys_addr_t *addr) | |
281 | { | |
282 | if (memblock.reserved.regions == memblock_reserved_init_regions) | |
283 | return 0; | |
284 | ||
285 | *addr = __pa(memblock.reserved.regions); | |
286 | ||
287 | return PAGE_ALIGN(sizeof(struct memblock_region) * | |
288 | memblock.reserved.max); | |
289 | } | |
290 | ||
5e270e25 PH |
291 | phys_addr_t __init_memblock get_allocated_memblock_memory_regions_info( |
292 | phys_addr_t *addr) | |
293 | { | |
294 | if (memblock.memory.regions == memblock_memory_init_regions) | |
295 | return 0; | |
296 | ||
297 | *addr = __pa(memblock.memory.regions); | |
298 | ||
299 | return PAGE_ALIGN(sizeof(struct memblock_region) * | |
300 | memblock.memory.max); | |
301 | } | |
302 | ||
303 | #endif | |
304 | ||
48c3b583 GP |
305 | /** |
306 | * memblock_double_array - double the size of the memblock regions array | |
307 | * @type: memblock type of the regions array being doubled | |
308 | * @new_area_start: starting address of memory range to avoid overlap with | |
309 | * @new_area_size: size of memory range to avoid overlap with | |
310 | * | |
311 | * Double the size of the @type regions array. If memblock is being used to | |
312 | * allocate memory for a new reserved regions array and there is a previously | |
313 | * allocated memory range [@new_area_start,@new_area_start+@new_area_size] | |
314 | * waiting to be reserved, ensure the memory used by the new array does | |
315 | * not overlap. | |
316 | * | |
317 | * RETURNS: | |
318 | * 0 on success, -1 on failure. | |
319 | */ | |
320 | static int __init_memblock memblock_double_array(struct memblock_type *type, | |
321 | phys_addr_t new_area_start, | |
322 | phys_addr_t new_area_size) | |
142b45a7 BH |
323 | { |
324 | struct memblock_region *new_array, *old_array; | |
29f67386 | 325 | phys_addr_t old_alloc_size, new_alloc_size; |
142b45a7 BH |
326 | phys_addr_t old_size, new_size, addr; |
327 | int use_slab = slab_is_available(); | |
181eb394 | 328 | int *in_slab; |
142b45a7 BH |
329 | |
330 | /* We don't allow resizing until we know about the reserved regions | |
331 | * of memory that aren't suitable for allocation | |
332 | */ | |
333 | if (!memblock_can_resize) | |
334 | return -1; | |
335 | ||
142b45a7 BH |
336 | /* Calculate new doubled size */ |
337 | old_size = type->max * sizeof(struct memblock_region); | |
338 | new_size = old_size << 1; | |
29f67386 YL |
339 | /* |
340 | * We need to allocated new one align to PAGE_SIZE, | |
341 | * so we can free them completely later. | |
342 | */ | |
343 | old_alloc_size = PAGE_ALIGN(old_size); | |
344 | new_alloc_size = PAGE_ALIGN(new_size); | |
142b45a7 | 345 | |
181eb394 GS |
346 | /* Retrieve the slab flag */ |
347 | if (type == &memblock.memory) | |
348 | in_slab = &memblock_memory_in_slab; | |
349 | else | |
350 | in_slab = &memblock_reserved_in_slab; | |
351 | ||
142b45a7 BH |
352 | /* Try to find some space for it. |
353 | * | |
354 | * WARNING: We assume that either slab_is_available() and we use it or | |
fd07383b AM |
355 | * we use MEMBLOCK for allocations. That means that this is unsafe to |
356 | * use when bootmem is currently active (unless bootmem itself is | |
357 | * implemented on top of MEMBLOCK which isn't the case yet) | |
142b45a7 BH |
358 | * |
359 | * This should however not be an issue for now, as we currently only | |
fd07383b AM |
360 | * call into MEMBLOCK while it's still active, or much later when slab |
361 | * is active for memory hotplug operations | |
142b45a7 BH |
362 | */ |
363 | if (use_slab) { | |
364 | new_array = kmalloc(new_size, GFP_KERNEL); | |
1f5026a7 | 365 | addr = new_array ? __pa(new_array) : 0; |
4e2f0775 | 366 | } else { |
48c3b583 GP |
367 | /* only exclude range when trying to double reserved.regions */ |
368 | if (type != &memblock.reserved) | |
369 | new_area_start = new_area_size = 0; | |
370 | ||
371 | addr = memblock_find_in_range(new_area_start + new_area_size, | |
372 | memblock.current_limit, | |
29f67386 | 373 | new_alloc_size, PAGE_SIZE); |
48c3b583 GP |
374 | if (!addr && new_area_size) |
375 | addr = memblock_find_in_range(0, | |
fd07383b AM |
376 | min(new_area_start, memblock.current_limit), |
377 | new_alloc_size, PAGE_SIZE); | |
48c3b583 | 378 | |
15674868 | 379 | new_array = addr ? __va(addr) : NULL; |
4e2f0775 | 380 | } |
1f5026a7 | 381 | if (!addr) { |
142b45a7 BH |
382 | pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n", |
383 | memblock_type_name(type), type->max, type->max * 2); | |
384 | return -1; | |
385 | } | |
142b45a7 | 386 | |
fd07383b AM |
387 | memblock_dbg("memblock: %s is doubled to %ld at [%#010llx-%#010llx]", |
388 | memblock_type_name(type), type->max * 2, (u64)addr, | |
389 | (u64)addr + new_size - 1); | |
ea9e4376 | 390 | |
fd07383b AM |
391 | /* |
392 | * Found space, we now need to move the array over before we add the | |
393 | * reserved region since it may be our reserved array itself that is | |
394 | * full. | |
142b45a7 BH |
395 | */ |
396 | memcpy(new_array, type->regions, old_size); | |
397 | memset(new_array + type->max, 0, old_size); | |
398 | old_array = type->regions; | |
399 | type->regions = new_array; | |
400 | type->max <<= 1; | |
401 | ||
fd07383b | 402 | /* Free old array. We needn't free it if the array is the static one */ |
181eb394 GS |
403 | if (*in_slab) |
404 | kfree(old_array); | |
405 | else if (old_array != memblock_memory_init_regions && | |
406 | old_array != memblock_reserved_init_regions) | |
29f67386 | 407 | memblock_free(__pa(old_array), old_alloc_size); |
142b45a7 | 408 | |
fd07383b AM |
409 | /* |
410 | * Reserve the new array if that comes from the memblock. Otherwise, we | |
411 | * needn't do it | |
181eb394 GS |
412 | */ |
413 | if (!use_slab) | |
29f67386 | 414 | BUG_ON(memblock_reserve(addr, new_alloc_size)); |
181eb394 GS |
415 | |
416 | /* Update slab flag */ | |
417 | *in_slab = use_slab; | |
418 | ||
142b45a7 BH |
419 | return 0; |
420 | } | |
421 | ||
784656f9 TH |
422 | /** |
423 | * memblock_merge_regions - merge neighboring compatible regions | |
424 | * @type: memblock type to scan | |
425 | * | |
426 | * Scan @type and merge neighboring compatible regions. | |
427 | */ | |
428 | static void __init_memblock memblock_merge_regions(struct memblock_type *type) | |
95f72d1e | 429 | { |
784656f9 | 430 | int i = 0; |
95f72d1e | 431 | |
784656f9 TH |
432 | /* cnt never goes below 1 */ |
433 | while (i < type->cnt - 1) { | |
434 | struct memblock_region *this = &type->regions[i]; | |
435 | struct memblock_region *next = &type->regions[i + 1]; | |
95f72d1e | 436 | |
7c0caeb8 TH |
437 | if (this->base + this->size != next->base || |
438 | memblock_get_region_node(this) != | |
66a20757 TC |
439 | memblock_get_region_node(next) || |
440 | this->flags != next->flags) { | |
784656f9 TH |
441 | BUG_ON(this->base + this->size > next->base); |
442 | i++; | |
443 | continue; | |
8f7a6605 BH |
444 | } |
445 | ||
784656f9 | 446 | this->size += next->size; |
c0232ae8 LF |
447 | /* move forward from next + 1, index of which is i + 2 */ |
448 | memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next)); | |
784656f9 | 449 | type->cnt--; |
95f72d1e | 450 | } |
784656f9 | 451 | } |
95f72d1e | 452 | |
784656f9 TH |
453 | /** |
454 | * memblock_insert_region - insert new memblock region | |
209ff86d TC |
455 | * @type: memblock type to insert into |
456 | * @idx: index for the insertion point | |
457 | * @base: base address of the new region | |
458 | * @size: size of the new region | |
459 | * @nid: node id of the new region | |
66a20757 | 460 | * @flags: flags of the new region |
784656f9 TH |
461 | * |
462 | * Insert new memblock region [@base,@base+@size) into @type at @idx. | |
463 | * @type must already have extra room to accomodate the new region. | |
464 | */ | |
465 | static void __init_memblock memblock_insert_region(struct memblock_type *type, | |
466 | int idx, phys_addr_t base, | |
66a20757 TC |
467 | phys_addr_t size, |
468 | int nid, unsigned long flags) | |
784656f9 TH |
469 | { |
470 | struct memblock_region *rgn = &type->regions[idx]; | |
471 | ||
472 | BUG_ON(type->cnt >= type->max); | |
473 | memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn)); | |
474 | rgn->base = base; | |
475 | rgn->size = size; | |
66a20757 | 476 | rgn->flags = flags; |
7c0caeb8 | 477 | memblock_set_region_node(rgn, nid); |
784656f9 | 478 | type->cnt++; |
1440c4e2 | 479 | type->total_size += size; |
784656f9 TH |
480 | } |
481 | ||
482 | /** | |
f1af9d3a | 483 | * memblock_add_range - add new memblock region |
784656f9 TH |
484 | * @type: memblock type to add new region into |
485 | * @base: base address of the new region | |
486 | * @size: size of the new region | |
7fb0bc3f | 487 | * @nid: nid of the new region |
66a20757 | 488 | * @flags: flags of the new region |
784656f9 TH |
489 | * |
490 | * Add new memblock region [@base,@base+@size) into @type. The new region | |
491 | * is allowed to overlap with existing ones - overlaps don't affect already | |
492 | * existing regions. @type is guaranteed to be minimal (all neighbouring | |
493 | * compatible regions are merged) after the addition. | |
494 | * | |
495 | * RETURNS: | |
496 | * 0 on success, -errno on failure. | |
497 | */ | |
f1af9d3a | 498 | int __init_memblock memblock_add_range(struct memblock_type *type, |
66a20757 TC |
499 | phys_addr_t base, phys_addr_t size, |
500 | int nid, unsigned long flags) | |
784656f9 TH |
501 | { |
502 | bool insert = false; | |
eb18f1b5 TH |
503 | phys_addr_t obase = base; |
504 | phys_addr_t end = base + memblock_cap_size(base, &size); | |
784656f9 TH |
505 | int i, nr_new; |
506 | ||
b3dc627c TH |
507 | if (!size) |
508 | return 0; | |
509 | ||
784656f9 TH |
510 | /* special case for empty array */ |
511 | if (type->regions[0].size == 0) { | |
1440c4e2 | 512 | WARN_ON(type->cnt != 1 || type->total_size); |
8f7a6605 BH |
513 | type->regions[0].base = base; |
514 | type->regions[0].size = size; | |
66a20757 | 515 | type->regions[0].flags = flags; |
7fb0bc3f | 516 | memblock_set_region_node(&type->regions[0], nid); |
1440c4e2 | 517 | type->total_size = size; |
8f7a6605 | 518 | return 0; |
95f72d1e | 519 | } |
784656f9 TH |
520 | repeat: |
521 | /* | |
522 | * The following is executed twice. Once with %false @insert and | |
523 | * then with %true. The first counts the number of regions needed | |
524 | * to accomodate the new area. The second actually inserts them. | |
142b45a7 | 525 | */ |
784656f9 TH |
526 | base = obase; |
527 | nr_new = 0; | |
95f72d1e | 528 | |
784656f9 TH |
529 | for (i = 0; i < type->cnt; i++) { |
530 | struct memblock_region *rgn = &type->regions[i]; | |
531 | phys_addr_t rbase = rgn->base; | |
532 | phys_addr_t rend = rbase + rgn->size; | |
533 | ||
534 | if (rbase >= end) | |
95f72d1e | 535 | break; |
784656f9 TH |
536 | if (rend <= base) |
537 | continue; | |
538 | /* | |
539 | * @rgn overlaps. If it separates the lower part of new | |
540 | * area, insert that portion. | |
541 | */ | |
542 | if (rbase > base) { | |
543 | nr_new++; | |
544 | if (insert) | |
545 | memblock_insert_region(type, i++, base, | |
66a20757 TC |
546 | rbase - base, nid, |
547 | flags); | |
95f72d1e | 548 | } |
784656f9 TH |
549 | /* area below @rend is dealt with, forget about it */ |
550 | base = min(rend, end); | |
95f72d1e | 551 | } |
784656f9 TH |
552 | |
553 | /* insert the remaining portion */ | |
554 | if (base < end) { | |
555 | nr_new++; | |
556 | if (insert) | |
66a20757 TC |
557 | memblock_insert_region(type, i, base, end - base, |
558 | nid, flags); | |
95f72d1e | 559 | } |
95f72d1e | 560 | |
784656f9 TH |
561 | /* |
562 | * If this was the first round, resize array and repeat for actual | |
563 | * insertions; otherwise, merge and return. | |
142b45a7 | 564 | */ |
784656f9 TH |
565 | if (!insert) { |
566 | while (type->cnt + nr_new > type->max) | |
48c3b583 | 567 | if (memblock_double_array(type, obase, size) < 0) |
784656f9 TH |
568 | return -ENOMEM; |
569 | insert = true; | |
570 | goto repeat; | |
571 | } else { | |
572 | memblock_merge_regions(type); | |
573 | return 0; | |
142b45a7 | 574 | } |
95f72d1e YL |
575 | } |
576 | ||
7fb0bc3f TH |
577 | int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size, |
578 | int nid) | |
579 | { | |
f1af9d3a | 580 | return memblock_add_range(&memblock.memory, base, size, nid, 0); |
7fb0bc3f TH |
581 | } |
582 | ||
581adcbe | 583 | int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size) |
95f72d1e | 584 | { |
f1af9d3a | 585 | return memblock_add_range(&memblock.memory, base, size, |
66a20757 | 586 | MAX_NUMNODES, 0); |
95f72d1e YL |
587 | } |
588 | ||
6a9ceb31 TH |
589 | /** |
590 | * memblock_isolate_range - isolate given range into disjoint memblocks | |
591 | * @type: memblock type to isolate range for | |
592 | * @base: base of range to isolate | |
593 | * @size: size of range to isolate | |
594 | * @start_rgn: out parameter for the start of isolated region | |
595 | * @end_rgn: out parameter for the end of isolated region | |
596 | * | |
597 | * Walk @type and ensure that regions don't cross the boundaries defined by | |
598 | * [@base,@base+@size). Crossing regions are split at the boundaries, | |
599 | * which may create at most two more regions. The index of the first | |
600 | * region inside the range is returned in *@start_rgn and end in *@end_rgn. | |
601 | * | |
602 | * RETURNS: | |
603 | * 0 on success, -errno on failure. | |
604 | */ | |
605 | static int __init_memblock memblock_isolate_range(struct memblock_type *type, | |
606 | phys_addr_t base, phys_addr_t size, | |
607 | int *start_rgn, int *end_rgn) | |
608 | { | |
eb18f1b5 | 609 | phys_addr_t end = base + memblock_cap_size(base, &size); |
6a9ceb31 TH |
610 | int i; |
611 | ||
612 | *start_rgn = *end_rgn = 0; | |
613 | ||
b3dc627c TH |
614 | if (!size) |
615 | return 0; | |
616 | ||
6a9ceb31 TH |
617 | /* we'll create at most two more regions */ |
618 | while (type->cnt + 2 > type->max) | |
48c3b583 | 619 | if (memblock_double_array(type, base, size) < 0) |
6a9ceb31 TH |
620 | return -ENOMEM; |
621 | ||
622 | for (i = 0; i < type->cnt; i++) { | |
623 | struct memblock_region *rgn = &type->regions[i]; | |
624 | phys_addr_t rbase = rgn->base; | |
625 | phys_addr_t rend = rbase + rgn->size; | |
626 | ||
627 | if (rbase >= end) | |
628 | break; | |
629 | if (rend <= base) | |
630 | continue; | |
631 | ||
632 | if (rbase < base) { | |
633 | /* | |
634 | * @rgn intersects from below. Split and continue | |
635 | * to process the next region - the new top half. | |
636 | */ | |
637 | rgn->base = base; | |
1440c4e2 TH |
638 | rgn->size -= base - rbase; |
639 | type->total_size -= base - rbase; | |
6a9ceb31 | 640 | memblock_insert_region(type, i, rbase, base - rbase, |
66a20757 TC |
641 | memblock_get_region_node(rgn), |
642 | rgn->flags); | |
6a9ceb31 TH |
643 | } else if (rend > end) { |
644 | /* | |
645 | * @rgn intersects from above. Split and redo the | |
646 | * current region - the new bottom half. | |
647 | */ | |
648 | rgn->base = end; | |
1440c4e2 TH |
649 | rgn->size -= end - rbase; |
650 | type->total_size -= end - rbase; | |
6a9ceb31 | 651 | memblock_insert_region(type, i--, rbase, end - rbase, |
66a20757 TC |
652 | memblock_get_region_node(rgn), |
653 | rgn->flags); | |
6a9ceb31 TH |
654 | } else { |
655 | /* @rgn is fully contained, record it */ | |
656 | if (!*end_rgn) | |
657 | *start_rgn = i; | |
658 | *end_rgn = i + 1; | |
659 | } | |
660 | } | |
661 | ||
662 | return 0; | |
663 | } | |
6a9ceb31 | 664 | |
f1af9d3a PH |
665 | int __init_memblock memblock_remove_range(struct memblock_type *type, |
666 | phys_addr_t base, phys_addr_t size) | |
95f72d1e | 667 | { |
71936180 TH |
668 | int start_rgn, end_rgn; |
669 | int i, ret; | |
95f72d1e | 670 | |
71936180 TH |
671 | ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); |
672 | if (ret) | |
673 | return ret; | |
95f72d1e | 674 | |
71936180 TH |
675 | for (i = end_rgn - 1; i >= start_rgn; i--) |
676 | memblock_remove_region(type, i); | |
8f7a6605 | 677 | return 0; |
95f72d1e YL |
678 | } |
679 | ||
581adcbe | 680 | int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size) |
95f72d1e | 681 | { |
f1af9d3a | 682 | return memblock_remove_range(&memblock.memory, base, size); |
95f72d1e YL |
683 | } |
684 | ||
f1af9d3a | 685 | |
581adcbe | 686 | int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size) |
95f72d1e | 687 | { |
24aa0788 | 688 | memblock_dbg(" memblock_free: [%#016llx-%#016llx] %pF\n", |
a150439c | 689 | (unsigned long long)base, |
931d13f5 | 690 | (unsigned long long)base + size - 1, |
a150439c | 691 | (void *)_RET_IP_); |
24aa0788 | 692 | |
aedf95ea | 693 | kmemleak_free_part(__va(base), size); |
f1af9d3a | 694 | return memblock_remove_range(&memblock.reserved, base, size); |
95f72d1e YL |
695 | } |
696 | ||
66a20757 TC |
697 | static int __init_memblock memblock_reserve_region(phys_addr_t base, |
698 | phys_addr_t size, | |
699 | int nid, | |
700 | unsigned long flags) | |
95f72d1e | 701 | { |
e3239ff9 | 702 | struct memblock_type *_rgn = &memblock.reserved; |
95f72d1e | 703 | |
66a20757 | 704 | memblock_dbg("memblock_reserve: [%#016llx-%#016llx] flags %#02lx %pF\n", |
a150439c | 705 | (unsigned long long)base, |
931d13f5 | 706 | (unsigned long long)base + size - 1, |
66a20757 TC |
707 | flags, (void *)_RET_IP_); |
708 | ||
f1af9d3a | 709 | return memblock_add_range(_rgn, base, size, nid, flags); |
66a20757 | 710 | } |
95f72d1e | 711 | |
66a20757 TC |
712 | int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size) |
713 | { | |
714 | return memblock_reserve_region(base, size, MAX_NUMNODES, 0); | |
95f72d1e YL |
715 | } |
716 | ||
66b16edf TC |
717 | /** |
718 | * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG. | |
719 | * @base: the base phys addr of the region | |
720 | * @size: the size of the region | |
721 | * | |
722 | * This function isolates region [@base, @base + @size), and mark it with flag | |
723 | * MEMBLOCK_HOTPLUG. | |
724 | * | |
725 | * Return 0 on succees, -errno on failure. | |
726 | */ | |
727 | int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size) | |
728 | { | |
729 | struct memblock_type *type = &memblock.memory; | |
730 | int i, ret, start_rgn, end_rgn; | |
731 | ||
732 | ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); | |
733 | if (ret) | |
734 | return ret; | |
735 | ||
736 | for (i = start_rgn; i < end_rgn; i++) | |
737 | memblock_set_region_flags(&type->regions[i], MEMBLOCK_HOTPLUG); | |
738 | ||
739 | memblock_merge_regions(type); | |
740 | return 0; | |
741 | } | |
742 | ||
743 | /** | |
744 | * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region. | |
745 | * @base: the base phys addr of the region | |
746 | * @size: the size of the region | |
747 | * | |
748 | * This function isolates region [@base, @base + @size), and clear flag | |
749 | * MEMBLOCK_HOTPLUG for the isolated regions. | |
750 | * | |
751 | * Return 0 on succees, -errno on failure. | |
752 | */ | |
753 | int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size) | |
754 | { | |
755 | struct memblock_type *type = &memblock.memory; | |
756 | int i, ret, start_rgn, end_rgn; | |
757 | ||
758 | ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); | |
759 | if (ret) | |
760 | return ret; | |
761 | ||
762 | for (i = start_rgn; i < end_rgn; i++) | |
763 | memblock_clear_region_flags(&type->regions[i], | |
764 | MEMBLOCK_HOTPLUG); | |
765 | ||
766 | memblock_merge_regions(type); | |
767 | return 0; | |
768 | } | |
769 | ||
35fd0808 | 770 | /** |
f1af9d3a | 771 | * __next__mem_range - next function for for_each_free_mem_range() etc. |
35fd0808 | 772 | * @idx: pointer to u64 loop variable |
b1154233 | 773 | * @nid: node selector, %NUMA_NO_NODE for all nodes |
f1af9d3a PH |
774 | * @type_a: pointer to memblock_type from where the range is taken |
775 | * @type_b: pointer to memblock_type which excludes memory from being taken | |
dad7557e WL |
776 | * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL |
777 | * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL | |
778 | * @out_nid: ptr to int for nid of the range, can be %NULL | |
35fd0808 | 779 | * |
f1af9d3a | 780 | * Find the first area from *@idx which matches @nid, fill the out |
35fd0808 | 781 | * parameters, and update *@idx for the next iteration. The lower 32bit of |
f1af9d3a PH |
782 | * *@idx contains index into type_a and the upper 32bit indexes the |
783 | * areas before each region in type_b. For example, if type_b regions | |
35fd0808 TH |
784 | * look like the following, |
785 | * | |
786 | * 0:[0-16), 1:[32-48), 2:[128-130) | |
787 | * | |
788 | * The upper 32bit indexes the following regions. | |
789 | * | |
790 | * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX) | |
791 | * | |
792 | * As both region arrays are sorted, the function advances the two indices | |
793 | * in lockstep and returns each intersection. | |
794 | */ | |
f1af9d3a PH |
795 | void __init_memblock __next_mem_range(u64 *idx, int nid, |
796 | struct memblock_type *type_a, | |
797 | struct memblock_type *type_b, | |
798 | phys_addr_t *out_start, | |
799 | phys_addr_t *out_end, int *out_nid) | |
35fd0808 | 800 | { |
f1af9d3a PH |
801 | int idx_a = *idx & 0xffffffff; |
802 | int idx_b = *idx >> 32; | |
b1154233 | 803 | |
f1af9d3a PH |
804 | if (WARN_ONCE(nid == MAX_NUMNODES, |
805 | "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n")) | |
560dca27 | 806 | nid = NUMA_NO_NODE; |
35fd0808 | 807 | |
f1af9d3a PH |
808 | for (; idx_a < type_a->cnt; idx_a++) { |
809 | struct memblock_region *m = &type_a->regions[idx_a]; | |
810 | ||
35fd0808 TH |
811 | phys_addr_t m_start = m->base; |
812 | phys_addr_t m_end = m->base + m->size; | |
f1af9d3a | 813 | int m_nid = memblock_get_region_node(m); |
35fd0808 TH |
814 | |
815 | /* only memory regions are associated with nodes, check it */ | |
f1af9d3a | 816 | if (nid != NUMA_NO_NODE && nid != m_nid) |
35fd0808 TH |
817 | continue; |
818 | ||
0a313a99 XQ |
819 | /* skip hotpluggable memory regions if needed */ |
820 | if (movable_node_is_enabled() && memblock_is_hotpluggable(m)) | |
821 | continue; | |
822 | ||
f1af9d3a PH |
823 | if (!type_b) { |
824 | if (out_start) | |
825 | *out_start = m_start; | |
826 | if (out_end) | |
827 | *out_end = m_end; | |
828 | if (out_nid) | |
829 | *out_nid = m_nid; | |
830 | idx_a++; | |
831 | *idx = (u32)idx_a | (u64)idx_b << 32; | |
832 | return; | |
833 | } | |
834 | ||
835 | /* scan areas before each reservation */ | |
836 | for (; idx_b < type_b->cnt + 1; idx_b++) { | |
837 | struct memblock_region *r; | |
838 | phys_addr_t r_start; | |
839 | phys_addr_t r_end; | |
840 | ||
841 | r = &type_b->regions[idx_b]; | |
842 | r_start = idx_b ? r[-1].base + r[-1].size : 0; | |
843 | r_end = idx_b < type_b->cnt ? | |
844 | r->base : ULLONG_MAX; | |
35fd0808 | 845 | |
f1af9d3a PH |
846 | /* |
847 | * if idx_b advanced past idx_a, | |
848 | * break out to advance idx_a | |
849 | */ | |
35fd0808 TH |
850 | if (r_start >= m_end) |
851 | break; | |
852 | /* if the two regions intersect, we're done */ | |
853 | if (m_start < r_end) { | |
854 | if (out_start) | |
f1af9d3a PH |
855 | *out_start = |
856 | max(m_start, r_start); | |
35fd0808 TH |
857 | if (out_end) |
858 | *out_end = min(m_end, r_end); | |
859 | if (out_nid) | |
f1af9d3a | 860 | *out_nid = m_nid; |
35fd0808 | 861 | /* |
f1af9d3a PH |
862 | * The region which ends first is |
863 | * advanced for the next iteration. | |
35fd0808 TH |
864 | */ |
865 | if (m_end <= r_end) | |
f1af9d3a | 866 | idx_a++; |
35fd0808 | 867 | else |
f1af9d3a PH |
868 | idx_b++; |
869 | *idx = (u32)idx_a | (u64)idx_b << 32; | |
35fd0808 TH |
870 | return; |
871 | } | |
872 | } | |
873 | } | |
874 | ||
875 | /* signal end of iteration */ | |
876 | *idx = ULLONG_MAX; | |
877 | } | |
878 | ||
7bd0b0f0 | 879 | /** |
f1af9d3a PH |
880 | * __next_mem_range_rev - generic next function for for_each_*_range_rev() |
881 | * | |
882 | * Finds the next range from type_a which is not marked as unsuitable | |
883 | * in type_b. | |
884 | * | |
7bd0b0f0 | 885 | * @idx: pointer to u64 loop variable |
b1154233 | 886 | * @nid: nid: node selector, %NUMA_NO_NODE for all nodes |
f1af9d3a PH |
887 | * @type_a: pointer to memblock_type from where the range is taken |
888 | * @type_b: pointer to memblock_type which excludes memory from being taken | |
dad7557e WL |
889 | * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL |
890 | * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL | |
891 | * @out_nid: ptr to int for nid of the range, can be %NULL | |
7bd0b0f0 | 892 | * |
f1af9d3a | 893 | * Reverse of __next_mem_range(). |
7bd0b0f0 | 894 | */ |
f1af9d3a PH |
895 | void __init_memblock __next_mem_range_rev(u64 *idx, int nid, |
896 | struct memblock_type *type_a, | |
897 | struct memblock_type *type_b, | |
898 | phys_addr_t *out_start, | |
899 | phys_addr_t *out_end, int *out_nid) | |
7bd0b0f0 | 900 | { |
f1af9d3a PH |
901 | int idx_a = *idx & 0xffffffff; |
902 | int idx_b = *idx >> 32; | |
b1154233 | 903 | |
560dca27 GS |
904 | if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n")) |
905 | nid = NUMA_NO_NODE; | |
7bd0b0f0 TH |
906 | |
907 | if (*idx == (u64)ULLONG_MAX) { | |
f1af9d3a PH |
908 | idx_a = type_a->cnt - 1; |
909 | idx_b = type_b->cnt; | |
7bd0b0f0 TH |
910 | } |
911 | ||
f1af9d3a PH |
912 | for (; idx_a >= 0; idx_a--) { |
913 | struct memblock_region *m = &type_a->regions[idx_a]; | |
914 | ||
7bd0b0f0 TH |
915 | phys_addr_t m_start = m->base; |
916 | phys_addr_t m_end = m->base + m->size; | |
f1af9d3a | 917 | int m_nid = memblock_get_region_node(m); |
7bd0b0f0 TH |
918 | |
919 | /* only memory regions are associated with nodes, check it */ | |
f1af9d3a | 920 | if (nid != NUMA_NO_NODE && nid != m_nid) |
7bd0b0f0 TH |
921 | continue; |
922 | ||
55ac590c TC |
923 | /* skip hotpluggable memory regions if needed */ |
924 | if (movable_node_is_enabled() && memblock_is_hotpluggable(m)) | |
925 | continue; | |
926 | ||
f1af9d3a PH |
927 | if (!type_b) { |
928 | if (out_start) | |
929 | *out_start = m_start; | |
930 | if (out_end) | |
931 | *out_end = m_end; | |
932 | if (out_nid) | |
933 | *out_nid = m_nid; | |
934 | idx_a++; | |
935 | *idx = (u32)idx_a | (u64)idx_b << 32; | |
936 | return; | |
937 | } | |
938 | ||
939 | /* scan areas before each reservation */ | |
940 | for (; idx_b >= 0; idx_b--) { | |
941 | struct memblock_region *r; | |
942 | phys_addr_t r_start; | |
943 | phys_addr_t r_end; | |
944 | ||
945 | r = &type_b->regions[idx_b]; | |
946 | r_start = idx_b ? r[-1].base + r[-1].size : 0; | |
947 | r_end = idx_b < type_b->cnt ? | |
948 | r->base : ULLONG_MAX; | |
949 | /* | |
950 | * if idx_b advanced past idx_a, | |
951 | * break out to advance idx_a | |
952 | */ | |
7bd0b0f0 | 953 | |
7bd0b0f0 TH |
954 | if (r_end <= m_start) |
955 | break; | |
956 | /* if the two regions intersect, we're done */ | |
957 | if (m_end > r_start) { | |
958 | if (out_start) | |
959 | *out_start = max(m_start, r_start); | |
960 | if (out_end) | |
961 | *out_end = min(m_end, r_end); | |
962 | if (out_nid) | |
f1af9d3a | 963 | *out_nid = m_nid; |
7bd0b0f0 | 964 | if (m_start >= r_start) |
f1af9d3a | 965 | idx_a--; |
7bd0b0f0 | 966 | else |
f1af9d3a PH |
967 | idx_b--; |
968 | *idx = (u32)idx_a | (u64)idx_b << 32; | |
7bd0b0f0 TH |
969 | return; |
970 | } | |
971 | } | |
972 | } | |
f1af9d3a | 973 | /* signal end of iteration */ |
7bd0b0f0 TH |
974 | *idx = ULLONG_MAX; |
975 | } | |
976 | ||
7c0caeb8 TH |
977 | #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP |
978 | /* | |
979 | * Common iterator interface used to define for_each_mem_range(). | |
980 | */ | |
981 | void __init_memblock __next_mem_pfn_range(int *idx, int nid, | |
982 | unsigned long *out_start_pfn, | |
983 | unsigned long *out_end_pfn, int *out_nid) | |
984 | { | |
985 | struct memblock_type *type = &memblock.memory; | |
986 | struct memblock_region *r; | |
987 | ||
988 | while (++*idx < type->cnt) { | |
989 | r = &type->regions[*idx]; | |
990 | ||
991 | if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size)) | |
992 | continue; | |
993 | if (nid == MAX_NUMNODES || nid == r->nid) | |
994 | break; | |
995 | } | |
996 | if (*idx >= type->cnt) { | |
997 | *idx = -1; | |
998 | return; | |
999 | } | |
1000 | ||
1001 | if (out_start_pfn) | |
1002 | *out_start_pfn = PFN_UP(r->base); | |
1003 | if (out_end_pfn) | |
1004 | *out_end_pfn = PFN_DOWN(r->base + r->size); | |
1005 | if (out_nid) | |
1006 | *out_nid = r->nid; | |
1007 | } | |
1008 | ||
1009 | /** | |
1010 | * memblock_set_node - set node ID on memblock regions | |
1011 | * @base: base of area to set node ID for | |
1012 | * @size: size of area to set node ID for | |
e7e8de59 | 1013 | * @type: memblock type to set node ID for |
7c0caeb8 TH |
1014 | * @nid: node ID to set |
1015 | * | |
e7e8de59 | 1016 | * Set the nid of memblock @type regions in [@base,@base+@size) to @nid. |
7c0caeb8 TH |
1017 | * Regions which cross the area boundaries are split as necessary. |
1018 | * | |
1019 | * RETURNS: | |
1020 | * 0 on success, -errno on failure. | |
1021 | */ | |
1022 | int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size, | |
e7e8de59 | 1023 | struct memblock_type *type, int nid) |
7c0caeb8 | 1024 | { |
6a9ceb31 TH |
1025 | int start_rgn, end_rgn; |
1026 | int i, ret; | |
7c0caeb8 | 1027 | |
6a9ceb31 TH |
1028 | ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); |
1029 | if (ret) | |
1030 | return ret; | |
7c0caeb8 | 1031 | |
6a9ceb31 | 1032 | for (i = start_rgn; i < end_rgn; i++) |
e9d24ad3 | 1033 | memblock_set_region_node(&type->regions[i], nid); |
7c0caeb8 TH |
1034 | |
1035 | memblock_merge_regions(type); | |
1036 | return 0; | |
1037 | } | |
1038 | #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ | |
1039 | ||
2bfc2862 AM |
1040 | static phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size, |
1041 | phys_addr_t align, phys_addr_t start, | |
1042 | phys_addr_t end, int nid) | |
95f72d1e | 1043 | { |
6ed311b2 | 1044 | phys_addr_t found; |
95f72d1e | 1045 | |
79f40fab GS |
1046 | if (!align) |
1047 | align = SMP_CACHE_BYTES; | |
94f3d3af | 1048 | |
2bfc2862 | 1049 | found = memblock_find_in_range_node(size, align, start, end, nid); |
aedf95ea CM |
1050 | if (found && !memblock_reserve(found, size)) { |
1051 | /* | |
1052 | * The min_count is set to 0 so that memblock allocations are | |
1053 | * never reported as leaks. | |
1054 | */ | |
1055 | kmemleak_alloc(__va(found), size, 0, 0); | |
6ed311b2 | 1056 | return found; |
aedf95ea | 1057 | } |
6ed311b2 | 1058 | return 0; |
95f72d1e YL |
1059 | } |
1060 | ||
2bfc2862 AM |
1061 | phys_addr_t __init memblock_alloc_range(phys_addr_t size, phys_addr_t align, |
1062 | phys_addr_t start, phys_addr_t end) | |
1063 | { | |
1064 | return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE); | |
1065 | } | |
1066 | ||
1067 | static phys_addr_t __init memblock_alloc_base_nid(phys_addr_t size, | |
1068 | phys_addr_t align, phys_addr_t max_addr, | |
1069 | int nid) | |
1070 | { | |
1071 | return memblock_alloc_range_nid(size, align, 0, max_addr, nid); | |
1072 | } | |
1073 | ||
7bd0b0f0 TH |
1074 | phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid) |
1075 | { | |
1076 | return memblock_alloc_base_nid(size, align, MEMBLOCK_ALLOC_ACCESSIBLE, nid); | |
1077 | } | |
1078 | ||
1079 | phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr) | |
1080 | { | |
b1154233 | 1081 | return memblock_alloc_base_nid(size, align, max_addr, NUMA_NO_NODE); |
7bd0b0f0 TH |
1082 | } |
1083 | ||
6ed311b2 | 1084 | phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr) |
95f72d1e | 1085 | { |
6ed311b2 BH |
1086 | phys_addr_t alloc; |
1087 | ||
1088 | alloc = __memblock_alloc_base(size, align, max_addr); | |
1089 | ||
1090 | if (alloc == 0) | |
1091 | panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n", | |
1092 | (unsigned long long) size, (unsigned long long) max_addr); | |
1093 | ||
1094 | return alloc; | |
95f72d1e YL |
1095 | } |
1096 | ||
6ed311b2 | 1097 | phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align) |
95f72d1e | 1098 | { |
6ed311b2 BH |
1099 | return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE); |
1100 | } | |
95f72d1e | 1101 | |
9d1e2492 BH |
1102 | phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid) |
1103 | { | |
1104 | phys_addr_t res = memblock_alloc_nid(size, align, nid); | |
1105 | ||
1106 | if (res) | |
1107 | return res; | |
15fb0972 | 1108 | return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE); |
95f72d1e YL |
1109 | } |
1110 | ||
26f09e9b SS |
1111 | /** |
1112 | * memblock_virt_alloc_internal - allocate boot memory block | |
1113 | * @size: size of memory block to be allocated in bytes | |
1114 | * @align: alignment of the region and block's size | |
1115 | * @min_addr: the lower bound of the memory region to allocate (phys address) | |
1116 | * @max_addr: the upper bound of the memory region to allocate (phys address) | |
1117 | * @nid: nid of the free area to find, %NUMA_NO_NODE for any node | |
1118 | * | |
1119 | * The @min_addr limit is dropped if it can not be satisfied and the allocation | |
1120 | * will fall back to memory below @min_addr. Also, allocation may fall back | |
1121 | * to any node in the system if the specified node can not | |
1122 | * hold the requested memory. | |
1123 | * | |
1124 | * The allocation is performed from memory region limited by | |
1125 | * memblock.current_limit if @max_addr == %BOOTMEM_ALLOC_ACCESSIBLE. | |
1126 | * | |
1127 | * The memory block is aligned on SMP_CACHE_BYTES if @align == 0. | |
1128 | * | |
1129 | * The phys address of allocated boot memory block is converted to virtual and | |
1130 | * allocated memory is reset to 0. | |
1131 | * | |
1132 | * In addition, function sets the min_count to 0 using kmemleak_alloc for | |
1133 | * allocated boot memory block, so that it is never reported as leaks. | |
1134 | * | |
1135 | * RETURNS: | |
1136 | * Virtual address of allocated memory block on success, NULL on failure. | |
1137 | */ | |
1138 | static void * __init memblock_virt_alloc_internal( | |
1139 | phys_addr_t size, phys_addr_t align, | |
1140 | phys_addr_t min_addr, phys_addr_t max_addr, | |
1141 | int nid) | |
1142 | { | |
1143 | phys_addr_t alloc; | |
1144 | void *ptr; | |
1145 | ||
560dca27 GS |
1146 | if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n")) |
1147 | nid = NUMA_NO_NODE; | |
26f09e9b SS |
1148 | |
1149 | /* | |
1150 | * Detect any accidental use of these APIs after slab is ready, as at | |
1151 | * this moment memblock may be deinitialized already and its | |
1152 | * internal data may be destroyed (after execution of free_all_bootmem) | |
1153 | */ | |
1154 | if (WARN_ON_ONCE(slab_is_available())) | |
1155 | return kzalloc_node(size, GFP_NOWAIT, nid); | |
1156 | ||
1157 | if (!align) | |
1158 | align = SMP_CACHE_BYTES; | |
1159 | ||
f544e14f YL |
1160 | if (max_addr > memblock.current_limit) |
1161 | max_addr = memblock.current_limit; | |
1162 | ||
26f09e9b SS |
1163 | again: |
1164 | alloc = memblock_find_in_range_node(size, align, min_addr, max_addr, | |
1165 | nid); | |
1166 | if (alloc) | |
1167 | goto done; | |
1168 | ||
1169 | if (nid != NUMA_NO_NODE) { | |
1170 | alloc = memblock_find_in_range_node(size, align, min_addr, | |
1171 | max_addr, NUMA_NO_NODE); | |
1172 | if (alloc) | |
1173 | goto done; | |
1174 | } | |
1175 | ||
1176 | if (min_addr) { | |
1177 | min_addr = 0; | |
1178 | goto again; | |
1179 | } else { | |
1180 | goto error; | |
1181 | } | |
1182 | ||
1183 | done: | |
1184 | memblock_reserve(alloc, size); | |
1185 | ptr = phys_to_virt(alloc); | |
1186 | memset(ptr, 0, size); | |
1187 | ||
1188 | /* | |
1189 | * The min_count is set to 0 so that bootmem allocated blocks | |
1190 | * are never reported as leaks. This is because many of these blocks | |
1191 | * are only referred via the physical address which is not | |
1192 | * looked up by kmemleak. | |
1193 | */ | |
1194 | kmemleak_alloc(ptr, size, 0, 0); | |
1195 | ||
1196 | return ptr; | |
1197 | ||
1198 | error: | |
1199 | return NULL; | |
1200 | } | |
1201 | ||
1202 | /** | |
1203 | * memblock_virt_alloc_try_nid_nopanic - allocate boot memory block | |
1204 | * @size: size of memory block to be allocated in bytes | |
1205 | * @align: alignment of the region and block's size | |
1206 | * @min_addr: the lower bound of the memory region from where the allocation | |
1207 | * is preferred (phys address) | |
1208 | * @max_addr: the upper bound of the memory region from where the allocation | |
1209 | * is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to | |
1210 | * allocate only from memory limited by memblock.current_limit value | |
1211 | * @nid: nid of the free area to find, %NUMA_NO_NODE for any node | |
1212 | * | |
1213 | * Public version of _memblock_virt_alloc_try_nid_nopanic() which provides | |
1214 | * additional debug information (including caller info), if enabled. | |
1215 | * | |
1216 | * RETURNS: | |
1217 | * Virtual address of allocated memory block on success, NULL on failure. | |
1218 | */ | |
1219 | void * __init memblock_virt_alloc_try_nid_nopanic( | |
1220 | phys_addr_t size, phys_addr_t align, | |
1221 | phys_addr_t min_addr, phys_addr_t max_addr, | |
1222 | int nid) | |
1223 | { | |
1224 | memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n", | |
1225 | __func__, (u64)size, (u64)align, nid, (u64)min_addr, | |
1226 | (u64)max_addr, (void *)_RET_IP_); | |
1227 | return memblock_virt_alloc_internal(size, align, min_addr, | |
1228 | max_addr, nid); | |
1229 | } | |
1230 | ||
1231 | /** | |
1232 | * memblock_virt_alloc_try_nid - allocate boot memory block with panicking | |
1233 | * @size: size of memory block to be allocated in bytes | |
1234 | * @align: alignment of the region and block's size | |
1235 | * @min_addr: the lower bound of the memory region from where the allocation | |
1236 | * is preferred (phys address) | |
1237 | * @max_addr: the upper bound of the memory region from where the allocation | |
1238 | * is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to | |
1239 | * allocate only from memory limited by memblock.current_limit value | |
1240 | * @nid: nid of the free area to find, %NUMA_NO_NODE for any node | |
1241 | * | |
1242 | * Public panicking version of _memblock_virt_alloc_try_nid_nopanic() | |
1243 | * which provides debug information (including caller info), if enabled, | |
1244 | * and panics if the request can not be satisfied. | |
1245 | * | |
1246 | * RETURNS: | |
1247 | * Virtual address of allocated memory block on success, NULL on failure. | |
1248 | */ | |
1249 | void * __init memblock_virt_alloc_try_nid( | |
1250 | phys_addr_t size, phys_addr_t align, | |
1251 | phys_addr_t min_addr, phys_addr_t max_addr, | |
1252 | int nid) | |
1253 | { | |
1254 | void *ptr; | |
1255 | ||
1256 | memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n", | |
1257 | __func__, (u64)size, (u64)align, nid, (u64)min_addr, | |
1258 | (u64)max_addr, (void *)_RET_IP_); | |
1259 | ptr = memblock_virt_alloc_internal(size, align, | |
1260 | min_addr, max_addr, nid); | |
1261 | if (ptr) | |
1262 | return ptr; | |
1263 | ||
1264 | panic("%s: Failed to allocate %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx\n", | |
1265 | __func__, (u64)size, (u64)align, nid, (u64)min_addr, | |
1266 | (u64)max_addr); | |
1267 | return NULL; | |
1268 | } | |
1269 | ||
1270 | /** | |
1271 | * __memblock_free_early - free boot memory block | |
1272 | * @base: phys starting address of the boot memory block | |
1273 | * @size: size of the boot memory block in bytes | |
1274 | * | |
1275 | * Free boot memory block previously allocated by memblock_virt_alloc_xx() API. | |
1276 | * The freeing memory will not be released to the buddy allocator. | |
1277 | */ | |
1278 | void __init __memblock_free_early(phys_addr_t base, phys_addr_t size) | |
1279 | { | |
1280 | memblock_dbg("%s: [%#016llx-%#016llx] %pF\n", | |
1281 | __func__, (u64)base, (u64)base + size - 1, | |
1282 | (void *)_RET_IP_); | |
1283 | kmemleak_free_part(__va(base), size); | |
f1af9d3a | 1284 | memblock_remove_range(&memblock.reserved, base, size); |
26f09e9b SS |
1285 | } |
1286 | ||
1287 | /* | |
1288 | * __memblock_free_late - free bootmem block pages directly to buddy allocator | |
1289 | * @addr: phys starting address of the boot memory block | |
1290 | * @size: size of the boot memory block in bytes | |
1291 | * | |
1292 | * This is only useful when the bootmem allocator has already been torn | |
1293 | * down, but we are still initializing the system. Pages are released directly | |
1294 | * to the buddy allocator, no bootmem metadata is updated because it is gone. | |
1295 | */ | |
1296 | void __init __memblock_free_late(phys_addr_t base, phys_addr_t size) | |
1297 | { | |
1298 | u64 cursor, end; | |
1299 | ||
1300 | memblock_dbg("%s: [%#016llx-%#016llx] %pF\n", | |
1301 | __func__, (u64)base, (u64)base + size - 1, | |
1302 | (void *)_RET_IP_); | |
1303 | kmemleak_free_part(__va(base), size); | |
1304 | cursor = PFN_UP(base); | |
1305 | end = PFN_DOWN(base + size); | |
1306 | ||
1307 | for (; cursor < end; cursor++) { | |
1308 | __free_pages_bootmem(pfn_to_page(cursor), 0); | |
1309 | totalram_pages++; | |
1310 | } | |
1311 | } | |
9d1e2492 BH |
1312 | |
1313 | /* | |
1314 | * Remaining API functions | |
1315 | */ | |
1316 | ||
2898cc4c | 1317 | phys_addr_t __init memblock_phys_mem_size(void) |
95f72d1e | 1318 | { |
1440c4e2 | 1319 | return memblock.memory.total_size; |
95f72d1e YL |
1320 | } |
1321 | ||
595ad9af YL |
1322 | phys_addr_t __init memblock_mem_size(unsigned long limit_pfn) |
1323 | { | |
1324 | unsigned long pages = 0; | |
1325 | struct memblock_region *r; | |
1326 | unsigned long start_pfn, end_pfn; | |
1327 | ||
1328 | for_each_memblock(memory, r) { | |
1329 | start_pfn = memblock_region_memory_base_pfn(r); | |
1330 | end_pfn = memblock_region_memory_end_pfn(r); | |
1331 | start_pfn = min_t(unsigned long, start_pfn, limit_pfn); | |
1332 | end_pfn = min_t(unsigned long, end_pfn, limit_pfn); | |
1333 | pages += end_pfn - start_pfn; | |
1334 | } | |
1335 | ||
16763230 | 1336 | return PFN_PHYS(pages); |
595ad9af YL |
1337 | } |
1338 | ||
0a93ebef SR |
1339 | /* lowest address */ |
1340 | phys_addr_t __init_memblock memblock_start_of_DRAM(void) | |
1341 | { | |
1342 | return memblock.memory.regions[0].base; | |
1343 | } | |
1344 | ||
10d06439 | 1345 | phys_addr_t __init_memblock memblock_end_of_DRAM(void) |
95f72d1e YL |
1346 | { |
1347 | int idx = memblock.memory.cnt - 1; | |
1348 | ||
e3239ff9 | 1349 | return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size); |
95f72d1e YL |
1350 | } |
1351 | ||
c0ce8fef | 1352 | void __init memblock_enforce_memory_limit(phys_addr_t limit) |
95f72d1e | 1353 | { |
c0ce8fef | 1354 | phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX; |
136199f0 | 1355 | struct memblock_region *r; |
95f72d1e | 1356 | |
c0ce8fef | 1357 | if (!limit) |
95f72d1e YL |
1358 | return; |
1359 | ||
c0ce8fef | 1360 | /* find out max address */ |
136199f0 | 1361 | for_each_memblock(memory, r) { |
c0ce8fef TH |
1362 | if (limit <= r->size) { |
1363 | max_addr = r->base + limit; | |
1364 | break; | |
95f72d1e | 1365 | } |
c0ce8fef | 1366 | limit -= r->size; |
95f72d1e | 1367 | } |
c0ce8fef TH |
1368 | |
1369 | /* truncate both memory and reserved regions */ | |
f1af9d3a PH |
1370 | memblock_remove_range(&memblock.memory, max_addr, |
1371 | (phys_addr_t)ULLONG_MAX); | |
1372 | memblock_remove_range(&memblock.reserved, max_addr, | |
1373 | (phys_addr_t)ULLONG_MAX); | |
95f72d1e YL |
1374 | } |
1375 | ||
cd79481d | 1376 | static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr) |
72d4b0b4 BH |
1377 | { |
1378 | unsigned int left = 0, right = type->cnt; | |
1379 | ||
1380 | do { | |
1381 | unsigned int mid = (right + left) / 2; | |
1382 | ||
1383 | if (addr < type->regions[mid].base) | |
1384 | right = mid; | |
1385 | else if (addr >= (type->regions[mid].base + | |
1386 | type->regions[mid].size)) | |
1387 | left = mid + 1; | |
1388 | else | |
1389 | return mid; | |
1390 | } while (left < right); | |
1391 | return -1; | |
1392 | } | |
1393 | ||
2898cc4c | 1394 | int __init memblock_is_reserved(phys_addr_t addr) |
95f72d1e | 1395 | { |
72d4b0b4 BH |
1396 | return memblock_search(&memblock.reserved, addr) != -1; |
1397 | } | |
95f72d1e | 1398 | |
3661ca66 | 1399 | int __init_memblock memblock_is_memory(phys_addr_t addr) |
72d4b0b4 BH |
1400 | { |
1401 | return memblock_search(&memblock.memory, addr) != -1; | |
1402 | } | |
1403 | ||
e76b63f8 YL |
1404 | #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP |
1405 | int __init_memblock memblock_search_pfn_nid(unsigned long pfn, | |
1406 | unsigned long *start_pfn, unsigned long *end_pfn) | |
1407 | { | |
1408 | struct memblock_type *type = &memblock.memory; | |
16763230 | 1409 | int mid = memblock_search(type, PFN_PHYS(pfn)); |
e76b63f8 YL |
1410 | |
1411 | if (mid == -1) | |
1412 | return -1; | |
1413 | ||
f7e2f7e8 FF |
1414 | *start_pfn = PFN_DOWN(type->regions[mid].base); |
1415 | *end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size); | |
e76b63f8 YL |
1416 | |
1417 | return type->regions[mid].nid; | |
1418 | } | |
1419 | #endif | |
1420 | ||
eab30949 SB |
1421 | /** |
1422 | * memblock_is_region_memory - check if a region is a subset of memory | |
1423 | * @base: base of region to check | |
1424 | * @size: size of region to check | |
1425 | * | |
1426 | * Check if the region [@base, @base+@size) is a subset of a memory block. | |
1427 | * | |
1428 | * RETURNS: | |
1429 | * 0 if false, non-zero if true | |
1430 | */ | |
3661ca66 | 1431 | int __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size) |
72d4b0b4 | 1432 | { |
abb65272 | 1433 | int idx = memblock_search(&memblock.memory, base); |
eb18f1b5 | 1434 | phys_addr_t end = base + memblock_cap_size(base, &size); |
72d4b0b4 BH |
1435 | |
1436 | if (idx == -1) | |
1437 | return 0; | |
abb65272 TV |
1438 | return memblock.memory.regions[idx].base <= base && |
1439 | (memblock.memory.regions[idx].base + | |
eb18f1b5 | 1440 | memblock.memory.regions[idx].size) >= end; |
95f72d1e YL |
1441 | } |
1442 | ||
eab30949 SB |
1443 | /** |
1444 | * memblock_is_region_reserved - check if a region intersects reserved memory | |
1445 | * @base: base of region to check | |
1446 | * @size: size of region to check | |
1447 | * | |
1448 | * Check if the region [@base, @base+@size) intersects a reserved memory block. | |
1449 | * | |
1450 | * RETURNS: | |
1451 | * 0 if false, non-zero if true | |
1452 | */ | |
10d06439 | 1453 | int __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size) |
95f72d1e | 1454 | { |
eb18f1b5 | 1455 | memblock_cap_size(base, &size); |
f1c2c19c | 1456 | return memblock_overlaps_region(&memblock.reserved, base, size) >= 0; |
95f72d1e YL |
1457 | } |
1458 | ||
6ede1fd3 YL |
1459 | void __init_memblock memblock_trim_memory(phys_addr_t align) |
1460 | { | |
6ede1fd3 | 1461 | phys_addr_t start, end, orig_start, orig_end; |
136199f0 | 1462 | struct memblock_region *r; |
6ede1fd3 | 1463 | |
136199f0 EM |
1464 | for_each_memblock(memory, r) { |
1465 | orig_start = r->base; | |
1466 | orig_end = r->base + r->size; | |
6ede1fd3 YL |
1467 | start = round_up(orig_start, align); |
1468 | end = round_down(orig_end, align); | |
1469 | ||
1470 | if (start == orig_start && end == orig_end) | |
1471 | continue; | |
1472 | ||
1473 | if (start < end) { | |
136199f0 EM |
1474 | r->base = start; |
1475 | r->size = end - start; | |
6ede1fd3 | 1476 | } else { |
136199f0 EM |
1477 | memblock_remove_region(&memblock.memory, |
1478 | r - memblock.memory.regions); | |
1479 | r--; | |
6ede1fd3 YL |
1480 | } |
1481 | } | |
1482 | } | |
e63075a3 | 1483 | |
3661ca66 | 1484 | void __init_memblock memblock_set_current_limit(phys_addr_t limit) |
e63075a3 BH |
1485 | { |
1486 | memblock.current_limit = limit; | |
1487 | } | |
1488 | ||
fec51014 LA |
1489 | phys_addr_t __init_memblock memblock_get_current_limit(void) |
1490 | { | |
1491 | return memblock.current_limit; | |
1492 | } | |
1493 | ||
7c0caeb8 | 1494 | static void __init_memblock memblock_dump(struct memblock_type *type, char *name) |
6ed311b2 BH |
1495 | { |
1496 | unsigned long long base, size; | |
66a20757 | 1497 | unsigned long flags; |
6ed311b2 BH |
1498 | int i; |
1499 | ||
7c0caeb8 | 1500 | pr_info(" %s.cnt = 0x%lx\n", name, type->cnt); |
6ed311b2 | 1501 | |
7c0caeb8 TH |
1502 | for (i = 0; i < type->cnt; i++) { |
1503 | struct memblock_region *rgn = &type->regions[i]; | |
1504 | char nid_buf[32] = ""; | |
1505 | ||
1506 | base = rgn->base; | |
1507 | size = rgn->size; | |
66a20757 | 1508 | flags = rgn->flags; |
7c0caeb8 TH |
1509 | #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP |
1510 | if (memblock_get_region_node(rgn) != MAX_NUMNODES) | |
1511 | snprintf(nid_buf, sizeof(nid_buf), " on node %d", | |
1512 | memblock_get_region_node(rgn)); | |
1513 | #endif | |
66a20757 TC |
1514 | pr_info(" %s[%#x]\t[%#016llx-%#016llx], %#llx bytes%s flags: %#lx\n", |
1515 | name, i, base, base + size - 1, size, nid_buf, flags); | |
6ed311b2 BH |
1516 | } |
1517 | } | |
1518 | ||
4ff7b82f | 1519 | void __init_memblock __memblock_dump_all(void) |
6ed311b2 | 1520 | { |
6ed311b2 | 1521 | pr_info("MEMBLOCK configuration:\n"); |
1440c4e2 TH |
1522 | pr_info(" memory size = %#llx reserved size = %#llx\n", |
1523 | (unsigned long long)memblock.memory.total_size, | |
1524 | (unsigned long long)memblock.reserved.total_size); | |
6ed311b2 BH |
1525 | |
1526 | memblock_dump(&memblock.memory, "memory"); | |
1527 | memblock_dump(&memblock.reserved, "reserved"); | |
1528 | } | |
1529 | ||
1aadc056 | 1530 | void __init memblock_allow_resize(void) |
6ed311b2 | 1531 | { |
142b45a7 | 1532 | memblock_can_resize = 1; |
6ed311b2 BH |
1533 | } |
1534 | ||
6ed311b2 BH |
1535 | static int __init early_memblock(char *p) |
1536 | { | |
1537 | if (p && strstr(p, "debug")) | |
1538 | memblock_debug = 1; | |
1539 | return 0; | |
1540 | } | |
1541 | early_param("memblock", early_memblock); | |
1542 | ||
c378ddd5 | 1543 | #if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK) |
6d03b885 BH |
1544 | |
1545 | static int memblock_debug_show(struct seq_file *m, void *private) | |
1546 | { | |
1547 | struct memblock_type *type = m->private; | |
1548 | struct memblock_region *reg; | |
1549 | int i; | |
1550 | ||
1551 | for (i = 0; i < type->cnt; i++) { | |
1552 | reg = &type->regions[i]; | |
1553 | seq_printf(m, "%4d: ", i); | |
1554 | if (sizeof(phys_addr_t) == 4) | |
1555 | seq_printf(m, "0x%08lx..0x%08lx\n", | |
1556 | (unsigned long)reg->base, | |
1557 | (unsigned long)(reg->base + reg->size - 1)); | |
1558 | else | |
1559 | seq_printf(m, "0x%016llx..0x%016llx\n", | |
1560 | (unsigned long long)reg->base, | |
1561 | (unsigned long long)(reg->base + reg->size - 1)); | |
1562 | ||
1563 | } | |
1564 | return 0; | |
1565 | } | |
1566 | ||
1567 | static int memblock_debug_open(struct inode *inode, struct file *file) | |
1568 | { | |
1569 | return single_open(file, memblock_debug_show, inode->i_private); | |
1570 | } | |
1571 | ||
1572 | static const struct file_operations memblock_debug_fops = { | |
1573 | .open = memblock_debug_open, | |
1574 | .read = seq_read, | |
1575 | .llseek = seq_lseek, | |
1576 | .release = single_release, | |
1577 | }; | |
1578 | ||
1579 | static int __init memblock_init_debugfs(void) | |
1580 | { | |
1581 | struct dentry *root = debugfs_create_dir("memblock", NULL); | |
1582 | if (!root) | |
1583 | return -ENXIO; | |
1584 | debugfs_create_file("memory", S_IRUGO, root, &memblock.memory, &memblock_debug_fops); | |
1585 | debugfs_create_file("reserved", S_IRUGO, root, &memblock.reserved, &memblock_debug_fops); | |
70210ed9 PH |
1586 | #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP |
1587 | debugfs_create_file("physmem", S_IRUGO, root, &memblock.physmem, &memblock_debug_fops); | |
1588 | #endif | |
6d03b885 BH |
1589 | |
1590 | return 0; | |
1591 | } | |
1592 | __initcall(memblock_init_debugfs); | |
1593 | ||
1594 | #endif /* CONFIG_DEBUG_FS */ |