]>
Commit | Line | Data |
---|---|---|
457c8996 | 1 | // SPDX-License-Identifier: GPL-2.0-only |
16d69265 | 2 | #include <linux/mm.h> |
30992c97 MM |
3 | #include <linux/slab.h> |
4 | #include <linux/string.h> | |
3b32123d | 5 | #include <linux/compiler.h> |
b95f1b31 | 6 | #include <linux/export.h> |
96840aa0 | 7 | #include <linux/err.h> |
3b8f14b4 | 8 | #include <linux/sched.h> |
6e84f315 | 9 | #include <linux/sched/mm.h> |
79eb597c | 10 | #include <linux/sched/signal.h> |
68db0cf1 | 11 | #include <linux/sched/task_stack.h> |
eb36c587 | 12 | #include <linux/security.h> |
9800339b | 13 | #include <linux/swap.h> |
33806f06 | 14 | #include <linux/swapops.h> |
00619bcc JM |
15 | #include <linux/mman.h> |
16 | #include <linux/hugetlb.h> | |
39f1f78d | 17 | #include <linux/vmalloc.h> |
897ab3e0 | 18 | #include <linux/userfaultfd_k.h> |
649775be | 19 | #include <linux/elf.h> |
67f3977f AG |
20 | #include <linux/elf-randomize.h> |
21 | #include <linux/personality.h> | |
649775be | 22 | #include <linux/random.h> |
67f3977f AG |
23 | #include <linux/processor.h> |
24 | #include <linux/sizes.h> | |
25 | #include <linux/compat.h> | |
00619bcc | 26 | |
7c0f6ba6 | 27 | #include <linux/uaccess.h> |
30992c97 | 28 | |
6038def0 NK |
29 | #include "internal.h" |
30 | ||
a4bb1e43 AH |
31 | /** |
32 | * kfree_const - conditionally free memory | |
33 | * @x: pointer to the memory | |
34 | * | |
35 | * Function calls kfree only if @x is not in .rodata section. | |
36 | */ | |
37 | void kfree_const(const void *x) | |
38 | { | |
39 | if (!is_kernel_rodata((unsigned long)x)) | |
40 | kfree(x); | |
41 | } | |
42 | EXPORT_SYMBOL(kfree_const); | |
43 | ||
30992c97 | 44 | /** |
30992c97 | 45 | * kstrdup - allocate space for and copy an existing string |
30992c97 MM |
46 | * @s: the string to duplicate |
47 | * @gfp: the GFP mask used in the kmalloc() call when allocating memory | |
a862f68a MR |
48 | * |
49 | * Return: newly allocated copy of @s or %NULL in case of error | |
30992c97 MM |
50 | */ |
51 | char *kstrdup(const char *s, gfp_t gfp) | |
52 | { | |
53 | size_t len; | |
54 | char *buf; | |
55 | ||
56 | if (!s) | |
57 | return NULL; | |
58 | ||
59 | len = strlen(s) + 1; | |
1d2c8eea | 60 | buf = kmalloc_track_caller(len, gfp); |
30992c97 MM |
61 | if (buf) |
62 | memcpy(buf, s, len); | |
63 | return buf; | |
64 | } | |
65 | EXPORT_SYMBOL(kstrdup); | |
96840aa0 | 66 | |
a4bb1e43 AH |
67 | /** |
68 | * kstrdup_const - conditionally duplicate an existing const string | |
69 | * @s: the string to duplicate | |
70 | * @gfp: the GFP mask used in the kmalloc() call when allocating memory | |
71 | * | |
295a1730 BG |
72 | * Note: Strings allocated by kstrdup_const should be freed by kfree_const and |
73 | * must not be passed to krealloc(). | |
a862f68a MR |
74 | * |
75 | * Return: source string if it is in .rodata section otherwise | |
76 | * fallback to kstrdup. | |
a4bb1e43 AH |
77 | */ |
78 | const char *kstrdup_const(const char *s, gfp_t gfp) | |
79 | { | |
80 | if (is_kernel_rodata((unsigned long)s)) | |
81 | return s; | |
82 | ||
83 | return kstrdup(s, gfp); | |
84 | } | |
85 | EXPORT_SYMBOL(kstrdup_const); | |
86 | ||
1e66df3e JF |
87 | /** |
88 | * kstrndup - allocate space for and copy an existing string | |
89 | * @s: the string to duplicate | |
90 | * @max: read at most @max chars from @s | |
91 | * @gfp: the GFP mask used in the kmalloc() call when allocating memory | |
f3515741 DH |
92 | * |
93 | * Note: Use kmemdup_nul() instead if the size is known exactly. | |
a862f68a MR |
94 | * |
95 | * Return: newly allocated copy of @s or %NULL in case of error | |
1e66df3e JF |
96 | */ |
97 | char *kstrndup(const char *s, size_t max, gfp_t gfp) | |
98 | { | |
99 | size_t len; | |
100 | char *buf; | |
101 | ||
102 | if (!s) | |
103 | return NULL; | |
104 | ||
105 | len = strnlen(s, max); | |
106 | buf = kmalloc_track_caller(len+1, gfp); | |
107 | if (buf) { | |
108 | memcpy(buf, s, len); | |
109 | buf[len] = '\0'; | |
110 | } | |
111 | return buf; | |
112 | } | |
113 | EXPORT_SYMBOL(kstrndup); | |
114 | ||
1a2f67b4 AD |
115 | /** |
116 | * kmemdup - duplicate region of memory | |
117 | * | |
118 | * @src: memory region to duplicate | |
119 | * @len: memory region length | |
120 | * @gfp: GFP mask to use | |
a862f68a MR |
121 | * |
122 | * Return: newly allocated copy of @src or %NULL in case of error | |
1a2f67b4 AD |
123 | */ |
124 | void *kmemdup(const void *src, size_t len, gfp_t gfp) | |
125 | { | |
126 | void *p; | |
127 | ||
1d2c8eea | 128 | p = kmalloc_track_caller(len, gfp); |
1a2f67b4 AD |
129 | if (p) |
130 | memcpy(p, src, len); | |
131 | return p; | |
132 | } | |
133 | EXPORT_SYMBOL(kmemdup); | |
134 | ||
f3515741 DH |
135 | /** |
136 | * kmemdup_nul - Create a NUL-terminated string from unterminated data | |
137 | * @s: The data to stringify | |
138 | * @len: The size of the data | |
139 | * @gfp: the GFP mask used in the kmalloc() call when allocating memory | |
a862f68a MR |
140 | * |
141 | * Return: newly allocated copy of @s with NUL-termination or %NULL in | |
142 | * case of error | |
f3515741 DH |
143 | */ |
144 | char *kmemdup_nul(const char *s, size_t len, gfp_t gfp) | |
145 | { | |
146 | char *buf; | |
147 | ||
148 | if (!s) | |
149 | return NULL; | |
150 | ||
151 | buf = kmalloc_track_caller(len + 1, gfp); | |
152 | if (buf) { | |
153 | memcpy(buf, s, len); | |
154 | buf[len] = '\0'; | |
155 | } | |
156 | return buf; | |
157 | } | |
158 | EXPORT_SYMBOL(kmemdup_nul); | |
159 | ||
610a77e0 LZ |
160 | /** |
161 | * memdup_user - duplicate memory region from user space | |
162 | * | |
163 | * @src: source address in user space | |
164 | * @len: number of bytes to copy | |
165 | * | |
a862f68a | 166 | * Return: an ERR_PTR() on failure. Result is physically |
50fd2f29 | 167 | * contiguous, to be freed by kfree(). |
610a77e0 LZ |
168 | */ |
169 | void *memdup_user(const void __user *src, size_t len) | |
170 | { | |
171 | void *p; | |
172 | ||
6c8fcc09 | 173 | p = kmalloc_track_caller(len, GFP_USER | __GFP_NOWARN); |
610a77e0 LZ |
174 | if (!p) |
175 | return ERR_PTR(-ENOMEM); | |
176 | ||
177 | if (copy_from_user(p, src, len)) { | |
178 | kfree(p); | |
179 | return ERR_PTR(-EFAULT); | |
180 | } | |
181 | ||
182 | return p; | |
183 | } | |
184 | EXPORT_SYMBOL(memdup_user); | |
185 | ||
50fd2f29 AV |
186 | /** |
187 | * vmemdup_user - duplicate memory region from user space | |
188 | * | |
189 | * @src: source address in user space | |
190 | * @len: number of bytes to copy | |
191 | * | |
a862f68a | 192 | * Return: an ERR_PTR() on failure. Result may be not |
50fd2f29 AV |
193 | * physically contiguous. Use kvfree() to free. |
194 | */ | |
195 | void *vmemdup_user(const void __user *src, size_t len) | |
196 | { | |
197 | void *p; | |
198 | ||
199 | p = kvmalloc(len, GFP_USER); | |
200 | if (!p) | |
201 | return ERR_PTR(-ENOMEM); | |
202 | ||
203 | if (copy_from_user(p, src, len)) { | |
204 | kvfree(p); | |
205 | return ERR_PTR(-EFAULT); | |
206 | } | |
207 | ||
208 | return p; | |
209 | } | |
210 | EXPORT_SYMBOL(vmemdup_user); | |
211 | ||
b86181f1 | 212 | /** |
96840aa0 | 213 | * strndup_user - duplicate an existing string from user space |
96840aa0 DA |
214 | * @s: The string to duplicate |
215 | * @n: Maximum number of bytes to copy, including the trailing NUL. | |
a862f68a | 216 | * |
e9145521 | 217 | * Return: newly allocated copy of @s or an ERR_PTR() in case of error |
96840aa0 DA |
218 | */ |
219 | char *strndup_user(const char __user *s, long n) | |
220 | { | |
221 | char *p; | |
222 | long length; | |
223 | ||
224 | length = strnlen_user(s, n); | |
225 | ||
226 | if (!length) | |
227 | return ERR_PTR(-EFAULT); | |
228 | ||
229 | if (length > n) | |
230 | return ERR_PTR(-EINVAL); | |
231 | ||
90d74045 | 232 | p = memdup_user(s, length); |
96840aa0 | 233 | |
90d74045 JL |
234 | if (IS_ERR(p)) |
235 | return p; | |
96840aa0 DA |
236 | |
237 | p[length - 1] = '\0'; | |
238 | ||
239 | return p; | |
240 | } | |
241 | EXPORT_SYMBOL(strndup_user); | |
16d69265 | 242 | |
e9d408e1 AV |
243 | /** |
244 | * memdup_user_nul - duplicate memory region from user space and NUL-terminate | |
245 | * | |
246 | * @src: source address in user space | |
247 | * @len: number of bytes to copy | |
248 | * | |
a862f68a | 249 | * Return: an ERR_PTR() on failure. |
e9d408e1 AV |
250 | */ |
251 | void *memdup_user_nul(const void __user *src, size_t len) | |
252 | { | |
253 | char *p; | |
254 | ||
255 | /* | |
256 | * Always use GFP_KERNEL, since copy_from_user() can sleep and | |
257 | * cause pagefault, which makes it pointless to use GFP_NOFS | |
258 | * or GFP_ATOMIC. | |
259 | */ | |
260 | p = kmalloc_track_caller(len + 1, GFP_KERNEL); | |
261 | if (!p) | |
262 | return ERR_PTR(-ENOMEM); | |
263 | ||
264 | if (copy_from_user(p, src, len)) { | |
265 | kfree(p); | |
266 | return ERR_PTR(-EFAULT); | |
267 | } | |
268 | p[len] = '\0'; | |
269 | ||
270 | return p; | |
271 | } | |
272 | EXPORT_SYMBOL(memdup_user_nul); | |
273 | ||
6038def0 | 274 | void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma, |
aba6dfb7 | 275 | struct vm_area_struct *prev) |
6038def0 NK |
276 | { |
277 | struct vm_area_struct *next; | |
278 | ||
279 | vma->vm_prev = prev; | |
280 | if (prev) { | |
281 | next = prev->vm_next; | |
282 | prev->vm_next = vma; | |
283 | } else { | |
aba6dfb7 | 284 | next = mm->mmap; |
6038def0 | 285 | mm->mmap = vma; |
6038def0 NK |
286 | } |
287 | vma->vm_next = next; | |
288 | if (next) | |
289 | next->vm_prev = vma; | |
290 | } | |
291 | ||
1b9fc5b2 WY |
292 | void __vma_unlink_list(struct mm_struct *mm, struct vm_area_struct *vma) |
293 | { | |
294 | struct vm_area_struct *prev, *next; | |
295 | ||
296 | next = vma->vm_next; | |
297 | prev = vma->vm_prev; | |
298 | if (prev) | |
299 | prev->vm_next = next; | |
300 | else | |
301 | mm->mmap = next; | |
302 | if (next) | |
303 | next->vm_prev = prev; | |
304 | } | |
305 | ||
b7643757 | 306 | /* Check if the vma is being used as a stack by this task */ |
d17af505 | 307 | int vma_is_stack_for_current(struct vm_area_struct *vma) |
b7643757 | 308 | { |
d17af505 AL |
309 | struct task_struct * __maybe_unused t = current; |
310 | ||
b7643757 SP |
311 | return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t)); |
312 | } | |
313 | ||
295992fb CK |
314 | /* |
315 | * Change backing file, only valid to use during initial VMA setup. | |
316 | */ | |
317 | void vma_set_file(struct vm_area_struct *vma, struct file *file) | |
318 | { | |
319 | /* Changing an anonymous vma with this is illegal */ | |
320 | get_file(file); | |
321 | swap(vma->vm_file, file); | |
322 | fput(file); | |
323 | } | |
324 | EXPORT_SYMBOL(vma_set_file); | |
325 | ||
649775be AG |
326 | #ifndef STACK_RND_MASK |
327 | #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12)) /* 8MB of VA */ | |
328 | #endif | |
329 | ||
330 | unsigned long randomize_stack_top(unsigned long stack_top) | |
331 | { | |
332 | unsigned long random_variable = 0; | |
333 | ||
334 | if (current->flags & PF_RANDOMIZE) { | |
335 | random_variable = get_random_long(); | |
336 | random_variable &= STACK_RND_MASK; | |
337 | random_variable <<= PAGE_SHIFT; | |
338 | } | |
339 | #ifdef CONFIG_STACK_GROWSUP | |
340 | return PAGE_ALIGN(stack_top) + random_variable; | |
341 | #else | |
342 | return PAGE_ALIGN(stack_top) - random_variable; | |
343 | #endif | |
344 | } | |
345 | ||
67f3977f | 346 | #ifdef CONFIG_ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT |
e7142bf5 AG |
347 | unsigned long arch_randomize_brk(struct mm_struct *mm) |
348 | { | |
349 | /* Is the current task 32bit ? */ | |
350 | if (!IS_ENABLED(CONFIG_64BIT) || is_compat_task()) | |
351 | return randomize_page(mm->brk, SZ_32M); | |
352 | ||
353 | return randomize_page(mm->brk, SZ_1G); | |
354 | } | |
355 | ||
67f3977f AG |
356 | unsigned long arch_mmap_rnd(void) |
357 | { | |
358 | unsigned long rnd; | |
359 | ||
360 | #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS | |
361 | if (is_compat_task()) | |
362 | rnd = get_random_long() & ((1UL << mmap_rnd_compat_bits) - 1); | |
363 | else | |
364 | #endif /* CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS */ | |
365 | rnd = get_random_long() & ((1UL << mmap_rnd_bits) - 1); | |
366 | ||
367 | return rnd << PAGE_SHIFT; | |
368 | } | |
67f3977f AG |
369 | |
370 | static int mmap_is_legacy(struct rlimit *rlim_stack) | |
371 | { | |
372 | if (current->personality & ADDR_COMPAT_LAYOUT) | |
373 | return 1; | |
374 | ||
375 | if (rlim_stack->rlim_cur == RLIM_INFINITY) | |
376 | return 1; | |
377 | ||
378 | return sysctl_legacy_va_layout; | |
379 | } | |
380 | ||
381 | /* | |
382 | * Leave enough space between the mmap area and the stack to honour ulimit in | |
383 | * the face of randomisation. | |
384 | */ | |
385 | #define MIN_GAP (SZ_128M) | |
386 | #define MAX_GAP (STACK_TOP / 6 * 5) | |
387 | ||
388 | static unsigned long mmap_base(unsigned long rnd, struct rlimit *rlim_stack) | |
389 | { | |
390 | unsigned long gap = rlim_stack->rlim_cur; | |
391 | unsigned long pad = stack_guard_gap; | |
392 | ||
393 | /* Account for stack randomization if necessary */ | |
394 | if (current->flags & PF_RANDOMIZE) | |
395 | pad += (STACK_RND_MASK << PAGE_SHIFT); | |
396 | ||
397 | /* Values close to RLIM_INFINITY can overflow. */ | |
398 | if (gap + pad > gap) | |
399 | gap += pad; | |
400 | ||
401 | if (gap < MIN_GAP) | |
402 | gap = MIN_GAP; | |
403 | else if (gap > MAX_GAP) | |
404 | gap = MAX_GAP; | |
405 | ||
406 | return PAGE_ALIGN(STACK_TOP - gap - rnd); | |
407 | } | |
408 | ||
409 | void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack) | |
410 | { | |
411 | unsigned long random_factor = 0UL; | |
412 | ||
413 | if (current->flags & PF_RANDOMIZE) | |
414 | random_factor = arch_mmap_rnd(); | |
415 | ||
416 | if (mmap_is_legacy(rlim_stack)) { | |
417 | mm->mmap_base = TASK_UNMAPPED_BASE + random_factor; | |
418 | mm->get_unmapped_area = arch_get_unmapped_area; | |
419 | } else { | |
420 | mm->mmap_base = mmap_base(random_factor, rlim_stack); | |
421 | mm->get_unmapped_area = arch_get_unmapped_area_topdown; | |
422 | } | |
423 | } | |
424 | #elif defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT) | |
8f2af155 | 425 | void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack) |
16d69265 AM |
426 | { |
427 | mm->mmap_base = TASK_UNMAPPED_BASE; | |
428 | mm->get_unmapped_area = arch_get_unmapped_area; | |
16d69265 AM |
429 | } |
430 | #endif | |
912985dc | 431 | |
79eb597c DJ |
432 | /** |
433 | * __account_locked_vm - account locked pages to an mm's locked_vm | |
434 | * @mm: mm to account against | |
435 | * @pages: number of pages to account | |
436 | * @inc: %true if @pages should be considered positive, %false if not | |
437 | * @task: task used to check RLIMIT_MEMLOCK | |
438 | * @bypass_rlim: %true if checking RLIMIT_MEMLOCK should be skipped | |
439 | * | |
440 | * Assumes @task and @mm are valid (i.e. at least one reference on each), and | |
c1e8d7c6 | 441 | * that mmap_lock is held as writer. |
79eb597c DJ |
442 | * |
443 | * Return: | |
444 | * * 0 on success | |
445 | * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded. | |
446 | */ | |
447 | int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc, | |
448 | struct task_struct *task, bool bypass_rlim) | |
449 | { | |
450 | unsigned long locked_vm, limit; | |
451 | int ret = 0; | |
452 | ||
42fc5414 | 453 | mmap_assert_write_locked(mm); |
79eb597c DJ |
454 | |
455 | locked_vm = mm->locked_vm; | |
456 | if (inc) { | |
457 | if (!bypass_rlim) { | |
458 | limit = task_rlimit(task, RLIMIT_MEMLOCK) >> PAGE_SHIFT; | |
459 | if (locked_vm + pages > limit) | |
460 | ret = -ENOMEM; | |
461 | } | |
462 | if (!ret) | |
463 | mm->locked_vm = locked_vm + pages; | |
464 | } else { | |
465 | WARN_ON_ONCE(pages > locked_vm); | |
466 | mm->locked_vm = locked_vm - pages; | |
467 | } | |
468 | ||
469 | pr_debug("%s: [%d] caller %ps %c%lu %lu/%lu%s\n", __func__, task->pid, | |
470 | (void *)_RET_IP_, (inc) ? '+' : '-', pages << PAGE_SHIFT, | |
471 | locked_vm << PAGE_SHIFT, task_rlimit(task, RLIMIT_MEMLOCK), | |
472 | ret ? " - exceeded" : ""); | |
473 | ||
474 | return ret; | |
475 | } | |
476 | EXPORT_SYMBOL_GPL(__account_locked_vm); | |
477 | ||
478 | /** | |
479 | * account_locked_vm - account locked pages to an mm's locked_vm | |
480 | * @mm: mm to account against, may be NULL | |
481 | * @pages: number of pages to account | |
482 | * @inc: %true if @pages should be considered positive, %false if not | |
483 | * | |
484 | * Assumes a non-NULL @mm is valid (i.e. at least one reference on it). | |
485 | * | |
486 | * Return: | |
487 | * * 0 on success, or if mm is NULL | |
488 | * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded. | |
489 | */ | |
490 | int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc) | |
491 | { | |
492 | int ret; | |
493 | ||
494 | if (pages == 0 || !mm) | |
495 | return 0; | |
496 | ||
d8ed45c5 | 497 | mmap_write_lock(mm); |
79eb597c DJ |
498 | ret = __account_locked_vm(mm, pages, inc, current, |
499 | capable(CAP_IPC_LOCK)); | |
d8ed45c5 | 500 | mmap_write_unlock(mm); |
79eb597c DJ |
501 | |
502 | return ret; | |
503 | } | |
504 | EXPORT_SYMBOL_GPL(account_locked_vm); | |
505 | ||
eb36c587 AV |
506 | unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr, |
507 | unsigned long len, unsigned long prot, | |
9fbeb5ab | 508 | unsigned long flag, unsigned long pgoff) |
eb36c587 AV |
509 | { |
510 | unsigned long ret; | |
511 | struct mm_struct *mm = current->mm; | |
41badc15 | 512 | unsigned long populate; |
897ab3e0 | 513 | LIST_HEAD(uf); |
eb36c587 AV |
514 | |
515 | ret = security_mmap_file(file, prot, flag); | |
516 | if (!ret) { | |
d8ed45c5 | 517 | if (mmap_write_lock_killable(mm)) |
9fbeb5ab | 518 | return -EINTR; |
45e55300 PC |
519 | ret = do_mmap(file, addr, len, prot, flag, pgoff, &populate, |
520 | &uf); | |
d8ed45c5 | 521 | mmap_write_unlock(mm); |
897ab3e0 | 522 | userfaultfd_unmap_complete(mm, &uf); |
41badc15 ML |
523 | if (populate) |
524 | mm_populate(ret, populate); | |
eb36c587 AV |
525 | } |
526 | return ret; | |
527 | } | |
528 | ||
529 | unsigned long vm_mmap(struct file *file, unsigned long addr, | |
530 | unsigned long len, unsigned long prot, | |
531 | unsigned long flag, unsigned long offset) | |
532 | { | |
533 | if (unlikely(offset + PAGE_ALIGN(len) < offset)) | |
534 | return -EINVAL; | |
ea53cde0 | 535 | if (unlikely(offset_in_page(offset))) |
eb36c587 AV |
536 | return -EINVAL; |
537 | ||
9fbeb5ab | 538 | return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT); |
eb36c587 AV |
539 | } |
540 | EXPORT_SYMBOL(vm_mmap); | |
541 | ||
a7c3e901 MH |
542 | /** |
543 | * kvmalloc_node - attempt to allocate physically contiguous memory, but upon | |
544 | * failure, fall back to non-contiguous (vmalloc) allocation. | |
545 | * @size: size of the request. | |
546 | * @flags: gfp mask for the allocation - must be compatible (superset) with GFP_KERNEL. | |
547 | * @node: numa node to allocate from | |
548 | * | |
549 | * Uses kmalloc to get the memory but if the allocation fails then falls back | |
550 | * to the vmalloc allocator. Use kvfree for freeing the memory. | |
551 | * | |
a421ef30 | 552 | * GFP_NOWAIT and GFP_ATOMIC are not supported, neither is the __GFP_NORETRY modifier. |
cc965a29 MH |
553 | * __GFP_RETRY_MAYFAIL is supported, and it should be used only if kmalloc is |
554 | * preferable to the vmalloc fallback, due to visible performance drawbacks. | |
a7c3e901 | 555 | * |
a862f68a | 556 | * Return: pointer to the allocated memory of %NULL in case of failure |
a7c3e901 MH |
557 | */ |
558 | void *kvmalloc_node(size_t size, gfp_t flags, int node) | |
559 | { | |
560 | gfp_t kmalloc_flags = flags; | |
561 | void *ret; | |
562 | ||
a7c3e901 | 563 | /* |
4f4f2ba9 MH |
564 | * We want to attempt a large physically contiguous block first because |
565 | * it is less likely to fragment multiple larger blocks and therefore | |
566 | * contribute to a long term fragmentation less than vmalloc fallback. | |
567 | * However make sure that larger requests are not too disruptive - no | |
568 | * OOM killer and no allocation failure warnings as we have a fallback. | |
a7c3e901 | 569 | */ |
6c5ab651 MH |
570 | if (size > PAGE_SIZE) { |
571 | kmalloc_flags |= __GFP_NOWARN; | |
572 | ||
cc965a29 | 573 | if (!(kmalloc_flags & __GFP_RETRY_MAYFAIL)) |
6c5ab651 | 574 | kmalloc_flags |= __GFP_NORETRY; |
a421ef30 MH |
575 | |
576 | /* nofail semantic is implemented by the vmalloc fallback */ | |
577 | kmalloc_flags &= ~__GFP_NOFAIL; | |
6c5ab651 | 578 | } |
a7c3e901 MH |
579 | |
580 | ret = kmalloc_node(size, kmalloc_flags, node); | |
581 | ||
582 | /* | |
583 | * It doesn't really make sense to fallback to vmalloc for sub page | |
584 | * requests | |
585 | */ | |
586 | if (ret || size <= PAGE_SIZE) | |
587 | return ret; | |
588 | ||
7661809d | 589 | /* Don't even allow crazy sizes */ |
0708a0af DB |
590 | if (unlikely(size > INT_MAX)) { |
591 | WARN_ON_ONCE(!(flags & __GFP_NOWARN)); | |
7661809d | 592 | return NULL; |
0708a0af | 593 | } |
7661809d | 594 | |
2b905948 | 595 | return __vmalloc_node(size, 1, flags, node, |
8594a21c | 596 | __builtin_return_address(0)); |
a7c3e901 MH |
597 | } |
598 | EXPORT_SYMBOL(kvmalloc_node); | |
599 | ||
ff4dc772 | 600 | /** |
04b8e946 AM |
601 | * kvfree() - Free memory. |
602 | * @addr: Pointer to allocated memory. | |
ff4dc772 | 603 | * |
04b8e946 AM |
604 | * kvfree frees memory allocated by any of vmalloc(), kmalloc() or kvmalloc(). |
605 | * It is slightly more efficient to use kfree() or vfree() if you are certain | |
606 | * that you know which one to use. | |
607 | * | |
52414d33 | 608 | * Context: Either preemptible task context or not-NMI interrupt. |
ff4dc772 | 609 | */ |
39f1f78d AV |
610 | void kvfree(const void *addr) |
611 | { | |
612 | if (is_vmalloc_addr(addr)) | |
613 | vfree(addr); | |
614 | else | |
615 | kfree(addr); | |
616 | } | |
617 | EXPORT_SYMBOL(kvfree); | |
618 | ||
d4eaa283 WL |
619 | /** |
620 | * kvfree_sensitive - Free a data object containing sensitive information. | |
621 | * @addr: address of the data object to be freed. | |
622 | * @len: length of the data object. | |
623 | * | |
624 | * Use the special memzero_explicit() function to clear the content of a | |
625 | * kvmalloc'ed object containing sensitive data to make sure that the | |
626 | * compiler won't optimize out the data clearing. | |
627 | */ | |
628 | void kvfree_sensitive(const void *addr, size_t len) | |
629 | { | |
630 | if (likely(!ZERO_OR_NULL_PTR(addr))) { | |
631 | memzero_explicit((void *)addr, len); | |
632 | kvfree(addr); | |
633 | } | |
634 | } | |
635 | EXPORT_SYMBOL(kvfree_sensitive); | |
636 | ||
de2860f4 DC |
637 | void *kvrealloc(const void *p, size_t oldsize, size_t newsize, gfp_t flags) |
638 | { | |
639 | void *newp; | |
640 | ||
641 | if (oldsize >= newsize) | |
642 | return (void *)p; | |
643 | newp = kvmalloc(newsize, flags); | |
644 | if (!newp) | |
645 | return NULL; | |
646 | memcpy(newp, p, oldsize); | |
647 | kvfree(p); | |
648 | return newp; | |
649 | } | |
650 | EXPORT_SYMBOL(kvrealloc); | |
651 | ||
a8749a35 PB |
652 | /** |
653 | * __vmalloc_array - allocate memory for a virtually contiguous array. | |
654 | * @n: number of elements. | |
655 | * @size: element size. | |
656 | * @flags: the type of memory to allocate (see kmalloc). | |
657 | */ | |
658 | void *__vmalloc_array(size_t n, size_t size, gfp_t flags) | |
659 | { | |
660 | size_t bytes; | |
661 | ||
662 | if (unlikely(check_mul_overflow(n, size, &bytes))) | |
663 | return NULL; | |
664 | return __vmalloc(bytes, flags); | |
665 | } | |
666 | EXPORT_SYMBOL(__vmalloc_array); | |
667 | ||
668 | /** | |
669 | * vmalloc_array - allocate memory for a virtually contiguous array. | |
670 | * @n: number of elements. | |
671 | * @size: element size. | |
672 | */ | |
673 | void *vmalloc_array(size_t n, size_t size) | |
674 | { | |
675 | return __vmalloc_array(n, size, GFP_KERNEL); | |
676 | } | |
677 | EXPORT_SYMBOL(vmalloc_array); | |
678 | ||
679 | /** | |
680 | * __vcalloc - allocate and zero memory for a virtually contiguous array. | |
681 | * @n: number of elements. | |
682 | * @size: element size. | |
683 | * @flags: the type of memory to allocate (see kmalloc). | |
684 | */ | |
685 | void *__vcalloc(size_t n, size_t size, gfp_t flags) | |
686 | { | |
687 | return __vmalloc_array(n, size, flags | __GFP_ZERO); | |
688 | } | |
689 | EXPORT_SYMBOL(__vcalloc); | |
690 | ||
691 | /** | |
692 | * vcalloc - allocate and zero memory for a virtually contiguous array. | |
693 | * @n: number of elements. | |
694 | * @size: element size. | |
695 | */ | |
696 | void *vcalloc(size_t n, size_t size) | |
697 | { | |
698 | return __vmalloc_array(n, size, GFP_KERNEL | __GFP_ZERO); | |
699 | } | |
700 | EXPORT_SYMBOL(vcalloc); | |
701 | ||
e39155ea KS |
702 | /* Neutral page->mapping pointer to address_space or anon_vma or other */ |
703 | void *page_rmapping(struct page *page) | |
704 | { | |
64601000 | 705 | return folio_raw_mapping(page_folio(page)); |
e39155ea KS |
706 | } |
707 | ||
dd10ab04 MWO |
708 | /** |
709 | * folio_mapped - Is this folio mapped into userspace? | |
710 | * @folio: The folio. | |
711 | * | |
712 | * Return: True if any page in this folio is referenced by user page tables. | |
1aa8aea5 | 713 | */ |
dd10ab04 | 714 | bool folio_mapped(struct folio *folio) |
1aa8aea5 | 715 | { |
dd10ab04 | 716 | long i, nr; |
1aa8aea5 | 717 | |
a1efe484 | 718 | if (!folio_test_large(folio)) |
dd10ab04 MWO |
719 | return atomic_read(&folio->_mapcount) >= 0; |
720 | if (atomic_read(folio_mapcount_ptr(folio)) >= 0) | |
1aa8aea5 | 721 | return true; |
dd10ab04 | 722 | if (folio_test_hugetlb(folio)) |
1aa8aea5 | 723 | return false; |
dd10ab04 MWO |
724 | |
725 | nr = folio_nr_pages(folio); | |
726 | for (i = 0; i < nr; i++) { | |
727 | if (atomic_read(&folio_page(folio, i)->_mapcount) >= 0) | |
1aa8aea5 AM |
728 | return true; |
729 | } | |
730 | return false; | |
731 | } | |
dd10ab04 | 732 | EXPORT_SYMBOL(folio_mapped); |
1aa8aea5 | 733 | |
e05b3453 | 734 | struct anon_vma *folio_anon_vma(struct folio *folio) |
e39155ea | 735 | { |
64601000 | 736 | unsigned long mapping = (unsigned long)folio->mapping; |
e39155ea | 737 | |
e39155ea KS |
738 | if ((mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) |
739 | return NULL; | |
64601000 | 740 | return (void *)(mapping - PAGE_MAPPING_ANON); |
e39155ea KS |
741 | } |
742 | ||
2f52578f MWO |
743 | /** |
744 | * folio_mapping - Find the mapping where this folio is stored. | |
745 | * @folio: The folio. | |
746 | * | |
747 | * For folios which are in the page cache, return the mapping that this | |
748 | * page belongs to. Folios in the swap cache return the swap mapping | |
749 | * this page is stored in (which is different from the mapping for the | |
750 | * swap file or swap device where the data is stored). | |
751 | * | |
752 | * You can call this for folios which aren't in the swap cache or page | |
753 | * cache and it will return NULL. | |
754 | */ | |
755 | struct address_space *folio_mapping(struct folio *folio) | |
9800339b | 756 | { |
1c290f64 KS |
757 | struct address_space *mapping; |
758 | ||
03e5ac2f | 759 | /* This happens if someone calls flush_dcache_page on slab page */ |
2f52578f | 760 | if (unlikely(folio_test_slab(folio))) |
03e5ac2f MP |
761 | return NULL; |
762 | ||
2f52578f MWO |
763 | if (unlikely(folio_test_swapcache(folio))) |
764 | return swap_address_space(folio_swap_entry(folio)); | |
e39155ea | 765 | |
2f52578f | 766 | mapping = folio->mapping; |
bda807d4 | 767 | if ((unsigned long)mapping & PAGE_MAPPING_ANON) |
e39155ea | 768 | return NULL; |
bda807d4 MK |
769 | |
770 | return (void *)((unsigned long)mapping & ~PAGE_MAPPING_FLAGS); | |
9800339b | 771 | } |
2f52578f | 772 | EXPORT_SYMBOL(folio_mapping); |
9800339b | 773 | |
b20ce5e0 KS |
774 | /* Slow path of page_mapcount() for compound pages */ |
775 | int __page_mapcount(struct page *page) | |
776 | { | |
777 | int ret; | |
778 | ||
779 | ret = atomic_read(&page->_mapcount) + 1; | |
dd78fedd KS |
780 | /* |
781 | * For file THP page->_mapcount contains total number of mapping | |
782 | * of the page: no need to look into compound_mapcount. | |
783 | */ | |
784 | if (!PageAnon(page) && !PageHuge(page)) | |
785 | return ret; | |
b20ce5e0 KS |
786 | page = compound_head(page); |
787 | ret += atomic_read(compound_mapcount_ptr(page)) + 1; | |
788 | if (PageDoubleMap(page)) | |
789 | ret--; | |
790 | return ret; | |
791 | } | |
792 | EXPORT_SYMBOL_GPL(__page_mapcount); | |
793 | ||
4ba1119c MWO |
794 | /** |
795 | * folio_mapcount() - Calculate the number of mappings of this folio. | |
796 | * @folio: The folio. | |
797 | * | |
798 | * A large folio tracks both how many times the entire folio is mapped, | |
799 | * and how many times each individual page in the folio is mapped. | |
800 | * This function calculates the total number of times the folio is | |
801 | * mapped. | |
802 | * | |
803 | * Return: The number of times this folio is mapped. | |
804 | */ | |
805 | int folio_mapcount(struct folio *folio) | |
806 | { | |
807 | int i, compound, nr, ret; | |
808 | ||
809 | if (likely(!folio_test_large(folio))) | |
810 | return atomic_read(&folio->_mapcount) + 1; | |
811 | ||
812 | compound = folio_entire_mapcount(folio); | |
813 | nr = folio_nr_pages(folio); | |
814 | if (folio_test_hugetlb(folio)) | |
815 | return compound; | |
816 | ret = compound; | |
817 | for (i = 0; i < nr; i++) | |
818 | ret += atomic_read(&folio_page(folio, i)->_mapcount) + 1; | |
819 | /* File pages has compound_mapcount included in _mapcount */ | |
820 | if (!folio_test_anon(folio)) | |
821 | return ret - compound * nr; | |
822 | if (folio_test_double_map(folio)) | |
823 | ret -= nr; | |
824 | return ret; | |
825 | } | |
826 | ||
715cbfd6 MWO |
827 | /** |
828 | * folio_copy - Copy the contents of one folio to another. | |
829 | * @dst: Folio to copy to. | |
830 | * @src: Folio to copy from. | |
831 | * | |
832 | * The bytes in the folio represented by @src are copied to @dst. | |
833 | * Assumes the caller has validated that @dst is at least as large as @src. | |
834 | * Can be called in atomic context for order-0 folios, but if the folio is | |
835 | * larger, it may sleep. | |
836 | */ | |
837 | void folio_copy(struct folio *dst, struct folio *src) | |
79789db0 | 838 | { |
715cbfd6 MWO |
839 | long i = 0; |
840 | long nr = folio_nr_pages(src); | |
79789db0 | 841 | |
715cbfd6 MWO |
842 | for (;;) { |
843 | copy_highpage(folio_page(dst, i), folio_page(src, i)); | |
844 | if (++i == nr) | |
845 | break; | |
79789db0 | 846 | cond_resched(); |
79789db0 MWO |
847 | } |
848 | } | |
849 | ||
39a1aa8e AR |
850 | int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS; |
851 | int sysctl_overcommit_ratio __read_mostly = 50; | |
852 | unsigned long sysctl_overcommit_kbytes __read_mostly; | |
853 | int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT; | |
854 | unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */ | |
855 | unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */ | |
856 | ||
32927393 CH |
857 | int overcommit_ratio_handler(struct ctl_table *table, int write, void *buffer, |
858 | size_t *lenp, loff_t *ppos) | |
49f0ce5f JM |
859 | { |
860 | int ret; | |
861 | ||
862 | ret = proc_dointvec(table, write, buffer, lenp, ppos); | |
863 | if (ret == 0 && write) | |
864 | sysctl_overcommit_kbytes = 0; | |
865 | return ret; | |
866 | } | |
867 | ||
56f3547b FT |
868 | static void sync_overcommit_as(struct work_struct *dummy) |
869 | { | |
870 | percpu_counter_sync(&vm_committed_as); | |
871 | } | |
872 | ||
873 | int overcommit_policy_handler(struct ctl_table *table, int write, void *buffer, | |
874 | size_t *lenp, loff_t *ppos) | |
875 | { | |
876 | struct ctl_table t; | |
bcbda810 | 877 | int new_policy = -1; |
56f3547b FT |
878 | int ret; |
879 | ||
880 | /* | |
881 | * The deviation of sync_overcommit_as could be big with loose policy | |
882 | * like OVERCOMMIT_ALWAYS/OVERCOMMIT_GUESS. When changing policy to | |
883 | * strict OVERCOMMIT_NEVER, we need to reduce the deviation to comply | |
31454980 | 884 | * with the strict "NEVER", and to avoid possible race condition (even |
56f3547b FT |
885 | * though user usually won't too frequently do the switching to policy |
886 | * OVERCOMMIT_NEVER), the switch is done in the following order: | |
887 | * 1. changing the batch | |
888 | * 2. sync percpu count on each CPU | |
889 | * 3. switch the policy | |
890 | */ | |
891 | if (write) { | |
892 | t = *table; | |
893 | t.data = &new_policy; | |
894 | ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); | |
bcbda810 | 895 | if (ret || new_policy == -1) |
56f3547b FT |
896 | return ret; |
897 | ||
898 | mm_compute_batch(new_policy); | |
899 | if (new_policy == OVERCOMMIT_NEVER) | |
900 | schedule_on_each_cpu(sync_overcommit_as); | |
901 | sysctl_overcommit_memory = new_policy; | |
902 | } else { | |
903 | ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); | |
904 | } | |
905 | ||
906 | return ret; | |
907 | } | |
908 | ||
32927393 CH |
909 | int overcommit_kbytes_handler(struct ctl_table *table, int write, void *buffer, |
910 | size_t *lenp, loff_t *ppos) | |
49f0ce5f JM |
911 | { |
912 | int ret; | |
913 | ||
914 | ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); | |
915 | if (ret == 0 && write) | |
916 | sysctl_overcommit_ratio = 0; | |
917 | return ret; | |
918 | } | |
919 | ||
00619bcc JM |
920 | /* |
921 | * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used | |
922 | */ | |
923 | unsigned long vm_commit_limit(void) | |
924 | { | |
49f0ce5f JM |
925 | unsigned long allowed; |
926 | ||
927 | if (sysctl_overcommit_kbytes) | |
928 | allowed = sysctl_overcommit_kbytes >> (PAGE_SHIFT - 10); | |
929 | else | |
ca79b0c2 | 930 | allowed = ((totalram_pages() - hugetlb_total_pages()) |
49f0ce5f JM |
931 | * sysctl_overcommit_ratio / 100); |
932 | allowed += total_swap_pages; | |
933 | ||
934 | return allowed; | |
00619bcc JM |
935 | } |
936 | ||
39a1aa8e AR |
937 | /* |
938 | * Make sure vm_committed_as in one cacheline and not cacheline shared with | |
939 | * other variables. It can be updated by several CPUs frequently. | |
940 | */ | |
941 | struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp; | |
942 | ||
943 | /* | |
944 | * The global memory commitment made in the system can be a metric | |
945 | * that can be used to drive ballooning decisions when Linux is hosted | |
946 | * as a guest. On Hyper-V, the host implements a policy engine for dynamically | |
947 | * balancing memory across competing virtual machines that are hosted. | |
948 | * Several metrics drive this policy engine including the guest reported | |
949 | * memory commitment. | |
4e2ee51e FT |
950 | * |
951 | * The time cost of this is very low for small platforms, and for big | |
952 | * platform like a 2S/36C/72T Skylake server, in worst case where | |
953 | * vm_committed_as's spinlock is under severe contention, the time cost | |
954 | * could be about 30~40 microseconds. | |
39a1aa8e AR |
955 | */ |
956 | unsigned long vm_memory_committed(void) | |
957 | { | |
4e2ee51e | 958 | return percpu_counter_sum_positive(&vm_committed_as); |
39a1aa8e AR |
959 | } |
960 | EXPORT_SYMBOL_GPL(vm_memory_committed); | |
961 | ||
962 | /* | |
963 | * Check that a process has enough memory to allocate a new virtual | |
964 | * mapping. 0 means there is enough memory for the allocation to | |
965 | * succeed and -ENOMEM implies there is not. | |
966 | * | |
967 | * We currently support three overcommit policies, which are set via the | |
ad56b738 | 968 | * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting.rst |
39a1aa8e AR |
969 | * |
970 | * Strict overcommit modes added 2002 Feb 26 by Alan Cox. | |
971 | * Additional code 2002 Jul 20 by Robert Love. | |
972 | * | |
973 | * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise. | |
974 | * | |
975 | * Note this is a helper function intended to be used by LSMs which | |
976 | * wish to use this logic. | |
977 | */ | |
978 | int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin) | |
979 | { | |
8c7829b0 | 980 | long allowed; |
39a1aa8e | 981 | |
39a1aa8e AR |
982 | vm_acct_memory(pages); |
983 | ||
984 | /* | |
985 | * Sometimes we want to use more memory than we have | |
986 | */ | |
987 | if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS) | |
988 | return 0; | |
989 | ||
990 | if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) { | |
8c7829b0 | 991 | if (pages > totalram_pages() + total_swap_pages) |
39a1aa8e | 992 | goto error; |
8c7829b0 | 993 | return 0; |
39a1aa8e AR |
994 | } |
995 | ||
996 | allowed = vm_commit_limit(); | |
997 | /* | |
998 | * Reserve some for root | |
999 | */ | |
1000 | if (!cap_sys_admin) | |
1001 | allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10); | |
1002 | ||
1003 | /* | |
1004 | * Don't let a single process grow so big a user can't recover | |
1005 | */ | |
1006 | if (mm) { | |
8c7829b0 JW |
1007 | long reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10); |
1008 | ||
39a1aa8e AR |
1009 | allowed -= min_t(long, mm->total_vm / 32, reserve); |
1010 | } | |
1011 | ||
1012 | if (percpu_counter_read_positive(&vm_committed_as) < allowed) | |
1013 | return 0; | |
1014 | error: | |
1015 | vm_unacct_memory(pages); | |
1016 | ||
1017 | return -ENOMEM; | |
1018 | } | |
1019 | ||
a9090253 WR |
1020 | /** |
1021 | * get_cmdline() - copy the cmdline value to a buffer. | |
1022 | * @task: the task whose cmdline value to copy. | |
1023 | * @buffer: the buffer to copy to. | |
1024 | * @buflen: the length of the buffer. Larger cmdline values are truncated | |
1025 | * to this length. | |
a862f68a MR |
1026 | * |
1027 | * Return: the size of the cmdline field copied. Note that the copy does | |
a9090253 WR |
1028 | * not guarantee an ending NULL byte. |
1029 | */ | |
1030 | int get_cmdline(struct task_struct *task, char *buffer, int buflen) | |
1031 | { | |
1032 | int res = 0; | |
1033 | unsigned int len; | |
1034 | struct mm_struct *mm = get_task_mm(task); | |
a3b609ef | 1035 | unsigned long arg_start, arg_end, env_start, env_end; |
a9090253 WR |
1036 | if (!mm) |
1037 | goto out; | |
1038 | if (!mm->arg_end) | |
1039 | goto out_mm; /* Shh! No looking before we're done */ | |
1040 | ||
bc81426f | 1041 | spin_lock(&mm->arg_lock); |
a3b609ef MG |
1042 | arg_start = mm->arg_start; |
1043 | arg_end = mm->arg_end; | |
1044 | env_start = mm->env_start; | |
1045 | env_end = mm->env_end; | |
bc81426f | 1046 | spin_unlock(&mm->arg_lock); |
a3b609ef MG |
1047 | |
1048 | len = arg_end - arg_start; | |
a9090253 WR |
1049 | |
1050 | if (len > buflen) | |
1051 | len = buflen; | |
1052 | ||
f307ab6d | 1053 | res = access_process_vm(task, arg_start, buffer, len, FOLL_FORCE); |
a9090253 WR |
1054 | |
1055 | /* | |
1056 | * If the nul at the end of args has been overwritten, then | |
1057 | * assume application is using setproctitle(3). | |
1058 | */ | |
1059 | if (res > 0 && buffer[res-1] != '\0' && len < buflen) { | |
1060 | len = strnlen(buffer, res); | |
1061 | if (len < res) { | |
1062 | res = len; | |
1063 | } else { | |
a3b609ef | 1064 | len = env_end - env_start; |
a9090253 WR |
1065 | if (len > buflen - res) |
1066 | len = buflen - res; | |
a3b609ef | 1067 | res += access_process_vm(task, env_start, |
f307ab6d LS |
1068 | buffer+res, len, |
1069 | FOLL_FORCE); | |
a9090253 WR |
1070 | res = strnlen(buffer, res); |
1071 | } | |
1072 | } | |
1073 | out_mm: | |
1074 | mmput(mm); | |
1075 | out: | |
1076 | return res; | |
1077 | } | |
010c164a | 1078 | |
4d1a8a2d | 1079 | int __weak memcmp_pages(struct page *page1, struct page *page2) |
010c164a SL |
1080 | { |
1081 | char *addr1, *addr2; | |
1082 | int ret; | |
1083 | ||
1084 | addr1 = kmap_atomic(page1); | |
1085 | addr2 = kmap_atomic(page2); | |
1086 | ret = memcmp(addr1, addr2, PAGE_SIZE); | |
1087 | kunmap_atomic(addr2); | |
1088 | kunmap_atomic(addr1); | |
1089 | return ret; | |
1090 | } | |
8e7f37f2 | 1091 | |
5bb1bb35 | 1092 | #ifdef CONFIG_PRINTK |
8e7f37f2 PM |
1093 | /** |
1094 | * mem_dump_obj - Print available provenance information | |
1095 | * @object: object for which to find provenance information. | |
1096 | * | |
1097 | * This function uses pr_cont(), so that the caller is expected to have | |
1098 | * printed out whatever preamble is appropriate. The provenance information | |
1099 | * depends on the type of object and on how much debugging is enabled. | |
1100 | * For example, for a slab-cache object, the slab name is printed, and, | |
1101 | * if available, the return address and stack trace from the allocation | |
e548eaa1 | 1102 | * and last free path of that object. |
8e7f37f2 PM |
1103 | */ |
1104 | void mem_dump_obj(void *object) | |
1105 | { | |
2521781c JP |
1106 | const char *type; |
1107 | ||
98f18083 PM |
1108 | if (kmem_valid_obj(object)) { |
1109 | kmem_dump_obj(object); | |
1110 | return; | |
1111 | } | |
2521781c | 1112 | |
98f18083 PM |
1113 | if (vmalloc_dump_obj(object)) |
1114 | return; | |
2521781c JP |
1115 | |
1116 | if (virt_addr_valid(object)) | |
1117 | type = "non-slab/vmalloc memory"; | |
1118 | else if (object == NULL) | |
1119 | type = "NULL pointer"; | |
1120 | else if (object == ZERO_SIZE_PTR) | |
1121 | type = "zero-size pointer"; | |
1122 | else | |
1123 | type = "non-paged memory"; | |
1124 | ||
1125 | pr_cont(" %s\n", type); | |
8e7f37f2 | 1126 | } |
0d3dd2c8 | 1127 | EXPORT_SYMBOL_GPL(mem_dump_obj); |
5bb1bb35 | 1128 | #endif |
82840451 DH |
1129 | |
1130 | /* | |
1131 | * A driver might set a page logically offline -- PageOffline() -- and | |
1132 | * turn the page inaccessible in the hypervisor; after that, access to page | |
1133 | * content can be fatal. | |
1134 | * | |
1135 | * Some special PFN walkers -- i.e., /proc/kcore -- read content of random | |
1136 | * pages after checking PageOffline(); however, these PFN walkers can race | |
1137 | * with drivers that set PageOffline(). | |
1138 | * | |
1139 | * page_offline_freeze()/page_offline_thaw() allows for a subsystem to | |
1140 | * synchronize with such drivers, achieving that a page cannot be set | |
1141 | * PageOffline() while frozen. | |
1142 | * | |
1143 | * page_offline_begin()/page_offline_end() is used by drivers that care about | |
1144 | * such races when setting a page PageOffline(). | |
1145 | */ | |
1146 | static DECLARE_RWSEM(page_offline_rwsem); | |
1147 | ||
1148 | void page_offline_freeze(void) | |
1149 | { | |
1150 | down_read(&page_offline_rwsem); | |
1151 | } | |
1152 | ||
1153 | void page_offline_thaw(void) | |
1154 | { | |
1155 | up_read(&page_offline_rwsem); | |
1156 | } | |
1157 | ||
1158 | void page_offline_begin(void) | |
1159 | { | |
1160 | down_write(&page_offline_rwsem); | |
1161 | } | |
1162 | EXPORT_SYMBOL(page_offline_begin); | |
1163 | ||
1164 | void page_offline_end(void) | |
1165 | { | |
1166 | up_write(&page_offline_rwsem); | |
1167 | } | |
1168 | EXPORT_SYMBOL(page_offline_end); | |
08b0b005 MWO |
1169 | |
1170 | #ifndef ARCH_IMPLEMENTS_FLUSH_DCACHE_FOLIO | |
1171 | void flush_dcache_folio(struct folio *folio) | |
1172 | { | |
1173 | long i, nr = folio_nr_pages(folio); | |
1174 | ||
1175 | for (i = 0; i < nr; i++) | |
1176 | flush_dcache_page(folio_page(folio, i)); | |
1177 | } | |
1178 | EXPORT_SYMBOL(flush_dcache_folio); | |
1179 | #endif |