]>
Commit | Line | Data |
---|---|---|
457c8996 | 1 | // SPDX-License-Identifier: GPL-2.0-only |
16d69265 | 2 | #include <linux/mm.h> |
30992c97 MM |
3 | #include <linux/slab.h> |
4 | #include <linux/string.h> | |
3b32123d | 5 | #include <linux/compiler.h> |
b95f1b31 | 6 | #include <linux/export.h> |
96840aa0 | 7 | #include <linux/err.h> |
3b8f14b4 | 8 | #include <linux/sched.h> |
6e84f315 | 9 | #include <linux/sched/mm.h> |
79eb597c | 10 | #include <linux/sched/signal.h> |
68db0cf1 | 11 | #include <linux/sched/task_stack.h> |
eb36c587 | 12 | #include <linux/security.h> |
9800339b | 13 | #include <linux/swap.h> |
33806f06 | 14 | #include <linux/swapops.h> |
00619bcc JM |
15 | #include <linux/mman.h> |
16 | #include <linux/hugetlb.h> | |
39f1f78d | 17 | #include <linux/vmalloc.h> |
897ab3e0 | 18 | #include <linux/userfaultfd_k.h> |
649775be | 19 | #include <linux/elf.h> |
67f3977f AG |
20 | #include <linux/elf-randomize.h> |
21 | #include <linux/personality.h> | |
649775be | 22 | #include <linux/random.h> |
67f3977f AG |
23 | #include <linux/processor.h> |
24 | #include <linux/sizes.h> | |
25 | #include <linux/compat.h> | |
00619bcc | 26 | |
7c0f6ba6 | 27 | #include <linux/uaccess.h> |
30992c97 | 28 | |
6038def0 NK |
29 | #include "internal.h" |
30 | ||
a4bb1e43 AH |
31 | /** |
32 | * kfree_const - conditionally free memory | |
33 | * @x: pointer to the memory | |
34 | * | |
35 | * Function calls kfree only if @x is not in .rodata section. | |
36 | */ | |
37 | void kfree_const(const void *x) | |
38 | { | |
39 | if (!is_kernel_rodata((unsigned long)x)) | |
40 | kfree(x); | |
41 | } | |
42 | EXPORT_SYMBOL(kfree_const); | |
43 | ||
30992c97 | 44 | /** |
30992c97 | 45 | * kstrdup - allocate space for and copy an existing string |
30992c97 MM |
46 | * @s: the string to duplicate |
47 | * @gfp: the GFP mask used in the kmalloc() call when allocating memory | |
a862f68a MR |
48 | * |
49 | * Return: newly allocated copy of @s or %NULL in case of error | |
30992c97 MM |
50 | */ |
51 | char *kstrdup(const char *s, gfp_t gfp) | |
52 | { | |
53 | size_t len; | |
54 | char *buf; | |
55 | ||
56 | if (!s) | |
57 | return NULL; | |
58 | ||
59 | len = strlen(s) + 1; | |
1d2c8eea | 60 | buf = kmalloc_track_caller(len, gfp); |
30992c97 MM |
61 | if (buf) |
62 | memcpy(buf, s, len); | |
63 | return buf; | |
64 | } | |
65 | EXPORT_SYMBOL(kstrdup); | |
96840aa0 | 66 | |
a4bb1e43 AH |
67 | /** |
68 | * kstrdup_const - conditionally duplicate an existing const string | |
69 | * @s: the string to duplicate | |
70 | * @gfp: the GFP mask used in the kmalloc() call when allocating memory | |
71 | * | |
a862f68a MR |
72 | * Note: Strings allocated by kstrdup_const should be freed by kfree_const. |
73 | * | |
74 | * Return: source string if it is in .rodata section otherwise | |
75 | * fallback to kstrdup. | |
a4bb1e43 AH |
76 | */ |
77 | const char *kstrdup_const(const char *s, gfp_t gfp) | |
78 | { | |
79 | if (is_kernel_rodata((unsigned long)s)) | |
80 | return s; | |
81 | ||
82 | return kstrdup(s, gfp); | |
83 | } | |
84 | EXPORT_SYMBOL(kstrdup_const); | |
85 | ||
1e66df3e JF |
86 | /** |
87 | * kstrndup - allocate space for and copy an existing string | |
88 | * @s: the string to duplicate | |
89 | * @max: read at most @max chars from @s | |
90 | * @gfp: the GFP mask used in the kmalloc() call when allocating memory | |
f3515741 DH |
91 | * |
92 | * Note: Use kmemdup_nul() instead if the size is known exactly. | |
a862f68a MR |
93 | * |
94 | * Return: newly allocated copy of @s or %NULL in case of error | |
1e66df3e JF |
95 | */ |
96 | char *kstrndup(const char *s, size_t max, gfp_t gfp) | |
97 | { | |
98 | size_t len; | |
99 | char *buf; | |
100 | ||
101 | if (!s) | |
102 | return NULL; | |
103 | ||
104 | len = strnlen(s, max); | |
105 | buf = kmalloc_track_caller(len+1, gfp); | |
106 | if (buf) { | |
107 | memcpy(buf, s, len); | |
108 | buf[len] = '\0'; | |
109 | } | |
110 | return buf; | |
111 | } | |
112 | EXPORT_SYMBOL(kstrndup); | |
113 | ||
1a2f67b4 AD |
114 | /** |
115 | * kmemdup - duplicate region of memory | |
116 | * | |
117 | * @src: memory region to duplicate | |
118 | * @len: memory region length | |
119 | * @gfp: GFP mask to use | |
a862f68a MR |
120 | * |
121 | * Return: newly allocated copy of @src or %NULL in case of error | |
1a2f67b4 AD |
122 | */ |
123 | void *kmemdup(const void *src, size_t len, gfp_t gfp) | |
124 | { | |
125 | void *p; | |
126 | ||
1d2c8eea | 127 | p = kmalloc_track_caller(len, gfp); |
1a2f67b4 AD |
128 | if (p) |
129 | memcpy(p, src, len); | |
130 | return p; | |
131 | } | |
132 | EXPORT_SYMBOL(kmemdup); | |
133 | ||
f3515741 DH |
134 | /** |
135 | * kmemdup_nul - Create a NUL-terminated string from unterminated data | |
136 | * @s: The data to stringify | |
137 | * @len: The size of the data | |
138 | * @gfp: the GFP mask used in the kmalloc() call when allocating memory | |
a862f68a MR |
139 | * |
140 | * Return: newly allocated copy of @s with NUL-termination or %NULL in | |
141 | * case of error | |
f3515741 DH |
142 | */ |
143 | char *kmemdup_nul(const char *s, size_t len, gfp_t gfp) | |
144 | { | |
145 | char *buf; | |
146 | ||
147 | if (!s) | |
148 | return NULL; | |
149 | ||
150 | buf = kmalloc_track_caller(len + 1, gfp); | |
151 | if (buf) { | |
152 | memcpy(buf, s, len); | |
153 | buf[len] = '\0'; | |
154 | } | |
155 | return buf; | |
156 | } | |
157 | EXPORT_SYMBOL(kmemdup_nul); | |
158 | ||
610a77e0 LZ |
159 | /** |
160 | * memdup_user - duplicate memory region from user space | |
161 | * | |
162 | * @src: source address in user space | |
163 | * @len: number of bytes to copy | |
164 | * | |
a862f68a | 165 | * Return: an ERR_PTR() on failure. Result is physically |
50fd2f29 | 166 | * contiguous, to be freed by kfree(). |
610a77e0 LZ |
167 | */ |
168 | void *memdup_user(const void __user *src, size_t len) | |
169 | { | |
170 | void *p; | |
171 | ||
6c8fcc09 | 172 | p = kmalloc_track_caller(len, GFP_USER | __GFP_NOWARN); |
610a77e0 LZ |
173 | if (!p) |
174 | return ERR_PTR(-ENOMEM); | |
175 | ||
176 | if (copy_from_user(p, src, len)) { | |
177 | kfree(p); | |
178 | return ERR_PTR(-EFAULT); | |
179 | } | |
180 | ||
181 | return p; | |
182 | } | |
183 | EXPORT_SYMBOL(memdup_user); | |
184 | ||
50fd2f29 AV |
185 | /** |
186 | * vmemdup_user - duplicate memory region from user space | |
187 | * | |
188 | * @src: source address in user space | |
189 | * @len: number of bytes to copy | |
190 | * | |
a862f68a | 191 | * Return: an ERR_PTR() on failure. Result may be not |
50fd2f29 AV |
192 | * physically contiguous. Use kvfree() to free. |
193 | */ | |
194 | void *vmemdup_user(const void __user *src, size_t len) | |
195 | { | |
196 | void *p; | |
197 | ||
198 | p = kvmalloc(len, GFP_USER); | |
199 | if (!p) | |
200 | return ERR_PTR(-ENOMEM); | |
201 | ||
202 | if (copy_from_user(p, src, len)) { | |
203 | kvfree(p); | |
204 | return ERR_PTR(-EFAULT); | |
205 | } | |
206 | ||
207 | return p; | |
208 | } | |
209 | EXPORT_SYMBOL(vmemdup_user); | |
210 | ||
b86181f1 | 211 | /** |
96840aa0 | 212 | * strndup_user - duplicate an existing string from user space |
96840aa0 DA |
213 | * @s: The string to duplicate |
214 | * @n: Maximum number of bytes to copy, including the trailing NUL. | |
a862f68a | 215 | * |
e9145521 | 216 | * Return: newly allocated copy of @s or an ERR_PTR() in case of error |
96840aa0 DA |
217 | */ |
218 | char *strndup_user(const char __user *s, long n) | |
219 | { | |
220 | char *p; | |
221 | long length; | |
222 | ||
223 | length = strnlen_user(s, n); | |
224 | ||
225 | if (!length) | |
226 | return ERR_PTR(-EFAULT); | |
227 | ||
228 | if (length > n) | |
229 | return ERR_PTR(-EINVAL); | |
230 | ||
90d74045 | 231 | p = memdup_user(s, length); |
96840aa0 | 232 | |
90d74045 JL |
233 | if (IS_ERR(p)) |
234 | return p; | |
96840aa0 DA |
235 | |
236 | p[length - 1] = '\0'; | |
237 | ||
238 | return p; | |
239 | } | |
240 | EXPORT_SYMBOL(strndup_user); | |
16d69265 | 241 | |
e9d408e1 AV |
242 | /** |
243 | * memdup_user_nul - duplicate memory region from user space and NUL-terminate | |
244 | * | |
245 | * @src: source address in user space | |
246 | * @len: number of bytes to copy | |
247 | * | |
a862f68a | 248 | * Return: an ERR_PTR() on failure. |
e9d408e1 AV |
249 | */ |
250 | void *memdup_user_nul(const void __user *src, size_t len) | |
251 | { | |
252 | char *p; | |
253 | ||
254 | /* | |
255 | * Always use GFP_KERNEL, since copy_from_user() can sleep and | |
256 | * cause pagefault, which makes it pointless to use GFP_NOFS | |
257 | * or GFP_ATOMIC. | |
258 | */ | |
259 | p = kmalloc_track_caller(len + 1, GFP_KERNEL); | |
260 | if (!p) | |
261 | return ERR_PTR(-ENOMEM); | |
262 | ||
263 | if (copy_from_user(p, src, len)) { | |
264 | kfree(p); | |
265 | return ERR_PTR(-EFAULT); | |
266 | } | |
267 | p[len] = '\0'; | |
268 | ||
269 | return p; | |
270 | } | |
271 | EXPORT_SYMBOL(memdup_user_nul); | |
272 | ||
6038def0 | 273 | void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma, |
aba6dfb7 | 274 | struct vm_area_struct *prev) |
6038def0 NK |
275 | { |
276 | struct vm_area_struct *next; | |
277 | ||
278 | vma->vm_prev = prev; | |
279 | if (prev) { | |
280 | next = prev->vm_next; | |
281 | prev->vm_next = vma; | |
282 | } else { | |
aba6dfb7 | 283 | next = mm->mmap; |
6038def0 | 284 | mm->mmap = vma; |
6038def0 NK |
285 | } |
286 | vma->vm_next = next; | |
287 | if (next) | |
288 | next->vm_prev = vma; | |
289 | } | |
290 | ||
1b9fc5b2 WY |
291 | void __vma_unlink_list(struct mm_struct *mm, struct vm_area_struct *vma) |
292 | { | |
293 | struct vm_area_struct *prev, *next; | |
294 | ||
295 | next = vma->vm_next; | |
296 | prev = vma->vm_prev; | |
297 | if (prev) | |
298 | prev->vm_next = next; | |
299 | else | |
300 | mm->mmap = next; | |
301 | if (next) | |
302 | next->vm_prev = prev; | |
303 | } | |
304 | ||
b7643757 | 305 | /* Check if the vma is being used as a stack by this task */ |
d17af505 | 306 | int vma_is_stack_for_current(struct vm_area_struct *vma) |
b7643757 | 307 | { |
d17af505 AL |
308 | struct task_struct * __maybe_unused t = current; |
309 | ||
b7643757 SP |
310 | return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t)); |
311 | } | |
312 | ||
649775be AG |
313 | #ifndef STACK_RND_MASK |
314 | #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12)) /* 8MB of VA */ | |
315 | #endif | |
316 | ||
317 | unsigned long randomize_stack_top(unsigned long stack_top) | |
318 | { | |
319 | unsigned long random_variable = 0; | |
320 | ||
321 | if (current->flags & PF_RANDOMIZE) { | |
322 | random_variable = get_random_long(); | |
323 | random_variable &= STACK_RND_MASK; | |
324 | random_variable <<= PAGE_SHIFT; | |
325 | } | |
326 | #ifdef CONFIG_STACK_GROWSUP | |
327 | return PAGE_ALIGN(stack_top) + random_variable; | |
328 | #else | |
329 | return PAGE_ALIGN(stack_top) - random_variable; | |
330 | #endif | |
331 | } | |
332 | ||
67f3977f | 333 | #ifdef CONFIG_ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT |
e7142bf5 AG |
334 | unsigned long arch_randomize_brk(struct mm_struct *mm) |
335 | { | |
336 | /* Is the current task 32bit ? */ | |
337 | if (!IS_ENABLED(CONFIG_64BIT) || is_compat_task()) | |
338 | return randomize_page(mm->brk, SZ_32M); | |
339 | ||
340 | return randomize_page(mm->brk, SZ_1G); | |
341 | } | |
342 | ||
67f3977f AG |
343 | unsigned long arch_mmap_rnd(void) |
344 | { | |
345 | unsigned long rnd; | |
346 | ||
347 | #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS | |
348 | if (is_compat_task()) | |
349 | rnd = get_random_long() & ((1UL << mmap_rnd_compat_bits) - 1); | |
350 | else | |
351 | #endif /* CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS */ | |
352 | rnd = get_random_long() & ((1UL << mmap_rnd_bits) - 1); | |
353 | ||
354 | return rnd << PAGE_SHIFT; | |
355 | } | |
67f3977f AG |
356 | |
357 | static int mmap_is_legacy(struct rlimit *rlim_stack) | |
358 | { | |
359 | if (current->personality & ADDR_COMPAT_LAYOUT) | |
360 | return 1; | |
361 | ||
362 | if (rlim_stack->rlim_cur == RLIM_INFINITY) | |
363 | return 1; | |
364 | ||
365 | return sysctl_legacy_va_layout; | |
366 | } | |
367 | ||
368 | /* | |
369 | * Leave enough space between the mmap area and the stack to honour ulimit in | |
370 | * the face of randomisation. | |
371 | */ | |
372 | #define MIN_GAP (SZ_128M) | |
373 | #define MAX_GAP (STACK_TOP / 6 * 5) | |
374 | ||
375 | static unsigned long mmap_base(unsigned long rnd, struct rlimit *rlim_stack) | |
376 | { | |
377 | unsigned long gap = rlim_stack->rlim_cur; | |
378 | unsigned long pad = stack_guard_gap; | |
379 | ||
380 | /* Account for stack randomization if necessary */ | |
381 | if (current->flags & PF_RANDOMIZE) | |
382 | pad += (STACK_RND_MASK << PAGE_SHIFT); | |
383 | ||
384 | /* Values close to RLIM_INFINITY can overflow. */ | |
385 | if (gap + pad > gap) | |
386 | gap += pad; | |
387 | ||
388 | if (gap < MIN_GAP) | |
389 | gap = MIN_GAP; | |
390 | else if (gap > MAX_GAP) | |
391 | gap = MAX_GAP; | |
392 | ||
393 | return PAGE_ALIGN(STACK_TOP - gap - rnd); | |
394 | } | |
395 | ||
396 | void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack) | |
397 | { | |
398 | unsigned long random_factor = 0UL; | |
399 | ||
400 | if (current->flags & PF_RANDOMIZE) | |
401 | random_factor = arch_mmap_rnd(); | |
402 | ||
403 | if (mmap_is_legacy(rlim_stack)) { | |
404 | mm->mmap_base = TASK_UNMAPPED_BASE + random_factor; | |
405 | mm->get_unmapped_area = arch_get_unmapped_area; | |
406 | } else { | |
407 | mm->mmap_base = mmap_base(random_factor, rlim_stack); | |
408 | mm->get_unmapped_area = arch_get_unmapped_area_topdown; | |
409 | } | |
410 | } | |
411 | #elif defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT) | |
8f2af155 | 412 | void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack) |
16d69265 AM |
413 | { |
414 | mm->mmap_base = TASK_UNMAPPED_BASE; | |
415 | mm->get_unmapped_area = arch_get_unmapped_area; | |
16d69265 AM |
416 | } |
417 | #endif | |
912985dc | 418 | |
79eb597c DJ |
419 | /** |
420 | * __account_locked_vm - account locked pages to an mm's locked_vm | |
421 | * @mm: mm to account against | |
422 | * @pages: number of pages to account | |
423 | * @inc: %true if @pages should be considered positive, %false if not | |
424 | * @task: task used to check RLIMIT_MEMLOCK | |
425 | * @bypass_rlim: %true if checking RLIMIT_MEMLOCK should be skipped | |
426 | * | |
427 | * Assumes @task and @mm are valid (i.e. at least one reference on each), and | |
428 | * that mmap_sem is held as writer. | |
429 | * | |
430 | * Return: | |
431 | * * 0 on success | |
432 | * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded. | |
433 | */ | |
434 | int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc, | |
435 | struct task_struct *task, bool bypass_rlim) | |
436 | { | |
437 | unsigned long locked_vm, limit; | |
438 | int ret = 0; | |
439 | ||
440 | lockdep_assert_held_write(&mm->mmap_sem); | |
441 | ||
442 | locked_vm = mm->locked_vm; | |
443 | if (inc) { | |
444 | if (!bypass_rlim) { | |
445 | limit = task_rlimit(task, RLIMIT_MEMLOCK) >> PAGE_SHIFT; | |
446 | if (locked_vm + pages > limit) | |
447 | ret = -ENOMEM; | |
448 | } | |
449 | if (!ret) | |
450 | mm->locked_vm = locked_vm + pages; | |
451 | } else { | |
452 | WARN_ON_ONCE(pages > locked_vm); | |
453 | mm->locked_vm = locked_vm - pages; | |
454 | } | |
455 | ||
456 | pr_debug("%s: [%d] caller %ps %c%lu %lu/%lu%s\n", __func__, task->pid, | |
457 | (void *)_RET_IP_, (inc) ? '+' : '-', pages << PAGE_SHIFT, | |
458 | locked_vm << PAGE_SHIFT, task_rlimit(task, RLIMIT_MEMLOCK), | |
459 | ret ? " - exceeded" : ""); | |
460 | ||
461 | return ret; | |
462 | } | |
463 | EXPORT_SYMBOL_GPL(__account_locked_vm); | |
464 | ||
465 | /** | |
466 | * account_locked_vm - account locked pages to an mm's locked_vm | |
467 | * @mm: mm to account against, may be NULL | |
468 | * @pages: number of pages to account | |
469 | * @inc: %true if @pages should be considered positive, %false if not | |
470 | * | |
471 | * Assumes a non-NULL @mm is valid (i.e. at least one reference on it). | |
472 | * | |
473 | * Return: | |
474 | * * 0 on success, or if mm is NULL | |
475 | * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded. | |
476 | */ | |
477 | int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc) | |
478 | { | |
479 | int ret; | |
480 | ||
481 | if (pages == 0 || !mm) | |
482 | return 0; | |
483 | ||
d8ed45c5 | 484 | mmap_write_lock(mm); |
79eb597c DJ |
485 | ret = __account_locked_vm(mm, pages, inc, current, |
486 | capable(CAP_IPC_LOCK)); | |
d8ed45c5 | 487 | mmap_write_unlock(mm); |
79eb597c DJ |
488 | |
489 | return ret; | |
490 | } | |
491 | EXPORT_SYMBOL_GPL(account_locked_vm); | |
492 | ||
eb36c587 AV |
493 | unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr, |
494 | unsigned long len, unsigned long prot, | |
9fbeb5ab | 495 | unsigned long flag, unsigned long pgoff) |
eb36c587 AV |
496 | { |
497 | unsigned long ret; | |
498 | struct mm_struct *mm = current->mm; | |
41badc15 | 499 | unsigned long populate; |
897ab3e0 | 500 | LIST_HEAD(uf); |
eb36c587 AV |
501 | |
502 | ret = security_mmap_file(file, prot, flag); | |
503 | if (!ret) { | |
d8ed45c5 | 504 | if (mmap_write_lock_killable(mm)) |
9fbeb5ab | 505 | return -EINTR; |
bebeb3d6 | 506 | ret = do_mmap_pgoff(file, addr, len, prot, flag, pgoff, |
897ab3e0 | 507 | &populate, &uf); |
d8ed45c5 | 508 | mmap_write_unlock(mm); |
897ab3e0 | 509 | userfaultfd_unmap_complete(mm, &uf); |
41badc15 ML |
510 | if (populate) |
511 | mm_populate(ret, populate); | |
eb36c587 AV |
512 | } |
513 | return ret; | |
514 | } | |
515 | ||
516 | unsigned long vm_mmap(struct file *file, unsigned long addr, | |
517 | unsigned long len, unsigned long prot, | |
518 | unsigned long flag, unsigned long offset) | |
519 | { | |
520 | if (unlikely(offset + PAGE_ALIGN(len) < offset)) | |
521 | return -EINVAL; | |
ea53cde0 | 522 | if (unlikely(offset_in_page(offset))) |
eb36c587 AV |
523 | return -EINVAL; |
524 | ||
9fbeb5ab | 525 | return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT); |
eb36c587 AV |
526 | } |
527 | EXPORT_SYMBOL(vm_mmap); | |
528 | ||
a7c3e901 MH |
529 | /** |
530 | * kvmalloc_node - attempt to allocate physically contiguous memory, but upon | |
531 | * failure, fall back to non-contiguous (vmalloc) allocation. | |
532 | * @size: size of the request. | |
533 | * @flags: gfp mask for the allocation - must be compatible (superset) with GFP_KERNEL. | |
534 | * @node: numa node to allocate from | |
535 | * | |
536 | * Uses kmalloc to get the memory but if the allocation fails then falls back | |
537 | * to the vmalloc allocator. Use kvfree for freeing the memory. | |
538 | * | |
cc965a29 MH |
539 | * Reclaim modifiers - __GFP_NORETRY and __GFP_NOFAIL are not supported. |
540 | * __GFP_RETRY_MAYFAIL is supported, and it should be used only if kmalloc is | |
541 | * preferable to the vmalloc fallback, due to visible performance drawbacks. | |
a7c3e901 | 542 | * |
ce91f6ee MH |
543 | * Please note that any use of gfp flags outside of GFP_KERNEL is careful to not |
544 | * fall back to vmalloc. | |
a862f68a MR |
545 | * |
546 | * Return: pointer to the allocated memory of %NULL in case of failure | |
a7c3e901 MH |
547 | */ |
548 | void *kvmalloc_node(size_t size, gfp_t flags, int node) | |
549 | { | |
550 | gfp_t kmalloc_flags = flags; | |
551 | void *ret; | |
552 | ||
553 | /* | |
554 | * vmalloc uses GFP_KERNEL for some internal allocations (e.g page tables) | |
555 | * so the given set of flags has to be compatible. | |
556 | */ | |
ce91f6ee MH |
557 | if ((flags & GFP_KERNEL) != GFP_KERNEL) |
558 | return kmalloc_node(size, flags, node); | |
a7c3e901 MH |
559 | |
560 | /* | |
4f4f2ba9 MH |
561 | * We want to attempt a large physically contiguous block first because |
562 | * it is less likely to fragment multiple larger blocks and therefore | |
563 | * contribute to a long term fragmentation less than vmalloc fallback. | |
564 | * However make sure that larger requests are not too disruptive - no | |
565 | * OOM killer and no allocation failure warnings as we have a fallback. | |
a7c3e901 | 566 | */ |
6c5ab651 MH |
567 | if (size > PAGE_SIZE) { |
568 | kmalloc_flags |= __GFP_NOWARN; | |
569 | ||
cc965a29 | 570 | if (!(kmalloc_flags & __GFP_RETRY_MAYFAIL)) |
6c5ab651 MH |
571 | kmalloc_flags |= __GFP_NORETRY; |
572 | } | |
a7c3e901 MH |
573 | |
574 | ret = kmalloc_node(size, kmalloc_flags, node); | |
575 | ||
576 | /* | |
577 | * It doesn't really make sense to fallback to vmalloc for sub page | |
578 | * requests | |
579 | */ | |
580 | if (ret || size <= PAGE_SIZE) | |
581 | return ret; | |
582 | ||
2b905948 | 583 | return __vmalloc_node(size, 1, flags, node, |
8594a21c | 584 | __builtin_return_address(0)); |
a7c3e901 MH |
585 | } |
586 | EXPORT_SYMBOL(kvmalloc_node); | |
587 | ||
ff4dc772 | 588 | /** |
04b8e946 AM |
589 | * kvfree() - Free memory. |
590 | * @addr: Pointer to allocated memory. | |
ff4dc772 | 591 | * |
04b8e946 AM |
592 | * kvfree frees memory allocated by any of vmalloc(), kmalloc() or kvmalloc(). |
593 | * It is slightly more efficient to use kfree() or vfree() if you are certain | |
594 | * that you know which one to use. | |
595 | * | |
52414d33 | 596 | * Context: Either preemptible task context or not-NMI interrupt. |
ff4dc772 | 597 | */ |
39f1f78d AV |
598 | void kvfree(const void *addr) |
599 | { | |
600 | if (is_vmalloc_addr(addr)) | |
601 | vfree(addr); | |
602 | else | |
603 | kfree(addr); | |
604 | } | |
605 | EXPORT_SYMBOL(kvfree); | |
606 | ||
d4eaa283 WL |
607 | /** |
608 | * kvfree_sensitive - Free a data object containing sensitive information. | |
609 | * @addr: address of the data object to be freed. | |
610 | * @len: length of the data object. | |
611 | * | |
612 | * Use the special memzero_explicit() function to clear the content of a | |
613 | * kvmalloc'ed object containing sensitive data to make sure that the | |
614 | * compiler won't optimize out the data clearing. | |
615 | */ | |
616 | void kvfree_sensitive(const void *addr, size_t len) | |
617 | { | |
618 | if (likely(!ZERO_OR_NULL_PTR(addr))) { | |
619 | memzero_explicit((void *)addr, len); | |
620 | kvfree(addr); | |
621 | } | |
622 | } | |
623 | EXPORT_SYMBOL(kvfree_sensitive); | |
624 | ||
e39155ea KS |
625 | static inline void *__page_rmapping(struct page *page) |
626 | { | |
627 | unsigned long mapping; | |
628 | ||
629 | mapping = (unsigned long)page->mapping; | |
630 | mapping &= ~PAGE_MAPPING_FLAGS; | |
631 | ||
632 | return (void *)mapping; | |
633 | } | |
634 | ||
635 | /* Neutral page->mapping pointer to address_space or anon_vma or other */ | |
636 | void *page_rmapping(struct page *page) | |
637 | { | |
638 | page = compound_head(page); | |
639 | return __page_rmapping(page); | |
640 | } | |
641 | ||
1aa8aea5 AM |
642 | /* |
643 | * Return true if this page is mapped into pagetables. | |
644 | * For compound page it returns true if any subpage of compound page is mapped. | |
645 | */ | |
646 | bool page_mapped(struct page *page) | |
647 | { | |
648 | int i; | |
649 | ||
650 | if (likely(!PageCompound(page))) | |
651 | return atomic_read(&page->_mapcount) >= 0; | |
652 | page = compound_head(page); | |
653 | if (atomic_read(compound_mapcount_ptr(page)) >= 0) | |
654 | return true; | |
655 | if (PageHuge(page)) | |
656 | return false; | |
d8c6546b | 657 | for (i = 0; i < compound_nr(page); i++) { |
1aa8aea5 AM |
658 | if (atomic_read(&page[i]._mapcount) >= 0) |
659 | return true; | |
660 | } | |
661 | return false; | |
662 | } | |
663 | EXPORT_SYMBOL(page_mapped); | |
664 | ||
e39155ea KS |
665 | struct anon_vma *page_anon_vma(struct page *page) |
666 | { | |
667 | unsigned long mapping; | |
668 | ||
669 | page = compound_head(page); | |
670 | mapping = (unsigned long)page->mapping; | |
671 | if ((mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) | |
672 | return NULL; | |
673 | return __page_rmapping(page); | |
674 | } | |
675 | ||
9800339b SL |
676 | struct address_space *page_mapping(struct page *page) |
677 | { | |
1c290f64 KS |
678 | struct address_space *mapping; |
679 | ||
680 | page = compound_head(page); | |
9800339b | 681 | |
03e5ac2f MP |
682 | /* This happens if someone calls flush_dcache_page on slab page */ |
683 | if (unlikely(PageSlab(page))) | |
684 | return NULL; | |
685 | ||
33806f06 SL |
686 | if (unlikely(PageSwapCache(page))) { |
687 | swp_entry_t entry; | |
688 | ||
689 | entry.val = page_private(page); | |
e39155ea KS |
690 | return swap_address_space(entry); |
691 | } | |
692 | ||
1c290f64 | 693 | mapping = page->mapping; |
bda807d4 | 694 | if ((unsigned long)mapping & PAGE_MAPPING_ANON) |
e39155ea | 695 | return NULL; |
bda807d4 MK |
696 | |
697 | return (void *)((unsigned long)mapping & ~PAGE_MAPPING_FLAGS); | |
9800339b | 698 | } |
bda807d4 | 699 | EXPORT_SYMBOL(page_mapping); |
9800339b | 700 | |
cb9f753a YH |
701 | /* |
702 | * For file cache pages, return the address_space, otherwise return NULL | |
703 | */ | |
704 | struct address_space *page_mapping_file(struct page *page) | |
705 | { | |
706 | if (unlikely(PageSwapCache(page))) | |
707 | return NULL; | |
708 | return page_mapping(page); | |
709 | } | |
710 | ||
b20ce5e0 KS |
711 | /* Slow path of page_mapcount() for compound pages */ |
712 | int __page_mapcount(struct page *page) | |
713 | { | |
714 | int ret; | |
715 | ||
716 | ret = atomic_read(&page->_mapcount) + 1; | |
dd78fedd KS |
717 | /* |
718 | * For file THP page->_mapcount contains total number of mapping | |
719 | * of the page: no need to look into compound_mapcount. | |
720 | */ | |
721 | if (!PageAnon(page) && !PageHuge(page)) | |
722 | return ret; | |
b20ce5e0 KS |
723 | page = compound_head(page); |
724 | ret += atomic_read(compound_mapcount_ptr(page)) + 1; | |
725 | if (PageDoubleMap(page)) | |
726 | ret--; | |
727 | return ret; | |
728 | } | |
729 | EXPORT_SYMBOL_GPL(__page_mapcount); | |
730 | ||
39a1aa8e AR |
731 | int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS; |
732 | int sysctl_overcommit_ratio __read_mostly = 50; | |
733 | unsigned long sysctl_overcommit_kbytes __read_mostly; | |
734 | int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT; | |
735 | unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */ | |
736 | unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */ | |
737 | ||
32927393 CH |
738 | int overcommit_ratio_handler(struct ctl_table *table, int write, void *buffer, |
739 | size_t *lenp, loff_t *ppos) | |
49f0ce5f JM |
740 | { |
741 | int ret; | |
742 | ||
743 | ret = proc_dointvec(table, write, buffer, lenp, ppos); | |
744 | if (ret == 0 && write) | |
745 | sysctl_overcommit_kbytes = 0; | |
746 | return ret; | |
747 | } | |
748 | ||
32927393 CH |
749 | int overcommit_kbytes_handler(struct ctl_table *table, int write, void *buffer, |
750 | size_t *lenp, loff_t *ppos) | |
49f0ce5f JM |
751 | { |
752 | int ret; | |
753 | ||
754 | ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); | |
755 | if (ret == 0 && write) | |
756 | sysctl_overcommit_ratio = 0; | |
757 | return ret; | |
758 | } | |
759 | ||
00619bcc JM |
760 | /* |
761 | * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used | |
762 | */ | |
763 | unsigned long vm_commit_limit(void) | |
764 | { | |
49f0ce5f JM |
765 | unsigned long allowed; |
766 | ||
767 | if (sysctl_overcommit_kbytes) | |
768 | allowed = sysctl_overcommit_kbytes >> (PAGE_SHIFT - 10); | |
769 | else | |
ca79b0c2 | 770 | allowed = ((totalram_pages() - hugetlb_total_pages()) |
49f0ce5f JM |
771 | * sysctl_overcommit_ratio / 100); |
772 | allowed += total_swap_pages; | |
773 | ||
774 | return allowed; | |
00619bcc JM |
775 | } |
776 | ||
39a1aa8e AR |
777 | /* |
778 | * Make sure vm_committed_as in one cacheline and not cacheline shared with | |
779 | * other variables. It can be updated by several CPUs frequently. | |
780 | */ | |
781 | struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp; | |
782 | ||
783 | /* | |
784 | * The global memory commitment made in the system can be a metric | |
785 | * that can be used to drive ballooning decisions when Linux is hosted | |
786 | * as a guest. On Hyper-V, the host implements a policy engine for dynamically | |
787 | * balancing memory across competing virtual machines that are hosted. | |
788 | * Several metrics drive this policy engine including the guest reported | |
789 | * memory commitment. | |
790 | */ | |
791 | unsigned long vm_memory_committed(void) | |
792 | { | |
793 | return percpu_counter_read_positive(&vm_committed_as); | |
794 | } | |
795 | EXPORT_SYMBOL_GPL(vm_memory_committed); | |
796 | ||
797 | /* | |
798 | * Check that a process has enough memory to allocate a new virtual | |
799 | * mapping. 0 means there is enough memory for the allocation to | |
800 | * succeed and -ENOMEM implies there is not. | |
801 | * | |
802 | * We currently support three overcommit policies, which are set via the | |
ad56b738 | 803 | * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting.rst |
39a1aa8e AR |
804 | * |
805 | * Strict overcommit modes added 2002 Feb 26 by Alan Cox. | |
806 | * Additional code 2002 Jul 20 by Robert Love. | |
807 | * | |
808 | * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise. | |
809 | * | |
810 | * Note this is a helper function intended to be used by LSMs which | |
811 | * wish to use this logic. | |
812 | */ | |
813 | int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin) | |
814 | { | |
8c7829b0 | 815 | long allowed; |
39a1aa8e | 816 | |
39a1aa8e AR |
817 | vm_acct_memory(pages); |
818 | ||
819 | /* | |
820 | * Sometimes we want to use more memory than we have | |
821 | */ | |
822 | if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS) | |
823 | return 0; | |
824 | ||
825 | if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) { | |
8c7829b0 | 826 | if (pages > totalram_pages() + total_swap_pages) |
39a1aa8e | 827 | goto error; |
8c7829b0 | 828 | return 0; |
39a1aa8e AR |
829 | } |
830 | ||
831 | allowed = vm_commit_limit(); | |
832 | /* | |
833 | * Reserve some for root | |
834 | */ | |
835 | if (!cap_sys_admin) | |
836 | allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10); | |
837 | ||
838 | /* | |
839 | * Don't let a single process grow so big a user can't recover | |
840 | */ | |
841 | if (mm) { | |
8c7829b0 JW |
842 | long reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10); |
843 | ||
39a1aa8e AR |
844 | allowed -= min_t(long, mm->total_vm / 32, reserve); |
845 | } | |
846 | ||
847 | if (percpu_counter_read_positive(&vm_committed_as) < allowed) | |
848 | return 0; | |
849 | error: | |
850 | vm_unacct_memory(pages); | |
851 | ||
852 | return -ENOMEM; | |
853 | } | |
854 | ||
a9090253 WR |
855 | /** |
856 | * get_cmdline() - copy the cmdline value to a buffer. | |
857 | * @task: the task whose cmdline value to copy. | |
858 | * @buffer: the buffer to copy to. | |
859 | * @buflen: the length of the buffer. Larger cmdline values are truncated | |
860 | * to this length. | |
a862f68a MR |
861 | * |
862 | * Return: the size of the cmdline field copied. Note that the copy does | |
a9090253 WR |
863 | * not guarantee an ending NULL byte. |
864 | */ | |
865 | int get_cmdline(struct task_struct *task, char *buffer, int buflen) | |
866 | { | |
867 | int res = 0; | |
868 | unsigned int len; | |
869 | struct mm_struct *mm = get_task_mm(task); | |
a3b609ef | 870 | unsigned long arg_start, arg_end, env_start, env_end; |
a9090253 WR |
871 | if (!mm) |
872 | goto out; | |
873 | if (!mm->arg_end) | |
874 | goto out_mm; /* Shh! No looking before we're done */ | |
875 | ||
bc81426f | 876 | spin_lock(&mm->arg_lock); |
a3b609ef MG |
877 | arg_start = mm->arg_start; |
878 | arg_end = mm->arg_end; | |
879 | env_start = mm->env_start; | |
880 | env_end = mm->env_end; | |
bc81426f | 881 | spin_unlock(&mm->arg_lock); |
a3b609ef MG |
882 | |
883 | len = arg_end - arg_start; | |
a9090253 WR |
884 | |
885 | if (len > buflen) | |
886 | len = buflen; | |
887 | ||
f307ab6d | 888 | res = access_process_vm(task, arg_start, buffer, len, FOLL_FORCE); |
a9090253 WR |
889 | |
890 | /* | |
891 | * If the nul at the end of args has been overwritten, then | |
892 | * assume application is using setproctitle(3). | |
893 | */ | |
894 | if (res > 0 && buffer[res-1] != '\0' && len < buflen) { | |
895 | len = strnlen(buffer, res); | |
896 | if (len < res) { | |
897 | res = len; | |
898 | } else { | |
a3b609ef | 899 | len = env_end - env_start; |
a9090253 WR |
900 | if (len > buflen - res) |
901 | len = buflen - res; | |
a3b609ef | 902 | res += access_process_vm(task, env_start, |
f307ab6d LS |
903 | buffer+res, len, |
904 | FOLL_FORCE); | |
a9090253 WR |
905 | res = strnlen(buffer, res); |
906 | } | |
907 | } | |
908 | out_mm: | |
909 | mmput(mm); | |
910 | out: | |
911 | return res; | |
912 | } | |
010c164a SL |
913 | |
914 | int memcmp_pages(struct page *page1, struct page *page2) | |
915 | { | |
916 | char *addr1, *addr2; | |
917 | int ret; | |
918 | ||
919 | addr1 = kmap_atomic(page1); | |
920 | addr2 = kmap_atomic(page2); | |
921 | ret = memcmp(addr1, addr2, PAGE_SIZE); | |
922 | kunmap_atomic(addr2); | |
923 | kunmap_atomic(addr1); | |
924 | return ret; | |
925 | } |