]> Git Repo - linux.git/blame - mm/util.c
.mailmap: Add an entry for my work email address
[linux.git] / mm / util.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
16d69265 2#include <linux/mm.h>
30992c97
MM
3#include <linux/slab.h>
4#include <linux/string.h>
3b32123d 5#include <linux/compiler.h>
b95f1b31 6#include <linux/export.h>
96840aa0 7#include <linux/err.h>
3b8f14b4 8#include <linux/sched.h>
6e84f315 9#include <linux/sched/mm.h>
79eb597c 10#include <linux/sched/signal.h>
68db0cf1 11#include <linux/sched/task_stack.h>
eb36c587 12#include <linux/security.h>
9800339b 13#include <linux/swap.h>
33806f06 14#include <linux/swapops.h>
00619bcc
JM
15#include <linux/mman.h>
16#include <linux/hugetlb.h>
39f1f78d 17#include <linux/vmalloc.h>
897ab3e0 18#include <linux/userfaultfd_k.h>
649775be 19#include <linux/elf.h>
67f3977f
AG
20#include <linux/elf-randomize.h>
21#include <linux/personality.h>
649775be 22#include <linux/random.h>
67f3977f
AG
23#include <linux/processor.h>
24#include <linux/sizes.h>
25#include <linux/compat.h>
00619bcc 26
7c0f6ba6 27#include <linux/uaccess.h>
30992c97 28
51104c19
KC
29#include <kunit/visibility.h>
30
6038def0 31#include "internal.h"
014bb1de 32#include "swap.h"
6038def0 33
a4bb1e43
AH
34/**
35 * kfree_const - conditionally free memory
36 * @x: pointer to the memory
37 *
38 * Function calls kfree only if @x is not in .rodata section.
39 */
40void kfree_const(const void *x)
41{
42 if (!is_kernel_rodata((unsigned long)x))
43 kfree(x);
44}
45EXPORT_SYMBOL(kfree_const);
46
30992c97 47/**
30992c97 48 * kstrdup - allocate space for and copy an existing string
30992c97
MM
49 * @s: the string to duplicate
50 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
a862f68a
MR
51 *
52 * Return: newly allocated copy of @s or %NULL in case of error
30992c97 53 */
2a6772eb 54noinline
30992c97
MM
55char *kstrdup(const char *s, gfp_t gfp)
56{
57 size_t len;
58 char *buf;
59
60 if (!s)
61 return NULL;
62
63 len = strlen(s) + 1;
1d2c8eea 64 buf = kmalloc_track_caller(len, gfp);
30992c97
MM
65 if (buf)
66 memcpy(buf, s, len);
67 return buf;
68}
69EXPORT_SYMBOL(kstrdup);
96840aa0 70
a4bb1e43
AH
71/**
72 * kstrdup_const - conditionally duplicate an existing const string
73 * @s: the string to duplicate
74 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
75 *
295a1730
BG
76 * Note: Strings allocated by kstrdup_const should be freed by kfree_const and
77 * must not be passed to krealloc().
a862f68a
MR
78 *
79 * Return: source string if it is in .rodata section otherwise
80 * fallback to kstrdup.
a4bb1e43
AH
81 */
82const char *kstrdup_const(const char *s, gfp_t gfp)
83{
84 if (is_kernel_rodata((unsigned long)s))
85 return s;
86
87 return kstrdup(s, gfp);
88}
89EXPORT_SYMBOL(kstrdup_const);
90
1e66df3e
JF
91/**
92 * kstrndup - allocate space for and copy an existing string
93 * @s: the string to duplicate
94 * @max: read at most @max chars from @s
95 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
f3515741
DH
96 *
97 * Note: Use kmemdup_nul() instead if the size is known exactly.
a862f68a
MR
98 *
99 * Return: newly allocated copy of @s or %NULL in case of error
1e66df3e
JF
100 */
101char *kstrndup(const char *s, size_t max, gfp_t gfp)
102{
103 size_t len;
104 char *buf;
105
106 if (!s)
107 return NULL;
108
109 len = strnlen(s, max);
110 buf = kmalloc_track_caller(len+1, gfp);
111 if (buf) {
112 memcpy(buf, s, len);
113 buf[len] = '\0';
114 }
115 return buf;
116}
117EXPORT_SYMBOL(kstrndup);
118
1a2f67b4
AD
119/**
120 * kmemdup - duplicate region of memory
121 *
122 * @src: memory region to duplicate
123 * @len: memory region length
124 * @gfp: GFP mask to use
a862f68a 125 *
0b7b8704
HS
126 * Return: newly allocated copy of @src or %NULL in case of error,
127 * result is physically contiguous. Use kfree() to free.
1a2f67b4 128 */
7bd230a2 129void *kmemdup_noprof(const void *src, size_t len, gfp_t gfp)
1a2f67b4
AD
130{
131 void *p;
132
7bd230a2 133 p = kmalloc_node_track_caller_noprof(len, gfp, NUMA_NO_NODE, _RET_IP_);
1a2f67b4
AD
134 if (p)
135 memcpy(p, src, len);
136 return p;
137}
7bd230a2 138EXPORT_SYMBOL(kmemdup_noprof);
1a2f67b4 139
7092e9b3
K
140/**
141 * kmemdup_array - duplicate a given array.
142 *
143 * @src: array to duplicate.
7092e9b3 144 * @count: number of elements to duplicate from array.
0ee14725 145 * @element_size: size of each element of array.
7092e9b3
K
146 * @gfp: GFP mask to use.
147 *
148 * Return: duplicated array of @src or %NULL in case of error,
149 * result is physically contiguous. Use kfree() to free.
150 */
0ee14725 151void *kmemdup_array(const void *src, size_t count, size_t element_size, gfp_t gfp)
7092e9b3
K
152{
153 return kmemdup(src, size_mul(element_size, count), gfp);
154}
155EXPORT_SYMBOL(kmemdup_array);
156
0b7b8704
HS
157/**
158 * kvmemdup - duplicate region of memory
159 *
160 * @src: memory region to duplicate
161 * @len: memory region length
162 * @gfp: GFP mask to use
163 *
164 * Return: newly allocated copy of @src or %NULL in case of error,
165 * result may be not physically contiguous. Use kvfree() to free.
166 */
167void *kvmemdup(const void *src, size_t len, gfp_t gfp)
168{
169 void *p;
170
171 p = kvmalloc(len, gfp);
172 if (p)
173 memcpy(p, src, len);
174 return p;
175}
176EXPORT_SYMBOL(kvmemdup);
177
f3515741
DH
178/**
179 * kmemdup_nul - Create a NUL-terminated string from unterminated data
180 * @s: The data to stringify
181 * @len: The size of the data
182 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
a862f68a
MR
183 *
184 * Return: newly allocated copy of @s with NUL-termination or %NULL in
185 * case of error
f3515741
DH
186 */
187char *kmemdup_nul(const char *s, size_t len, gfp_t gfp)
188{
189 char *buf;
190
191 if (!s)
192 return NULL;
193
194 buf = kmalloc_track_caller(len + 1, gfp);
195 if (buf) {
196 memcpy(buf, s, len);
197 buf[len] = '\0';
198 }
199 return buf;
200}
201EXPORT_SYMBOL(kmemdup_nul);
202
d73778e4
KC
203static kmem_buckets *user_buckets __ro_after_init;
204
205static int __init init_user_buckets(void)
206{
207 user_buckets = kmem_buckets_create("memdup_user", 0, 0, INT_MAX, NULL);
208
209 return 0;
210}
211subsys_initcall(init_user_buckets);
212
610a77e0
LZ
213/**
214 * memdup_user - duplicate memory region from user space
215 *
216 * @src: source address in user space
217 * @len: number of bytes to copy
218 *
a862f68a 219 * Return: an ERR_PTR() on failure. Result is physically
50fd2f29 220 * contiguous, to be freed by kfree().
610a77e0
LZ
221 */
222void *memdup_user(const void __user *src, size_t len)
223{
224 void *p;
225
d73778e4 226 p = kmem_buckets_alloc_track_caller(user_buckets, len, GFP_USER | __GFP_NOWARN);
610a77e0
LZ
227 if (!p)
228 return ERR_PTR(-ENOMEM);
229
230 if (copy_from_user(p, src, len)) {
231 kfree(p);
232 return ERR_PTR(-EFAULT);
233 }
234
235 return p;
236}
237EXPORT_SYMBOL(memdup_user);
238
50fd2f29
AV
239/**
240 * vmemdup_user - duplicate memory region from user space
241 *
242 * @src: source address in user space
243 * @len: number of bytes to copy
244 *
a862f68a 245 * Return: an ERR_PTR() on failure. Result may be not
50fd2f29
AV
246 * physically contiguous. Use kvfree() to free.
247 */
248void *vmemdup_user(const void __user *src, size_t len)
249{
250 void *p;
251
d73778e4 252 p = kmem_buckets_valloc(user_buckets, len, GFP_USER);
50fd2f29
AV
253 if (!p)
254 return ERR_PTR(-ENOMEM);
255
256 if (copy_from_user(p, src, len)) {
257 kvfree(p);
258 return ERR_PTR(-EFAULT);
259 }
260
261 return p;
262}
263EXPORT_SYMBOL(vmemdup_user);
264
b86181f1 265/**
96840aa0 266 * strndup_user - duplicate an existing string from user space
96840aa0
DA
267 * @s: The string to duplicate
268 * @n: Maximum number of bytes to copy, including the trailing NUL.
a862f68a 269 *
e9145521 270 * Return: newly allocated copy of @s or an ERR_PTR() in case of error
96840aa0
DA
271 */
272char *strndup_user(const char __user *s, long n)
273{
274 char *p;
275 long length;
276
277 length = strnlen_user(s, n);
278
279 if (!length)
280 return ERR_PTR(-EFAULT);
281
282 if (length > n)
283 return ERR_PTR(-EINVAL);
284
90d74045 285 p = memdup_user(s, length);
96840aa0 286
90d74045
JL
287 if (IS_ERR(p))
288 return p;
96840aa0
DA
289
290 p[length - 1] = '\0';
291
292 return p;
293}
294EXPORT_SYMBOL(strndup_user);
16d69265 295
e9d408e1
AV
296/**
297 * memdup_user_nul - duplicate memory region from user space and NUL-terminate
298 *
299 * @src: source address in user space
300 * @len: number of bytes to copy
301 *
a862f68a 302 * Return: an ERR_PTR() on failure.
e9d408e1
AV
303 */
304void *memdup_user_nul(const void __user *src, size_t len)
305{
306 char *p;
307
308 /*
309 * Always use GFP_KERNEL, since copy_from_user() can sleep and
310 * cause pagefault, which makes it pointless to use GFP_NOFS
311 * or GFP_ATOMIC.
312 */
313 p = kmalloc_track_caller(len + 1, GFP_KERNEL);
314 if (!p)
315 return ERR_PTR(-ENOMEM);
316
317 if (copy_from_user(p, src, len)) {
318 kfree(p);
319 return ERR_PTR(-EFAULT);
320 }
321 p[len] = '\0';
322
323 return p;
324}
325EXPORT_SYMBOL(memdup_user_nul);
326
b7643757 327/* Check if the vma is being used as a stack by this task */
d17af505 328int vma_is_stack_for_current(struct vm_area_struct *vma)
b7643757 329{
d17af505
AL
330 struct task_struct * __maybe_unused t = current;
331
b7643757
SP
332 return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t));
333}
334
295992fb
CK
335/*
336 * Change backing file, only valid to use during initial VMA setup.
337 */
338void vma_set_file(struct vm_area_struct *vma, struct file *file)
339{
340 /* Changing an anonymous vma with this is illegal */
341 get_file(file);
342 swap(vma->vm_file, file);
343 fput(file);
344}
345EXPORT_SYMBOL(vma_set_file);
346
649775be
AG
347#ifndef STACK_RND_MASK
348#define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12)) /* 8MB of VA */
349#endif
350
351unsigned long randomize_stack_top(unsigned long stack_top)
352{
353 unsigned long random_variable = 0;
354
355 if (current->flags & PF_RANDOMIZE) {
356 random_variable = get_random_long();
357 random_variable &= STACK_RND_MASK;
358 random_variable <<= PAGE_SHIFT;
359 }
360#ifdef CONFIG_STACK_GROWSUP
361 return PAGE_ALIGN(stack_top) + random_variable;
362#else
363 return PAGE_ALIGN(stack_top) - random_variable;
364#endif
365}
366
5ad7dd88
JD
367/**
368 * randomize_page - Generate a random, page aligned address
369 * @start: The smallest acceptable address the caller will take.
370 * @range: The size of the area, starting at @start, within which the
371 * random address must fall.
372 *
373 * If @start + @range would overflow, @range is capped.
374 *
375 * NOTE: Historical use of randomize_range, which this replaces, presumed that
376 * @start was already page aligned. We now align it regardless.
377 *
378 * Return: A page aligned address within [start, start + range). On error,
379 * @start is returned.
380 */
381unsigned long randomize_page(unsigned long start, unsigned long range)
382{
383 if (!PAGE_ALIGNED(start)) {
384 range -= PAGE_ALIGN(start) - start;
385 start = PAGE_ALIGN(start);
386 }
387
388 if (start > ULONG_MAX - range)
389 range = ULONG_MAX - start;
390
391 range >>= PAGE_SHIFT;
392
393 if (range == 0)
394 return start;
395
396 return start + (get_random_long() % range << PAGE_SHIFT);
397}
398
67f3977f 399#ifdef CONFIG_ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT
723820f3 400unsigned long __weak arch_randomize_brk(struct mm_struct *mm)
e7142bf5
AG
401{
402 /* Is the current task 32bit ? */
403 if (!IS_ENABLED(CONFIG_64BIT) || is_compat_task())
404 return randomize_page(mm->brk, SZ_32M);
405
406 return randomize_page(mm->brk, SZ_1G);
407}
408
67f3977f
AG
409unsigned long arch_mmap_rnd(void)
410{
411 unsigned long rnd;
412
413#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
414 if (is_compat_task())
415 rnd = get_random_long() & ((1UL << mmap_rnd_compat_bits) - 1);
416 else
417#endif /* CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS */
418 rnd = get_random_long() & ((1UL << mmap_rnd_bits) - 1);
419
420 return rnd << PAGE_SHIFT;
421}
67f3977f
AG
422
423static int mmap_is_legacy(struct rlimit *rlim_stack)
424{
425 if (current->personality & ADDR_COMPAT_LAYOUT)
426 return 1;
427
3033cd43
HD
428 /* On parisc the stack always grows up - so a unlimited stack should
429 * not be an indicator to use the legacy memory layout. */
430 if (rlim_stack->rlim_cur == RLIM_INFINITY &&
431 !IS_ENABLED(CONFIG_STACK_GROWSUP))
67f3977f
AG
432 return 1;
433
434 return sysctl_legacy_va_layout;
435}
436
437/*
438 * Leave enough space between the mmap area and the stack to honour ulimit in
439 * the face of randomisation.
440 */
441#define MIN_GAP (SZ_128M)
442#define MAX_GAP (STACK_TOP / 6 * 5)
443
444static unsigned long mmap_base(unsigned long rnd, struct rlimit *rlim_stack)
445{
5f74f820
HD
446#ifdef CONFIG_STACK_GROWSUP
447 /*
448 * For an upwards growing stack the calculation is much simpler.
449 * Memory for the maximum stack size is reserved at the top of the
450 * task. mmap_base starts directly below the stack and grows
451 * downwards.
452 */
453 return PAGE_ALIGN_DOWN(mmap_upper_limit(rlim_stack) - rnd);
454#else
67f3977f
AG
455 unsigned long gap = rlim_stack->rlim_cur;
456 unsigned long pad = stack_guard_gap;
457
458 /* Account for stack randomization if necessary */
459 if (current->flags & PF_RANDOMIZE)
460 pad += (STACK_RND_MASK << PAGE_SHIFT);
461
462 /* Values close to RLIM_INFINITY can overflow. */
463 if (gap + pad > gap)
464 gap += pad;
465
466 if (gap < MIN_GAP)
467 gap = MIN_GAP;
468 else if (gap > MAX_GAP)
469 gap = MAX_GAP;
470
471 return PAGE_ALIGN(STACK_TOP - gap - rnd);
5f74f820 472#endif
67f3977f
AG
473}
474
475void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack)
476{
477 unsigned long random_factor = 0UL;
478
479 if (current->flags & PF_RANDOMIZE)
480 random_factor = arch_mmap_rnd();
481
482 if (mmap_is_legacy(rlim_stack)) {
483 mm->mmap_base = TASK_UNMAPPED_BASE + random_factor;
529ce23a 484 clear_bit(MMF_TOPDOWN, &mm->flags);
67f3977f
AG
485 } else {
486 mm->mmap_base = mmap_base(random_factor, rlim_stack);
529ce23a 487 set_bit(MMF_TOPDOWN, &mm->flags);
67f3977f
AG
488 }
489}
490#elif defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT)
8f2af155 491void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack)
16d69265
AM
492{
493 mm->mmap_base = TASK_UNMAPPED_BASE;
529ce23a 494 clear_bit(MMF_TOPDOWN, &mm->flags);
16d69265
AM
495}
496#endif
4d6cf248 497#ifdef CONFIG_MMU
51104c19 498EXPORT_SYMBOL_IF_KUNIT(arch_pick_mmap_layout);
4d6cf248 499#endif
912985dc 500
79eb597c
DJ
501/**
502 * __account_locked_vm - account locked pages to an mm's locked_vm
503 * @mm: mm to account against
504 * @pages: number of pages to account
505 * @inc: %true if @pages should be considered positive, %false if not
506 * @task: task used to check RLIMIT_MEMLOCK
507 * @bypass_rlim: %true if checking RLIMIT_MEMLOCK should be skipped
508 *
509 * Assumes @task and @mm are valid (i.e. at least one reference on each), and
c1e8d7c6 510 * that mmap_lock is held as writer.
79eb597c
DJ
511 *
512 * Return:
513 * * 0 on success
514 * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded.
515 */
516int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
517 struct task_struct *task, bool bypass_rlim)
518{
519 unsigned long locked_vm, limit;
520 int ret = 0;
521
42fc5414 522 mmap_assert_write_locked(mm);
79eb597c
DJ
523
524 locked_vm = mm->locked_vm;
525 if (inc) {
526 if (!bypass_rlim) {
527 limit = task_rlimit(task, RLIMIT_MEMLOCK) >> PAGE_SHIFT;
528 if (locked_vm + pages > limit)
529 ret = -ENOMEM;
530 }
531 if (!ret)
532 mm->locked_vm = locked_vm + pages;
533 } else {
534 WARN_ON_ONCE(pages > locked_vm);
535 mm->locked_vm = locked_vm - pages;
536 }
537
538 pr_debug("%s: [%d] caller %ps %c%lu %lu/%lu%s\n", __func__, task->pid,
539 (void *)_RET_IP_, (inc) ? '+' : '-', pages << PAGE_SHIFT,
540 locked_vm << PAGE_SHIFT, task_rlimit(task, RLIMIT_MEMLOCK),
541 ret ? " - exceeded" : "");
542
543 return ret;
544}
545EXPORT_SYMBOL_GPL(__account_locked_vm);
546
547/**
548 * account_locked_vm - account locked pages to an mm's locked_vm
549 * @mm: mm to account against, may be NULL
550 * @pages: number of pages to account
551 * @inc: %true if @pages should be considered positive, %false if not
552 *
553 * Assumes a non-NULL @mm is valid (i.e. at least one reference on it).
554 *
555 * Return:
556 * * 0 on success, or if mm is NULL
557 * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded.
558 */
559int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc)
560{
561 int ret;
562
563 if (pages == 0 || !mm)
564 return 0;
565
d8ed45c5 566 mmap_write_lock(mm);
79eb597c
DJ
567 ret = __account_locked_vm(mm, pages, inc, current,
568 capable(CAP_IPC_LOCK));
d8ed45c5 569 mmap_write_unlock(mm);
79eb597c
DJ
570
571 return ret;
572}
573EXPORT_SYMBOL_GPL(account_locked_vm);
574
eb36c587
AV
575unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr,
576 unsigned long len, unsigned long prot,
9fbeb5ab 577 unsigned long flag, unsigned long pgoff)
eb36c587
AV
578{
579 unsigned long ret;
580 struct mm_struct *mm = current->mm;
41badc15 581 unsigned long populate;
897ab3e0 582 LIST_HEAD(uf);
eb36c587
AV
583
584 ret = security_mmap_file(file, prot, flag);
585 if (!ret) {
d8ed45c5 586 if (mmap_write_lock_killable(mm))
9fbeb5ab 587 return -EINTR;
592b5fad 588 ret = do_mmap(file, addr, len, prot, flag, 0, pgoff, &populate,
45e55300 589 &uf);
d8ed45c5 590 mmap_write_unlock(mm);
897ab3e0 591 userfaultfd_unmap_complete(mm, &uf);
41badc15
ML
592 if (populate)
593 mm_populate(ret, populate);
eb36c587
AV
594 }
595 return ret;
596}
597
598unsigned long vm_mmap(struct file *file, unsigned long addr,
599 unsigned long len, unsigned long prot,
600 unsigned long flag, unsigned long offset)
601{
602 if (unlikely(offset + PAGE_ALIGN(len) < offset))
603 return -EINVAL;
ea53cde0 604 if (unlikely(offset_in_page(offset)))
eb36c587
AV
605 return -EINVAL;
606
9fbeb5ab 607 return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
eb36c587
AV
608}
609EXPORT_SYMBOL(vm_mmap);
610
a7c3e901 611/**
2e8000b8 612 * __kvmalloc_node - attempt to allocate physically contiguous memory, but upon
a7c3e901
MH
613 * failure, fall back to non-contiguous (vmalloc) allocation.
614 * @size: size of the request.
2e8000b8 615 * @b: which set of kmalloc buckets to allocate from.
a7c3e901
MH
616 * @flags: gfp mask for the allocation - must be compatible (superset) with GFP_KERNEL.
617 * @node: numa node to allocate from
618 *
619 * Uses kmalloc to get the memory but if the allocation fails then falls back
620 * to the vmalloc allocator. Use kvfree for freeing the memory.
621 *
a421ef30 622 * GFP_NOWAIT and GFP_ATOMIC are not supported, neither is the __GFP_NORETRY modifier.
cc965a29
MH
623 * __GFP_RETRY_MAYFAIL is supported, and it should be used only if kmalloc is
624 * preferable to the vmalloc fallback, due to visible performance drawbacks.
a7c3e901 625 *
a862f68a 626 * Return: pointer to the allocated memory of %NULL in case of failure
a7c3e901 627 */
2e8000b8 628void *__kvmalloc_node_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, int node)
a7c3e901
MH
629{
630 gfp_t kmalloc_flags = flags;
631 void *ret;
632
a7c3e901 633 /*
4f4f2ba9
MH
634 * We want to attempt a large physically contiguous block first because
635 * it is less likely to fragment multiple larger blocks and therefore
636 * contribute to a long term fragmentation less than vmalloc fallback.
637 * However make sure that larger requests are not too disruptive - no
638 * OOM killer and no allocation failure warnings as we have a fallback.
a7c3e901 639 */
6c5ab651
MH
640 if (size > PAGE_SIZE) {
641 kmalloc_flags |= __GFP_NOWARN;
642
cc965a29 643 if (!(kmalloc_flags & __GFP_RETRY_MAYFAIL))
6c5ab651 644 kmalloc_flags |= __GFP_NORETRY;
a421ef30
MH
645
646 /* nofail semantic is implemented by the vmalloc fallback */
647 kmalloc_flags &= ~__GFP_NOFAIL;
6c5ab651 648 }
a7c3e901 649
2e8000b8 650 ret = __kmalloc_node_noprof(PASS_BUCKET_PARAMS(size, b), kmalloc_flags, node);
a7c3e901
MH
651
652 /*
653 * It doesn't really make sense to fallback to vmalloc for sub page
654 * requests
655 */
656 if (ret || size <= PAGE_SIZE)
657 return ret;
658
30c19366
FW
659 /* non-sleeping allocations are not supported by vmalloc */
660 if (!gfpflags_allow_blocking(flags))
661 return NULL;
662
7661809d 663 /* Don't even allow crazy sizes */
0708a0af
DB
664 if (unlikely(size > INT_MAX)) {
665 WARN_ON_ONCE(!(flags & __GFP_NOWARN));
7661809d 666 return NULL;
0708a0af 667 }
7661809d 668
9becb688
LT
669 /*
670 * kvmalloc() can always use VM_ALLOW_HUGE_VMAP,
671 * since the callers already cannot assume anything
672 * about the resulting pointer, and cannot play
673 * protection games.
674 */
88ae5fb7 675 return __vmalloc_node_range_noprof(size, 1, VMALLOC_START, VMALLOC_END,
9becb688
LT
676 flags, PAGE_KERNEL, VM_ALLOW_HUGE_VMAP,
677 node, __builtin_return_address(0));
a7c3e901 678}
2e8000b8 679EXPORT_SYMBOL(__kvmalloc_node_noprof);
a7c3e901 680
ff4dc772 681/**
04b8e946
AM
682 * kvfree() - Free memory.
683 * @addr: Pointer to allocated memory.
ff4dc772 684 *
04b8e946
AM
685 * kvfree frees memory allocated by any of vmalloc(), kmalloc() or kvmalloc().
686 * It is slightly more efficient to use kfree() or vfree() if you are certain
687 * that you know which one to use.
688 *
52414d33 689 * Context: Either preemptible task context or not-NMI interrupt.
ff4dc772 690 */
39f1f78d
AV
691void kvfree(const void *addr)
692{
693 if (is_vmalloc_addr(addr))
694 vfree(addr);
695 else
696 kfree(addr);
697}
698EXPORT_SYMBOL(kvfree);
699
d4eaa283
WL
700/**
701 * kvfree_sensitive - Free a data object containing sensitive information.
702 * @addr: address of the data object to be freed.
703 * @len: length of the data object.
704 *
705 * Use the special memzero_explicit() function to clear the content of a
706 * kvmalloc'ed object containing sensitive data to make sure that the
707 * compiler won't optimize out the data clearing.
708 */
709void kvfree_sensitive(const void *addr, size_t len)
710{
711 if (likely(!ZERO_OR_NULL_PTR(addr))) {
712 memzero_explicit((void *)addr, len);
713 kvfree(addr);
714 }
715}
716EXPORT_SYMBOL(kvfree_sensitive);
717
7bd230a2 718void *kvrealloc_noprof(const void *p, size_t oldsize, size_t newsize, gfp_t flags)
de2860f4
DC
719{
720 void *newp;
721
722 if (oldsize >= newsize)
723 return (void *)p;
94159835 724 newp = kvmalloc_noprof(newsize, flags);
de2860f4
DC
725 if (!newp)
726 return NULL;
727 memcpy(newp, p, oldsize);
728 kvfree(p);
729 return newp;
730}
7bd230a2 731EXPORT_SYMBOL(kvrealloc_noprof);
de2860f4 732
a8749a35
PB
733/**
734 * __vmalloc_array - allocate memory for a virtually contiguous array.
735 * @n: number of elements.
736 * @size: element size.
737 * @flags: the type of memory to allocate (see kmalloc).
738 */
88ae5fb7 739void *__vmalloc_array_noprof(size_t n, size_t size, gfp_t flags)
a8749a35
PB
740{
741 size_t bytes;
742
743 if (unlikely(check_mul_overflow(n, size, &bytes)))
744 return NULL;
94159835 745 return __vmalloc_noprof(bytes, flags);
a8749a35 746}
88ae5fb7 747EXPORT_SYMBOL(__vmalloc_array_noprof);
a8749a35
PB
748
749/**
750 * vmalloc_array - allocate memory for a virtually contiguous array.
751 * @n: number of elements.
752 * @size: element size.
753 */
88ae5fb7 754void *vmalloc_array_noprof(size_t n, size_t size)
a8749a35 755{
94159835 756 return __vmalloc_array_noprof(n, size, GFP_KERNEL);
a8749a35 757}
88ae5fb7 758EXPORT_SYMBOL(vmalloc_array_noprof);
a8749a35
PB
759
760/**
761 * __vcalloc - allocate and zero memory for a virtually contiguous array.
762 * @n: number of elements.
763 * @size: element size.
764 * @flags: the type of memory to allocate (see kmalloc).
765 */
88ae5fb7 766void *__vcalloc_noprof(size_t n, size_t size, gfp_t flags)
a8749a35 767{
94159835 768 return __vmalloc_array_noprof(n, size, flags | __GFP_ZERO);
a8749a35 769}
88ae5fb7 770EXPORT_SYMBOL(__vcalloc_noprof);
a8749a35
PB
771
772/**
773 * vcalloc - allocate and zero memory for a virtually contiguous array.
774 * @n: number of elements.
775 * @size: element size.
776 */
88ae5fb7 777void *vcalloc_noprof(size_t n, size_t size)
a8749a35 778{
94159835 779 return __vmalloc_array_noprof(n, size, GFP_KERNEL | __GFP_ZERO);
a8749a35 780}
88ae5fb7 781EXPORT_SYMBOL(vcalloc_noprof);
a8749a35 782
e05b3453 783struct anon_vma *folio_anon_vma(struct folio *folio)
e39155ea 784{
64601000 785 unsigned long mapping = (unsigned long)folio->mapping;
e39155ea 786
e39155ea
KS
787 if ((mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
788 return NULL;
64601000 789 return (void *)(mapping - PAGE_MAPPING_ANON);
e39155ea
KS
790}
791
2f52578f
MWO
792/**
793 * folio_mapping - Find the mapping where this folio is stored.
794 * @folio: The folio.
795 *
796 * For folios which are in the page cache, return the mapping that this
797 * page belongs to. Folios in the swap cache return the swap mapping
798 * this page is stored in (which is different from the mapping for the
799 * swap file or swap device where the data is stored).
800 *
801 * You can call this for folios which aren't in the swap cache or page
802 * cache and it will return NULL.
803 */
804struct address_space *folio_mapping(struct folio *folio)
9800339b 805{
1c290f64
KS
806 struct address_space *mapping;
807
03e5ac2f 808 /* This happens if someone calls flush_dcache_page on slab page */
2f52578f 809 if (unlikely(folio_test_slab(folio)))
03e5ac2f
MP
810 return NULL;
811
2f52578f 812 if (unlikely(folio_test_swapcache(folio)))
3d2c9087 813 return swap_address_space(folio->swap);
e39155ea 814
2f52578f 815 mapping = folio->mapping;
68f2736a 816 if ((unsigned long)mapping & PAGE_MAPPING_FLAGS)
e39155ea 817 return NULL;
bda807d4 818
68f2736a 819 return mapping;
9800339b 820}
2f52578f 821EXPORT_SYMBOL(folio_mapping);
9800339b 822
715cbfd6
MWO
823/**
824 * folio_copy - Copy the contents of one folio to another.
825 * @dst: Folio to copy to.
826 * @src: Folio to copy from.
827 *
828 * The bytes in the folio represented by @src are copied to @dst.
829 * Assumes the caller has validated that @dst is at least as large as @src.
830 * Can be called in atomic context for order-0 folios, but if the folio is
831 * larger, it may sleep.
832 */
833void folio_copy(struct folio *dst, struct folio *src)
79789db0 834{
715cbfd6
MWO
835 long i = 0;
836 long nr = folio_nr_pages(src);
79789db0 837
715cbfd6
MWO
838 for (;;) {
839 copy_highpage(folio_page(dst, i), folio_page(src, i));
840 if (++i == nr)
841 break;
79789db0 842 cond_resched();
79789db0
MWO
843 }
844}
4093602d 845EXPORT_SYMBOL(folio_copy);
79789db0 846
02f4ee5a
KW
847int folio_mc_copy(struct folio *dst, struct folio *src)
848{
849 long nr = folio_nr_pages(src);
850 long i = 0;
851
852 for (;;) {
853 if (copy_mc_highpage(folio_page(dst, i), folio_page(src, i)))
854 return -EHWPOISON;
855 if (++i == nr)
856 break;
857 cond_resched();
858 }
859
860 return 0;
861}
862EXPORT_SYMBOL(folio_mc_copy);
863
39a1aa8e
AR
864int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;
865int sysctl_overcommit_ratio __read_mostly = 50;
866unsigned long sysctl_overcommit_kbytes __read_mostly;
867int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
868unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
869unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
870
78eb4ea2 871int overcommit_ratio_handler(const struct ctl_table *table, int write, void *buffer,
32927393 872 size_t *lenp, loff_t *ppos)
49f0ce5f
JM
873{
874 int ret;
875
876 ret = proc_dointvec(table, write, buffer, lenp, ppos);
877 if (ret == 0 && write)
878 sysctl_overcommit_kbytes = 0;
879 return ret;
880}
881
56f3547b
FT
882static void sync_overcommit_as(struct work_struct *dummy)
883{
884 percpu_counter_sync(&vm_committed_as);
885}
886
78eb4ea2 887int overcommit_policy_handler(const struct ctl_table *table, int write, void *buffer,
56f3547b
FT
888 size_t *lenp, loff_t *ppos)
889{
890 struct ctl_table t;
bcbda810 891 int new_policy = -1;
56f3547b
FT
892 int ret;
893
894 /*
895 * The deviation of sync_overcommit_as could be big with loose policy
896 * like OVERCOMMIT_ALWAYS/OVERCOMMIT_GUESS. When changing policy to
897 * strict OVERCOMMIT_NEVER, we need to reduce the deviation to comply
31454980 898 * with the strict "NEVER", and to avoid possible race condition (even
56f3547b
FT
899 * though user usually won't too frequently do the switching to policy
900 * OVERCOMMIT_NEVER), the switch is done in the following order:
901 * 1. changing the batch
902 * 2. sync percpu count on each CPU
903 * 3. switch the policy
904 */
905 if (write) {
906 t = *table;
907 t.data = &new_policy;
908 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
bcbda810 909 if (ret || new_policy == -1)
56f3547b
FT
910 return ret;
911
912 mm_compute_batch(new_policy);
913 if (new_policy == OVERCOMMIT_NEVER)
914 schedule_on_each_cpu(sync_overcommit_as);
915 sysctl_overcommit_memory = new_policy;
916 } else {
917 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
918 }
919
920 return ret;
921}
922
78eb4ea2 923int overcommit_kbytes_handler(const struct ctl_table *table, int write, void *buffer,
32927393 924 size_t *lenp, loff_t *ppos)
49f0ce5f
JM
925{
926 int ret;
927
928 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
929 if (ret == 0 && write)
930 sysctl_overcommit_ratio = 0;
931 return ret;
932}
933
00619bcc
JM
934/*
935 * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used
936 */
937unsigned long vm_commit_limit(void)
938{
49f0ce5f
JM
939 unsigned long allowed;
940
941 if (sysctl_overcommit_kbytes)
942 allowed = sysctl_overcommit_kbytes >> (PAGE_SHIFT - 10);
943 else
ca79b0c2 944 allowed = ((totalram_pages() - hugetlb_total_pages())
49f0ce5f
JM
945 * sysctl_overcommit_ratio / 100);
946 allowed += total_swap_pages;
947
948 return allowed;
00619bcc
JM
949}
950
39a1aa8e
AR
951/*
952 * Make sure vm_committed_as in one cacheline and not cacheline shared with
953 * other variables. It can be updated by several CPUs frequently.
954 */
955struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
956
957/*
958 * The global memory commitment made in the system can be a metric
959 * that can be used to drive ballooning decisions when Linux is hosted
960 * as a guest. On Hyper-V, the host implements a policy engine for dynamically
961 * balancing memory across competing virtual machines that are hosted.
962 * Several metrics drive this policy engine including the guest reported
963 * memory commitment.
4e2ee51e
FT
964 *
965 * The time cost of this is very low for small platforms, and for big
966 * platform like a 2S/36C/72T Skylake server, in worst case where
967 * vm_committed_as's spinlock is under severe contention, the time cost
968 * could be about 30~40 microseconds.
39a1aa8e
AR
969 */
970unsigned long vm_memory_committed(void)
971{
4e2ee51e 972 return percpu_counter_sum_positive(&vm_committed_as);
39a1aa8e
AR
973}
974EXPORT_SYMBOL_GPL(vm_memory_committed);
975
976/*
977 * Check that a process has enough memory to allocate a new virtual
978 * mapping. 0 means there is enough memory for the allocation to
979 * succeed and -ENOMEM implies there is not.
980 *
981 * We currently support three overcommit policies, which are set via the
ee65728e 982 * vm.overcommit_memory sysctl. See Documentation/mm/overcommit-accounting.rst
39a1aa8e
AR
983 *
984 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
985 * Additional code 2002 Jul 20 by Robert Love.
986 *
987 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
988 *
989 * Note this is a helper function intended to be used by LSMs which
990 * wish to use this logic.
991 */
992int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
993{
8c7829b0 994 long allowed;
f5eec036 995 unsigned long bytes_failed;
39a1aa8e 996
39a1aa8e
AR
997 vm_acct_memory(pages);
998
999 /*
1000 * Sometimes we want to use more memory than we have
1001 */
1002 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
1003 return 0;
1004
1005 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
8c7829b0 1006 if (pages > totalram_pages() + total_swap_pages)
39a1aa8e 1007 goto error;
8c7829b0 1008 return 0;
39a1aa8e
AR
1009 }
1010
1011 allowed = vm_commit_limit();
1012 /*
1013 * Reserve some for root
1014 */
1015 if (!cap_sys_admin)
1016 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
1017
1018 /*
1019 * Don't let a single process grow so big a user can't recover
1020 */
1021 if (mm) {
8c7829b0
JW
1022 long reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
1023
39a1aa8e
AR
1024 allowed -= min_t(long, mm->total_vm / 32, reserve);
1025 }
1026
1027 if (percpu_counter_read_positive(&vm_committed_as) < allowed)
1028 return 0;
1029error:
f5eec036
MC
1030 bytes_failed = pages << PAGE_SHIFT;
1031 pr_warn_ratelimited("%s: pid: %d, comm: %s, bytes: %lu not enough memory for the allocation\n",
1032 __func__, current->pid, current->comm, bytes_failed);
39a1aa8e
AR
1033 vm_unacct_memory(pages);
1034
1035 return -ENOMEM;
1036}
1037
a9090253
WR
1038/**
1039 * get_cmdline() - copy the cmdline value to a buffer.
1040 * @task: the task whose cmdline value to copy.
1041 * @buffer: the buffer to copy to.
1042 * @buflen: the length of the buffer. Larger cmdline values are truncated
1043 * to this length.
a862f68a
MR
1044 *
1045 * Return: the size of the cmdline field copied. Note that the copy does
a9090253
WR
1046 * not guarantee an ending NULL byte.
1047 */
1048int get_cmdline(struct task_struct *task, char *buffer, int buflen)
1049{
1050 int res = 0;
1051 unsigned int len;
1052 struct mm_struct *mm = get_task_mm(task);
a3b609ef 1053 unsigned long arg_start, arg_end, env_start, env_end;
a9090253
WR
1054 if (!mm)
1055 goto out;
1056 if (!mm->arg_end)
1057 goto out_mm; /* Shh! No looking before we're done */
1058
bc81426f 1059 spin_lock(&mm->arg_lock);
a3b609ef
MG
1060 arg_start = mm->arg_start;
1061 arg_end = mm->arg_end;
1062 env_start = mm->env_start;
1063 env_end = mm->env_end;
bc81426f 1064 spin_unlock(&mm->arg_lock);
a3b609ef
MG
1065
1066 len = arg_end - arg_start;
a9090253
WR
1067
1068 if (len > buflen)
1069 len = buflen;
1070
f307ab6d 1071 res = access_process_vm(task, arg_start, buffer, len, FOLL_FORCE);
a9090253
WR
1072
1073 /*
1074 * If the nul at the end of args has been overwritten, then
1075 * assume application is using setproctitle(3).
1076 */
1077 if (res > 0 && buffer[res-1] != '\0' && len < buflen) {
1078 len = strnlen(buffer, res);
1079 if (len < res) {
1080 res = len;
1081 } else {
a3b609ef 1082 len = env_end - env_start;
a9090253
WR
1083 if (len > buflen - res)
1084 len = buflen - res;
a3b609ef 1085 res += access_process_vm(task, env_start,
f307ab6d
LS
1086 buffer+res, len,
1087 FOLL_FORCE);
a9090253
WR
1088 res = strnlen(buffer, res);
1089 }
1090 }
1091out_mm:
1092 mmput(mm);
1093out:
1094 return res;
1095}
010c164a 1096
4d1a8a2d 1097int __weak memcmp_pages(struct page *page1, struct page *page2)
010c164a
SL
1098{
1099 char *addr1, *addr2;
1100 int ret;
1101
2f753762
FDF
1102 addr1 = kmap_local_page(page1);
1103 addr2 = kmap_local_page(page2);
010c164a 1104 ret = memcmp(addr1, addr2, PAGE_SIZE);
2f753762
FDF
1105 kunmap_local(addr2);
1106 kunmap_local(addr1);
010c164a
SL
1107 return ret;
1108}
8e7f37f2 1109
5bb1bb35 1110#ifdef CONFIG_PRINTK
8e7f37f2
PM
1111/**
1112 * mem_dump_obj - Print available provenance information
1113 * @object: object for which to find provenance information.
1114 *
1115 * This function uses pr_cont(), so that the caller is expected to have
1116 * printed out whatever preamble is appropriate. The provenance information
1117 * depends on the type of object and on how much debugging is enabled.
1118 * For example, for a slab-cache object, the slab name is printed, and,
1119 * if available, the return address and stack trace from the allocation
e548eaa1 1120 * and last free path of that object.
8e7f37f2
PM
1121 */
1122void mem_dump_obj(void *object)
1123{
2521781c
JP
1124 const char *type;
1125
6e284c55 1126 if (kmem_dump_obj(object))
98f18083 1127 return;
2521781c 1128
98f18083
PM
1129 if (vmalloc_dump_obj(object))
1130 return;
2521781c 1131
c83ad36a
Z
1132 if (is_vmalloc_addr(object))
1133 type = "vmalloc memory";
1134 else if (virt_addr_valid(object))
2521781c
JP
1135 type = "non-slab/vmalloc memory";
1136 else if (object == NULL)
1137 type = "NULL pointer";
1138 else if (object == ZERO_SIZE_PTR)
1139 type = "zero-size pointer";
1140 else
1141 type = "non-paged memory";
1142
1143 pr_cont(" %s\n", type);
8e7f37f2 1144}
0d3dd2c8 1145EXPORT_SYMBOL_GPL(mem_dump_obj);
5bb1bb35 1146#endif
82840451
DH
1147
1148/*
1149 * A driver might set a page logically offline -- PageOffline() -- and
1150 * turn the page inaccessible in the hypervisor; after that, access to page
1151 * content can be fatal.
1152 *
1153 * Some special PFN walkers -- i.e., /proc/kcore -- read content of random
1154 * pages after checking PageOffline(); however, these PFN walkers can race
1155 * with drivers that set PageOffline().
1156 *
1157 * page_offline_freeze()/page_offline_thaw() allows for a subsystem to
1158 * synchronize with such drivers, achieving that a page cannot be set
1159 * PageOffline() while frozen.
1160 *
1161 * page_offline_begin()/page_offline_end() is used by drivers that care about
1162 * such races when setting a page PageOffline().
1163 */
1164static DECLARE_RWSEM(page_offline_rwsem);
1165
1166void page_offline_freeze(void)
1167{
1168 down_read(&page_offline_rwsem);
1169}
1170
1171void page_offline_thaw(void)
1172{
1173 up_read(&page_offline_rwsem);
1174}
1175
1176void page_offline_begin(void)
1177{
1178 down_write(&page_offline_rwsem);
1179}
1180EXPORT_SYMBOL(page_offline_begin);
1181
1182void page_offline_end(void)
1183{
1184 up_write(&page_offline_rwsem);
1185}
1186EXPORT_SYMBOL(page_offline_end);
08b0b005 1187
29d26f12 1188#ifndef flush_dcache_folio
08b0b005
MWO
1189void flush_dcache_folio(struct folio *folio)
1190{
1191 long i, nr = folio_nr_pages(folio);
1192
1193 for (i = 0; i < nr; i++)
1194 flush_dcache_page(folio_page(folio, i));
1195}
1196EXPORT_SYMBOL(flush_dcache_folio);
1197#endif
This page took 1.331446 seconds and 4 git commands to generate.