]>
Commit | Line | Data |
---|---|---|
457c8996 | 1 | // SPDX-License-Identifier: GPL-2.0-only |
16d69265 | 2 | #include <linux/mm.h> |
30992c97 MM |
3 | #include <linux/slab.h> |
4 | #include <linux/string.h> | |
3b32123d | 5 | #include <linux/compiler.h> |
b95f1b31 | 6 | #include <linux/export.h> |
96840aa0 | 7 | #include <linux/err.h> |
3b8f14b4 | 8 | #include <linux/sched.h> |
6e84f315 | 9 | #include <linux/sched/mm.h> |
79eb597c | 10 | #include <linux/sched/signal.h> |
68db0cf1 | 11 | #include <linux/sched/task_stack.h> |
eb36c587 | 12 | #include <linux/security.h> |
9800339b | 13 | #include <linux/swap.h> |
33806f06 | 14 | #include <linux/swapops.h> |
00619bcc JM |
15 | #include <linux/mman.h> |
16 | #include <linux/hugetlb.h> | |
39f1f78d | 17 | #include <linux/vmalloc.h> |
897ab3e0 | 18 | #include <linux/userfaultfd_k.h> |
649775be | 19 | #include <linux/elf.h> |
67f3977f AG |
20 | #include <linux/elf-randomize.h> |
21 | #include <linux/personality.h> | |
649775be | 22 | #include <linux/random.h> |
67f3977f AG |
23 | #include <linux/processor.h> |
24 | #include <linux/sizes.h> | |
25 | #include <linux/compat.h> | |
00619bcc | 26 | |
7c0f6ba6 | 27 | #include <linux/uaccess.h> |
30992c97 | 28 | |
6038def0 | 29 | #include "internal.h" |
014bb1de | 30 | #include "swap.h" |
6038def0 | 31 | |
a4bb1e43 AH |
32 | /** |
33 | * kfree_const - conditionally free memory | |
34 | * @x: pointer to the memory | |
35 | * | |
36 | * Function calls kfree only if @x is not in .rodata section. | |
37 | */ | |
38 | void kfree_const(const void *x) | |
39 | { | |
40 | if (!is_kernel_rodata((unsigned long)x)) | |
41 | kfree(x); | |
42 | } | |
43 | EXPORT_SYMBOL(kfree_const); | |
44 | ||
30992c97 | 45 | /** |
30992c97 | 46 | * kstrdup - allocate space for and copy an existing string |
30992c97 MM |
47 | * @s: the string to duplicate |
48 | * @gfp: the GFP mask used in the kmalloc() call when allocating memory | |
a862f68a MR |
49 | * |
50 | * Return: newly allocated copy of @s or %NULL in case of error | |
30992c97 | 51 | */ |
2a6772eb | 52 | noinline |
30992c97 MM |
53 | char *kstrdup(const char *s, gfp_t gfp) |
54 | { | |
55 | size_t len; | |
56 | char *buf; | |
57 | ||
58 | if (!s) | |
59 | return NULL; | |
60 | ||
61 | len = strlen(s) + 1; | |
1d2c8eea | 62 | buf = kmalloc_track_caller(len, gfp); |
30992c97 MM |
63 | if (buf) |
64 | memcpy(buf, s, len); | |
65 | return buf; | |
66 | } | |
67 | EXPORT_SYMBOL(kstrdup); | |
96840aa0 | 68 | |
a4bb1e43 AH |
69 | /** |
70 | * kstrdup_const - conditionally duplicate an existing const string | |
71 | * @s: the string to duplicate | |
72 | * @gfp: the GFP mask used in the kmalloc() call when allocating memory | |
73 | * | |
295a1730 BG |
74 | * Note: Strings allocated by kstrdup_const should be freed by kfree_const and |
75 | * must not be passed to krealloc(). | |
a862f68a MR |
76 | * |
77 | * Return: source string if it is in .rodata section otherwise | |
78 | * fallback to kstrdup. | |
a4bb1e43 AH |
79 | */ |
80 | const char *kstrdup_const(const char *s, gfp_t gfp) | |
81 | { | |
82 | if (is_kernel_rodata((unsigned long)s)) | |
83 | return s; | |
84 | ||
85 | return kstrdup(s, gfp); | |
86 | } | |
87 | EXPORT_SYMBOL(kstrdup_const); | |
88 | ||
1e66df3e JF |
89 | /** |
90 | * kstrndup - allocate space for and copy an existing string | |
91 | * @s: the string to duplicate | |
92 | * @max: read at most @max chars from @s | |
93 | * @gfp: the GFP mask used in the kmalloc() call when allocating memory | |
f3515741 DH |
94 | * |
95 | * Note: Use kmemdup_nul() instead if the size is known exactly. | |
a862f68a MR |
96 | * |
97 | * Return: newly allocated copy of @s or %NULL in case of error | |
1e66df3e JF |
98 | */ |
99 | char *kstrndup(const char *s, size_t max, gfp_t gfp) | |
100 | { | |
101 | size_t len; | |
102 | char *buf; | |
103 | ||
104 | if (!s) | |
105 | return NULL; | |
106 | ||
107 | len = strnlen(s, max); | |
108 | buf = kmalloc_track_caller(len+1, gfp); | |
109 | if (buf) { | |
110 | memcpy(buf, s, len); | |
111 | buf[len] = '\0'; | |
112 | } | |
113 | return buf; | |
114 | } | |
115 | EXPORT_SYMBOL(kstrndup); | |
116 | ||
1a2f67b4 AD |
117 | /** |
118 | * kmemdup - duplicate region of memory | |
119 | * | |
120 | * @src: memory region to duplicate | |
121 | * @len: memory region length | |
122 | * @gfp: GFP mask to use | |
a862f68a | 123 | * |
0b7b8704 HS |
124 | * Return: newly allocated copy of @src or %NULL in case of error, |
125 | * result is physically contiguous. Use kfree() to free. | |
1a2f67b4 | 126 | */ |
7bd230a2 | 127 | void *kmemdup_noprof(const void *src, size_t len, gfp_t gfp) |
1a2f67b4 AD |
128 | { |
129 | void *p; | |
130 | ||
7bd230a2 | 131 | p = kmalloc_node_track_caller_noprof(len, gfp, NUMA_NO_NODE, _RET_IP_); |
1a2f67b4 AD |
132 | if (p) |
133 | memcpy(p, src, len); | |
134 | return p; | |
135 | } | |
7bd230a2 | 136 | EXPORT_SYMBOL(kmemdup_noprof); |
1a2f67b4 | 137 | |
7092e9b3 K |
138 | /** |
139 | * kmemdup_array - duplicate a given array. | |
140 | * | |
141 | * @src: array to duplicate. | |
142 | * @element_size: size of each element of array. | |
143 | * @count: number of elements to duplicate from array. | |
144 | * @gfp: GFP mask to use. | |
145 | * | |
146 | * Return: duplicated array of @src or %NULL in case of error, | |
147 | * result is physically contiguous. Use kfree() to free. | |
148 | */ | |
149 | void *kmemdup_array(const void *src, size_t element_size, size_t count, gfp_t gfp) | |
150 | { | |
151 | return kmemdup(src, size_mul(element_size, count), gfp); | |
152 | } | |
153 | EXPORT_SYMBOL(kmemdup_array); | |
154 | ||
0b7b8704 HS |
155 | /** |
156 | * kvmemdup - duplicate region of memory | |
157 | * | |
158 | * @src: memory region to duplicate | |
159 | * @len: memory region length | |
160 | * @gfp: GFP mask to use | |
161 | * | |
162 | * Return: newly allocated copy of @src or %NULL in case of error, | |
163 | * result may be not physically contiguous. Use kvfree() to free. | |
164 | */ | |
165 | void *kvmemdup(const void *src, size_t len, gfp_t gfp) | |
166 | { | |
167 | void *p; | |
168 | ||
169 | p = kvmalloc(len, gfp); | |
170 | if (p) | |
171 | memcpy(p, src, len); | |
172 | return p; | |
173 | } | |
174 | EXPORT_SYMBOL(kvmemdup); | |
175 | ||
f3515741 DH |
176 | /** |
177 | * kmemdup_nul - Create a NUL-terminated string from unterminated data | |
178 | * @s: The data to stringify | |
179 | * @len: The size of the data | |
180 | * @gfp: the GFP mask used in the kmalloc() call when allocating memory | |
a862f68a MR |
181 | * |
182 | * Return: newly allocated copy of @s with NUL-termination or %NULL in | |
183 | * case of error | |
f3515741 DH |
184 | */ |
185 | char *kmemdup_nul(const char *s, size_t len, gfp_t gfp) | |
186 | { | |
187 | char *buf; | |
188 | ||
189 | if (!s) | |
190 | return NULL; | |
191 | ||
192 | buf = kmalloc_track_caller(len + 1, gfp); | |
193 | if (buf) { | |
194 | memcpy(buf, s, len); | |
195 | buf[len] = '\0'; | |
196 | } | |
197 | return buf; | |
198 | } | |
199 | EXPORT_SYMBOL(kmemdup_nul); | |
200 | ||
610a77e0 LZ |
201 | /** |
202 | * memdup_user - duplicate memory region from user space | |
203 | * | |
204 | * @src: source address in user space | |
205 | * @len: number of bytes to copy | |
206 | * | |
a862f68a | 207 | * Return: an ERR_PTR() on failure. Result is physically |
50fd2f29 | 208 | * contiguous, to be freed by kfree(). |
610a77e0 LZ |
209 | */ |
210 | void *memdup_user(const void __user *src, size_t len) | |
211 | { | |
212 | void *p; | |
213 | ||
6c8fcc09 | 214 | p = kmalloc_track_caller(len, GFP_USER | __GFP_NOWARN); |
610a77e0 LZ |
215 | if (!p) |
216 | return ERR_PTR(-ENOMEM); | |
217 | ||
218 | if (copy_from_user(p, src, len)) { | |
219 | kfree(p); | |
220 | return ERR_PTR(-EFAULT); | |
221 | } | |
222 | ||
223 | return p; | |
224 | } | |
225 | EXPORT_SYMBOL(memdup_user); | |
226 | ||
50fd2f29 AV |
227 | /** |
228 | * vmemdup_user - duplicate memory region from user space | |
229 | * | |
230 | * @src: source address in user space | |
231 | * @len: number of bytes to copy | |
232 | * | |
a862f68a | 233 | * Return: an ERR_PTR() on failure. Result may be not |
50fd2f29 AV |
234 | * physically contiguous. Use kvfree() to free. |
235 | */ | |
236 | void *vmemdup_user(const void __user *src, size_t len) | |
237 | { | |
238 | void *p; | |
239 | ||
240 | p = kvmalloc(len, GFP_USER); | |
241 | if (!p) | |
242 | return ERR_PTR(-ENOMEM); | |
243 | ||
244 | if (copy_from_user(p, src, len)) { | |
245 | kvfree(p); | |
246 | return ERR_PTR(-EFAULT); | |
247 | } | |
248 | ||
249 | return p; | |
250 | } | |
251 | EXPORT_SYMBOL(vmemdup_user); | |
252 | ||
b86181f1 | 253 | /** |
96840aa0 | 254 | * strndup_user - duplicate an existing string from user space |
96840aa0 DA |
255 | * @s: The string to duplicate |
256 | * @n: Maximum number of bytes to copy, including the trailing NUL. | |
a862f68a | 257 | * |
e9145521 | 258 | * Return: newly allocated copy of @s or an ERR_PTR() in case of error |
96840aa0 DA |
259 | */ |
260 | char *strndup_user(const char __user *s, long n) | |
261 | { | |
262 | char *p; | |
263 | long length; | |
264 | ||
265 | length = strnlen_user(s, n); | |
266 | ||
267 | if (!length) | |
268 | return ERR_PTR(-EFAULT); | |
269 | ||
270 | if (length > n) | |
271 | return ERR_PTR(-EINVAL); | |
272 | ||
90d74045 | 273 | p = memdup_user(s, length); |
96840aa0 | 274 | |
90d74045 JL |
275 | if (IS_ERR(p)) |
276 | return p; | |
96840aa0 DA |
277 | |
278 | p[length - 1] = '\0'; | |
279 | ||
280 | return p; | |
281 | } | |
282 | EXPORT_SYMBOL(strndup_user); | |
16d69265 | 283 | |
e9d408e1 AV |
284 | /** |
285 | * memdup_user_nul - duplicate memory region from user space and NUL-terminate | |
286 | * | |
287 | * @src: source address in user space | |
288 | * @len: number of bytes to copy | |
289 | * | |
a862f68a | 290 | * Return: an ERR_PTR() on failure. |
e9d408e1 AV |
291 | */ |
292 | void *memdup_user_nul(const void __user *src, size_t len) | |
293 | { | |
294 | char *p; | |
295 | ||
296 | /* | |
297 | * Always use GFP_KERNEL, since copy_from_user() can sleep and | |
298 | * cause pagefault, which makes it pointless to use GFP_NOFS | |
299 | * or GFP_ATOMIC. | |
300 | */ | |
301 | p = kmalloc_track_caller(len + 1, GFP_KERNEL); | |
302 | if (!p) | |
303 | return ERR_PTR(-ENOMEM); | |
304 | ||
305 | if (copy_from_user(p, src, len)) { | |
306 | kfree(p); | |
307 | return ERR_PTR(-EFAULT); | |
308 | } | |
309 | p[len] = '\0'; | |
310 | ||
311 | return p; | |
312 | } | |
313 | EXPORT_SYMBOL(memdup_user_nul); | |
314 | ||
b7643757 | 315 | /* Check if the vma is being used as a stack by this task */ |
d17af505 | 316 | int vma_is_stack_for_current(struct vm_area_struct *vma) |
b7643757 | 317 | { |
d17af505 AL |
318 | struct task_struct * __maybe_unused t = current; |
319 | ||
b7643757 SP |
320 | return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t)); |
321 | } | |
322 | ||
295992fb CK |
323 | /* |
324 | * Change backing file, only valid to use during initial VMA setup. | |
325 | */ | |
326 | void vma_set_file(struct vm_area_struct *vma, struct file *file) | |
327 | { | |
328 | /* Changing an anonymous vma with this is illegal */ | |
329 | get_file(file); | |
330 | swap(vma->vm_file, file); | |
331 | fput(file); | |
332 | } | |
333 | EXPORT_SYMBOL(vma_set_file); | |
334 | ||
649775be AG |
335 | #ifndef STACK_RND_MASK |
336 | #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12)) /* 8MB of VA */ | |
337 | #endif | |
338 | ||
339 | unsigned long randomize_stack_top(unsigned long stack_top) | |
340 | { | |
341 | unsigned long random_variable = 0; | |
342 | ||
343 | if (current->flags & PF_RANDOMIZE) { | |
344 | random_variable = get_random_long(); | |
345 | random_variable &= STACK_RND_MASK; | |
346 | random_variable <<= PAGE_SHIFT; | |
347 | } | |
348 | #ifdef CONFIG_STACK_GROWSUP | |
349 | return PAGE_ALIGN(stack_top) + random_variable; | |
350 | #else | |
351 | return PAGE_ALIGN(stack_top) - random_variable; | |
352 | #endif | |
353 | } | |
354 | ||
5ad7dd88 JD |
355 | /** |
356 | * randomize_page - Generate a random, page aligned address | |
357 | * @start: The smallest acceptable address the caller will take. | |
358 | * @range: The size of the area, starting at @start, within which the | |
359 | * random address must fall. | |
360 | * | |
361 | * If @start + @range would overflow, @range is capped. | |
362 | * | |
363 | * NOTE: Historical use of randomize_range, which this replaces, presumed that | |
364 | * @start was already page aligned. We now align it regardless. | |
365 | * | |
366 | * Return: A page aligned address within [start, start + range). On error, | |
367 | * @start is returned. | |
368 | */ | |
369 | unsigned long randomize_page(unsigned long start, unsigned long range) | |
370 | { | |
371 | if (!PAGE_ALIGNED(start)) { | |
372 | range -= PAGE_ALIGN(start) - start; | |
373 | start = PAGE_ALIGN(start); | |
374 | } | |
375 | ||
376 | if (start > ULONG_MAX - range) | |
377 | range = ULONG_MAX - start; | |
378 | ||
379 | range >>= PAGE_SHIFT; | |
380 | ||
381 | if (range == 0) | |
382 | return start; | |
383 | ||
384 | return start + (get_random_long() % range << PAGE_SHIFT); | |
385 | } | |
386 | ||
67f3977f | 387 | #ifdef CONFIG_ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT |
723820f3 | 388 | unsigned long __weak arch_randomize_brk(struct mm_struct *mm) |
e7142bf5 AG |
389 | { |
390 | /* Is the current task 32bit ? */ | |
391 | if (!IS_ENABLED(CONFIG_64BIT) || is_compat_task()) | |
392 | return randomize_page(mm->brk, SZ_32M); | |
393 | ||
394 | return randomize_page(mm->brk, SZ_1G); | |
395 | } | |
396 | ||
67f3977f AG |
397 | unsigned long arch_mmap_rnd(void) |
398 | { | |
399 | unsigned long rnd; | |
400 | ||
401 | #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS | |
402 | if (is_compat_task()) | |
403 | rnd = get_random_long() & ((1UL << mmap_rnd_compat_bits) - 1); | |
404 | else | |
405 | #endif /* CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS */ | |
406 | rnd = get_random_long() & ((1UL << mmap_rnd_bits) - 1); | |
407 | ||
408 | return rnd << PAGE_SHIFT; | |
409 | } | |
67f3977f AG |
410 | |
411 | static int mmap_is_legacy(struct rlimit *rlim_stack) | |
412 | { | |
413 | if (current->personality & ADDR_COMPAT_LAYOUT) | |
414 | return 1; | |
415 | ||
3033cd43 HD |
416 | /* On parisc the stack always grows up - so a unlimited stack should |
417 | * not be an indicator to use the legacy memory layout. */ | |
418 | if (rlim_stack->rlim_cur == RLIM_INFINITY && | |
419 | !IS_ENABLED(CONFIG_STACK_GROWSUP)) | |
67f3977f AG |
420 | return 1; |
421 | ||
422 | return sysctl_legacy_va_layout; | |
423 | } | |
424 | ||
425 | /* | |
426 | * Leave enough space between the mmap area and the stack to honour ulimit in | |
427 | * the face of randomisation. | |
428 | */ | |
429 | #define MIN_GAP (SZ_128M) | |
430 | #define MAX_GAP (STACK_TOP / 6 * 5) | |
431 | ||
432 | static unsigned long mmap_base(unsigned long rnd, struct rlimit *rlim_stack) | |
433 | { | |
5f74f820 HD |
434 | #ifdef CONFIG_STACK_GROWSUP |
435 | /* | |
436 | * For an upwards growing stack the calculation is much simpler. | |
437 | * Memory for the maximum stack size is reserved at the top of the | |
438 | * task. mmap_base starts directly below the stack and grows | |
439 | * downwards. | |
440 | */ | |
441 | return PAGE_ALIGN_DOWN(mmap_upper_limit(rlim_stack) - rnd); | |
442 | #else | |
67f3977f AG |
443 | unsigned long gap = rlim_stack->rlim_cur; |
444 | unsigned long pad = stack_guard_gap; | |
445 | ||
446 | /* Account for stack randomization if necessary */ | |
447 | if (current->flags & PF_RANDOMIZE) | |
448 | pad += (STACK_RND_MASK << PAGE_SHIFT); | |
449 | ||
450 | /* Values close to RLIM_INFINITY can overflow. */ | |
451 | if (gap + pad > gap) | |
452 | gap += pad; | |
453 | ||
454 | if (gap < MIN_GAP) | |
455 | gap = MIN_GAP; | |
456 | else if (gap > MAX_GAP) | |
457 | gap = MAX_GAP; | |
458 | ||
459 | return PAGE_ALIGN(STACK_TOP - gap - rnd); | |
5f74f820 | 460 | #endif |
67f3977f AG |
461 | } |
462 | ||
463 | void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack) | |
464 | { | |
465 | unsigned long random_factor = 0UL; | |
466 | ||
467 | if (current->flags & PF_RANDOMIZE) | |
468 | random_factor = arch_mmap_rnd(); | |
469 | ||
470 | if (mmap_is_legacy(rlim_stack)) { | |
471 | mm->mmap_base = TASK_UNMAPPED_BASE + random_factor; | |
529ce23a | 472 | clear_bit(MMF_TOPDOWN, &mm->flags); |
67f3977f AG |
473 | } else { |
474 | mm->mmap_base = mmap_base(random_factor, rlim_stack); | |
529ce23a | 475 | set_bit(MMF_TOPDOWN, &mm->flags); |
67f3977f AG |
476 | } |
477 | } | |
478 | #elif defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT) | |
8f2af155 | 479 | void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack) |
16d69265 AM |
480 | { |
481 | mm->mmap_base = TASK_UNMAPPED_BASE; | |
529ce23a | 482 | clear_bit(MMF_TOPDOWN, &mm->flags); |
16d69265 AM |
483 | } |
484 | #endif | |
912985dc | 485 | |
79eb597c DJ |
486 | /** |
487 | * __account_locked_vm - account locked pages to an mm's locked_vm | |
488 | * @mm: mm to account against | |
489 | * @pages: number of pages to account | |
490 | * @inc: %true if @pages should be considered positive, %false if not | |
491 | * @task: task used to check RLIMIT_MEMLOCK | |
492 | * @bypass_rlim: %true if checking RLIMIT_MEMLOCK should be skipped | |
493 | * | |
494 | * Assumes @task and @mm are valid (i.e. at least one reference on each), and | |
c1e8d7c6 | 495 | * that mmap_lock is held as writer. |
79eb597c DJ |
496 | * |
497 | * Return: | |
498 | * * 0 on success | |
499 | * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded. | |
500 | */ | |
501 | int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc, | |
502 | struct task_struct *task, bool bypass_rlim) | |
503 | { | |
504 | unsigned long locked_vm, limit; | |
505 | int ret = 0; | |
506 | ||
42fc5414 | 507 | mmap_assert_write_locked(mm); |
79eb597c DJ |
508 | |
509 | locked_vm = mm->locked_vm; | |
510 | if (inc) { | |
511 | if (!bypass_rlim) { | |
512 | limit = task_rlimit(task, RLIMIT_MEMLOCK) >> PAGE_SHIFT; | |
513 | if (locked_vm + pages > limit) | |
514 | ret = -ENOMEM; | |
515 | } | |
516 | if (!ret) | |
517 | mm->locked_vm = locked_vm + pages; | |
518 | } else { | |
519 | WARN_ON_ONCE(pages > locked_vm); | |
520 | mm->locked_vm = locked_vm - pages; | |
521 | } | |
522 | ||
523 | pr_debug("%s: [%d] caller %ps %c%lu %lu/%lu%s\n", __func__, task->pid, | |
524 | (void *)_RET_IP_, (inc) ? '+' : '-', pages << PAGE_SHIFT, | |
525 | locked_vm << PAGE_SHIFT, task_rlimit(task, RLIMIT_MEMLOCK), | |
526 | ret ? " - exceeded" : ""); | |
527 | ||
528 | return ret; | |
529 | } | |
530 | EXPORT_SYMBOL_GPL(__account_locked_vm); | |
531 | ||
532 | /** | |
533 | * account_locked_vm - account locked pages to an mm's locked_vm | |
534 | * @mm: mm to account against, may be NULL | |
535 | * @pages: number of pages to account | |
536 | * @inc: %true if @pages should be considered positive, %false if not | |
537 | * | |
538 | * Assumes a non-NULL @mm is valid (i.e. at least one reference on it). | |
539 | * | |
540 | * Return: | |
541 | * * 0 on success, or if mm is NULL | |
542 | * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded. | |
543 | */ | |
544 | int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc) | |
545 | { | |
546 | int ret; | |
547 | ||
548 | if (pages == 0 || !mm) | |
549 | return 0; | |
550 | ||
d8ed45c5 | 551 | mmap_write_lock(mm); |
79eb597c DJ |
552 | ret = __account_locked_vm(mm, pages, inc, current, |
553 | capable(CAP_IPC_LOCK)); | |
d8ed45c5 | 554 | mmap_write_unlock(mm); |
79eb597c DJ |
555 | |
556 | return ret; | |
557 | } | |
558 | EXPORT_SYMBOL_GPL(account_locked_vm); | |
559 | ||
eb36c587 AV |
560 | unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr, |
561 | unsigned long len, unsigned long prot, | |
9fbeb5ab | 562 | unsigned long flag, unsigned long pgoff) |
eb36c587 AV |
563 | { |
564 | unsigned long ret; | |
565 | struct mm_struct *mm = current->mm; | |
41badc15 | 566 | unsigned long populate; |
897ab3e0 | 567 | LIST_HEAD(uf); |
eb36c587 AV |
568 | |
569 | ret = security_mmap_file(file, prot, flag); | |
570 | if (!ret) { | |
d8ed45c5 | 571 | if (mmap_write_lock_killable(mm)) |
9fbeb5ab | 572 | return -EINTR; |
592b5fad | 573 | ret = do_mmap(file, addr, len, prot, flag, 0, pgoff, &populate, |
45e55300 | 574 | &uf); |
d8ed45c5 | 575 | mmap_write_unlock(mm); |
897ab3e0 | 576 | userfaultfd_unmap_complete(mm, &uf); |
41badc15 ML |
577 | if (populate) |
578 | mm_populate(ret, populate); | |
eb36c587 AV |
579 | } |
580 | return ret; | |
581 | } | |
582 | ||
583 | unsigned long vm_mmap(struct file *file, unsigned long addr, | |
584 | unsigned long len, unsigned long prot, | |
585 | unsigned long flag, unsigned long offset) | |
586 | { | |
587 | if (unlikely(offset + PAGE_ALIGN(len) < offset)) | |
588 | return -EINVAL; | |
ea53cde0 | 589 | if (unlikely(offset_in_page(offset))) |
eb36c587 AV |
590 | return -EINVAL; |
591 | ||
9fbeb5ab | 592 | return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT); |
eb36c587 AV |
593 | } |
594 | EXPORT_SYMBOL(vm_mmap); | |
595 | ||
a7c3e901 MH |
596 | /** |
597 | * kvmalloc_node - attempt to allocate physically contiguous memory, but upon | |
598 | * failure, fall back to non-contiguous (vmalloc) allocation. | |
599 | * @size: size of the request. | |
600 | * @flags: gfp mask for the allocation - must be compatible (superset) with GFP_KERNEL. | |
601 | * @node: numa node to allocate from | |
602 | * | |
603 | * Uses kmalloc to get the memory but if the allocation fails then falls back | |
604 | * to the vmalloc allocator. Use kvfree for freeing the memory. | |
605 | * | |
a421ef30 | 606 | * GFP_NOWAIT and GFP_ATOMIC are not supported, neither is the __GFP_NORETRY modifier. |
cc965a29 MH |
607 | * __GFP_RETRY_MAYFAIL is supported, and it should be used only if kmalloc is |
608 | * preferable to the vmalloc fallback, due to visible performance drawbacks. | |
a7c3e901 | 609 | * |
a862f68a | 610 | * Return: pointer to the allocated memory of %NULL in case of failure |
a7c3e901 | 611 | */ |
7bd230a2 | 612 | void *kvmalloc_node_noprof(size_t size, gfp_t flags, int node) |
a7c3e901 MH |
613 | { |
614 | gfp_t kmalloc_flags = flags; | |
615 | void *ret; | |
616 | ||
a7c3e901 | 617 | /* |
4f4f2ba9 MH |
618 | * We want to attempt a large physically contiguous block first because |
619 | * it is less likely to fragment multiple larger blocks and therefore | |
620 | * contribute to a long term fragmentation less than vmalloc fallback. | |
621 | * However make sure that larger requests are not too disruptive - no | |
622 | * OOM killer and no allocation failure warnings as we have a fallback. | |
a7c3e901 | 623 | */ |
6c5ab651 MH |
624 | if (size > PAGE_SIZE) { |
625 | kmalloc_flags |= __GFP_NOWARN; | |
626 | ||
cc965a29 | 627 | if (!(kmalloc_flags & __GFP_RETRY_MAYFAIL)) |
6c5ab651 | 628 | kmalloc_flags |= __GFP_NORETRY; |
a421ef30 MH |
629 | |
630 | /* nofail semantic is implemented by the vmalloc fallback */ | |
631 | kmalloc_flags &= ~__GFP_NOFAIL; | |
6c5ab651 | 632 | } |
a7c3e901 | 633 | |
7bd230a2 | 634 | ret = kmalloc_node_noprof(size, kmalloc_flags, node); |
a7c3e901 MH |
635 | |
636 | /* | |
637 | * It doesn't really make sense to fallback to vmalloc for sub page | |
638 | * requests | |
639 | */ | |
640 | if (ret || size <= PAGE_SIZE) | |
641 | return ret; | |
642 | ||
30c19366 FW |
643 | /* non-sleeping allocations are not supported by vmalloc */ |
644 | if (!gfpflags_allow_blocking(flags)) | |
645 | return NULL; | |
646 | ||
7661809d | 647 | /* Don't even allow crazy sizes */ |
0708a0af DB |
648 | if (unlikely(size > INT_MAX)) { |
649 | WARN_ON_ONCE(!(flags & __GFP_NOWARN)); | |
7661809d | 650 | return NULL; |
0708a0af | 651 | } |
7661809d | 652 | |
9becb688 LT |
653 | /* |
654 | * kvmalloc() can always use VM_ALLOW_HUGE_VMAP, | |
655 | * since the callers already cannot assume anything | |
656 | * about the resulting pointer, and cannot play | |
657 | * protection games. | |
658 | */ | |
88ae5fb7 | 659 | return __vmalloc_node_range_noprof(size, 1, VMALLOC_START, VMALLOC_END, |
9becb688 LT |
660 | flags, PAGE_KERNEL, VM_ALLOW_HUGE_VMAP, |
661 | node, __builtin_return_address(0)); | |
a7c3e901 | 662 | } |
7bd230a2 | 663 | EXPORT_SYMBOL(kvmalloc_node_noprof); |
a7c3e901 | 664 | |
ff4dc772 | 665 | /** |
04b8e946 AM |
666 | * kvfree() - Free memory. |
667 | * @addr: Pointer to allocated memory. | |
ff4dc772 | 668 | * |
04b8e946 AM |
669 | * kvfree frees memory allocated by any of vmalloc(), kmalloc() or kvmalloc(). |
670 | * It is slightly more efficient to use kfree() or vfree() if you are certain | |
671 | * that you know which one to use. | |
672 | * | |
52414d33 | 673 | * Context: Either preemptible task context or not-NMI interrupt. |
ff4dc772 | 674 | */ |
39f1f78d AV |
675 | void kvfree(const void *addr) |
676 | { | |
677 | if (is_vmalloc_addr(addr)) | |
678 | vfree(addr); | |
679 | else | |
680 | kfree(addr); | |
681 | } | |
682 | EXPORT_SYMBOL(kvfree); | |
683 | ||
d4eaa283 WL |
684 | /** |
685 | * kvfree_sensitive - Free a data object containing sensitive information. | |
686 | * @addr: address of the data object to be freed. | |
687 | * @len: length of the data object. | |
688 | * | |
689 | * Use the special memzero_explicit() function to clear the content of a | |
690 | * kvmalloc'ed object containing sensitive data to make sure that the | |
691 | * compiler won't optimize out the data clearing. | |
692 | */ | |
693 | void kvfree_sensitive(const void *addr, size_t len) | |
694 | { | |
695 | if (likely(!ZERO_OR_NULL_PTR(addr))) { | |
696 | memzero_explicit((void *)addr, len); | |
697 | kvfree(addr); | |
698 | } | |
699 | } | |
700 | EXPORT_SYMBOL(kvfree_sensitive); | |
701 | ||
7bd230a2 | 702 | void *kvrealloc_noprof(const void *p, size_t oldsize, size_t newsize, gfp_t flags) |
de2860f4 DC |
703 | { |
704 | void *newp; | |
705 | ||
706 | if (oldsize >= newsize) | |
707 | return (void *)p; | |
708 | newp = kvmalloc(newsize, flags); | |
709 | if (!newp) | |
710 | return NULL; | |
711 | memcpy(newp, p, oldsize); | |
712 | kvfree(p); | |
713 | return newp; | |
714 | } | |
7bd230a2 | 715 | EXPORT_SYMBOL(kvrealloc_noprof); |
de2860f4 | 716 | |
a8749a35 PB |
717 | /** |
718 | * __vmalloc_array - allocate memory for a virtually contiguous array. | |
719 | * @n: number of elements. | |
720 | * @size: element size. | |
721 | * @flags: the type of memory to allocate (see kmalloc). | |
722 | */ | |
88ae5fb7 | 723 | void *__vmalloc_array_noprof(size_t n, size_t size, gfp_t flags) |
a8749a35 PB |
724 | { |
725 | size_t bytes; | |
726 | ||
727 | if (unlikely(check_mul_overflow(n, size, &bytes))) | |
728 | return NULL; | |
729 | return __vmalloc(bytes, flags); | |
730 | } | |
88ae5fb7 | 731 | EXPORT_SYMBOL(__vmalloc_array_noprof); |
a8749a35 PB |
732 | |
733 | /** | |
734 | * vmalloc_array - allocate memory for a virtually contiguous array. | |
735 | * @n: number of elements. | |
736 | * @size: element size. | |
737 | */ | |
88ae5fb7 | 738 | void *vmalloc_array_noprof(size_t n, size_t size) |
a8749a35 PB |
739 | { |
740 | return __vmalloc_array(n, size, GFP_KERNEL); | |
741 | } | |
88ae5fb7 | 742 | EXPORT_SYMBOL(vmalloc_array_noprof); |
a8749a35 PB |
743 | |
744 | /** | |
745 | * __vcalloc - allocate and zero memory for a virtually contiguous array. | |
746 | * @n: number of elements. | |
747 | * @size: element size. | |
748 | * @flags: the type of memory to allocate (see kmalloc). | |
749 | */ | |
88ae5fb7 | 750 | void *__vcalloc_noprof(size_t n, size_t size, gfp_t flags) |
a8749a35 PB |
751 | { |
752 | return __vmalloc_array(n, size, flags | __GFP_ZERO); | |
753 | } | |
88ae5fb7 | 754 | EXPORT_SYMBOL(__vcalloc_noprof); |
a8749a35 PB |
755 | |
756 | /** | |
757 | * vcalloc - allocate and zero memory for a virtually contiguous array. | |
758 | * @n: number of elements. | |
759 | * @size: element size. | |
760 | */ | |
88ae5fb7 | 761 | void *vcalloc_noprof(size_t n, size_t size) |
a8749a35 PB |
762 | { |
763 | return __vmalloc_array(n, size, GFP_KERNEL | __GFP_ZERO); | |
764 | } | |
88ae5fb7 | 765 | EXPORT_SYMBOL(vcalloc_noprof); |
a8749a35 | 766 | |
e05b3453 | 767 | struct anon_vma *folio_anon_vma(struct folio *folio) |
e39155ea | 768 | { |
64601000 | 769 | unsigned long mapping = (unsigned long)folio->mapping; |
e39155ea | 770 | |
e39155ea KS |
771 | if ((mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) |
772 | return NULL; | |
64601000 | 773 | return (void *)(mapping - PAGE_MAPPING_ANON); |
e39155ea KS |
774 | } |
775 | ||
2f52578f MWO |
776 | /** |
777 | * folio_mapping - Find the mapping where this folio is stored. | |
778 | * @folio: The folio. | |
779 | * | |
780 | * For folios which are in the page cache, return the mapping that this | |
781 | * page belongs to. Folios in the swap cache return the swap mapping | |
782 | * this page is stored in (which is different from the mapping for the | |
783 | * swap file or swap device where the data is stored). | |
784 | * | |
785 | * You can call this for folios which aren't in the swap cache or page | |
786 | * cache and it will return NULL. | |
787 | */ | |
788 | struct address_space *folio_mapping(struct folio *folio) | |
9800339b | 789 | { |
1c290f64 KS |
790 | struct address_space *mapping; |
791 | ||
03e5ac2f | 792 | /* This happens if someone calls flush_dcache_page on slab page */ |
2f52578f | 793 | if (unlikely(folio_test_slab(folio))) |
03e5ac2f MP |
794 | return NULL; |
795 | ||
2f52578f | 796 | if (unlikely(folio_test_swapcache(folio))) |
3d2c9087 | 797 | return swap_address_space(folio->swap); |
e39155ea | 798 | |
2f52578f | 799 | mapping = folio->mapping; |
68f2736a | 800 | if ((unsigned long)mapping & PAGE_MAPPING_FLAGS) |
e39155ea | 801 | return NULL; |
bda807d4 | 802 | |
68f2736a | 803 | return mapping; |
9800339b | 804 | } |
2f52578f | 805 | EXPORT_SYMBOL(folio_mapping); |
9800339b | 806 | |
715cbfd6 MWO |
807 | /** |
808 | * folio_copy - Copy the contents of one folio to another. | |
809 | * @dst: Folio to copy to. | |
810 | * @src: Folio to copy from. | |
811 | * | |
812 | * The bytes in the folio represented by @src are copied to @dst. | |
813 | * Assumes the caller has validated that @dst is at least as large as @src. | |
814 | * Can be called in atomic context for order-0 folios, but if the folio is | |
815 | * larger, it may sleep. | |
816 | */ | |
817 | void folio_copy(struct folio *dst, struct folio *src) | |
79789db0 | 818 | { |
715cbfd6 MWO |
819 | long i = 0; |
820 | long nr = folio_nr_pages(src); | |
79789db0 | 821 | |
715cbfd6 MWO |
822 | for (;;) { |
823 | copy_highpage(folio_page(dst, i), folio_page(src, i)); | |
824 | if (++i == nr) | |
825 | break; | |
79789db0 | 826 | cond_resched(); |
79789db0 MWO |
827 | } |
828 | } | |
4093602d | 829 | EXPORT_SYMBOL(folio_copy); |
79789db0 | 830 | |
39a1aa8e AR |
831 | int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS; |
832 | int sysctl_overcommit_ratio __read_mostly = 50; | |
833 | unsigned long sysctl_overcommit_kbytes __read_mostly; | |
834 | int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT; | |
835 | unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */ | |
836 | unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */ | |
837 | ||
32927393 CH |
838 | int overcommit_ratio_handler(struct ctl_table *table, int write, void *buffer, |
839 | size_t *lenp, loff_t *ppos) | |
49f0ce5f JM |
840 | { |
841 | int ret; | |
842 | ||
843 | ret = proc_dointvec(table, write, buffer, lenp, ppos); | |
844 | if (ret == 0 && write) | |
845 | sysctl_overcommit_kbytes = 0; | |
846 | return ret; | |
847 | } | |
848 | ||
56f3547b FT |
849 | static void sync_overcommit_as(struct work_struct *dummy) |
850 | { | |
851 | percpu_counter_sync(&vm_committed_as); | |
852 | } | |
853 | ||
854 | int overcommit_policy_handler(struct ctl_table *table, int write, void *buffer, | |
855 | size_t *lenp, loff_t *ppos) | |
856 | { | |
857 | struct ctl_table t; | |
bcbda810 | 858 | int new_policy = -1; |
56f3547b FT |
859 | int ret; |
860 | ||
861 | /* | |
862 | * The deviation of sync_overcommit_as could be big with loose policy | |
863 | * like OVERCOMMIT_ALWAYS/OVERCOMMIT_GUESS. When changing policy to | |
864 | * strict OVERCOMMIT_NEVER, we need to reduce the deviation to comply | |
31454980 | 865 | * with the strict "NEVER", and to avoid possible race condition (even |
56f3547b FT |
866 | * though user usually won't too frequently do the switching to policy |
867 | * OVERCOMMIT_NEVER), the switch is done in the following order: | |
868 | * 1. changing the batch | |
869 | * 2. sync percpu count on each CPU | |
870 | * 3. switch the policy | |
871 | */ | |
872 | if (write) { | |
873 | t = *table; | |
874 | t.data = &new_policy; | |
875 | ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); | |
bcbda810 | 876 | if (ret || new_policy == -1) |
56f3547b FT |
877 | return ret; |
878 | ||
879 | mm_compute_batch(new_policy); | |
880 | if (new_policy == OVERCOMMIT_NEVER) | |
881 | schedule_on_each_cpu(sync_overcommit_as); | |
882 | sysctl_overcommit_memory = new_policy; | |
883 | } else { | |
884 | ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); | |
885 | } | |
886 | ||
887 | return ret; | |
888 | } | |
889 | ||
32927393 CH |
890 | int overcommit_kbytes_handler(struct ctl_table *table, int write, void *buffer, |
891 | size_t *lenp, loff_t *ppos) | |
49f0ce5f JM |
892 | { |
893 | int ret; | |
894 | ||
895 | ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); | |
896 | if (ret == 0 && write) | |
897 | sysctl_overcommit_ratio = 0; | |
898 | return ret; | |
899 | } | |
900 | ||
00619bcc JM |
901 | /* |
902 | * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used | |
903 | */ | |
904 | unsigned long vm_commit_limit(void) | |
905 | { | |
49f0ce5f JM |
906 | unsigned long allowed; |
907 | ||
908 | if (sysctl_overcommit_kbytes) | |
909 | allowed = sysctl_overcommit_kbytes >> (PAGE_SHIFT - 10); | |
910 | else | |
ca79b0c2 | 911 | allowed = ((totalram_pages() - hugetlb_total_pages()) |
49f0ce5f JM |
912 | * sysctl_overcommit_ratio / 100); |
913 | allowed += total_swap_pages; | |
914 | ||
915 | return allowed; | |
00619bcc JM |
916 | } |
917 | ||
39a1aa8e AR |
918 | /* |
919 | * Make sure vm_committed_as in one cacheline and not cacheline shared with | |
920 | * other variables. It can be updated by several CPUs frequently. | |
921 | */ | |
922 | struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp; | |
923 | ||
924 | /* | |
925 | * The global memory commitment made in the system can be a metric | |
926 | * that can be used to drive ballooning decisions when Linux is hosted | |
927 | * as a guest. On Hyper-V, the host implements a policy engine for dynamically | |
928 | * balancing memory across competing virtual machines that are hosted. | |
929 | * Several metrics drive this policy engine including the guest reported | |
930 | * memory commitment. | |
4e2ee51e FT |
931 | * |
932 | * The time cost of this is very low for small platforms, and for big | |
933 | * platform like a 2S/36C/72T Skylake server, in worst case where | |
934 | * vm_committed_as's spinlock is under severe contention, the time cost | |
935 | * could be about 30~40 microseconds. | |
39a1aa8e AR |
936 | */ |
937 | unsigned long vm_memory_committed(void) | |
938 | { | |
4e2ee51e | 939 | return percpu_counter_sum_positive(&vm_committed_as); |
39a1aa8e AR |
940 | } |
941 | EXPORT_SYMBOL_GPL(vm_memory_committed); | |
942 | ||
943 | /* | |
944 | * Check that a process has enough memory to allocate a new virtual | |
945 | * mapping. 0 means there is enough memory for the allocation to | |
946 | * succeed and -ENOMEM implies there is not. | |
947 | * | |
948 | * We currently support three overcommit policies, which are set via the | |
ee65728e | 949 | * vm.overcommit_memory sysctl. See Documentation/mm/overcommit-accounting.rst |
39a1aa8e AR |
950 | * |
951 | * Strict overcommit modes added 2002 Feb 26 by Alan Cox. | |
952 | * Additional code 2002 Jul 20 by Robert Love. | |
953 | * | |
954 | * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise. | |
955 | * | |
956 | * Note this is a helper function intended to be used by LSMs which | |
957 | * wish to use this logic. | |
958 | */ | |
959 | int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin) | |
960 | { | |
8c7829b0 | 961 | long allowed; |
f5eec036 | 962 | unsigned long bytes_failed; |
39a1aa8e | 963 | |
39a1aa8e AR |
964 | vm_acct_memory(pages); |
965 | ||
966 | /* | |
967 | * Sometimes we want to use more memory than we have | |
968 | */ | |
969 | if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS) | |
970 | return 0; | |
971 | ||
972 | if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) { | |
8c7829b0 | 973 | if (pages > totalram_pages() + total_swap_pages) |
39a1aa8e | 974 | goto error; |
8c7829b0 | 975 | return 0; |
39a1aa8e AR |
976 | } |
977 | ||
978 | allowed = vm_commit_limit(); | |
979 | /* | |
980 | * Reserve some for root | |
981 | */ | |
982 | if (!cap_sys_admin) | |
983 | allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10); | |
984 | ||
985 | /* | |
986 | * Don't let a single process grow so big a user can't recover | |
987 | */ | |
988 | if (mm) { | |
8c7829b0 JW |
989 | long reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10); |
990 | ||
39a1aa8e AR |
991 | allowed -= min_t(long, mm->total_vm / 32, reserve); |
992 | } | |
993 | ||
994 | if (percpu_counter_read_positive(&vm_committed_as) < allowed) | |
995 | return 0; | |
996 | error: | |
f5eec036 MC |
997 | bytes_failed = pages << PAGE_SHIFT; |
998 | pr_warn_ratelimited("%s: pid: %d, comm: %s, bytes: %lu not enough memory for the allocation\n", | |
999 | __func__, current->pid, current->comm, bytes_failed); | |
39a1aa8e AR |
1000 | vm_unacct_memory(pages); |
1001 | ||
1002 | return -ENOMEM; | |
1003 | } | |
1004 | ||
a9090253 WR |
1005 | /** |
1006 | * get_cmdline() - copy the cmdline value to a buffer. | |
1007 | * @task: the task whose cmdline value to copy. | |
1008 | * @buffer: the buffer to copy to. | |
1009 | * @buflen: the length of the buffer. Larger cmdline values are truncated | |
1010 | * to this length. | |
a862f68a MR |
1011 | * |
1012 | * Return: the size of the cmdline field copied. Note that the copy does | |
a9090253 WR |
1013 | * not guarantee an ending NULL byte. |
1014 | */ | |
1015 | int get_cmdline(struct task_struct *task, char *buffer, int buflen) | |
1016 | { | |
1017 | int res = 0; | |
1018 | unsigned int len; | |
1019 | struct mm_struct *mm = get_task_mm(task); | |
a3b609ef | 1020 | unsigned long arg_start, arg_end, env_start, env_end; |
a9090253 WR |
1021 | if (!mm) |
1022 | goto out; | |
1023 | if (!mm->arg_end) | |
1024 | goto out_mm; /* Shh! No looking before we're done */ | |
1025 | ||
bc81426f | 1026 | spin_lock(&mm->arg_lock); |
a3b609ef MG |
1027 | arg_start = mm->arg_start; |
1028 | arg_end = mm->arg_end; | |
1029 | env_start = mm->env_start; | |
1030 | env_end = mm->env_end; | |
bc81426f | 1031 | spin_unlock(&mm->arg_lock); |
a3b609ef MG |
1032 | |
1033 | len = arg_end - arg_start; | |
a9090253 WR |
1034 | |
1035 | if (len > buflen) | |
1036 | len = buflen; | |
1037 | ||
f307ab6d | 1038 | res = access_process_vm(task, arg_start, buffer, len, FOLL_FORCE); |
a9090253 WR |
1039 | |
1040 | /* | |
1041 | * If the nul at the end of args has been overwritten, then | |
1042 | * assume application is using setproctitle(3). | |
1043 | */ | |
1044 | if (res > 0 && buffer[res-1] != '\0' && len < buflen) { | |
1045 | len = strnlen(buffer, res); | |
1046 | if (len < res) { | |
1047 | res = len; | |
1048 | } else { | |
a3b609ef | 1049 | len = env_end - env_start; |
a9090253 WR |
1050 | if (len > buflen - res) |
1051 | len = buflen - res; | |
a3b609ef | 1052 | res += access_process_vm(task, env_start, |
f307ab6d LS |
1053 | buffer+res, len, |
1054 | FOLL_FORCE); | |
a9090253 WR |
1055 | res = strnlen(buffer, res); |
1056 | } | |
1057 | } | |
1058 | out_mm: | |
1059 | mmput(mm); | |
1060 | out: | |
1061 | return res; | |
1062 | } | |
010c164a | 1063 | |
4d1a8a2d | 1064 | int __weak memcmp_pages(struct page *page1, struct page *page2) |
010c164a SL |
1065 | { |
1066 | char *addr1, *addr2; | |
1067 | int ret; | |
1068 | ||
2f753762 FDF |
1069 | addr1 = kmap_local_page(page1); |
1070 | addr2 = kmap_local_page(page2); | |
010c164a | 1071 | ret = memcmp(addr1, addr2, PAGE_SIZE); |
2f753762 FDF |
1072 | kunmap_local(addr2); |
1073 | kunmap_local(addr1); | |
010c164a SL |
1074 | return ret; |
1075 | } | |
8e7f37f2 | 1076 | |
5bb1bb35 | 1077 | #ifdef CONFIG_PRINTK |
8e7f37f2 PM |
1078 | /** |
1079 | * mem_dump_obj - Print available provenance information | |
1080 | * @object: object for which to find provenance information. | |
1081 | * | |
1082 | * This function uses pr_cont(), so that the caller is expected to have | |
1083 | * printed out whatever preamble is appropriate. The provenance information | |
1084 | * depends on the type of object and on how much debugging is enabled. | |
1085 | * For example, for a slab-cache object, the slab name is printed, and, | |
1086 | * if available, the return address and stack trace from the allocation | |
e548eaa1 | 1087 | * and last free path of that object. |
8e7f37f2 PM |
1088 | */ |
1089 | void mem_dump_obj(void *object) | |
1090 | { | |
2521781c JP |
1091 | const char *type; |
1092 | ||
6e284c55 | 1093 | if (kmem_dump_obj(object)) |
98f18083 | 1094 | return; |
2521781c | 1095 | |
98f18083 PM |
1096 | if (vmalloc_dump_obj(object)) |
1097 | return; | |
2521781c | 1098 | |
c83ad36a Z |
1099 | if (is_vmalloc_addr(object)) |
1100 | type = "vmalloc memory"; | |
1101 | else if (virt_addr_valid(object)) | |
2521781c JP |
1102 | type = "non-slab/vmalloc memory"; |
1103 | else if (object == NULL) | |
1104 | type = "NULL pointer"; | |
1105 | else if (object == ZERO_SIZE_PTR) | |
1106 | type = "zero-size pointer"; | |
1107 | else | |
1108 | type = "non-paged memory"; | |
1109 | ||
1110 | pr_cont(" %s\n", type); | |
8e7f37f2 | 1111 | } |
0d3dd2c8 | 1112 | EXPORT_SYMBOL_GPL(mem_dump_obj); |
5bb1bb35 | 1113 | #endif |
82840451 DH |
1114 | |
1115 | /* | |
1116 | * A driver might set a page logically offline -- PageOffline() -- and | |
1117 | * turn the page inaccessible in the hypervisor; after that, access to page | |
1118 | * content can be fatal. | |
1119 | * | |
1120 | * Some special PFN walkers -- i.e., /proc/kcore -- read content of random | |
1121 | * pages after checking PageOffline(); however, these PFN walkers can race | |
1122 | * with drivers that set PageOffline(). | |
1123 | * | |
1124 | * page_offline_freeze()/page_offline_thaw() allows for a subsystem to | |
1125 | * synchronize with such drivers, achieving that a page cannot be set | |
1126 | * PageOffline() while frozen. | |
1127 | * | |
1128 | * page_offline_begin()/page_offline_end() is used by drivers that care about | |
1129 | * such races when setting a page PageOffline(). | |
1130 | */ | |
1131 | static DECLARE_RWSEM(page_offline_rwsem); | |
1132 | ||
1133 | void page_offline_freeze(void) | |
1134 | { | |
1135 | down_read(&page_offline_rwsem); | |
1136 | } | |
1137 | ||
1138 | void page_offline_thaw(void) | |
1139 | { | |
1140 | up_read(&page_offline_rwsem); | |
1141 | } | |
1142 | ||
1143 | void page_offline_begin(void) | |
1144 | { | |
1145 | down_write(&page_offline_rwsem); | |
1146 | } | |
1147 | EXPORT_SYMBOL(page_offline_begin); | |
1148 | ||
1149 | void page_offline_end(void) | |
1150 | { | |
1151 | up_write(&page_offline_rwsem); | |
1152 | } | |
1153 | EXPORT_SYMBOL(page_offline_end); | |
08b0b005 | 1154 | |
29d26f12 | 1155 | #ifndef flush_dcache_folio |
08b0b005 MWO |
1156 | void flush_dcache_folio(struct folio *folio) |
1157 | { | |
1158 | long i, nr = folio_nr_pages(folio); | |
1159 | ||
1160 | for (i = 0; i < nr; i++) | |
1161 | flush_dcache_page(folio_page(folio, i)); | |
1162 | } | |
1163 | EXPORT_SYMBOL(flush_dcache_folio); | |
1164 | #endif |