]>
Commit | Line | Data |
---|---|---|
1202d6ff FR |
1 | /* |
2 | * ipg.c: Device Driver for the IP1000 Gigabit Ethernet Adapter | |
3 | * | |
4 | * Copyright (C) 2003, 2007 IC Plus Corp | |
5 | * | |
6 | * Original Author: | |
7 | * | |
8 | * Craig Rich | |
9 | * Sundance Technology, Inc. | |
10 | * www.sundanceti.com | |
11 | * [email protected] | |
12 | * | |
13 | * Current Maintainer: | |
14 | * | |
15 | * Sorbica Shieh. | |
16 | * http://www.icplus.com.tw | |
17 | * [email protected] | |
18 | * | |
19 | * Jesse Huang | |
20 | * http://www.icplus.com.tw | |
21 | * [email protected] | |
22 | */ | |
23 | #include <linux/crc32.h> | |
24 | #include <linux/ethtool.h> | |
5a0e3ad6 | 25 | #include <linux/gfp.h> |
1202d6ff FR |
26 | #include <linux/mii.h> |
27 | #include <linux/mutex.h> | |
28 | ||
1dad939d | 29 | #include <asm/div64.h> |
30 | ||
1202d6ff FR |
31 | #define IPG_RX_RING_BYTES (sizeof(struct ipg_rx) * IPG_RFDLIST_LENGTH) |
32 | #define IPG_TX_RING_BYTES (sizeof(struct ipg_tx) * IPG_TFDLIST_LENGTH) | |
33 | #define IPG_RESET_MASK \ | |
34 | (IPG_AC_GLOBAL_RESET | IPG_AC_RX_RESET | IPG_AC_TX_RESET | \ | |
35 | IPG_AC_DMA | IPG_AC_FIFO | IPG_AC_NETWORK | IPG_AC_HOST | \ | |
36 | IPG_AC_AUTO_INIT) | |
37 | ||
8da5bb7a PE |
38 | #define ipg_w32(val32, reg) iowrite32((val32), ioaddr + (reg)) |
39 | #define ipg_w16(val16, reg) iowrite16((val16), ioaddr + (reg)) | |
40 | #define ipg_w8(val8, reg) iowrite8((val8), ioaddr + (reg)) | |
1202d6ff FR |
41 | |
42 | #define ipg_r32(reg) ioread32(ioaddr + (reg)) | |
43 | #define ipg_r16(reg) ioread16(ioaddr + (reg)) | |
44 | #define ipg_r8(reg) ioread8(ioaddr + (reg)) | |
45 | ||
1202d6ff FR |
46 | enum { |
47 | netdev_io_size = 128 | |
48 | }; | |
49 | ||
50 | #include "ipg.h" | |
51 | #define DRV_NAME "ipg" | |
52 | ||
53 | MODULE_AUTHOR("IC Plus Corp. 2003"); | |
1662e4b7 | 54 | MODULE_DESCRIPTION("IC Plus IP1000 Gigabit Ethernet Adapter Linux Driver"); |
1202d6ff FR |
55 | MODULE_LICENSE("GPL"); |
56 | ||
532f4aee PE |
57 | /* |
58 | * Defaults | |
59 | */ | |
60 | #define IPG_MAX_RXFRAME_SIZE 0x0600 | |
61 | #define IPG_RXFRAG_SIZE 0x0600 | |
62 | #define IPG_RXSUPPORT_SIZE 0x0600 | |
63 | #define IPG_IS_JUMBO false | |
64 | ||
8da5bb7a PE |
65 | /* |
66 | * Variable record -- index by leading revision/length | |
67 | * Revision/Length(=N*4), Address1, Data1, Address2, Data2,...,AddressN,DataN | |
68 | */ | |
96fd74b2 | 69 | static unsigned short DefaultPhyParam[] = { |
8da5bb7a | 70 | /* 11/12/03 IP1000A v1-3 rev=0x40 */ |
96fd74b2 AB |
71 | /*-------------------------------------------------------------------------- |
72 | (0x4000|(15*4)), 31, 0x0001, 27, 0x01e0, 31, 0x0002, 22, 0x85bd, 24, 0xfff2, | |
73 | 27, 0x0c10, 28, 0x0c10, 29, 0x2c10, 31, 0x0003, 23, 0x92f6, | |
74 | 31, 0x0000, 23, 0x003d, 30, 0x00de, 20, 0x20e7, 9, 0x0700, | |
75 | --------------------------------------------------------------------------*/ | |
8da5bb7a | 76 | /* 12/17/03 IP1000A v1-4 rev=0x40 */ |
96fd74b2 AB |
77 | (0x4000 | (07 * 4)), 31, 0x0001, 27, 0x01e0, 31, 0x0002, 27, 0xeb8e, 31, |
78 | 0x0000, | |
79 | 30, 0x005e, 9, 0x0700, | |
8da5bb7a | 80 | /* 01/09/04 IP1000A v1-5 rev=0x41 */ |
96fd74b2 AB |
81 | (0x4100 | (07 * 4)), 31, 0x0001, 27, 0x01e0, 31, 0x0002, 27, 0xeb8e, 31, |
82 | 0x0000, | |
83 | 30, 0x005e, 9, 0x0700, | |
84 | 0x0000 | |
85 | }; | |
86 | ||
1202d6ff FR |
87 | static const char *ipg_brand_name[] = { |
88 | "IC PLUS IP1000 1000/100/10 based NIC", | |
89 | "Sundance Technology ST2021 based NIC", | |
90 | "Tamarack Microelectronics TC9020/9021 based NIC", | |
91 | "Tamarack Microelectronics TC9020/9021 based NIC", | |
1202d6ff FR |
92 | "D-Link NIC IP1000A" |
93 | }; | |
94 | ||
a3aa1884 | 95 | static DEFINE_PCI_DEVICE_TABLE(ipg_pci_tbl) = { |
1202d6ff FR |
96 | { PCI_VDEVICE(SUNDANCE, 0x1023), 0 }, |
97 | { PCI_VDEVICE(SUNDANCE, 0x2021), 1 }, | |
98 | { PCI_VDEVICE(SUNDANCE, 0x1021), 2 }, | |
99 | { PCI_VDEVICE(DLINK, 0x9021), 3 }, | |
25cca535 | 100 | { PCI_VDEVICE(DLINK, 0x4020), 4 }, |
1202d6ff FR |
101 | { 0, } |
102 | }; | |
103 | ||
104 | MODULE_DEVICE_TABLE(pci, ipg_pci_tbl); | |
105 | ||
106 | static inline void __iomem *ipg_ioaddr(struct net_device *dev) | |
107 | { | |
108 | struct ipg_nic_private *sp = netdev_priv(dev); | |
109 | return sp->ioaddr; | |
110 | } | |
111 | ||
112 | #ifdef IPG_DEBUG | |
113 | static void ipg_dump_rfdlist(struct net_device *dev) | |
114 | { | |
115 | struct ipg_nic_private *sp = netdev_priv(dev); | |
116 | void __iomem *ioaddr = sp->ioaddr; | |
117 | unsigned int i; | |
118 | u32 offset; | |
119 | ||
120 | IPG_DEBUG_MSG("_dump_rfdlist\n"); | |
121 | ||
122 | printk(KERN_INFO "rx_current = %2.2x\n", sp->rx_current); | |
123 | printk(KERN_INFO "rx_dirty = %2.2x\n", sp->rx_dirty); | |
124 | printk(KERN_INFO "RFDList start address = %16.16lx\n", | |
125 | (unsigned long) sp->rxd_map); | |
126 | printk(KERN_INFO "RFDListPtr register = %8.8x%8.8x\n", | |
127 | ipg_r32(IPG_RFDLISTPTR1), ipg_r32(IPG_RFDLISTPTR0)); | |
128 | ||
129 | for (i = 0; i < IPG_RFDLIST_LENGTH; i++) { | |
130 | offset = (u32) &sp->rxd[i].next_desc - (u32) sp->rxd; | |
131 | printk(KERN_INFO "%2.2x %4.4x RFDNextPtr = %16.16lx\n", i, | |
132 | offset, (unsigned long) sp->rxd[i].next_desc); | |
133 | offset = (u32) &sp->rxd[i].rfs - (u32) sp->rxd; | |
134 | printk(KERN_INFO "%2.2x %4.4x RFS = %16.16lx\n", i, | |
135 | offset, (unsigned long) sp->rxd[i].rfs); | |
136 | offset = (u32) &sp->rxd[i].frag_info - (u32) sp->rxd; | |
137 | printk(KERN_INFO "%2.2x %4.4x frag_info = %16.16lx\n", i, | |
138 | offset, (unsigned long) sp->rxd[i].frag_info); | |
139 | } | |
140 | } | |
141 | ||
142 | static void ipg_dump_tfdlist(struct net_device *dev) | |
143 | { | |
144 | struct ipg_nic_private *sp = netdev_priv(dev); | |
145 | void __iomem *ioaddr = sp->ioaddr; | |
146 | unsigned int i; | |
147 | u32 offset; | |
148 | ||
149 | IPG_DEBUG_MSG("_dump_tfdlist\n"); | |
150 | ||
151 | printk(KERN_INFO "tx_current = %2.2x\n", sp->tx_current); | |
152 | printk(KERN_INFO "tx_dirty = %2.2x\n", sp->tx_dirty); | |
153 | printk(KERN_INFO "TFDList start address = %16.16lx\n", | |
154 | (unsigned long) sp->txd_map); | |
155 | printk(KERN_INFO "TFDListPtr register = %8.8x%8.8x\n", | |
156 | ipg_r32(IPG_TFDLISTPTR1), ipg_r32(IPG_TFDLISTPTR0)); | |
157 | ||
158 | for (i = 0; i < IPG_TFDLIST_LENGTH; i++) { | |
159 | offset = (u32) &sp->txd[i].next_desc - (u32) sp->txd; | |
160 | printk(KERN_INFO "%2.2x %4.4x TFDNextPtr = %16.16lx\n", i, | |
161 | offset, (unsigned long) sp->txd[i].next_desc); | |
162 | ||
163 | offset = (u32) &sp->txd[i].tfc - (u32) sp->txd; | |
164 | printk(KERN_INFO "%2.2x %4.4x TFC = %16.16lx\n", i, | |
165 | offset, (unsigned long) sp->txd[i].tfc); | |
166 | offset = (u32) &sp->txd[i].frag_info - (u32) sp->txd; | |
167 | printk(KERN_INFO "%2.2x %4.4x frag_info = %16.16lx\n", i, | |
168 | offset, (unsigned long) sp->txd[i].frag_info); | |
169 | } | |
170 | } | |
171 | #endif | |
172 | ||
173 | static void ipg_write_phy_ctl(void __iomem *ioaddr, u8 data) | |
174 | { | |
175 | ipg_w8(IPG_PC_RSVD_MASK & data, PHY_CTRL); | |
176 | ndelay(IPG_PC_PHYCTRLWAIT_NS); | |
177 | } | |
178 | ||
179 | static void ipg_drive_phy_ctl_low_high(void __iomem *ioaddr, u8 data) | |
180 | { | |
181 | ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_LO | data); | |
182 | ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_HI | data); | |
183 | } | |
184 | ||
185 | static void send_three_state(void __iomem *ioaddr, u8 phyctrlpolarity) | |
186 | { | |
187 | phyctrlpolarity |= (IPG_PC_MGMTDATA & 0) | IPG_PC_MGMTDIR; | |
188 | ||
189 | ipg_drive_phy_ctl_low_high(ioaddr, phyctrlpolarity); | |
190 | } | |
191 | ||
192 | static void send_end(void __iomem *ioaddr, u8 phyctrlpolarity) | |
193 | { | |
194 | ipg_w8((IPG_PC_MGMTCLK_LO | (IPG_PC_MGMTDATA & 0) | IPG_PC_MGMTDIR | | |
195 | phyctrlpolarity) & IPG_PC_RSVD_MASK, PHY_CTRL); | |
196 | } | |
197 | ||
8da5bb7a | 198 | static u16 read_phy_bit(void __iomem *ioaddr, u8 phyctrlpolarity) |
1202d6ff FR |
199 | { |
200 | u16 bit_data; | |
201 | ||
202 | ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_LO | phyctrlpolarity); | |
203 | ||
204 | bit_data = ((ipg_r8(PHY_CTRL) & IPG_PC_MGMTDATA) >> 1) & 1; | |
205 | ||
206 | ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_HI | phyctrlpolarity); | |
207 | ||
208 | return bit_data; | |
209 | } | |
210 | ||
211 | /* | |
212 | * Read a register from the Physical Layer device located | |
213 | * on the IPG NIC, using the IPG PHYCTRL register. | |
214 | */ | |
8da5bb7a | 215 | static int mdio_read(struct net_device *dev, int phy_id, int phy_reg) |
1202d6ff FR |
216 | { |
217 | void __iomem *ioaddr = ipg_ioaddr(dev); | |
218 | /* | |
219 | * The GMII mangement frame structure for a read is as follows: | |
220 | * | |
221 | * |Preamble|st|op|phyad|regad|ta| data |idle| | |
222 | * |< 32 1s>|01|10|AAAAA|RRRRR|z0|DDDDDDDDDDDDDDDD|z | | |
223 | * | |
224 | * <32 1s> = 32 consecutive logic 1 values | |
225 | * A = bit of Physical Layer device address (MSB first) | |
226 | * R = bit of register address (MSB first) | |
227 | * z = High impedance state | |
228 | * D = bit of read data (MSB first) | |
229 | * | |
230 | * Transmission order is 'Preamble' field first, bits transmitted | |
231 | * left to right (first to last). | |
232 | */ | |
233 | struct { | |
234 | u32 field; | |
235 | unsigned int len; | |
236 | } p[] = { | |
237 | { GMII_PREAMBLE, 32 }, /* Preamble */ | |
238 | { GMII_ST, 2 }, /* ST */ | |
239 | { GMII_READ, 2 }, /* OP */ | |
240 | { phy_id, 5 }, /* PHYAD */ | |
241 | { phy_reg, 5 }, /* REGAD */ | |
242 | { 0x0000, 2 }, /* TA */ | |
243 | { 0x0000, 16 }, /* DATA */ | |
244 | { 0x0000, 1 } /* IDLE */ | |
245 | }; | |
246 | unsigned int i, j; | |
247 | u8 polarity, data; | |
248 | ||
249 | polarity = ipg_r8(PHY_CTRL); | |
250 | polarity &= (IPG_PC_DUPLEX_POLARITY | IPG_PC_LINK_POLARITY); | |
251 | ||
252 | /* Create the Preamble, ST, OP, PHYAD, and REGAD field. */ | |
253 | for (j = 0; j < 5; j++) { | |
254 | for (i = 0; i < p[j].len; i++) { | |
255 | /* For each variable length field, the MSB must be | |
256 | * transmitted first. Rotate through the field bits, | |
257 | * starting with the MSB, and move each bit into the | |
258 | * the 1st (2^1) bit position (this is the bit position | |
259 | * corresponding to the MgmtData bit of the PhyCtrl | |
260 | * register for the IPG). | |
261 | * | |
262 | * Example: ST = 01; | |
263 | * | |
264 | * First write a '0' to bit 1 of the PhyCtrl | |
265 | * register, then write a '1' to bit 1 of the | |
266 | * PhyCtrl register. | |
267 | * | |
268 | * To do this, right shift the MSB of ST by the value: | |
269 | * [field length - 1 - #ST bits already written] | |
270 | * then left shift this result by 1. | |
271 | */ | |
272 | data = (p[j].field >> (p[j].len - 1 - i)) << 1; | |
273 | data &= IPG_PC_MGMTDATA; | |
274 | data |= polarity | IPG_PC_MGMTDIR; | |
275 | ||
276 | ipg_drive_phy_ctl_low_high(ioaddr, data); | |
277 | } | |
278 | } | |
279 | ||
280 | send_three_state(ioaddr, polarity); | |
281 | ||
282 | read_phy_bit(ioaddr, polarity); | |
283 | ||
284 | /* | |
285 | * For a read cycle, the bits for the next two fields (TA and | |
286 | * DATA) are driven by the PHY (the IPG reads these bits). | |
287 | */ | |
288 | for (i = 0; i < p[6].len; i++) { | |
289 | p[6].field |= | |
290 | (read_phy_bit(ioaddr, polarity) << (p[6].len - 1 - i)); | |
291 | } | |
292 | ||
293 | send_three_state(ioaddr, polarity); | |
294 | send_three_state(ioaddr, polarity); | |
295 | send_three_state(ioaddr, polarity); | |
296 | send_end(ioaddr, polarity); | |
297 | ||
298 | /* Return the value of the DATA field. */ | |
299 | return p[6].field; | |
300 | } | |
301 | ||
302 | /* | |
303 | * Write to a register from the Physical Layer device located | |
304 | * on the IPG NIC, using the IPG PHYCTRL register. | |
305 | */ | |
306 | static void mdio_write(struct net_device *dev, int phy_id, int phy_reg, int val) | |
307 | { | |
308 | void __iomem *ioaddr = ipg_ioaddr(dev); | |
309 | /* | |
310 | * The GMII mangement frame structure for a read is as follows: | |
311 | * | |
312 | * |Preamble|st|op|phyad|regad|ta| data |idle| | |
313 | * |< 32 1s>|01|10|AAAAA|RRRRR|z0|DDDDDDDDDDDDDDDD|z | | |
314 | * | |
315 | * <32 1s> = 32 consecutive logic 1 values | |
316 | * A = bit of Physical Layer device address (MSB first) | |
317 | * R = bit of register address (MSB first) | |
318 | * z = High impedance state | |
319 | * D = bit of write data (MSB first) | |
320 | * | |
321 | * Transmission order is 'Preamble' field first, bits transmitted | |
322 | * left to right (first to last). | |
323 | */ | |
324 | struct { | |
325 | u32 field; | |
326 | unsigned int len; | |
327 | } p[] = { | |
328 | { GMII_PREAMBLE, 32 }, /* Preamble */ | |
329 | { GMII_ST, 2 }, /* ST */ | |
330 | { GMII_WRITE, 2 }, /* OP */ | |
331 | { phy_id, 5 }, /* PHYAD */ | |
332 | { phy_reg, 5 }, /* REGAD */ | |
333 | { 0x0002, 2 }, /* TA */ | |
334 | { val & 0xffff, 16 }, /* DATA */ | |
335 | { 0x0000, 1 } /* IDLE */ | |
336 | }; | |
337 | unsigned int i, j; | |
338 | u8 polarity, data; | |
339 | ||
340 | polarity = ipg_r8(PHY_CTRL); | |
341 | polarity &= (IPG_PC_DUPLEX_POLARITY | IPG_PC_LINK_POLARITY); | |
342 | ||
343 | /* Create the Preamble, ST, OP, PHYAD, and REGAD field. */ | |
344 | for (j = 0; j < 7; j++) { | |
345 | for (i = 0; i < p[j].len; i++) { | |
346 | /* For each variable length field, the MSB must be | |
347 | * transmitted first. Rotate through the field bits, | |
348 | * starting with the MSB, and move each bit into the | |
349 | * the 1st (2^1) bit position (this is the bit position | |
350 | * corresponding to the MgmtData bit of the PhyCtrl | |
351 | * register for the IPG). | |
352 | * | |
353 | * Example: ST = 01; | |
354 | * | |
355 | * First write a '0' to bit 1 of the PhyCtrl | |
356 | * register, then write a '1' to bit 1 of the | |
357 | * PhyCtrl register. | |
358 | * | |
359 | * To do this, right shift the MSB of ST by the value: | |
360 | * [field length - 1 - #ST bits already written] | |
361 | * then left shift this result by 1. | |
362 | */ | |
363 | data = (p[j].field >> (p[j].len - 1 - i)) << 1; | |
364 | data &= IPG_PC_MGMTDATA; | |
365 | data |= polarity | IPG_PC_MGMTDIR; | |
366 | ||
367 | ipg_drive_phy_ctl_low_high(ioaddr, data); | |
368 | } | |
369 | } | |
370 | ||
371 | /* The last cycle is a tri-state, so read from the PHY. */ | |
372 | for (j = 7; j < 8; j++) { | |
373 | for (i = 0; i < p[j].len; i++) { | |
374 | ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_LO | polarity); | |
375 | ||
376 | p[j].field |= ((ipg_r8(PHY_CTRL) & | |
377 | IPG_PC_MGMTDATA) >> 1) << (p[j].len - 1 - i); | |
378 | ||
379 | ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_HI | polarity); | |
380 | } | |
381 | } | |
382 | } | |
383 | ||
1202d6ff FR |
384 | static void ipg_set_led_mode(struct net_device *dev) |
385 | { | |
386 | struct ipg_nic_private *sp = netdev_priv(dev); | |
387 | void __iomem *ioaddr = sp->ioaddr; | |
388 | u32 mode; | |
389 | ||
390 | mode = ipg_r32(ASIC_CTRL); | |
391 | mode &= ~(IPG_AC_LED_MODE_BIT_1 | IPG_AC_LED_MODE | IPG_AC_LED_SPEED); | |
392 | ||
9893ba16 | 393 | if ((sp->led_mode & 0x03) > 1) |
1202d6ff FR |
394 | mode |= IPG_AC_LED_MODE_BIT_1; /* Write Asic Control Bit 29 */ |
395 | ||
9893ba16 | 396 | if ((sp->led_mode & 0x01) == 1) |
1202d6ff FR |
397 | mode |= IPG_AC_LED_MODE; /* Write Asic Control Bit 14 */ |
398 | ||
9893ba16 | 399 | if ((sp->led_mode & 0x08) == 8) |
1202d6ff FR |
400 | mode |= IPG_AC_LED_SPEED; /* Write Asic Control Bit 27 */ |
401 | ||
402 | ipg_w32(mode, ASIC_CTRL); | |
403 | } | |
404 | ||
1202d6ff FR |
405 | static void ipg_set_phy_set(struct net_device *dev) |
406 | { | |
407 | struct ipg_nic_private *sp = netdev_priv(dev); | |
408 | void __iomem *ioaddr = sp->ioaddr; | |
409 | int physet; | |
410 | ||
411 | physet = ipg_r8(PHY_SET); | |
412 | physet &= ~(IPG_PS_MEM_LENB9B | IPG_PS_MEM_LEN9 | IPG_PS_NON_COMPDET); | |
9893ba16 | 413 | physet |= ((sp->led_mode & 0x70) >> 4); |
1202d6ff FR |
414 | ipg_w8(physet, PHY_SET); |
415 | } | |
416 | ||
417 | static int ipg_reset(struct net_device *dev, u32 resetflags) | |
418 | { | |
419 | /* Assert functional resets via the IPG AsicCtrl | |
420 | * register as specified by the 'resetflags' input | |
421 | * parameter. | |
422 | */ | |
dea4a87c | 423 | void __iomem *ioaddr = ipg_ioaddr(dev); |
1202d6ff FR |
424 | unsigned int timeout_count = 0; |
425 | ||
426 | IPG_DEBUG_MSG("_reset\n"); | |
427 | ||
428 | ipg_w32(ipg_r32(ASIC_CTRL) | resetflags, ASIC_CTRL); | |
429 | ||
430 | /* Delay added to account for problem with 10Mbps reset. */ | |
431 | mdelay(IPG_AC_RESETWAIT); | |
432 | ||
433 | while (IPG_AC_RESET_BUSY & ipg_r32(ASIC_CTRL)) { | |
434 | mdelay(IPG_AC_RESETWAIT); | |
435 | if (++timeout_count > IPG_AC_RESET_TIMEOUT) | |
436 | return -ETIME; | |
437 | } | |
dea4a87c | 438 | /* Set LED Mode in Asic Control */ |
1202d6ff FR |
439 | ipg_set_led_mode(dev); |
440 | ||
dea4a87c | 441 | /* Set PHYSet Register Value */ |
1202d6ff FR |
442 | ipg_set_phy_set(dev); |
443 | return 0; | |
444 | } | |
445 | ||
446 | /* Find the GMII PHY address. */ | |
447 | static int ipg_find_phyaddr(struct net_device *dev) | |
448 | { | |
449 | unsigned int phyaddr, i; | |
450 | ||
451 | for (i = 0; i < 32; i++) { | |
452 | u32 status; | |
453 | ||
454 | /* Search for the correct PHY address among 32 possible. */ | |
455 | phyaddr = (IPG_NIC_PHY_ADDRESS + i) % 32; | |
456 | ||
457 | /* 10/22/03 Grace change verify from GMII_PHY_STATUS to | |
458 | GMII_PHY_ID1 | |
459 | */ | |
460 | ||
461 | status = mdio_read(dev, phyaddr, MII_BMSR); | |
462 | ||
463 | if ((status != 0xFFFF) && (status != 0)) | |
464 | return phyaddr; | |
465 | } | |
466 | ||
467 | return 0x1f; | |
468 | } | |
469 | ||
470 | /* | |
471 | * Configure IPG based on result of IEEE 802.3 PHY | |
472 | * auto-negotiation. | |
473 | */ | |
474 | static int ipg_config_autoneg(struct net_device *dev) | |
475 | { | |
476 | struct ipg_nic_private *sp = netdev_priv(dev); | |
477 | void __iomem *ioaddr = sp->ioaddr; | |
478 | unsigned int txflowcontrol; | |
479 | unsigned int rxflowcontrol; | |
480 | unsigned int fullduplex; | |
1202d6ff FR |
481 | u32 mac_ctrl_val; |
482 | u32 asicctrl; | |
483 | u8 phyctrl; | |
484 | ||
485 | IPG_DEBUG_MSG("_config_autoneg\n"); | |
486 | ||
487 | asicctrl = ipg_r32(ASIC_CTRL); | |
488 | phyctrl = ipg_r8(PHY_CTRL); | |
489 | mac_ctrl_val = ipg_r32(MAC_CTRL); | |
490 | ||
491 | /* Set flags for use in resolving auto-negotation, assuming | |
492 | * non-1000Mbps, half duplex, no flow control. | |
493 | */ | |
494 | fullduplex = 0; | |
495 | txflowcontrol = 0; | |
496 | rxflowcontrol = 0; | |
1202d6ff FR |
497 | |
498 | /* To accomodate a problem in 10Mbps operation, | |
499 | * set a global flag if PHY running in 10Mbps mode. | |
500 | */ | |
501 | sp->tenmbpsmode = 0; | |
502 | ||
503 | printk(KERN_INFO "%s: Link speed = ", dev->name); | |
504 | ||
505 | /* Determine actual speed of operation. */ | |
506 | switch (phyctrl & IPG_PC_LINK_SPEED) { | |
507 | case IPG_PC_LINK_SPEED_10MBPS: | |
508 | printk("10Mbps.\n"); | |
509 | printk(KERN_INFO "%s: 10Mbps operational mode enabled.\n", | |
510 | dev->name); | |
511 | sp->tenmbpsmode = 1; | |
512 | break; | |
513 | case IPG_PC_LINK_SPEED_100MBPS: | |
514 | printk("100Mbps.\n"); | |
515 | break; | |
516 | case IPG_PC_LINK_SPEED_1000MBPS: | |
517 | printk("1000Mbps.\n"); | |
1202d6ff FR |
518 | break; |
519 | default: | |
520 | printk("undefined!\n"); | |
521 | return 0; | |
522 | } | |
523 | ||
524 | if (phyctrl & IPG_PC_DUPLEX_STATUS) { | |
525 | fullduplex = 1; | |
526 | txflowcontrol = 1; | |
527 | rxflowcontrol = 1; | |
528 | } | |
529 | ||
530 | /* Configure full duplex, and flow control. */ | |
531 | if (fullduplex == 1) { | |
532 | /* Configure IPG for full duplex operation. */ | |
533 | printk(KERN_INFO "%s: setting full duplex, ", dev->name); | |
534 | ||
535 | mac_ctrl_val |= IPG_MC_DUPLEX_SELECT_FD; | |
536 | ||
537 | if (txflowcontrol == 1) { | |
538 | printk("TX flow control"); | |
539 | mac_ctrl_val |= IPG_MC_TX_FLOW_CONTROL_ENABLE; | |
540 | } else { | |
541 | printk("no TX flow control"); | |
542 | mac_ctrl_val &= ~IPG_MC_TX_FLOW_CONTROL_ENABLE; | |
543 | } | |
544 | ||
545 | if (rxflowcontrol == 1) { | |
546 | printk(", RX flow control."); | |
547 | mac_ctrl_val |= IPG_MC_RX_FLOW_CONTROL_ENABLE; | |
548 | } else { | |
549 | printk(", no RX flow control."); | |
550 | mac_ctrl_val &= ~IPG_MC_RX_FLOW_CONTROL_ENABLE; | |
551 | } | |
552 | ||
553 | printk("\n"); | |
554 | } else { | |
555 | /* Configure IPG for half duplex operation. */ | |
8da5bb7a | 556 | printk(KERN_INFO "%s: setting half duplex, " |
1202d6ff FR |
557 | "no TX flow control, no RX flow control.\n", dev->name); |
558 | ||
559 | mac_ctrl_val &= ~IPG_MC_DUPLEX_SELECT_FD & | |
560 | ~IPG_MC_TX_FLOW_CONTROL_ENABLE & | |
561 | ~IPG_MC_RX_FLOW_CONTROL_ENABLE; | |
562 | } | |
563 | ipg_w32(mac_ctrl_val, MAC_CTRL); | |
564 | return 0; | |
565 | } | |
566 | ||
567 | /* Determine and configure multicast operation and set | |
568 | * receive mode for IPG. | |
569 | */ | |
570 | static void ipg_nic_set_multicast_list(struct net_device *dev) | |
571 | { | |
572 | void __iomem *ioaddr = ipg_ioaddr(dev); | |
22bedad3 | 573 | struct netdev_hw_addr *ha; |
1202d6ff FR |
574 | unsigned int hashindex; |
575 | u32 hashtable[2]; | |
576 | u8 receivemode; | |
577 | ||
578 | IPG_DEBUG_MSG("_nic_set_multicast_list\n"); | |
579 | ||
580 | receivemode = IPG_RM_RECEIVEUNICAST | IPG_RM_RECEIVEBROADCAST; | |
581 | ||
582 | if (dev->flags & IFF_PROMISC) { | |
583 | /* NIC to be configured in promiscuous mode. */ | |
584 | receivemode = IPG_RM_RECEIVEALLFRAMES; | |
585 | } else if ((dev->flags & IFF_ALLMULTI) || | |
0761248f | 586 | ((dev->flags & IFF_MULTICAST) && |
4cd24eaf | 587 | (netdev_mc_count(dev) > IPG_MULTICAST_HASHTABLE_SIZE))) { |
1202d6ff FR |
588 | /* NIC to be configured to receive all multicast |
589 | * frames. */ | |
590 | receivemode |= IPG_RM_RECEIVEMULTICAST; | |
4cd24eaf | 591 | } else if ((dev->flags & IFF_MULTICAST) && !netdev_mc_empty(dev)) { |
1202d6ff FR |
592 | /* NIC to be configured to receive selected |
593 | * multicast addresses. */ | |
594 | receivemode |= IPG_RM_RECEIVEMULTICASTHASH; | |
595 | } | |
596 | ||
597 | /* Calculate the bits to set for the 64 bit, IPG HASHTABLE. | |
598 | * The IPG applies a cyclic-redundancy-check (the same CRC | |
599 | * used to calculate the frame data FCS) to the destination | |
600 | * address all incoming multicast frames whose destination | |
601 | * address has the multicast bit set. The least significant | |
602 | * 6 bits of the CRC result are used as an addressing index | |
603 | * into the hash table. If the value of the bit addressed by | |
604 | * this index is a 1, the frame is passed to the host system. | |
605 | */ | |
606 | ||
607 | /* Clear hashtable. */ | |
608 | hashtable[0] = 0x00000000; | |
609 | hashtable[1] = 0x00000000; | |
610 | ||
611 | /* Cycle through all multicast addresses to filter. */ | |
22bedad3 | 612 | netdev_for_each_mc_addr(ha, dev) { |
1202d6ff | 613 | /* Calculate CRC result for each multicast address. */ |
22bedad3 | 614 | hashindex = crc32_le(0xffffffff, ha->addr, |
1202d6ff FR |
615 | ETH_ALEN); |
616 | ||
617 | /* Use only the least significant 6 bits. */ | |
618 | hashindex = hashindex & 0x3F; | |
619 | ||
620 | /* Within "hashtable", set bit number "hashindex" | |
621 | * to a logic 1. | |
622 | */ | |
623 | set_bit(hashindex, (void *)hashtable); | |
624 | } | |
625 | ||
626 | /* Write the value of the hashtable, to the 4, 16 bit | |
627 | * HASHTABLE IPG registers. | |
628 | */ | |
629 | ipg_w32(hashtable[0], HASHTABLE_0); | |
630 | ipg_w32(hashtable[1], HASHTABLE_1); | |
631 | ||
632 | ipg_w8(IPG_RM_RSVD_MASK & receivemode, RECEIVE_MODE); | |
633 | ||
634 | IPG_DEBUG_MSG("ReceiveMode = %x\n", ipg_r8(RECEIVE_MODE)); | |
635 | } | |
636 | ||
637 | static int ipg_io_config(struct net_device *dev) | |
638 | { | |
da02b231 | 639 | struct ipg_nic_private *sp = netdev_priv(dev); |
1202d6ff FR |
640 | void __iomem *ioaddr = ipg_ioaddr(dev); |
641 | u32 origmacctrl; | |
642 | u32 restoremacctrl; | |
643 | ||
644 | IPG_DEBUG_MSG("_io_config\n"); | |
645 | ||
646 | origmacctrl = ipg_r32(MAC_CTRL); | |
647 | ||
648 | restoremacctrl = origmacctrl | IPG_MC_STATISTICS_ENABLE; | |
649 | ||
650 | /* Based on compilation option, determine if FCS is to be | |
651 | * stripped on receive frames by IPG. | |
652 | */ | |
653 | if (!IPG_STRIP_FCS_ON_RX) | |
654 | restoremacctrl |= IPG_MC_RCV_FCS; | |
655 | ||
656 | /* Determine if transmitter and/or receiver are | |
657 | * enabled so we may restore MACCTRL correctly. | |
658 | */ | |
659 | if (origmacctrl & IPG_MC_TX_ENABLED) | |
660 | restoremacctrl |= IPG_MC_TX_ENABLE; | |
661 | ||
662 | if (origmacctrl & IPG_MC_RX_ENABLED) | |
663 | restoremacctrl |= IPG_MC_RX_ENABLE; | |
664 | ||
665 | /* Transmitter and receiver must be disabled before setting | |
666 | * IFSSelect. | |
667 | */ | |
668 | ipg_w32((origmacctrl & (IPG_MC_RX_DISABLE | IPG_MC_TX_DISABLE)) & | |
669 | IPG_MC_RSVD_MASK, MAC_CTRL); | |
670 | ||
671 | /* Now that transmitter and receiver are disabled, write | |
672 | * to IFSSelect. | |
673 | */ | |
674 | ipg_w32((origmacctrl & IPG_MC_IFS_96BIT) & IPG_MC_RSVD_MASK, MAC_CTRL); | |
675 | ||
676 | /* Set RECEIVEMODE register. */ | |
677 | ipg_nic_set_multicast_list(dev); | |
678 | ||
da02b231 | 679 | ipg_w16(sp->max_rxframe_size, MAX_FRAME_SIZE); |
1202d6ff FR |
680 | |
681 | ipg_w8(IPG_RXDMAPOLLPERIOD_VALUE, RX_DMA_POLL_PERIOD); | |
682 | ipg_w8(IPG_RXDMAURGENTTHRESH_VALUE, RX_DMA_URGENT_THRESH); | |
683 | ipg_w8(IPG_RXDMABURSTTHRESH_VALUE, RX_DMA_BURST_THRESH); | |
684 | ipg_w8(IPG_TXDMAPOLLPERIOD_VALUE, TX_DMA_POLL_PERIOD); | |
685 | ipg_w8(IPG_TXDMAURGENTTHRESH_VALUE, TX_DMA_URGENT_THRESH); | |
686 | ipg_w8(IPG_TXDMABURSTTHRESH_VALUE, TX_DMA_BURST_THRESH); | |
687 | ipg_w16((IPG_IE_HOST_ERROR | IPG_IE_TX_DMA_COMPLETE | | |
688 | IPG_IE_TX_COMPLETE | IPG_IE_INT_REQUESTED | | |
689 | IPG_IE_UPDATE_STATS | IPG_IE_LINK_EVENT | | |
690 | IPG_IE_RX_DMA_COMPLETE | IPG_IE_RX_DMA_PRIORITY), INT_ENABLE); | |
691 | ipg_w16(IPG_FLOWONTHRESH_VALUE, FLOW_ON_THRESH); | |
692 | ipg_w16(IPG_FLOWOFFTHRESH_VALUE, FLOW_OFF_THRESH); | |
693 | ||
694 | /* IPG multi-frag frame bug workaround. | |
695 | * Per silicon revision B3 eratta. | |
696 | */ | |
697 | ipg_w16(ipg_r16(DEBUG_CTRL) | 0x0200, DEBUG_CTRL); | |
698 | ||
699 | /* IPG TX poll now bug workaround. | |
700 | * Per silicon revision B3 eratta. | |
701 | */ | |
702 | ipg_w16(ipg_r16(DEBUG_CTRL) | 0x0010, DEBUG_CTRL); | |
703 | ||
704 | /* IPG RX poll now bug workaround. | |
705 | * Per silicon revision B3 eratta. | |
706 | */ | |
707 | ipg_w16(ipg_r16(DEBUG_CTRL) | 0x0020, DEBUG_CTRL); | |
708 | ||
709 | /* Now restore MACCTRL to original setting. */ | |
710 | ipg_w32(IPG_MC_RSVD_MASK & restoremacctrl, MAC_CTRL); | |
711 | ||
712 | /* Disable unused RMON statistics. */ | |
713 | ipg_w32(IPG_RZ_ALL, RMON_STATISTICS_MASK); | |
714 | ||
715 | /* Disable unused MIB statistics. */ | |
716 | ipg_w32(IPG_SM_MACCONTROLFRAMESXMTD | IPG_SM_MACCONTROLFRAMESRCVD | | |
717 | IPG_SM_BCSTOCTETXMTOK_BCSTFRAMESXMTDOK | IPG_SM_TXJUMBOFRAMES | | |
718 | IPG_SM_MCSTOCTETXMTOK_MCSTFRAMESXMTDOK | IPG_SM_RXJUMBOFRAMES | | |
719 | IPG_SM_BCSTOCTETRCVDOK_BCSTFRAMESRCVDOK | | |
720 | IPG_SM_UDPCHECKSUMERRORS | IPG_SM_TCPCHECKSUMERRORS | | |
721 | IPG_SM_IPCHECKSUMERRORS, STATISTICS_MASK); | |
722 | ||
723 | return 0; | |
724 | } | |
725 | ||
726 | /* | |
727 | * Create a receive buffer within system memory and update | |
728 | * NIC private structure appropriately. | |
729 | */ | |
730 | static int ipg_get_rxbuff(struct net_device *dev, int entry) | |
731 | { | |
732 | struct ipg_nic_private *sp = netdev_priv(dev); | |
733 | struct ipg_rx *rxfd = sp->rxd + entry; | |
734 | struct sk_buff *skb; | |
735 | u64 rxfragsize; | |
736 | ||
737 | IPG_DEBUG_MSG("_get_rxbuff\n"); | |
738 | ||
89d71a66 | 739 | skb = netdev_alloc_skb_ip_align(dev, sp->rxsupport_size); |
1202d6ff | 740 | if (!skb) { |
9893ba16 | 741 | sp->rx_buff[entry] = NULL; |
1202d6ff FR |
742 | return -ENOMEM; |
743 | } | |
744 | ||
1202d6ff FR |
745 | /* Associate the receive buffer with the IPG NIC. */ |
746 | skb->dev = dev; | |
747 | ||
748 | /* Save the address of the sk_buff structure. */ | |
9893ba16 | 749 | sp->rx_buff[entry] = skb; |
1202d6ff FR |
750 | |
751 | rxfd->frag_info = cpu_to_le64(pci_map_single(sp->pdev, skb->data, | |
752 | sp->rx_buf_sz, PCI_DMA_FROMDEVICE)); | |
753 | ||
754 | /* Set the RFD fragment length. */ | |
18a9cdb9 | 755 | rxfragsize = sp->rxfrag_size; |
1202d6ff FR |
756 | rxfd->frag_info |= cpu_to_le64((rxfragsize << 48) & IPG_RFI_FRAGLEN); |
757 | ||
758 | return 0; | |
759 | } | |
760 | ||
761 | static int init_rfdlist(struct net_device *dev) | |
762 | { | |
763 | struct ipg_nic_private *sp = netdev_priv(dev); | |
764 | void __iomem *ioaddr = sp->ioaddr; | |
765 | unsigned int i; | |
766 | ||
767 | IPG_DEBUG_MSG("_init_rfdlist\n"); | |
768 | ||
769 | for (i = 0; i < IPG_RFDLIST_LENGTH; i++) { | |
770 | struct ipg_rx *rxfd = sp->rxd + i; | |
771 | ||
9893ba16 | 772 | if (sp->rx_buff[i]) { |
1202d6ff | 773 | pci_unmap_single(sp->pdev, |
325a8071 | 774 | le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN, |
1202d6ff | 775 | sp->rx_buf_sz, PCI_DMA_FROMDEVICE); |
9893ba16 PE |
776 | dev_kfree_skb_irq(sp->rx_buff[i]); |
777 | sp->rx_buff[i] = NULL; | |
1202d6ff FR |
778 | } |
779 | ||
780 | /* Clear out the RFS field. */ | |
781 | rxfd->rfs = 0x0000000000000000; | |
782 | ||
783 | if (ipg_get_rxbuff(dev, i) < 0) { | |
784 | /* | |
785 | * A receive buffer was not ready, break the | |
786 | * RFD list here. | |
787 | */ | |
788 | IPG_DEBUG_MSG("Cannot allocate Rx buffer.\n"); | |
789 | ||
790 | /* Just in case we cannot allocate a single RFD. | |
791 | * Should not occur. | |
792 | */ | |
793 | if (i == 0) { | |
794 | printk(KERN_ERR "%s: No memory available" | |
795 | " for RFD list.\n", dev->name); | |
796 | return -ENOMEM; | |
797 | } | |
798 | } | |
799 | ||
800 | rxfd->next_desc = cpu_to_le64(sp->rxd_map + | |
801 | sizeof(struct ipg_rx)*(i + 1)); | |
802 | } | |
803 | sp->rxd[i - 1].next_desc = cpu_to_le64(sp->rxd_map); | |
804 | ||
805 | sp->rx_current = 0; | |
806 | sp->rx_dirty = 0; | |
807 | ||
808 | /* Write the location of the RFDList to the IPG. */ | |
809 | ipg_w32((u32) sp->rxd_map, RFD_LIST_PTR_0); | |
810 | ipg_w32(0x00000000, RFD_LIST_PTR_1); | |
811 | ||
812 | return 0; | |
813 | } | |
814 | ||
815 | static void init_tfdlist(struct net_device *dev) | |
816 | { | |
817 | struct ipg_nic_private *sp = netdev_priv(dev); | |
818 | void __iomem *ioaddr = sp->ioaddr; | |
819 | unsigned int i; | |
820 | ||
821 | IPG_DEBUG_MSG("_init_tfdlist\n"); | |
822 | ||
823 | for (i = 0; i < IPG_TFDLIST_LENGTH; i++) { | |
824 | struct ipg_tx *txfd = sp->txd + i; | |
825 | ||
826 | txfd->tfc = cpu_to_le64(IPG_TFC_TFDDONE); | |
827 | ||
9893ba16 PE |
828 | if (sp->tx_buff[i]) { |
829 | dev_kfree_skb_irq(sp->tx_buff[i]); | |
830 | sp->tx_buff[i] = NULL; | |
1202d6ff FR |
831 | } |
832 | ||
833 | txfd->next_desc = cpu_to_le64(sp->txd_map + | |
834 | sizeof(struct ipg_tx)*(i + 1)); | |
835 | } | |
836 | sp->txd[i - 1].next_desc = cpu_to_le64(sp->txd_map); | |
837 | ||
838 | sp->tx_current = 0; | |
839 | sp->tx_dirty = 0; | |
840 | ||
841 | /* Write the location of the TFDList to the IPG. */ | |
842 | IPG_DDEBUG_MSG("Starting TFDListPtr = %8.8x\n", | |
843 | (u32) sp->txd_map); | |
844 | ipg_w32((u32) sp->txd_map, TFD_LIST_PTR_0); | |
845 | ipg_w32(0x00000000, TFD_LIST_PTR_1); | |
846 | ||
9893ba16 | 847 | sp->reset_current_tfd = 1; |
1202d6ff FR |
848 | } |
849 | ||
850 | /* | |
851 | * Free all transmit buffers which have already been transfered | |
852 | * via DMA to the IPG. | |
853 | */ | |
854 | static void ipg_nic_txfree(struct net_device *dev) | |
855 | { | |
856 | struct ipg_nic_private *sp = netdev_priv(dev); | |
0da1b995 | 857 | unsigned int released, pending, dirty; |
1dad939d | 858 | |
1202d6ff FR |
859 | IPG_DEBUG_MSG("_nic_txfree\n"); |
860 | ||
861 | pending = sp->tx_current - sp->tx_dirty; | |
0da1b995 | 862 | dirty = sp->tx_dirty % IPG_TFDLIST_LENGTH; |
1202d6ff FR |
863 | |
864 | for (released = 0; released < pending; released++) { | |
9893ba16 | 865 | struct sk_buff *skb = sp->tx_buff[dirty]; |
1202d6ff FR |
866 | struct ipg_tx *txfd = sp->txd + dirty; |
867 | ||
868 | IPG_DEBUG_MSG("TFC = %16.16lx\n", (unsigned long) txfd->tfc); | |
869 | ||
870 | /* Look at each TFD's TFC field beginning | |
871 | * at the last freed TFD up to the current TFD. | |
872 | * If the TFDDone bit is set, free the associated | |
873 | * buffer. | |
874 | */ | |
0da1b995 FR |
875 | if (!(txfd->tfc & cpu_to_le64(IPG_TFC_TFDDONE))) |
876 | break; | |
1202d6ff FR |
877 | |
878 | /* Free the transmit buffer. */ | |
879 | if (skb) { | |
880 | pci_unmap_single(sp->pdev, | |
325a8071 | 881 | le64_to_cpu(txfd->frag_info) & ~IPG_TFI_FRAGLEN, |
1202d6ff FR |
882 | skb->len, PCI_DMA_TODEVICE); |
883 | ||
85d68a58 | 884 | dev_kfree_skb_irq(skb); |
1202d6ff | 885 | |
9893ba16 | 886 | sp->tx_buff[dirty] = NULL; |
1202d6ff | 887 | } |
0da1b995 | 888 | dirty = (dirty + 1) % IPG_TFDLIST_LENGTH; |
1202d6ff FR |
889 | } |
890 | ||
891 | sp->tx_dirty += released; | |
892 | ||
893 | if (netif_queue_stopped(dev) && | |
894 | (sp->tx_current != (sp->tx_dirty + IPG_TFDLIST_LENGTH))) { | |
895 | netif_wake_queue(dev); | |
896 | } | |
897 | } | |
898 | ||
899 | static void ipg_tx_timeout(struct net_device *dev) | |
900 | { | |
901 | struct ipg_nic_private *sp = netdev_priv(dev); | |
902 | void __iomem *ioaddr = sp->ioaddr; | |
903 | ||
904 | ipg_reset(dev, IPG_AC_TX_RESET | IPG_AC_DMA | IPG_AC_NETWORK | | |
905 | IPG_AC_FIFO); | |
906 | ||
907 | spin_lock_irq(&sp->lock); | |
908 | ||
909 | /* Re-configure after DMA reset. */ | |
910 | if (ipg_io_config(dev) < 0) { | |
911 | printk(KERN_INFO "%s: Error during re-configuration.\n", | |
912 | dev->name); | |
913 | } | |
914 | ||
915 | init_tfdlist(dev); | |
916 | ||
917 | spin_unlock_irq(&sp->lock); | |
918 | ||
919 | ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) & IPG_MC_RSVD_MASK, | |
920 | MAC_CTRL); | |
921 | } | |
922 | ||
923 | /* | |
924 | * For TxComplete interrupts, free all transmit | |
925 | * buffers which have already been transfered via DMA | |
926 | * to the IPG. | |
927 | */ | |
928 | static void ipg_nic_txcleanup(struct net_device *dev) | |
929 | { | |
930 | struct ipg_nic_private *sp = netdev_priv(dev); | |
931 | void __iomem *ioaddr = sp->ioaddr; | |
932 | unsigned int i; | |
933 | ||
934 | IPG_DEBUG_MSG("_nic_txcleanup\n"); | |
935 | ||
936 | for (i = 0; i < IPG_TFDLIST_LENGTH; i++) { | |
937 | /* Reading the TXSTATUS register clears the | |
938 | * TX_COMPLETE interrupt. | |
939 | */ | |
940 | u32 txstatusdword = ipg_r32(TX_STATUS); | |
941 | ||
942 | IPG_DEBUG_MSG("TxStatus = %8.8x\n", txstatusdword); | |
943 | ||
944 | /* Check for Transmit errors. Error bits only valid if | |
945 | * TX_COMPLETE bit in the TXSTATUS register is a 1. | |
946 | */ | |
947 | if (!(txstatusdword & IPG_TS_TX_COMPLETE)) | |
948 | break; | |
949 | ||
950 | /* If in 10Mbps mode, indicate transmit is ready. */ | |
951 | if (sp->tenmbpsmode) { | |
952 | netif_wake_queue(dev); | |
953 | } | |
954 | ||
955 | /* Transmit error, increment stat counters. */ | |
956 | if (txstatusdword & IPG_TS_TX_ERROR) { | |
957 | IPG_DEBUG_MSG("Transmit error.\n"); | |
958 | sp->stats.tx_errors++; | |
959 | } | |
960 | ||
961 | /* Late collision, re-enable transmitter. */ | |
962 | if (txstatusdword & IPG_TS_LATE_COLLISION) { | |
963 | IPG_DEBUG_MSG("Late collision on transmit.\n"); | |
964 | ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) & | |
965 | IPG_MC_RSVD_MASK, MAC_CTRL); | |
966 | } | |
967 | ||
968 | /* Maximum collisions, re-enable transmitter. */ | |
969 | if (txstatusdword & IPG_TS_TX_MAX_COLL) { | |
970 | IPG_DEBUG_MSG("Maximum collisions on transmit.\n"); | |
971 | ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) & | |
972 | IPG_MC_RSVD_MASK, MAC_CTRL); | |
973 | } | |
974 | ||
975 | /* Transmit underrun, reset and re-enable | |
976 | * transmitter. | |
977 | */ | |
978 | if (txstatusdword & IPG_TS_TX_UNDERRUN) { | |
979 | IPG_DEBUG_MSG("Transmitter underrun.\n"); | |
980 | sp->stats.tx_fifo_errors++; | |
981 | ipg_reset(dev, IPG_AC_TX_RESET | IPG_AC_DMA | | |
982 | IPG_AC_NETWORK | IPG_AC_FIFO); | |
983 | ||
984 | /* Re-configure after DMA reset. */ | |
985 | if (ipg_io_config(dev) < 0) { | |
986 | printk(KERN_INFO | |
987 | "%s: Error during re-configuration.\n", | |
988 | dev->name); | |
989 | } | |
990 | init_tfdlist(dev); | |
991 | ||
992 | ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) & | |
993 | IPG_MC_RSVD_MASK, MAC_CTRL); | |
994 | } | |
995 | } | |
996 | ||
997 | ipg_nic_txfree(dev); | |
998 | } | |
999 | ||
1000 | /* Provides statistical information about the IPG NIC. */ | |
96fd74b2 | 1001 | static struct net_device_stats *ipg_nic_get_stats(struct net_device *dev) |
1202d6ff FR |
1002 | { |
1003 | struct ipg_nic_private *sp = netdev_priv(dev); | |
1004 | void __iomem *ioaddr = sp->ioaddr; | |
1005 | u16 temp1; | |
1006 | u16 temp2; | |
1007 | ||
1008 | IPG_DEBUG_MSG("_nic_get_stats\n"); | |
1009 | ||
1010 | /* Check to see if the NIC has been initialized via nic_open, | |
1011 | * before trying to read statistic registers. | |
1012 | */ | |
1013 | if (!test_bit(__LINK_STATE_START, &dev->state)) | |
1014 | return &sp->stats; | |
1015 | ||
1016 | sp->stats.rx_packets += ipg_r32(IPG_FRAMESRCVDOK); | |
1017 | sp->stats.tx_packets += ipg_r32(IPG_FRAMESXMTDOK); | |
1018 | sp->stats.rx_bytes += ipg_r32(IPG_OCTETRCVOK); | |
1019 | sp->stats.tx_bytes += ipg_r32(IPG_OCTETXMTOK); | |
1020 | temp1 = ipg_r16(IPG_FRAMESLOSTRXERRORS); | |
1021 | sp->stats.rx_errors += temp1; | |
1022 | sp->stats.rx_missed_errors += temp1; | |
1023 | temp1 = ipg_r32(IPG_SINGLECOLFRAMES) + ipg_r32(IPG_MULTICOLFRAMES) + | |
1024 | ipg_r32(IPG_LATECOLLISIONS); | |
1025 | temp2 = ipg_r16(IPG_CARRIERSENSEERRORS); | |
1026 | sp->stats.collisions += temp1; | |
1027 | sp->stats.tx_dropped += ipg_r16(IPG_FRAMESABORTXSCOLLS); | |
1028 | sp->stats.tx_errors += ipg_r16(IPG_FRAMESWEXDEFERRAL) + | |
1029 | ipg_r32(IPG_FRAMESWDEFERREDXMT) + temp1 + temp2; | |
1030 | sp->stats.multicast += ipg_r32(IPG_MCSTOCTETRCVDOK); | |
1031 | ||
1032 | /* detailed tx_errors */ | |
1033 | sp->stats.tx_carrier_errors += temp2; | |
1034 | ||
1035 | /* detailed rx_errors */ | |
1036 | sp->stats.rx_length_errors += ipg_r16(IPG_INRANGELENGTHERRORS) + | |
1037 | ipg_r16(IPG_FRAMETOOLONGERRRORS); | |
1038 | sp->stats.rx_crc_errors += ipg_r16(IPG_FRAMECHECKSEQERRORS); | |
1039 | ||
1040 | /* Unutilized IPG statistic registers. */ | |
1041 | ipg_r32(IPG_MCSTFRAMESRCVDOK); | |
1042 | ||
1043 | return &sp->stats; | |
1044 | } | |
1045 | ||
1046 | /* Restore used receive buffers. */ | |
1047 | static int ipg_nic_rxrestore(struct net_device *dev) | |
1048 | { | |
1049 | struct ipg_nic_private *sp = netdev_priv(dev); | |
1050 | const unsigned int curr = sp->rx_current; | |
1051 | unsigned int dirty = sp->rx_dirty; | |
1052 | ||
1053 | IPG_DEBUG_MSG("_nic_rxrestore\n"); | |
1054 | ||
1055 | for (dirty = sp->rx_dirty; curr - dirty > 0; dirty++) { | |
1056 | unsigned int entry = dirty % IPG_RFDLIST_LENGTH; | |
1057 | ||
1058 | /* rx_copybreak may poke hole here and there. */ | |
9893ba16 | 1059 | if (sp->rx_buff[entry]) |
1202d6ff FR |
1060 | continue; |
1061 | ||
1062 | /* Generate a new receive buffer to replace the | |
1063 | * current buffer (which will be released by the | |
1064 | * Linux system). | |
1065 | */ | |
1066 | if (ipg_get_rxbuff(dev, entry) < 0) { | |
1067 | IPG_DEBUG_MSG("Cannot allocate new Rx buffer.\n"); | |
1068 | ||
1069 | break; | |
1070 | } | |
1071 | ||
1072 | /* Reset the RFS field. */ | |
1073 | sp->rxd[entry].rfs = 0x0000000000000000; | |
1074 | } | |
1075 | sp->rx_dirty = dirty; | |
1076 | ||
1077 | return 0; | |
1078 | } | |
1079 | ||
1202d6ff | 1080 | /* use jumboindex and jumbosize to control jumbo frame status |
8da5bb7a PE |
1081 | * initial status is jumboindex=-1 and jumbosize=0 |
1082 | * 1. jumboindex = -1 and jumbosize=0 : previous jumbo frame has been done. | |
1083 | * 2. jumboindex != -1 and jumbosize != 0 : jumbo frame is not over size and receiving | |
1084 | * 3. jumboindex = -1 and jumbosize != 0 : jumbo frame is over size, already dump | |
1085 | * previous receiving and need to continue dumping the current one | |
1086 | */ | |
1202d6ff | 1087 | enum { |
9893ba16 PE |
1088 | NORMAL_PACKET, |
1089 | ERROR_PACKET | |
1202d6ff FR |
1090 | }; |
1091 | ||
1092 | enum { | |
9893ba16 PE |
1093 | FRAME_NO_START_NO_END = 0, |
1094 | FRAME_WITH_START = 1, | |
1095 | FRAME_WITH_END = 10, | |
1096 | FRAME_WITH_START_WITH_END = 11 | |
1202d6ff FR |
1097 | }; |
1098 | ||
024f4d88 | 1099 | static void ipg_nic_rx_free_skb(struct net_device *dev) |
1202d6ff FR |
1100 | { |
1101 | struct ipg_nic_private *sp = netdev_priv(dev); | |
1102 | unsigned int entry = sp->rx_current % IPG_RFDLIST_LENGTH; | |
1103 | ||
9893ba16 | 1104 | if (sp->rx_buff[entry]) { |
1202d6ff FR |
1105 | struct ipg_rx *rxfd = sp->rxd + entry; |
1106 | ||
1107 | pci_unmap_single(sp->pdev, | |
b88ed5cc | 1108 | le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN, |
1202d6ff | 1109 | sp->rx_buf_sz, PCI_DMA_FROMDEVICE); |
9893ba16 PE |
1110 | dev_kfree_skb_irq(sp->rx_buff[entry]); |
1111 | sp->rx_buff[entry] = NULL; | |
1202d6ff FR |
1112 | } |
1113 | } | |
1114 | ||
024f4d88 | 1115 | static int ipg_nic_rx_check_frame_type(struct net_device *dev) |
1202d6ff FR |
1116 | { |
1117 | struct ipg_nic_private *sp = netdev_priv(dev); | |
1118 | struct ipg_rx *rxfd = sp->rxd + (sp->rx_current % IPG_RFDLIST_LENGTH); | |
9893ba16 | 1119 | int type = FRAME_NO_START_NO_END; |
1202d6ff FR |
1120 | |
1121 | if (le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMESTART) | |
9893ba16 | 1122 | type += FRAME_WITH_START; |
1202d6ff | 1123 | if (le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMEEND) |
9893ba16 | 1124 | type += FRAME_WITH_END; |
1202d6ff FR |
1125 | return type; |
1126 | } | |
1127 | ||
024f4d88 | 1128 | static int ipg_nic_rx_check_error(struct net_device *dev) |
1202d6ff FR |
1129 | { |
1130 | struct ipg_nic_private *sp = netdev_priv(dev); | |
1131 | unsigned int entry = sp->rx_current % IPG_RFDLIST_LENGTH; | |
1132 | struct ipg_rx *rxfd = sp->rxd + entry; | |
1133 | ||
1134 | if (IPG_DROP_ON_RX_ETH_ERRORS && (le64_to_cpu(rxfd->rfs) & | |
1135 | (IPG_RFS_RXFIFOOVERRUN | IPG_RFS_RXRUNTFRAME | | |
1136 | IPG_RFS_RXALIGNMENTERROR | IPG_RFS_RXFCSERROR | | |
1137 | IPG_RFS_RXOVERSIZEDFRAME | IPG_RFS_RXLENGTHERROR))) { | |
1138 | IPG_DEBUG_MSG("Rx error, RFS = %16.16lx\n", | |
1139 | (unsigned long) rxfd->rfs); | |
1140 | ||
1141 | /* Increment general receive error statistic. */ | |
1142 | sp->stats.rx_errors++; | |
1143 | ||
1144 | /* Increment detailed receive error statistics. */ | |
1145 | if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFIFOOVERRUN) { | |
1146 | IPG_DEBUG_MSG("RX FIFO overrun occured.\n"); | |
1147 | ||
1148 | sp->stats.rx_fifo_errors++; | |
1149 | } | |
1150 | ||
1151 | if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXRUNTFRAME) { | |
1152 | IPG_DEBUG_MSG("RX runt occured.\n"); | |
1153 | sp->stats.rx_length_errors++; | |
1154 | } | |
1155 | ||
1156 | /* Do nothing for IPG_RFS_RXOVERSIZEDFRAME, | |
1157 | * error count handled by a IPG statistic register. | |
1158 | */ | |
1159 | ||
1160 | if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXALIGNMENTERROR) { | |
1161 | IPG_DEBUG_MSG("RX alignment error occured.\n"); | |
1162 | sp->stats.rx_frame_errors++; | |
1163 | } | |
1164 | ||
1165 | /* Do nothing for IPG_RFS_RXFCSERROR, error count | |
1166 | * handled by a IPG statistic register. | |
1167 | */ | |
1168 | ||
1169 | /* Free the memory associated with the RX | |
1170 | * buffer since it is erroneous and we will | |
1171 | * not pass it to higher layer processes. | |
1172 | */ | |
9893ba16 | 1173 | if (sp->rx_buff[entry]) { |
1202d6ff | 1174 | pci_unmap_single(sp->pdev, |
b88ed5cc | 1175 | le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN, |
1202d6ff FR |
1176 | sp->rx_buf_sz, PCI_DMA_FROMDEVICE); |
1177 | ||
9893ba16 PE |
1178 | dev_kfree_skb_irq(sp->rx_buff[entry]); |
1179 | sp->rx_buff[entry] = NULL; | |
1202d6ff | 1180 | } |
9893ba16 | 1181 | return ERROR_PACKET; |
1202d6ff | 1182 | } |
9893ba16 | 1183 | return NORMAL_PACKET; |
1202d6ff FR |
1184 | } |
1185 | ||
1186 | static void ipg_nic_rx_with_start_and_end(struct net_device *dev, | |
1187 | struct ipg_nic_private *sp, | |
1188 | struct ipg_rx *rxfd, unsigned entry) | |
1189 | { | |
9893ba16 | 1190 | struct ipg_jumbo *jumbo = &sp->jumbo; |
1202d6ff FR |
1191 | struct sk_buff *skb; |
1192 | int framelen; | |
1193 | ||
9893ba16 | 1194 | if (jumbo->found_start) { |
85d68a58 | 1195 | dev_kfree_skb_irq(jumbo->skb); |
9893ba16 PE |
1196 | jumbo->found_start = 0; |
1197 | jumbo->current_size = 0; | |
1202d6ff FR |
1198 | jumbo->skb = NULL; |
1199 | } | |
1200 | ||
8da5bb7a | 1201 | /* 1: found error, 0 no error */ |
9893ba16 | 1202 | if (ipg_nic_rx_check_error(dev) != NORMAL_PACKET) |
1202d6ff FR |
1203 | return; |
1204 | ||
9893ba16 | 1205 | skb = sp->rx_buff[entry]; |
1202d6ff FR |
1206 | if (!skb) |
1207 | return; | |
1208 | ||
8da5bb7a | 1209 | /* accept this frame and send to upper layer */ |
1202d6ff | 1210 | framelen = le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFRAMELEN; |
18a9cdb9 PE |
1211 | if (framelen > sp->rxfrag_size) |
1212 | framelen = sp->rxfrag_size; | |
1202d6ff FR |
1213 | |
1214 | skb_put(skb, framelen); | |
1215 | skb->protocol = eth_type_trans(skb, dev); | |
1216 | skb->ip_summed = CHECKSUM_NONE; | |
1217 | netif_rx(skb); | |
9893ba16 | 1218 | sp->rx_buff[entry] = NULL; |
1202d6ff FR |
1219 | } |
1220 | ||
1221 | static void ipg_nic_rx_with_start(struct net_device *dev, | |
1222 | struct ipg_nic_private *sp, | |
1223 | struct ipg_rx *rxfd, unsigned entry) | |
1224 | { | |
9893ba16 | 1225 | struct ipg_jumbo *jumbo = &sp->jumbo; |
1202d6ff FR |
1226 | struct pci_dev *pdev = sp->pdev; |
1227 | struct sk_buff *skb; | |
1228 | ||
8da5bb7a | 1229 | /* 1: found error, 0 no error */ |
9893ba16 | 1230 | if (ipg_nic_rx_check_error(dev) != NORMAL_PACKET) |
1202d6ff FR |
1231 | return; |
1232 | ||
8da5bb7a | 1233 | /* accept this frame and send to upper layer */ |
9893ba16 | 1234 | skb = sp->rx_buff[entry]; |
1202d6ff FR |
1235 | if (!skb) |
1236 | return; | |
1237 | ||
9893ba16 | 1238 | if (jumbo->found_start) |
85d68a58 | 1239 | dev_kfree_skb_irq(jumbo->skb); |
1202d6ff | 1240 | |
b88ed5cc | 1241 | pci_unmap_single(pdev, le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN, |
1202d6ff FR |
1242 | sp->rx_buf_sz, PCI_DMA_FROMDEVICE); |
1243 | ||
18a9cdb9 | 1244 | skb_put(skb, sp->rxfrag_size); |
1202d6ff | 1245 | |
9893ba16 | 1246 | jumbo->found_start = 1; |
18a9cdb9 | 1247 | jumbo->current_size = sp->rxfrag_size; |
1202d6ff FR |
1248 | jumbo->skb = skb; |
1249 | ||
9893ba16 | 1250 | sp->rx_buff[entry] = NULL; |
1202d6ff FR |
1251 | } |
1252 | ||
1253 | static void ipg_nic_rx_with_end(struct net_device *dev, | |
1254 | struct ipg_nic_private *sp, | |
1255 | struct ipg_rx *rxfd, unsigned entry) | |
1256 | { | |
9893ba16 | 1257 | struct ipg_jumbo *jumbo = &sp->jumbo; |
1202d6ff | 1258 | |
8da5bb7a | 1259 | /* 1: found error, 0 no error */ |
9893ba16 PE |
1260 | if (ipg_nic_rx_check_error(dev) == NORMAL_PACKET) { |
1261 | struct sk_buff *skb = sp->rx_buff[entry]; | |
1202d6ff FR |
1262 | |
1263 | if (!skb) | |
1264 | return; | |
1265 | ||
9893ba16 | 1266 | if (jumbo->found_start) { |
1202d6ff FR |
1267 | int framelen, endframelen; |
1268 | ||
1269 | framelen = le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFRAMELEN; | |
1270 | ||
ecfecfb5 | 1271 | endframelen = framelen - jumbo->current_size; |
39f20585 | 1272 | if (framelen > sp->rxsupport_size) |
85d68a58 | 1273 | dev_kfree_skb_irq(jumbo->skb); |
1202d6ff | 1274 | else { |
ecfecfb5 PE |
1275 | memcpy(skb_put(jumbo->skb, endframelen), |
1276 | skb->data, endframelen); | |
1202d6ff FR |
1277 | |
1278 | jumbo->skb->protocol = | |
1279 | eth_type_trans(jumbo->skb, dev); | |
1280 | ||
1281 | jumbo->skb->ip_summed = CHECKSUM_NONE; | |
1282 | netif_rx(jumbo->skb); | |
1283 | } | |
1284 | } | |
1285 | ||
9893ba16 PE |
1286 | jumbo->found_start = 0; |
1287 | jumbo->current_size = 0; | |
1202d6ff FR |
1288 | jumbo->skb = NULL; |
1289 | ||
1290 | ipg_nic_rx_free_skb(dev); | |
1291 | } else { | |
85d68a58 | 1292 | dev_kfree_skb_irq(jumbo->skb); |
9893ba16 PE |
1293 | jumbo->found_start = 0; |
1294 | jumbo->current_size = 0; | |
1202d6ff FR |
1295 | jumbo->skb = NULL; |
1296 | } | |
1297 | } | |
1298 | ||
1299 | static void ipg_nic_rx_no_start_no_end(struct net_device *dev, | |
1300 | struct ipg_nic_private *sp, | |
1301 | struct ipg_rx *rxfd, unsigned entry) | |
1302 | { | |
9893ba16 | 1303 | struct ipg_jumbo *jumbo = &sp->jumbo; |
1202d6ff | 1304 | |
8da5bb7a | 1305 | /* 1: found error, 0 no error */ |
9893ba16 PE |
1306 | if (ipg_nic_rx_check_error(dev) == NORMAL_PACKET) { |
1307 | struct sk_buff *skb = sp->rx_buff[entry]; | |
1202d6ff FR |
1308 | |
1309 | if (skb) { | |
9893ba16 | 1310 | if (jumbo->found_start) { |
18a9cdb9 | 1311 | jumbo->current_size += sp->rxfrag_size; |
39f20585 | 1312 | if (jumbo->current_size <= sp->rxsupport_size) { |
1202d6ff | 1313 | memcpy(skb_put(jumbo->skb, |
18a9cdb9 PE |
1314 | sp->rxfrag_size), |
1315 | skb->data, sp->rxfrag_size); | |
1202d6ff FR |
1316 | } |
1317 | } | |
1202d6ff FR |
1318 | ipg_nic_rx_free_skb(dev); |
1319 | } | |
1320 | } else { | |
85d68a58 | 1321 | dev_kfree_skb_irq(jumbo->skb); |
9893ba16 PE |
1322 | jumbo->found_start = 0; |
1323 | jumbo->current_size = 0; | |
1202d6ff FR |
1324 | jumbo->skb = NULL; |
1325 | } | |
1326 | } | |
1327 | ||
024f4d88 | 1328 | static int ipg_nic_rx_jumbo(struct net_device *dev) |
1202d6ff FR |
1329 | { |
1330 | struct ipg_nic_private *sp = netdev_priv(dev); | |
1331 | unsigned int curr = sp->rx_current; | |
1332 | void __iomem *ioaddr = sp->ioaddr; | |
1333 | unsigned int i; | |
1334 | ||
1335 | IPG_DEBUG_MSG("_nic_rx\n"); | |
1336 | ||
1337 | for (i = 0; i < IPG_MAXRFDPROCESS_COUNT; i++, curr++) { | |
1338 | unsigned int entry = curr % IPG_RFDLIST_LENGTH; | |
1339 | struct ipg_rx *rxfd = sp->rxd + entry; | |
1340 | ||
b88ed5cc | 1341 | if (!(rxfd->rfs & cpu_to_le64(IPG_RFS_RFDDONE))) |
1202d6ff FR |
1342 | break; |
1343 | ||
1344 | switch (ipg_nic_rx_check_frame_type(dev)) { | |
9893ba16 | 1345 | case FRAME_WITH_START_WITH_END: |
ecfecfb5 | 1346 | ipg_nic_rx_with_start_and_end(dev, sp, rxfd, entry); |
1202d6ff | 1347 | break; |
9893ba16 | 1348 | case FRAME_WITH_START: |
ecfecfb5 | 1349 | ipg_nic_rx_with_start(dev, sp, rxfd, entry); |
1202d6ff | 1350 | break; |
9893ba16 | 1351 | case FRAME_WITH_END: |
ecfecfb5 | 1352 | ipg_nic_rx_with_end(dev, sp, rxfd, entry); |
1202d6ff | 1353 | break; |
9893ba16 | 1354 | case FRAME_NO_START_NO_END: |
ecfecfb5 | 1355 | ipg_nic_rx_no_start_no_end(dev, sp, rxfd, entry); |
1202d6ff FR |
1356 | break; |
1357 | } | |
1358 | } | |
1359 | ||
1360 | sp->rx_current = curr; | |
1361 | ||
1362 | if (i == IPG_MAXRFDPROCESS_COUNT) { | |
1363 | /* There are more RFDs to process, however the | |
1364 | * allocated amount of RFD processing time has | |
1365 | * expired. Assert Interrupt Requested to make | |
1366 | * sure we come back to process the remaining RFDs. | |
1367 | */ | |
1368 | ipg_w32(ipg_r32(ASIC_CTRL) | IPG_AC_INT_REQUEST, ASIC_CTRL); | |
1369 | } | |
1370 | ||
1371 | ipg_nic_rxrestore(dev); | |
1372 | ||
1373 | return 0; | |
1374 | } | |
1375 | ||
1202d6ff FR |
1376 | static int ipg_nic_rx(struct net_device *dev) |
1377 | { | |
1378 | /* Transfer received Ethernet frames to higher network layers. */ | |
1379 | struct ipg_nic_private *sp = netdev_priv(dev); | |
1380 | unsigned int curr = sp->rx_current; | |
1381 | void __iomem *ioaddr = sp->ioaddr; | |
1382 | struct ipg_rx *rxfd; | |
1383 | unsigned int i; | |
1384 | ||
1385 | IPG_DEBUG_MSG("_nic_rx\n"); | |
1386 | ||
1387 | #define __RFS_MASK \ | |
1388 | cpu_to_le64(IPG_RFS_RFDDONE | IPG_RFS_FRAMESTART | IPG_RFS_FRAMEEND) | |
1389 | ||
1390 | for (i = 0; i < IPG_MAXRFDPROCESS_COUNT; i++, curr++) { | |
1391 | unsigned int entry = curr % IPG_RFDLIST_LENGTH; | |
9893ba16 | 1392 | struct sk_buff *skb = sp->rx_buff[entry]; |
1202d6ff FR |
1393 | unsigned int framelen; |
1394 | ||
1395 | rxfd = sp->rxd + entry; | |
1396 | ||
1397 | if (((rxfd->rfs & __RFS_MASK) != __RFS_MASK) || !skb) | |
1398 | break; | |
1399 | ||
1400 | /* Get received frame length. */ | |
1401 | framelen = le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFRAMELEN; | |
1402 | ||
1403 | /* Check for jumbo frame arrival with too small | |
1404 | * RXFRAG_SIZE. | |
1405 | */ | |
18a9cdb9 | 1406 | if (framelen > sp->rxfrag_size) { |
1202d6ff FR |
1407 | IPG_DEBUG_MSG |
1408 | ("RFS FrameLen > allocated fragment size.\n"); | |
1409 | ||
18a9cdb9 | 1410 | framelen = sp->rxfrag_size; |
1202d6ff FR |
1411 | } |
1412 | ||
325a8071 | 1413 | if ((IPG_DROP_ON_RX_ETH_ERRORS && (le64_to_cpu(rxfd->rfs) & |
1202d6ff FR |
1414 | (IPG_RFS_RXFIFOOVERRUN | IPG_RFS_RXRUNTFRAME | |
1415 | IPG_RFS_RXALIGNMENTERROR | IPG_RFS_RXFCSERROR | | |
325a8071 | 1416 | IPG_RFS_RXOVERSIZEDFRAME | IPG_RFS_RXLENGTHERROR)))) { |
1202d6ff FR |
1417 | |
1418 | IPG_DEBUG_MSG("Rx error, RFS = %16.16lx\n", | |
1419 | (unsigned long int) rxfd->rfs); | |
1420 | ||
1421 | /* Increment general receive error statistic. */ | |
1422 | sp->stats.rx_errors++; | |
1423 | ||
1424 | /* Increment detailed receive error statistics. */ | |
325a8071 | 1425 | if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFIFOOVERRUN) { |
1202d6ff FR |
1426 | IPG_DEBUG_MSG("RX FIFO overrun occured.\n"); |
1427 | sp->stats.rx_fifo_errors++; | |
1428 | } | |
1429 | ||
325a8071 | 1430 | if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXRUNTFRAME) { |
1202d6ff FR |
1431 | IPG_DEBUG_MSG("RX runt occured.\n"); |
1432 | sp->stats.rx_length_errors++; | |
1433 | } | |
1434 | ||
325a8071 | 1435 | if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXOVERSIZEDFRAME) ; |
1202d6ff FR |
1436 | /* Do nothing, error count handled by a IPG |
1437 | * statistic register. | |
1438 | */ | |
1439 | ||
325a8071 | 1440 | if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXALIGNMENTERROR) { |
1202d6ff FR |
1441 | IPG_DEBUG_MSG("RX alignment error occured.\n"); |
1442 | sp->stats.rx_frame_errors++; | |
1443 | } | |
1444 | ||
325a8071 | 1445 | if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFCSERROR) ; |
1202d6ff FR |
1446 | /* Do nothing, error count handled by a IPG |
1447 | * statistic register. | |
1448 | */ | |
1449 | ||
1450 | /* Free the memory associated with the RX | |
1451 | * buffer since it is erroneous and we will | |
1452 | * not pass it to higher layer processes. | |
1453 | */ | |
1454 | if (skb) { | |
325a8071 | 1455 | __le64 info = rxfd->frag_info; |
1202d6ff FR |
1456 | |
1457 | pci_unmap_single(sp->pdev, | |
325a8071 | 1458 | le64_to_cpu(info) & ~IPG_RFI_FRAGLEN, |
1202d6ff FR |
1459 | sp->rx_buf_sz, PCI_DMA_FROMDEVICE); |
1460 | ||
85d68a58 | 1461 | dev_kfree_skb_irq(skb); |
1202d6ff FR |
1462 | } |
1463 | } else { | |
1464 | ||
1465 | /* Adjust the new buffer length to accomodate the size | |
1466 | * of the received frame. | |
1467 | */ | |
1468 | skb_put(skb, framelen); | |
1469 | ||
1470 | /* Set the buffer's protocol field to Ethernet. */ | |
1471 | skb->protocol = eth_type_trans(skb, dev); | |
1472 | ||
6d3b2cb9 PE |
1473 | /* The IPG encountered an error with (or |
1474 | * there were no) IP/TCP/UDP checksums. | |
1475 | * This may or may not indicate an invalid | |
1476 | * IP/TCP/UDP frame was received. Let the | |
1477 | * upper layer decide. | |
1202d6ff | 1478 | */ |
6d3b2cb9 | 1479 | skb->ip_summed = CHECKSUM_NONE; |
1202d6ff FR |
1480 | |
1481 | /* Hand off frame for higher layer processing. | |
1482 | * The function netif_rx() releases the sk_buff | |
1483 | * when processing completes. | |
1484 | */ | |
1485 | netif_rx(skb); | |
1202d6ff FR |
1486 | } |
1487 | ||
1488 | /* Assure RX buffer is not reused by IPG. */ | |
9893ba16 | 1489 | sp->rx_buff[entry] = NULL; |
1202d6ff FR |
1490 | } |
1491 | ||
1492 | /* | |
1493 | * If there are more RFDs to proces and the allocated amount of RFD | |
1494 | * processing time has expired, assert Interrupt Requested to make | |
1495 | * sure we come back to process the remaining RFDs. | |
1496 | */ | |
1497 | if (i == IPG_MAXRFDPROCESS_COUNT) | |
1498 | ipg_w32(ipg_r32(ASIC_CTRL) | IPG_AC_INT_REQUEST, ASIC_CTRL); | |
1499 | ||
1500 | #ifdef IPG_DEBUG | |
1501 | /* Check if the RFD list contained no receive frame data. */ | |
1502 | if (!i) | |
1503 | sp->EmptyRFDListCount++; | |
1504 | #endif | |
325a8071 AV |
1505 | while ((le64_to_cpu(rxfd->rfs) & IPG_RFS_RFDDONE) && |
1506 | !((le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMESTART) && | |
1507 | (le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMEEND))) { | |
1202d6ff FR |
1508 | unsigned int entry = curr++ % IPG_RFDLIST_LENGTH; |
1509 | ||
1510 | rxfd = sp->rxd + entry; | |
1511 | ||
1512 | IPG_DEBUG_MSG("Frame requires multiple RFDs.\n"); | |
1513 | ||
1514 | /* An unexpected event, additional code needed to handle | |
1515 | * properly. So for the time being, just disregard the | |
1516 | * frame. | |
1517 | */ | |
1518 | ||
1519 | /* Free the memory associated with the RX | |
1520 | * buffer since it is erroneous and we will | |
1521 | * not pass it to higher layer processes. | |
1522 | */ | |
9893ba16 | 1523 | if (sp->rx_buff[entry]) { |
1202d6ff | 1524 | pci_unmap_single(sp->pdev, |
325a8071 | 1525 | le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN, |
1202d6ff | 1526 | sp->rx_buf_sz, PCI_DMA_FROMDEVICE); |
9893ba16 | 1527 | dev_kfree_skb_irq(sp->rx_buff[entry]); |
1202d6ff FR |
1528 | } |
1529 | ||
1530 | /* Assure RX buffer is not reused by IPG. */ | |
9893ba16 | 1531 | sp->rx_buff[entry] = NULL; |
1202d6ff FR |
1532 | } |
1533 | ||
1534 | sp->rx_current = curr; | |
1535 | ||
1536 | /* Check to see if there are a minimum number of used | |
1537 | * RFDs before restoring any (should improve performance.) | |
1538 | */ | |
1539 | if ((curr - sp->rx_dirty) >= IPG_MINUSEDRFDSTOFREE) | |
1540 | ipg_nic_rxrestore(dev); | |
1541 | ||
1542 | return 0; | |
1543 | } | |
1202d6ff FR |
1544 | |
1545 | static void ipg_reset_after_host_error(struct work_struct *work) | |
1546 | { | |
1547 | struct ipg_nic_private *sp = | |
1548 | container_of(work, struct ipg_nic_private, task.work); | |
1549 | struct net_device *dev = sp->dev; | |
1550 | ||
1202d6ff FR |
1551 | /* |
1552 | * Acknowledge HostError interrupt by resetting | |
1553 | * IPG DMA and HOST. | |
1554 | */ | |
1555 | ipg_reset(dev, IPG_AC_GLOBAL_RESET | IPG_AC_HOST | IPG_AC_DMA); | |
1556 | ||
1557 | init_rfdlist(dev); | |
1558 | init_tfdlist(dev); | |
1559 | ||
1560 | if (ipg_io_config(dev) < 0) { | |
1561 | printk(KERN_INFO "%s: Cannot recover from PCI error.\n", | |
1562 | dev->name); | |
1563 | schedule_delayed_work(&sp->task, HZ); | |
1564 | } | |
1565 | } | |
1566 | ||
1567 | static irqreturn_t ipg_interrupt_handler(int irq, void *dev_inst) | |
1568 | { | |
1569 | struct net_device *dev = dev_inst; | |
1570 | struct ipg_nic_private *sp = netdev_priv(dev); | |
1571 | void __iomem *ioaddr = sp->ioaddr; | |
1572 | unsigned int handled = 0; | |
1573 | u16 status; | |
1574 | ||
1575 | IPG_DEBUG_MSG("_interrupt_handler\n"); | |
1576 | ||
024f4d88 PE |
1577 | if (sp->is_jumbo) |
1578 | ipg_nic_rxrestore(dev); | |
1579 | ||
227bc24d FR |
1580 | spin_lock(&sp->lock); |
1581 | ||
1202d6ff FR |
1582 | /* Get interrupt source information, and acknowledge |
1583 | * some (i.e. TxDMAComplete, RxDMAComplete, RxEarly, | |
1584 | * IntRequested, MacControlFrame, LinkEvent) interrupts | |
1585 | * if issued. Also, all IPG interrupts are disabled by | |
1586 | * reading IntStatusAck. | |
1587 | */ | |
1588 | status = ipg_r16(INT_STATUS_ACK); | |
1589 | ||
1590 | IPG_DEBUG_MSG("IntStatusAck = %4.4x\n", status); | |
1591 | ||
1592 | /* Shared IRQ of remove event. */ | |
1593 | if (!(status & IPG_IS_RSVD_MASK)) | |
1594 | goto out_enable; | |
1595 | ||
1596 | handled = 1; | |
1597 | ||
1598 | if (unlikely(!netif_running(dev))) | |
227bc24d | 1599 | goto out_unlock; |
1202d6ff FR |
1600 | |
1601 | /* If RFDListEnd interrupt, restore all used RFDs. */ | |
1602 | if (status & IPG_IS_RFD_LIST_END) { | |
1603 | IPG_DEBUG_MSG("RFDListEnd Interrupt.\n"); | |
1604 | ||
1605 | /* The RFD list end indicates an RFD was encountered | |
1606 | * with a 0 NextPtr, or with an RFDDone bit set to 1 | |
1607 | * (indicating the RFD is not read for use by the | |
1608 | * IPG.) Try to restore all RFDs. | |
1609 | */ | |
1610 | ipg_nic_rxrestore(dev); | |
1611 | ||
1612 | #ifdef IPG_DEBUG | |
1613 | /* Increment the RFDlistendCount counter. */ | |
1614 | sp->RFDlistendCount++; | |
1615 | #endif | |
1616 | } | |
1617 | ||
1618 | /* If RFDListEnd, RxDMAPriority, RxDMAComplete, or | |
1619 | * IntRequested interrupt, process received frames. */ | |
1620 | if ((status & IPG_IS_RX_DMA_PRIORITY) || | |
1621 | (status & IPG_IS_RFD_LIST_END) || | |
1622 | (status & IPG_IS_RX_DMA_COMPLETE) || | |
1623 | (status & IPG_IS_INT_REQUESTED)) { | |
1624 | #ifdef IPG_DEBUG | |
1625 | /* Increment the RFD list checked counter if interrupted | |
1626 | * only to check the RFD list. */ | |
1627 | if (status & (~(IPG_IS_RX_DMA_PRIORITY | IPG_IS_RFD_LIST_END | | |
1628 | IPG_IS_RX_DMA_COMPLETE | IPG_IS_INT_REQUESTED) & | |
1629 | (IPG_IS_HOST_ERROR | IPG_IS_TX_DMA_COMPLETE | | |
1630 | IPG_IS_LINK_EVENT | IPG_IS_TX_COMPLETE | | |
1631 | IPG_IS_UPDATE_STATS))) | |
1632 | sp->RFDListCheckedCount++; | |
1633 | #endif | |
1634 | ||
024f4d88 PE |
1635 | if (sp->is_jumbo) |
1636 | ipg_nic_rx_jumbo(dev); | |
1637 | else | |
1638 | ipg_nic_rx(dev); | |
1202d6ff FR |
1639 | } |
1640 | ||
1641 | /* If TxDMAComplete interrupt, free used TFDs. */ | |
1642 | if (status & IPG_IS_TX_DMA_COMPLETE) | |
1643 | ipg_nic_txfree(dev); | |
1644 | ||
1645 | /* TxComplete interrupts indicate one of numerous actions. | |
1646 | * Determine what action to take based on TXSTATUS register. | |
1647 | */ | |
1648 | if (status & IPG_IS_TX_COMPLETE) | |
1649 | ipg_nic_txcleanup(dev); | |
1650 | ||
1651 | /* If UpdateStats interrupt, update Linux Ethernet statistics */ | |
1652 | if (status & IPG_IS_UPDATE_STATS) | |
1653 | ipg_nic_get_stats(dev); | |
1654 | ||
1655 | /* If HostError interrupt, reset IPG. */ | |
1656 | if (status & IPG_IS_HOST_ERROR) { | |
1657 | IPG_DDEBUG_MSG("HostError Interrupt\n"); | |
1658 | ||
1659 | schedule_delayed_work(&sp->task, 0); | |
1660 | } | |
1661 | ||
1662 | /* If LinkEvent interrupt, resolve autonegotiation. */ | |
1663 | if (status & IPG_IS_LINK_EVENT) { | |
1664 | if (ipg_config_autoneg(dev) < 0) | |
1665 | printk(KERN_INFO "%s: Auto-negotiation error.\n", | |
1666 | dev->name); | |
1667 | } | |
1668 | ||
1669 | /* If MACCtrlFrame interrupt, do nothing. */ | |
1670 | if (status & IPG_IS_MAC_CTRL_FRAME) | |
1671 | IPG_DEBUG_MSG("MACCtrlFrame interrupt.\n"); | |
1672 | ||
1673 | /* If RxComplete interrupt, do nothing. */ | |
1674 | if (status & IPG_IS_RX_COMPLETE) | |
1675 | IPG_DEBUG_MSG("RxComplete interrupt.\n"); | |
1676 | ||
1677 | /* If RxEarly interrupt, do nothing. */ | |
1678 | if (status & IPG_IS_RX_EARLY) | |
1679 | IPG_DEBUG_MSG("RxEarly interrupt.\n"); | |
1680 | ||
1681 | out_enable: | |
1682 | /* Re-enable IPG interrupts. */ | |
1683 | ipg_w16(IPG_IE_TX_DMA_COMPLETE | IPG_IE_RX_DMA_COMPLETE | | |
1684 | IPG_IE_HOST_ERROR | IPG_IE_INT_REQUESTED | IPG_IE_TX_COMPLETE | | |
1685 | IPG_IE_LINK_EVENT | IPG_IE_UPDATE_STATS, INT_ENABLE); | |
227bc24d | 1686 | out_unlock: |
1202d6ff | 1687 | spin_unlock(&sp->lock); |
227bc24d | 1688 | |
1202d6ff FR |
1689 | return IRQ_RETVAL(handled); |
1690 | } | |
1691 | ||
1692 | static void ipg_rx_clear(struct ipg_nic_private *sp) | |
1693 | { | |
1694 | unsigned int i; | |
1695 | ||
1696 | for (i = 0; i < IPG_RFDLIST_LENGTH; i++) { | |
9893ba16 | 1697 | if (sp->rx_buff[i]) { |
1202d6ff FR |
1698 | struct ipg_rx *rxfd = sp->rxd + i; |
1699 | ||
9893ba16 PE |
1700 | dev_kfree_skb_irq(sp->rx_buff[i]); |
1701 | sp->rx_buff[i] = NULL; | |
1202d6ff | 1702 | pci_unmap_single(sp->pdev, |
325a8071 | 1703 | le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN, |
1202d6ff FR |
1704 | sp->rx_buf_sz, PCI_DMA_FROMDEVICE); |
1705 | } | |
1706 | } | |
1707 | } | |
1708 | ||
1709 | static void ipg_tx_clear(struct ipg_nic_private *sp) | |
1710 | { | |
1711 | unsigned int i; | |
1712 | ||
1713 | for (i = 0; i < IPG_TFDLIST_LENGTH; i++) { | |
9893ba16 | 1714 | if (sp->tx_buff[i]) { |
1202d6ff FR |
1715 | struct ipg_tx *txfd = sp->txd + i; |
1716 | ||
1717 | pci_unmap_single(sp->pdev, | |
325a8071 | 1718 | le64_to_cpu(txfd->frag_info) & ~IPG_TFI_FRAGLEN, |
9893ba16 | 1719 | sp->tx_buff[i]->len, PCI_DMA_TODEVICE); |
1202d6ff | 1720 | |
9893ba16 | 1721 | dev_kfree_skb_irq(sp->tx_buff[i]); |
1202d6ff | 1722 | |
9893ba16 | 1723 | sp->tx_buff[i] = NULL; |
1202d6ff FR |
1724 | } |
1725 | } | |
1726 | } | |
1727 | ||
1728 | static int ipg_nic_open(struct net_device *dev) | |
1729 | { | |
1730 | struct ipg_nic_private *sp = netdev_priv(dev); | |
1731 | void __iomem *ioaddr = sp->ioaddr; | |
1732 | struct pci_dev *pdev = sp->pdev; | |
1733 | int rc; | |
1734 | ||
1735 | IPG_DEBUG_MSG("_nic_open\n"); | |
1736 | ||
39f20585 | 1737 | sp->rx_buf_sz = sp->rxsupport_size; |
1202d6ff FR |
1738 | |
1739 | /* Check for interrupt line conflicts, and request interrupt | |
1740 | * line for IPG. | |
1741 | * | |
1742 | * IMPORTANT: Disable IPG interrupts prior to registering | |
1743 | * IRQ. | |
1744 | */ | |
1745 | ipg_w16(0x0000, INT_ENABLE); | |
1746 | ||
1747 | /* Register the interrupt line to be used by the IPG within | |
1748 | * the Linux system. | |
1749 | */ | |
90145c9c | 1750 | rc = request_irq(pdev->irq, ipg_interrupt_handler, IRQF_SHARED, |
1202d6ff FR |
1751 | dev->name, dev); |
1752 | if (rc < 0) { | |
1753 | printk(KERN_INFO "%s: Error when requesting interrupt.\n", | |
1754 | dev->name); | |
1755 | goto out; | |
1756 | } | |
1757 | ||
1758 | dev->irq = pdev->irq; | |
1759 | ||
1760 | rc = -ENOMEM; | |
1761 | ||
1762 | sp->rxd = dma_alloc_coherent(&pdev->dev, IPG_RX_RING_BYTES, | |
1763 | &sp->rxd_map, GFP_KERNEL); | |
1764 | if (!sp->rxd) | |
1765 | goto err_free_irq_0; | |
1766 | ||
1767 | sp->txd = dma_alloc_coherent(&pdev->dev, IPG_TX_RING_BYTES, | |
1768 | &sp->txd_map, GFP_KERNEL); | |
1769 | if (!sp->txd) | |
1770 | goto err_free_rx_1; | |
1771 | ||
1772 | rc = init_rfdlist(dev); | |
1773 | if (rc < 0) { | |
1774 | printk(KERN_INFO "%s: Error during configuration.\n", | |
1775 | dev->name); | |
1776 | goto err_free_tx_2; | |
1777 | } | |
1778 | ||
1779 | init_tfdlist(dev); | |
1780 | ||
1781 | rc = ipg_io_config(dev); | |
1782 | if (rc < 0) { | |
1783 | printk(KERN_INFO "%s: Error during configuration.\n", | |
1784 | dev->name); | |
1785 | goto err_release_tfdlist_3; | |
1786 | } | |
1787 | ||
1788 | /* Resolve autonegotiation. */ | |
1789 | if (ipg_config_autoneg(dev) < 0) | |
1790 | printk(KERN_INFO "%s: Auto-negotiation error.\n", dev->name); | |
1791 | ||
1202d6ff | 1792 | /* initialize JUMBO Frame control variable */ |
9893ba16 PE |
1793 | sp->jumbo.found_start = 0; |
1794 | sp->jumbo.current_size = 0; | |
e8399fed | 1795 | sp->jumbo.skb = NULL; |
83042955 | 1796 | |
1202d6ff FR |
1797 | /* Enable transmit and receive operation of the IPG. */ |
1798 | ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_RX_ENABLE | IPG_MC_TX_ENABLE) & | |
1799 | IPG_MC_RSVD_MASK, MAC_CTRL); | |
1800 | ||
1801 | netif_start_queue(dev); | |
1802 | out: | |
1803 | return rc; | |
1804 | ||
1805 | err_release_tfdlist_3: | |
1806 | ipg_tx_clear(sp); | |
1807 | ipg_rx_clear(sp); | |
1808 | err_free_tx_2: | |
1809 | dma_free_coherent(&pdev->dev, IPG_TX_RING_BYTES, sp->txd, sp->txd_map); | |
1810 | err_free_rx_1: | |
1811 | dma_free_coherent(&pdev->dev, IPG_RX_RING_BYTES, sp->rxd, sp->rxd_map); | |
1812 | err_free_irq_0: | |
1813 | free_irq(pdev->irq, dev); | |
1814 | goto out; | |
1815 | } | |
1816 | ||
1817 | static int ipg_nic_stop(struct net_device *dev) | |
1818 | { | |
1819 | struct ipg_nic_private *sp = netdev_priv(dev); | |
1820 | void __iomem *ioaddr = sp->ioaddr; | |
1821 | struct pci_dev *pdev = sp->pdev; | |
1822 | ||
1823 | IPG_DEBUG_MSG("_nic_stop\n"); | |
1824 | ||
1825 | netif_stop_queue(dev); | |
1826 | ||
1202d6ff FR |
1827 | IPG_DUMPTFDLIST(dev); |
1828 | ||
1829 | do { | |
1830 | (void) ipg_r16(INT_STATUS_ACK); | |
1831 | ||
1832 | ipg_reset(dev, IPG_AC_GLOBAL_RESET | IPG_AC_HOST | IPG_AC_DMA); | |
1833 | ||
1834 | synchronize_irq(pdev->irq); | |
1835 | } while (ipg_r16(INT_ENABLE) & IPG_IE_RSVD_MASK); | |
1836 | ||
1837 | ipg_rx_clear(sp); | |
1838 | ||
1839 | ipg_tx_clear(sp); | |
1840 | ||
1841 | pci_free_consistent(pdev, IPG_RX_RING_BYTES, sp->rxd, sp->rxd_map); | |
1842 | pci_free_consistent(pdev, IPG_TX_RING_BYTES, sp->txd, sp->txd_map); | |
1843 | ||
1844 | free_irq(pdev->irq, dev); | |
1845 | ||
1846 | return 0; | |
1847 | } | |
1848 | ||
61357325 SH |
1849 | static netdev_tx_t ipg_nic_hard_start_xmit(struct sk_buff *skb, |
1850 | struct net_device *dev) | |
1202d6ff FR |
1851 | { |
1852 | struct ipg_nic_private *sp = netdev_priv(dev); | |
1853 | void __iomem *ioaddr = sp->ioaddr; | |
1854 | unsigned int entry = sp->tx_current % IPG_TFDLIST_LENGTH; | |
1855 | unsigned long flags; | |
1856 | struct ipg_tx *txfd; | |
1857 | ||
1858 | IPG_DDEBUG_MSG("_nic_hard_start_xmit\n"); | |
1859 | ||
1860 | /* If in 10Mbps mode, stop the transmit queue so | |
1861 | * no more transmit frames are accepted. | |
1862 | */ | |
1863 | if (sp->tenmbpsmode) | |
1864 | netif_stop_queue(dev); | |
1865 | ||
9893ba16 PE |
1866 | if (sp->reset_current_tfd) { |
1867 | sp->reset_current_tfd = 0; | |
1202d6ff FR |
1868 | entry = 0; |
1869 | } | |
1870 | ||
1871 | txfd = sp->txd + entry; | |
1872 | ||
9893ba16 | 1873 | sp->tx_buff[entry] = skb; |
1202d6ff FR |
1874 | |
1875 | /* Clear all TFC fields, except TFDDONE. */ | |
1876 | txfd->tfc = cpu_to_le64(IPG_TFC_TFDDONE); | |
1877 | ||
1878 | /* Specify the TFC field within the TFD. */ | |
1879 | txfd->tfc |= cpu_to_le64(IPG_TFC_WORDALIGNDISABLED | | |
48f5fec5 | 1880 | (IPG_TFC_FRAMEID & sp->tx_current) | |
1202d6ff | 1881 | (IPG_TFC_FRAGCOUNT & (1 << 24))); |
48f5fec5 AV |
1882 | /* |
1883 | * 16--17 (WordAlign) <- 3 (disable), | |
1884 | * 0--15 (FrameId) <- sp->tx_current, | |
1885 | * 24--27 (FragCount) <- 1 | |
1886 | */ | |
1202d6ff FR |
1887 | |
1888 | /* Request TxComplete interrupts at an interval defined | |
1889 | * by the constant IPG_FRAMESBETWEENTXCOMPLETES. | |
1890 | * Request TxComplete interrupt for every frame | |
1891 | * if in 10Mbps mode to accomodate problem with 10Mbps | |
1892 | * processing. | |
1893 | */ | |
1894 | if (sp->tenmbpsmode) | |
1895 | txfd->tfc |= cpu_to_le64(IPG_TFC_TXINDICATE); | |
47cccd7d | 1896 | txfd->tfc |= cpu_to_le64(IPG_TFC_TXDMAINDICATE); |
1202d6ff FR |
1897 | /* Based on compilation option, determine if FCS is to be |
1898 | * appended to transmit frame by IPG. | |
1899 | */ | |
1900 | if (!(IPG_APPEND_FCS_ON_TX)) | |
1901 | txfd->tfc |= cpu_to_le64(IPG_TFC_FCSAPPENDDISABLE); | |
1902 | ||
1903 | /* Based on compilation option, determine if IP, TCP and/or | |
1904 | * UDP checksums are to be added to transmit frame by IPG. | |
1905 | */ | |
1906 | if (IPG_ADD_IPCHECKSUM_ON_TX) | |
1907 | txfd->tfc |= cpu_to_le64(IPG_TFC_IPCHECKSUMENABLE); | |
1908 | ||
1909 | if (IPG_ADD_TCPCHECKSUM_ON_TX) | |
1910 | txfd->tfc |= cpu_to_le64(IPG_TFC_TCPCHECKSUMENABLE); | |
1911 | ||
1912 | if (IPG_ADD_UDPCHECKSUM_ON_TX) | |
1913 | txfd->tfc |= cpu_to_le64(IPG_TFC_UDPCHECKSUMENABLE); | |
1914 | ||
1915 | /* Based on compilation option, determine if VLAN tag info is to be | |
1916 | * inserted into transmit frame by IPG. | |
1917 | */ | |
1918 | if (IPG_INSERT_MANUAL_VLAN_TAG) { | |
1919 | txfd->tfc |= cpu_to_le64(IPG_TFC_VLANTAGINSERT | | |
1920 | ((u64) IPG_MANUAL_VLAN_VID << 32) | | |
1921 | ((u64) IPG_MANUAL_VLAN_CFI << 44) | | |
1922 | ((u64) IPG_MANUAL_VLAN_USERPRIORITY << 45)); | |
1923 | } | |
1924 | ||
1925 | /* The fragment start location within system memory is defined | |
1926 | * by the sk_buff structure's data field. The physical address | |
1927 | * of this location within the system's virtual memory space | |
1928 | * is determined using the IPG_HOST2BUS_MAP function. | |
1929 | */ | |
1930 | txfd->frag_info = cpu_to_le64(pci_map_single(sp->pdev, skb->data, | |
1931 | skb->len, PCI_DMA_TODEVICE)); | |
1932 | ||
1933 | /* The length of the fragment within system memory is defined by | |
1934 | * the sk_buff structure's len field. | |
1935 | */ | |
1936 | txfd->frag_info |= cpu_to_le64(IPG_TFI_FRAGLEN & | |
1937 | ((u64) (skb->len & 0xffff) << 48)); | |
1938 | ||
1939 | /* Clear the TFDDone bit last to indicate the TFD is ready | |
1940 | * for transfer to the IPG. | |
1941 | */ | |
1942 | txfd->tfc &= cpu_to_le64(~IPG_TFC_TFDDONE); | |
1943 | ||
1944 | spin_lock_irqsave(&sp->lock, flags); | |
1945 | ||
1946 | sp->tx_current++; | |
1947 | ||
1948 | mmiowb(); | |
1949 | ||
1950 | ipg_w32(IPG_DC_TX_DMA_POLL_NOW, DMA_CTRL); | |
1951 | ||
1952 | if (sp->tx_current == (sp->tx_dirty + IPG_TFDLIST_LENGTH)) | |
dafdec74 | 1953 | netif_stop_queue(dev); |
1202d6ff FR |
1954 | |
1955 | spin_unlock_irqrestore(&sp->lock, flags); | |
1956 | ||
1957 | return NETDEV_TX_OK; | |
1958 | } | |
1959 | ||
1960 | static void ipg_set_phy_default_param(unsigned char rev, | |
1961 | struct net_device *dev, int phy_address) | |
1962 | { | |
1963 | unsigned short length; | |
1964 | unsigned char revision; | |
1965 | unsigned short *phy_param; | |
1966 | unsigned short address, value; | |
1967 | ||
1968 | phy_param = &DefaultPhyParam[0]; | |
1969 | length = *phy_param & 0x00FF; | |
1970 | revision = (unsigned char)((*phy_param) >> 8); | |
1971 | phy_param++; | |
1972 | while (length != 0) { | |
1973 | if (rev == revision) { | |
1974 | while (length > 1) { | |
1975 | address = *phy_param; | |
1976 | value = *(phy_param + 1); | |
1977 | phy_param += 2; | |
1978 | mdio_write(dev, phy_address, address, value); | |
1979 | length -= 4; | |
1980 | } | |
1981 | break; | |
1982 | } else { | |
1983 | phy_param += length / 2; | |
1984 | length = *phy_param & 0x00FF; | |
1985 | revision = (unsigned char)((*phy_param) >> 8); | |
1986 | phy_param++; | |
1987 | } | |
1988 | } | |
1989 | } | |
1990 | ||
1202d6ff FR |
1991 | static int read_eeprom(struct net_device *dev, int eep_addr) |
1992 | { | |
1993 | void __iomem *ioaddr = ipg_ioaddr(dev); | |
1994 | unsigned int i; | |
1995 | int ret = 0; | |
1996 | u16 value; | |
1997 | ||
1998 | value = IPG_EC_EEPROM_READOPCODE | (eep_addr & 0xff); | |
1999 | ipg_w16(value, EEPROM_CTRL); | |
2000 | ||
2001 | for (i = 0; i < 1000; i++) { | |
2002 | u16 data; | |
2003 | ||
2004 | mdelay(10); | |
2005 | data = ipg_r16(EEPROM_CTRL); | |
2006 | if (!(data & IPG_EC_EEPROM_BUSY)) { | |
2007 | ret = ipg_r16(EEPROM_DATA); | |
2008 | break; | |
2009 | } | |
2010 | } | |
2011 | return ret; | |
2012 | } | |
2013 | ||
2014 | static void ipg_init_mii(struct net_device *dev) | |
2015 | { | |
2016 | struct ipg_nic_private *sp = netdev_priv(dev); | |
2017 | struct mii_if_info *mii_if = &sp->mii_if; | |
2018 | int phyaddr; | |
2019 | ||
2020 | mii_if->dev = dev; | |
2021 | mii_if->mdio_read = mdio_read; | |
2022 | mii_if->mdio_write = mdio_write; | |
2023 | mii_if->phy_id_mask = 0x1f; | |
2024 | mii_if->reg_num_mask = 0x1f; | |
2025 | ||
2026 | mii_if->phy_id = phyaddr = ipg_find_phyaddr(dev); | |
2027 | ||
2028 | if (phyaddr != 0x1f) { | |
2029 | u16 mii_phyctrl, mii_1000cr; | |
2030 | u8 revisionid = 0; | |
2031 | ||
2032 | mii_1000cr = mdio_read(dev, phyaddr, MII_CTRL1000); | |
2033 | mii_1000cr |= ADVERTISE_1000FULL | ADVERTISE_1000HALF | | |
2034 | GMII_PHY_1000BASETCONTROL_PreferMaster; | |
2035 | mdio_write(dev, phyaddr, MII_CTRL1000, mii_1000cr); | |
2036 | ||
2037 | mii_phyctrl = mdio_read(dev, phyaddr, MII_BMCR); | |
2038 | ||
2039 | /* Set default phyparam */ | |
2040 | pci_read_config_byte(sp->pdev, PCI_REVISION_ID, &revisionid); | |
2041 | ipg_set_phy_default_param(revisionid, dev, phyaddr); | |
2042 | ||
2043 | /* Reset PHY */ | |
2044 | mii_phyctrl |= BMCR_RESET | BMCR_ANRESTART; | |
2045 | mdio_write(dev, phyaddr, MII_BMCR, mii_phyctrl); | |
2046 | ||
2047 | } | |
2048 | } | |
2049 | ||
2050 | static int ipg_hw_init(struct net_device *dev) | |
2051 | { | |
2052 | struct ipg_nic_private *sp = netdev_priv(dev); | |
2053 | void __iomem *ioaddr = sp->ioaddr; | |
2054 | unsigned int i; | |
2055 | int rc; | |
2056 | ||
dea4a87c | 2057 | /* Read/Write and Reset EEPROM Value */ |
1202d6ff | 2058 | /* Read LED Mode Configuration from EEPROM */ |
9893ba16 | 2059 | sp->led_mode = read_eeprom(dev, 6); |
1202d6ff FR |
2060 | |
2061 | /* Reset all functions within the IPG. Do not assert | |
2062 | * RST_OUT as not compatible with some PHYs. | |
2063 | */ | |
2064 | rc = ipg_reset(dev, IPG_RESET_MASK); | |
2065 | if (rc < 0) | |
2066 | goto out; | |
2067 | ||
2068 | ipg_init_mii(dev); | |
2069 | ||
2070 | /* Read MAC Address from EEPROM */ | |
2071 | for (i = 0; i < 3; i++) | |
2072 | sp->station_addr[i] = read_eeprom(dev, 16 + i); | |
2073 | ||
2074 | for (i = 0; i < 3; i++) | |
2075 | ipg_w16(sp->station_addr[i], STATION_ADDRESS_0 + 2*i); | |
2076 | ||
2077 | /* Set station address in ethernet_device structure. */ | |
2078 | dev->dev_addr[0] = ipg_r16(STATION_ADDRESS_0) & 0x00ff; | |
2079 | dev->dev_addr[1] = (ipg_r16(STATION_ADDRESS_0) & 0xff00) >> 8; | |
2080 | dev->dev_addr[2] = ipg_r16(STATION_ADDRESS_1) & 0x00ff; | |
2081 | dev->dev_addr[3] = (ipg_r16(STATION_ADDRESS_1) & 0xff00) >> 8; | |
2082 | dev->dev_addr[4] = ipg_r16(STATION_ADDRESS_2) & 0x00ff; | |
2083 | dev->dev_addr[5] = (ipg_r16(STATION_ADDRESS_2) & 0xff00) >> 8; | |
2084 | out: | |
2085 | return rc; | |
2086 | } | |
2087 | ||
2088 | static int ipg_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) | |
2089 | { | |
2090 | struct ipg_nic_private *sp = netdev_priv(dev); | |
2091 | int rc; | |
2092 | ||
2093 | mutex_lock(&sp->mii_mutex); | |
2094 | rc = generic_mii_ioctl(&sp->mii_if, if_mii(ifr), cmd, NULL); | |
2095 | mutex_unlock(&sp->mii_mutex); | |
2096 | ||
2097 | return rc; | |
2098 | } | |
2099 | ||
2100 | static int ipg_nic_change_mtu(struct net_device *dev, int new_mtu) | |
2101 | { | |
da02b231 | 2102 | struct ipg_nic_private *sp = netdev_priv(dev); |
532f4aee | 2103 | int err; |
da02b231 | 2104 | |
1202d6ff FR |
2105 | /* Function to accomodate changes to Maximum Transfer Unit |
2106 | * (or MTU) of IPG NIC. Cannot use default function since | |
2107 | * the default will not allow for MTU > 1500 bytes. | |
2108 | */ | |
2109 | ||
2110 | IPG_DEBUG_MSG("_nic_change_mtu\n"); | |
2111 | ||
532f4aee PE |
2112 | /* |
2113 | * Check that the new MTU value is between 68 (14 byte header, 46 byte | |
2114 | * payload, 4 byte FCS) and 10 KB, which is the largest supported MTU. | |
1202d6ff | 2115 | */ |
532f4aee | 2116 | if (new_mtu < 68 || new_mtu > 10240) |
1202d6ff FR |
2117 | return -EINVAL; |
2118 | ||
532f4aee PE |
2119 | err = ipg_nic_stop(dev); |
2120 | if (err) | |
2121 | return err; | |
2122 | ||
1202d6ff FR |
2123 | dev->mtu = new_mtu; |
2124 | ||
532f4aee PE |
2125 | sp->max_rxframe_size = new_mtu; |
2126 | ||
2127 | sp->rxfrag_size = new_mtu; | |
2128 | if (sp->rxfrag_size > 4088) | |
2129 | sp->rxfrag_size = 4088; | |
2130 | ||
2131 | sp->rxsupport_size = sp->max_rxframe_size; | |
2132 | ||
2133 | if (new_mtu > 0x0600) | |
2134 | sp->is_jumbo = true; | |
2135 | else | |
2136 | sp->is_jumbo = false; | |
2137 | ||
2138 | return ipg_nic_open(dev); | |
1202d6ff FR |
2139 | } |
2140 | ||
2141 | static int ipg_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) | |
2142 | { | |
2143 | struct ipg_nic_private *sp = netdev_priv(dev); | |
2144 | int rc; | |
2145 | ||
2146 | mutex_lock(&sp->mii_mutex); | |
2147 | rc = mii_ethtool_gset(&sp->mii_if, cmd); | |
2148 | mutex_unlock(&sp->mii_mutex); | |
2149 | ||
2150 | return rc; | |
2151 | } | |
2152 | ||
2153 | static int ipg_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) | |
2154 | { | |
2155 | struct ipg_nic_private *sp = netdev_priv(dev); | |
2156 | int rc; | |
2157 | ||
2158 | mutex_lock(&sp->mii_mutex); | |
2159 | rc = mii_ethtool_sset(&sp->mii_if, cmd); | |
2160 | mutex_unlock(&sp->mii_mutex); | |
2161 | ||
2162 | return rc; | |
2163 | } | |
2164 | ||
2165 | static int ipg_nway_reset(struct net_device *dev) | |
2166 | { | |
2167 | struct ipg_nic_private *sp = netdev_priv(dev); | |
2168 | int rc; | |
2169 | ||
2170 | mutex_lock(&sp->mii_mutex); | |
2171 | rc = mii_nway_restart(&sp->mii_if); | |
2172 | mutex_unlock(&sp->mii_mutex); | |
2173 | ||
2174 | return rc; | |
2175 | } | |
2176 | ||
0fc0b732 | 2177 | static const struct ethtool_ops ipg_ethtool_ops = { |
1202d6ff FR |
2178 | .get_settings = ipg_get_settings, |
2179 | .set_settings = ipg_set_settings, | |
2180 | .nway_reset = ipg_nway_reset, | |
2181 | }; | |
2182 | ||
ef312246 | 2183 | static void __devexit ipg_remove(struct pci_dev *pdev) |
1202d6ff FR |
2184 | { |
2185 | struct net_device *dev = pci_get_drvdata(pdev); | |
2186 | struct ipg_nic_private *sp = netdev_priv(dev); | |
2187 | ||
2188 | IPG_DEBUG_MSG("_remove\n"); | |
2189 | ||
2190 | /* Un-register Ethernet device. */ | |
2191 | unregister_netdev(dev); | |
2192 | ||
2193 | pci_iounmap(pdev, sp->ioaddr); | |
2194 | ||
2195 | pci_release_regions(pdev); | |
2196 | ||
2197 | free_netdev(dev); | |
2198 | pci_disable_device(pdev); | |
2199 | pci_set_drvdata(pdev, NULL); | |
2200 | } | |
2201 | ||
04fb5f73 SH |
2202 | static const struct net_device_ops ipg_netdev_ops = { |
2203 | .ndo_open = ipg_nic_open, | |
2204 | .ndo_stop = ipg_nic_stop, | |
2205 | .ndo_start_xmit = ipg_nic_hard_start_xmit, | |
2206 | .ndo_get_stats = ipg_nic_get_stats, | |
2207 | .ndo_set_multicast_list = ipg_nic_set_multicast_list, | |
2208 | .ndo_do_ioctl = ipg_ioctl, | |
2209 | .ndo_tx_timeout = ipg_tx_timeout, | |
2210 | .ndo_change_mtu = ipg_nic_change_mtu, | |
2211 | .ndo_set_mac_address = eth_mac_addr, | |
2212 | .ndo_validate_addr = eth_validate_addr, | |
2213 | }; | |
2214 | ||
1202d6ff FR |
2215 | static int __devinit ipg_probe(struct pci_dev *pdev, |
2216 | const struct pci_device_id *id) | |
2217 | { | |
2218 | unsigned int i = id->driver_data; | |
2219 | struct ipg_nic_private *sp; | |
2220 | struct net_device *dev; | |
2221 | void __iomem *ioaddr; | |
2222 | int rc; | |
2223 | ||
2224 | rc = pci_enable_device(pdev); | |
2225 | if (rc < 0) | |
2226 | goto out; | |
2227 | ||
2228 | printk(KERN_INFO "%s: %s\n", pci_name(pdev), ipg_brand_name[i]); | |
2229 | ||
2230 | pci_set_master(pdev); | |
2231 | ||
50cf156a | 2232 | rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(40)); |
1202d6ff | 2233 | if (rc < 0) { |
284901a9 | 2234 | rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); |
1202d6ff FR |
2235 | if (rc < 0) { |
2236 | printk(KERN_ERR "%s: DMA config failed.\n", | |
2237 | pci_name(pdev)); | |
2238 | goto err_disable_0; | |
2239 | } | |
2240 | } | |
2241 | ||
2242 | /* | |
2243 | * Initialize net device. | |
2244 | */ | |
2245 | dev = alloc_etherdev(sizeof(struct ipg_nic_private)); | |
2246 | if (!dev) { | |
2247 | printk(KERN_ERR "%s: alloc_etherdev failed\n", pci_name(pdev)); | |
2248 | rc = -ENOMEM; | |
2249 | goto err_disable_0; | |
2250 | } | |
2251 | ||
2252 | sp = netdev_priv(dev); | |
2253 | spin_lock_init(&sp->lock); | |
2254 | mutex_init(&sp->mii_mutex); | |
2255 | ||
532f4aee | 2256 | sp->is_jumbo = IPG_IS_JUMBO; |
18a9cdb9 | 2257 | sp->rxfrag_size = IPG_RXFRAG_SIZE; |
39f20585 | 2258 | sp->rxsupport_size = IPG_RXSUPPORT_SIZE; |
da02b231 | 2259 | sp->max_rxframe_size = IPG_MAX_RXFRAME_SIZE; |
024f4d88 | 2260 | |
1202d6ff FR |
2261 | /* Declare IPG NIC functions for Ethernet device methods. |
2262 | */ | |
04fb5f73 | 2263 | dev->netdev_ops = &ipg_netdev_ops; |
1202d6ff FR |
2264 | SET_NETDEV_DEV(dev, &pdev->dev); |
2265 | SET_ETHTOOL_OPS(dev, &ipg_ethtool_ops); | |
2266 | ||
2267 | rc = pci_request_regions(pdev, DRV_NAME); | |
2268 | if (rc) | |
2269 | goto err_free_dev_1; | |
2270 | ||
2271 | ioaddr = pci_iomap(pdev, 1, pci_resource_len(pdev, 1)); | |
2272 | if (!ioaddr) { | |
2273 | printk(KERN_ERR "%s cannot map MMIO\n", pci_name(pdev)); | |
2274 | rc = -EIO; | |
2275 | goto err_release_regions_2; | |
2276 | } | |
2277 | ||
2278 | /* Save the pointer to the PCI device information. */ | |
2279 | sp->ioaddr = ioaddr; | |
2280 | sp->pdev = pdev; | |
2281 | sp->dev = dev; | |
2282 | ||
2283 | INIT_DELAYED_WORK(&sp->task, ipg_reset_after_host_error); | |
2284 | ||
2285 | pci_set_drvdata(pdev, dev); | |
2286 | ||
2287 | rc = ipg_hw_init(dev); | |
2288 | if (rc < 0) | |
2289 | goto err_unmap_3; | |
2290 | ||
2291 | rc = register_netdev(dev); | |
2292 | if (rc < 0) | |
2293 | goto err_unmap_3; | |
2294 | ||
2295 | printk(KERN_INFO "Ethernet device registered as: %s\n", dev->name); | |
2296 | out: | |
2297 | return rc; | |
2298 | ||
2299 | err_unmap_3: | |
2300 | pci_iounmap(pdev, ioaddr); | |
2301 | err_release_regions_2: | |
2302 | pci_release_regions(pdev); | |
2303 | err_free_dev_1: | |
2304 | free_netdev(dev); | |
2305 | err_disable_0: | |
2306 | pci_disable_device(pdev); | |
2307 | goto out; | |
2308 | } | |
2309 | ||
2310 | static struct pci_driver ipg_pci_driver = { | |
2311 | .name = IPG_DRIVER_NAME, | |
2312 | .id_table = ipg_pci_tbl, | |
2313 | .probe = ipg_probe, | |
2314 | .remove = __devexit_p(ipg_remove), | |
2315 | }; | |
2316 | ||
2317 | static int __init ipg_init_module(void) | |
2318 | { | |
2319 | return pci_register_driver(&ipg_pci_driver); | |
2320 | } | |
2321 | ||
2322 | static void __exit ipg_exit_module(void) | |
2323 | { | |
2324 | pci_unregister_driver(&ipg_pci_driver); | |
2325 | } | |
2326 | ||
2327 | module_init(ipg_init_module); | |
2328 | module_exit(ipg_exit_module); |