]>
Commit | Line | Data |
---|---|---|
1202d6ff FR |
1 | /* |
2 | * ipg.c: Device Driver for the IP1000 Gigabit Ethernet Adapter | |
3 | * | |
4 | * Copyright (C) 2003, 2007 IC Plus Corp | |
5 | * | |
6 | * Original Author: | |
7 | * | |
8 | * Craig Rich | |
9 | * Sundance Technology, Inc. | |
10 | * www.sundanceti.com | |
11 | * [email protected] | |
12 | * | |
13 | * Current Maintainer: | |
14 | * | |
15 | * Sorbica Shieh. | |
16 | * http://www.icplus.com.tw | |
17 | * [email protected] | |
18 | * | |
19 | * Jesse Huang | |
20 | * http://www.icplus.com.tw | |
21 | * [email protected] | |
22 | */ | |
23 | #include <linux/crc32.h> | |
24 | #include <linux/ethtool.h> | |
25 | #include <linux/mii.h> | |
26 | #include <linux/mutex.h> | |
27 | ||
1dad939d | 28 | #include <asm/div64.h> |
29 | ||
1202d6ff FR |
30 | #define IPG_RX_RING_BYTES (sizeof(struct ipg_rx) * IPG_RFDLIST_LENGTH) |
31 | #define IPG_TX_RING_BYTES (sizeof(struct ipg_tx) * IPG_TFDLIST_LENGTH) | |
32 | #define IPG_RESET_MASK \ | |
33 | (IPG_AC_GLOBAL_RESET | IPG_AC_RX_RESET | IPG_AC_TX_RESET | \ | |
34 | IPG_AC_DMA | IPG_AC_FIFO | IPG_AC_NETWORK | IPG_AC_HOST | \ | |
35 | IPG_AC_AUTO_INIT) | |
36 | ||
37 | #define ipg_w32(val32,reg) iowrite32((val32), ioaddr + (reg)) | |
38 | #define ipg_w16(val16,reg) iowrite16((val16), ioaddr + (reg)) | |
39 | #define ipg_w8(val8,reg) iowrite8((val8), ioaddr + (reg)) | |
40 | ||
41 | #define ipg_r32(reg) ioread32(ioaddr + (reg)) | |
42 | #define ipg_r16(reg) ioread16(ioaddr + (reg)) | |
43 | #define ipg_r8(reg) ioread8(ioaddr + (reg)) | |
44 | ||
45 | #define JUMBO_FRAME_4k_ONLY | |
46 | enum { | |
47 | netdev_io_size = 128 | |
48 | }; | |
49 | ||
50 | #include "ipg.h" | |
51 | #define DRV_NAME "ipg" | |
52 | ||
53 | MODULE_AUTHOR("IC Plus Corp. 2003"); | |
54 | MODULE_DESCRIPTION("IC Plus IP1000 Gigabit Ethernet Adapter Linux Driver " | |
55 | DrvVer); | |
56 | MODULE_LICENSE("GPL"); | |
57 | ||
96fd74b2 AB |
58 | //variable record -- index by leading revision/length |
59 | //Revision/Length(=N*4), Address1, Data1, Address2, Data2,...,AddressN,DataN | |
60 | static unsigned short DefaultPhyParam[] = { | |
61 | // 11/12/03 IP1000A v1-3 rev=0x40 | |
62 | /*-------------------------------------------------------------------------- | |
63 | (0x4000|(15*4)), 31, 0x0001, 27, 0x01e0, 31, 0x0002, 22, 0x85bd, 24, 0xfff2, | |
64 | 27, 0x0c10, 28, 0x0c10, 29, 0x2c10, 31, 0x0003, 23, 0x92f6, | |
65 | 31, 0x0000, 23, 0x003d, 30, 0x00de, 20, 0x20e7, 9, 0x0700, | |
66 | --------------------------------------------------------------------------*/ | |
67 | // 12/17/03 IP1000A v1-4 rev=0x40 | |
68 | (0x4000 | (07 * 4)), 31, 0x0001, 27, 0x01e0, 31, 0x0002, 27, 0xeb8e, 31, | |
69 | 0x0000, | |
70 | 30, 0x005e, 9, 0x0700, | |
71 | // 01/09/04 IP1000A v1-5 rev=0x41 | |
72 | (0x4100 | (07 * 4)), 31, 0x0001, 27, 0x01e0, 31, 0x0002, 27, 0xeb8e, 31, | |
73 | 0x0000, | |
74 | 30, 0x005e, 9, 0x0700, | |
75 | 0x0000 | |
76 | }; | |
77 | ||
1202d6ff FR |
78 | static const char *ipg_brand_name[] = { |
79 | "IC PLUS IP1000 1000/100/10 based NIC", | |
80 | "Sundance Technology ST2021 based NIC", | |
81 | "Tamarack Microelectronics TC9020/9021 based NIC", | |
82 | "Tamarack Microelectronics TC9020/9021 based NIC", | |
83 | "D-Link NIC", | |
84 | "D-Link NIC IP1000A" | |
85 | }; | |
86 | ||
87 | static struct pci_device_id ipg_pci_tbl[] __devinitdata = { | |
88 | { PCI_VDEVICE(SUNDANCE, 0x1023), 0 }, | |
89 | { PCI_VDEVICE(SUNDANCE, 0x2021), 1 }, | |
90 | { PCI_VDEVICE(SUNDANCE, 0x1021), 2 }, | |
91 | { PCI_VDEVICE(DLINK, 0x9021), 3 }, | |
92 | { PCI_VDEVICE(DLINK, 0x4000), 4 }, | |
93 | { PCI_VDEVICE(DLINK, 0x4020), 5 }, | |
94 | { 0, } | |
95 | }; | |
96 | ||
97 | MODULE_DEVICE_TABLE(pci, ipg_pci_tbl); | |
98 | ||
99 | static inline void __iomem *ipg_ioaddr(struct net_device *dev) | |
100 | { | |
101 | struct ipg_nic_private *sp = netdev_priv(dev); | |
102 | return sp->ioaddr; | |
103 | } | |
104 | ||
105 | #ifdef IPG_DEBUG | |
106 | static void ipg_dump_rfdlist(struct net_device *dev) | |
107 | { | |
108 | struct ipg_nic_private *sp = netdev_priv(dev); | |
109 | void __iomem *ioaddr = sp->ioaddr; | |
110 | unsigned int i; | |
111 | u32 offset; | |
112 | ||
113 | IPG_DEBUG_MSG("_dump_rfdlist\n"); | |
114 | ||
115 | printk(KERN_INFO "rx_current = %2.2x\n", sp->rx_current); | |
116 | printk(KERN_INFO "rx_dirty = %2.2x\n", sp->rx_dirty); | |
117 | printk(KERN_INFO "RFDList start address = %16.16lx\n", | |
118 | (unsigned long) sp->rxd_map); | |
119 | printk(KERN_INFO "RFDListPtr register = %8.8x%8.8x\n", | |
120 | ipg_r32(IPG_RFDLISTPTR1), ipg_r32(IPG_RFDLISTPTR0)); | |
121 | ||
122 | for (i = 0; i < IPG_RFDLIST_LENGTH; i++) { | |
123 | offset = (u32) &sp->rxd[i].next_desc - (u32) sp->rxd; | |
124 | printk(KERN_INFO "%2.2x %4.4x RFDNextPtr = %16.16lx\n", i, | |
125 | offset, (unsigned long) sp->rxd[i].next_desc); | |
126 | offset = (u32) &sp->rxd[i].rfs - (u32) sp->rxd; | |
127 | printk(KERN_INFO "%2.2x %4.4x RFS = %16.16lx\n", i, | |
128 | offset, (unsigned long) sp->rxd[i].rfs); | |
129 | offset = (u32) &sp->rxd[i].frag_info - (u32) sp->rxd; | |
130 | printk(KERN_INFO "%2.2x %4.4x frag_info = %16.16lx\n", i, | |
131 | offset, (unsigned long) sp->rxd[i].frag_info); | |
132 | } | |
133 | } | |
134 | ||
135 | static void ipg_dump_tfdlist(struct net_device *dev) | |
136 | { | |
137 | struct ipg_nic_private *sp = netdev_priv(dev); | |
138 | void __iomem *ioaddr = sp->ioaddr; | |
139 | unsigned int i; | |
140 | u32 offset; | |
141 | ||
142 | IPG_DEBUG_MSG("_dump_tfdlist\n"); | |
143 | ||
144 | printk(KERN_INFO "tx_current = %2.2x\n", sp->tx_current); | |
145 | printk(KERN_INFO "tx_dirty = %2.2x\n", sp->tx_dirty); | |
146 | printk(KERN_INFO "TFDList start address = %16.16lx\n", | |
147 | (unsigned long) sp->txd_map); | |
148 | printk(KERN_INFO "TFDListPtr register = %8.8x%8.8x\n", | |
149 | ipg_r32(IPG_TFDLISTPTR1), ipg_r32(IPG_TFDLISTPTR0)); | |
150 | ||
151 | for (i = 0; i < IPG_TFDLIST_LENGTH; i++) { | |
152 | offset = (u32) &sp->txd[i].next_desc - (u32) sp->txd; | |
153 | printk(KERN_INFO "%2.2x %4.4x TFDNextPtr = %16.16lx\n", i, | |
154 | offset, (unsigned long) sp->txd[i].next_desc); | |
155 | ||
156 | offset = (u32) &sp->txd[i].tfc - (u32) sp->txd; | |
157 | printk(KERN_INFO "%2.2x %4.4x TFC = %16.16lx\n", i, | |
158 | offset, (unsigned long) sp->txd[i].tfc); | |
159 | offset = (u32) &sp->txd[i].frag_info - (u32) sp->txd; | |
160 | printk(KERN_INFO "%2.2x %4.4x frag_info = %16.16lx\n", i, | |
161 | offset, (unsigned long) sp->txd[i].frag_info); | |
162 | } | |
163 | } | |
164 | #endif | |
165 | ||
166 | static void ipg_write_phy_ctl(void __iomem *ioaddr, u8 data) | |
167 | { | |
168 | ipg_w8(IPG_PC_RSVD_MASK & data, PHY_CTRL); | |
169 | ndelay(IPG_PC_PHYCTRLWAIT_NS); | |
170 | } | |
171 | ||
172 | static void ipg_drive_phy_ctl_low_high(void __iomem *ioaddr, u8 data) | |
173 | { | |
174 | ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_LO | data); | |
175 | ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_HI | data); | |
176 | } | |
177 | ||
178 | static void send_three_state(void __iomem *ioaddr, u8 phyctrlpolarity) | |
179 | { | |
180 | phyctrlpolarity |= (IPG_PC_MGMTDATA & 0) | IPG_PC_MGMTDIR; | |
181 | ||
182 | ipg_drive_phy_ctl_low_high(ioaddr, phyctrlpolarity); | |
183 | } | |
184 | ||
185 | static void send_end(void __iomem *ioaddr, u8 phyctrlpolarity) | |
186 | { | |
187 | ipg_w8((IPG_PC_MGMTCLK_LO | (IPG_PC_MGMTDATA & 0) | IPG_PC_MGMTDIR | | |
188 | phyctrlpolarity) & IPG_PC_RSVD_MASK, PHY_CTRL); | |
189 | } | |
190 | ||
191 | static u16 read_phy_bit(void __iomem * ioaddr, u8 phyctrlpolarity) | |
192 | { | |
193 | u16 bit_data; | |
194 | ||
195 | ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_LO | phyctrlpolarity); | |
196 | ||
197 | bit_data = ((ipg_r8(PHY_CTRL) & IPG_PC_MGMTDATA) >> 1) & 1; | |
198 | ||
199 | ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_HI | phyctrlpolarity); | |
200 | ||
201 | return bit_data; | |
202 | } | |
203 | ||
204 | /* | |
205 | * Read a register from the Physical Layer device located | |
206 | * on the IPG NIC, using the IPG PHYCTRL register. | |
207 | */ | |
208 | static int mdio_read(struct net_device * dev, int phy_id, int phy_reg) | |
209 | { | |
210 | void __iomem *ioaddr = ipg_ioaddr(dev); | |
211 | /* | |
212 | * The GMII mangement frame structure for a read is as follows: | |
213 | * | |
214 | * |Preamble|st|op|phyad|regad|ta| data |idle| | |
215 | * |< 32 1s>|01|10|AAAAA|RRRRR|z0|DDDDDDDDDDDDDDDD|z | | |
216 | * | |
217 | * <32 1s> = 32 consecutive logic 1 values | |
218 | * A = bit of Physical Layer device address (MSB first) | |
219 | * R = bit of register address (MSB first) | |
220 | * z = High impedance state | |
221 | * D = bit of read data (MSB first) | |
222 | * | |
223 | * Transmission order is 'Preamble' field first, bits transmitted | |
224 | * left to right (first to last). | |
225 | */ | |
226 | struct { | |
227 | u32 field; | |
228 | unsigned int len; | |
229 | } p[] = { | |
230 | { GMII_PREAMBLE, 32 }, /* Preamble */ | |
231 | { GMII_ST, 2 }, /* ST */ | |
232 | { GMII_READ, 2 }, /* OP */ | |
233 | { phy_id, 5 }, /* PHYAD */ | |
234 | { phy_reg, 5 }, /* REGAD */ | |
235 | { 0x0000, 2 }, /* TA */ | |
236 | { 0x0000, 16 }, /* DATA */ | |
237 | { 0x0000, 1 } /* IDLE */ | |
238 | }; | |
239 | unsigned int i, j; | |
240 | u8 polarity, data; | |
241 | ||
242 | polarity = ipg_r8(PHY_CTRL); | |
243 | polarity &= (IPG_PC_DUPLEX_POLARITY | IPG_PC_LINK_POLARITY); | |
244 | ||
245 | /* Create the Preamble, ST, OP, PHYAD, and REGAD field. */ | |
246 | for (j = 0; j < 5; j++) { | |
247 | for (i = 0; i < p[j].len; i++) { | |
248 | /* For each variable length field, the MSB must be | |
249 | * transmitted first. Rotate through the field bits, | |
250 | * starting with the MSB, and move each bit into the | |
251 | * the 1st (2^1) bit position (this is the bit position | |
252 | * corresponding to the MgmtData bit of the PhyCtrl | |
253 | * register for the IPG). | |
254 | * | |
255 | * Example: ST = 01; | |
256 | * | |
257 | * First write a '0' to bit 1 of the PhyCtrl | |
258 | * register, then write a '1' to bit 1 of the | |
259 | * PhyCtrl register. | |
260 | * | |
261 | * To do this, right shift the MSB of ST by the value: | |
262 | * [field length - 1 - #ST bits already written] | |
263 | * then left shift this result by 1. | |
264 | */ | |
265 | data = (p[j].field >> (p[j].len - 1 - i)) << 1; | |
266 | data &= IPG_PC_MGMTDATA; | |
267 | data |= polarity | IPG_PC_MGMTDIR; | |
268 | ||
269 | ipg_drive_phy_ctl_low_high(ioaddr, data); | |
270 | } | |
271 | } | |
272 | ||
273 | send_three_state(ioaddr, polarity); | |
274 | ||
275 | read_phy_bit(ioaddr, polarity); | |
276 | ||
277 | /* | |
278 | * For a read cycle, the bits for the next two fields (TA and | |
279 | * DATA) are driven by the PHY (the IPG reads these bits). | |
280 | */ | |
281 | for (i = 0; i < p[6].len; i++) { | |
282 | p[6].field |= | |
283 | (read_phy_bit(ioaddr, polarity) << (p[6].len - 1 - i)); | |
284 | } | |
285 | ||
286 | send_three_state(ioaddr, polarity); | |
287 | send_three_state(ioaddr, polarity); | |
288 | send_three_state(ioaddr, polarity); | |
289 | send_end(ioaddr, polarity); | |
290 | ||
291 | /* Return the value of the DATA field. */ | |
292 | return p[6].field; | |
293 | } | |
294 | ||
295 | /* | |
296 | * Write to a register from the Physical Layer device located | |
297 | * on the IPG NIC, using the IPG PHYCTRL register. | |
298 | */ | |
299 | static void mdio_write(struct net_device *dev, int phy_id, int phy_reg, int val) | |
300 | { | |
301 | void __iomem *ioaddr = ipg_ioaddr(dev); | |
302 | /* | |
303 | * The GMII mangement frame structure for a read is as follows: | |
304 | * | |
305 | * |Preamble|st|op|phyad|regad|ta| data |idle| | |
306 | * |< 32 1s>|01|10|AAAAA|RRRRR|z0|DDDDDDDDDDDDDDDD|z | | |
307 | * | |
308 | * <32 1s> = 32 consecutive logic 1 values | |
309 | * A = bit of Physical Layer device address (MSB first) | |
310 | * R = bit of register address (MSB first) | |
311 | * z = High impedance state | |
312 | * D = bit of write data (MSB first) | |
313 | * | |
314 | * Transmission order is 'Preamble' field first, bits transmitted | |
315 | * left to right (first to last). | |
316 | */ | |
317 | struct { | |
318 | u32 field; | |
319 | unsigned int len; | |
320 | } p[] = { | |
321 | { GMII_PREAMBLE, 32 }, /* Preamble */ | |
322 | { GMII_ST, 2 }, /* ST */ | |
323 | { GMII_WRITE, 2 }, /* OP */ | |
324 | { phy_id, 5 }, /* PHYAD */ | |
325 | { phy_reg, 5 }, /* REGAD */ | |
326 | { 0x0002, 2 }, /* TA */ | |
327 | { val & 0xffff, 16 }, /* DATA */ | |
328 | { 0x0000, 1 } /* IDLE */ | |
329 | }; | |
330 | unsigned int i, j; | |
331 | u8 polarity, data; | |
332 | ||
333 | polarity = ipg_r8(PHY_CTRL); | |
334 | polarity &= (IPG_PC_DUPLEX_POLARITY | IPG_PC_LINK_POLARITY); | |
335 | ||
336 | /* Create the Preamble, ST, OP, PHYAD, and REGAD field. */ | |
337 | for (j = 0; j < 7; j++) { | |
338 | for (i = 0; i < p[j].len; i++) { | |
339 | /* For each variable length field, the MSB must be | |
340 | * transmitted first. Rotate through the field bits, | |
341 | * starting with the MSB, and move each bit into the | |
342 | * the 1st (2^1) bit position (this is the bit position | |
343 | * corresponding to the MgmtData bit of the PhyCtrl | |
344 | * register for the IPG). | |
345 | * | |
346 | * Example: ST = 01; | |
347 | * | |
348 | * First write a '0' to bit 1 of the PhyCtrl | |
349 | * register, then write a '1' to bit 1 of the | |
350 | * PhyCtrl register. | |
351 | * | |
352 | * To do this, right shift the MSB of ST by the value: | |
353 | * [field length - 1 - #ST bits already written] | |
354 | * then left shift this result by 1. | |
355 | */ | |
356 | data = (p[j].field >> (p[j].len - 1 - i)) << 1; | |
357 | data &= IPG_PC_MGMTDATA; | |
358 | data |= polarity | IPG_PC_MGMTDIR; | |
359 | ||
360 | ipg_drive_phy_ctl_low_high(ioaddr, data); | |
361 | } | |
362 | } | |
363 | ||
364 | /* The last cycle is a tri-state, so read from the PHY. */ | |
365 | for (j = 7; j < 8; j++) { | |
366 | for (i = 0; i < p[j].len; i++) { | |
367 | ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_LO | polarity); | |
368 | ||
369 | p[j].field |= ((ipg_r8(PHY_CTRL) & | |
370 | IPG_PC_MGMTDATA) >> 1) << (p[j].len - 1 - i); | |
371 | ||
372 | ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_HI | polarity); | |
373 | } | |
374 | } | |
375 | } | |
376 | ||
377 | /* Set LED_Mode JES20040127EEPROM */ | |
378 | static void ipg_set_led_mode(struct net_device *dev) | |
379 | { | |
380 | struct ipg_nic_private *sp = netdev_priv(dev); | |
381 | void __iomem *ioaddr = sp->ioaddr; | |
382 | u32 mode; | |
383 | ||
384 | mode = ipg_r32(ASIC_CTRL); | |
385 | mode &= ~(IPG_AC_LED_MODE_BIT_1 | IPG_AC_LED_MODE | IPG_AC_LED_SPEED); | |
386 | ||
387 | if ((sp->LED_Mode & 0x03) > 1) | |
388 | mode |= IPG_AC_LED_MODE_BIT_1; /* Write Asic Control Bit 29 */ | |
389 | ||
390 | if ((sp->LED_Mode & 0x01) == 1) | |
391 | mode |= IPG_AC_LED_MODE; /* Write Asic Control Bit 14 */ | |
392 | ||
393 | if ((sp->LED_Mode & 0x08) == 8) | |
394 | mode |= IPG_AC_LED_SPEED; /* Write Asic Control Bit 27 */ | |
395 | ||
396 | ipg_w32(mode, ASIC_CTRL); | |
397 | } | |
398 | ||
399 | /* Set PHYSet JES20040127EEPROM */ | |
400 | static void ipg_set_phy_set(struct net_device *dev) | |
401 | { | |
402 | struct ipg_nic_private *sp = netdev_priv(dev); | |
403 | void __iomem *ioaddr = sp->ioaddr; | |
404 | int physet; | |
405 | ||
406 | physet = ipg_r8(PHY_SET); | |
407 | physet &= ~(IPG_PS_MEM_LENB9B | IPG_PS_MEM_LEN9 | IPG_PS_NON_COMPDET); | |
408 | physet |= ((sp->LED_Mode & 0x70) >> 4); | |
409 | ipg_w8(physet, PHY_SET); | |
410 | } | |
411 | ||
412 | static int ipg_reset(struct net_device *dev, u32 resetflags) | |
413 | { | |
414 | /* Assert functional resets via the IPG AsicCtrl | |
415 | * register as specified by the 'resetflags' input | |
416 | * parameter. | |
417 | */ | |
418 | void __iomem *ioaddr = ipg_ioaddr(dev); //JES20040127EEPROM: | |
419 | unsigned int timeout_count = 0; | |
420 | ||
421 | IPG_DEBUG_MSG("_reset\n"); | |
422 | ||
423 | ipg_w32(ipg_r32(ASIC_CTRL) | resetflags, ASIC_CTRL); | |
424 | ||
425 | /* Delay added to account for problem with 10Mbps reset. */ | |
426 | mdelay(IPG_AC_RESETWAIT); | |
427 | ||
428 | while (IPG_AC_RESET_BUSY & ipg_r32(ASIC_CTRL)) { | |
429 | mdelay(IPG_AC_RESETWAIT); | |
430 | if (++timeout_count > IPG_AC_RESET_TIMEOUT) | |
431 | return -ETIME; | |
432 | } | |
433 | /* Set LED Mode in Asic Control JES20040127EEPROM */ | |
434 | ipg_set_led_mode(dev); | |
435 | ||
436 | /* Set PHYSet Register Value JES20040127EEPROM */ | |
437 | ipg_set_phy_set(dev); | |
438 | return 0; | |
439 | } | |
440 | ||
441 | /* Find the GMII PHY address. */ | |
442 | static int ipg_find_phyaddr(struct net_device *dev) | |
443 | { | |
444 | unsigned int phyaddr, i; | |
445 | ||
446 | for (i = 0; i < 32; i++) { | |
447 | u32 status; | |
448 | ||
449 | /* Search for the correct PHY address among 32 possible. */ | |
450 | phyaddr = (IPG_NIC_PHY_ADDRESS + i) % 32; | |
451 | ||
452 | /* 10/22/03 Grace change verify from GMII_PHY_STATUS to | |
453 | GMII_PHY_ID1 | |
454 | */ | |
455 | ||
456 | status = mdio_read(dev, phyaddr, MII_BMSR); | |
457 | ||
458 | if ((status != 0xFFFF) && (status != 0)) | |
459 | return phyaddr; | |
460 | } | |
461 | ||
462 | return 0x1f; | |
463 | } | |
464 | ||
465 | /* | |
466 | * Configure IPG based on result of IEEE 802.3 PHY | |
467 | * auto-negotiation. | |
468 | */ | |
469 | static int ipg_config_autoneg(struct net_device *dev) | |
470 | { | |
471 | struct ipg_nic_private *sp = netdev_priv(dev); | |
472 | void __iomem *ioaddr = sp->ioaddr; | |
473 | unsigned int txflowcontrol; | |
474 | unsigned int rxflowcontrol; | |
475 | unsigned int fullduplex; | |
476 | unsigned int gig; | |
477 | u32 mac_ctrl_val; | |
478 | u32 asicctrl; | |
479 | u8 phyctrl; | |
480 | ||
481 | IPG_DEBUG_MSG("_config_autoneg\n"); | |
482 | ||
483 | asicctrl = ipg_r32(ASIC_CTRL); | |
484 | phyctrl = ipg_r8(PHY_CTRL); | |
485 | mac_ctrl_val = ipg_r32(MAC_CTRL); | |
486 | ||
487 | /* Set flags for use in resolving auto-negotation, assuming | |
488 | * non-1000Mbps, half duplex, no flow control. | |
489 | */ | |
490 | fullduplex = 0; | |
491 | txflowcontrol = 0; | |
492 | rxflowcontrol = 0; | |
493 | gig = 0; | |
494 | ||
495 | /* To accomodate a problem in 10Mbps operation, | |
496 | * set a global flag if PHY running in 10Mbps mode. | |
497 | */ | |
498 | sp->tenmbpsmode = 0; | |
499 | ||
500 | printk(KERN_INFO "%s: Link speed = ", dev->name); | |
501 | ||
502 | /* Determine actual speed of operation. */ | |
503 | switch (phyctrl & IPG_PC_LINK_SPEED) { | |
504 | case IPG_PC_LINK_SPEED_10MBPS: | |
505 | printk("10Mbps.\n"); | |
506 | printk(KERN_INFO "%s: 10Mbps operational mode enabled.\n", | |
507 | dev->name); | |
508 | sp->tenmbpsmode = 1; | |
509 | break; | |
510 | case IPG_PC_LINK_SPEED_100MBPS: | |
511 | printk("100Mbps.\n"); | |
512 | break; | |
513 | case IPG_PC_LINK_SPEED_1000MBPS: | |
514 | printk("1000Mbps.\n"); | |
515 | gig = 1; | |
516 | break; | |
517 | default: | |
518 | printk("undefined!\n"); | |
519 | return 0; | |
520 | } | |
521 | ||
522 | if (phyctrl & IPG_PC_DUPLEX_STATUS) { | |
523 | fullduplex = 1; | |
524 | txflowcontrol = 1; | |
525 | rxflowcontrol = 1; | |
526 | } | |
527 | ||
528 | /* Configure full duplex, and flow control. */ | |
529 | if (fullduplex == 1) { | |
530 | /* Configure IPG for full duplex operation. */ | |
531 | printk(KERN_INFO "%s: setting full duplex, ", dev->name); | |
532 | ||
533 | mac_ctrl_val |= IPG_MC_DUPLEX_SELECT_FD; | |
534 | ||
535 | if (txflowcontrol == 1) { | |
536 | printk("TX flow control"); | |
537 | mac_ctrl_val |= IPG_MC_TX_FLOW_CONTROL_ENABLE; | |
538 | } else { | |
539 | printk("no TX flow control"); | |
540 | mac_ctrl_val &= ~IPG_MC_TX_FLOW_CONTROL_ENABLE; | |
541 | } | |
542 | ||
543 | if (rxflowcontrol == 1) { | |
544 | printk(", RX flow control."); | |
545 | mac_ctrl_val |= IPG_MC_RX_FLOW_CONTROL_ENABLE; | |
546 | } else { | |
547 | printk(", no RX flow control."); | |
548 | mac_ctrl_val &= ~IPG_MC_RX_FLOW_CONTROL_ENABLE; | |
549 | } | |
550 | ||
551 | printk("\n"); | |
552 | } else { | |
553 | /* Configure IPG for half duplex operation. */ | |
554 | printk(KERN_INFO "%s: setting half duplex, " | |
555 | "no TX flow control, no RX flow control.\n", dev->name); | |
556 | ||
557 | mac_ctrl_val &= ~IPG_MC_DUPLEX_SELECT_FD & | |
558 | ~IPG_MC_TX_FLOW_CONTROL_ENABLE & | |
559 | ~IPG_MC_RX_FLOW_CONTROL_ENABLE; | |
560 | } | |
561 | ipg_w32(mac_ctrl_val, MAC_CTRL); | |
562 | return 0; | |
563 | } | |
564 | ||
565 | /* Determine and configure multicast operation and set | |
566 | * receive mode for IPG. | |
567 | */ | |
568 | static void ipg_nic_set_multicast_list(struct net_device *dev) | |
569 | { | |
570 | void __iomem *ioaddr = ipg_ioaddr(dev); | |
571 | struct dev_mc_list *mc_list_ptr; | |
572 | unsigned int hashindex; | |
573 | u32 hashtable[2]; | |
574 | u8 receivemode; | |
575 | ||
576 | IPG_DEBUG_MSG("_nic_set_multicast_list\n"); | |
577 | ||
578 | receivemode = IPG_RM_RECEIVEUNICAST | IPG_RM_RECEIVEBROADCAST; | |
579 | ||
580 | if (dev->flags & IFF_PROMISC) { | |
581 | /* NIC to be configured in promiscuous mode. */ | |
582 | receivemode = IPG_RM_RECEIVEALLFRAMES; | |
583 | } else if ((dev->flags & IFF_ALLMULTI) || | |
584 | (dev->flags & IFF_MULTICAST & | |
585 | (dev->mc_count > IPG_MULTICAST_HASHTABLE_SIZE))) { | |
586 | /* NIC to be configured to receive all multicast | |
587 | * frames. */ | |
588 | receivemode |= IPG_RM_RECEIVEMULTICAST; | |
589 | } else if (dev->flags & IFF_MULTICAST & (dev->mc_count > 0)) { | |
590 | /* NIC to be configured to receive selected | |
591 | * multicast addresses. */ | |
592 | receivemode |= IPG_RM_RECEIVEMULTICASTHASH; | |
593 | } | |
594 | ||
595 | /* Calculate the bits to set for the 64 bit, IPG HASHTABLE. | |
596 | * The IPG applies a cyclic-redundancy-check (the same CRC | |
597 | * used to calculate the frame data FCS) to the destination | |
598 | * address all incoming multicast frames whose destination | |
599 | * address has the multicast bit set. The least significant | |
600 | * 6 bits of the CRC result are used as an addressing index | |
601 | * into the hash table. If the value of the bit addressed by | |
602 | * this index is a 1, the frame is passed to the host system. | |
603 | */ | |
604 | ||
605 | /* Clear hashtable. */ | |
606 | hashtable[0] = 0x00000000; | |
607 | hashtable[1] = 0x00000000; | |
608 | ||
609 | /* Cycle through all multicast addresses to filter. */ | |
610 | for (mc_list_ptr = dev->mc_list; | |
611 | mc_list_ptr != NULL; mc_list_ptr = mc_list_ptr->next) { | |
612 | /* Calculate CRC result for each multicast address. */ | |
613 | hashindex = crc32_le(0xffffffff, mc_list_ptr->dmi_addr, | |
614 | ETH_ALEN); | |
615 | ||
616 | /* Use only the least significant 6 bits. */ | |
617 | hashindex = hashindex & 0x3F; | |
618 | ||
619 | /* Within "hashtable", set bit number "hashindex" | |
620 | * to a logic 1. | |
621 | */ | |
622 | set_bit(hashindex, (void *)hashtable); | |
623 | } | |
624 | ||
625 | /* Write the value of the hashtable, to the 4, 16 bit | |
626 | * HASHTABLE IPG registers. | |
627 | */ | |
628 | ipg_w32(hashtable[0], HASHTABLE_0); | |
629 | ipg_w32(hashtable[1], HASHTABLE_1); | |
630 | ||
631 | ipg_w8(IPG_RM_RSVD_MASK & receivemode, RECEIVE_MODE); | |
632 | ||
633 | IPG_DEBUG_MSG("ReceiveMode = %x\n", ipg_r8(RECEIVE_MODE)); | |
634 | } | |
635 | ||
636 | static int ipg_io_config(struct net_device *dev) | |
637 | { | |
638 | void __iomem *ioaddr = ipg_ioaddr(dev); | |
639 | u32 origmacctrl; | |
640 | u32 restoremacctrl; | |
641 | ||
642 | IPG_DEBUG_MSG("_io_config\n"); | |
643 | ||
644 | origmacctrl = ipg_r32(MAC_CTRL); | |
645 | ||
646 | restoremacctrl = origmacctrl | IPG_MC_STATISTICS_ENABLE; | |
647 | ||
648 | /* Based on compilation option, determine if FCS is to be | |
649 | * stripped on receive frames by IPG. | |
650 | */ | |
651 | if (!IPG_STRIP_FCS_ON_RX) | |
652 | restoremacctrl |= IPG_MC_RCV_FCS; | |
653 | ||
654 | /* Determine if transmitter and/or receiver are | |
655 | * enabled so we may restore MACCTRL correctly. | |
656 | */ | |
657 | if (origmacctrl & IPG_MC_TX_ENABLED) | |
658 | restoremacctrl |= IPG_MC_TX_ENABLE; | |
659 | ||
660 | if (origmacctrl & IPG_MC_RX_ENABLED) | |
661 | restoremacctrl |= IPG_MC_RX_ENABLE; | |
662 | ||
663 | /* Transmitter and receiver must be disabled before setting | |
664 | * IFSSelect. | |
665 | */ | |
666 | ipg_w32((origmacctrl & (IPG_MC_RX_DISABLE | IPG_MC_TX_DISABLE)) & | |
667 | IPG_MC_RSVD_MASK, MAC_CTRL); | |
668 | ||
669 | /* Now that transmitter and receiver are disabled, write | |
670 | * to IFSSelect. | |
671 | */ | |
672 | ipg_w32((origmacctrl & IPG_MC_IFS_96BIT) & IPG_MC_RSVD_MASK, MAC_CTRL); | |
673 | ||
674 | /* Set RECEIVEMODE register. */ | |
675 | ipg_nic_set_multicast_list(dev); | |
676 | ||
677 | ipg_w16(IPG_MAX_RXFRAME_SIZE, MAX_FRAME_SIZE); | |
678 | ||
679 | ipg_w8(IPG_RXDMAPOLLPERIOD_VALUE, RX_DMA_POLL_PERIOD); | |
680 | ipg_w8(IPG_RXDMAURGENTTHRESH_VALUE, RX_DMA_URGENT_THRESH); | |
681 | ipg_w8(IPG_RXDMABURSTTHRESH_VALUE, RX_DMA_BURST_THRESH); | |
682 | ipg_w8(IPG_TXDMAPOLLPERIOD_VALUE, TX_DMA_POLL_PERIOD); | |
683 | ipg_w8(IPG_TXDMAURGENTTHRESH_VALUE, TX_DMA_URGENT_THRESH); | |
684 | ipg_w8(IPG_TXDMABURSTTHRESH_VALUE, TX_DMA_BURST_THRESH); | |
685 | ipg_w16((IPG_IE_HOST_ERROR | IPG_IE_TX_DMA_COMPLETE | | |
686 | IPG_IE_TX_COMPLETE | IPG_IE_INT_REQUESTED | | |
687 | IPG_IE_UPDATE_STATS | IPG_IE_LINK_EVENT | | |
688 | IPG_IE_RX_DMA_COMPLETE | IPG_IE_RX_DMA_PRIORITY), INT_ENABLE); | |
689 | ipg_w16(IPG_FLOWONTHRESH_VALUE, FLOW_ON_THRESH); | |
690 | ipg_w16(IPG_FLOWOFFTHRESH_VALUE, FLOW_OFF_THRESH); | |
691 | ||
692 | /* IPG multi-frag frame bug workaround. | |
693 | * Per silicon revision B3 eratta. | |
694 | */ | |
695 | ipg_w16(ipg_r16(DEBUG_CTRL) | 0x0200, DEBUG_CTRL); | |
696 | ||
697 | /* IPG TX poll now bug workaround. | |
698 | * Per silicon revision B3 eratta. | |
699 | */ | |
700 | ipg_w16(ipg_r16(DEBUG_CTRL) | 0x0010, DEBUG_CTRL); | |
701 | ||
702 | /* IPG RX poll now bug workaround. | |
703 | * Per silicon revision B3 eratta. | |
704 | */ | |
705 | ipg_w16(ipg_r16(DEBUG_CTRL) | 0x0020, DEBUG_CTRL); | |
706 | ||
707 | /* Now restore MACCTRL to original setting. */ | |
708 | ipg_w32(IPG_MC_RSVD_MASK & restoremacctrl, MAC_CTRL); | |
709 | ||
710 | /* Disable unused RMON statistics. */ | |
711 | ipg_w32(IPG_RZ_ALL, RMON_STATISTICS_MASK); | |
712 | ||
713 | /* Disable unused MIB statistics. */ | |
714 | ipg_w32(IPG_SM_MACCONTROLFRAMESXMTD | IPG_SM_MACCONTROLFRAMESRCVD | | |
715 | IPG_SM_BCSTOCTETXMTOK_BCSTFRAMESXMTDOK | IPG_SM_TXJUMBOFRAMES | | |
716 | IPG_SM_MCSTOCTETXMTOK_MCSTFRAMESXMTDOK | IPG_SM_RXJUMBOFRAMES | | |
717 | IPG_SM_BCSTOCTETRCVDOK_BCSTFRAMESRCVDOK | | |
718 | IPG_SM_UDPCHECKSUMERRORS | IPG_SM_TCPCHECKSUMERRORS | | |
719 | IPG_SM_IPCHECKSUMERRORS, STATISTICS_MASK); | |
720 | ||
721 | return 0; | |
722 | } | |
723 | ||
724 | /* | |
725 | * Create a receive buffer within system memory and update | |
726 | * NIC private structure appropriately. | |
727 | */ | |
728 | static int ipg_get_rxbuff(struct net_device *dev, int entry) | |
729 | { | |
730 | struct ipg_nic_private *sp = netdev_priv(dev); | |
731 | struct ipg_rx *rxfd = sp->rxd + entry; | |
732 | struct sk_buff *skb; | |
733 | u64 rxfragsize; | |
734 | ||
735 | IPG_DEBUG_MSG("_get_rxbuff\n"); | |
736 | ||
737 | skb = netdev_alloc_skb(dev, IPG_RXSUPPORT_SIZE + NET_IP_ALIGN); | |
738 | if (!skb) { | |
739 | sp->RxBuff[entry] = NULL; | |
740 | return -ENOMEM; | |
741 | } | |
742 | ||
743 | /* Adjust the data start location within the buffer to | |
744 | * align IP address field to a 16 byte boundary. | |
745 | */ | |
746 | skb_reserve(skb, NET_IP_ALIGN); | |
747 | ||
748 | /* Associate the receive buffer with the IPG NIC. */ | |
749 | skb->dev = dev; | |
750 | ||
751 | /* Save the address of the sk_buff structure. */ | |
752 | sp->RxBuff[entry] = skb; | |
753 | ||
754 | rxfd->frag_info = cpu_to_le64(pci_map_single(sp->pdev, skb->data, | |
755 | sp->rx_buf_sz, PCI_DMA_FROMDEVICE)); | |
756 | ||
757 | /* Set the RFD fragment length. */ | |
758 | rxfragsize = IPG_RXFRAG_SIZE; | |
759 | rxfd->frag_info |= cpu_to_le64((rxfragsize << 48) & IPG_RFI_FRAGLEN); | |
760 | ||
761 | return 0; | |
762 | } | |
763 | ||
764 | static int init_rfdlist(struct net_device *dev) | |
765 | { | |
766 | struct ipg_nic_private *sp = netdev_priv(dev); | |
767 | void __iomem *ioaddr = sp->ioaddr; | |
768 | unsigned int i; | |
769 | ||
770 | IPG_DEBUG_MSG("_init_rfdlist\n"); | |
771 | ||
772 | for (i = 0; i < IPG_RFDLIST_LENGTH; i++) { | |
773 | struct ipg_rx *rxfd = sp->rxd + i; | |
774 | ||
775 | if (sp->RxBuff[i]) { | |
776 | pci_unmap_single(sp->pdev, | |
325a8071 | 777 | le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN, |
1202d6ff FR |
778 | sp->rx_buf_sz, PCI_DMA_FROMDEVICE); |
779 | IPG_DEV_KFREE_SKB(sp->RxBuff[i]); | |
780 | sp->RxBuff[i] = NULL; | |
781 | } | |
782 | ||
783 | /* Clear out the RFS field. */ | |
784 | rxfd->rfs = 0x0000000000000000; | |
785 | ||
786 | if (ipg_get_rxbuff(dev, i) < 0) { | |
787 | /* | |
788 | * A receive buffer was not ready, break the | |
789 | * RFD list here. | |
790 | */ | |
791 | IPG_DEBUG_MSG("Cannot allocate Rx buffer.\n"); | |
792 | ||
793 | /* Just in case we cannot allocate a single RFD. | |
794 | * Should not occur. | |
795 | */ | |
796 | if (i == 0) { | |
797 | printk(KERN_ERR "%s: No memory available" | |
798 | " for RFD list.\n", dev->name); | |
799 | return -ENOMEM; | |
800 | } | |
801 | } | |
802 | ||
803 | rxfd->next_desc = cpu_to_le64(sp->rxd_map + | |
804 | sizeof(struct ipg_rx)*(i + 1)); | |
805 | } | |
806 | sp->rxd[i - 1].next_desc = cpu_to_le64(sp->rxd_map); | |
807 | ||
808 | sp->rx_current = 0; | |
809 | sp->rx_dirty = 0; | |
810 | ||
811 | /* Write the location of the RFDList to the IPG. */ | |
812 | ipg_w32((u32) sp->rxd_map, RFD_LIST_PTR_0); | |
813 | ipg_w32(0x00000000, RFD_LIST_PTR_1); | |
814 | ||
815 | return 0; | |
816 | } | |
817 | ||
818 | static void init_tfdlist(struct net_device *dev) | |
819 | { | |
820 | struct ipg_nic_private *sp = netdev_priv(dev); | |
821 | void __iomem *ioaddr = sp->ioaddr; | |
822 | unsigned int i; | |
823 | ||
824 | IPG_DEBUG_MSG("_init_tfdlist\n"); | |
825 | ||
826 | for (i = 0; i < IPG_TFDLIST_LENGTH; i++) { | |
827 | struct ipg_tx *txfd = sp->txd + i; | |
828 | ||
829 | txfd->tfc = cpu_to_le64(IPG_TFC_TFDDONE); | |
830 | ||
831 | if (sp->TxBuff[i]) { | |
832 | IPG_DEV_KFREE_SKB(sp->TxBuff[i]); | |
833 | sp->TxBuff[i] = NULL; | |
834 | } | |
835 | ||
836 | txfd->next_desc = cpu_to_le64(sp->txd_map + | |
837 | sizeof(struct ipg_tx)*(i + 1)); | |
838 | } | |
839 | sp->txd[i - 1].next_desc = cpu_to_le64(sp->txd_map); | |
840 | ||
841 | sp->tx_current = 0; | |
842 | sp->tx_dirty = 0; | |
843 | ||
844 | /* Write the location of the TFDList to the IPG. */ | |
845 | IPG_DDEBUG_MSG("Starting TFDListPtr = %8.8x\n", | |
846 | (u32) sp->txd_map); | |
847 | ipg_w32((u32) sp->txd_map, TFD_LIST_PTR_0); | |
848 | ipg_w32(0x00000000, TFD_LIST_PTR_1); | |
849 | ||
850 | sp->ResetCurrentTFD = 1; | |
851 | } | |
852 | ||
853 | /* | |
854 | * Free all transmit buffers which have already been transfered | |
855 | * via DMA to the IPG. | |
856 | */ | |
857 | static void ipg_nic_txfree(struct net_device *dev) | |
858 | { | |
859 | struct ipg_nic_private *sp = netdev_priv(dev); | |
860 | void __iomem *ioaddr = sp->ioaddr; | |
1dad939d | 861 | unsigned int curr; |
862 | u64 txd_map; | |
1202d6ff FR |
863 | unsigned int released, pending; |
864 | ||
1dad939d | 865 | txd_map = (u64)sp->txd_map; |
866 | curr = ipg_r32(TFD_LIST_PTR_0) - | |
867 | do_div(txd_map, sizeof(struct ipg_tx)) - 1; | |
868 | ||
1202d6ff FR |
869 | IPG_DEBUG_MSG("_nic_txfree\n"); |
870 | ||
871 | pending = sp->tx_current - sp->tx_dirty; | |
872 | ||
873 | for (released = 0; released < pending; released++) { | |
874 | unsigned int dirty = sp->tx_dirty % IPG_TFDLIST_LENGTH; | |
875 | struct sk_buff *skb = sp->TxBuff[dirty]; | |
876 | struct ipg_tx *txfd = sp->txd + dirty; | |
877 | ||
878 | IPG_DEBUG_MSG("TFC = %16.16lx\n", (unsigned long) txfd->tfc); | |
879 | ||
880 | /* Look at each TFD's TFC field beginning | |
881 | * at the last freed TFD up to the current TFD. | |
882 | * If the TFDDone bit is set, free the associated | |
883 | * buffer. | |
884 | */ | |
885 | if (dirty == curr) | |
886 | break; | |
887 | ||
888 | /* Setup TFDDONE for compatible issue. */ | |
889 | txfd->tfc |= cpu_to_le64(IPG_TFC_TFDDONE); | |
890 | ||
891 | /* Free the transmit buffer. */ | |
892 | if (skb) { | |
893 | pci_unmap_single(sp->pdev, | |
325a8071 | 894 | le64_to_cpu(txfd->frag_info) & ~IPG_TFI_FRAGLEN, |
1202d6ff FR |
895 | skb->len, PCI_DMA_TODEVICE); |
896 | ||
897 | IPG_DEV_KFREE_SKB(skb); | |
898 | ||
899 | sp->TxBuff[dirty] = NULL; | |
900 | } | |
901 | } | |
902 | ||
903 | sp->tx_dirty += released; | |
904 | ||
905 | if (netif_queue_stopped(dev) && | |
906 | (sp->tx_current != (sp->tx_dirty + IPG_TFDLIST_LENGTH))) { | |
907 | netif_wake_queue(dev); | |
908 | } | |
909 | } | |
910 | ||
911 | static void ipg_tx_timeout(struct net_device *dev) | |
912 | { | |
913 | struct ipg_nic_private *sp = netdev_priv(dev); | |
914 | void __iomem *ioaddr = sp->ioaddr; | |
915 | ||
916 | ipg_reset(dev, IPG_AC_TX_RESET | IPG_AC_DMA | IPG_AC_NETWORK | | |
917 | IPG_AC_FIFO); | |
918 | ||
919 | spin_lock_irq(&sp->lock); | |
920 | ||
921 | /* Re-configure after DMA reset. */ | |
922 | if (ipg_io_config(dev) < 0) { | |
923 | printk(KERN_INFO "%s: Error during re-configuration.\n", | |
924 | dev->name); | |
925 | } | |
926 | ||
927 | init_tfdlist(dev); | |
928 | ||
929 | spin_unlock_irq(&sp->lock); | |
930 | ||
931 | ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) & IPG_MC_RSVD_MASK, | |
932 | MAC_CTRL); | |
933 | } | |
934 | ||
935 | /* | |
936 | * For TxComplete interrupts, free all transmit | |
937 | * buffers which have already been transfered via DMA | |
938 | * to the IPG. | |
939 | */ | |
940 | static void ipg_nic_txcleanup(struct net_device *dev) | |
941 | { | |
942 | struct ipg_nic_private *sp = netdev_priv(dev); | |
943 | void __iomem *ioaddr = sp->ioaddr; | |
944 | unsigned int i; | |
945 | ||
946 | IPG_DEBUG_MSG("_nic_txcleanup\n"); | |
947 | ||
948 | for (i = 0; i < IPG_TFDLIST_LENGTH; i++) { | |
949 | /* Reading the TXSTATUS register clears the | |
950 | * TX_COMPLETE interrupt. | |
951 | */ | |
952 | u32 txstatusdword = ipg_r32(TX_STATUS); | |
953 | ||
954 | IPG_DEBUG_MSG("TxStatus = %8.8x\n", txstatusdword); | |
955 | ||
956 | /* Check for Transmit errors. Error bits only valid if | |
957 | * TX_COMPLETE bit in the TXSTATUS register is a 1. | |
958 | */ | |
959 | if (!(txstatusdword & IPG_TS_TX_COMPLETE)) | |
960 | break; | |
961 | ||
962 | /* If in 10Mbps mode, indicate transmit is ready. */ | |
963 | if (sp->tenmbpsmode) { | |
964 | netif_wake_queue(dev); | |
965 | } | |
966 | ||
967 | /* Transmit error, increment stat counters. */ | |
968 | if (txstatusdword & IPG_TS_TX_ERROR) { | |
969 | IPG_DEBUG_MSG("Transmit error.\n"); | |
970 | sp->stats.tx_errors++; | |
971 | } | |
972 | ||
973 | /* Late collision, re-enable transmitter. */ | |
974 | if (txstatusdword & IPG_TS_LATE_COLLISION) { | |
975 | IPG_DEBUG_MSG("Late collision on transmit.\n"); | |
976 | ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) & | |
977 | IPG_MC_RSVD_MASK, MAC_CTRL); | |
978 | } | |
979 | ||
980 | /* Maximum collisions, re-enable transmitter. */ | |
981 | if (txstatusdword & IPG_TS_TX_MAX_COLL) { | |
982 | IPG_DEBUG_MSG("Maximum collisions on transmit.\n"); | |
983 | ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) & | |
984 | IPG_MC_RSVD_MASK, MAC_CTRL); | |
985 | } | |
986 | ||
987 | /* Transmit underrun, reset and re-enable | |
988 | * transmitter. | |
989 | */ | |
990 | if (txstatusdword & IPG_TS_TX_UNDERRUN) { | |
991 | IPG_DEBUG_MSG("Transmitter underrun.\n"); | |
992 | sp->stats.tx_fifo_errors++; | |
993 | ipg_reset(dev, IPG_AC_TX_RESET | IPG_AC_DMA | | |
994 | IPG_AC_NETWORK | IPG_AC_FIFO); | |
995 | ||
996 | /* Re-configure after DMA reset. */ | |
997 | if (ipg_io_config(dev) < 0) { | |
998 | printk(KERN_INFO | |
999 | "%s: Error during re-configuration.\n", | |
1000 | dev->name); | |
1001 | } | |
1002 | init_tfdlist(dev); | |
1003 | ||
1004 | ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) & | |
1005 | IPG_MC_RSVD_MASK, MAC_CTRL); | |
1006 | } | |
1007 | } | |
1008 | ||
1009 | ipg_nic_txfree(dev); | |
1010 | } | |
1011 | ||
1012 | /* Provides statistical information about the IPG NIC. */ | |
96fd74b2 | 1013 | static struct net_device_stats *ipg_nic_get_stats(struct net_device *dev) |
1202d6ff FR |
1014 | { |
1015 | struct ipg_nic_private *sp = netdev_priv(dev); | |
1016 | void __iomem *ioaddr = sp->ioaddr; | |
1017 | u16 temp1; | |
1018 | u16 temp2; | |
1019 | ||
1020 | IPG_DEBUG_MSG("_nic_get_stats\n"); | |
1021 | ||
1022 | /* Check to see if the NIC has been initialized via nic_open, | |
1023 | * before trying to read statistic registers. | |
1024 | */ | |
1025 | if (!test_bit(__LINK_STATE_START, &dev->state)) | |
1026 | return &sp->stats; | |
1027 | ||
1028 | sp->stats.rx_packets += ipg_r32(IPG_FRAMESRCVDOK); | |
1029 | sp->stats.tx_packets += ipg_r32(IPG_FRAMESXMTDOK); | |
1030 | sp->stats.rx_bytes += ipg_r32(IPG_OCTETRCVOK); | |
1031 | sp->stats.tx_bytes += ipg_r32(IPG_OCTETXMTOK); | |
1032 | temp1 = ipg_r16(IPG_FRAMESLOSTRXERRORS); | |
1033 | sp->stats.rx_errors += temp1; | |
1034 | sp->stats.rx_missed_errors += temp1; | |
1035 | temp1 = ipg_r32(IPG_SINGLECOLFRAMES) + ipg_r32(IPG_MULTICOLFRAMES) + | |
1036 | ipg_r32(IPG_LATECOLLISIONS); | |
1037 | temp2 = ipg_r16(IPG_CARRIERSENSEERRORS); | |
1038 | sp->stats.collisions += temp1; | |
1039 | sp->stats.tx_dropped += ipg_r16(IPG_FRAMESABORTXSCOLLS); | |
1040 | sp->stats.tx_errors += ipg_r16(IPG_FRAMESWEXDEFERRAL) + | |
1041 | ipg_r32(IPG_FRAMESWDEFERREDXMT) + temp1 + temp2; | |
1042 | sp->stats.multicast += ipg_r32(IPG_MCSTOCTETRCVDOK); | |
1043 | ||
1044 | /* detailed tx_errors */ | |
1045 | sp->stats.tx_carrier_errors += temp2; | |
1046 | ||
1047 | /* detailed rx_errors */ | |
1048 | sp->stats.rx_length_errors += ipg_r16(IPG_INRANGELENGTHERRORS) + | |
1049 | ipg_r16(IPG_FRAMETOOLONGERRRORS); | |
1050 | sp->stats.rx_crc_errors += ipg_r16(IPG_FRAMECHECKSEQERRORS); | |
1051 | ||
1052 | /* Unutilized IPG statistic registers. */ | |
1053 | ipg_r32(IPG_MCSTFRAMESRCVDOK); | |
1054 | ||
1055 | return &sp->stats; | |
1056 | } | |
1057 | ||
1058 | /* Restore used receive buffers. */ | |
1059 | static int ipg_nic_rxrestore(struct net_device *dev) | |
1060 | { | |
1061 | struct ipg_nic_private *sp = netdev_priv(dev); | |
1062 | const unsigned int curr = sp->rx_current; | |
1063 | unsigned int dirty = sp->rx_dirty; | |
1064 | ||
1065 | IPG_DEBUG_MSG("_nic_rxrestore\n"); | |
1066 | ||
1067 | for (dirty = sp->rx_dirty; curr - dirty > 0; dirty++) { | |
1068 | unsigned int entry = dirty % IPG_RFDLIST_LENGTH; | |
1069 | ||
1070 | /* rx_copybreak may poke hole here and there. */ | |
1071 | if (sp->RxBuff[entry]) | |
1072 | continue; | |
1073 | ||
1074 | /* Generate a new receive buffer to replace the | |
1075 | * current buffer (which will be released by the | |
1076 | * Linux system). | |
1077 | */ | |
1078 | if (ipg_get_rxbuff(dev, entry) < 0) { | |
1079 | IPG_DEBUG_MSG("Cannot allocate new Rx buffer.\n"); | |
1080 | ||
1081 | break; | |
1082 | } | |
1083 | ||
1084 | /* Reset the RFS field. */ | |
1085 | sp->rxd[entry].rfs = 0x0000000000000000; | |
1086 | } | |
1087 | sp->rx_dirty = dirty; | |
1088 | ||
1089 | return 0; | |
1090 | } | |
1091 | ||
1092 | #ifdef JUMBO_FRAME | |
1093 | ||
1094 | /* use jumboindex and jumbosize to control jumbo frame status | |
1095 | initial status is jumboindex=-1 and jumbosize=0 | |
1096 | 1. jumboindex = -1 and jumbosize=0 : previous jumbo frame has been done. | |
1097 | 2. jumboindex != -1 and jumbosize != 0 : jumbo frame is not over size and receiving | |
1098 | 3. jumboindex = -1 and jumbosize != 0 : jumbo frame is over size, already dump | |
1099 | previous receiving and need to continue dumping the current one | |
1100 | */ | |
1101 | enum { | |
1102 | NormalPacket, | |
1103 | ErrorPacket | |
1104 | }; | |
1105 | ||
1106 | enum { | |
1107 | Frame_NoStart_NoEnd = 0, | |
1108 | Frame_WithStart = 1, | |
1109 | Frame_WithEnd = 10, | |
1110 | Frame_WithStart_WithEnd = 11 | |
1111 | }; | |
1112 | ||
1113 | inline void ipg_nic_rx_free_skb(struct net_device *dev) | |
1114 | { | |
1115 | struct ipg_nic_private *sp = netdev_priv(dev); | |
1116 | unsigned int entry = sp->rx_current % IPG_RFDLIST_LENGTH; | |
1117 | ||
1118 | if (sp->RxBuff[entry]) { | |
1119 | struct ipg_rx *rxfd = sp->rxd + entry; | |
1120 | ||
1121 | pci_unmap_single(sp->pdev, | |
1122 | le64_to_cpu(rxfd->frag_info & ~IPG_RFI_FRAGLEN), | |
1123 | sp->rx_buf_sz, PCI_DMA_FROMDEVICE); | |
1124 | IPG_DEV_KFREE_SKB(sp->RxBuff[entry]); | |
1125 | sp->RxBuff[entry] = NULL; | |
1126 | } | |
1127 | } | |
1128 | ||
1129 | inline int ipg_nic_rx_check_frame_type(struct net_device *dev) | |
1130 | { | |
1131 | struct ipg_nic_private *sp = netdev_priv(dev); | |
1132 | struct ipg_rx *rxfd = sp->rxd + (sp->rx_current % IPG_RFDLIST_LENGTH); | |
1133 | int type = Frame_NoStart_NoEnd; | |
1134 | ||
1135 | if (le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMESTART) | |
1136 | type += Frame_WithStart; | |
1137 | if (le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMEEND) | |
1138 | type += Frame_WithEnd; | |
1139 | return type; | |
1140 | } | |
1141 | ||
1142 | inline int ipg_nic_rx_check_error(struct net_device *dev) | |
1143 | { | |
1144 | struct ipg_nic_private *sp = netdev_priv(dev); | |
1145 | unsigned int entry = sp->rx_current % IPG_RFDLIST_LENGTH; | |
1146 | struct ipg_rx *rxfd = sp->rxd + entry; | |
1147 | ||
1148 | if (IPG_DROP_ON_RX_ETH_ERRORS && (le64_to_cpu(rxfd->rfs) & | |
1149 | (IPG_RFS_RXFIFOOVERRUN | IPG_RFS_RXRUNTFRAME | | |
1150 | IPG_RFS_RXALIGNMENTERROR | IPG_RFS_RXFCSERROR | | |
1151 | IPG_RFS_RXOVERSIZEDFRAME | IPG_RFS_RXLENGTHERROR))) { | |
1152 | IPG_DEBUG_MSG("Rx error, RFS = %16.16lx\n", | |
1153 | (unsigned long) rxfd->rfs); | |
1154 | ||
1155 | /* Increment general receive error statistic. */ | |
1156 | sp->stats.rx_errors++; | |
1157 | ||
1158 | /* Increment detailed receive error statistics. */ | |
1159 | if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFIFOOVERRUN) { | |
1160 | IPG_DEBUG_MSG("RX FIFO overrun occured.\n"); | |
1161 | ||
1162 | sp->stats.rx_fifo_errors++; | |
1163 | } | |
1164 | ||
1165 | if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXRUNTFRAME) { | |
1166 | IPG_DEBUG_MSG("RX runt occured.\n"); | |
1167 | sp->stats.rx_length_errors++; | |
1168 | } | |
1169 | ||
1170 | /* Do nothing for IPG_RFS_RXOVERSIZEDFRAME, | |
1171 | * error count handled by a IPG statistic register. | |
1172 | */ | |
1173 | ||
1174 | if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXALIGNMENTERROR) { | |
1175 | IPG_DEBUG_MSG("RX alignment error occured.\n"); | |
1176 | sp->stats.rx_frame_errors++; | |
1177 | } | |
1178 | ||
1179 | /* Do nothing for IPG_RFS_RXFCSERROR, error count | |
1180 | * handled by a IPG statistic register. | |
1181 | */ | |
1182 | ||
1183 | /* Free the memory associated with the RX | |
1184 | * buffer since it is erroneous and we will | |
1185 | * not pass it to higher layer processes. | |
1186 | */ | |
1187 | if (sp->RxBuff[entry]) { | |
1188 | pci_unmap_single(sp->pdev, | |
1189 | le64_to_cpu(rxfd->frag_info & ~IPG_RFI_FRAGLEN), | |
1190 | sp->rx_buf_sz, PCI_DMA_FROMDEVICE); | |
1191 | ||
1192 | IPG_DEV_KFREE_SKB(sp->RxBuff[entry]); | |
1193 | sp->RxBuff[entry] = NULL; | |
1194 | } | |
1195 | return ErrorPacket; | |
1196 | } | |
1197 | return NormalPacket; | |
1198 | } | |
1199 | ||
1200 | static void ipg_nic_rx_with_start_and_end(struct net_device *dev, | |
1201 | struct ipg_nic_private *sp, | |
1202 | struct ipg_rx *rxfd, unsigned entry) | |
1203 | { | |
1204 | struct SJumbo *jumbo = &sp->Jumbo; | |
1205 | struct sk_buff *skb; | |
1206 | int framelen; | |
1207 | ||
1208 | if (jumbo->FoundStart) { | |
1209 | IPG_DEV_KFREE_SKB(jumbo->skb); | |
1210 | jumbo->FoundStart = 0; | |
1211 | jumbo->CurrentSize = 0; | |
1212 | jumbo->skb = NULL; | |
1213 | } | |
1214 | ||
1215 | // 1: found error, 0 no error | |
1216 | if (ipg_nic_rx_check_error(dev) != NormalPacket) | |
1217 | return; | |
1218 | ||
1219 | skb = sp->RxBuff[entry]; | |
1220 | if (!skb) | |
1221 | return; | |
1222 | ||
1223 | // accept this frame and send to upper layer | |
1224 | framelen = le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFRAMELEN; | |
1225 | if (framelen > IPG_RXFRAG_SIZE) | |
1226 | framelen = IPG_RXFRAG_SIZE; | |
1227 | ||
1228 | skb_put(skb, framelen); | |
1229 | skb->protocol = eth_type_trans(skb, dev); | |
1230 | skb->ip_summed = CHECKSUM_NONE; | |
1231 | netif_rx(skb); | |
1232 | dev->last_rx = jiffies; | |
1233 | sp->RxBuff[entry] = NULL; | |
1234 | } | |
1235 | ||
1236 | static void ipg_nic_rx_with_start(struct net_device *dev, | |
1237 | struct ipg_nic_private *sp, | |
1238 | struct ipg_rx *rxfd, unsigned entry) | |
1239 | { | |
1240 | struct SJumbo *jumbo = &sp->Jumbo; | |
1241 | struct pci_dev *pdev = sp->pdev; | |
1242 | struct sk_buff *skb; | |
1243 | ||
1244 | // 1: found error, 0 no error | |
1245 | if (ipg_nic_rx_check_error(dev) != NormalPacket) | |
1246 | return; | |
1247 | ||
1248 | // accept this frame and send to upper layer | |
1249 | skb = sp->RxBuff[entry]; | |
1250 | if (!skb) | |
1251 | return; | |
1252 | ||
1253 | if (jumbo->FoundStart) | |
1254 | IPG_DEV_KFREE_SKB(jumbo->skb); | |
1255 | ||
1256 | pci_unmap_single(pdev, le64_to_cpu(rxfd->frag_info & ~IPG_RFI_FRAGLEN), | |
1257 | sp->rx_buf_sz, PCI_DMA_FROMDEVICE); | |
1258 | ||
1259 | skb_put(skb, IPG_RXFRAG_SIZE); | |
1260 | ||
1261 | jumbo->FoundStart = 1; | |
1262 | jumbo->CurrentSize = IPG_RXFRAG_SIZE; | |
1263 | jumbo->skb = skb; | |
1264 | ||
1265 | sp->RxBuff[entry] = NULL; | |
1266 | dev->last_rx = jiffies; | |
1267 | } | |
1268 | ||
1269 | static void ipg_nic_rx_with_end(struct net_device *dev, | |
1270 | struct ipg_nic_private *sp, | |
1271 | struct ipg_rx *rxfd, unsigned entry) | |
1272 | { | |
1273 | struct SJumbo *jumbo = &sp->Jumbo; | |
1274 | ||
1275 | //1: found error, 0 no error | |
1276 | if (ipg_nic_rx_check_error(dev) == NormalPacket) { | |
1277 | struct sk_buff *skb = sp->RxBuff[entry]; | |
1278 | ||
1279 | if (!skb) | |
1280 | return; | |
1281 | ||
1282 | if (jumbo->FoundStart) { | |
1283 | int framelen, endframelen; | |
1284 | ||
1285 | framelen = le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFRAMELEN; | |
1286 | ||
1287 | endframeLen = framelen - jumbo->CurrentSize; | |
1288 | /* | |
1289 | if (framelen > IPG_RXFRAG_SIZE) | |
1290 | framelen=IPG_RXFRAG_SIZE; | |
1291 | */ | |
1292 | if (framelen > IPG_RXSUPPORT_SIZE) | |
1293 | IPG_DEV_KFREE_SKB(jumbo->skb); | |
1294 | else { | |
1295 | memcpy(skb_put(jumbo->skb, endframeLen), | |
1296 | skb->data, endframeLen); | |
1297 | ||
1298 | jumbo->skb->protocol = | |
1299 | eth_type_trans(jumbo->skb, dev); | |
1300 | ||
1301 | jumbo->skb->ip_summed = CHECKSUM_NONE; | |
1302 | netif_rx(jumbo->skb); | |
1303 | } | |
1304 | } | |
1305 | ||
1306 | dev->last_rx = jiffies; | |
1307 | jumbo->FoundStart = 0; | |
1308 | jumbo->CurrentSize = 0; | |
1309 | jumbo->skb = NULL; | |
1310 | ||
1311 | ipg_nic_rx_free_skb(dev); | |
1312 | } else { | |
1313 | IPG_DEV_KFREE_SKB(jumbo->skb); | |
1314 | jumbo->FoundStart = 0; | |
1315 | jumbo->CurrentSize = 0; | |
1316 | jumbo->skb = NULL; | |
1317 | } | |
1318 | } | |
1319 | ||
1320 | static void ipg_nic_rx_no_start_no_end(struct net_device *dev, | |
1321 | struct ipg_nic_private *sp, | |
1322 | struct ipg_rx *rxfd, unsigned entry) | |
1323 | { | |
1324 | struct SJumbo *jumbo = &sp->Jumbo; | |
1325 | ||
1326 | //1: found error, 0 no error | |
1327 | if (ipg_nic_rx_check_error(dev) == NormalPacket) { | |
1328 | struct sk_buff *skb = sp->RxBuff[entry]; | |
1329 | ||
1330 | if (skb) { | |
1331 | if (jumbo->FoundStart) { | |
1332 | jumbo->CurrentSize += IPG_RXFRAG_SIZE; | |
1333 | if (jumbo->CurrentSize <= IPG_RXSUPPORT_SIZE) { | |
1334 | memcpy(skb_put(jumbo->skb, | |
1335 | IPG_RXFRAG_SIZE), | |
1336 | skb->data, IPG_RXFRAG_SIZE); | |
1337 | } | |
1338 | } | |
1339 | dev->last_rx = jiffies; | |
1340 | ipg_nic_rx_free_skb(dev); | |
1341 | } | |
1342 | } else { | |
1343 | IPG_DEV_KFREE_SKB(jumbo->skb); | |
1344 | jumbo->FoundStart = 0; | |
1345 | jumbo->CurrentSize = 0; | |
1346 | jumbo->skb = NULL; | |
1347 | } | |
1348 | } | |
1349 | ||
1350 | static int ipg_nic_rx(struct net_device *dev) | |
1351 | { | |
1352 | struct ipg_nic_private *sp = netdev_priv(dev); | |
1353 | unsigned int curr = sp->rx_current; | |
1354 | void __iomem *ioaddr = sp->ioaddr; | |
1355 | unsigned int i; | |
1356 | ||
1357 | IPG_DEBUG_MSG("_nic_rx\n"); | |
1358 | ||
1359 | for (i = 0; i < IPG_MAXRFDPROCESS_COUNT; i++, curr++) { | |
1360 | unsigned int entry = curr % IPG_RFDLIST_LENGTH; | |
1361 | struct ipg_rx *rxfd = sp->rxd + entry; | |
1362 | ||
1363 | if (!(rxfd->rfs & le64_to_cpu(IPG_RFS_RFDDONE))) | |
1364 | break; | |
1365 | ||
1366 | switch (ipg_nic_rx_check_frame_type(dev)) { | |
1367 | case Frame_WithStart_WithEnd: | |
1368 | ipg_nic_rx_with_start_and_end(dev, tp, rxfd, entry); | |
1369 | break; | |
1370 | case Frame_WithStart: | |
1371 | ipg_nic_rx_with_start(dev, tp, rxfd, entry); | |
1372 | break; | |
1373 | case Frame_WithEnd: | |
1374 | ipg_nic_rx_with_end(dev, tp, rxfd, entry); | |
1375 | break; | |
1376 | case Frame_NoStart_NoEnd: | |
1377 | ipg_nic_rx_no_start_no_end(dev, tp, rxfd, entry); | |
1378 | break; | |
1379 | } | |
1380 | } | |
1381 | ||
1382 | sp->rx_current = curr; | |
1383 | ||
1384 | if (i == IPG_MAXRFDPROCESS_COUNT) { | |
1385 | /* There are more RFDs to process, however the | |
1386 | * allocated amount of RFD processing time has | |
1387 | * expired. Assert Interrupt Requested to make | |
1388 | * sure we come back to process the remaining RFDs. | |
1389 | */ | |
1390 | ipg_w32(ipg_r32(ASIC_CTRL) | IPG_AC_INT_REQUEST, ASIC_CTRL); | |
1391 | } | |
1392 | ||
1393 | ipg_nic_rxrestore(dev); | |
1394 | ||
1395 | return 0; | |
1396 | } | |
1397 | ||
1398 | #else | |
1399 | static int ipg_nic_rx(struct net_device *dev) | |
1400 | { | |
1401 | /* Transfer received Ethernet frames to higher network layers. */ | |
1402 | struct ipg_nic_private *sp = netdev_priv(dev); | |
1403 | unsigned int curr = sp->rx_current; | |
1404 | void __iomem *ioaddr = sp->ioaddr; | |
1405 | struct ipg_rx *rxfd; | |
1406 | unsigned int i; | |
1407 | ||
1408 | IPG_DEBUG_MSG("_nic_rx\n"); | |
1409 | ||
1410 | #define __RFS_MASK \ | |
1411 | cpu_to_le64(IPG_RFS_RFDDONE | IPG_RFS_FRAMESTART | IPG_RFS_FRAMEEND) | |
1412 | ||
1413 | for (i = 0; i < IPG_MAXRFDPROCESS_COUNT; i++, curr++) { | |
1414 | unsigned int entry = curr % IPG_RFDLIST_LENGTH; | |
1415 | struct sk_buff *skb = sp->RxBuff[entry]; | |
1416 | unsigned int framelen; | |
1417 | ||
1418 | rxfd = sp->rxd + entry; | |
1419 | ||
1420 | if (((rxfd->rfs & __RFS_MASK) != __RFS_MASK) || !skb) | |
1421 | break; | |
1422 | ||
1423 | /* Get received frame length. */ | |
1424 | framelen = le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFRAMELEN; | |
1425 | ||
1426 | /* Check for jumbo frame arrival with too small | |
1427 | * RXFRAG_SIZE. | |
1428 | */ | |
1429 | if (framelen > IPG_RXFRAG_SIZE) { | |
1430 | IPG_DEBUG_MSG | |
1431 | ("RFS FrameLen > allocated fragment size.\n"); | |
1432 | ||
1433 | framelen = IPG_RXFRAG_SIZE; | |
1434 | } | |
1435 | ||
325a8071 | 1436 | if ((IPG_DROP_ON_RX_ETH_ERRORS && (le64_to_cpu(rxfd->rfs) & |
1202d6ff FR |
1437 | (IPG_RFS_RXFIFOOVERRUN | IPG_RFS_RXRUNTFRAME | |
1438 | IPG_RFS_RXALIGNMENTERROR | IPG_RFS_RXFCSERROR | | |
325a8071 | 1439 | IPG_RFS_RXOVERSIZEDFRAME | IPG_RFS_RXLENGTHERROR)))) { |
1202d6ff FR |
1440 | |
1441 | IPG_DEBUG_MSG("Rx error, RFS = %16.16lx\n", | |
1442 | (unsigned long int) rxfd->rfs); | |
1443 | ||
1444 | /* Increment general receive error statistic. */ | |
1445 | sp->stats.rx_errors++; | |
1446 | ||
1447 | /* Increment detailed receive error statistics. */ | |
325a8071 | 1448 | if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFIFOOVERRUN) { |
1202d6ff FR |
1449 | IPG_DEBUG_MSG("RX FIFO overrun occured.\n"); |
1450 | sp->stats.rx_fifo_errors++; | |
1451 | } | |
1452 | ||
325a8071 | 1453 | if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXRUNTFRAME) { |
1202d6ff FR |
1454 | IPG_DEBUG_MSG("RX runt occured.\n"); |
1455 | sp->stats.rx_length_errors++; | |
1456 | } | |
1457 | ||
325a8071 | 1458 | if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXOVERSIZEDFRAME) ; |
1202d6ff FR |
1459 | /* Do nothing, error count handled by a IPG |
1460 | * statistic register. | |
1461 | */ | |
1462 | ||
325a8071 | 1463 | if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXALIGNMENTERROR) { |
1202d6ff FR |
1464 | IPG_DEBUG_MSG("RX alignment error occured.\n"); |
1465 | sp->stats.rx_frame_errors++; | |
1466 | } | |
1467 | ||
325a8071 | 1468 | if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFCSERROR) ; |
1202d6ff FR |
1469 | /* Do nothing, error count handled by a IPG |
1470 | * statistic register. | |
1471 | */ | |
1472 | ||
1473 | /* Free the memory associated with the RX | |
1474 | * buffer since it is erroneous and we will | |
1475 | * not pass it to higher layer processes. | |
1476 | */ | |
1477 | if (skb) { | |
325a8071 | 1478 | __le64 info = rxfd->frag_info; |
1202d6ff FR |
1479 | |
1480 | pci_unmap_single(sp->pdev, | |
325a8071 | 1481 | le64_to_cpu(info) & ~IPG_RFI_FRAGLEN, |
1202d6ff FR |
1482 | sp->rx_buf_sz, PCI_DMA_FROMDEVICE); |
1483 | ||
1484 | IPG_DEV_KFREE_SKB(skb); | |
1485 | } | |
1486 | } else { | |
1487 | ||
1488 | /* Adjust the new buffer length to accomodate the size | |
1489 | * of the received frame. | |
1490 | */ | |
1491 | skb_put(skb, framelen); | |
1492 | ||
1493 | /* Set the buffer's protocol field to Ethernet. */ | |
1494 | skb->protocol = eth_type_trans(skb, dev); | |
1495 | ||
1496 | /* If the frame contains an IP/TCP/UDP frame, | |
1497 | * determine if upper layer must check IP/TCP/UDP | |
1498 | * checksums. | |
1499 | * | |
1500 | * NOTE: DO NOT RELY ON THE TCP/UDP CHECKSUM | |
1501 | * VERIFICATION FOR SILICON REVISIONS B3 | |
1502 | * AND EARLIER! | |
1503 | * | |
1504 | if ((le64_to_cpu(rxfd->rfs & | |
1505 | (IPG_RFS_TCPDETECTED | IPG_RFS_UDPDETECTED | | |
1506 | IPG_RFS_IPDETECTED))) && | |
1507 | !(le64_to_cpu(rxfd->rfs & | |
1508 | (IPG_RFS_TCPERROR | IPG_RFS_UDPERROR | | |
1509 | IPG_RFS_IPERROR)))) { | |
1510 | * Indicate IP checksums were performed | |
1511 | * by the IPG. | |
1512 | * | |
1513 | skb->ip_summed = CHECKSUM_UNNECESSARY; | |
1514 | } else | |
1515 | */ | |
1516 | { | |
1517 | /* The IPG encountered an error with (or | |
1518 | * there were no) IP/TCP/UDP checksums. | |
1519 | * This may or may not indicate an invalid | |
1520 | * IP/TCP/UDP frame was received. Let the | |
1521 | * upper layer decide. | |
1522 | */ | |
1523 | skb->ip_summed = CHECKSUM_NONE; | |
1524 | } | |
1525 | ||
1526 | /* Hand off frame for higher layer processing. | |
1527 | * The function netif_rx() releases the sk_buff | |
1528 | * when processing completes. | |
1529 | */ | |
1530 | netif_rx(skb); | |
1531 | ||
1532 | /* Record frame receive time (jiffies = Linux | |
1533 | * kernel current time stamp). | |
1534 | */ | |
1535 | dev->last_rx = jiffies; | |
1536 | } | |
1537 | ||
1538 | /* Assure RX buffer is not reused by IPG. */ | |
1539 | sp->RxBuff[entry] = NULL; | |
1540 | } | |
1541 | ||
1542 | /* | |
1543 | * If there are more RFDs to proces and the allocated amount of RFD | |
1544 | * processing time has expired, assert Interrupt Requested to make | |
1545 | * sure we come back to process the remaining RFDs. | |
1546 | */ | |
1547 | if (i == IPG_MAXRFDPROCESS_COUNT) | |
1548 | ipg_w32(ipg_r32(ASIC_CTRL) | IPG_AC_INT_REQUEST, ASIC_CTRL); | |
1549 | ||
1550 | #ifdef IPG_DEBUG | |
1551 | /* Check if the RFD list contained no receive frame data. */ | |
1552 | if (!i) | |
1553 | sp->EmptyRFDListCount++; | |
1554 | #endif | |
325a8071 AV |
1555 | while ((le64_to_cpu(rxfd->rfs) & IPG_RFS_RFDDONE) && |
1556 | !((le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMESTART) && | |
1557 | (le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMEEND))) { | |
1202d6ff FR |
1558 | unsigned int entry = curr++ % IPG_RFDLIST_LENGTH; |
1559 | ||
1560 | rxfd = sp->rxd + entry; | |
1561 | ||
1562 | IPG_DEBUG_MSG("Frame requires multiple RFDs.\n"); | |
1563 | ||
1564 | /* An unexpected event, additional code needed to handle | |
1565 | * properly. So for the time being, just disregard the | |
1566 | * frame. | |
1567 | */ | |
1568 | ||
1569 | /* Free the memory associated with the RX | |
1570 | * buffer since it is erroneous and we will | |
1571 | * not pass it to higher layer processes. | |
1572 | */ | |
1573 | if (sp->RxBuff[entry]) { | |
1574 | pci_unmap_single(sp->pdev, | |
325a8071 | 1575 | le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN, |
1202d6ff FR |
1576 | sp->rx_buf_sz, PCI_DMA_FROMDEVICE); |
1577 | IPG_DEV_KFREE_SKB(sp->RxBuff[entry]); | |
1578 | } | |
1579 | ||
1580 | /* Assure RX buffer is not reused by IPG. */ | |
1581 | sp->RxBuff[entry] = NULL; | |
1582 | } | |
1583 | ||
1584 | sp->rx_current = curr; | |
1585 | ||
1586 | /* Check to see if there are a minimum number of used | |
1587 | * RFDs before restoring any (should improve performance.) | |
1588 | */ | |
1589 | if ((curr - sp->rx_dirty) >= IPG_MINUSEDRFDSTOFREE) | |
1590 | ipg_nic_rxrestore(dev); | |
1591 | ||
1592 | return 0; | |
1593 | } | |
1594 | #endif | |
1595 | ||
1596 | static void ipg_reset_after_host_error(struct work_struct *work) | |
1597 | { | |
1598 | struct ipg_nic_private *sp = | |
1599 | container_of(work, struct ipg_nic_private, task.work); | |
1600 | struct net_device *dev = sp->dev; | |
1601 | ||
1602 | IPG_DDEBUG_MSG("DMACtrl = %8.8x\n", ioread32(sp->ioaddr + IPG_DMACTRL)); | |
1603 | ||
1604 | /* | |
1605 | * Acknowledge HostError interrupt by resetting | |
1606 | * IPG DMA and HOST. | |
1607 | */ | |
1608 | ipg_reset(dev, IPG_AC_GLOBAL_RESET | IPG_AC_HOST | IPG_AC_DMA); | |
1609 | ||
1610 | init_rfdlist(dev); | |
1611 | init_tfdlist(dev); | |
1612 | ||
1613 | if (ipg_io_config(dev) < 0) { | |
1614 | printk(KERN_INFO "%s: Cannot recover from PCI error.\n", | |
1615 | dev->name); | |
1616 | schedule_delayed_work(&sp->task, HZ); | |
1617 | } | |
1618 | } | |
1619 | ||
1620 | static irqreturn_t ipg_interrupt_handler(int irq, void *dev_inst) | |
1621 | { | |
1622 | struct net_device *dev = dev_inst; | |
1623 | struct ipg_nic_private *sp = netdev_priv(dev); | |
1624 | void __iomem *ioaddr = sp->ioaddr; | |
1625 | unsigned int handled = 0; | |
1626 | u16 status; | |
1627 | ||
1628 | IPG_DEBUG_MSG("_interrupt_handler\n"); | |
1629 | ||
1630 | #ifdef JUMBO_FRAME | |
1631 | ipg_nic_rxrestore(dev); | |
1632 | #endif | |
1633 | /* Get interrupt source information, and acknowledge | |
1634 | * some (i.e. TxDMAComplete, RxDMAComplete, RxEarly, | |
1635 | * IntRequested, MacControlFrame, LinkEvent) interrupts | |
1636 | * if issued. Also, all IPG interrupts are disabled by | |
1637 | * reading IntStatusAck. | |
1638 | */ | |
1639 | status = ipg_r16(INT_STATUS_ACK); | |
1640 | ||
1641 | IPG_DEBUG_MSG("IntStatusAck = %4.4x\n", status); | |
1642 | ||
1643 | /* Shared IRQ of remove event. */ | |
1644 | if (!(status & IPG_IS_RSVD_MASK)) | |
1645 | goto out_enable; | |
1646 | ||
1647 | handled = 1; | |
1648 | ||
1649 | if (unlikely(!netif_running(dev))) | |
1650 | goto out; | |
1651 | ||
1652 | spin_lock(&sp->lock); | |
1653 | ||
1654 | /* If RFDListEnd interrupt, restore all used RFDs. */ | |
1655 | if (status & IPG_IS_RFD_LIST_END) { | |
1656 | IPG_DEBUG_MSG("RFDListEnd Interrupt.\n"); | |
1657 | ||
1658 | /* The RFD list end indicates an RFD was encountered | |
1659 | * with a 0 NextPtr, or with an RFDDone bit set to 1 | |
1660 | * (indicating the RFD is not read for use by the | |
1661 | * IPG.) Try to restore all RFDs. | |
1662 | */ | |
1663 | ipg_nic_rxrestore(dev); | |
1664 | ||
1665 | #ifdef IPG_DEBUG | |
1666 | /* Increment the RFDlistendCount counter. */ | |
1667 | sp->RFDlistendCount++; | |
1668 | #endif | |
1669 | } | |
1670 | ||
1671 | /* If RFDListEnd, RxDMAPriority, RxDMAComplete, or | |
1672 | * IntRequested interrupt, process received frames. */ | |
1673 | if ((status & IPG_IS_RX_DMA_PRIORITY) || | |
1674 | (status & IPG_IS_RFD_LIST_END) || | |
1675 | (status & IPG_IS_RX_DMA_COMPLETE) || | |
1676 | (status & IPG_IS_INT_REQUESTED)) { | |
1677 | #ifdef IPG_DEBUG | |
1678 | /* Increment the RFD list checked counter if interrupted | |
1679 | * only to check the RFD list. */ | |
1680 | if (status & (~(IPG_IS_RX_DMA_PRIORITY | IPG_IS_RFD_LIST_END | | |
1681 | IPG_IS_RX_DMA_COMPLETE | IPG_IS_INT_REQUESTED) & | |
1682 | (IPG_IS_HOST_ERROR | IPG_IS_TX_DMA_COMPLETE | | |
1683 | IPG_IS_LINK_EVENT | IPG_IS_TX_COMPLETE | | |
1684 | IPG_IS_UPDATE_STATS))) | |
1685 | sp->RFDListCheckedCount++; | |
1686 | #endif | |
1687 | ||
1688 | ipg_nic_rx(dev); | |
1689 | } | |
1690 | ||
1691 | /* If TxDMAComplete interrupt, free used TFDs. */ | |
1692 | if (status & IPG_IS_TX_DMA_COMPLETE) | |
1693 | ipg_nic_txfree(dev); | |
1694 | ||
1695 | /* TxComplete interrupts indicate one of numerous actions. | |
1696 | * Determine what action to take based on TXSTATUS register. | |
1697 | */ | |
1698 | if (status & IPG_IS_TX_COMPLETE) | |
1699 | ipg_nic_txcleanup(dev); | |
1700 | ||
1701 | /* If UpdateStats interrupt, update Linux Ethernet statistics */ | |
1702 | if (status & IPG_IS_UPDATE_STATS) | |
1703 | ipg_nic_get_stats(dev); | |
1704 | ||
1705 | /* If HostError interrupt, reset IPG. */ | |
1706 | if (status & IPG_IS_HOST_ERROR) { | |
1707 | IPG_DDEBUG_MSG("HostError Interrupt\n"); | |
1708 | ||
1709 | schedule_delayed_work(&sp->task, 0); | |
1710 | } | |
1711 | ||
1712 | /* If LinkEvent interrupt, resolve autonegotiation. */ | |
1713 | if (status & IPG_IS_LINK_EVENT) { | |
1714 | if (ipg_config_autoneg(dev) < 0) | |
1715 | printk(KERN_INFO "%s: Auto-negotiation error.\n", | |
1716 | dev->name); | |
1717 | } | |
1718 | ||
1719 | /* If MACCtrlFrame interrupt, do nothing. */ | |
1720 | if (status & IPG_IS_MAC_CTRL_FRAME) | |
1721 | IPG_DEBUG_MSG("MACCtrlFrame interrupt.\n"); | |
1722 | ||
1723 | /* If RxComplete interrupt, do nothing. */ | |
1724 | if (status & IPG_IS_RX_COMPLETE) | |
1725 | IPG_DEBUG_MSG("RxComplete interrupt.\n"); | |
1726 | ||
1727 | /* If RxEarly interrupt, do nothing. */ | |
1728 | if (status & IPG_IS_RX_EARLY) | |
1729 | IPG_DEBUG_MSG("RxEarly interrupt.\n"); | |
1730 | ||
1731 | out_enable: | |
1732 | /* Re-enable IPG interrupts. */ | |
1733 | ipg_w16(IPG_IE_TX_DMA_COMPLETE | IPG_IE_RX_DMA_COMPLETE | | |
1734 | IPG_IE_HOST_ERROR | IPG_IE_INT_REQUESTED | IPG_IE_TX_COMPLETE | | |
1735 | IPG_IE_LINK_EVENT | IPG_IE_UPDATE_STATS, INT_ENABLE); | |
1736 | ||
1737 | spin_unlock(&sp->lock); | |
1738 | out: | |
1739 | return IRQ_RETVAL(handled); | |
1740 | } | |
1741 | ||
1742 | static void ipg_rx_clear(struct ipg_nic_private *sp) | |
1743 | { | |
1744 | unsigned int i; | |
1745 | ||
1746 | for (i = 0; i < IPG_RFDLIST_LENGTH; i++) { | |
1747 | if (sp->RxBuff[i]) { | |
1748 | struct ipg_rx *rxfd = sp->rxd + i; | |
1749 | ||
1750 | IPG_DEV_KFREE_SKB(sp->RxBuff[i]); | |
1751 | sp->RxBuff[i] = NULL; | |
1752 | pci_unmap_single(sp->pdev, | |
325a8071 | 1753 | le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN, |
1202d6ff FR |
1754 | sp->rx_buf_sz, PCI_DMA_FROMDEVICE); |
1755 | } | |
1756 | } | |
1757 | } | |
1758 | ||
1759 | static void ipg_tx_clear(struct ipg_nic_private *sp) | |
1760 | { | |
1761 | unsigned int i; | |
1762 | ||
1763 | for (i = 0; i < IPG_TFDLIST_LENGTH; i++) { | |
1764 | if (sp->TxBuff[i]) { | |
1765 | struct ipg_tx *txfd = sp->txd + i; | |
1766 | ||
1767 | pci_unmap_single(sp->pdev, | |
325a8071 | 1768 | le64_to_cpu(txfd->frag_info) & ~IPG_TFI_FRAGLEN, |
1202d6ff FR |
1769 | sp->TxBuff[i]->len, PCI_DMA_TODEVICE); |
1770 | ||
1771 | IPG_DEV_KFREE_SKB(sp->TxBuff[i]); | |
1772 | ||
1773 | sp->TxBuff[i] = NULL; | |
1774 | } | |
1775 | } | |
1776 | } | |
1777 | ||
1778 | static int ipg_nic_open(struct net_device *dev) | |
1779 | { | |
1780 | struct ipg_nic_private *sp = netdev_priv(dev); | |
1781 | void __iomem *ioaddr = sp->ioaddr; | |
1782 | struct pci_dev *pdev = sp->pdev; | |
1783 | int rc; | |
1784 | ||
1785 | IPG_DEBUG_MSG("_nic_open\n"); | |
1786 | ||
1787 | sp->rx_buf_sz = IPG_RXSUPPORT_SIZE; | |
1788 | ||
1789 | /* Check for interrupt line conflicts, and request interrupt | |
1790 | * line for IPG. | |
1791 | * | |
1792 | * IMPORTANT: Disable IPG interrupts prior to registering | |
1793 | * IRQ. | |
1794 | */ | |
1795 | ipg_w16(0x0000, INT_ENABLE); | |
1796 | ||
1797 | /* Register the interrupt line to be used by the IPG within | |
1798 | * the Linux system. | |
1799 | */ | |
1800 | rc = request_irq(pdev->irq, &ipg_interrupt_handler, IRQF_SHARED, | |
1801 | dev->name, dev); | |
1802 | if (rc < 0) { | |
1803 | printk(KERN_INFO "%s: Error when requesting interrupt.\n", | |
1804 | dev->name); | |
1805 | goto out; | |
1806 | } | |
1807 | ||
1808 | dev->irq = pdev->irq; | |
1809 | ||
1810 | rc = -ENOMEM; | |
1811 | ||
1812 | sp->rxd = dma_alloc_coherent(&pdev->dev, IPG_RX_RING_BYTES, | |
1813 | &sp->rxd_map, GFP_KERNEL); | |
1814 | if (!sp->rxd) | |
1815 | goto err_free_irq_0; | |
1816 | ||
1817 | sp->txd = dma_alloc_coherent(&pdev->dev, IPG_TX_RING_BYTES, | |
1818 | &sp->txd_map, GFP_KERNEL); | |
1819 | if (!sp->txd) | |
1820 | goto err_free_rx_1; | |
1821 | ||
1822 | rc = init_rfdlist(dev); | |
1823 | if (rc < 0) { | |
1824 | printk(KERN_INFO "%s: Error during configuration.\n", | |
1825 | dev->name); | |
1826 | goto err_free_tx_2; | |
1827 | } | |
1828 | ||
1829 | init_tfdlist(dev); | |
1830 | ||
1831 | rc = ipg_io_config(dev); | |
1832 | if (rc < 0) { | |
1833 | printk(KERN_INFO "%s: Error during configuration.\n", | |
1834 | dev->name); | |
1835 | goto err_release_tfdlist_3; | |
1836 | } | |
1837 | ||
1838 | /* Resolve autonegotiation. */ | |
1839 | if (ipg_config_autoneg(dev) < 0) | |
1840 | printk(KERN_INFO "%s: Auto-negotiation error.\n", dev->name); | |
1841 | ||
1842 | #ifdef JUMBO_FRAME | |
1843 | /* initialize JUMBO Frame control variable */ | |
1844 | sp->Jumbo.FoundStart = 0; | |
1845 | sp->Jumbo.CurrentSize = 0; | |
1846 | sp->Jumbo.skb = 0; | |
1847 | dev->mtu = IPG_TXFRAG_SIZE; | |
1848 | #endif | |
1849 | ||
1850 | /* Enable transmit and receive operation of the IPG. */ | |
1851 | ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_RX_ENABLE | IPG_MC_TX_ENABLE) & | |
1852 | IPG_MC_RSVD_MASK, MAC_CTRL); | |
1853 | ||
1854 | netif_start_queue(dev); | |
1855 | out: | |
1856 | return rc; | |
1857 | ||
1858 | err_release_tfdlist_3: | |
1859 | ipg_tx_clear(sp); | |
1860 | ipg_rx_clear(sp); | |
1861 | err_free_tx_2: | |
1862 | dma_free_coherent(&pdev->dev, IPG_TX_RING_BYTES, sp->txd, sp->txd_map); | |
1863 | err_free_rx_1: | |
1864 | dma_free_coherent(&pdev->dev, IPG_RX_RING_BYTES, sp->rxd, sp->rxd_map); | |
1865 | err_free_irq_0: | |
1866 | free_irq(pdev->irq, dev); | |
1867 | goto out; | |
1868 | } | |
1869 | ||
1870 | static int ipg_nic_stop(struct net_device *dev) | |
1871 | { | |
1872 | struct ipg_nic_private *sp = netdev_priv(dev); | |
1873 | void __iomem *ioaddr = sp->ioaddr; | |
1874 | struct pci_dev *pdev = sp->pdev; | |
1875 | ||
1876 | IPG_DEBUG_MSG("_nic_stop\n"); | |
1877 | ||
1878 | netif_stop_queue(dev); | |
1879 | ||
1880 | IPG_DDEBUG_MSG("RFDlistendCount = %i\n", sp->RFDlistendCount); | |
1881 | IPG_DDEBUG_MSG("RFDListCheckedCount = %i\n", sp->rxdCheckedCount); | |
1882 | IPG_DDEBUG_MSG("EmptyRFDListCount = %i\n", sp->EmptyRFDListCount); | |
1883 | IPG_DUMPTFDLIST(dev); | |
1884 | ||
1885 | do { | |
1886 | (void) ipg_r16(INT_STATUS_ACK); | |
1887 | ||
1888 | ipg_reset(dev, IPG_AC_GLOBAL_RESET | IPG_AC_HOST | IPG_AC_DMA); | |
1889 | ||
1890 | synchronize_irq(pdev->irq); | |
1891 | } while (ipg_r16(INT_ENABLE) & IPG_IE_RSVD_MASK); | |
1892 | ||
1893 | ipg_rx_clear(sp); | |
1894 | ||
1895 | ipg_tx_clear(sp); | |
1896 | ||
1897 | pci_free_consistent(pdev, IPG_RX_RING_BYTES, sp->rxd, sp->rxd_map); | |
1898 | pci_free_consistent(pdev, IPG_TX_RING_BYTES, sp->txd, sp->txd_map); | |
1899 | ||
1900 | free_irq(pdev->irq, dev); | |
1901 | ||
1902 | return 0; | |
1903 | } | |
1904 | ||
1905 | static int ipg_nic_hard_start_xmit(struct sk_buff *skb, struct net_device *dev) | |
1906 | { | |
1907 | struct ipg_nic_private *sp = netdev_priv(dev); | |
1908 | void __iomem *ioaddr = sp->ioaddr; | |
1909 | unsigned int entry = sp->tx_current % IPG_TFDLIST_LENGTH; | |
1910 | unsigned long flags; | |
1911 | struct ipg_tx *txfd; | |
1912 | ||
1913 | IPG_DDEBUG_MSG("_nic_hard_start_xmit\n"); | |
1914 | ||
1915 | /* If in 10Mbps mode, stop the transmit queue so | |
1916 | * no more transmit frames are accepted. | |
1917 | */ | |
1918 | if (sp->tenmbpsmode) | |
1919 | netif_stop_queue(dev); | |
1920 | ||
1921 | if (sp->ResetCurrentTFD) { | |
1922 | sp->ResetCurrentTFD = 0; | |
1923 | entry = 0; | |
1924 | } | |
1925 | ||
1926 | txfd = sp->txd + entry; | |
1927 | ||
1928 | sp->TxBuff[entry] = skb; | |
1929 | ||
1930 | /* Clear all TFC fields, except TFDDONE. */ | |
1931 | txfd->tfc = cpu_to_le64(IPG_TFC_TFDDONE); | |
1932 | ||
1933 | /* Specify the TFC field within the TFD. */ | |
1934 | txfd->tfc |= cpu_to_le64(IPG_TFC_WORDALIGNDISABLED | | |
1935 | (IPG_TFC_FRAMEID & cpu_to_le64(sp->tx_current)) | | |
1936 | (IPG_TFC_FRAGCOUNT & (1 << 24))); | |
1937 | ||
1938 | /* Request TxComplete interrupts at an interval defined | |
1939 | * by the constant IPG_FRAMESBETWEENTXCOMPLETES. | |
1940 | * Request TxComplete interrupt for every frame | |
1941 | * if in 10Mbps mode to accomodate problem with 10Mbps | |
1942 | * processing. | |
1943 | */ | |
1944 | if (sp->tenmbpsmode) | |
1945 | txfd->tfc |= cpu_to_le64(IPG_TFC_TXINDICATE); | |
1946 | else if (!((sp->tx_current - sp->tx_dirty + 1) > | |
1947 | IPG_FRAMESBETWEENTXDMACOMPLETES)) { | |
1948 | txfd->tfc |= cpu_to_le64(IPG_TFC_TXDMAINDICATE); | |
1949 | } | |
1950 | /* Based on compilation option, determine if FCS is to be | |
1951 | * appended to transmit frame by IPG. | |
1952 | */ | |
1953 | if (!(IPG_APPEND_FCS_ON_TX)) | |
1954 | txfd->tfc |= cpu_to_le64(IPG_TFC_FCSAPPENDDISABLE); | |
1955 | ||
1956 | /* Based on compilation option, determine if IP, TCP and/or | |
1957 | * UDP checksums are to be added to transmit frame by IPG. | |
1958 | */ | |
1959 | if (IPG_ADD_IPCHECKSUM_ON_TX) | |
1960 | txfd->tfc |= cpu_to_le64(IPG_TFC_IPCHECKSUMENABLE); | |
1961 | ||
1962 | if (IPG_ADD_TCPCHECKSUM_ON_TX) | |
1963 | txfd->tfc |= cpu_to_le64(IPG_TFC_TCPCHECKSUMENABLE); | |
1964 | ||
1965 | if (IPG_ADD_UDPCHECKSUM_ON_TX) | |
1966 | txfd->tfc |= cpu_to_le64(IPG_TFC_UDPCHECKSUMENABLE); | |
1967 | ||
1968 | /* Based on compilation option, determine if VLAN tag info is to be | |
1969 | * inserted into transmit frame by IPG. | |
1970 | */ | |
1971 | if (IPG_INSERT_MANUAL_VLAN_TAG) { | |
1972 | txfd->tfc |= cpu_to_le64(IPG_TFC_VLANTAGINSERT | | |
1973 | ((u64) IPG_MANUAL_VLAN_VID << 32) | | |
1974 | ((u64) IPG_MANUAL_VLAN_CFI << 44) | | |
1975 | ((u64) IPG_MANUAL_VLAN_USERPRIORITY << 45)); | |
1976 | } | |
1977 | ||
1978 | /* The fragment start location within system memory is defined | |
1979 | * by the sk_buff structure's data field. The physical address | |
1980 | * of this location within the system's virtual memory space | |
1981 | * is determined using the IPG_HOST2BUS_MAP function. | |
1982 | */ | |
1983 | txfd->frag_info = cpu_to_le64(pci_map_single(sp->pdev, skb->data, | |
1984 | skb->len, PCI_DMA_TODEVICE)); | |
1985 | ||
1986 | /* The length of the fragment within system memory is defined by | |
1987 | * the sk_buff structure's len field. | |
1988 | */ | |
1989 | txfd->frag_info |= cpu_to_le64(IPG_TFI_FRAGLEN & | |
1990 | ((u64) (skb->len & 0xffff) << 48)); | |
1991 | ||
1992 | /* Clear the TFDDone bit last to indicate the TFD is ready | |
1993 | * for transfer to the IPG. | |
1994 | */ | |
1995 | txfd->tfc &= cpu_to_le64(~IPG_TFC_TFDDONE); | |
1996 | ||
1997 | spin_lock_irqsave(&sp->lock, flags); | |
1998 | ||
1999 | sp->tx_current++; | |
2000 | ||
2001 | mmiowb(); | |
2002 | ||
2003 | ipg_w32(IPG_DC_TX_DMA_POLL_NOW, DMA_CTRL); | |
2004 | ||
2005 | if (sp->tx_current == (sp->tx_dirty + IPG_TFDLIST_LENGTH)) | |
2006 | netif_wake_queue(dev); | |
2007 | ||
2008 | spin_unlock_irqrestore(&sp->lock, flags); | |
2009 | ||
2010 | return NETDEV_TX_OK; | |
2011 | } | |
2012 | ||
2013 | static void ipg_set_phy_default_param(unsigned char rev, | |
2014 | struct net_device *dev, int phy_address) | |
2015 | { | |
2016 | unsigned short length; | |
2017 | unsigned char revision; | |
2018 | unsigned short *phy_param; | |
2019 | unsigned short address, value; | |
2020 | ||
2021 | phy_param = &DefaultPhyParam[0]; | |
2022 | length = *phy_param & 0x00FF; | |
2023 | revision = (unsigned char)((*phy_param) >> 8); | |
2024 | phy_param++; | |
2025 | while (length != 0) { | |
2026 | if (rev == revision) { | |
2027 | while (length > 1) { | |
2028 | address = *phy_param; | |
2029 | value = *(phy_param + 1); | |
2030 | phy_param += 2; | |
2031 | mdio_write(dev, phy_address, address, value); | |
2032 | length -= 4; | |
2033 | } | |
2034 | break; | |
2035 | } else { | |
2036 | phy_param += length / 2; | |
2037 | length = *phy_param & 0x00FF; | |
2038 | revision = (unsigned char)((*phy_param) >> 8); | |
2039 | phy_param++; | |
2040 | } | |
2041 | } | |
2042 | } | |
2043 | ||
2044 | /* JES20040127EEPROM */ | |
2045 | static int read_eeprom(struct net_device *dev, int eep_addr) | |
2046 | { | |
2047 | void __iomem *ioaddr = ipg_ioaddr(dev); | |
2048 | unsigned int i; | |
2049 | int ret = 0; | |
2050 | u16 value; | |
2051 | ||
2052 | value = IPG_EC_EEPROM_READOPCODE | (eep_addr & 0xff); | |
2053 | ipg_w16(value, EEPROM_CTRL); | |
2054 | ||
2055 | for (i = 0; i < 1000; i++) { | |
2056 | u16 data; | |
2057 | ||
2058 | mdelay(10); | |
2059 | data = ipg_r16(EEPROM_CTRL); | |
2060 | if (!(data & IPG_EC_EEPROM_BUSY)) { | |
2061 | ret = ipg_r16(EEPROM_DATA); | |
2062 | break; | |
2063 | } | |
2064 | } | |
2065 | return ret; | |
2066 | } | |
2067 | ||
2068 | static void ipg_init_mii(struct net_device *dev) | |
2069 | { | |
2070 | struct ipg_nic_private *sp = netdev_priv(dev); | |
2071 | struct mii_if_info *mii_if = &sp->mii_if; | |
2072 | int phyaddr; | |
2073 | ||
2074 | mii_if->dev = dev; | |
2075 | mii_if->mdio_read = mdio_read; | |
2076 | mii_if->mdio_write = mdio_write; | |
2077 | mii_if->phy_id_mask = 0x1f; | |
2078 | mii_if->reg_num_mask = 0x1f; | |
2079 | ||
2080 | mii_if->phy_id = phyaddr = ipg_find_phyaddr(dev); | |
2081 | ||
2082 | if (phyaddr != 0x1f) { | |
2083 | u16 mii_phyctrl, mii_1000cr; | |
2084 | u8 revisionid = 0; | |
2085 | ||
2086 | mii_1000cr = mdio_read(dev, phyaddr, MII_CTRL1000); | |
2087 | mii_1000cr |= ADVERTISE_1000FULL | ADVERTISE_1000HALF | | |
2088 | GMII_PHY_1000BASETCONTROL_PreferMaster; | |
2089 | mdio_write(dev, phyaddr, MII_CTRL1000, mii_1000cr); | |
2090 | ||
2091 | mii_phyctrl = mdio_read(dev, phyaddr, MII_BMCR); | |
2092 | ||
2093 | /* Set default phyparam */ | |
2094 | pci_read_config_byte(sp->pdev, PCI_REVISION_ID, &revisionid); | |
2095 | ipg_set_phy_default_param(revisionid, dev, phyaddr); | |
2096 | ||
2097 | /* Reset PHY */ | |
2098 | mii_phyctrl |= BMCR_RESET | BMCR_ANRESTART; | |
2099 | mdio_write(dev, phyaddr, MII_BMCR, mii_phyctrl); | |
2100 | ||
2101 | } | |
2102 | } | |
2103 | ||
2104 | static int ipg_hw_init(struct net_device *dev) | |
2105 | { | |
2106 | struct ipg_nic_private *sp = netdev_priv(dev); | |
2107 | void __iomem *ioaddr = sp->ioaddr; | |
2108 | unsigned int i; | |
2109 | int rc; | |
2110 | ||
2111 | /* Read/Write and Reset EEPROM Value Jesse20040128EEPROM_VALUE */ | |
2112 | /* Read LED Mode Configuration from EEPROM */ | |
2113 | sp->LED_Mode = read_eeprom(dev, 6); | |
2114 | ||
2115 | /* Reset all functions within the IPG. Do not assert | |
2116 | * RST_OUT as not compatible with some PHYs. | |
2117 | */ | |
2118 | rc = ipg_reset(dev, IPG_RESET_MASK); | |
2119 | if (rc < 0) | |
2120 | goto out; | |
2121 | ||
2122 | ipg_init_mii(dev); | |
2123 | ||
2124 | /* Read MAC Address from EEPROM */ | |
2125 | for (i = 0; i < 3; i++) | |
2126 | sp->station_addr[i] = read_eeprom(dev, 16 + i); | |
2127 | ||
2128 | for (i = 0; i < 3; i++) | |
2129 | ipg_w16(sp->station_addr[i], STATION_ADDRESS_0 + 2*i); | |
2130 | ||
2131 | /* Set station address in ethernet_device structure. */ | |
2132 | dev->dev_addr[0] = ipg_r16(STATION_ADDRESS_0) & 0x00ff; | |
2133 | dev->dev_addr[1] = (ipg_r16(STATION_ADDRESS_0) & 0xff00) >> 8; | |
2134 | dev->dev_addr[2] = ipg_r16(STATION_ADDRESS_1) & 0x00ff; | |
2135 | dev->dev_addr[3] = (ipg_r16(STATION_ADDRESS_1) & 0xff00) >> 8; | |
2136 | dev->dev_addr[4] = ipg_r16(STATION_ADDRESS_2) & 0x00ff; | |
2137 | dev->dev_addr[5] = (ipg_r16(STATION_ADDRESS_2) & 0xff00) >> 8; | |
2138 | out: | |
2139 | return rc; | |
2140 | } | |
2141 | ||
2142 | static int ipg_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) | |
2143 | { | |
2144 | struct ipg_nic_private *sp = netdev_priv(dev); | |
2145 | int rc; | |
2146 | ||
2147 | mutex_lock(&sp->mii_mutex); | |
2148 | rc = generic_mii_ioctl(&sp->mii_if, if_mii(ifr), cmd, NULL); | |
2149 | mutex_unlock(&sp->mii_mutex); | |
2150 | ||
2151 | return rc; | |
2152 | } | |
2153 | ||
2154 | static int ipg_nic_change_mtu(struct net_device *dev, int new_mtu) | |
2155 | { | |
2156 | /* Function to accomodate changes to Maximum Transfer Unit | |
2157 | * (or MTU) of IPG NIC. Cannot use default function since | |
2158 | * the default will not allow for MTU > 1500 bytes. | |
2159 | */ | |
2160 | ||
2161 | IPG_DEBUG_MSG("_nic_change_mtu\n"); | |
2162 | ||
2163 | /* Check that the new MTU value is between 68 (14 byte header, 46 | |
2164 | * byte payload, 4 byte FCS) and IPG_MAX_RXFRAME_SIZE, which | |
2165 | * corresponds to the MAXFRAMESIZE register in the IPG. | |
2166 | */ | |
2167 | if ((new_mtu < 68) || (new_mtu > IPG_MAX_RXFRAME_SIZE)) | |
2168 | return -EINVAL; | |
2169 | ||
2170 | dev->mtu = new_mtu; | |
2171 | ||
2172 | return 0; | |
2173 | } | |
2174 | ||
2175 | static int ipg_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) | |
2176 | { | |
2177 | struct ipg_nic_private *sp = netdev_priv(dev); | |
2178 | int rc; | |
2179 | ||
2180 | mutex_lock(&sp->mii_mutex); | |
2181 | rc = mii_ethtool_gset(&sp->mii_if, cmd); | |
2182 | mutex_unlock(&sp->mii_mutex); | |
2183 | ||
2184 | return rc; | |
2185 | } | |
2186 | ||
2187 | static int ipg_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) | |
2188 | { | |
2189 | struct ipg_nic_private *sp = netdev_priv(dev); | |
2190 | int rc; | |
2191 | ||
2192 | mutex_lock(&sp->mii_mutex); | |
2193 | rc = mii_ethtool_sset(&sp->mii_if, cmd); | |
2194 | mutex_unlock(&sp->mii_mutex); | |
2195 | ||
2196 | return rc; | |
2197 | } | |
2198 | ||
2199 | static int ipg_nway_reset(struct net_device *dev) | |
2200 | { | |
2201 | struct ipg_nic_private *sp = netdev_priv(dev); | |
2202 | int rc; | |
2203 | ||
2204 | mutex_lock(&sp->mii_mutex); | |
2205 | rc = mii_nway_restart(&sp->mii_if); | |
2206 | mutex_unlock(&sp->mii_mutex); | |
2207 | ||
2208 | return rc; | |
2209 | } | |
2210 | ||
2211 | static struct ethtool_ops ipg_ethtool_ops = { | |
2212 | .get_settings = ipg_get_settings, | |
2213 | .set_settings = ipg_set_settings, | |
2214 | .nway_reset = ipg_nway_reset, | |
2215 | }; | |
2216 | ||
2217 | static void ipg_remove(struct pci_dev *pdev) | |
2218 | { | |
2219 | struct net_device *dev = pci_get_drvdata(pdev); | |
2220 | struct ipg_nic_private *sp = netdev_priv(dev); | |
2221 | ||
2222 | IPG_DEBUG_MSG("_remove\n"); | |
2223 | ||
2224 | /* Un-register Ethernet device. */ | |
2225 | unregister_netdev(dev); | |
2226 | ||
2227 | pci_iounmap(pdev, sp->ioaddr); | |
2228 | ||
2229 | pci_release_regions(pdev); | |
2230 | ||
2231 | free_netdev(dev); | |
2232 | pci_disable_device(pdev); | |
2233 | pci_set_drvdata(pdev, NULL); | |
2234 | } | |
2235 | ||
2236 | static int __devinit ipg_probe(struct pci_dev *pdev, | |
2237 | const struct pci_device_id *id) | |
2238 | { | |
2239 | unsigned int i = id->driver_data; | |
2240 | struct ipg_nic_private *sp; | |
2241 | struct net_device *dev; | |
2242 | void __iomem *ioaddr; | |
2243 | int rc; | |
2244 | ||
2245 | rc = pci_enable_device(pdev); | |
2246 | if (rc < 0) | |
2247 | goto out; | |
2248 | ||
2249 | printk(KERN_INFO "%s: %s\n", pci_name(pdev), ipg_brand_name[i]); | |
2250 | ||
2251 | pci_set_master(pdev); | |
2252 | ||
2253 | rc = pci_set_dma_mask(pdev, DMA_40BIT_MASK); | |
2254 | if (rc < 0) { | |
2255 | rc = pci_set_dma_mask(pdev, DMA_32BIT_MASK); | |
2256 | if (rc < 0) { | |
2257 | printk(KERN_ERR "%s: DMA config failed.\n", | |
2258 | pci_name(pdev)); | |
2259 | goto err_disable_0; | |
2260 | } | |
2261 | } | |
2262 | ||
2263 | /* | |
2264 | * Initialize net device. | |
2265 | */ | |
2266 | dev = alloc_etherdev(sizeof(struct ipg_nic_private)); | |
2267 | if (!dev) { | |
2268 | printk(KERN_ERR "%s: alloc_etherdev failed\n", pci_name(pdev)); | |
2269 | rc = -ENOMEM; | |
2270 | goto err_disable_0; | |
2271 | } | |
2272 | ||
2273 | sp = netdev_priv(dev); | |
2274 | spin_lock_init(&sp->lock); | |
2275 | mutex_init(&sp->mii_mutex); | |
2276 | ||
2277 | /* Declare IPG NIC functions for Ethernet device methods. | |
2278 | */ | |
2279 | dev->open = &ipg_nic_open; | |
2280 | dev->stop = &ipg_nic_stop; | |
2281 | dev->hard_start_xmit = &ipg_nic_hard_start_xmit; | |
2282 | dev->get_stats = &ipg_nic_get_stats; | |
2283 | dev->set_multicast_list = &ipg_nic_set_multicast_list; | |
2284 | dev->do_ioctl = ipg_ioctl; | |
2285 | dev->tx_timeout = ipg_tx_timeout; | |
2286 | dev->change_mtu = &ipg_nic_change_mtu; | |
2287 | ||
2288 | SET_NETDEV_DEV(dev, &pdev->dev); | |
2289 | SET_ETHTOOL_OPS(dev, &ipg_ethtool_ops); | |
2290 | ||
2291 | rc = pci_request_regions(pdev, DRV_NAME); | |
2292 | if (rc) | |
2293 | goto err_free_dev_1; | |
2294 | ||
2295 | ioaddr = pci_iomap(pdev, 1, pci_resource_len(pdev, 1)); | |
2296 | if (!ioaddr) { | |
2297 | printk(KERN_ERR "%s cannot map MMIO\n", pci_name(pdev)); | |
2298 | rc = -EIO; | |
2299 | goto err_release_regions_2; | |
2300 | } | |
2301 | ||
2302 | /* Save the pointer to the PCI device information. */ | |
2303 | sp->ioaddr = ioaddr; | |
2304 | sp->pdev = pdev; | |
2305 | sp->dev = dev; | |
2306 | ||
2307 | INIT_DELAYED_WORK(&sp->task, ipg_reset_after_host_error); | |
2308 | ||
2309 | pci_set_drvdata(pdev, dev); | |
2310 | ||
2311 | rc = ipg_hw_init(dev); | |
2312 | if (rc < 0) | |
2313 | goto err_unmap_3; | |
2314 | ||
2315 | rc = register_netdev(dev); | |
2316 | if (rc < 0) | |
2317 | goto err_unmap_3; | |
2318 | ||
2319 | printk(KERN_INFO "Ethernet device registered as: %s\n", dev->name); | |
2320 | out: | |
2321 | return rc; | |
2322 | ||
2323 | err_unmap_3: | |
2324 | pci_iounmap(pdev, ioaddr); | |
2325 | err_release_regions_2: | |
2326 | pci_release_regions(pdev); | |
2327 | err_free_dev_1: | |
2328 | free_netdev(dev); | |
2329 | err_disable_0: | |
2330 | pci_disable_device(pdev); | |
2331 | goto out; | |
2332 | } | |
2333 | ||
2334 | static struct pci_driver ipg_pci_driver = { | |
2335 | .name = IPG_DRIVER_NAME, | |
2336 | .id_table = ipg_pci_tbl, | |
2337 | .probe = ipg_probe, | |
2338 | .remove = __devexit_p(ipg_remove), | |
2339 | }; | |
2340 | ||
2341 | static int __init ipg_init_module(void) | |
2342 | { | |
2343 | return pci_register_driver(&ipg_pci_driver); | |
2344 | } | |
2345 | ||
2346 | static void __exit ipg_exit_module(void) | |
2347 | { | |
2348 | pci_unregister_driver(&ipg_pci_driver); | |
2349 | } | |
2350 | ||
2351 | module_init(ipg_init_module); | |
2352 | module_exit(ipg_exit_module); |