]>
Commit | Line | Data |
---|---|---|
10cef602 MM |
1 | /* |
2 | * SLOB Allocator: Simple List Of Blocks | |
3 | * | |
4 | * Matt Mackall <[email protected]> 12/30/03 | |
5 | * | |
6193a2ff PM |
6 | * NUMA support by Paul Mundt, 2007. |
7 | * | |
10cef602 MM |
8 | * How SLOB works: |
9 | * | |
10 | * The core of SLOB is a traditional K&R style heap allocator, with | |
11 | * support for returning aligned objects. The granularity of this | |
55394849 NP |
12 | * allocator is as little as 2 bytes, however typically most architectures |
13 | * will require 4 bytes on 32-bit and 8 bytes on 64-bit. | |
95b35127 | 14 | * |
20cecbae MM |
15 | * The slob heap is a set of linked list of pages from alloc_pages(), |
16 | * and within each page, there is a singly-linked list of free blocks | |
17 | * (slob_t). The heap is grown on demand. To reduce fragmentation, | |
18 | * heap pages are segregated into three lists, with objects less than | |
19 | * 256 bytes, objects less than 1024 bytes, and all other objects. | |
20 | * | |
21 | * Allocation from heap involves first searching for a page with | |
22 | * sufficient free blocks (using a next-fit-like approach) followed by | |
23 | * a first-fit scan of the page. Deallocation inserts objects back | |
24 | * into the free list in address order, so this is effectively an | |
25 | * address-ordered first fit. | |
10cef602 MM |
26 | * |
27 | * Above this is an implementation of kmalloc/kfree. Blocks returned | |
55394849 | 28 | * from kmalloc are prepended with a 4-byte header with the kmalloc size. |
10cef602 | 29 | * If kmalloc is asked for objects of PAGE_SIZE or larger, it calls |
6193a2ff | 30 | * alloc_pages() directly, allocating compound pages so the page order |
d87a133f NP |
31 | * does not have to be separately tracked, and also stores the exact |
32 | * allocation size in page->private so that it can be used to accurately | |
33 | * provide ksize(). These objects are detected in kfree() because slob_page() | |
34 | * is false for them. | |
10cef602 MM |
35 | * |
36 | * SLAB is emulated on top of SLOB by simply calling constructors and | |
95b35127 NP |
37 | * destructors for every SLAB allocation. Objects are returned with the |
38 | * 4-byte alignment unless the SLAB_HWCACHE_ALIGN flag is set, in which | |
39 | * case the low-level allocator will fragment blocks to create the proper | |
40 | * alignment. Again, objects of page-size or greater are allocated by | |
6193a2ff | 41 | * calling alloc_pages(). As SLAB objects know their size, no separate |
95b35127 | 42 | * size bookkeeping is necessary and there is essentially no allocation |
d87a133f NP |
43 | * space overhead, and compound pages aren't needed for multi-page |
44 | * allocations. | |
6193a2ff PM |
45 | * |
46 | * NUMA support in SLOB is fairly simplistic, pushing most of the real | |
47 | * logic down to the page allocator, and simply doing the node accounting | |
48 | * on the upper levels. In the event that a node id is explicitly | |
6484eb3e | 49 | * provided, alloc_pages_exact_node() with the specified node id is used |
6193a2ff PM |
50 | * instead. The common case (or when the node id isn't explicitly provided) |
51 | * will default to the current node, as per numa_node_id(). | |
52 | * | |
53 | * Node aware pages are still inserted in to the global freelist, and | |
54 | * these are scanned for by matching against the node id encoded in the | |
55 | * page flags. As a result, block allocations that can be satisfied from | |
56 | * the freelist will only be done so on pages residing on the same node, | |
57 | * in order to prevent random node placement. | |
10cef602 MM |
58 | */ |
59 | ||
95b35127 | 60 | #include <linux/kernel.h> |
10cef602 MM |
61 | #include <linux/slab.h> |
62 | #include <linux/mm.h> | |
1f0532eb | 63 | #include <linux/swap.h> /* struct reclaim_state */ |
10cef602 MM |
64 | #include <linux/cache.h> |
65 | #include <linux/init.h> | |
66 | #include <linux/module.h> | |
afc0cedb | 67 | #include <linux/rcupdate.h> |
95b35127 | 68 | #include <linux/list.h> |
02af61bb | 69 | #include <linux/kmemtrace.h> |
4374e616 | 70 | #include <linux/kmemleak.h> |
95b35127 NP |
71 | #include <asm/atomic.h> |
72 | ||
95b35127 NP |
73 | /* |
74 | * slob_block has a field 'units', which indicates size of block if +ve, | |
75 | * or offset of next block if -ve (in SLOB_UNITs). | |
76 | * | |
77 | * Free blocks of size 1 unit simply contain the offset of the next block. | |
78 | * Those with larger size contain their size in the first SLOB_UNIT of | |
79 | * memory, and the offset of the next free block in the second SLOB_UNIT. | |
80 | */ | |
55394849 | 81 | #if PAGE_SIZE <= (32767 * 2) |
95b35127 NP |
82 | typedef s16 slobidx_t; |
83 | #else | |
84 | typedef s32 slobidx_t; | |
85 | #endif | |
86 | ||
10cef602 | 87 | struct slob_block { |
95b35127 | 88 | slobidx_t units; |
55394849 | 89 | }; |
10cef602 MM |
90 | typedef struct slob_block slob_t; |
91 | ||
95b35127 NP |
92 | /* |
93 | * We use struct page fields to manage some slob allocation aspects, | |
94 | * however to avoid the horrible mess in include/linux/mm_types.h, we'll | |
95 | * just define our own struct page type variant here. | |
96 | */ | |
97 | struct slob_page { | |
98 | union { | |
99 | struct { | |
100 | unsigned long flags; /* mandatory */ | |
101 | atomic_t _count; /* mandatory */ | |
102 | slobidx_t units; /* free units left in page */ | |
103 | unsigned long pad[2]; | |
104 | slob_t *free; /* first free slob_t in page */ | |
105 | struct list_head list; /* linked list of free pages */ | |
106 | }; | |
107 | struct page page; | |
108 | }; | |
109 | }; | |
110 | static inline void struct_slob_page_wrong_size(void) | |
111 | { BUILD_BUG_ON(sizeof(struct slob_page) != sizeof(struct page)); } | |
112 | ||
113 | /* | |
114 | * free_slob_page: call before a slob_page is returned to the page allocator. | |
115 | */ | |
116 | static inline void free_slob_page(struct slob_page *sp) | |
117 | { | |
118 | reset_page_mapcount(&sp->page); | |
119 | sp->page.mapping = NULL; | |
120 | } | |
121 | ||
122 | /* | |
20cecbae | 123 | * All partially free slob pages go on these lists. |
95b35127 | 124 | */ |
20cecbae MM |
125 | #define SLOB_BREAK1 256 |
126 | #define SLOB_BREAK2 1024 | |
127 | static LIST_HEAD(free_slob_small); | |
128 | static LIST_HEAD(free_slob_medium); | |
129 | static LIST_HEAD(free_slob_large); | |
95b35127 NP |
130 | |
131 | /* | |
6e9ed0cc | 132 | * is_slob_page: True for all slob pages (false for bigblock pages) |
95b35127 | 133 | */ |
6e9ed0cc | 134 | static inline int is_slob_page(struct slob_page *sp) |
95b35127 | 135 | { |
7303f240 | 136 | return PageSlab((struct page *)sp); |
95b35127 NP |
137 | } |
138 | ||
139 | static inline void set_slob_page(struct slob_page *sp) | |
140 | { | |
7303f240 | 141 | __SetPageSlab((struct page *)sp); |
95b35127 NP |
142 | } |
143 | ||
144 | static inline void clear_slob_page(struct slob_page *sp) | |
145 | { | |
7303f240 | 146 | __ClearPageSlab((struct page *)sp); |
95b35127 NP |
147 | } |
148 | ||
6e9ed0cc AW |
149 | static inline struct slob_page *slob_page(const void *addr) |
150 | { | |
151 | return (struct slob_page *)virt_to_page(addr); | |
152 | } | |
153 | ||
95b35127 NP |
154 | /* |
155 | * slob_page_free: true for pages on free_slob_pages list. | |
156 | */ | |
157 | static inline int slob_page_free(struct slob_page *sp) | |
158 | { | |
9023cb7e | 159 | return PageSlobFree((struct page *)sp); |
95b35127 NP |
160 | } |
161 | ||
20cecbae | 162 | static void set_slob_page_free(struct slob_page *sp, struct list_head *list) |
95b35127 | 163 | { |
20cecbae | 164 | list_add(&sp->list, list); |
9023cb7e | 165 | __SetPageSlobFree((struct page *)sp); |
95b35127 NP |
166 | } |
167 | ||
168 | static inline void clear_slob_page_free(struct slob_page *sp) | |
169 | { | |
170 | list_del(&sp->list); | |
9023cb7e | 171 | __ClearPageSlobFree((struct page *)sp); |
95b35127 NP |
172 | } |
173 | ||
10cef602 MM |
174 | #define SLOB_UNIT sizeof(slob_t) |
175 | #define SLOB_UNITS(size) (((size) + SLOB_UNIT - 1)/SLOB_UNIT) | |
176 | #define SLOB_ALIGN L1_CACHE_BYTES | |
177 | ||
afc0cedb NP |
178 | /* |
179 | * struct slob_rcu is inserted at the tail of allocated slob blocks, which | |
180 | * were created with a SLAB_DESTROY_BY_RCU slab. slob_rcu is used to free | |
181 | * the block using call_rcu. | |
182 | */ | |
183 | struct slob_rcu { | |
184 | struct rcu_head head; | |
185 | int size; | |
186 | }; | |
187 | ||
95b35127 NP |
188 | /* |
189 | * slob_lock protects all slob allocator structures. | |
190 | */ | |
10cef602 | 191 | static DEFINE_SPINLOCK(slob_lock); |
10cef602 | 192 | |
95b35127 NP |
193 | /* |
194 | * Encode the given size and next info into a free slob block s. | |
195 | */ | |
196 | static void set_slob(slob_t *s, slobidx_t size, slob_t *next) | |
197 | { | |
198 | slob_t *base = (slob_t *)((unsigned long)s & PAGE_MASK); | |
199 | slobidx_t offset = next - base; | |
bcb4ddb4 | 200 | |
95b35127 NP |
201 | if (size > 1) { |
202 | s[0].units = size; | |
203 | s[1].units = offset; | |
204 | } else | |
205 | s[0].units = -offset; | |
206 | } | |
10cef602 | 207 | |
95b35127 NP |
208 | /* |
209 | * Return the size of a slob block. | |
210 | */ | |
211 | static slobidx_t slob_units(slob_t *s) | |
212 | { | |
213 | if (s->units > 0) | |
214 | return s->units; | |
215 | return 1; | |
216 | } | |
217 | ||
218 | /* | |
219 | * Return the next free slob block pointer after this one. | |
220 | */ | |
221 | static slob_t *slob_next(slob_t *s) | |
222 | { | |
223 | slob_t *base = (slob_t *)((unsigned long)s & PAGE_MASK); | |
224 | slobidx_t next; | |
225 | ||
226 | if (s[0].units < 0) | |
227 | next = -s[0].units; | |
228 | else | |
229 | next = s[1].units; | |
230 | return base+next; | |
231 | } | |
232 | ||
233 | /* | |
234 | * Returns true if s is the last free block in its page. | |
235 | */ | |
236 | static int slob_last(slob_t *s) | |
237 | { | |
238 | return !((unsigned long)slob_next(s) & ~PAGE_MASK); | |
239 | } | |
240 | ||
6e9ed0cc | 241 | static void *slob_new_pages(gfp_t gfp, int order, int node) |
6193a2ff PM |
242 | { |
243 | void *page; | |
244 | ||
245 | #ifdef CONFIG_NUMA | |
246 | if (node != -1) | |
6484eb3e | 247 | page = alloc_pages_exact_node(node, gfp, order); |
6193a2ff PM |
248 | else |
249 | #endif | |
250 | page = alloc_pages(gfp, order); | |
251 | ||
252 | if (!page) | |
253 | return NULL; | |
254 | ||
255 | return page_address(page); | |
256 | } | |
257 | ||
6e9ed0cc AW |
258 | static void slob_free_pages(void *b, int order) |
259 | { | |
1f0532eb NP |
260 | if (current->reclaim_state) |
261 | current->reclaim_state->reclaimed_slab += 1 << order; | |
6e9ed0cc AW |
262 | free_pages((unsigned long)b, order); |
263 | } | |
264 | ||
95b35127 NP |
265 | /* |
266 | * Allocate a slob block within a given slob_page sp. | |
267 | */ | |
268 | static void *slob_page_alloc(struct slob_page *sp, size_t size, int align) | |
10cef602 | 269 | { |
6e9ed0cc | 270 | slob_t *prev, *cur, *aligned = NULL; |
10cef602 | 271 | int delta = 0, units = SLOB_UNITS(size); |
10cef602 | 272 | |
95b35127 NP |
273 | for (prev = NULL, cur = sp->free; ; prev = cur, cur = slob_next(cur)) { |
274 | slobidx_t avail = slob_units(cur); | |
275 | ||
10cef602 MM |
276 | if (align) { |
277 | aligned = (slob_t *)ALIGN((unsigned long)cur, align); | |
278 | delta = aligned - cur; | |
279 | } | |
95b35127 NP |
280 | if (avail >= units + delta) { /* room enough? */ |
281 | slob_t *next; | |
282 | ||
10cef602 | 283 | if (delta) { /* need to fragment head to align? */ |
95b35127 NP |
284 | next = slob_next(cur); |
285 | set_slob(aligned, avail - delta, next); | |
286 | set_slob(cur, delta, aligned); | |
10cef602 MM |
287 | prev = cur; |
288 | cur = aligned; | |
95b35127 | 289 | avail = slob_units(cur); |
10cef602 MM |
290 | } |
291 | ||
95b35127 NP |
292 | next = slob_next(cur); |
293 | if (avail == units) { /* exact fit? unlink. */ | |
294 | if (prev) | |
295 | set_slob(prev, slob_units(prev), next); | |
296 | else | |
297 | sp->free = next; | |
298 | } else { /* fragment */ | |
299 | if (prev) | |
300 | set_slob(prev, slob_units(prev), cur + units); | |
301 | else | |
302 | sp->free = cur + units; | |
303 | set_slob(cur + units, avail - units, next); | |
10cef602 MM |
304 | } |
305 | ||
95b35127 NP |
306 | sp->units -= units; |
307 | if (!sp->units) | |
308 | clear_slob_page_free(sp); | |
10cef602 MM |
309 | return cur; |
310 | } | |
95b35127 NP |
311 | if (slob_last(cur)) |
312 | return NULL; | |
313 | } | |
314 | } | |
10cef602 | 315 | |
95b35127 NP |
316 | /* |
317 | * slob_alloc: entry point into the slob allocator. | |
318 | */ | |
6193a2ff | 319 | static void *slob_alloc(size_t size, gfp_t gfp, int align, int node) |
95b35127 NP |
320 | { |
321 | struct slob_page *sp; | |
d6269543 | 322 | struct list_head *prev; |
20cecbae | 323 | struct list_head *slob_list; |
95b35127 NP |
324 | slob_t *b = NULL; |
325 | unsigned long flags; | |
10cef602 | 326 | |
20cecbae MM |
327 | if (size < SLOB_BREAK1) |
328 | slob_list = &free_slob_small; | |
329 | else if (size < SLOB_BREAK2) | |
330 | slob_list = &free_slob_medium; | |
331 | else | |
332 | slob_list = &free_slob_large; | |
333 | ||
95b35127 NP |
334 | spin_lock_irqsave(&slob_lock, flags); |
335 | /* Iterate through each partially free page, try to find room */ | |
20cecbae | 336 | list_for_each_entry(sp, slob_list, list) { |
6193a2ff PM |
337 | #ifdef CONFIG_NUMA |
338 | /* | |
339 | * If there's a node specification, search for a partial | |
340 | * page with a matching node id in the freelist. | |
341 | */ | |
342 | if (node != -1 && page_to_nid(&sp->page) != node) | |
343 | continue; | |
344 | #endif | |
d6269543 MM |
345 | /* Enough room on this page? */ |
346 | if (sp->units < SLOB_UNITS(size)) | |
347 | continue; | |
6193a2ff | 348 | |
d6269543 MM |
349 | /* Attempt to alloc */ |
350 | prev = sp->list.prev; | |
351 | b = slob_page_alloc(sp, size, align); | |
352 | if (!b) | |
353 | continue; | |
354 | ||
355 | /* Improve fragment distribution and reduce our average | |
356 | * search time by starting our next search here. (see | |
357 | * Knuth vol 1, sec 2.5, pg 449) */ | |
20cecbae MM |
358 | if (prev != slob_list->prev && |
359 | slob_list->next != prev->next) | |
360 | list_move_tail(slob_list, prev->next); | |
d6269543 | 361 | break; |
10cef602 | 362 | } |
95b35127 NP |
363 | spin_unlock_irqrestore(&slob_lock, flags); |
364 | ||
365 | /* Not enough space: must allocate a new page */ | |
366 | if (!b) { | |
6e9ed0cc | 367 | b = slob_new_pages(gfp & ~__GFP_ZERO, 0, node); |
95b35127 | 368 | if (!b) |
6e9ed0cc AW |
369 | return NULL; |
370 | sp = slob_page(b); | |
95b35127 NP |
371 | set_slob_page(sp); |
372 | ||
373 | spin_lock_irqsave(&slob_lock, flags); | |
374 | sp->units = SLOB_UNITS(PAGE_SIZE); | |
375 | sp->free = b; | |
376 | INIT_LIST_HEAD(&sp->list); | |
377 | set_slob(b, SLOB_UNITS(PAGE_SIZE), b + SLOB_UNITS(PAGE_SIZE)); | |
20cecbae | 378 | set_slob_page_free(sp, slob_list); |
95b35127 NP |
379 | b = slob_page_alloc(sp, size, align); |
380 | BUG_ON(!b); | |
381 | spin_unlock_irqrestore(&slob_lock, flags); | |
382 | } | |
d07dbea4 CL |
383 | if (unlikely((gfp & __GFP_ZERO) && b)) |
384 | memset(b, 0, size); | |
95b35127 | 385 | return b; |
10cef602 MM |
386 | } |
387 | ||
95b35127 NP |
388 | /* |
389 | * slob_free: entry point into the slob allocator. | |
390 | */ | |
10cef602 MM |
391 | static void slob_free(void *block, int size) |
392 | { | |
95b35127 NP |
393 | struct slob_page *sp; |
394 | slob_t *prev, *next, *b = (slob_t *)block; | |
395 | slobidx_t units; | |
10cef602 MM |
396 | unsigned long flags; |
397 | ||
2408c550 | 398 | if (unlikely(ZERO_OR_NULL_PTR(block))) |
10cef602 | 399 | return; |
95b35127 | 400 | BUG_ON(!size); |
10cef602 | 401 | |
6e9ed0cc | 402 | sp = slob_page(block); |
95b35127 | 403 | units = SLOB_UNITS(size); |
10cef602 | 404 | |
10cef602 | 405 | spin_lock_irqsave(&slob_lock, flags); |
10cef602 | 406 | |
95b35127 NP |
407 | if (sp->units + units == SLOB_UNITS(PAGE_SIZE)) { |
408 | /* Go directly to page allocator. Do not pass slob allocator */ | |
409 | if (slob_page_free(sp)) | |
410 | clear_slob_page_free(sp); | |
6fb8f424 | 411 | spin_unlock_irqrestore(&slob_lock, flags); |
95b35127 NP |
412 | clear_slob_page(sp); |
413 | free_slob_page(sp); | |
1f0532eb | 414 | slob_free_pages(b, 0); |
6fb8f424 | 415 | return; |
95b35127 | 416 | } |
10cef602 | 417 | |
95b35127 NP |
418 | if (!slob_page_free(sp)) { |
419 | /* This slob page is about to become partially free. Easy! */ | |
420 | sp->units = units; | |
421 | sp->free = b; | |
422 | set_slob(b, units, | |
423 | (void *)((unsigned long)(b + | |
424 | SLOB_UNITS(PAGE_SIZE)) & PAGE_MASK)); | |
20cecbae | 425 | set_slob_page_free(sp, &free_slob_small); |
95b35127 NP |
426 | goto out; |
427 | } | |
428 | ||
429 | /* | |
430 | * Otherwise the page is already partially free, so find reinsertion | |
431 | * point. | |
432 | */ | |
433 | sp->units += units; | |
10cef602 | 434 | |
95b35127 | 435 | if (b < sp->free) { |
679299b3 MM |
436 | if (b + units == sp->free) { |
437 | units += slob_units(sp->free); | |
438 | sp->free = slob_next(sp->free); | |
439 | } | |
95b35127 NP |
440 | set_slob(b, units, sp->free); |
441 | sp->free = b; | |
442 | } else { | |
443 | prev = sp->free; | |
444 | next = slob_next(prev); | |
445 | while (b > next) { | |
446 | prev = next; | |
447 | next = slob_next(prev); | |
448 | } | |
10cef602 | 449 | |
95b35127 NP |
450 | if (!slob_last(prev) && b + units == next) { |
451 | units += slob_units(next); | |
452 | set_slob(b, units, slob_next(next)); | |
453 | } else | |
454 | set_slob(b, units, next); | |
455 | ||
456 | if (prev + slob_units(prev) == b) { | |
457 | units = slob_units(b) + slob_units(prev); | |
458 | set_slob(prev, units, slob_next(b)); | |
459 | } else | |
460 | set_slob(prev, slob_units(prev), b); | |
461 | } | |
462 | out: | |
10cef602 MM |
463 | spin_unlock_irqrestore(&slob_lock, flags); |
464 | } | |
465 | ||
95b35127 NP |
466 | /* |
467 | * End of slob allocator proper. Begin kmem_cache_alloc and kmalloc frontend. | |
468 | */ | |
469 | ||
6193a2ff | 470 | void *__kmalloc_node(size_t size, gfp_t gfp, int node) |
10cef602 | 471 | { |
6cb8f913 | 472 | unsigned int *m; |
55394849 | 473 | int align = max(ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN); |
3eae2cb2 | 474 | void *ret; |
55394849 | 475 | |
19cefdff | 476 | lockdep_trace_alloc(gfp); |
cf40bd16 | 477 | |
55394849 | 478 | if (size < PAGE_SIZE - align) { |
6cb8f913 CL |
479 | if (!size) |
480 | return ZERO_SIZE_PTR; | |
481 | ||
6193a2ff | 482 | m = slob_alloc(size + align, gfp, align, node); |
3eae2cb2 | 483 | |
239f49c0 MK |
484 | if (!m) |
485 | return NULL; | |
486 | *m = size; | |
3eae2cb2 EGM |
487 | ret = (void *)m + align; |
488 | ||
ca2b84cb EGM |
489 | trace_kmalloc_node(_RET_IP_, ret, |
490 | size, size + align, gfp, node); | |
d87a133f | 491 | } else { |
3eae2cb2 | 492 | unsigned int order = get_order(size); |
d87a133f | 493 | |
6e9ed0cc | 494 | ret = slob_new_pages(gfp | __GFP_COMP, get_order(size), node); |
d87a133f NP |
495 | if (ret) { |
496 | struct page *page; | |
497 | page = virt_to_page(ret); | |
498 | page->private = size; | |
499 | } | |
3eae2cb2 | 500 | |
ca2b84cb EGM |
501 | trace_kmalloc_node(_RET_IP_, ret, |
502 | size, PAGE_SIZE << order, gfp, node); | |
10cef602 | 503 | } |
3eae2cb2 | 504 | |
4374e616 | 505 | kmemleak_alloc(ret, size, 1, gfp); |
3eae2cb2 | 506 | return ret; |
10cef602 | 507 | } |
6193a2ff | 508 | EXPORT_SYMBOL(__kmalloc_node); |
10cef602 MM |
509 | |
510 | void kfree(const void *block) | |
511 | { | |
95b35127 | 512 | struct slob_page *sp; |
10cef602 | 513 | |
2121db74 PE |
514 | trace_kfree(_RET_IP_, block); |
515 | ||
2408c550 | 516 | if (unlikely(ZERO_OR_NULL_PTR(block))) |
10cef602 | 517 | return; |
4374e616 | 518 | kmemleak_free(block); |
10cef602 | 519 | |
6e9ed0cc AW |
520 | sp = slob_page(block); |
521 | if (is_slob_page(sp)) { | |
55394849 NP |
522 | int align = max(ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN); |
523 | unsigned int *m = (unsigned int *)(block - align); | |
524 | slob_free(m, *m + align); | |
d87a133f NP |
525 | } else |
526 | put_page(&sp->page); | |
10cef602 | 527 | } |
10cef602 MM |
528 | EXPORT_SYMBOL(kfree); |
529 | ||
d87a133f | 530 | /* can't use ksize for kmem_cache_alloc memory, only kmalloc */ |
fd76bab2 | 531 | size_t ksize(const void *block) |
10cef602 | 532 | { |
95b35127 | 533 | struct slob_page *sp; |
10cef602 | 534 | |
ef8b4520 CL |
535 | BUG_ON(!block); |
536 | if (unlikely(block == ZERO_SIZE_PTR)) | |
10cef602 MM |
537 | return 0; |
538 | ||
6e9ed0cc AW |
539 | sp = slob_page(block); |
540 | if (is_slob_page(sp)) { | |
70096a56 MM |
541 | int align = max(ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN); |
542 | unsigned int *m = (unsigned int *)(block - align); | |
543 | return SLOB_UNITS(*m) * SLOB_UNIT; | |
544 | } else | |
d87a133f | 545 | return sp->page.private; |
10cef602 | 546 | } |
b1aabecd | 547 | EXPORT_SYMBOL(ksize); |
10cef602 MM |
548 | |
549 | struct kmem_cache { | |
550 | unsigned int size, align; | |
afc0cedb | 551 | unsigned long flags; |
10cef602 | 552 | const char *name; |
51cc5068 | 553 | void (*ctor)(void *); |
10cef602 MM |
554 | }; |
555 | ||
556 | struct kmem_cache *kmem_cache_create(const char *name, size_t size, | |
51cc5068 | 557 | size_t align, unsigned long flags, void (*ctor)(void *)) |
10cef602 MM |
558 | { |
559 | struct kmem_cache *c; | |
560 | ||
0701a9e6 | 561 | c = slob_alloc(sizeof(struct kmem_cache), |
5e18e2b8 | 562 | GFP_KERNEL, ARCH_KMALLOC_MINALIGN, -1); |
10cef602 MM |
563 | |
564 | if (c) { | |
565 | c->name = name; | |
566 | c->size = size; | |
afc0cedb | 567 | if (flags & SLAB_DESTROY_BY_RCU) { |
afc0cedb NP |
568 | /* leave room for rcu footer at the end of object */ |
569 | c->size += sizeof(struct slob_rcu); | |
570 | } | |
571 | c->flags = flags; | |
10cef602 | 572 | c->ctor = ctor; |
10cef602 | 573 | /* ignore alignment unless it's forced */ |
5af60839 | 574 | c->align = (flags & SLAB_HWCACHE_ALIGN) ? SLOB_ALIGN : 0; |
55394849 NP |
575 | if (c->align < ARCH_SLAB_MINALIGN) |
576 | c->align = ARCH_SLAB_MINALIGN; | |
10cef602 MM |
577 | if (c->align < align) |
578 | c->align = align; | |
bc0055ae AM |
579 | } else if (flags & SLAB_PANIC) |
580 | panic("Cannot create slab cache %s\n", name); | |
10cef602 | 581 | |
4374e616 | 582 | kmemleak_alloc(c, sizeof(struct kmem_cache), 1, GFP_KERNEL); |
10cef602 MM |
583 | return c; |
584 | } | |
585 | EXPORT_SYMBOL(kmem_cache_create); | |
586 | ||
133d205a | 587 | void kmem_cache_destroy(struct kmem_cache *c) |
10cef602 | 588 | { |
4374e616 | 589 | kmemleak_free(c); |
7ed9f7e5 PM |
590 | if (c->flags & SLAB_DESTROY_BY_RCU) |
591 | rcu_barrier(); | |
10cef602 | 592 | slob_free(c, sizeof(struct kmem_cache)); |
10cef602 MM |
593 | } |
594 | EXPORT_SYMBOL(kmem_cache_destroy); | |
595 | ||
6193a2ff | 596 | void *kmem_cache_alloc_node(struct kmem_cache *c, gfp_t flags, int node) |
10cef602 MM |
597 | { |
598 | void *b; | |
599 | ||
3eae2cb2 | 600 | if (c->size < PAGE_SIZE) { |
6193a2ff | 601 | b = slob_alloc(c->size, flags, c->align, node); |
ca2b84cb EGM |
602 | trace_kmem_cache_alloc_node(_RET_IP_, b, c->size, |
603 | SLOB_UNITS(c->size) * SLOB_UNIT, | |
604 | flags, node); | |
3eae2cb2 | 605 | } else { |
6e9ed0cc | 606 | b = slob_new_pages(flags, get_order(c->size), node); |
ca2b84cb EGM |
607 | trace_kmem_cache_alloc_node(_RET_IP_, b, c->size, |
608 | PAGE_SIZE << get_order(c->size), | |
609 | flags, node); | |
3eae2cb2 | 610 | } |
10cef602 MM |
611 | |
612 | if (c->ctor) | |
51cc5068 | 613 | c->ctor(b); |
10cef602 | 614 | |
4374e616 | 615 | kmemleak_alloc_recursive(b, c->size, 1, c->flags, flags); |
10cef602 MM |
616 | return b; |
617 | } | |
6193a2ff | 618 | EXPORT_SYMBOL(kmem_cache_alloc_node); |
10cef602 | 619 | |
afc0cedb | 620 | static void __kmem_cache_free(void *b, int size) |
10cef602 | 621 | { |
afc0cedb NP |
622 | if (size < PAGE_SIZE) |
623 | slob_free(b, size); | |
10cef602 | 624 | else |
6e9ed0cc | 625 | slob_free_pages(b, get_order(size)); |
afc0cedb NP |
626 | } |
627 | ||
628 | static void kmem_rcu_free(struct rcu_head *head) | |
629 | { | |
630 | struct slob_rcu *slob_rcu = (struct slob_rcu *)head; | |
631 | void *b = (void *)slob_rcu - (slob_rcu->size - sizeof(struct slob_rcu)); | |
632 | ||
633 | __kmem_cache_free(b, slob_rcu->size); | |
634 | } | |
635 | ||
636 | void kmem_cache_free(struct kmem_cache *c, void *b) | |
637 | { | |
4374e616 | 638 | kmemleak_free_recursive(b, c->flags); |
afc0cedb NP |
639 | if (unlikely(c->flags & SLAB_DESTROY_BY_RCU)) { |
640 | struct slob_rcu *slob_rcu; | |
641 | slob_rcu = b + (c->size - sizeof(struct slob_rcu)); | |
642 | INIT_RCU_HEAD(&slob_rcu->head); | |
643 | slob_rcu->size = c->size; | |
644 | call_rcu(&slob_rcu->head, kmem_rcu_free); | |
645 | } else { | |
afc0cedb NP |
646 | __kmem_cache_free(b, c->size); |
647 | } | |
3eae2cb2 | 648 | |
ca2b84cb | 649 | trace_kmem_cache_free(_RET_IP_, b); |
10cef602 MM |
650 | } |
651 | EXPORT_SYMBOL(kmem_cache_free); | |
652 | ||
653 | unsigned int kmem_cache_size(struct kmem_cache *c) | |
654 | { | |
655 | return c->size; | |
656 | } | |
657 | EXPORT_SYMBOL(kmem_cache_size); | |
658 | ||
659 | const char *kmem_cache_name(struct kmem_cache *c) | |
660 | { | |
661 | return c->name; | |
662 | } | |
663 | EXPORT_SYMBOL(kmem_cache_name); | |
664 | ||
2e892f43 CL |
665 | int kmem_cache_shrink(struct kmem_cache *d) |
666 | { | |
667 | return 0; | |
668 | } | |
669 | EXPORT_SYMBOL(kmem_cache_shrink); | |
670 | ||
55935a34 | 671 | int kmem_ptr_validate(struct kmem_cache *a, const void *b) |
2e892f43 CL |
672 | { |
673 | return 0; | |
674 | } | |
675 | ||
84a01c2f PM |
676 | static unsigned int slob_ready __read_mostly; |
677 | ||
678 | int slab_is_available(void) | |
679 | { | |
680 | return slob_ready; | |
681 | } | |
682 | ||
bcb4ddb4 DG |
683 | void __init kmem_cache_init(void) |
684 | { | |
84a01c2f | 685 | slob_ready = 1; |
10cef602 | 686 | } |
bbff2e43 WF |
687 | |
688 | void __init kmem_cache_init_late(void) | |
689 | { | |
690 | /* Nothing to do */ | |
691 | } |