]>
Commit | Line | Data |
---|---|---|
10cef602 MM |
1 | /* |
2 | * SLOB Allocator: Simple List Of Blocks | |
3 | * | |
4 | * Matt Mackall <[email protected]> 12/30/03 | |
5 | * | |
6193a2ff PM |
6 | * NUMA support by Paul Mundt, 2007. |
7 | * | |
10cef602 MM |
8 | * How SLOB works: |
9 | * | |
10 | * The core of SLOB is a traditional K&R style heap allocator, with | |
11 | * support for returning aligned objects. The granularity of this | |
55394849 NP |
12 | * allocator is as little as 2 bytes, however typically most architectures |
13 | * will require 4 bytes on 32-bit and 8 bytes on 64-bit. | |
95b35127 | 14 | * |
6193a2ff | 15 | * The slob heap is a linked list of pages from alloc_pages(), and |
95b35127 NP |
16 | * within each page, there is a singly-linked list of free blocks (slob_t). |
17 | * The heap is grown on demand and allocation from the heap is currently | |
18 | * first-fit. | |
10cef602 MM |
19 | * |
20 | * Above this is an implementation of kmalloc/kfree. Blocks returned | |
55394849 | 21 | * from kmalloc are prepended with a 4-byte header with the kmalloc size. |
10cef602 | 22 | * If kmalloc is asked for objects of PAGE_SIZE or larger, it calls |
6193a2ff | 23 | * alloc_pages() directly, allocating compound pages so the page order |
d87a133f NP |
24 | * does not have to be separately tracked, and also stores the exact |
25 | * allocation size in page->private so that it can be used to accurately | |
26 | * provide ksize(). These objects are detected in kfree() because slob_page() | |
27 | * is false for them. | |
10cef602 MM |
28 | * |
29 | * SLAB is emulated on top of SLOB by simply calling constructors and | |
95b35127 NP |
30 | * destructors for every SLAB allocation. Objects are returned with the |
31 | * 4-byte alignment unless the SLAB_HWCACHE_ALIGN flag is set, in which | |
32 | * case the low-level allocator will fragment blocks to create the proper | |
33 | * alignment. Again, objects of page-size or greater are allocated by | |
6193a2ff | 34 | * calling alloc_pages(). As SLAB objects know their size, no separate |
95b35127 | 35 | * size bookkeeping is necessary and there is essentially no allocation |
d87a133f NP |
36 | * space overhead, and compound pages aren't needed for multi-page |
37 | * allocations. | |
6193a2ff PM |
38 | * |
39 | * NUMA support in SLOB is fairly simplistic, pushing most of the real | |
40 | * logic down to the page allocator, and simply doing the node accounting | |
41 | * on the upper levels. In the event that a node id is explicitly | |
42 | * provided, alloc_pages_node() with the specified node id is used | |
43 | * instead. The common case (or when the node id isn't explicitly provided) | |
44 | * will default to the current node, as per numa_node_id(). | |
45 | * | |
46 | * Node aware pages are still inserted in to the global freelist, and | |
47 | * these are scanned for by matching against the node id encoded in the | |
48 | * page flags. As a result, block allocations that can be satisfied from | |
49 | * the freelist will only be done so on pages residing on the same node, | |
50 | * in order to prevent random node placement. | |
10cef602 MM |
51 | */ |
52 | ||
95b35127 | 53 | #include <linux/kernel.h> |
10cef602 MM |
54 | #include <linux/slab.h> |
55 | #include <linux/mm.h> | |
56 | #include <linux/cache.h> | |
57 | #include <linux/init.h> | |
58 | #include <linux/module.h> | |
afc0cedb | 59 | #include <linux/rcupdate.h> |
95b35127 NP |
60 | #include <linux/list.h> |
61 | #include <asm/atomic.h> | |
62 | ||
95b35127 NP |
63 | /* |
64 | * slob_block has a field 'units', which indicates size of block if +ve, | |
65 | * or offset of next block if -ve (in SLOB_UNITs). | |
66 | * | |
67 | * Free blocks of size 1 unit simply contain the offset of the next block. | |
68 | * Those with larger size contain their size in the first SLOB_UNIT of | |
69 | * memory, and the offset of the next free block in the second SLOB_UNIT. | |
70 | */ | |
55394849 | 71 | #if PAGE_SIZE <= (32767 * 2) |
95b35127 NP |
72 | typedef s16 slobidx_t; |
73 | #else | |
74 | typedef s32 slobidx_t; | |
75 | #endif | |
76 | ||
10cef602 | 77 | struct slob_block { |
95b35127 | 78 | slobidx_t units; |
55394849 | 79 | }; |
10cef602 MM |
80 | typedef struct slob_block slob_t; |
81 | ||
95b35127 NP |
82 | /* |
83 | * We use struct page fields to manage some slob allocation aspects, | |
84 | * however to avoid the horrible mess in include/linux/mm_types.h, we'll | |
85 | * just define our own struct page type variant here. | |
86 | */ | |
87 | struct slob_page { | |
88 | union { | |
89 | struct { | |
90 | unsigned long flags; /* mandatory */ | |
91 | atomic_t _count; /* mandatory */ | |
92 | slobidx_t units; /* free units left in page */ | |
93 | unsigned long pad[2]; | |
94 | slob_t *free; /* first free slob_t in page */ | |
95 | struct list_head list; /* linked list of free pages */ | |
96 | }; | |
97 | struct page page; | |
98 | }; | |
99 | }; | |
100 | static inline void struct_slob_page_wrong_size(void) | |
101 | { BUILD_BUG_ON(sizeof(struct slob_page) != sizeof(struct page)); } | |
102 | ||
103 | /* | |
104 | * free_slob_page: call before a slob_page is returned to the page allocator. | |
105 | */ | |
106 | static inline void free_slob_page(struct slob_page *sp) | |
107 | { | |
108 | reset_page_mapcount(&sp->page); | |
109 | sp->page.mapping = NULL; | |
110 | } | |
111 | ||
112 | /* | |
113 | * All (partially) free slob pages go on this list. | |
114 | */ | |
115 | static LIST_HEAD(free_slob_pages); | |
116 | ||
117 | /* | |
118 | * slob_page: True for all slob pages (false for bigblock pages) | |
119 | */ | |
120 | static inline int slob_page(struct slob_page *sp) | |
121 | { | |
122 | return test_bit(PG_active, &sp->flags); | |
123 | } | |
124 | ||
125 | static inline void set_slob_page(struct slob_page *sp) | |
126 | { | |
127 | __set_bit(PG_active, &sp->flags); | |
128 | } | |
129 | ||
130 | static inline void clear_slob_page(struct slob_page *sp) | |
131 | { | |
132 | __clear_bit(PG_active, &sp->flags); | |
133 | } | |
134 | ||
135 | /* | |
136 | * slob_page_free: true for pages on free_slob_pages list. | |
137 | */ | |
138 | static inline int slob_page_free(struct slob_page *sp) | |
139 | { | |
140 | return test_bit(PG_private, &sp->flags); | |
141 | } | |
142 | ||
143 | static inline void set_slob_page_free(struct slob_page *sp) | |
144 | { | |
145 | list_add(&sp->list, &free_slob_pages); | |
146 | __set_bit(PG_private, &sp->flags); | |
147 | } | |
148 | ||
149 | static inline void clear_slob_page_free(struct slob_page *sp) | |
150 | { | |
151 | list_del(&sp->list); | |
152 | __clear_bit(PG_private, &sp->flags); | |
153 | } | |
154 | ||
10cef602 MM |
155 | #define SLOB_UNIT sizeof(slob_t) |
156 | #define SLOB_UNITS(size) (((size) + SLOB_UNIT - 1)/SLOB_UNIT) | |
157 | #define SLOB_ALIGN L1_CACHE_BYTES | |
158 | ||
afc0cedb NP |
159 | /* |
160 | * struct slob_rcu is inserted at the tail of allocated slob blocks, which | |
161 | * were created with a SLAB_DESTROY_BY_RCU slab. slob_rcu is used to free | |
162 | * the block using call_rcu. | |
163 | */ | |
164 | struct slob_rcu { | |
165 | struct rcu_head head; | |
166 | int size; | |
167 | }; | |
168 | ||
95b35127 NP |
169 | /* |
170 | * slob_lock protects all slob allocator structures. | |
171 | */ | |
10cef602 | 172 | static DEFINE_SPINLOCK(slob_lock); |
10cef602 | 173 | |
95b35127 NP |
174 | /* |
175 | * Encode the given size and next info into a free slob block s. | |
176 | */ | |
177 | static void set_slob(slob_t *s, slobidx_t size, slob_t *next) | |
178 | { | |
179 | slob_t *base = (slob_t *)((unsigned long)s & PAGE_MASK); | |
180 | slobidx_t offset = next - base; | |
bcb4ddb4 | 181 | |
95b35127 NP |
182 | if (size > 1) { |
183 | s[0].units = size; | |
184 | s[1].units = offset; | |
185 | } else | |
186 | s[0].units = -offset; | |
187 | } | |
10cef602 | 188 | |
95b35127 NP |
189 | /* |
190 | * Return the size of a slob block. | |
191 | */ | |
192 | static slobidx_t slob_units(slob_t *s) | |
193 | { | |
194 | if (s->units > 0) | |
195 | return s->units; | |
196 | return 1; | |
197 | } | |
198 | ||
199 | /* | |
200 | * Return the next free slob block pointer after this one. | |
201 | */ | |
202 | static slob_t *slob_next(slob_t *s) | |
203 | { | |
204 | slob_t *base = (slob_t *)((unsigned long)s & PAGE_MASK); | |
205 | slobidx_t next; | |
206 | ||
207 | if (s[0].units < 0) | |
208 | next = -s[0].units; | |
209 | else | |
210 | next = s[1].units; | |
211 | return base+next; | |
212 | } | |
213 | ||
214 | /* | |
215 | * Returns true if s is the last free block in its page. | |
216 | */ | |
217 | static int slob_last(slob_t *s) | |
218 | { | |
219 | return !((unsigned long)slob_next(s) & ~PAGE_MASK); | |
220 | } | |
221 | ||
6193a2ff PM |
222 | static void *slob_new_page(gfp_t gfp, int order, int node) |
223 | { | |
224 | void *page; | |
225 | ||
226 | #ifdef CONFIG_NUMA | |
227 | if (node != -1) | |
228 | page = alloc_pages_node(node, gfp, order); | |
229 | else | |
230 | #endif | |
231 | page = alloc_pages(gfp, order); | |
232 | ||
233 | if (!page) | |
234 | return NULL; | |
235 | ||
236 | return page_address(page); | |
237 | } | |
238 | ||
95b35127 NP |
239 | /* |
240 | * Allocate a slob block within a given slob_page sp. | |
241 | */ | |
242 | static void *slob_page_alloc(struct slob_page *sp, size_t size, int align) | |
10cef602 MM |
243 | { |
244 | slob_t *prev, *cur, *aligned = 0; | |
245 | int delta = 0, units = SLOB_UNITS(size); | |
10cef602 | 246 | |
95b35127 NP |
247 | for (prev = NULL, cur = sp->free; ; prev = cur, cur = slob_next(cur)) { |
248 | slobidx_t avail = slob_units(cur); | |
249 | ||
10cef602 MM |
250 | if (align) { |
251 | aligned = (slob_t *)ALIGN((unsigned long)cur, align); | |
252 | delta = aligned - cur; | |
253 | } | |
95b35127 NP |
254 | if (avail >= units + delta) { /* room enough? */ |
255 | slob_t *next; | |
256 | ||
10cef602 | 257 | if (delta) { /* need to fragment head to align? */ |
95b35127 NP |
258 | next = slob_next(cur); |
259 | set_slob(aligned, avail - delta, next); | |
260 | set_slob(cur, delta, aligned); | |
10cef602 MM |
261 | prev = cur; |
262 | cur = aligned; | |
95b35127 | 263 | avail = slob_units(cur); |
10cef602 MM |
264 | } |
265 | ||
95b35127 NP |
266 | next = slob_next(cur); |
267 | if (avail == units) { /* exact fit? unlink. */ | |
268 | if (prev) | |
269 | set_slob(prev, slob_units(prev), next); | |
270 | else | |
271 | sp->free = next; | |
272 | } else { /* fragment */ | |
273 | if (prev) | |
274 | set_slob(prev, slob_units(prev), cur + units); | |
275 | else | |
276 | sp->free = cur + units; | |
277 | set_slob(cur + units, avail - units, next); | |
10cef602 MM |
278 | } |
279 | ||
95b35127 NP |
280 | sp->units -= units; |
281 | if (!sp->units) | |
282 | clear_slob_page_free(sp); | |
10cef602 MM |
283 | return cur; |
284 | } | |
95b35127 NP |
285 | if (slob_last(cur)) |
286 | return NULL; | |
287 | } | |
288 | } | |
10cef602 | 289 | |
95b35127 NP |
290 | /* |
291 | * slob_alloc: entry point into the slob allocator. | |
292 | */ | |
6193a2ff | 293 | static void *slob_alloc(size_t size, gfp_t gfp, int align, int node) |
95b35127 NP |
294 | { |
295 | struct slob_page *sp; | |
296 | slob_t *b = NULL; | |
297 | unsigned long flags; | |
10cef602 | 298 | |
95b35127 NP |
299 | spin_lock_irqsave(&slob_lock, flags); |
300 | /* Iterate through each partially free page, try to find room */ | |
301 | list_for_each_entry(sp, &free_slob_pages, list) { | |
6193a2ff PM |
302 | #ifdef CONFIG_NUMA |
303 | /* | |
304 | * If there's a node specification, search for a partial | |
305 | * page with a matching node id in the freelist. | |
306 | */ | |
307 | if (node != -1 && page_to_nid(&sp->page) != node) | |
308 | continue; | |
309 | #endif | |
310 | ||
95b35127 NP |
311 | if (sp->units >= SLOB_UNITS(size)) { |
312 | b = slob_page_alloc(sp, size, align); | |
313 | if (b) | |
314 | break; | |
10cef602 MM |
315 | } |
316 | } | |
95b35127 NP |
317 | spin_unlock_irqrestore(&slob_lock, flags); |
318 | ||
319 | /* Not enough space: must allocate a new page */ | |
320 | if (!b) { | |
6193a2ff | 321 | b = slob_new_page(gfp, 0, node); |
95b35127 NP |
322 | if (!b) |
323 | return 0; | |
324 | sp = (struct slob_page *)virt_to_page(b); | |
325 | set_slob_page(sp); | |
326 | ||
327 | spin_lock_irqsave(&slob_lock, flags); | |
328 | sp->units = SLOB_UNITS(PAGE_SIZE); | |
329 | sp->free = b; | |
330 | INIT_LIST_HEAD(&sp->list); | |
331 | set_slob(b, SLOB_UNITS(PAGE_SIZE), b + SLOB_UNITS(PAGE_SIZE)); | |
332 | set_slob_page_free(sp); | |
333 | b = slob_page_alloc(sp, size, align); | |
334 | BUG_ON(!b); | |
335 | spin_unlock_irqrestore(&slob_lock, flags); | |
336 | } | |
337 | return b; | |
10cef602 MM |
338 | } |
339 | ||
95b35127 NP |
340 | /* |
341 | * slob_free: entry point into the slob allocator. | |
342 | */ | |
10cef602 MM |
343 | static void slob_free(void *block, int size) |
344 | { | |
95b35127 NP |
345 | struct slob_page *sp; |
346 | slob_t *prev, *next, *b = (slob_t *)block; | |
347 | slobidx_t units; | |
10cef602 MM |
348 | unsigned long flags; |
349 | ||
350 | if (!block) | |
351 | return; | |
95b35127 | 352 | BUG_ON(!size); |
10cef602 | 353 | |
95b35127 NP |
354 | sp = (struct slob_page *)virt_to_page(block); |
355 | units = SLOB_UNITS(size); | |
10cef602 | 356 | |
10cef602 | 357 | spin_lock_irqsave(&slob_lock, flags); |
10cef602 | 358 | |
95b35127 NP |
359 | if (sp->units + units == SLOB_UNITS(PAGE_SIZE)) { |
360 | /* Go directly to page allocator. Do not pass slob allocator */ | |
361 | if (slob_page_free(sp)) | |
362 | clear_slob_page_free(sp); | |
363 | clear_slob_page(sp); | |
364 | free_slob_page(sp); | |
365 | free_page((unsigned long)b); | |
366 | goto out; | |
367 | } | |
10cef602 | 368 | |
95b35127 NP |
369 | if (!slob_page_free(sp)) { |
370 | /* This slob page is about to become partially free. Easy! */ | |
371 | sp->units = units; | |
372 | sp->free = b; | |
373 | set_slob(b, units, | |
374 | (void *)((unsigned long)(b + | |
375 | SLOB_UNITS(PAGE_SIZE)) & PAGE_MASK)); | |
376 | set_slob_page_free(sp); | |
377 | goto out; | |
378 | } | |
379 | ||
380 | /* | |
381 | * Otherwise the page is already partially free, so find reinsertion | |
382 | * point. | |
383 | */ | |
384 | sp->units += units; | |
10cef602 | 385 | |
95b35127 NP |
386 | if (b < sp->free) { |
387 | set_slob(b, units, sp->free); | |
388 | sp->free = b; | |
389 | } else { | |
390 | prev = sp->free; | |
391 | next = slob_next(prev); | |
392 | while (b > next) { | |
393 | prev = next; | |
394 | next = slob_next(prev); | |
395 | } | |
10cef602 | 396 | |
95b35127 NP |
397 | if (!slob_last(prev) && b + units == next) { |
398 | units += slob_units(next); | |
399 | set_slob(b, units, slob_next(next)); | |
400 | } else | |
401 | set_slob(b, units, next); | |
402 | ||
403 | if (prev + slob_units(prev) == b) { | |
404 | units = slob_units(b) + slob_units(prev); | |
405 | set_slob(prev, units, slob_next(b)); | |
406 | } else | |
407 | set_slob(prev, slob_units(prev), b); | |
408 | } | |
409 | out: | |
10cef602 MM |
410 | spin_unlock_irqrestore(&slob_lock, flags); |
411 | } | |
412 | ||
95b35127 NP |
413 | /* |
414 | * End of slob allocator proper. Begin kmem_cache_alloc and kmalloc frontend. | |
415 | */ | |
416 | ||
55394849 NP |
417 | #ifndef ARCH_KMALLOC_MINALIGN |
418 | #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long) | |
419 | #endif | |
420 | ||
421 | #ifndef ARCH_SLAB_MINALIGN | |
422 | #define ARCH_SLAB_MINALIGN __alignof__(unsigned long) | |
423 | #endif | |
424 | ||
6193a2ff | 425 | void *__kmalloc_node(size_t size, gfp_t gfp, int node) |
10cef602 | 426 | { |
55394849 NP |
427 | int align = max(ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN); |
428 | ||
429 | if (size < PAGE_SIZE - align) { | |
430 | unsigned int *m; | |
6193a2ff | 431 | m = slob_alloc(size + align, gfp, align, node); |
95b35127 | 432 | if (m) |
55394849 NP |
433 | *m = size; |
434 | return (void *)m + align; | |
d87a133f NP |
435 | } else { |
436 | void *ret; | |
437 | ||
6193a2ff | 438 | ret = slob_new_page(gfp | __GFP_COMP, get_order(size), node); |
d87a133f NP |
439 | if (ret) { |
440 | struct page *page; | |
441 | page = virt_to_page(ret); | |
442 | page->private = size; | |
443 | } | |
444 | return ret; | |
10cef602 | 445 | } |
10cef602 | 446 | } |
6193a2ff | 447 | EXPORT_SYMBOL(__kmalloc_node); |
10cef602 | 448 | |
fd76bab2 PE |
449 | /** |
450 | * krealloc - reallocate memory. The contents will remain unchanged. | |
451 | * | |
452 | * @p: object to reallocate memory for. | |
453 | * @new_size: how many bytes of memory are required. | |
454 | * @flags: the type of memory to allocate. | |
455 | * | |
456 | * The contents of the object pointed to are preserved up to the | |
457 | * lesser of the new and old sizes. If @p is %NULL, krealloc() | |
458 | * behaves exactly like kmalloc(). If @size is 0 and @p is not a | |
459 | * %NULL pointer, the object pointed to is freed. | |
460 | */ | |
461 | void *krealloc(const void *p, size_t new_size, gfp_t flags) | |
462 | { | |
463 | void *ret; | |
464 | ||
465 | if (unlikely(!p)) | |
466 | return kmalloc_track_caller(new_size, flags); | |
467 | ||
468 | if (unlikely(!new_size)) { | |
469 | kfree(p); | |
470 | return NULL; | |
471 | } | |
472 | ||
473 | ret = kmalloc_track_caller(new_size, flags); | |
474 | if (ret) { | |
475 | memcpy(ret, p, min(new_size, ksize(p))); | |
476 | kfree(p); | |
477 | } | |
478 | return ret; | |
479 | } | |
480 | EXPORT_SYMBOL(krealloc); | |
481 | ||
10cef602 MM |
482 | void kfree(const void *block) |
483 | { | |
95b35127 | 484 | struct slob_page *sp; |
10cef602 MM |
485 | |
486 | if (!block) | |
487 | return; | |
488 | ||
95b35127 | 489 | sp = (struct slob_page *)virt_to_page(block); |
d87a133f | 490 | if (slob_page(sp)) { |
55394849 NP |
491 | int align = max(ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN); |
492 | unsigned int *m = (unsigned int *)(block - align); | |
493 | slob_free(m, *m + align); | |
d87a133f NP |
494 | } else |
495 | put_page(&sp->page); | |
10cef602 | 496 | } |
10cef602 MM |
497 | EXPORT_SYMBOL(kfree); |
498 | ||
d87a133f | 499 | /* can't use ksize for kmem_cache_alloc memory, only kmalloc */ |
fd76bab2 | 500 | size_t ksize(const void *block) |
10cef602 | 501 | { |
95b35127 | 502 | struct slob_page *sp; |
10cef602 MM |
503 | |
504 | if (!block) | |
505 | return 0; | |
506 | ||
95b35127 | 507 | sp = (struct slob_page *)virt_to_page(block); |
d87a133f NP |
508 | if (slob_page(sp)) |
509 | return ((slob_t *)block - 1)->units + SLOB_UNIT; | |
510 | else | |
511 | return sp->page.private; | |
10cef602 MM |
512 | } |
513 | ||
514 | struct kmem_cache { | |
515 | unsigned int size, align; | |
afc0cedb | 516 | unsigned long flags; |
10cef602 MM |
517 | const char *name; |
518 | void (*ctor)(void *, struct kmem_cache *, unsigned long); | |
10cef602 MM |
519 | }; |
520 | ||
521 | struct kmem_cache *kmem_cache_create(const char *name, size_t size, | |
522 | size_t align, unsigned long flags, | |
523 | void (*ctor)(void*, struct kmem_cache *, unsigned long), | |
524 | void (*dtor)(void*, struct kmem_cache *, unsigned long)) | |
525 | { | |
526 | struct kmem_cache *c; | |
527 | ||
6193a2ff | 528 | c = slob_alloc(sizeof(struct kmem_cache), flags, 0, -1); |
10cef602 MM |
529 | |
530 | if (c) { | |
531 | c->name = name; | |
532 | c->size = size; | |
afc0cedb | 533 | if (flags & SLAB_DESTROY_BY_RCU) { |
afc0cedb NP |
534 | /* leave room for rcu footer at the end of object */ |
535 | c->size += sizeof(struct slob_rcu); | |
536 | } | |
537 | c->flags = flags; | |
10cef602 | 538 | c->ctor = ctor; |
10cef602 | 539 | /* ignore alignment unless it's forced */ |
5af60839 | 540 | c->align = (flags & SLAB_HWCACHE_ALIGN) ? SLOB_ALIGN : 0; |
55394849 NP |
541 | if (c->align < ARCH_SLAB_MINALIGN) |
542 | c->align = ARCH_SLAB_MINALIGN; | |
10cef602 MM |
543 | if (c->align < align) |
544 | c->align = align; | |
bc0055ae AM |
545 | } else if (flags & SLAB_PANIC) |
546 | panic("Cannot create slab cache %s\n", name); | |
10cef602 MM |
547 | |
548 | return c; | |
549 | } | |
550 | EXPORT_SYMBOL(kmem_cache_create); | |
551 | ||
133d205a | 552 | void kmem_cache_destroy(struct kmem_cache *c) |
10cef602 MM |
553 | { |
554 | slob_free(c, sizeof(struct kmem_cache)); | |
10cef602 MM |
555 | } |
556 | EXPORT_SYMBOL(kmem_cache_destroy); | |
557 | ||
6193a2ff | 558 | void *kmem_cache_alloc_node(struct kmem_cache *c, gfp_t flags, int node) |
10cef602 MM |
559 | { |
560 | void *b; | |
561 | ||
562 | if (c->size < PAGE_SIZE) | |
6193a2ff | 563 | b = slob_alloc(c->size, flags, c->align, node); |
10cef602 | 564 | else |
6193a2ff | 565 | b = slob_new_page(flags, get_order(c->size), node); |
10cef602 MM |
566 | |
567 | if (c->ctor) | |
a35afb83 | 568 | c->ctor(b, c, 0); |
10cef602 MM |
569 | |
570 | return b; | |
571 | } | |
6193a2ff | 572 | EXPORT_SYMBOL(kmem_cache_alloc_node); |
10cef602 | 573 | |
a8c0f9a4 PE |
574 | void *kmem_cache_zalloc(struct kmem_cache *c, gfp_t flags) |
575 | { | |
576 | void *ret = kmem_cache_alloc(c, flags); | |
577 | if (ret) | |
578 | memset(ret, 0, c->size); | |
579 | ||
580 | return ret; | |
581 | } | |
582 | EXPORT_SYMBOL(kmem_cache_zalloc); | |
583 | ||
afc0cedb | 584 | static void __kmem_cache_free(void *b, int size) |
10cef602 | 585 | { |
afc0cedb NP |
586 | if (size < PAGE_SIZE) |
587 | slob_free(b, size); | |
10cef602 | 588 | else |
afc0cedb NP |
589 | free_pages((unsigned long)b, get_order(size)); |
590 | } | |
591 | ||
592 | static void kmem_rcu_free(struct rcu_head *head) | |
593 | { | |
594 | struct slob_rcu *slob_rcu = (struct slob_rcu *)head; | |
595 | void *b = (void *)slob_rcu - (slob_rcu->size - sizeof(struct slob_rcu)); | |
596 | ||
597 | __kmem_cache_free(b, slob_rcu->size); | |
598 | } | |
599 | ||
600 | void kmem_cache_free(struct kmem_cache *c, void *b) | |
601 | { | |
602 | if (unlikely(c->flags & SLAB_DESTROY_BY_RCU)) { | |
603 | struct slob_rcu *slob_rcu; | |
604 | slob_rcu = b + (c->size - sizeof(struct slob_rcu)); | |
605 | INIT_RCU_HEAD(&slob_rcu->head); | |
606 | slob_rcu->size = c->size; | |
607 | call_rcu(&slob_rcu->head, kmem_rcu_free); | |
608 | } else { | |
afc0cedb NP |
609 | __kmem_cache_free(b, c->size); |
610 | } | |
10cef602 MM |
611 | } |
612 | EXPORT_SYMBOL(kmem_cache_free); | |
613 | ||
614 | unsigned int kmem_cache_size(struct kmem_cache *c) | |
615 | { | |
616 | return c->size; | |
617 | } | |
618 | EXPORT_SYMBOL(kmem_cache_size); | |
619 | ||
620 | const char *kmem_cache_name(struct kmem_cache *c) | |
621 | { | |
622 | return c->name; | |
623 | } | |
624 | EXPORT_SYMBOL(kmem_cache_name); | |
625 | ||
2e892f43 CL |
626 | int kmem_cache_shrink(struct kmem_cache *d) |
627 | { | |
628 | return 0; | |
629 | } | |
630 | EXPORT_SYMBOL(kmem_cache_shrink); | |
631 | ||
55935a34 | 632 | int kmem_ptr_validate(struct kmem_cache *a, const void *b) |
2e892f43 CL |
633 | { |
634 | return 0; | |
635 | } | |
636 | ||
bcb4ddb4 DG |
637 | void __init kmem_cache_init(void) |
638 | { | |
10cef602 | 639 | } |