]> Git Repo - linux.git/blame - fs/btrfs/file.c
btrfs: fix data races when accessing the reserved amount of block reserves
[linux.git] / fs / btrfs / file.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
39279cc3
CM
6#include <linux/fs.h>
7#include <linux/pagemap.h>
39279cc3
CM
8#include <linux/time.h>
9#include <linux/init.h>
10#include <linux/string.h>
39279cc3 11#include <linux/backing-dev.h>
2fe17c10 12#include <linux/falloc.h>
39279cc3 13#include <linux/writeback.h>
39279cc3 14#include <linux/compat.h>
5a0e3ad6 15#include <linux/slab.h>
55e301fd 16#include <linux/btrfs.h>
e2e40f2c 17#include <linux/uio.h>
ae5e165d 18#include <linux/iversion.h>
14605409 19#include <linux/fsverity.h>
3ecb43cb 20#include <linux/iomap.h>
39279cc3
CM
21#include "ctree.h"
22#include "disk-io.h"
23#include "transaction.h"
24#include "btrfs_inode.h"
39279cc3 25#include "print-tree.h"
e02119d5
CM
26#include "tree-log.h"
27#include "locking.h"
2aaa6655 28#include "volumes.h"
fcebe456 29#include "qgroup.h"
ebb8765b 30#include "compression.h"
86736342 31#include "delalloc-space.h"
6a177381 32#include "reflink.h"
f02a85d2 33#include "subpage.h"
c7f13d42 34#include "fs.h"
07e81dc9 35#include "accessors.h"
a0231804 36#include "extent-tree.h"
7c8ede16 37#include "file-item.h"
7572dec8 38#include "ioctl.h"
af142b6f 39#include "file.h"
7f0add25 40#include "super.h"
39279cc3 41
d352ac68
CM
42/* simple helper to fault in pages and copy. This should go away
43 * and be replaced with calls into generic code.
44 */
ee22f0c4 45static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
a1b32a59 46 struct page **prepared_pages,
11c65dcc 47 struct iov_iter *i)
39279cc3 48{
914ee295 49 size_t copied = 0;
d0215f3e 50 size_t total_copied = 0;
11c65dcc 51 int pg = 0;
7073017a 52 int offset = offset_in_page(pos);
39279cc3 53
11c65dcc 54 while (write_bytes > 0) {
39279cc3 55 size_t count = min_t(size_t,
09cbfeaf 56 PAGE_SIZE - offset, write_bytes);
11c65dcc 57 struct page *page = prepared_pages[pg];
914ee295
XZ
58 /*
59 * Copy data from userspace to the current page
914ee295 60 */
f0b65f39 61 copied = copy_page_from_iter_atomic(page, offset, count, i);
11c65dcc 62
39279cc3
CM
63 /* Flush processor's dcache for this page */
64 flush_dcache_page(page);
31339acd
CM
65
66 /*
67 * if we get a partial write, we can end up with
68 * partially up to date pages. These add
69 * a lot of complexity, so make sure they don't
70 * happen by forcing this copy to be retried.
71 *
72 * The rest of the btrfs_file_write code will fall
73 * back to page at a time copies after we return 0.
74 */
f0b65f39
AV
75 if (unlikely(copied < count)) {
76 if (!PageUptodate(page)) {
77 iov_iter_revert(i, copied);
78 copied = 0;
79 }
80 if (!copied)
81 break;
82 }
31339acd 83
11c65dcc 84 write_bytes -= copied;
914ee295 85 total_copied += copied;
f0b65f39
AV
86 offset += copied;
87 if (offset == PAGE_SIZE) {
11c65dcc
JB
88 pg++;
89 offset = 0;
90 }
39279cc3 91 }
914ee295 92 return total_copied;
39279cc3
CM
93}
94
d352ac68
CM
95/*
96 * unlocks pages after btrfs_file_write is done with them
97 */
e4f94347
QW
98static void btrfs_drop_pages(struct btrfs_fs_info *fs_info,
99 struct page **pages, size_t num_pages,
100 u64 pos, u64 copied)
39279cc3
CM
101{
102 size_t i;
e4f94347
QW
103 u64 block_start = round_down(pos, fs_info->sectorsize);
104 u64 block_len = round_up(pos + copied, fs_info->sectorsize) - block_start;
105
106 ASSERT(block_len <= U32_MAX);
39279cc3 107 for (i = 0; i < num_pages; i++) {
d352ac68
CM
108 /* page checked is some magic around finding pages that
109 * have been modified without going through btrfs_set_page_dirty
2457aec6
MG
110 * clear it here. There should be no need to mark the pages
111 * accessed as prepare_pages should have marked them accessed
112 * in prepare_pages via find_or_create_page()
d352ac68 113 */
55151ea9
QW
114 btrfs_folio_clamp_clear_checked(fs_info, page_folio(pages[i]),
115 block_start, block_len);
39279cc3 116 unlock_page(pages[i]);
09cbfeaf 117 put_page(pages[i]);
39279cc3
CM
118 }
119}
120
d352ac68 121/*
c0fab480
QW
122 * After btrfs_copy_from_user(), update the following things for delalloc:
123 * - Mark newly dirtied pages as DELALLOC in the io tree.
124 * Used to advise which range is to be written back.
125 * - Mark modified pages as Uptodate/Dirty and not needing COW fixup
126 * - Update inode size for past EOF write
d352ac68 127 */
088545f6 128int btrfs_dirty_pages(struct btrfs_inode *inode, struct page **pages,
2ff7e61e 129 size_t num_pages, loff_t pos, size_t write_bytes,
aa8c1a41 130 struct extent_state **cached, bool noreserve)
39279cc3 131{
088545f6 132 struct btrfs_fs_info *fs_info = inode->root->fs_info;
39279cc3 133 int err = 0;
a52d9a80 134 int i;
db94535d 135 u64 num_bytes;
a52d9a80
CM
136 u64 start_pos;
137 u64 end_of_last_block;
138 u64 end_pos = pos + write_bytes;
088545f6 139 loff_t isize = i_size_read(&inode->vfs_inode);
e3b8a485 140 unsigned int extra_bits = 0;
39279cc3 141
aa8c1a41
GR
142 if (write_bytes == 0)
143 return 0;
144
145 if (noreserve)
146 extra_bits |= EXTENT_NORESERVE;
147
13f0dd8f 148 start_pos = round_down(pos, fs_info->sectorsize);
da17066c 149 num_bytes = round_up(write_bytes + pos - start_pos,
0b246afa 150 fs_info->sectorsize);
f02a85d2 151 ASSERT(num_bytes <= U32_MAX);
39279cc3 152
db94535d 153 end_of_last_block = start_pos + num_bytes - 1;
e3b8a485 154
7703bdd8
CM
155 /*
156 * The pages may have already been dirty, clear out old accounting so
157 * we can set things up properly
158 */
088545f6 159 clear_extent_bit(&inode->io_tree, start_pos, end_of_last_block,
e182163d 160 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
bd015294 161 cached);
7703bdd8 162
088545f6 163 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
330a5827 164 extra_bits, cached);
d0215f3e
JB
165 if (err)
166 return err;
9ed74f2d 167
c8b97818
CM
168 for (i = 0; i < num_pages; i++) {
169 struct page *p = pages[i];
f02a85d2 170
55151ea9
QW
171 btrfs_folio_clamp_set_uptodate(fs_info, page_folio(p),
172 start_pos, num_bytes);
173 btrfs_folio_clamp_clear_checked(fs_info, page_folio(p),
174 start_pos, num_bytes);
175 btrfs_folio_clamp_set_dirty(fs_info, page_folio(p),
176 start_pos, num_bytes);
a52d9a80 177 }
9f570b8d
JB
178
179 /*
180 * we've only changed i_size in ram, and we haven't updated
181 * the disk i_size. There is no need to log the inode
182 * at this time.
183 */
184 if (end_pos > isize)
088545f6 185 i_size_write(&inode->vfs_inode, end_pos);
a22285a6 186 return 0;
39279cc3
CM
187}
188
189/*
190 * this is very complex, but the basic idea is to drop all extents
191 * in the range start - end. hint_block is filled in with a block number
192 * that would be a good hint to the block allocator for this file.
193 *
194 * If an extent intersects the range but is not entirely inside the range
195 * it is either truncated or split. Anything entirely inside the range
196 * is deleted from the tree.
2766ff61
FM
197 *
198 * Note: the VFS' inode number of bytes is not updated, it's up to the caller
199 * to deal with that. We set the field 'bytes_found' of the arguments structure
200 * with the number of allocated bytes found in the target range, so that the
201 * caller can update the inode's number of bytes in an atomic way when
202 * replacing extents in a range to avoid races with stat(2).
39279cc3 203 */
5893dfb9
FM
204int btrfs_drop_extents(struct btrfs_trans_handle *trans,
205 struct btrfs_root *root, struct btrfs_inode *inode,
206 struct btrfs_drop_extents_args *args)
39279cc3 207{
0b246afa 208 struct btrfs_fs_info *fs_info = root->fs_info;
5f39d397 209 struct extent_buffer *leaf;
920bbbfb 210 struct btrfs_file_extent_item *fi;
82fa113f 211 struct btrfs_ref ref = { 0 };
00f5c795 212 struct btrfs_key key;
920bbbfb 213 struct btrfs_key new_key;
906c448c 214 u64 ino = btrfs_ino(inode);
5893dfb9 215 u64 search_start = args->start;
920bbbfb
YZ
216 u64 disk_bytenr = 0;
217 u64 num_bytes = 0;
218 u64 extent_offset = 0;
219 u64 extent_end = 0;
5893dfb9 220 u64 last_end = args->start;
920bbbfb
YZ
221 int del_nr = 0;
222 int del_slot = 0;
223 int extent_type;
ccd467d6 224 int recow;
00f5c795 225 int ret;
dc7fdde3 226 int modify_tree = -1;
27cdeb70 227 int update_refs;
c3308f84 228 int found = 0;
5893dfb9
FM
229 struct btrfs_path *path = args->path;
230
2766ff61 231 args->bytes_found = 0;
5893dfb9
FM
232 args->extent_inserted = false;
233
234 /* Must always have a path if ->replace_extent is true */
235 ASSERT(!(args->replace_extent && !args->path));
236
237 if (!path) {
238 path = btrfs_alloc_path();
239 if (!path) {
240 ret = -ENOMEM;
241 goto out;
242 }
243 }
39279cc3 244
5893dfb9 245 if (args->drop_cache)
4c0c8cfc 246 btrfs_drop_extent_map_range(inode, args->start, args->end - 1, false);
a52d9a80 247
5893dfb9 248 if (args->start >= inode->disk_i_size && !args->replace_extent)
dc7fdde3
CM
249 modify_tree = 0;
250
d175209b 251 update_refs = (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID);
d397712b 252 while (1) {
ccd467d6 253 recow = 0;
33345d01 254 ret = btrfs_lookup_file_extent(trans, root, path, ino,
dc7fdde3 255 search_start, modify_tree);
39279cc3 256 if (ret < 0)
920bbbfb 257 break;
5893dfb9 258 if (ret > 0 && path->slots[0] > 0 && search_start == args->start) {
920bbbfb
YZ
259 leaf = path->nodes[0];
260 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
33345d01 261 if (key.objectid == ino &&
920bbbfb
YZ
262 key.type == BTRFS_EXTENT_DATA_KEY)
263 path->slots[0]--;
39279cc3 264 }
920bbbfb 265 ret = 0;
8c2383c3 266next_slot:
5f39d397 267 leaf = path->nodes[0];
920bbbfb
YZ
268 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
269 BUG_ON(del_nr > 0);
270 ret = btrfs_next_leaf(root, path);
271 if (ret < 0)
272 break;
273 if (ret > 0) {
274 ret = 0;
275 break;
8c2383c3 276 }
920bbbfb
YZ
277 leaf = path->nodes[0];
278 recow = 1;
279 }
280
281 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
aeafbf84
FM
282
283 if (key.objectid > ino)
284 break;
285 if (WARN_ON_ONCE(key.objectid < ino) ||
286 key.type < BTRFS_EXTENT_DATA_KEY) {
287 ASSERT(del_nr == 0);
288 path->slots[0]++;
289 goto next_slot;
290 }
5893dfb9 291 if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= args->end)
920bbbfb
YZ
292 break;
293
294 fi = btrfs_item_ptr(leaf, path->slots[0],
295 struct btrfs_file_extent_item);
296 extent_type = btrfs_file_extent_type(leaf, fi);
297
298 if (extent_type == BTRFS_FILE_EXTENT_REG ||
299 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
300 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
301 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
302 extent_offset = btrfs_file_extent_offset(leaf, fi);
303 extent_end = key.offset +
304 btrfs_file_extent_num_bytes(leaf, fi);
305 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
306 extent_end = key.offset +
e41ca589 307 btrfs_file_extent_ram_bytes(leaf, fi);
8c2383c3 308 } else {
aeafbf84
FM
309 /* can't happen */
310 BUG();
39279cc3
CM
311 }
312
fc19c5e7
FM
313 /*
314 * Don't skip extent items representing 0 byte lengths. They
315 * used to be created (bug) if while punching holes we hit
316 * -ENOSPC condition. So if we find one here, just ensure we
317 * delete it, otherwise we would insert a new file extent item
318 * with the same key (offset) as that 0 bytes length file
319 * extent item in the call to setup_items_for_insert() later
320 * in this function.
321 */
62fe51c1
JB
322 if (extent_end == key.offset && extent_end >= search_start) {
323 last_end = extent_end;
fc19c5e7 324 goto delete_extent_item;
62fe51c1 325 }
fc19c5e7 326
920bbbfb
YZ
327 if (extent_end <= search_start) {
328 path->slots[0]++;
8c2383c3 329 goto next_slot;
39279cc3
CM
330 }
331
c3308f84 332 found = 1;
5893dfb9 333 search_start = max(key.offset, args->start);
dc7fdde3
CM
334 if (recow || !modify_tree) {
335 modify_tree = -1;
b3b4aa74 336 btrfs_release_path(path);
920bbbfb 337 continue;
39279cc3 338 }
6643558d 339
920bbbfb
YZ
340 /*
341 * | - range to drop - |
342 * | -------- extent -------- |
343 */
5893dfb9 344 if (args->start > key.offset && args->end < extent_end) {
920bbbfb 345 BUG_ON(del_nr > 0);
00fdf13a 346 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3f9e3df8 347 ret = -EOPNOTSUPP;
00fdf13a
LB
348 break;
349 }
920bbbfb
YZ
350
351 memcpy(&new_key, &key, sizeof(new_key));
5893dfb9 352 new_key.offset = args->start;
920bbbfb
YZ
353 ret = btrfs_duplicate_item(trans, root, path,
354 &new_key);
355 if (ret == -EAGAIN) {
b3b4aa74 356 btrfs_release_path(path);
920bbbfb 357 continue;
6643558d 358 }
920bbbfb
YZ
359 if (ret < 0)
360 break;
361
362 leaf = path->nodes[0];
363 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
364 struct btrfs_file_extent_item);
365 btrfs_set_file_extent_num_bytes(leaf, fi,
5893dfb9 366 args->start - key.offset);
920bbbfb
YZ
367
368 fi = btrfs_item_ptr(leaf, path->slots[0],
369 struct btrfs_file_extent_item);
370
5893dfb9 371 extent_offset += args->start - key.offset;
920bbbfb
YZ
372 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
373 btrfs_set_file_extent_num_bytes(leaf, fi,
5893dfb9 374 extent_end - args->start);
50564b65 375 btrfs_mark_buffer_dirty(trans, leaf);
920bbbfb 376
5dc562c5 377 if (update_refs && disk_bytenr > 0) {
82fa113f
QW
378 btrfs_init_generic_ref(&ref,
379 BTRFS_ADD_DELAYED_REF,
457cb1dd
BB
380 disk_bytenr, num_bytes, 0,
381 root->root_key.objectid);
82fa113f 382 btrfs_init_data_ref(&ref,
920bbbfb
YZ
383 root->root_key.objectid,
384 new_key.objectid,
f42c5da6
NB
385 args->start - extent_offset,
386 0, false);
82fa113f 387 ret = btrfs_inc_extent_ref(trans, &ref);
162d053e
FM
388 if (ret) {
389 btrfs_abort_transaction(trans, ret);
390 break;
391 }
771ed689 392 }
5893dfb9 393 key.offset = args->start;
6643558d 394 }
62fe51c1
JB
395 /*
396 * From here on out we will have actually dropped something, so
397 * last_end can be updated.
398 */
399 last_end = extent_end;
400
920bbbfb
YZ
401 /*
402 * | ---- range to drop ----- |
403 * | -------- extent -------- |
404 */
5893dfb9 405 if (args->start <= key.offset && args->end < extent_end) {
00fdf13a 406 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3f9e3df8 407 ret = -EOPNOTSUPP;
00fdf13a
LB
408 break;
409 }
6643558d 410
920bbbfb 411 memcpy(&new_key, &key, sizeof(new_key));
5893dfb9 412 new_key.offset = args->end;
50564b65 413 btrfs_set_item_key_safe(trans, path, &new_key);
6643558d 414
5893dfb9 415 extent_offset += args->end - key.offset;
920bbbfb
YZ
416 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
417 btrfs_set_file_extent_num_bytes(leaf, fi,
5893dfb9 418 extent_end - args->end);
50564b65 419 btrfs_mark_buffer_dirty(trans, leaf);
2671485d 420 if (update_refs && disk_bytenr > 0)
2766ff61 421 args->bytes_found += args->end - key.offset;
920bbbfb 422 break;
39279cc3 423 }
771ed689 424
920bbbfb
YZ
425 search_start = extent_end;
426 /*
427 * | ---- range to drop ----- |
428 * | -------- extent -------- |
429 */
5893dfb9 430 if (args->start > key.offset && args->end >= extent_end) {
920bbbfb 431 BUG_ON(del_nr > 0);
00fdf13a 432 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3f9e3df8 433 ret = -EOPNOTSUPP;
00fdf13a
LB
434 break;
435 }
8c2383c3 436
920bbbfb 437 btrfs_set_file_extent_num_bytes(leaf, fi,
5893dfb9 438 args->start - key.offset);
50564b65 439 btrfs_mark_buffer_dirty(trans, leaf);
2671485d 440 if (update_refs && disk_bytenr > 0)
2766ff61 441 args->bytes_found += extent_end - args->start;
5893dfb9 442 if (args->end == extent_end)
920bbbfb 443 break;
c8b97818 444
920bbbfb
YZ
445 path->slots[0]++;
446 goto next_slot;
31840ae1
ZY
447 }
448
920bbbfb
YZ
449 /*
450 * | ---- range to drop ----- |
451 * | ------ extent ------ |
452 */
5893dfb9 453 if (args->start <= key.offset && args->end >= extent_end) {
fc19c5e7 454delete_extent_item:
920bbbfb
YZ
455 if (del_nr == 0) {
456 del_slot = path->slots[0];
457 del_nr = 1;
458 } else {
459 BUG_ON(del_slot + del_nr != path->slots[0]);
460 del_nr++;
461 }
31840ae1 462
5dc562c5
JB
463 if (update_refs &&
464 extent_type == BTRFS_FILE_EXTENT_INLINE) {
2766ff61 465 args->bytes_found += extent_end - key.offset;
920bbbfb 466 extent_end = ALIGN(extent_end,
0b246afa 467 fs_info->sectorsize);
5dc562c5 468 } else if (update_refs && disk_bytenr > 0) {
ffd4bb2a
QW
469 btrfs_init_generic_ref(&ref,
470 BTRFS_DROP_DELAYED_REF,
457cb1dd
BB
471 disk_bytenr, num_bytes, 0,
472 root->root_key.objectid);
ffd4bb2a 473 btrfs_init_data_ref(&ref,
920bbbfb 474 root->root_key.objectid,
ffd4bb2a 475 key.objectid,
f42c5da6
NB
476 key.offset - extent_offset, 0,
477 false);
ffd4bb2a 478 ret = btrfs_free_extent(trans, &ref);
162d053e
FM
479 if (ret) {
480 btrfs_abort_transaction(trans, ret);
481 break;
482 }
2766ff61 483 args->bytes_found += extent_end - key.offset;
31840ae1 484 }
31840ae1 485
5893dfb9 486 if (args->end == extent_end)
920bbbfb
YZ
487 break;
488
489 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
490 path->slots[0]++;
491 goto next_slot;
492 }
493
494 ret = btrfs_del_items(trans, root, path, del_slot,
495 del_nr);
79787eaa 496 if (ret) {
66642832 497 btrfs_abort_transaction(trans, ret);
5dc562c5 498 break;
79787eaa 499 }
920bbbfb
YZ
500
501 del_nr = 0;
502 del_slot = 0;
503
b3b4aa74 504 btrfs_release_path(path);
920bbbfb 505 continue;
39279cc3 506 }
920bbbfb 507
290342f6 508 BUG();
39279cc3 509 }
920bbbfb 510
79787eaa 511 if (!ret && del_nr > 0) {
1acae57b
FDBM
512 /*
513 * Set path->slots[0] to first slot, so that after the delete
514 * if items are move off from our leaf to its immediate left or
515 * right neighbor leafs, we end up with a correct and adjusted
5893dfb9 516 * path->slots[0] for our insertion (if args->replace_extent).
1acae57b
FDBM
517 */
518 path->slots[0] = del_slot;
920bbbfb 519 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
79787eaa 520 if (ret)
66642832 521 btrfs_abort_transaction(trans, ret);
d5f37527 522 }
1acae57b 523
d5f37527
FDBM
524 leaf = path->nodes[0];
525 /*
526 * If btrfs_del_items() was called, it might have deleted a leaf, in
527 * which case it unlocked our path, so check path->locks[0] matches a
528 * write lock.
529 */
7ecb4c31 530 if (!ret && args->replace_extent &&
ac5887c8 531 path->locks[0] == BTRFS_WRITE_LOCK &&
e902baac 532 btrfs_leaf_free_space(leaf) >=
5893dfb9 533 sizeof(struct btrfs_item) + args->extent_item_size) {
d5f37527
FDBM
534
535 key.objectid = ino;
536 key.type = BTRFS_EXTENT_DATA_KEY;
5893dfb9 537 key.offset = args->start;
d5f37527
FDBM
538 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
539 struct btrfs_key slot_key;
540
541 btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
542 if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
543 path->slots[0]++;
1acae57b 544 }
50564b65
FM
545 btrfs_setup_item_for_insert(trans, root, path, &key,
546 args->extent_item_size);
5893dfb9 547 args->extent_inserted = true;
6643558d 548 }
920bbbfb 549
5893dfb9
FM
550 if (!args->path)
551 btrfs_free_path(path);
552 else if (!args->extent_inserted)
1acae57b 553 btrfs_release_path(path);
5893dfb9
FM
554out:
555 args->drop_end = found ? min(args->end, last_end) : args->end;
5dc562c5 556
39279cc3
CM
557 return ret;
558}
559
d899e052 560static int extent_mergeable(struct extent_buffer *leaf, int slot,
6c7d54ac
YZ
561 u64 objectid, u64 bytenr, u64 orig_offset,
562 u64 *start, u64 *end)
d899e052
YZ
563{
564 struct btrfs_file_extent_item *fi;
565 struct btrfs_key key;
566 u64 extent_end;
567
568 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
569 return 0;
570
571 btrfs_item_key_to_cpu(leaf, &key, slot);
572 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
573 return 0;
574
575 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
576 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
577 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
6c7d54ac 578 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
d899e052
YZ
579 btrfs_file_extent_compression(leaf, fi) ||
580 btrfs_file_extent_encryption(leaf, fi) ||
581 btrfs_file_extent_other_encoding(leaf, fi))
582 return 0;
583
584 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
585 if ((*start && *start != key.offset) || (*end && *end != extent_end))
586 return 0;
587
588 *start = key.offset;
589 *end = extent_end;
590 return 1;
591}
592
593/*
594 * Mark extent in the range start - end as written.
595 *
596 * This changes extent type from 'pre-allocated' to 'regular'. If only
597 * part of extent is marked as written, the extent will be split into
598 * two or three.
599 */
600int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
7a6d7067 601 struct btrfs_inode *inode, u64 start, u64 end)
d899e052 602{
7a6d7067 603 struct btrfs_root *root = inode->root;
d899e052
YZ
604 struct extent_buffer *leaf;
605 struct btrfs_path *path;
606 struct btrfs_file_extent_item *fi;
82fa113f 607 struct btrfs_ref ref = { 0 };
d899e052 608 struct btrfs_key key;
920bbbfb 609 struct btrfs_key new_key;
d899e052
YZ
610 u64 bytenr;
611 u64 num_bytes;
612 u64 extent_end;
5d4f98a2 613 u64 orig_offset;
d899e052
YZ
614 u64 other_start;
615 u64 other_end;
920bbbfb
YZ
616 u64 split;
617 int del_nr = 0;
618 int del_slot = 0;
6c7d54ac 619 int recow;
e7b2ec3d 620 int ret = 0;
7a6d7067 621 u64 ino = btrfs_ino(inode);
d899e052 622
d899e052 623 path = btrfs_alloc_path();
d8926bb3
MF
624 if (!path)
625 return -ENOMEM;
d899e052 626again:
6c7d54ac 627 recow = 0;
920bbbfb 628 split = start;
33345d01 629 key.objectid = ino;
d899e052 630 key.type = BTRFS_EXTENT_DATA_KEY;
920bbbfb 631 key.offset = split;
d899e052
YZ
632
633 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
41415730
JB
634 if (ret < 0)
635 goto out;
d899e052
YZ
636 if (ret > 0 && path->slots[0] > 0)
637 path->slots[0]--;
638
639 leaf = path->nodes[0];
640 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
9c8e63db
JB
641 if (key.objectid != ino ||
642 key.type != BTRFS_EXTENT_DATA_KEY) {
643 ret = -EINVAL;
644 btrfs_abort_transaction(trans, ret);
645 goto out;
646 }
d899e052
YZ
647 fi = btrfs_item_ptr(leaf, path->slots[0],
648 struct btrfs_file_extent_item);
9c8e63db
JB
649 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) {
650 ret = -EINVAL;
651 btrfs_abort_transaction(trans, ret);
652 goto out;
653 }
d899e052 654 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
9c8e63db
JB
655 if (key.offset > start || extent_end < end) {
656 ret = -EINVAL;
657 btrfs_abort_transaction(trans, ret);
658 goto out;
659 }
d899e052
YZ
660
661 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
662 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
5d4f98a2 663 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
6c7d54ac
YZ
664 memcpy(&new_key, &key, sizeof(new_key));
665
666 if (start == key.offset && end < extent_end) {
667 other_start = 0;
668 other_end = start;
669 if (extent_mergeable(leaf, path->slots[0] - 1,
33345d01 670 ino, bytenr, orig_offset,
6c7d54ac
YZ
671 &other_start, &other_end)) {
672 new_key.offset = end;
50564b65 673 btrfs_set_item_key_safe(trans, path, &new_key);
6c7d54ac
YZ
674 fi = btrfs_item_ptr(leaf, path->slots[0],
675 struct btrfs_file_extent_item);
224ecce5
JB
676 btrfs_set_file_extent_generation(leaf, fi,
677 trans->transid);
6c7d54ac
YZ
678 btrfs_set_file_extent_num_bytes(leaf, fi,
679 extent_end - end);
680 btrfs_set_file_extent_offset(leaf, fi,
681 end - orig_offset);
682 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
683 struct btrfs_file_extent_item);
224ecce5
JB
684 btrfs_set_file_extent_generation(leaf, fi,
685 trans->transid);
6c7d54ac
YZ
686 btrfs_set_file_extent_num_bytes(leaf, fi,
687 end - other_start);
50564b65 688 btrfs_mark_buffer_dirty(trans, leaf);
6c7d54ac
YZ
689 goto out;
690 }
691 }
692
693 if (start > key.offset && end == extent_end) {
694 other_start = end;
695 other_end = 0;
696 if (extent_mergeable(leaf, path->slots[0] + 1,
33345d01 697 ino, bytenr, orig_offset,
6c7d54ac
YZ
698 &other_start, &other_end)) {
699 fi = btrfs_item_ptr(leaf, path->slots[0],
700 struct btrfs_file_extent_item);
701 btrfs_set_file_extent_num_bytes(leaf, fi,
702 start - key.offset);
224ecce5
JB
703 btrfs_set_file_extent_generation(leaf, fi,
704 trans->transid);
6c7d54ac
YZ
705 path->slots[0]++;
706 new_key.offset = start;
50564b65 707 btrfs_set_item_key_safe(trans, path, &new_key);
6c7d54ac
YZ
708
709 fi = btrfs_item_ptr(leaf, path->slots[0],
710 struct btrfs_file_extent_item);
224ecce5
JB
711 btrfs_set_file_extent_generation(leaf, fi,
712 trans->transid);
6c7d54ac
YZ
713 btrfs_set_file_extent_num_bytes(leaf, fi,
714 other_end - start);
715 btrfs_set_file_extent_offset(leaf, fi,
716 start - orig_offset);
50564b65 717 btrfs_mark_buffer_dirty(trans, leaf);
6c7d54ac
YZ
718 goto out;
719 }
720 }
d899e052 721
920bbbfb
YZ
722 while (start > key.offset || end < extent_end) {
723 if (key.offset == start)
724 split = end;
725
920bbbfb
YZ
726 new_key.offset = split;
727 ret = btrfs_duplicate_item(trans, root, path, &new_key);
728 if (ret == -EAGAIN) {
b3b4aa74 729 btrfs_release_path(path);
920bbbfb 730 goto again;
d899e052 731 }
79787eaa 732 if (ret < 0) {
66642832 733 btrfs_abort_transaction(trans, ret);
79787eaa
JM
734 goto out;
735 }
d899e052 736
920bbbfb
YZ
737 leaf = path->nodes[0];
738 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
d899e052 739 struct btrfs_file_extent_item);
224ecce5 740 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
d899e052 741 btrfs_set_file_extent_num_bytes(leaf, fi,
920bbbfb
YZ
742 split - key.offset);
743
744 fi = btrfs_item_ptr(leaf, path->slots[0],
745 struct btrfs_file_extent_item);
746
224ecce5 747 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
920bbbfb
YZ
748 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
749 btrfs_set_file_extent_num_bytes(leaf, fi,
750 extent_end - split);
50564b65 751 btrfs_mark_buffer_dirty(trans, leaf);
d899e052 752
82fa113f 753 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, bytenr,
457cb1dd 754 num_bytes, 0, root->root_key.objectid);
82fa113f 755 btrfs_init_data_ref(&ref, root->root_key.objectid, ino,
f42c5da6 756 orig_offset, 0, false);
82fa113f 757 ret = btrfs_inc_extent_ref(trans, &ref);
9c8e63db
JB
758 if (ret) {
759 btrfs_abort_transaction(trans, ret);
760 goto out;
761 }
d899e052 762
920bbbfb
YZ
763 if (split == start) {
764 key.offset = start;
765 } else {
9c8e63db
JB
766 if (start != key.offset) {
767 ret = -EINVAL;
768 btrfs_abort_transaction(trans, ret);
769 goto out;
770 }
d899e052 771 path->slots[0]--;
920bbbfb 772 extent_end = end;
d899e052 773 }
6c7d54ac 774 recow = 1;
d899e052
YZ
775 }
776
920bbbfb
YZ
777 other_start = end;
778 other_end = 0;
ffd4bb2a 779 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
457cb1dd 780 num_bytes, 0, root->root_key.objectid);
f42c5da6
NB
781 btrfs_init_data_ref(&ref, root->root_key.objectid, ino, orig_offset,
782 0, false);
6c7d54ac 783 if (extent_mergeable(leaf, path->slots[0] + 1,
33345d01 784 ino, bytenr, orig_offset,
6c7d54ac
YZ
785 &other_start, &other_end)) {
786 if (recow) {
b3b4aa74 787 btrfs_release_path(path);
6c7d54ac
YZ
788 goto again;
789 }
920bbbfb
YZ
790 extent_end = other_end;
791 del_slot = path->slots[0] + 1;
792 del_nr++;
ffd4bb2a 793 ret = btrfs_free_extent(trans, &ref);
9c8e63db
JB
794 if (ret) {
795 btrfs_abort_transaction(trans, ret);
796 goto out;
797 }
d899e052 798 }
920bbbfb
YZ
799 other_start = 0;
800 other_end = start;
6c7d54ac 801 if (extent_mergeable(leaf, path->slots[0] - 1,
33345d01 802 ino, bytenr, orig_offset,
6c7d54ac
YZ
803 &other_start, &other_end)) {
804 if (recow) {
b3b4aa74 805 btrfs_release_path(path);
6c7d54ac
YZ
806 goto again;
807 }
920bbbfb
YZ
808 key.offset = other_start;
809 del_slot = path->slots[0];
810 del_nr++;
ffd4bb2a 811 ret = btrfs_free_extent(trans, &ref);
9c8e63db
JB
812 if (ret) {
813 btrfs_abort_transaction(trans, ret);
814 goto out;
815 }
920bbbfb
YZ
816 }
817 if (del_nr == 0) {
3f6fae95
SL
818 fi = btrfs_item_ptr(leaf, path->slots[0],
819 struct btrfs_file_extent_item);
920bbbfb
YZ
820 btrfs_set_file_extent_type(leaf, fi,
821 BTRFS_FILE_EXTENT_REG);
224ecce5 822 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
50564b65 823 btrfs_mark_buffer_dirty(trans, leaf);
6c7d54ac 824 } else {
3f6fae95
SL
825 fi = btrfs_item_ptr(leaf, del_slot - 1,
826 struct btrfs_file_extent_item);
6c7d54ac
YZ
827 btrfs_set_file_extent_type(leaf, fi,
828 BTRFS_FILE_EXTENT_REG);
224ecce5 829 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
6c7d54ac
YZ
830 btrfs_set_file_extent_num_bytes(leaf, fi,
831 extent_end - key.offset);
50564b65 832 btrfs_mark_buffer_dirty(trans, leaf);
920bbbfb 833
6c7d54ac 834 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
79787eaa 835 if (ret < 0) {
66642832 836 btrfs_abort_transaction(trans, ret);
79787eaa
JM
837 goto out;
838 }
6c7d54ac 839 }
920bbbfb 840out:
d899e052 841 btrfs_free_path(path);
e7b2ec3d 842 return ret;
d899e052
YZ
843}
844
b1bf862e
CM
845/*
846 * on error we return an unlocked page and the error value
847 * on success we return a locked page and 0
848 */
bb1591b4
CM
849static int prepare_uptodate_page(struct inode *inode,
850 struct page *page, u64 pos,
b6316429 851 bool force_uptodate)
b1bf862e 852{
fb12489b 853 struct folio *folio = page_folio(page);
b1bf862e
CM
854 int ret = 0;
855
09cbfeaf 856 if (((pos & (PAGE_SIZE - 1)) || force_uptodate) &&
b6316429 857 !PageUptodate(page)) {
fb12489b 858 ret = btrfs_read_folio(NULL, folio);
b1bf862e
CM
859 if (ret)
860 return ret;
861 lock_page(page);
862 if (!PageUptodate(page)) {
863 unlock_page(page);
864 return -EIO;
865 }
e0467866
QW
866
867 /*
fb12489b 868 * Since btrfs_read_folio() will unlock the folio before it
f913cff3 869 * returns, there is a window where btrfs_release_folio() can be
7c11d0ae
QW
870 * called to release the page. Here we check both inode
871 * mapping and PagePrivate() to make sure the page was not
872 * released.
e0467866
QW
873 *
874 * The private flag check is essential for subpage as we need
cfbf07e2 875 * to store extra bitmap using folio private.
e0467866 876 */
cfbf07e2 877 if (page->mapping != inode->i_mapping || !folio_test_private(folio)) {
bb1591b4
CM
878 unlock_page(page);
879 return -EAGAIN;
880 }
b1bf862e
CM
881 }
882 return 0;
883}
884
ffc143db 885static fgf_t get_prepare_fgp_flags(bool nowait)
fc226000 886{
ffc143db 887 fgf_t fgp_flags = FGP_LOCK | FGP_ACCESSED | FGP_CREAT;
fc226000
SR
888
889 if (nowait)
890 fgp_flags |= FGP_NOWAIT;
891
892 return fgp_flags;
893}
894
895static gfp_t get_prepare_gfp_flags(struct inode *inode, bool nowait)
896{
897 gfp_t gfp;
898
899 gfp = btrfs_alloc_write_mask(inode->i_mapping);
900 if (nowait) {
901 gfp &= ~__GFP_DIRECT_RECLAIM;
902 gfp |= GFP_NOWAIT;
903 }
904
905 return gfp;
906}
907
39279cc3 908/*
376cc685 909 * this just gets pages into the page cache and locks them down.
39279cc3 910 */
b37392ea
MX
911static noinline int prepare_pages(struct inode *inode, struct page **pages,
912 size_t num_pages, loff_t pos,
fc226000
SR
913 size_t write_bytes, bool force_uptodate,
914 bool nowait)
39279cc3
CM
915{
916 int i;
09cbfeaf 917 unsigned long index = pos >> PAGE_SHIFT;
fc226000 918 gfp_t mask = get_prepare_gfp_flags(inode, nowait);
ffc143db 919 fgf_t fgp_flags = get_prepare_fgp_flags(nowait);
fc28b62d 920 int err = 0;
376cc685 921 int faili;
8c2383c3 922
39279cc3 923 for (i = 0; i < num_pages; i++) {
bb1591b4 924again:
fc226000
SR
925 pages[i] = pagecache_get_page(inode->i_mapping, index + i,
926 fgp_flags, mask | __GFP_WRITE);
39279cc3 927 if (!pages[i]) {
b1bf862e 928 faili = i - 1;
fc226000
SR
929 if (nowait)
930 err = -EAGAIN;
931 else
932 err = -ENOMEM;
b1bf862e
CM
933 goto fail;
934 }
935
32443de3
QW
936 err = set_page_extent_mapped(pages[i]);
937 if (err < 0) {
938 faili = i;
939 goto fail;
940 }
941
b1bf862e 942 if (i == 0)
bb1591b4 943 err = prepare_uptodate_page(inode, pages[i], pos,
b6316429 944 force_uptodate);
bb1591b4
CM
945 if (!err && i == num_pages - 1)
946 err = prepare_uptodate_page(inode, pages[i],
b6316429 947 pos + write_bytes, false);
b1bf862e 948 if (err) {
09cbfeaf 949 put_page(pages[i]);
fc226000 950 if (!nowait && err == -EAGAIN) {
bb1591b4
CM
951 err = 0;
952 goto again;
953 }
b1bf862e
CM
954 faili = i - 1;
955 goto fail;
39279cc3 956 }
ccd467d6 957 wait_on_page_writeback(pages[i]);
39279cc3 958 }
376cc685
MX
959
960 return 0;
961fail:
962 while (faili >= 0) {
963 unlock_page(pages[faili]);
09cbfeaf 964 put_page(pages[faili]);
376cc685
MX
965 faili--;
966 }
967 return err;
968
969}
970
971/*
972 * This function locks the extent and properly waits for data=ordered extents
973 * to finish before allowing the pages to be modified if need.
974 *
975 * The return value:
976 * 1 - the extent is locked
977 * 0 - the extent is not locked, and everything is OK
978 * -EAGAIN - need re-prepare the pages
979 * the other < 0 number - Something wrong happens
980 */
981static noinline int
2cff578c 982lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages,
376cc685 983 size_t num_pages, loff_t pos,
2e78c927 984 size_t write_bytes,
2fcab928 985 u64 *lockstart, u64 *lockend, bool nowait,
376cc685
MX
986 struct extent_state **cached_state)
987{
3ffbd68c 988 struct btrfs_fs_info *fs_info = inode->root->fs_info;
376cc685
MX
989 u64 start_pos;
990 u64 last_pos;
991 int i;
992 int ret = 0;
993
0b246afa 994 start_pos = round_down(pos, fs_info->sectorsize);
e21139c6 995 last_pos = round_up(pos + write_bytes, fs_info->sectorsize) - 1;
376cc685 996
e3b8a485 997 if (start_pos < inode->vfs_inode.i_size) {
e6dcd2dc 998 struct btrfs_ordered_extent *ordered;
a7e3b975 999
2fcab928 1000 if (nowait) {
83ae4133
JB
1001 if (!try_lock_extent(&inode->io_tree, start_pos, last_pos,
1002 cached_state)) {
2fcab928
SR
1003 for (i = 0; i < num_pages; i++) {
1004 unlock_page(pages[i]);
1005 put_page(pages[i]);
1006 pages[i] = NULL;
1007 }
1008
1009 return -EAGAIN;
1010 }
1011 } else {
1012 lock_extent(&inode->io_tree, start_pos, last_pos, cached_state);
1013 }
1014
b88935bf
MX
1015 ordered = btrfs_lookup_ordered_range(inode, start_pos,
1016 last_pos - start_pos + 1);
e6dcd2dc 1017 if (ordered &&
bffe633e 1018 ordered->file_offset + ordered->num_bytes > start_pos &&
376cc685 1019 ordered->file_offset <= last_pos) {
570eb97b
JB
1020 unlock_extent(&inode->io_tree, start_pos, last_pos,
1021 cached_state);
e6dcd2dc
CM
1022 for (i = 0; i < num_pages; i++) {
1023 unlock_page(pages[i]);
09cbfeaf 1024 put_page(pages[i]);
e6dcd2dc 1025 }
36d45567 1026 btrfs_start_ordered_extent(ordered);
b88935bf
MX
1027 btrfs_put_ordered_extent(ordered);
1028 return -EAGAIN;
e6dcd2dc
CM
1029 }
1030 if (ordered)
1031 btrfs_put_ordered_extent(ordered);
7703bdd8 1032
376cc685
MX
1033 *lockstart = start_pos;
1034 *lockend = last_pos;
1035 ret = 1;
0762704b 1036 }
376cc685 1037
7703bdd8 1038 /*
32443de3
QW
1039 * We should be called after prepare_pages() which should have locked
1040 * all pages in the range.
7703bdd8 1041 */
32443de3 1042 for (i = 0; i < num_pages; i++)
e6dcd2dc 1043 WARN_ON(!PageLocked(pages[i]));
b1bf862e 1044
376cc685 1045 return ret;
39279cc3
CM
1046}
1047
d7a8ab4e
FM
1048/*
1049 * Check if we can do nocow write into the range [@pos, @pos + @write_bytes)
1050 *
1051 * @pos: File offset.
1052 * @write_bytes: The length to write, will be updated to the nocow writeable
1053 * range.
1054 *
1055 * This function will flush ordered extents in the range to ensure proper
1056 * nocow checks.
1057 *
1058 * Return:
1059 * > 0 If we can nocow, and updates @write_bytes.
1060 * 0 If we can't do a nocow write.
1061 * -EAGAIN If we can't do a nocow write because snapshoting of the inode's
1062 * root is in progress.
1063 * < 0 If an error happened.
1064 *
1065 * NOTE: Callers need to call btrfs_check_nocow_unlock() if we return > 0.
1066 */
1067int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos,
80f9d241 1068 size_t *write_bytes, bool nowait)
7ee9e440 1069{
3ffbd68c 1070 struct btrfs_fs_info *fs_info = inode->root->fs_info;
85b7ab67 1071 struct btrfs_root *root = inode->root;
632ddfa2 1072 struct extent_state *cached_state = NULL;
7ee9e440
JB
1073 u64 lockstart, lockend;
1074 u64 num_bytes;
1075 int ret;
1076
38d37aa9
QW
1077 if (!(inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
1078 return 0;
1079
d7a8ab4e 1080 if (!btrfs_drew_try_write_lock(&root->snapshot_lock))
5f791ec3 1081 return -EAGAIN;
8257b2dc 1082
0b246afa 1083 lockstart = round_down(pos, fs_info->sectorsize);
da17066c 1084 lockend = round_up(pos + *write_bytes,
0b246afa 1085 fs_info->sectorsize) - 1;
5dbb75ed 1086 num_bytes = lockend - lockstart + 1;
7ee9e440 1087
80f9d241 1088 if (nowait) {
632ddfa2
JB
1089 if (!btrfs_try_lock_ordered_range(inode, lockstart, lockend,
1090 &cached_state)) {
80f9d241
JB
1091 btrfs_drew_write_unlock(&root->snapshot_lock);
1092 return -EAGAIN;
1093 }
1094 } else {
632ddfa2
JB
1095 btrfs_lock_and_flush_ordered_range(inode, lockstart, lockend,
1096 &cached_state);
80f9d241 1097 }
85b7ab67 1098 ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes,
80f9d241
JB
1099 NULL, NULL, NULL, nowait, false);
1100 if (ret <= 0)
d7a8ab4e 1101 btrfs_drew_write_unlock(&root->snapshot_lock);
80f9d241 1102 else
c933956d
MX
1103 *write_bytes = min_t(size_t, *write_bytes ,
1104 num_bytes - pos + lockstart);
632ddfa2 1105 unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
7ee9e440
JB
1106
1107 return ret;
1108}
1109
38d37aa9
QW
1110void btrfs_check_nocow_unlock(struct btrfs_inode *inode)
1111{
1112 btrfs_drew_write_unlock(&inode->root->snapshot_lock);
1113}
1114
efd34f03
CB
1115static void update_time_for_write(struct inode *inode)
1116{
b1c38a13 1117 struct timespec64 now, ts;
efd34f03
CB
1118
1119 if (IS_NOCMTIME(inode))
1120 return;
1121
1122 now = current_time(inode);
b1c38a13
JL
1123 ts = inode_get_mtime(inode);
1124 if (!timespec64_equal(&ts, &now))
1125 inode_set_mtime_to_ts(inode, now);
efd34f03 1126
b1c38a13
JL
1127 ts = inode_get_ctime(inode);
1128 if (!timespec64_equal(&ts, &now))
efd34f03
CB
1129 inode_set_ctime_to_ts(inode, now);
1130
1131 if (IS_I_VERSION(inode))
1132 inode_inc_iversion(inode);
1133}
1134
b8d8e1fd
GR
1135static int btrfs_write_check(struct kiocb *iocb, struct iov_iter *from,
1136 size_t count)
1137{
1138 struct file *file = iocb->ki_filp;
1139 struct inode *inode = file_inode(file);
1140 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1141 loff_t pos = iocb->ki_pos;
1142 int ret;
1143 loff_t oldsize;
1144 loff_t start_pos;
1145
d7a8ab4e
FM
1146 /*
1147 * Quickly bail out on NOWAIT writes if we don't have the nodatacow or
1148 * prealloc flags, as without those flags we always have to COW. We will
1149 * later check if we can really COW into the target range (using
1150 * can_nocow_extent() at btrfs_get_blocks_direct_write()).
1151 */
1152 if ((iocb->ki_flags & IOCB_NOWAIT) &&
1153 !(BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
1154 return -EAGAIN;
b8d8e1fd 1155
b8d8e1fd
GR
1156 ret = file_remove_privs(file);
1157 if (ret)
1158 return ret;
1159
1160 /*
1161 * We reserve space for updating the inode when we reserve space for the
1162 * extent we are going to write, so we will enospc out there. We don't
1163 * need to start yet another transaction to update the inode as we will
1164 * update the inode when we finish writing whatever data we write.
1165 */
efd34f03 1166 update_time_for_write(inode);
b8d8e1fd
GR
1167
1168 start_pos = round_down(pos, fs_info->sectorsize);
1169 oldsize = i_size_read(inode);
1170 if (start_pos > oldsize) {
1171 /* Expand hole size to cover write data, preventing empty gap */
1172 loff_t end_pos = round_up(pos + count, fs_info->sectorsize);
1173
b06359a3 1174 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, end_pos);
0d625446 1175 if (ret)
b8d8e1fd 1176 return ret;
b8d8e1fd
GR
1177 }
1178
1179 return 0;
1180}
1181
e4af400a
GR
1182static noinline ssize_t btrfs_buffered_write(struct kiocb *iocb,
1183 struct iov_iter *i)
4b46fce2 1184{
e4af400a 1185 struct file *file = iocb->ki_filp;
c3523706 1186 loff_t pos;
496ad9aa 1187 struct inode *inode = file_inode(file);
0b246afa 1188 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
11c65dcc 1189 struct page **pages = NULL;
364ecf36 1190 struct extent_changeset *data_reserved = NULL;
7ee9e440 1191 u64 release_bytes = 0;
376cc685
MX
1192 u64 lockstart;
1193 u64 lockend;
d0215f3e
JB
1194 size_t num_written = 0;
1195 int nrptrs;
c3523706 1196 ssize_t ret;
7ee9e440 1197 bool only_release_metadata = false;
b6316429 1198 bool force_page_uptodate = false;
5e8b9ef3 1199 loff_t old_isize = i_size_read(inode);
c3523706 1200 unsigned int ilock_flags = 0;
304e45ac 1201 const bool nowait = (iocb->ki_flags & IOCB_NOWAIT);
965f47ae 1202 unsigned int bdp_flags = (nowait ? BDP_ASYNC : 0);
c3523706 1203
304e45ac 1204 if (nowait)
c3523706
GR
1205 ilock_flags |= BTRFS_ILOCK_TRY;
1206
29b6352b 1207 ret = btrfs_inode_lock(BTRFS_I(inode), ilock_flags);
c3523706
GR
1208 if (ret < 0)
1209 return ret;
4b46fce2 1210
c3523706
GR
1211 ret = generic_write_checks(iocb, i);
1212 if (ret <= 0)
1213 goto out;
1214
1215 ret = btrfs_write_check(iocb, i, ret);
1216 if (ret < 0)
1217 goto out;
1218
1219 pos = iocb->ki_pos;
09cbfeaf
KS
1220 nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE),
1221 PAGE_SIZE / (sizeof(struct page *)));
142349f5
WF
1222 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1223 nrptrs = max(nrptrs, 8);
31e818fe 1224 pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
c3523706
GR
1225 if (!pages) {
1226 ret = -ENOMEM;
1227 goto out;
1228 }
ab93dbec 1229
d0215f3e 1230 while (iov_iter_count(i) > 0) {
c67d970f 1231 struct extent_state *cached_state = NULL;
7073017a 1232 size_t offset = offset_in_page(pos);
2e78c927 1233 size_t sector_offset;
d0215f3e 1234 size_t write_bytes = min(iov_iter_count(i),
09cbfeaf 1235 nrptrs * (size_t)PAGE_SIZE -
8c2383c3 1236 offset);
eefa45f5 1237 size_t num_pages;
7ee9e440 1238 size_t reserve_bytes;
d0215f3e
JB
1239 size_t dirty_pages;
1240 size_t copied;
2e78c927
CR
1241 size_t dirty_sectors;
1242 size_t num_sectors;
79f015f2 1243 int extents_locked;
39279cc3 1244
914ee295
XZ
1245 /*
1246 * Fault pages before locking them in prepare_pages
1247 * to avoid recursive lock
1248 */
a6294593 1249 if (unlikely(fault_in_iov_iter_readable(i, write_bytes))) {
914ee295 1250 ret = -EFAULT;
d0215f3e 1251 break;
914ee295
XZ
1252 }
1253
a0e248bb 1254 only_release_metadata = false;
da17066c 1255 sector_offset = pos & (fs_info->sectorsize - 1);
d9d8b2a5 1256
364ecf36 1257 extent_changeset_release(data_reserved);
36ea6f3e
NB
1258 ret = btrfs_check_data_free_space(BTRFS_I(inode),
1259 &data_reserved, pos,
304e45ac 1260 write_bytes, nowait);
c6887cd1 1261 if (ret < 0) {
80f9d241
JB
1262 int can_nocow;
1263
304e45ac
SR
1264 if (nowait && (ret == -ENOSPC || ret == -EAGAIN)) {
1265 ret = -EAGAIN;
1266 break;
1267 }
1268
eefa45f5
GR
1269 /*
1270 * If we don't have to COW at the offset, reserve
1271 * metadata only. write_bytes may get smaller than
1272 * requested here.
1273 */
80f9d241 1274 can_nocow = btrfs_check_nocow_lock(BTRFS_I(inode), pos,
304e45ac 1275 &write_bytes, nowait);
80f9d241
JB
1276 if (can_nocow < 0)
1277 ret = can_nocow;
1278 if (can_nocow > 0)
1279 ret = 0;
1280 if (ret)
c6887cd1 1281 break;
80f9d241 1282 only_release_metadata = true;
c6887cd1 1283 }
1832a6d5 1284
eefa45f5
GR
1285 num_pages = DIV_ROUND_UP(write_bytes + offset, PAGE_SIZE);
1286 WARN_ON(num_pages > nrptrs);
1287 reserve_bytes = round_up(write_bytes + sector_offset,
1288 fs_info->sectorsize);
8b62f87b 1289 WARN_ON(reserve_bytes == 0);
9f3db423 1290 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
28c9b1e7 1291 reserve_bytes,
304e45ac 1292 reserve_bytes, nowait);
7ee9e440
JB
1293 if (ret) {
1294 if (!only_release_metadata)
25ce28ca 1295 btrfs_free_reserved_data_space(BTRFS_I(inode),
bc42bda2
QW
1296 data_reserved, pos,
1297 write_bytes);
8257b2dc 1298 else
38d37aa9 1299 btrfs_check_nocow_unlock(BTRFS_I(inode));
a348c8d4
FM
1300
1301 if (nowait && ret == -ENOSPC)
1302 ret = -EAGAIN;
7ee9e440
JB
1303 break;
1304 }
1305
1306 release_bytes = reserve_bytes;
376cc685 1307again:
965f47ae 1308 ret = balance_dirty_pages_ratelimited_flags(inode->i_mapping, bdp_flags);
eb81b682
FM
1309 if (ret) {
1310 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
965f47ae 1311 break;
eb81b682 1312 }
965f47ae 1313
4a64001f
JB
1314 /*
1315 * This is going to setup the pages array with the number of
1316 * pages we want, so we don't really need to worry about the
1317 * contents of pages from loop to loop
1318 */
b37392ea 1319 ret = prepare_pages(inode, pages, num_pages,
fc226000 1320 pos, write_bytes, force_page_uptodate, false);
8b62f87b
JB
1321 if (ret) {
1322 btrfs_delalloc_release_extents(BTRFS_I(inode),
8702ba93 1323 reserve_bytes);
d0215f3e 1324 break;
8b62f87b 1325 }
39279cc3 1326
79f015f2
GR
1327 extents_locked = lock_and_cleanup_extent_if_need(
1328 BTRFS_I(inode), pages,
2cff578c 1329 num_pages, pos, write_bytes, &lockstart,
304e45ac 1330 &lockend, nowait, &cached_state);
79f015f2 1331 if (extents_locked < 0) {
304e45ac 1332 if (!nowait && extents_locked == -EAGAIN)
376cc685 1333 goto again;
304e45ac 1334
8b62f87b 1335 btrfs_delalloc_release_extents(BTRFS_I(inode),
8702ba93 1336 reserve_bytes);
79f015f2 1337 ret = extents_locked;
376cc685 1338 break;
376cc685
MX
1339 }
1340
ee22f0c4 1341 copied = btrfs_copy_from_user(pos, write_bytes, pages, i);
b1bf862e 1342
0b246afa 1343 num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes);
56244ef1 1344 dirty_sectors = round_up(copied + sector_offset,
0b246afa
JM
1345 fs_info->sectorsize);
1346 dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors);
56244ef1 1347
b1bf862e
CM
1348 /*
1349 * if we have trouble faulting in the pages, fall
1350 * back to one page at a time
1351 */
1352 if (copied < write_bytes)
1353 nrptrs = 1;
1354
b6316429
JB
1355 if (copied == 0) {
1356 force_page_uptodate = true;
56244ef1 1357 dirty_sectors = 0;
b1bf862e 1358 dirty_pages = 0;
b6316429
JB
1359 } else {
1360 force_page_uptodate = false;
ed6078f7 1361 dirty_pages = DIV_ROUND_UP(copied + offset,
09cbfeaf 1362 PAGE_SIZE);
b6316429 1363 }
914ee295 1364
2e78c927 1365 if (num_sectors > dirty_sectors) {
8b8b08cb 1366 /* release everything except the sectors we dirtied */
265fdfa6 1367 release_bytes -= dirty_sectors << fs_info->sectorsize_bits;
485290a7 1368 if (only_release_metadata) {
691fa059 1369 btrfs_delalloc_release_metadata(BTRFS_I(inode),
43b18595 1370 release_bytes, true);
485290a7
QW
1371 } else {
1372 u64 __pos;
1373
da17066c 1374 __pos = round_down(pos,
0b246afa 1375 fs_info->sectorsize) +
09cbfeaf 1376 (dirty_pages << PAGE_SHIFT);
86d52921 1377 btrfs_delalloc_release_space(BTRFS_I(inode),
bc42bda2 1378 data_reserved, __pos,
43b18595 1379 release_bytes, true);
485290a7 1380 }
914ee295
XZ
1381 }
1382
2e78c927 1383 release_bytes = round_up(copied + sector_offset,
0b246afa 1384 fs_info->sectorsize);
376cc685 1385
aa8c1a41
GR
1386 ret = btrfs_dirty_pages(BTRFS_I(inode), pages,
1387 dirty_pages, pos, copied,
1388 &cached_state, only_release_metadata);
c67d970f
FM
1389
1390 /*
1391 * If we have not locked the extent range, because the range's
1392 * start offset is >= i_size, we might still have a non-NULL
1393 * cached extent state, acquired while marking the extent range
1394 * as delalloc through btrfs_dirty_pages(). Therefore free any
1395 * possible cached extent state to avoid a memory leak.
1396 */
79f015f2 1397 if (extents_locked)
570eb97b
JB
1398 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart,
1399 lockend, &cached_state);
c67d970f
FM
1400 else
1401 free_extent_state(cached_state);
1402
8702ba93 1403 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
f1de9683 1404 if (ret) {
e4f94347 1405 btrfs_drop_pages(fs_info, pages, num_pages, pos, copied);
376cc685 1406 break;
f1de9683 1407 }
39279cc3 1408
376cc685 1409 release_bytes = 0;
8257b2dc 1410 if (only_release_metadata)
38d37aa9 1411 btrfs_check_nocow_unlock(BTRFS_I(inode));
8257b2dc 1412
e4f94347 1413 btrfs_drop_pages(fs_info, pages, num_pages, pos, copied);
f1de9683 1414
d0215f3e
JB
1415 cond_resched();
1416
914ee295
XZ
1417 pos += copied;
1418 num_written += copied;
d0215f3e 1419 }
39279cc3 1420
d0215f3e
JB
1421 kfree(pages);
1422
7ee9e440 1423 if (release_bytes) {
8257b2dc 1424 if (only_release_metadata) {
38d37aa9 1425 btrfs_check_nocow_unlock(BTRFS_I(inode));
691fa059 1426 btrfs_delalloc_release_metadata(BTRFS_I(inode),
43b18595 1427 release_bytes, true);
8257b2dc 1428 } else {
86d52921
NB
1429 btrfs_delalloc_release_space(BTRFS_I(inode),
1430 data_reserved,
bc42bda2 1431 round_down(pos, fs_info->sectorsize),
43b18595 1432 release_bytes, true);
8257b2dc 1433 }
7ee9e440
JB
1434 }
1435
364ecf36 1436 extent_changeset_free(data_reserved);
5e8b9ef3
GR
1437 if (num_written > 0) {
1438 pagecache_isize_extended(inode, old_isize, iocb->ki_pos);
1439 iocb->ki_pos += num_written;
1440 }
c3523706 1441out:
e5d4d75b 1442 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
d0215f3e
JB
1443 return num_written ? num_written : ret;
1444}
1445
4e4cabec
GR
1446static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
1447 const struct iov_iter *iter, loff_t offset)
1448{
1449 const u32 blocksize_mask = fs_info->sectorsize - 1;
1450
1451 if (offset & blocksize_mask)
1452 return -EINVAL;
1453
1454 if (iov_iter_alignment(iter) & blocksize_mask)
1455 return -EINVAL;
1456
1457 return 0;
1458}
1459
1460static ssize_t btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from)
d0215f3e
JB
1461{
1462 struct file *file = iocb->ki_filp;
728404da 1463 struct inode *inode = file_inode(file);
4e4cabec 1464 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
c3523706 1465 loff_t pos;
4e4cabec 1466 ssize_t written = 0;
d0215f3e 1467 ssize_t written_buffered;
51bd9563 1468 size_t prev_left = 0;
d0215f3e 1469 loff_t endbyte;
c3523706
GR
1470 ssize_t err;
1471 unsigned int ilock_flags = 0;
8184620a 1472 struct iomap_dio *dio;
c3523706
GR
1473
1474 if (iocb->ki_flags & IOCB_NOWAIT)
1475 ilock_flags |= BTRFS_ILOCK_TRY;
1476
9af86694
BS
1477 /*
1478 * If the write DIO is within EOF, use a shared lock and also only if
1479 * security bits will likely not be dropped by file_remove_privs() called
1480 * from btrfs_write_check(). Either will need to be rechecked after the
1481 * lock was acquired.
1482 */
1483 if (iocb->ki_pos + iov_iter_count(from) <= i_size_read(inode) && IS_NOSEC(inode))
e9adabb9
GR
1484 ilock_flags |= BTRFS_ILOCK_SHARED;
1485
1486relock:
29b6352b 1487 err = btrfs_inode_lock(BTRFS_I(inode), ilock_flags);
c3523706
GR
1488 if (err < 0)
1489 return err;
1490
9af86694
BS
1491 /* Shared lock cannot be used with security bits set. */
1492 if ((ilock_flags & BTRFS_ILOCK_SHARED) && !IS_NOSEC(inode)) {
1493 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1494 ilock_flags &= ~BTRFS_ILOCK_SHARED;
1495 goto relock;
1496 }
1497
c3523706
GR
1498 err = generic_write_checks(iocb, from);
1499 if (err <= 0) {
e5d4d75b 1500 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
c3523706
GR
1501 return err;
1502 }
d0215f3e 1503
c3523706
GR
1504 err = btrfs_write_check(iocb, from, err);
1505 if (err < 0) {
e5d4d75b 1506 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
c3523706
GR
1507 goto out;
1508 }
1509
1510 pos = iocb->ki_pos;
e9adabb9
GR
1511 /*
1512 * Re-check since file size may have changed just before taking the
1513 * lock or pos may have changed because of O_APPEND in generic_write_check()
1514 */
1515 if ((ilock_flags & BTRFS_ILOCK_SHARED) &&
1516 pos + iov_iter_count(from) > i_size_read(inode)) {
e5d4d75b 1517 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
e9adabb9
GR
1518 ilock_flags &= ~BTRFS_ILOCK_SHARED;
1519 goto relock;
1520 }
c3523706
GR
1521
1522 if (check_direct_IO(fs_info, from, pos)) {
e5d4d75b 1523 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
4e4cabec 1524 goto buffered;
c3523706 1525 }
4e4cabec 1526
51bd9563
FM
1527 /*
1528 * The iov_iter can be mapped to the same file range we are writing to.
1529 * If that's the case, then we will deadlock in the iomap code, because
1530 * it first calls our callback btrfs_dio_iomap_begin(), which will create
1531 * an ordered extent, and after that it will fault in the pages that the
1532 * iov_iter refers to. During the fault in we end up in the readahead
1533 * pages code (starting at btrfs_readahead()), which will lock the range,
1534 * find that ordered extent and then wait for it to complete (at
1535 * btrfs_lock_and_flush_ordered_range()), resulting in a deadlock since
1536 * obviously the ordered extent can never complete as we didn't submit
1537 * yet the respective bio(s). This always happens when the buffer is
1538 * memory mapped to the same file range, since the iomap DIO code always
1539 * invalidates pages in the target file range (after starting and waiting
1540 * for any writeback).
1541 *
1542 * So here we disable page faults in the iov_iter and then retry if we
1543 * got -EFAULT, faulting in the pages before the retry.
1544 */
51bd9563 1545 from->nofault = true;
8184620a 1546 dio = btrfs_dio_write(iocb, from, written);
51bd9563 1547 from->nofault = false;
d0215f3e 1548
8184620a
FM
1549 /*
1550 * iomap_dio_complete() will call btrfs_sync_file() if we have a dsync
1551 * iocb, and that needs to lock the inode. So unlock it before calling
1552 * iomap_dio_complete() to avoid a deadlock.
1553 */
e5d4d75b 1554 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
8184620a
FM
1555
1556 if (IS_ERR_OR_NULL(dio))
1557 err = PTR_ERR_OR_ZERO(dio);
1558 else
1559 err = iomap_dio_complete(dio);
1560
51bd9563
FM
1561 /* No increment (+=) because iomap returns a cumulative value. */
1562 if (err > 0)
1563 written = err;
1564
1565 if (iov_iter_count(from) > 0 && (err == -EFAULT || err > 0)) {
1566 const size_t left = iov_iter_count(from);
1567 /*
1568 * We have more data left to write. Try to fault in as many as
1569 * possible of the remainder pages and retry. We do this without
1570 * releasing and locking again the inode, to prevent races with
1571 * truncate.
1572 *
1573 * Also, in case the iov refers to pages in the file range of the
1574 * file we want to write to (due to a mmap), we could enter an
1575 * infinite loop if we retry after faulting the pages in, since
1576 * iomap will invalidate any pages in the range early on, before
1577 * it tries to fault in the pages of the iov. So we keep track of
1578 * how much was left of iov in the previous EFAULT and fallback
1579 * to buffered IO in case we haven't made any progress.
1580 */
1581 if (left == prev_left) {
1582 err = -ENOTBLK;
1583 } else {
1584 fault_in_iov_iter_readable(from, left);
1585 prev_left = left;
8184620a 1586 goto relock;
51bd9563 1587 }
a42fa643
GR
1588 }
1589
ac5e6669
FM
1590 /*
1591 * If 'err' is -ENOTBLK or we have not written all data, then it means
1592 * we must fallback to buffered IO.
1593 */
51bd9563 1594 if ((err < 0 && err != -ENOTBLK) || !iov_iter_count(from))
c3523706 1595 goto out;
d0215f3e 1596
4e4cabec 1597buffered:
ac5e6669
FM
1598 /*
1599 * If we are in a NOWAIT context, then return -EAGAIN to signal the caller
1600 * it must retry the operation in a context where blocking is acceptable,
20af93d9
FM
1601 * because even if we end up not blocking during the buffered IO attempt
1602 * below, we will block when flushing and waiting for the IO.
ac5e6669
FM
1603 */
1604 if (iocb->ki_flags & IOCB_NOWAIT) {
1605 err = -EAGAIN;
1606 goto out;
1607 }
1608
e4af400a
GR
1609 pos = iocb->ki_pos;
1610 written_buffered = btrfs_buffered_write(iocb, from);
d0215f3e
JB
1611 if (written_buffered < 0) {
1612 err = written_buffered;
1613 goto out;
39279cc3 1614 }
075bdbdb
FM
1615 /*
1616 * Ensure all data is persisted. We want the next direct IO read to be
1617 * able to read what was just written.
1618 */
d0215f3e 1619 endbyte = pos + written_buffered - 1;
728404da 1620 err = btrfs_fdatawrite_range(inode, pos, endbyte);
075bdbdb
FM
1621 if (err)
1622 goto out;
728404da 1623 err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
d0215f3e
JB
1624 if (err)
1625 goto out;
1626 written += written_buffered;
867c4f93 1627 iocb->ki_pos = pos + written_buffered;
09cbfeaf
KS
1628 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT,
1629 endbyte >> PAGE_SHIFT);
39279cc3 1630out:
51bd9563 1631 return err < 0 ? err : written;
d0215f3e 1632}
5b92ee72 1633
7c0c7269
OS
1634static ssize_t btrfs_encoded_write(struct kiocb *iocb, struct iov_iter *from,
1635 const struct btrfs_ioctl_encoded_io_args *encoded)
1636{
1637 struct file *file = iocb->ki_filp;
1638 struct inode *inode = file_inode(file);
1639 loff_t count;
1640 ssize_t ret;
1641
29b6352b 1642 btrfs_inode_lock(BTRFS_I(inode), 0);
7c0c7269
OS
1643 count = encoded->len;
1644 ret = generic_write_checks_count(iocb, &count);
1645 if (ret == 0 && count != encoded->len) {
1646 /*
1647 * The write got truncated by generic_write_checks_count(). We
1648 * can't do a partial encoded write.
1649 */
1650 ret = -EFBIG;
1651 }
1652 if (ret || encoded->len == 0)
1653 goto out;
1654
1655 ret = btrfs_write_check(iocb, from, encoded->len);
1656 if (ret < 0)
1657 goto out;
1658
1659 ret = btrfs_do_encoded_write(iocb, from, encoded);
1660out:
e5d4d75b 1661 btrfs_inode_unlock(BTRFS_I(inode), 0);
7c0c7269
OS
1662 return ret;
1663}
1664
1665ssize_t btrfs_do_write_iter(struct kiocb *iocb, struct iov_iter *from,
1666 const struct btrfs_ioctl_encoded_io_args *encoded)
d0215f3e
JB
1667{
1668 struct file *file = iocb->ki_filp;
14971657 1669 struct btrfs_inode *inode = BTRFS_I(file_inode(file));
7c0c7269 1670 ssize_t num_written, num_sync;
d0215f3e 1671
c86537a4
GR
1672 /*
1673 * If the fs flips readonly due to some impossible error, although we
1674 * have opened a file as writable, we have to stop this write operation
1675 * to ensure consistency.
1676 */
84961539 1677 if (BTRFS_FS_ERROR(inode->root->fs_info))
c86537a4
GR
1678 return -EROFS;
1679
926078b2 1680 if (encoded && (iocb->ki_flags & IOCB_NOWAIT))
91f9943e
CH
1681 return -EOPNOTSUPP;
1682
7c0c7269
OS
1683 if (encoded) {
1684 num_written = btrfs_encoded_write(iocb, from, encoded);
1685 num_sync = encoded->len;
1686 } else if (iocb->ki_flags & IOCB_DIRECT) {
c1867eb3
DS
1687 num_written = btrfs_direct_write(iocb, from);
1688 num_sync = num_written;
7c0c7269 1689 } else {
c1867eb3
DS
1690 num_written = btrfs_buffered_write(iocb, from);
1691 num_sync = num_written;
7c0c7269 1692 }
d0215f3e 1693
bc0939fc
FM
1694 btrfs_set_inode_last_sub_trans(inode);
1695
7c0c7269
OS
1696 if (num_sync > 0) {
1697 num_sync = generic_write_sync(iocb, num_sync);
1698 if (num_sync < 0)
1699 num_written = num_sync;
1700 }
0a3404dc 1701
c3523706 1702 return num_written;
39279cc3
CM
1703}
1704
7c0c7269
OS
1705static ssize_t btrfs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1706{
1707 return btrfs_do_write_iter(iocb, from, NULL);
1708}
1709
d397712b 1710int btrfs_release_file(struct inode *inode, struct file *filp)
e1b81e67 1711{
23b5ec74
JB
1712 struct btrfs_file_private *private = filp->private_data;
1713
3c32c721 1714 if (private) {
23b5ec74 1715 kfree(private->filldir_buf);
3c32c721
FM
1716 free_extent_state(private->llseek_cached_state);
1717 kfree(private);
1718 filp->private_data = NULL;
1719 }
23b5ec74 1720
f6dc45c7 1721 /*
1fd4033d
NB
1722 * Set by setattr when we are about to truncate a file from a non-zero
1723 * size to a zero size. This tries to flush down new bytes that may
1724 * have been written if the application were using truncate to replace
1725 * a file in place.
f6dc45c7 1726 */
1fd4033d 1727 if (test_and_clear_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
f6dc45c7
CM
1728 &BTRFS_I(inode)->runtime_flags))
1729 filemap_flush(inode->i_mapping);
e1b81e67
M
1730 return 0;
1731}
1732
669249ee
FM
1733static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
1734{
1735 int ret;
343e4fc1 1736 struct blk_plug plug;
669249ee 1737
343e4fc1
LB
1738 /*
1739 * This is only called in fsync, which would do synchronous writes, so
1740 * a plug can merge adjacent IOs as much as possible. Esp. in case of
1741 * multiple disks using raid profile, a large IO can be split to
1742 * several segments of stripe length (currently 64K).
1743 */
1744 blk_start_plug(&plug);
728404da 1745 ret = btrfs_fdatawrite_range(inode, start, end);
343e4fc1 1746 blk_finish_plug(&plug);
669249ee
FM
1747
1748 return ret;
1749}
1750
626e9f41
FM
1751static inline bool skip_inode_logging(const struct btrfs_log_ctx *ctx)
1752{
1753 struct btrfs_inode *inode = BTRFS_I(ctx->inode);
1754 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1755
4a4f8fe2 1756 if (btrfs_inode_in_log(inode, btrfs_get_fs_generation(fs_info)) &&
626e9f41
FM
1757 list_empty(&ctx->ordered_extents))
1758 return true;
1759
1760 /*
1761 * If we are doing a fast fsync we can not bail out if the inode's
1762 * last_trans is <= then the last committed transaction, because we only
1763 * update the last_trans of the inode during ordered extent completion,
1764 * and for a fast fsync we don't wait for that, we only wait for the
1765 * writeback to complete.
1766 */
0124855f 1767 if (inode->last_trans <= btrfs_get_last_trans_committed(fs_info) &&
626e9f41
FM
1768 (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) ||
1769 list_empty(&ctx->ordered_extents)))
1770 return true;
1771
1772 return false;
1773}
1774
d352ac68
CM
1775/*
1776 * fsync call for both files and directories. This logs the inode into
1777 * the tree log instead of forcing full commits whenever possible.
1778 *
1779 * It needs to call filemap_fdatawait so that all ordered extent updates are
1780 * in the metadata btree are up to date for copying to the log.
1781 *
1782 * It drops the inode mutex before doing the tree log commit. This is an
1783 * important optimization for directories because holding the mutex prevents
1784 * new operations on the dir while we write to disk.
1785 */
02c24a82 1786int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
39279cc3 1787{
de17e793 1788 struct dentry *dentry = file_dentry(file);
2b0143b5 1789 struct inode *inode = d_inode(dentry);
0b246afa 1790 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3 1791 struct btrfs_root *root = BTRFS_I(inode)->root;
39279cc3 1792 struct btrfs_trans_handle *trans;
8b050d35 1793 struct btrfs_log_ctx ctx;
333427a5 1794 int ret = 0, err;
48778179
FM
1795 u64 len;
1796 bool full_sync;
39279cc3 1797
1abe9b8a 1798 trace_btrfs_sync_file(file, datasync);
257c62e1 1799
ebb70442
LB
1800 btrfs_init_log_ctx(&ctx, inode);
1801
95418ed1 1802 /*
48778179
FM
1803 * Always set the range to a full range, otherwise we can get into
1804 * several problems, from missing file extent items to represent holes
1805 * when not using the NO_HOLES feature, to log tree corruption due to
1806 * races between hole detection during logging and completion of ordered
1807 * extents outside the range, to missing checksums due to ordered extents
1808 * for which we flushed only a subset of their pages.
95418ed1 1809 */
48778179
FM
1810 start = 0;
1811 end = LLONG_MAX;
1812 len = (u64)LLONG_MAX + 1;
95418ed1 1813
90abccf2
MX
1814 /*
1815 * We write the dirty pages in the range and wait until they complete
1816 * out of the ->i_mutex. If so, we can flush the dirty pages by
2ab28f32
JB
1817 * multi-task, and make the performance up. See
1818 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
90abccf2 1819 */
669249ee 1820 ret = start_ordered_ops(inode, start, end);
90abccf2 1821 if (ret)
333427a5 1822 goto out;
90abccf2 1823
29b6352b 1824 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
c495144b 1825
2ecb7923 1826 atomic_inc(&root->log_batch);
b5e6c3e1 1827
aab15e8e 1828 /*
885f46d8
FM
1829 * Before we acquired the inode's lock and the mmap lock, someone may
1830 * have dirtied more pages in the target range. We need to make sure
1831 * that writeback for any such pages does not start while we are logging
1832 * the inode, because if it does, any of the following might happen when
1833 * we are not doing a full inode sync:
aab15e8e
FM
1834 *
1835 * 1) We log an extent after its writeback finishes but before its
1836 * checksums are added to the csum tree, leading to -EIO errors
1837 * when attempting to read the extent after a log replay.
1838 *
1839 * 2) We can end up logging an extent before its writeback finishes.
1840 * Therefore after the log replay we will have a file extent item
1841 * pointing to an unwritten extent (and no data checksums as well).
1842 *
1843 * So trigger writeback for any eventual new dirty pages and then we
1844 * wait for all ordered extents to complete below.
1845 */
1846 ret = start_ordered_ops(inode, start, end);
1847 if (ret) {
e5d4d75b 1848 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
aab15e8e
FM
1849 goto out;
1850 }
1851
cef7820d
FM
1852 /*
1853 * Always check for the full sync flag while holding the inode's lock,
1854 * to avoid races with other tasks. The flag must be either set all the
1855 * time during logging or always off all the time while logging.
1856 * We check the flag here after starting delalloc above, because when
1857 * running delalloc the full sync flag may be set if we need to drop
1858 * extra extent map ranges due to temporary memory allocation failures.
1859 */
1860 full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1861 &BTRFS_I(inode)->runtime_flags);
1862
669249ee 1863 /*
b5e6c3e1 1864 * We have to do this here to avoid the priority inversion of waiting on
52042d8e 1865 * IO of a lower priority task while holding a transaction open.
ba0b084a 1866 *
48778179
FM
1867 * For a full fsync we wait for the ordered extents to complete while
1868 * for a fast fsync we wait just for writeback to complete, and then
1869 * attach the ordered extents to the transaction so that a transaction
1870 * commit waits for their completion, to avoid data loss if we fsync,
1871 * the current transaction commits before the ordered extents complete
1872 * and a power failure happens right after that.
d8e3fb10
NA
1873 *
1874 * For zoned filesystem, if a write IO uses a ZONE_APPEND command, the
1875 * logical address recorded in the ordered extent may change. We need
1876 * to wait for the IO to stabilize the logical address.
669249ee 1877 */
d8e3fb10 1878 if (full_sync || btrfs_is_zoned(fs_info)) {
48778179
FM
1879 ret = btrfs_wait_ordered_range(inode, start, len);
1880 } else {
1881 /*
1882 * Get our ordered extents as soon as possible to avoid doing
1883 * checksum lookups in the csum tree, and use instead the
1884 * checksums attached to the ordered extents.
1885 */
1886 btrfs_get_ordered_extents_for_logging(BTRFS_I(inode),
1887 &ctx.ordered_extents);
1888 ret = filemap_fdatawait_range(inode->i_mapping, start, end);
0ef8b726 1889 }
48778179
FM
1890
1891 if (ret)
1892 goto out_release_extents;
1893
2ecb7923 1894 atomic_inc(&root->log_batch);
257c62e1 1895
626e9f41 1896 if (skip_inode_logging(&ctx)) {
5dc562c5 1897 /*
01327610 1898 * We've had everything committed since the last time we were
5dc562c5
JB
1899 * modified so clear this flag in case it was set for whatever
1900 * reason, it's no longer relevant.
1901 */
1902 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1903 &BTRFS_I(inode)->runtime_flags);
0596a904
FM
1904 /*
1905 * An ordered extent might have started before and completed
1906 * already with io errors, in which case the inode was not
1907 * updated and we end up here. So check the inode's mapping
333427a5
JL
1908 * for any errors that might have happened since we last
1909 * checked called fsync.
0596a904 1910 */
333427a5 1911 ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err);
48778179 1912 goto out_release_extents;
15ee9bc7 1913 }
15ee9bc7 1914
5039eddc
JB
1915 /*
1916 * We use start here because we will need to wait on the IO to complete
1917 * in btrfs_sync_log, which could require joining a transaction (for
1918 * example checking cross references in the nocow path). If we use join
1919 * here we could get into a situation where we're waiting on IO to
1920 * happen that is blocked on a transaction trying to commit. With start
1921 * we inc the extwriter counter, so we wait for all extwriters to exit
52042d8e 1922 * before we start blocking joiners. This comment is to keep somebody
5039eddc
JB
1923 * from thinking they are super smart and changing this to
1924 * btrfs_join_transaction *cough*Josef*cough*.
1925 */
a22285a6
YZ
1926 trans = btrfs_start_transaction(root, 0);
1927 if (IS_ERR(trans)) {
1928 ret = PTR_ERR(trans);
48778179 1929 goto out_release_extents;
39279cc3 1930 }
d0c2f4fa 1931 trans->in_fsync = true;
e02119d5 1932
48778179
FM
1933 ret = btrfs_log_dentry_safe(trans, dentry, &ctx);
1934 btrfs_release_log_ctx_extents(&ctx);
02c24a82 1935 if (ret < 0) {
a0634be5 1936 /* Fallthrough and commit/free transaction. */
f31f09f6 1937 ret = BTRFS_LOG_FORCE_COMMIT;
02c24a82 1938 }
49eb7e46
CM
1939
1940 /* we've logged all the items and now have a consistent
1941 * version of the file in the log. It is possible that
1942 * someone will come in and modify the file, but that's
1943 * fine because the log is consistent on disk, and we
1944 * have references to all of the file's extents
1945 *
1946 * It is possible that someone will come in and log the
1947 * file again, but that will end up using the synchronization
1948 * inside btrfs_sync_log to keep things safe.
1949 */
e5d4d75b 1950 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
49eb7e46 1951
bf7ba8ee
JB
1952 if (ret == BTRFS_NO_LOG_SYNC) {
1953 ret = btrfs_end_transaction(trans);
1954 goto out;
1955 }
1956
1957 /* We successfully logged the inode, attempt to sync the log. */
1958 if (!ret) {
1959 ret = btrfs_sync_log(trans, root, &ctx);
0ef8b726 1960 if (!ret) {
bf7ba8ee
JB
1961 ret = btrfs_end_transaction(trans);
1962 goto out;
48778179 1963 }
bf7ba8ee
JB
1964 }
1965
1966 /*
1967 * At this point we need to commit the transaction because we had
1968 * btrfs_need_log_full_commit() or some other error.
1969 *
1970 * If we didn't do a full sync we have to stop the trans handle, wait on
1971 * the ordered extents, start it again and commit the transaction. If
1972 * we attempt to wait on the ordered extents here we could deadlock with
1973 * something like fallocate() that is holding the extent lock trying to
1974 * start a transaction while some other thread is trying to commit the
1975 * transaction while we (fsync) are currently holding the transaction
1976 * open.
1977 */
1978 if (!full_sync) {
3a45bb20 1979 ret = btrfs_end_transaction(trans);
bf7ba8ee
JB
1980 if (ret)
1981 goto out;
1982 ret = btrfs_wait_ordered_range(inode, start, len);
1983 if (ret)
1984 goto out;
1985
1986 /*
1987 * This is safe to use here because we're only interested in
1988 * making sure the transaction that had the ordered extents is
1989 * committed. We aren't waiting on anything past this point,
1990 * we're purely getting the transaction and committing it.
1991 */
1992 trans = btrfs_attach_transaction_barrier(root);
1993 if (IS_ERR(trans)) {
1994 ret = PTR_ERR(trans);
1995
1996 /*
1997 * We committed the transaction and there's no currently
1998 * running transaction, this means everything we care
1999 * about made it to disk and we are done.
2000 */
2001 if (ret == -ENOENT)
2002 ret = 0;
2003 goto out;
2004 }
e02119d5 2005 }
bf7ba8ee
JB
2006
2007 ret = btrfs_commit_transaction(trans);
39279cc3 2008out:
ebb70442 2009 ASSERT(list_empty(&ctx.list));
e09d94c9 2010 ASSERT(list_empty(&ctx.conflict_inodes));
333427a5
JL
2011 err = file_check_and_advance_wb_err(file);
2012 if (!ret)
2013 ret = err;
014e4ac4 2014 return ret > 0 ? -EIO : ret;
48778179
FM
2015
2016out_release_extents:
2017 btrfs_release_log_ctx_extents(&ctx);
e5d4d75b 2018 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
48778179 2019 goto out;
39279cc3
CM
2020}
2021
f0f37e2f 2022static const struct vm_operations_struct btrfs_file_vm_ops = {
92fee66d 2023 .fault = filemap_fault,
f1820361 2024 .map_pages = filemap_map_pages,
9ebefb18
CM
2025 .page_mkwrite = btrfs_page_mkwrite,
2026};
2027
2028static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma)
2029{
058a457e
MX
2030 struct address_space *mapping = filp->f_mapping;
2031
7e0a1265 2032 if (!mapping->a_ops->read_folio)
058a457e
MX
2033 return -ENOEXEC;
2034
9ebefb18 2035 file_accessed(filp);
058a457e 2036 vma->vm_ops = &btrfs_file_vm_ops;
058a457e 2037
9ebefb18
CM
2038 return 0;
2039}
2040
35339c24 2041static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf,
2aaa6655
JB
2042 int slot, u64 start, u64 end)
2043{
2044 struct btrfs_file_extent_item *fi;
2045 struct btrfs_key key;
2046
2047 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2048 return 0;
2049
2050 btrfs_item_key_to_cpu(leaf, &key, slot);
35339c24 2051 if (key.objectid != btrfs_ino(inode) ||
2aaa6655
JB
2052 key.type != BTRFS_EXTENT_DATA_KEY)
2053 return 0;
2054
2055 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2056
2057 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2058 return 0;
2059
2060 if (btrfs_file_extent_disk_bytenr(leaf, fi))
2061 return 0;
2062
2063 if (key.offset == end)
2064 return 1;
2065 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2066 return 1;
2067 return 0;
2068}
2069
a012a74e
NB
2070static int fill_holes(struct btrfs_trans_handle *trans,
2071 struct btrfs_inode *inode,
2072 struct btrfs_path *path, u64 offset, u64 end)
2aaa6655 2073{
3ffbd68c 2074 struct btrfs_fs_info *fs_info = trans->fs_info;
a012a74e 2075 struct btrfs_root *root = inode->root;
2aaa6655
JB
2076 struct extent_buffer *leaf;
2077 struct btrfs_file_extent_item *fi;
2078 struct extent_map *hole_em;
2aaa6655
JB
2079 struct btrfs_key key;
2080 int ret;
2081
0b246afa 2082 if (btrfs_fs_incompat(fs_info, NO_HOLES))
16e7549f
JB
2083 goto out;
2084
a012a74e 2085 key.objectid = btrfs_ino(inode);
2aaa6655
JB
2086 key.type = BTRFS_EXTENT_DATA_KEY;
2087 key.offset = offset;
2088
2aaa6655 2089 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
f94480bd
JB
2090 if (ret <= 0) {
2091 /*
2092 * We should have dropped this offset, so if we find it then
2093 * something has gone horribly wrong.
2094 */
2095 if (ret == 0)
2096 ret = -EINVAL;
2aaa6655 2097 return ret;
f94480bd 2098 }
2aaa6655
JB
2099
2100 leaf = path->nodes[0];
a012a74e 2101 if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) {
2aaa6655
JB
2102 u64 num_bytes;
2103
2104 path->slots[0]--;
2105 fi = btrfs_item_ptr(leaf, path->slots[0],
2106 struct btrfs_file_extent_item);
2107 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2108 end - offset;
2109 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2110 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2111 btrfs_set_file_extent_offset(leaf, fi, 0);
e6e3dec6 2112 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
50564b65 2113 btrfs_mark_buffer_dirty(trans, leaf);
2aaa6655
JB
2114 goto out;
2115 }
2116
1707e26d 2117 if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2aaa6655
JB
2118 u64 num_bytes;
2119
2aaa6655 2120 key.offset = offset;
50564b65 2121 btrfs_set_item_key_safe(trans, path, &key);
2aaa6655
JB
2122 fi = btrfs_item_ptr(leaf, path->slots[0],
2123 struct btrfs_file_extent_item);
2124 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2125 offset;
2126 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2127 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2128 btrfs_set_file_extent_offset(leaf, fi, 0);
e6e3dec6 2129 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
50564b65 2130 btrfs_mark_buffer_dirty(trans, leaf);
2aaa6655
JB
2131 goto out;
2132 }
2133 btrfs_release_path(path);
2134
d1f68ba0
OS
2135 ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset,
2136 end - offset);
2aaa6655
JB
2137 if (ret)
2138 return ret;
2139
2140out:
2141 btrfs_release_path(path);
2142
2143 hole_em = alloc_extent_map();
2144 if (!hole_em) {
4c0c8cfc 2145 btrfs_drop_extent_map_range(inode, offset, end - 1, false);
23e3337f 2146 btrfs_set_inode_full_sync(inode);
2aaa6655
JB
2147 } else {
2148 hole_em->start = offset;
2149 hole_em->len = end - offset;
cc95bef6 2150 hole_em->ram_bytes = hole_em->len;
2aaa6655
JB
2151 hole_em->orig_start = offset;
2152
2153 hole_em->block_start = EXTENT_MAP_HOLE;
2154 hole_em->block_len = 0;
b4939680 2155 hole_em->orig_block_len = 0;
2aaa6655
JB
2156 hole_em->generation = trans->transid;
2157
a1ba4c08 2158 ret = btrfs_replace_extent_map_range(inode, hole_em, true);
2aaa6655
JB
2159 free_extent_map(hole_em);
2160 if (ret)
23e3337f 2161 btrfs_set_inode_full_sync(inode);
2aaa6655
JB
2162 }
2163
2164 return 0;
2165}
2166
d7781546
QW
2167/*
2168 * Find a hole extent on given inode and change start/len to the end of hole
2169 * extent.(hole/vacuum extent whose em->start <= start &&
2170 * em->start + em->len > start)
2171 * When a hole extent is found, return 1 and modify start/len.
2172 */
dea46d84 2173static int find_first_non_hole(struct btrfs_inode *inode, u64 *start, u64 *len)
d7781546 2174{
dea46d84 2175 struct btrfs_fs_info *fs_info = inode->root->fs_info;
d7781546
QW
2176 struct extent_map *em;
2177 int ret = 0;
2178
dea46d84 2179 em = btrfs_get_extent(inode, NULL, 0,
609805d8 2180 round_down(*start, fs_info->sectorsize),
39b07b5d 2181 round_up(*len, fs_info->sectorsize));
9986277e
DC
2182 if (IS_ERR(em))
2183 return PTR_ERR(em);
d7781546
QW
2184
2185 /* Hole or vacuum extent(only exists in no-hole mode) */
2186 if (em->block_start == EXTENT_MAP_HOLE) {
2187 ret = 1;
2188 *len = em->start + em->len > *start + *len ?
2189 0 : *start + *len - em->start - em->len;
2190 *start = em->start + em->len;
2191 }
2192 free_extent_map(em);
2193 return ret;
2194}
2195
55961c8a
FM
2196static void btrfs_punch_hole_lock_range(struct inode *inode,
2197 const u64 lockstart,
2198 const u64 lockend,
2199 struct extent_state **cached_state)
f27451f2 2200{
0528476b
QW
2201 /*
2202 * For subpage case, if the range is not at page boundary, we could
2203 * have pages at the leading/tailing part of the range.
2204 * This could lead to dead loop since filemap_range_has_page()
2205 * will always return true.
2206 * So here we need to do extra page alignment for
2207 * filemap_range_has_page().
2208 */
2209 const u64 page_lockstart = round_up(lockstart, PAGE_SIZE);
2210 const u64 page_lockend = round_down(lockend + 1, PAGE_SIZE) - 1;
2211
f27451f2 2212 while (1) {
f27451f2
FM
2213 truncate_pagecache_range(inode, lockstart, lockend);
2214
570eb97b
JB
2215 lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2216 cached_state);
f27451f2 2217 /*
55961c8a
FM
2218 * We can't have ordered extents in the range, nor dirty/writeback
2219 * pages, because we have locked the inode's VFS lock in exclusive
2220 * mode, we have locked the inode's i_mmap_lock in exclusive mode,
2221 * we have flushed all delalloc in the range and we have waited
2222 * for any ordered extents in the range to complete.
2223 * We can race with anyone reading pages from this range, so after
2224 * locking the range check if we have pages in the range, and if
2225 * we do, unlock the range and retry.
f27451f2 2226 */
55961c8a
FM
2227 if (!filemap_range_has_page(inode->i_mapping, page_lockstart,
2228 page_lockend))
f27451f2 2229 break;
55961c8a 2230
570eb97b
JB
2231 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2232 cached_state);
f27451f2 2233 }
63c34cb4
FM
2234
2235 btrfs_assert_inode_range_clean(BTRFS_I(inode), lockstart, lockend);
f27451f2
FM
2236}
2237
0cbb5bdf 2238static int btrfs_insert_replace_extent(struct btrfs_trans_handle *trans,
03fcb1ab 2239 struct btrfs_inode *inode,
690a5dbf 2240 struct btrfs_path *path,
bf385648 2241 struct btrfs_replace_extent_info *extent_info,
2766ff61
FM
2242 const u64 replace_len,
2243 const u64 bytes_to_drop)
690a5dbf 2244{
03fcb1ab
NB
2245 struct btrfs_fs_info *fs_info = trans->fs_info;
2246 struct btrfs_root *root = inode->root;
690a5dbf
FM
2247 struct btrfs_file_extent_item *extent;
2248 struct extent_buffer *leaf;
2249 struct btrfs_key key;
2250 int slot;
2251 struct btrfs_ref ref = { 0 };
690a5dbf
FM
2252 int ret;
2253
bf385648 2254 if (replace_len == 0)
690a5dbf
FM
2255 return 0;
2256
bf385648 2257 if (extent_info->disk_offset == 0 &&
2766ff61 2258 btrfs_fs_incompat(fs_info, NO_HOLES)) {
03fcb1ab 2259 btrfs_update_inode_bytes(inode, 0, bytes_to_drop);
690a5dbf 2260 return 0;
2766ff61 2261 }
690a5dbf 2262
03fcb1ab 2263 key.objectid = btrfs_ino(inode);
690a5dbf 2264 key.type = BTRFS_EXTENT_DATA_KEY;
bf385648 2265 key.offset = extent_info->file_offset;
690a5dbf 2266 ret = btrfs_insert_empty_item(trans, root, path, &key,
fb870f6c 2267 sizeof(struct btrfs_file_extent_item));
690a5dbf
FM
2268 if (ret)
2269 return ret;
2270 leaf = path->nodes[0];
2271 slot = path->slots[0];
bf385648 2272 write_extent_buffer(leaf, extent_info->extent_buf,
690a5dbf 2273 btrfs_item_ptr_offset(leaf, slot),
fb870f6c 2274 sizeof(struct btrfs_file_extent_item));
690a5dbf 2275 extent = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
fb870f6c 2276 ASSERT(btrfs_file_extent_type(leaf, extent) != BTRFS_FILE_EXTENT_INLINE);
bf385648
FM
2277 btrfs_set_file_extent_offset(leaf, extent, extent_info->data_offset);
2278 btrfs_set_file_extent_num_bytes(leaf, extent, replace_len);
2279 if (extent_info->is_new_extent)
8fccebfa 2280 btrfs_set_file_extent_generation(leaf, extent, trans->transid);
50564b65 2281 btrfs_mark_buffer_dirty(trans, leaf);
690a5dbf
FM
2282 btrfs_release_path(path);
2283
03fcb1ab
NB
2284 ret = btrfs_inode_set_file_extent_range(inode, extent_info->file_offset,
2285 replace_len);
9ddc959e
JB
2286 if (ret)
2287 return ret;
2288
690a5dbf 2289 /* If it's a hole, nothing more needs to be done. */
2766ff61 2290 if (extent_info->disk_offset == 0) {
03fcb1ab 2291 btrfs_update_inode_bytes(inode, 0, bytes_to_drop);
690a5dbf 2292 return 0;
2766ff61 2293 }
690a5dbf 2294
03fcb1ab 2295 btrfs_update_inode_bytes(inode, replace_len, bytes_to_drop);
8fccebfa 2296
bf385648
FM
2297 if (extent_info->is_new_extent && extent_info->insertions == 0) {
2298 key.objectid = extent_info->disk_offset;
8fccebfa 2299 key.type = BTRFS_EXTENT_ITEM_KEY;
bf385648 2300 key.offset = extent_info->disk_len;
8fccebfa 2301 ret = btrfs_alloc_reserved_file_extent(trans, root,
03fcb1ab 2302 btrfs_ino(inode),
bf385648
FM
2303 extent_info->file_offset,
2304 extent_info->qgroup_reserved,
8fccebfa
FM
2305 &key);
2306 } else {
2307 u64 ref_offset;
2308
2309 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF,
bf385648 2310 extent_info->disk_offset,
457cb1dd
BB
2311 extent_info->disk_len, 0,
2312 root->root_key.objectid);
bf385648 2313 ref_offset = extent_info->file_offset - extent_info->data_offset;
8fccebfa 2314 btrfs_init_data_ref(&ref, root->root_key.objectid,
f42c5da6 2315 btrfs_ino(inode), ref_offset, 0, false);
8fccebfa
FM
2316 ret = btrfs_inc_extent_ref(trans, &ref);
2317 }
2318
bf385648 2319 extent_info->insertions++;
690a5dbf
FM
2320
2321 return ret;
2322}
2323
9cba40a6
FM
2324/*
2325 * The respective range must have been previously locked, as well as the inode.
2326 * The end offset is inclusive (last byte of the range).
bf385648
FM
2327 * @extent_info is NULL for fallocate's hole punching and non-NULL when replacing
2328 * the file range with an extent.
2329 * When not punching a hole, we don't want to end up in a state where we dropped
2330 * extents without inserting a new one, so we must abort the transaction to avoid
2331 * a corruption.
9cba40a6 2332 */
bfc78479
NB
2333int btrfs_replace_file_extents(struct btrfs_inode *inode,
2334 struct btrfs_path *path, const u64 start,
2335 const u64 end,
2336 struct btrfs_replace_extent_info *extent_info,
2337 struct btrfs_trans_handle **trans_out)
9cba40a6 2338{
5893dfb9 2339 struct btrfs_drop_extents_args drop_args = { 0 };
bfc78479
NB
2340 struct btrfs_root *root = inode->root;
2341 struct btrfs_fs_info *fs_info = root->fs_info;
2bd36e7b 2342 u64 min_size = btrfs_calc_insert_metadata_size(fs_info, 1);
bfc78479 2343 u64 ino_size = round_up(inode->vfs_inode.i_size, fs_info->sectorsize);
9cba40a6
FM
2344 struct btrfs_trans_handle *trans = NULL;
2345 struct btrfs_block_rsv *rsv;
2346 unsigned int rsv_count;
2347 u64 cur_offset;
9cba40a6
FM
2348 u64 len = end - start;
2349 int ret = 0;
2350
2351 if (end <= start)
2352 return -EINVAL;
2353
2354 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
2355 if (!rsv) {
2356 ret = -ENOMEM;
2357 goto out;
2358 }
2bd36e7b 2359 rsv->size = btrfs_calc_insert_metadata_size(fs_info, 1);
710d5921 2360 rsv->failfast = true;
9cba40a6
FM
2361
2362 /*
2363 * 1 - update the inode
2364 * 1 - removing the extents in the range
bf385648
FM
2365 * 1 - adding the hole extent if no_holes isn't set or if we are
2366 * replacing the range with a new extent
9cba40a6 2367 */
bf385648 2368 if (!btrfs_fs_incompat(fs_info, NO_HOLES) || extent_info)
690a5dbf
FM
2369 rsv_count = 3;
2370 else
2371 rsv_count = 2;
2372
9cba40a6
FM
2373 trans = btrfs_start_transaction(root, rsv_count);
2374 if (IS_ERR(trans)) {
2375 ret = PTR_ERR(trans);
2376 trans = NULL;
2377 goto out_free;
2378 }
2379
2380 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
2381 min_size, false);
650c9cab
FM
2382 if (WARN_ON(ret))
2383 goto out_trans;
9cba40a6
FM
2384 trans->block_rsv = rsv;
2385
2386 cur_offset = start;
5893dfb9
FM
2387 drop_args.path = path;
2388 drop_args.end = end + 1;
2389 drop_args.drop_cache = true;
9cba40a6 2390 while (cur_offset < end) {
5893dfb9 2391 drop_args.start = cur_offset;
bfc78479 2392 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
2766ff61
FM
2393 /* If we are punching a hole decrement the inode's byte count */
2394 if (!extent_info)
bfc78479 2395 btrfs_update_inode_bytes(inode, 0,
2766ff61 2396 drop_args.bytes_found);
690a5dbf
FM
2397 if (ret != -ENOSPC) {
2398 /*
4afb912f
JB
2399 * The only time we don't want to abort is if we are
2400 * attempting to clone a partial inline extent, in which
2401 * case we'll get EOPNOTSUPP. However if we aren't
2402 * clone we need to abort no matter what, because if we
2403 * got EOPNOTSUPP via prealloc then we messed up and
2404 * need to abort.
690a5dbf 2405 */
4afb912f
JB
2406 if (ret &&
2407 (ret != -EOPNOTSUPP ||
2408 (extent_info && extent_info->is_new_extent)))
690a5dbf 2409 btrfs_abort_transaction(trans, ret);
9cba40a6 2410 break;
690a5dbf 2411 }
9cba40a6
FM
2412
2413 trans->block_rsv = &fs_info->trans_block_rsv;
2414
5893dfb9 2415 if (!extent_info && cur_offset < drop_args.drop_end &&
690a5dbf 2416 cur_offset < ino_size) {
bfc78479
NB
2417 ret = fill_holes(trans, inode, path, cur_offset,
2418 drop_args.drop_end);
9cba40a6
FM
2419 if (ret) {
2420 /*
2421 * If we failed then we didn't insert our hole
2422 * entries for the area we dropped, so now the
2423 * fs is corrupted, so we must abort the
2424 * transaction.
2425 */
2426 btrfs_abort_transaction(trans, ret);
2427 break;
2428 }
5893dfb9 2429 } else if (!extent_info && cur_offset < drop_args.drop_end) {
9ddc959e
JB
2430 /*
2431 * We are past the i_size here, but since we didn't
2432 * insert holes we need to clear the mapped area so we
2433 * know to not set disk_i_size in this area until a new
2434 * file extent is inserted here.
2435 */
bfc78479 2436 ret = btrfs_inode_clear_file_extent_range(inode,
5893dfb9
FM
2437 cur_offset,
2438 drop_args.drop_end - cur_offset);
9ddc959e
JB
2439 if (ret) {
2440 /*
2441 * We couldn't clear our area, so we could
2442 * presumably adjust up and corrupt the fs, so
2443 * we need to abort.
2444 */
2445 btrfs_abort_transaction(trans, ret);
2446 break;
2447 }
9cba40a6
FM
2448 }
2449
5893dfb9
FM
2450 if (extent_info &&
2451 drop_args.drop_end > extent_info->file_offset) {
2452 u64 replace_len = drop_args.drop_end -
2453 extent_info->file_offset;
690a5dbf 2454
bfc78479
NB
2455 ret = btrfs_insert_replace_extent(trans, inode, path,
2456 extent_info, replace_len,
03fcb1ab 2457 drop_args.bytes_found);
690a5dbf
FM
2458 if (ret) {
2459 btrfs_abort_transaction(trans, ret);
2460 break;
2461 }
bf385648
FM
2462 extent_info->data_len -= replace_len;
2463 extent_info->data_offset += replace_len;
2464 extent_info->file_offset += replace_len;
690a5dbf
FM
2465 }
2466
983d8209
FM
2467 /*
2468 * We are releasing our handle on the transaction, balance the
2469 * dirty pages of the btree inode and flush delayed items, and
2470 * then get a new transaction handle, which may now point to a
2471 * new transaction in case someone else may have committed the
2472 * transaction we used to replace/drop file extent items. So
2473 * bump the inode's iversion and update mtime and ctime except
2474 * if we are called from a dedupe context. This is because a
2475 * power failure/crash may happen after the transaction is
2476 * committed and before we finish replacing/dropping all the
2477 * file extent items we need.
2478 */
2479 inode_inc_iversion(&inode->vfs_inode);
2480
2a9462de 2481 if (!extent_info || extent_info->update_times)
b1c38a13
JL
2482 inode_set_mtime_to_ts(&inode->vfs_inode,
2483 inode_set_ctime_current(&inode->vfs_inode));
983d8209 2484
8b9d0322 2485 ret = btrfs_update_inode(trans, inode);
9cba40a6
FM
2486 if (ret)
2487 break;
2488
2489 btrfs_end_transaction(trans);
2490 btrfs_btree_balance_dirty(fs_info);
2491
2492 trans = btrfs_start_transaction(root, rsv_count);
2493 if (IS_ERR(trans)) {
2494 ret = PTR_ERR(trans);
2495 trans = NULL;
2496 break;
2497 }
2498
2499 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
2500 rsv, min_size, false);
650c9cab
FM
2501 if (WARN_ON(ret))
2502 break;
9cba40a6
FM
2503 trans->block_rsv = rsv;
2504
3227788c
BC
2505 cur_offset = drop_args.drop_end;
2506 len = end - cur_offset;
2507 if (!extent_info && len) {
bfc78479 2508 ret = find_first_non_hole(inode, &cur_offset, &len);
690a5dbf
FM
2509 if (unlikely(ret < 0))
2510 break;
2511 if (ret && !len) {
2512 ret = 0;
2513 break;
2514 }
9cba40a6
FM
2515 }
2516 }
2517
690a5dbf
FM
2518 /*
2519 * If we were cloning, force the next fsync to be a full one since we
2520 * we replaced (or just dropped in the case of cloning holes when
e2b84217
FM
2521 * NO_HOLES is enabled) file extent items and did not setup new extent
2522 * maps for the replacement extents (or holes).
690a5dbf 2523 */
bf385648 2524 if (extent_info && !extent_info->is_new_extent)
23e3337f 2525 btrfs_set_inode_full_sync(inode);
690a5dbf 2526
9cba40a6
FM
2527 if (ret)
2528 goto out_trans;
2529
2530 trans->block_rsv = &fs_info->trans_block_rsv;
2531 /*
2532 * If we are using the NO_HOLES feature we might have had already an
2533 * hole that overlaps a part of the region [lockstart, lockend] and
2534 * ends at (or beyond) lockend. Since we have no file extent items to
2535 * represent holes, drop_end can be less than lockend and so we must
2536 * make sure we have an extent map representing the existing hole (the
2537 * call to __btrfs_drop_extents() might have dropped the existing extent
2538 * map representing the existing hole), otherwise the fast fsync path
2539 * will not record the existence of the hole region
2540 * [existing_hole_start, lockend].
2541 */
5893dfb9
FM
2542 if (drop_args.drop_end <= end)
2543 drop_args.drop_end = end + 1;
9cba40a6
FM
2544 /*
2545 * Don't insert file hole extent item if it's for a range beyond eof
2546 * (because it's useless) or if it represents a 0 bytes range (when
2547 * cur_offset == drop_end).
2548 */
5893dfb9
FM
2549 if (!extent_info && cur_offset < ino_size &&
2550 cur_offset < drop_args.drop_end) {
bfc78479
NB
2551 ret = fill_holes(trans, inode, path, cur_offset,
2552 drop_args.drop_end);
9cba40a6
FM
2553 if (ret) {
2554 /* Same comment as above. */
2555 btrfs_abort_transaction(trans, ret);
2556 goto out_trans;
2557 }
5893dfb9 2558 } else if (!extent_info && cur_offset < drop_args.drop_end) {
9ddc959e 2559 /* See the comment in the loop above for the reasoning here. */
bfc78479
NB
2560 ret = btrfs_inode_clear_file_extent_range(inode, cur_offset,
2561 drop_args.drop_end - cur_offset);
9ddc959e
JB
2562 if (ret) {
2563 btrfs_abort_transaction(trans, ret);
2564 goto out_trans;
2565 }
2566
9cba40a6 2567 }
bf385648 2568 if (extent_info) {
bfc78479 2569 ret = btrfs_insert_replace_extent(trans, inode, path,
03fcb1ab
NB
2570 extent_info, extent_info->data_len,
2571 drop_args.bytes_found);
690a5dbf
FM
2572 if (ret) {
2573 btrfs_abort_transaction(trans, ret);
2574 goto out_trans;
2575 }
2576 }
9cba40a6
FM
2577
2578out_trans:
2579 if (!trans)
2580 goto out_free;
2581
2582 trans->block_rsv = &fs_info->trans_block_rsv;
2583 if (ret)
2584 btrfs_end_transaction(trans);
2585 else
2586 *trans_out = trans;
2587out_free:
2588 btrfs_free_block_rsv(fs_info, rsv);
2589out:
2590 return ret;
2591}
2592
05fd9564 2593static int btrfs_punch_hole(struct file *file, loff_t offset, loff_t len)
2aaa6655 2594{
05fd9564 2595 struct inode *inode = file_inode(file);
0b246afa 2596 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2aaa6655
JB
2597 struct btrfs_root *root = BTRFS_I(inode)->root;
2598 struct extent_state *cached_state = NULL;
2599 struct btrfs_path *path;
9cba40a6 2600 struct btrfs_trans_handle *trans = NULL;
d7781546
QW
2601 u64 lockstart;
2602 u64 lockend;
2603 u64 tail_start;
2604 u64 tail_len;
2605 u64 orig_start = offset;
2aaa6655 2606 int ret = 0;
9703fefe 2607 bool same_block;
a1a50f60 2608 u64 ino_size;
9703fefe 2609 bool truncated_block = false;
e8c1c76e 2610 bool updated_inode = false;
2aaa6655 2611
29b6352b 2612 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
bd6526d0 2613
0ef8b726
JB
2614 ret = btrfs_wait_ordered_range(inode, offset, len);
2615 if (ret)
bd6526d0 2616 goto out_only_mutex;
2aaa6655 2617
0b246afa 2618 ino_size = round_up(inode->i_size, fs_info->sectorsize);
dea46d84 2619 ret = find_first_non_hole(BTRFS_I(inode), &offset, &len);
d7781546
QW
2620 if (ret < 0)
2621 goto out_only_mutex;
2622 if (ret && !len) {
2623 /* Already in a large hole */
2624 ret = 0;
2625 goto out_only_mutex;
2626 }
2627
05fd9564
DW
2628 ret = file_modified(file);
2629 if (ret)
2630 goto out_only_mutex;
2631
ee8ba05c
JB
2632 lockstart = round_up(offset, fs_info->sectorsize);
2633 lockend = round_down(offset + len, fs_info->sectorsize) - 1;
0b246afa
JM
2634 same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset))
2635 == (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1));
7426cc04 2636 /*
9703fefe 2637 * We needn't truncate any block which is beyond the end of the file
7426cc04
MX
2638 * because we are sure there is no data there.
2639 */
2aaa6655 2640 /*
9703fefe
CR
2641 * Only do this if we are in the same block and we aren't doing the
2642 * entire block.
2aaa6655 2643 */
0b246afa 2644 if (same_block && len < fs_info->sectorsize) {
e8c1c76e 2645 if (offset < ino_size) {
9703fefe 2646 truncated_block = true;
217f42eb
NB
2647 ret = btrfs_truncate_block(BTRFS_I(inode), offset, len,
2648 0);
e8c1c76e
FM
2649 } else {
2650 ret = 0;
2651 }
d7781546 2652 goto out_only_mutex;
2aaa6655
JB
2653 }
2654
9703fefe 2655 /* zero back part of the first block */
12870f1c 2656 if (offset < ino_size) {
9703fefe 2657 truncated_block = true;
217f42eb 2658 ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0);
7426cc04 2659 if (ret) {
e5d4d75b 2660 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
7426cc04
MX
2661 return ret;
2662 }
2aaa6655
JB
2663 }
2664
d7781546
QW
2665 /* Check the aligned pages after the first unaligned page,
2666 * if offset != orig_start, which means the first unaligned page
01327610 2667 * including several following pages are already in holes,
d7781546
QW
2668 * the extra check can be skipped */
2669 if (offset == orig_start) {
2670 /* after truncate page, check hole again */
2671 len = offset + len - lockstart;
2672 offset = lockstart;
dea46d84 2673 ret = find_first_non_hole(BTRFS_I(inode), &offset, &len);
d7781546
QW
2674 if (ret < 0)
2675 goto out_only_mutex;
2676 if (ret && !len) {
2677 ret = 0;
2678 goto out_only_mutex;
2679 }
2680 lockstart = offset;
2681 }
2682
2683 /* Check the tail unaligned part is in a hole */
2684 tail_start = lockend + 1;
2685 tail_len = offset + len - tail_start;
2686 if (tail_len) {
dea46d84 2687 ret = find_first_non_hole(BTRFS_I(inode), &tail_start, &tail_len);
d7781546
QW
2688 if (unlikely(ret < 0))
2689 goto out_only_mutex;
2690 if (!ret) {
2691 /* zero the front end of the last page */
2692 if (tail_start + tail_len < ino_size) {
9703fefe 2693 truncated_block = true;
217f42eb 2694 ret = btrfs_truncate_block(BTRFS_I(inode),
9703fefe
CR
2695 tail_start + tail_len,
2696 0, 1);
d7781546
QW
2697 if (ret)
2698 goto out_only_mutex;
51f395ad 2699 }
0061280d 2700 }
2aaa6655
JB
2701 }
2702
2703 if (lockend < lockstart) {
e8c1c76e
FM
2704 ret = 0;
2705 goto out_only_mutex;
2aaa6655
JB
2706 }
2707
55961c8a 2708 btrfs_punch_hole_lock_range(inode, lockstart, lockend, &cached_state);
2aaa6655
JB
2709
2710 path = btrfs_alloc_path();
2711 if (!path) {
2712 ret = -ENOMEM;
2713 goto out;
2714 }
2715
bfc78479
NB
2716 ret = btrfs_replace_file_extents(BTRFS_I(inode), path, lockstart,
2717 lockend, NULL, &trans);
9cba40a6
FM
2718 btrfs_free_path(path);
2719 if (ret)
2720 goto out;
2aaa6655 2721
9cba40a6 2722 ASSERT(trans != NULL);
e1f5790e 2723 inode_inc_iversion(inode);
b1c38a13 2724 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
8b9d0322 2725 ret = btrfs_update_inode(trans, BTRFS_I(inode));
e8c1c76e 2726 updated_inode = true;
3a45bb20 2727 btrfs_end_transaction(trans);
2ff7e61e 2728 btrfs_btree_balance_dirty(fs_info);
2aaa6655 2729out:
570eb97b
JB
2730 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2731 &cached_state);
d7781546 2732out_only_mutex:
9cba40a6 2733 if (!updated_inode && truncated_block && !ret) {
e8c1c76e
FM
2734 /*
2735 * If we only end up zeroing part of a page, we still need to
2736 * update the inode item, so that all the time fields are
2737 * updated as well as the necessary btrfs inode in memory fields
2738 * for detecting, at fsync time, if the inode isn't yet in the
2739 * log tree or it's there but not up to date.
2740 */
2a9462de 2741 struct timespec64 now = inode_set_ctime_current(inode);
17900668
FM
2742
2743 inode_inc_iversion(inode);
b1c38a13 2744 inode_set_mtime_to_ts(inode, now);
e8c1c76e
FM
2745 trans = btrfs_start_transaction(root, 1);
2746 if (IS_ERR(trans)) {
9cba40a6 2747 ret = PTR_ERR(trans);
e8c1c76e 2748 } else {
9cba40a6
FM
2749 int ret2;
2750
8b9d0322 2751 ret = btrfs_update_inode(trans, BTRFS_I(inode));
9cba40a6
FM
2752 ret2 = btrfs_end_transaction(trans);
2753 if (!ret)
2754 ret = ret2;
e8c1c76e
FM
2755 }
2756 }
e5d4d75b 2757 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
9cba40a6 2758 return ret;
2aaa6655
JB
2759}
2760
14524a84
QW
2761/* Helper structure to record which range is already reserved */
2762struct falloc_range {
2763 struct list_head list;
2764 u64 start;
2765 u64 len;
2766};
2767
2768/*
2769 * Helper function to add falloc range
2770 *
2771 * Caller should have locked the larger range of extent containing
2772 * [start, len)
2773 */
2774static int add_falloc_range(struct list_head *head, u64 start, u64 len)
2775{
14524a84
QW
2776 struct falloc_range *range = NULL;
2777
77d25534
NB
2778 if (!list_empty(head)) {
2779 /*
2780 * As fallocate iterates by bytenr order, we only need to check
2781 * the last range.
2782 */
2783 range = list_last_entry(head, struct falloc_range, list);
2784 if (range->start + range->len == start) {
2785 range->len += len;
2786 return 0;
2787 }
14524a84 2788 }
77d25534 2789
32fc932e 2790 range = kmalloc(sizeof(*range), GFP_KERNEL);
14524a84
QW
2791 if (!range)
2792 return -ENOMEM;
2793 range->start = start;
2794 range->len = len;
2795 list_add_tail(&range->list, head);
2796 return 0;
2797}
2798
f27451f2
FM
2799static int btrfs_fallocate_update_isize(struct inode *inode,
2800 const u64 end,
2801 const int mode)
2802{
2803 struct btrfs_trans_handle *trans;
2804 struct btrfs_root *root = BTRFS_I(inode)->root;
2805 int ret;
2806 int ret2;
2807
2808 if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode))
2809 return 0;
2810
2811 trans = btrfs_start_transaction(root, 1);
2812 if (IS_ERR(trans))
2813 return PTR_ERR(trans);
2814
2a9462de 2815 inode_set_ctime_current(inode);
f27451f2 2816 i_size_write(inode, end);
76aea537 2817 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
8b9d0322 2818 ret = btrfs_update_inode(trans, BTRFS_I(inode));
f27451f2
FM
2819 ret2 = btrfs_end_transaction(trans);
2820
2821 return ret ? ret : ret2;
2822}
2823
81fdf638 2824enum {
f262fa8d
DS
2825 RANGE_BOUNDARY_WRITTEN_EXTENT,
2826 RANGE_BOUNDARY_PREALLOC_EXTENT,
2827 RANGE_BOUNDARY_HOLE,
81fdf638
FM
2828};
2829
948dfeb8 2830static int btrfs_zero_range_check_range_boundary(struct btrfs_inode *inode,
f27451f2
FM
2831 u64 offset)
2832{
ee8ba05c 2833 const u64 sectorsize = inode->root->fs_info->sectorsize;
f27451f2 2834 struct extent_map *em;
81fdf638 2835 int ret;
f27451f2
FM
2836
2837 offset = round_down(offset, sectorsize);
948dfeb8 2838 em = btrfs_get_extent(inode, NULL, 0, offset, sectorsize);
f27451f2
FM
2839 if (IS_ERR(em))
2840 return PTR_ERR(em);
2841
2842 if (em->block_start == EXTENT_MAP_HOLE)
81fdf638 2843 ret = RANGE_BOUNDARY_HOLE;
f86f7a75 2844 else if (em->flags & EXTENT_FLAG_PREALLOC)
81fdf638
FM
2845 ret = RANGE_BOUNDARY_PREALLOC_EXTENT;
2846 else
2847 ret = RANGE_BOUNDARY_WRITTEN_EXTENT;
f27451f2
FM
2848
2849 free_extent_map(em);
2850 return ret;
2851}
2852
2853static int btrfs_zero_range(struct inode *inode,
2854 loff_t offset,
2855 loff_t len,
2856 const int mode)
2857{
2858 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2859 struct extent_map *em;
2860 struct extent_changeset *data_reserved = NULL;
2861 int ret;
2862 u64 alloc_hint = 0;
ee8ba05c 2863 const u64 sectorsize = fs_info->sectorsize;
f27451f2
FM
2864 u64 alloc_start = round_down(offset, sectorsize);
2865 u64 alloc_end = round_up(offset + len, sectorsize);
2866 u64 bytes_to_reserve = 0;
2867 bool space_reserved = false;
2868
39b07b5d
OS
2869 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start,
2870 alloc_end - alloc_start);
f27451f2
FM
2871 if (IS_ERR(em)) {
2872 ret = PTR_ERR(em);
2873 goto out;
2874 }
2875
2876 /*
2877 * Avoid hole punching and extent allocation for some cases. More cases
2878 * could be considered, but these are unlikely common and we keep things
2879 * as simple as possible for now. Also, intentionally, if the target
2880 * range contains one or more prealloc extents together with regular
2881 * extents and holes, we drop all the existing extents and allocate a
2882 * new prealloc extent, so that we get a larger contiguous disk extent.
2883 */
f86f7a75 2884 if (em->start <= alloc_start && (em->flags & EXTENT_FLAG_PREALLOC)) {
f27451f2
FM
2885 const u64 em_end = em->start + em->len;
2886
2887 if (em_end >= offset + len) {
2888 /*
2889 * The whole range is already a prealloc extent,
2890 * do nothing except updating the inode's i_size if
2891 * needed.
2892 */
2893 free_extent_map(em);
2894 ret = btrfs_fallocate_update_isize(inode, offset + len,
2895 mode);
2896 goto out;
2897 }
2898 /*
2899 * Part of the range is already a prealloc extent, so operate
2900 * only on the remaining part of the range.
2901 */
2902 alloc_start = em_end;
2903 ASSERT(IS_ALIGNED(alloc_start, sectorsize));
2904 len = offset + len - alloc_start;
2905 offset = alloc_start;
2906 alloc_hint = em->block_start + em->len;
2907 }
2908 free_extent_map(em);
2909
2910 if (BTRFS_BYTES_TO_BLKS(fs_info, offset) ==
2911 BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) {
39b07b5d
OS
2912 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start,
2913 sectorsize);
f27451f2
FM
2914 if (IS_ERR(em)) {
2915 ret = PTR_ERR(em);
2916 goto out;
2917 }
2918
f86f7a75 2919 if (em->flags & EXTENT_FLAG_PREALLOC) {
f27451f2
FM
2920 free_extent_map(em);
2921 ret = btrfs_fallocate_update_isize(inode, offset + len,
2922 mode);
2923 goto out;
2924 }
2925 if (len < sectorsize && em->block_start != EXTENT_MAP_HOLE) {
2926 free_extent_map(em);
217f42eb
NB
2927 ret = btrfs_truncate_block(BTRFS_I(inode), offset, len,
2928 0);
f27451f2
FM
2929 if (!ret)
2930 ret = btrfs_fallocate_update_isize(inode,
2931 offset + len,
2932 mode);
2933 return ret;
2934 }
2935 free_extent_map(em);
2936 alloc_start = round_down(offset, sectorsize);
2937 alloc_end = alloc_start + sectorsize;
2938 goto reserve_space;
2939 }
2940
2941 alloc_start = round_up(offset, sectorsize);
2942 alloc_end = round_down(offset + len, sectorsize);
2943
2944 /*
2945 * For unaligned ranges, check the pages at the boundaries, they might
2946 * map to an extent, in which case we need to partially zero them, or
2947 * they might map to a hole, in which case we need our allocation range
2948 * to cover them.
2949 */
2950 if (!IS_ALIGNED(offset, sectorsize)) {
948dfeb8
NB
2951 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
2952 offset);
f27451f2
FM
2953 if (ret < 0)
2954 goto out;
81fdf638 2955 if (ret == RANGE_BOUNDARY_HOLE) {
f27451f2
FM
2956 alloc_start = round_down(offset, sectorsize);
2957 ret = 0;
81fdf638 2958 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
217f42eb 2959 ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0);
f27451f2
FM
2960 if (ret)
2961 goto out;
81fdf638
FM
2962 } else {
2963 ret = 0;
f27451f2
FM
2964 }
2965 }
2966
2967 if (!IS_ALIGNED(offset + len, sectorsize)) {
948dfeb8 2968 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
f27451f2
FM
2969 offset + len);
2970 if (ret < 0)
2971 goto out;
81fdf638 2972 if (ret == RANGE_BOUNDARY_HOLE) {
f27451f2
FM
2973 alloc_end = round_up(offset + len, sectorsize);
2974 ret = 0;
81fdf638 2975 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
217f42eb
NB
2976 ret = btrfs_truncate_block(BTRFS_I(inode), offset + len,
2977 0, 1);
f27451f2
FM
2978 if (ret)
2979 goto out;
81fdf638
FM
2980 } else {
2981 ret = 0;
f27451f2
FM
2982 }
2983 }
2984
2985reserve_space:
2986 if (alloc_start < alloc_end) {
2987 struct extent_state *cached_state = NULL;
2988 const u64 lockstart = alloc_start;
2989 const u64 lockend = alloc_end - 1;
2990
2991 bytes_to_reserve = alloc_end - alloc_start;
2992 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
2993 bytes_to_reserve);
2994 if (ret < 0)
2995 goto out;
2996 space_reserved = true;
55961c8a
FM
2997 btrfs_punch_hole_lock_range(inode, lockstart, lockend,
2998 &cached_state);
7661a3e0 2999 ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), &data_reserved,
a7f8b1c2 3000 alloc_start, bytes_to_reserve);
4f6a49de 3001 if (ret) {
570eb97b
JB
3002 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart,
3003 lockend, &cached_state);
a7f8b1c2 3004 goto out;
4f6a49de 3005 }
f27451f2
FM
3006 ret = btrfs_prealloc_file_range(inode, mode, alloc_start,
3007 alloc_end - alloc_start,
3008 i_blocksize(inode),
3009 offset + len, &alloc_hint);
570eb97b
JB
3010 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3011 &cached_state);
f27451f2 3012 /* btrfs_prealloc_file_range releases reserved space on error */
9f13ce74 3013 if (ret) {
f27451f2 3014 space_reserved = false;
9f13ce74
FM
3015 goto out;
3016 }
f27451f2 3017 }
9f13ce74 3018 ret = btrfs_fallocate_update_isize(inode, offset + len, mode);
f27451f2
FM
3019 out:
3020 if (ret && space_reserved)
25ce28ca 3021 btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved,
f27451f2
FM
3022 alloc_start, bytes_to_reserve);
3023 extent_changeset_free(data_reserved);
3024
3025 return ret;
3026}
3027
2fe17c10
CH
3028static long btrfs_fallocate(struct file *file, int mode,
3029 loff_t offset, loff_t len)
3030{
496ad9aa 3031 struct inode *inode = file_inode(file);
2fe17c10 3032 struct extent_state *cached_state = NULL;
364ecf36 3033 struct extent_changeset *data_reserved = NULL;
14524a84
QW
3034 struct falloc_range *range;
3035 struct falloc_range *tmp;
84af994b 3036 LIST_HEAD(reserve_list);
2fe17c10
CH
3037 u64 cur_offset;
3038 u64 last_byte;
3039 u64 alloc_start;
3040 u64 alloc_end;
3041 u64 alloc_hint = 0;
3042 u64 locked_end;
14524a84 3043 u64 actual_end = 0;
47e1d1c7
FM
3044 u64 data_space_needed = 0;
3045 u64 data_space_reserved = 0;
3046 u64 qgroup_reserved = 0;
2fe17c10 3047 struct extent_map *em;
ee8ba05c 3048 int blocksize = BTRFS_I(inode)->root->fs_info->sectorsize;
2fe17c10
CH
3049 int ret;
3050
f1569c4c
NA
3051 /* Do not allow fallocate in ZONED mode */
3052 if (btrfs_is_zoned(btrfs_sb(inode->i_sb)))
3053 return -EOPNOTSUPP;
3054
797f4277
MX
3055 alloc_start = round_down(offset, blocksize);
3056 alloc_end = round_up(offset + len, blocksize);
18513091 3057 cur_offset = alloc_start;
2fe17c10 3058
2aaa6655 3059 /* Make sure we aren't being give some crap mode */
f27451f2
FM
3060 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
3061 FALLOC_FL_ZERO_RANGE))
2fe17c10
CH
3062 return -EOPNOTSUPP;
3063
2aaa6655 3064 if (mode & FALLOC_FL_PUNCH_HOLE)
05fd9564 3065 return btrfs_punch_hole(file, offset, len);
2aaa6655 3066
29b6352b 3067 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
2a162ce9
DI
3068
3069 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
3070 ret = inode_newsize_ok(inode, offset + len);
3071 if (ret)
3072 goto out;
3073 }
2fe17c10 3074
05fd9564
DW
3075 ret = file_modified(file);
3076 if (ret)
3077 goto out;
3078
14524a84
QW
3079 /*
3080 * TODO: Move these two operations after we have checked
3081 * accurate reserved space, or fallocate can still fail but
3082 * with page truncated or size expanded.
3083 *
3084 * But that's a minor problem and won't do much harm BTW.
3085 */
2fe17c10 3086 if (alloc_start > inode->i_size) {
b06359a3 3087 ret = btrfs_cont_expand(BTRFS_I(inode), i_size_read(inode),
a41ad394 3088 alloc_start);
2fe17c10
CH
3089 if (ret)
3090 goto out;
0f6925fa 3091 } else if (offset + len > inode->i_size) {
a71754fc
JB
3092 /*
3093 * If we are fallocating from the end of the file onward we
9703fefe
CR
3094 * need to zero out the end of the block if i_size lands in the
3095 * middle of a block.
a71754fc 3096 */
217f42eb 3097 ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size, 0, 0);
a71754fc
JB
3098 if (ret)
3099 goto out;
2fe17c10
CH
3100 }
3101
a71754fc 3102 /*
ffa8fc60
FM
3103 * We have locked the inode at the VFS level (in exclusive mode) and we
3104 * have locked the i_mmap_lock lock (in exclusive mode). Now before
3105 * locking the file range, flush all dealloc in the range and wait for
3106 * all ordered extents in the range to complete. After this we can lock
3107 * the file range and, due to the previous locking we did, we know there
3108 * can't be more delalloc or ordered extents in the range.
a71754fc 3109 */
0ef8b726
JB
3110 ret = btrfs_wait_ordered_range(inode, alloc_start,
3111 alloc_end - alloc_start);
3112 if (ret)
3113 goto out;
a71754fc 3114
f27451f2
FM
3115 if (mode & FALLOC_FL_ZERO_RANGE) {
3116 ret = btrfs_zero_range(inode, offset, len, mode);
e5d4d75b 3117 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
f27451f2
FM
3118 return ret;
3119 }
3120
2fe17c10 3121 locked_end = alloc_end - 1;
570eb97b
JB
3122 lock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3123 &cached_state);
2fe17c10 3124
63c34cb4
FM
3125 btrfs_assert_inode_range_clean(BTRFS_I(inode), alloc_start, locked_end);
3126
14524a84 3127 /* First, check if we exceed the qgroup limit */
6b7d6e93 3128 while (cur_offset < alloc_end) {
fc4f21b1 3129 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
39b07b5d 3130 alloc_end - cur_offset);
9986277e
DC
3131 if (IS_ERR(em)) {
3132 ret = PTR_ERR(em);
79787eaa
JM
3133 break;
3134 }
2fe17c10 3135 last_byte = min(extent_map_end(em), alloc_end);
f1e490a7 3136 actual_end = min_t(u64, extent_map_end(em), offset + len);
797f4277 3137 last_byte = ALIGN(last_byte, blocksize);
2fe17c10
CH
3138 if (em->block_start == EXTENT_MAP_HOLE ||
3139 (cur_offset >= inode->i_size &&
f86f7a75 3140 !(em->flags & EXTENT_FLAG_PREALLOC))) {
47e1d1c7
FM
3141 const u64 range_len = last_byte - cur_offset;
3142
3143 ret = add_falloc_range(&reserve_list, cur_offset, range_len);
14524a84
QW
3144 if (ret < 0) {
3145 free_extent_map(em);
3146 break;
3d850dd4 3147 }
7661a3e0 3148 ret = btrfs_qgroup_reserve_data(BTRFS_I(inode),
47e1d1c7 3149 &data_reserved, cur_offset, range_len);
be2d253c
FM
3150 if (ret < 0) {
3151 free_extent_map(em);
14524a84 3152 break;
be2d253c 3153 }
47e1d1c7
FM
3154 qgroup_reserved += range_len;
3155 data_space_needed += range_len;
2fe17c10
CH
3156 }
3157 free_extent_map(em);
2fe17c10 3158 cur_offset = last_byte;
14524a84
QW
3159 }
3160
47e1d1c7
FM
3161 if (!ret && data_space_needed > 0) {
3162 /*
3163 * We are safe to reserve space here as we can't have delalloc
3164 * in the range, see above.
3165 */
3166 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3167 data_space_needed);
3168 if (!ret)
3169 data_space_reserved = data_space_needed;
3170 }
3171
14524a84
QW
3172 /*
3173 * If ret is still 0, means we're OK to fallocate.
3174 * Or just cleanup the list and exit.
3175 */
3176 list_for_each_entry_safe(range, tmp, &reserve_list, list) {
47e1d1c7 3177 if (!ret) {
14524a84
QW
3178 ret = btrfs_prealloc_file_range(inode, mode,
3179 range->start,
93407472 3180 range->len, i_blocksize(inode),
14524a84 3181 offset + len, &alloc_hint);
47e1d1c7
FM
3182 /*
3183 * btrfs_prealloc_file_range() releases space even
3184 * if it returns an error.
3185 */
3186 data_space_reserved -= range->len;
3187 qgroup_reserved -= range->len;
3188 } else if (data_space_reserved > 0) {
25ce28ca 3189 btrfs_free_reserved_data_space(BTRFS_I(inode),
47e1d1c7
FM
3190 data_reserved, range->start,
3191 range->len);
3192 data_space_reserved -= range->len;
3193 qgroup_reserved -= range->len;
3194 } else if (qgroup_reserved > 0) {
3195 btrfs_qgroup_free_data(BTRFS_I(inode), data_reserved,
9e65bfca 3196 range->start, range->len, NULL);
47e1d1c7
FM
3197 qgroup_reserved -= range->len;
3198 }
14524a84
QW
3199 list_del(&range->list);
3200 kfree(range);
3201 }
3202 if (ret < 0)
3203 goto out_unlock;
3204
f27451f2
FM
3205 /*
3206 * We didn't need to allocate any more space, but we still extended the
3207 * size of the file so we need to update i_size and the inode item.
3208 */
3209 ret = btrfs_fallocate_update_isize(inode, actual_end, mode);
14524a84 3210out_unlock:
570eb97b
JB
3211 unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3212 &cached_state);
2fe17c10 3213out:
e5d4d75b 3214 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
364ecf36 3215 extent_changeset_free(data_reserved);
2fe17c10
CH
3216 return ret;
3217}
3218
b6e83356 3219/*
ac3c0d36
FM
3220 * Helper for btrfs_find_delalloc_in_range(). Find a subrange in a given range
3221 * that has unflushed and/or flushing delalloc. There might be other adjacent
3222 * subranges after the one it found, so btrfs_find_delalloc_in_range() keeps
3223 * looping while it gets adjacent subranges, and merging them together.
b6e83356
FM
3224 */
3225static bool find_delalloc_subrange(struct btrfs_inode *inode, u64 start, u64 end,
b3e744fe 3226 struct extent_state **cached_state,
af979fd6 3227 bool *search_io_tree,
b6e83356
FM
3228 u64 *delalloc_start_ret, u64 *delalloc_end_ret)
3229{
40daf3e0 3230 u64 len = end + 1 - start;
8ddc8274
FM
3231 u64 delalloc_len = 0;
3232 struct btrfs_ordered_extent *oe;
3233 u64 oe_start;
3234 u64 oe_end;
b6e83356
FM
3235
3236 /*
3237 * Search the io tree first for EXTENT_DELALLOC. If we find any, it
3238 * means we have delalloc (dirty pages) for which writeback has not
3239 * started yet.
3240 */
8ddc8274
FM
3241 if (*search_io_tree) {
3242 spin_lock(&inode->lock);
3243 if (inode->delalloc_bytes > 0) {
3244 spin_unlock(&inode->lock);
3245 *delalloc_start_ret = start;
3246 delalloc_len = count_range_bits(&inode->io_tree,
3247 delalloc_start_ret, end,
8c6e53a7 3248 len, EXTENT_DELALLOC, 1,
b3e744fe 3249 cached_state);
8ddc8274
FM
3250 } else {
3251 spin_unlock(&inode->lock);
3252 }
a2853ffc
FM
3253 }
3254
40daf3e0
FM
3255 if (delalloc_len > 0) {
3256 /*
3257 * If delalloc was found then *delalloc_start_ret has a sector size
3258 * aligned value (rounded down).
3259 */
b6e83356
FM
3260 *delalloc_end_ret = *delalloc_start_ret + delalloc_len - 1;
3261
40daf3e0
FM
3262 if (*delalloc_start_ret == start) {
3263 /* Delalloc for the whole range, nothing more to do. */
3264 if (*delalloc_end_ret == end)
3265 return true;
8ddc8274 3266 /* Else trim our search range for ordered extents. */
40daf3e0
FM
3267 start = *delalloc_end_ret + 1;
3268 len = end + 1 - start;
3269 }
af979fd6
FM
3270 } else {
3271 /* No delalloc, future calls don't need to search again. */
3272 *search_io_tree = false;
40daf3e0
FM
3273 }
3274
a2853ffc 3275 /*
8ddc8274
FM
3276 * Now also check if there's any ordered extent in the range.
3277 * We do this because:
b6e83356
FM
3278 *
3279 * 1) When delalloc is flushed, the file range is locked, we clear the
8ddc8274
FM
3280 * EXTENT_DELALLOC bit from the io tree and create an extent map and
3281 * an ordered extent for the write. So we might just have been called
3282 * after delalloc is flushed and before the ordered extent completes
3283 * and inserts the new file extent item in the subvolume's btree;
b6e83356 3284 *
8ddc8274 3285 * 2) We may have an ordered extent created by flushing delalloc for a
b6e83356
FM
3286 * subrange that starts before the subrange we found marked with
3287 * EXTENT_DELALLOC in the io tree.
8ddc8274
FM
3288 *
3289 * We could also use the extent map tree to find such delalloc that is
3290 * being flushed, but using the ordered extents tree is more efficient
3291 * because it's usually much smaller as ordered extents are removed from
3292 * the tree once they complete. With the extent maps, we mau have them
3293 * in the extent map tree for a very long time, and they were either
3294 * created by previous writes or loaded by read operations.
b6e83356 3295 */
8ddc8274
FM
3296 oe = btrfs_lookup_first_ordered_range(inode, start, len);
3297 if (!oe)
d47704bd 3298 return (delalloc_len > 0);
d47704bd 3299
8ddc8274
FM
3300 /* The ordered extent may span beyond our search range. */
3301 oe_start = max(oe->file_offset, start);
3302 oe_end = min(oe->file_offset + oe->num_bytes - 1, end);
b6e83356 3303
8ddc8274 3304 btrfs_put_ordered_extent(oe);
b6e83356 3305
8ddc8274 3306 /* Don't have unflushed delalloc, return the ordered extent range. */
b6e83356 3307 if (delalloc_len == 0) {
8ddc8274
FM
3308 *delalloc_start_ret = oe_start;
3309 *delalloc_end_ret = oe_end;
b6e83356
FM
3310 return true;
3311 }
3312
3313 /*
8ddc8274
FM
3314 * We have both unflushed delalloc (io_tree) and an ordered extent.
3315 * If the ranges are adjacent returned a combined range, otherwise
3316 * return the leftmost range.
b6e83356 3317 */
8ddc8274
FM
3318 if (oe_start < *delalloc_start_ret) {
3319 if (oe_end < *delalloc_start_ret)
3320 *delalloc_end_ret = oe_end;
3321 *delalloc_start_ret = oe_start;
3322 } else if (*delalloc_end_ret + 1 == oe_start) {
3323 *delalloc_end_ret = oe_end;
b6e83356
FM
3324 }
3325
b6e83356
FM
3326 return true;
3327}
3328
3329/*
3330 * Check if there's delalloc in a given range.
3331 *
3332 * @inode: The inode.
3333 * @start: The start offset of the range. It does not need to be
3334 * sector size aligned.
3335 * @end: The end offset (inclusive value) of the search range.
3336 * It does not need to be sector size aligned.
b3e744fe
FM
3337 * @cached_state: Extent state record used for speeding up delalloc
3338 * searches in the inode's io_tree. Can be NULL.
b6e83356
FM
3339 * @delalloc_start_ret: Output argument, set to the start offset of the
3340 * subrange found with delalloc (may not be sector size
3341 * aligned).
3342 * @delalloc_end_ret: Output argument, set to he end offset (inclusive value)
3343 * of the subrange found with delalloc.
3344 *
3345 * Returns true if a subrange with delalloc is found within the given range, and
3346 * if so it sets @delalloc_start_ret and @delalloc_end_ret with the start and
3347 * end offsets of the subrange.
3348 */
ac3c0d36 3349bool btrfs_find_delalloc_in_range(struct btrfs_inode *inode, u64 start, u64 end,
b3e744fe 3350 struct extent_state **cached_state,
ac3c0d36 3351 u64 *delalloc_start_ret, u64 *delalloc_end_ret)
b6e83356
FM
3352{
3353 u64 cur_offset = round_down(start, inode->root->fs_info->sectorsize);
3354 u64 prev_delalloc_end = 0;
af979fd6 3355 bool search_io_tree = true;
b6e83356
FM
3356 bool ret = false;
3357
2f2e84ca 3358 while (cur_offset <= end) {
b6e83356
FM
3359 u64 delalloc_start;
3360 u64 delalloc_end;
3361 bool delalloc;
3362
3363 delalloc = find_delalloc_subrange(inode, cur_offset, end,
b3e744fe 3364 cached_state, &search_io_tree,
b6e83356
FM
3365 &delalloc_start,
3366 &delalloc_end);
3367 if (!delalloc)
3368 break;
3369
3370 if (prev_delalloc_end == 0) {
3371 /* First subrange found. */
3372 *delalloc_start_ret = max(delalloc_start, start);
3373 *delalloc_end_ret = delalloc_end;
3374 ret = true;
3375 } else if (delalloc_start == prev_delalloc_end + 1) {
3376 /* Subrange adjacent to the previous one, merge them. */
3377 *delalloc_end_ret = delalloc_end;
3378 } else {
3379 /* Subrange not adjacent to the previous one, exit. */
3380 break;
3381 }
3382
3383 prev_delalloc_end = delalloc_end;
3384 cur_offset = delalloc_end + 1;
3385 cond_resched();
3386 }
3387
3388 return ret;
3389}
3390
3391/*
3392 * Check if there's a hole or delalloc range in a range representing a hole (or
3393 * prealloc extent) found in the inode's subvolume btree.
3394 *
3395 * @inode: The inode.
3396 * @whence: Seek mode (SEEK_DATA or SEEK_HOLE).
3397 * @start: Start offset of the hole region. It does not need to be sector
3398 * size aligned.
3399 * @end: End offset (inclusive value) of the hole region. It does not
3400 * need to be sector size aligned.
3401 * @start_ret: Return parameter, used to set the start of the subrange in the
3402 * hole that matches the search criteria (seek mode), if such
3403 * subrange is found (return value of the function is true).
3404 * The value returned here may not be sector size aligned.
3405 *
3406 * Returns true if a subrange matching the given seek mode is found, and if one
3407 * is found, it updates @start_ret with the start of the subrange.
3408 */
3409static bool find_desired_extent_in_hole(struct btrfs_inode *inode, int whence,
3c32c721 3410 struct extent_state **cached_state,
b6e83356
FM
3411 u64 start, u64 end, u64 *start_ret)
3412{
3413 u64 delalloc_start;
3414 u64 delalloc_end;
3415 bool delalloc;
3416
3c32c721 3417 delalloc = btrfs_find_delalloc_in_range(inode, start, end, cached_state,
ac3c0d36 3418 &delalloc_start, &delalloc_end);
b6e83356
FM
3419 if (delalloc && whence == SEEK_DATA) {
3420 *start_ret = delalloc_start;
3421 return true;
3422 }
3423
3424 if (delalloc && whence == SEEK_HOLE) {
3425 /*
3426 * We found delalloc but it starts after out start offset. So we
3427 * have a hole between our start offset and the delalloc start.
3428 */
3429 if (start < delalloc_start) {
3430 *start_ret = start;
3431 return true;
3432 }
3433 /*
3434 * Delalloc range starts at our start offset.
3435 * If the delalloc range's length is smaller than our range,
3436 * then it means we have a hole that starts where the delalloc
3437 * subrange ends.
3438 */
3439 if (delalloc_end < end) {
3440 *start_ret = delalloc_end + 1;
3441 return true;
3442 }
3443
3444 /* There's delalloc for the whole range. */
3445 return false;
3446 }
3447
3448 if (!delalloc && whence == SEEK_HOLE) {
3449 *start_ret = start;
3450 return true;
3451 }
3452
3453 /*
3454 * No delalloc in the range and we are seeking for data. The caller has
3455 * to iterate to the next extent item in the subvolume btree.
3456 */
3457 return false;
3458}
3459
3c32c721 3460static loff_t find_desired_extent(struct file *file, loff_t offset, int whence)
b2675157 3461{
3c32c721
FM
3462 struct btrfs_inode *inode = BTRFS_I(file->f_mapping->host);
3463 struct btrfs_file_private *private = file->private_data;
cca5de97 3464 struct btrfs_fs_info *fs_info = inode->root->fs_info;
b2675157 3465 struct extent_state *cached_state = NULL;
3c32c721 3466 struct extent_state **delalloc_cached_state;
b6e83356
FM
3467 const loff_t i_size = i_size_read(&inode->vfs_inode);
3468 const u64 ino = btrfs_ino(inode);
3469 struct btrfs_root *root = inode->root;
3470 struct btrfs_path *path;
3471 struct btrfs_key key;
3472 u64 last_extent_end;
4d1a40c6
LB
3473 u64 lockstart;
3474 u64 lockend;
3475 u64 start;
b6e83356
FM
3476 int ret;
3477 bool found = false;
b2675157 3478
bc80230e 3479 if (i_size == 0 || offset >= i_size)
4d1a40c6
LB
3480 return -ENXIO;
3481
b6e83356
FM
3482 /*
3483 * Quick path. If the inode has no prealloc extents and its number of
3484 * bytes used matches its i_size, then it can not have holes.
3485 */
3486 if (whence == SEEK_HOLE &&
3487 !(inode->flags & BTRFS_INODE_PREALLOC) &&
3488 inode_get_bytes(&inode->vfs_inode) == i_size)
3489 return i_size;
3490
3c32c721
FM
3491 if (!private) {
3492 private = kzalloc(sizeof(*private), GFP_KERNEL);
3493 /*
3494 * No worries if memory allocation failed.
3495 * The private structure is used only for speeding up multiple
3496 * lseek SEEK_HOLE/DATA calls to a file when there's delalloc,
3497 * so everything will still be correct.
3498 */
3499 file->private_data = private;
3500 }
3501
3502 if (private)
3503 delalloc_cached_state = &private->llseek_cached_state;
3504 else
3505 delalloc_cached_state = NULL;
3506
4d1a40c6 3507 /*
bc80230e 3508 * offset can be negative, in this case we start finding DATA/HOLE from
4d1a40c6
LB
3509 * the very start of the file.
3510 */
bc80230e 3511 start = max_t(loff_t, 0, offset);
4d1a40c6 3512
0b246afa 3513 lockstart = round_down(start, fs_info->sectorsize);
d79b7c26 3514 lockend = round_up(i_size, fs_info->sectorsize);
b2675157 3515 if (lockend <= lockstart)
0b246afa 3516 lockend = lockstart + fs_info->sectorsize;
1214b53f 3517 lockend--;
b6e83356
FM
3518
3519 path = btrfs_alloc_path();
3520 if (!path)
3521 return -ENOMEM;
3522 path->reada = READA_FORWARD;
3523
3524 key.objectid = ino;
3525 key.type = BTRFS_EXTENT_DATA_KEY;
3526 key.offset = start;
3527
3528 last_extent_end = lockstart;
b2675157 3529
570eb97b 3530 lock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
b2675157 3531
b6e83356
FM
3532 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3533 if (ret < 0) {
3534 goto out;
3535 } else if (ret > 0 && path->slots[0] > 0) {
3536 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
3537 if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY)
3538 path->slots[0]--;
3539 }
3540
d79b7c26 3541 while (start < i_size) {
b6e83356
FM
3542 struct extent_buffer *leaf = path->nodes[0];
3543 struct btrfs_file_extent_item *extent;
3544 u64 extent_end;
1f55ee6d 3545 u8 type;
b6e83356
FM
3546
3547 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3548 ret = btrfs_next_leaf(root, path);
3549 if (ret < 0)
3550 goto out;
3551 else if (ret > 0)
3552 break;
3553
3554 leaf = path->nodes[0];
b2675157
JB
3555 }
3556
b6e83356
FM
3557 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3558 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
7f4ca37c 3559 break;
b2675157 3560
b6e83356
FM
3561 extent_end = btrfs_file_extent_end(path);
3562
3563 /*
3564 * In the first iteration we may have a slot that points to an
3565 * extent that ends before our start offset, so skip it.
3566 */
3567 if (extent_end <= start) {
3568 path->slots[0]++;
3569 continue;
3570 }
3571
3572 /* We have an implicit hole, NO_HOLES feature is likely set. */
3573 if (last_extent_end < key.offset) {
3574 u64 search_start = last_extent_end;
3575 u64 found_start;
3576
3577 /*
3578 * First iteration, @start matches @offset and it's
3579 * within the hole.
3580 */
3581 if (start == offset)
3582 search_start = offset;
3583
3584 found = find_desired_extent_in_hole(inode, whence,
3c32c721 3585 delalloc_cached_state,
b6e83356
FM
3586 search_start,
3587 key.offset - 1,
3588 &found_start);
3589 if (found) {
3590 start = found_start;
3591 break;
3592 }
3593 /*
3594 * Didn't find data or a hole (due to delalloc) in the
3595 * implicit hole range, so need to analyze the extent.
3596 */
3597 }
3598
3599 extent = btrfs_item_ptr(leaf, path->slots[0],
3600 struct btrfs_file_extent_item);
1f55ee6d 3601 type = btrfs_file_extent_type(leaf, extent);
b6e83356 3602
1f55ee6d
FM
3603 /*
3604 * Can't access the extent's disk_bytenr field if this is an
3605 * inline extent, since at that offset, it's where the extent
3606 * data starts.
3607 */
3608 if (type == BTRFS_FILE_EXTENT_PREALLOC ||
3609 (type == BTRFS_FILE_EXTENT_REG &&
3610 btrfs_file_extent_disk_bytenr(leaf, extent) == 0)) {
b6e83356
FM
3611 /*
3612 * Explicit hole or prealloc extent, search for delalloc.
3613 * A prealloc extent is treated like a hole.
3614 */
3615 u64 search_start = key.offset;
3616 u64 found_start;
3617
3618 /*
3619 * First iteration, @start matches @offset and it's
3620 * within the hole.
3621 */
3622 if (start == offset)
3623 search_start = offset;
3624
3625 found = find_desired_extent_in_hole(inode, whence,
3c32c721 3626 delalloc_cached_state,
b6e83356
FM
3627 search_start,
3628 extent_end - 1,
3629 &found_start);
3630 if (found) {
3631 start = found_start;
3632 break;
3633 }
3634 /*
3635 * Didn't find data or a hole (due to delalloc) in the
3636 * implicit hole range, so need to analyze the next
3637 * extent item.
3638 */
3639 } else {
3640 /*
3641 * Found a regular or inline extent.
3642 * If we are seeking for data, adjust the start offset
3643 * and stop, we're done.
3644 */
3645 if (whence == SEEK_DATA) {
3646 start = max_t(u64, key.offset, offset);
3647 found = true;
3648 break;
3649 }
3650 /*
3651 * Else, we are seeking for a hole, check the next file
3652 * extent item.
3653 */
3654 }
3655
3656 start = extent_end;
3657 last_extent_end = extent_end;
3658 path->slots[0]++;
aed0ca18
FM
3659 if (fatal_signal_pending(current)) {
3660 ret = -EINTR;
b6e83356 3661 goto out;
aed0ca18 3662 }
b2675157
JB
3663 cond_resched();
3664 }
b6e83356
FM
3665
3666 /* We have an implicit hole from the last extent found up to i_size. */
3667 if (!found && start < i_size) {
3c32c721
FM
3668 found = find_desired_extent_in_hole(inode, whence,
3669 delalloc_cached_state, start,
b6e83356
FM
3670 i_size - 1, &start);
3671 if (!found)
3672 start = i_size;
3673 }
3674
3675out:
570eb97b 3676 unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
b6e83356
FM
3677 btrfs_free_path(path);
3678
3679 if (ret < 0)
3680 return ret;
3681
3682 if (whence == SEEK_DATA && start >= i_size)
3683 return -ENXIO;
bc80230e 3684
b6e83356 3685 return min_t(loff_t, start, i_size);
b2675157
JB
3686}
3687
965c8e59 3688static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
b2675157
JB
3689{
3690 struct inode *inode = file->f_mapping->host;
b2675157 3691
965c8e59 3692 switch (whence) {
2034f3b4
NB
3693 default:
3694 return generic_file_llseek(file, offset, whence);
b2675157
JB
3695 case SEEK_DATA:
3696 case SEEK_HOLE:
29b6352b 3697 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
3c32c721 3698 offset = find_desired_extent(file, offset, whence);
e5d4d75b 3699 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
bc80230e 3700 break;
b2675157
JB
3701 }
3702
bc80230e
NB
3703 if (offset < 0)
3704 return offset;
3705
2034f3b4 3706 return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
b2675157
JB
3707}
3708
edf064e7
GR
3709static int btrfs_file_open(struct inode *inode, struct file *filp)
3710{
14605409
BB
3711 int ret;
3712
f02c75e6
CH
3713 filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC | FMODE_BUF_WASYNC |
3714 FMODE_CAN_ODIRECT;
14605409
BB
3715
3716 ret = fsverity_file_open(inode, filp);
3717 if (ret)
3718 return ret;
edf064e7
GR
3719 return generic_file_open(inode, filp);
3720}
3721
4e4cabec
GR
3722static int check_direct_read(struct btrfs_fs_info *fs_info,
3723 const struct iov_iter *iter, loff_t offset)
3724{
3725 int ret;
3726 int i, seg;
3727
3728 ret = check_direct_IO(fs_info, iter, offset);
3729 if (ret < 0)
3730 return ret;
3731
3732 if (!iter_is_iovec(iter))
3733 return 0;
3734
de4f5fed
JA
3735 for (seg = 0; seg < iter->nr_segs; seg++) {
3736 for (i = seg + 1; i < iter->nr_segs; i++) {
3737 const struct iovec *iov1 = iter_iov(iter) + seg;
3738 const struct iovec *iov2 = iter_iov(iter) + i;
3739
3740 if (iov1->iov_base == iov2->iov_base)
4e4cabec 3741 return -EINVAL;
de4f5fed
JA
3742 }
3743 }
4e4cabec
GR
3744 return 0;
3745}
3746
3747static ssize_t btrfs_direct_read(struct kiocb *iocb, struct iov_iter *to)
3748{
3749 struct inode *inode = file_inode(iocb->ki_filp);
51bd9563
FM
3750 size_t prev_left = 0;
3751 ssize_t read = 0;
4e4cabec
GR
3752 ssize_t ret;
3753
14605409
BB
3754 if (fsverity_active(inode))
3755 return 0;
3756
4e4cabec
GR
3757 if (check_direct_read(btrfs_sb(inode->i_sb), to, iocb->ki_pos))
3758 return 0;
3759
29b6352b 3760 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
51bd9563
FM
3761again:
3762 /*
3763 * This is similar to what we do for direct IO writes, see the comment
3764 * at btrfs_direct_write(), but we also disable page faults in addition
3765 * to disabling them only at the iov_iter level. This is because when
3766 * reading from a hole or prealloc extent, iomap calls iov_iter_zero(),
3767 * which can still trigger page fault ins despite having set ->nofault
3768 * to true of our 'to' iov_iter.
3769 *
3770 * The difference to direct IO writes is that we deadlock when trying
3771 * to lock the extent range in the inode's tree during he page reads
3772 * triggered by the fault in (while for writes it is due to waiting for
3773 * our own ordered extent). This is because for direct IO reads,
3774 * btrfs_dio_iomap_begin() returns with the extent range locked, which
3775 * is only unlocked in the endio callback (end_bio_extent_readpage()).
3776 */
3777 pagefault_disable();
3778 to->nofault = true;
8184620a 3779 ret = btrfs_dio_read(iocb, to, read);
51bd9563
FM
3780 to->nofault = false;
3781 pagefault_enable();
3782
3783 /* No increment (+=) because iomap returns a cumulative value. */
3784 if (ret > 0)
3785 read = ret;
3786
3787 if (iov_iter_count(to) > 0 && (ret == -EFAULT || ret > 0)) {
3788 const size_t left = iov_iter_count(to);
3789
3790 if (left == prev_left) {
3791 /*
3792 * We didn't make any progress since the last attempt,
3793 * fallback to a buffered read for the remainder of the
3794 * range. This is just to avoid any possibility of looping
3795 * for too long.
3796 */
3797 ret = read;
3798 } else {
3799 /*
3800 * We made some progress since the last retry or this is
3801 * the first time we are retrying. Fault in as many pages
3802 * as possible and retry.
3803 */
3804 fault_in_iov_iter_writeable(to, left);
3805 prev_left = left;
3806 goto again;
3807 }
3808 }
e5d4d75b 3809 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
51bd9563 3810 return ret < 0 ? ret : read;
4e4cabec
GR
3811}
3812
f85781fb
GR
3813static ssize_t btrfs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
3814{
3815 ssize_t ret = 0;
3816
3817 if (iocb->ki_flags & IOCB_DIRECT) {
4e4cabec 3818 ret = btrfs_direct_read(iocb, to);
0425e7ba
JT
3819 if (ret < 0 || !iov_iter_count(to) ||
3820 iocb->ki_pos >= i_size_read(file_inode(iocb->ki_filp)))
f85781fb
GR
3821 return ret;
3822 }
3823
87fa0f3e 3824 return filemap_read(iocb, to, ret);
f85781fb
GR
3825}
3826
828c0950 3827const struct file_operations btrfs_file_operations = {
b2675157 3828 .llseek = btrfs_file_llseek,
f85781fb 3829 .read_iter = btrfs_file_read_iter,
2cb1e089 3830 .splice_read = filemap_splice_read,
b30ac0fc 3831 .write_iter = btrfs_file_write_iter,
d7776591 3832 .splice_write = iter_file_splice_write,
9ebefb18 3833 .mmap = btrfs_file_mmap,
edf064e7 3834 .open = btrfs_file_open,
e1b81e67 3835 .release = btrfs_release_file,
b0c58223 3836 .get_unmapped_area = thp_get_unmapped_area,
39279cc3 3837 .fsync = btrfs_sync_file,
2fe17c10 3838 .fallocate = btrfs_fallocate,
34287aa3 3839 .unlocked_ioctl = btrfs_ioctl,
39279cc3 3840#ifdef CONFIG_COMPAT
4c63c245 3841 .compat_ioctl = btrfs_compat_ioctl,
39279cc3 3842#endif
2e5dfc99 3843 .remap_file_range = btrfs_remap_file_range,
39279cc3 3844};
9247f317 3845
728404da
FM
3846int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
3847{
3848 int ret;
3849
3850 /*
3851 * So with compression we will find and lock a dirty page and clear the
3852 * first one as dirty, setup an async extent, and immediately return
3853 * with the entire range locked but with nobody actually marked with
3854 * writeback. So we can't just filemap_write_and_wait_range() and
3855 * expect it to work since it will just kick off a thread to do the
3856 * actual work. So we need to call filemap_fdatawrite_range _again_
3857 * since it will wait on the page lock, which won't be unlocked until
3858 * after the pages have been marked as writeback and so we're good to go
3859 * from there. We have to do this otherwise we'll miss the ordered
3860 * extents and that results in badness. Please Josef, do not think you
3861 * know better and pull this out at some point in the future, it is
3862 * right and you are wrong.
3863 */
3864 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3865 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
3866 &BTRFS_I(inode)->runtime_flags))
3867 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3868
3869 return ret;
3870}
This page took 1.830837 seconds and 4 git commands to generate.