]> Git Repo - linux.git/blame - fs/btrfs/file.c
btrfs: stop using write_one_page in btrfs_scratch_superblock
[linux.git] / fs / btrfs / file.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
39279cc3
CM
6#include <linux/fs.h>
7#include <linux/pagemap.h>
39279cc3
CM
8#include <linux/time.h>
9#include <linux/init.h>
10#include <linux/string.h>
39279cc3 11#include <linux/backing-dev.h>
2fe17c10 12#include <linux/falloc.h>
39279cc3 13#include <linux/writeback.h>
39279cc3 14#include <linux/compat.h>
5a0e3ad6 15#include <linux/slab.h>
55e301fd 16#include <linux/btrfs.h>
e2e40f2c 17#include <linux/uio.h>
ae5e165d 18#include <linux/iversion.h>
14605409 19#include <linux/fsverity.h>
39279cc3
CM
20#include "ctree.h"
21#include "disk-io.h"
22#include "transaction.h"
23#include "btrfs_inode.h"
39279cc3 24#include "print-tree.h"
e02119d5
CM
25#include "tree-log.h"
26#include "locking.h"
2aaa6655 27#include "volumes.h"
fcebe456 28#include "qgroup.h"
ebb8765b 29#include "compression.h"
86736342 30#include "delalloc-space.h"
6a177381 31#include "reflink.h"
f02a85d2 32#include "subpage.h"
c7f13d42 33#include "fs.h"
07e81dc9 34#include "accessors.h"
a0231804 35#include "extent-tree.h"
7c8ede16 36#include "file-item.h"
7572dec8 37#include "ioctl.h"
af142b6f 38#include "file.h"
7f0add25 39#include "super.h"
39279cc3 40
d352ac68
CM
41/* simple helper to fault in pages and copy. This should go away
42 * and be replaced with calls into generic code.
43 */
ee22f0c4 44static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
a1b32a59 45 struct page **prepared_pages,
11c65dcc 46 struct iov_iter *i)
39279cc3 47{
914ee295 48 size_t copied = 0;
d0215f3e 49 size_t total_copied = 0;
11c65dcc 50 int pg = 0;
7073017a 51 int offset = offset_in_page(pos);
39279cc3 52
11c65dcc 53 while (write_bytes > 0) {
39279cc3 54 size_t count = min_t(size_t,
09cbfeaf 55 PAGE_SIZE - offset, write_bytes);
11c65dcc 56 struct page *page = prepared_pages[pg];
914ee295
XZ
57 /*
58 * Copy data from userspace to the current page
914ee295 59 */
f0b65f39 60 copied = copy_page_from_iter_atomic(page, offset, count, i);
11c65dcc 61
39279cc3
CM
62 /* Flush processor's dcache for this page */
63 flush_dcache_page(page);
31339acd
CM
64
65 /*
66 * if we get a partial write, we can end up with
67 * partially up to date pages. These add
68 * a lot of complexity, so make sure they don't
69 * happen by forcing this copy to be retried.
70 *
71 * The rest of the btrfs_file_write code will fall
72 * back to page at a time copies after we return 0.
73 */
f0b65f39
AV
74 if (unlikely(copied < count)) {
75 if (!PageUptodate(page)) {
76 iov_iter_revert(i, copied);
77 copied = 0;
78 }
79 if (!copied)
80 break;
81 }
31339acd 82
11c65dcc 83 write_bytes -= copied;
914ee295 84 total_copied += copied;
f0b65f39
AV
85 offset += copied;
86 if (offset == PAGE_SIZE) {
11c65dcc
JB
87 pg++;
88 offset = 0;
89 }
39279cc3 90 }
914ee295 91 return total_copied;
39279cc3
CM
92}
93
d352ac68
CM
94/*
95 * unlocks pages after btrfs_file_write is done with them
96 */
e4f94347
QW
97static void btrfs_drop_pages(struct btrfs_fs_info *fs_info,
98 struct page **pages, size_t num_pages,
99 u64 pos, u64 copied)
39279cc3
CM
100{
101 size_t i;
e4f94347
QW
102 u64 block_start = round_down(pos, fs_info->sectorsize);
103 u64 block_len = round_up(pos + copied, fs_info->sectorsize) - block_start;
104
105 ASSERT(block_len <= U32_MAX);
39279cc3 106 for (i = 0; i < num_pages; i++) {
d352ac68
CM
107 /* page checked is some magic around finding pages that
108 * have been modified without going through btrfs_set_page_dirty
2457aec6
MG
109 * clear it here. There should be no need to mark the pages
110 * accessed as prepare_pages should have marked them accessed
111 * in prepare_pages via find_or_create_page()
d352ac68 112 */
e4f94347
QW
113 btrfs_page_clamp_clear_checked(fs_info, pages[i], block_start,
114 block_len);
39279cc3 115 unlock_page(pages[i]);
09cbfeaf 116 put_page(pages[i]);
39279cc3
CM
117 }
118}
119
d352ac68 120/*
c0fab480
QW
121 * After btrfs_copy_from_user(), update the following things for delalloc:
122 * - Mark newly dirtied pages as DELALLOC in the io tree.
123 * Used to advise which range is to be written back.
124 * - Mark modified pages as Uptodate/Dirty and not needing COW fixup
125 * - Update inode size for past EOF write
d352ac68 126 */
088545f6 127int btrfs_dirty_pages(struct btrfs_inode *inode, struct page **pages,
2ff7e61e 128 size_t num_pages, loff_t pos, size_t write_bytes,
aa8c1a41 129 struct extent_state **cached, bool noreserve)
39279cc3 130{
088545f6 131 struct btrfs_fs_info *fs_info = inode->root->fs_info;
39279cc3 132 int err = 0;
a52d9a80 133 int i;
db94535d 134 u64 num_bytes;
a52d9a80
CM
135 u64 start_pos;
136 u64 end_of_last_block;
137 u64 end_pos = pos + write_bytes;
088545f6 138 loff_t isize = i_size_read(&inode->vfs_inode);
e3b8a485 139 unsigned int extra_bits = 0;
39279cc3 140
aa8c1a41
GR
141 if (write_bytes == 0)
142 return 0;
143
144 if (noreserve)
145 extra_bits |= EXTENT_NORESERVE;
146
13f0dd8f 147 start_pos = round_down(pos, fs_info->sectorsize);
da17066c 148 num_bytes = round_up(write_bytes + pos - start_pos,
0b246afa 149 fs_info->sectorsize);
f02a85d2 150 ASSERT(num_bytes <= U32_MAX);
39279cc3 151
db94535d 152 end_of_last_block = start_pos + num_bytes - 1;
e3b8a485 153
7703bdd8
CM
154 /*
155 * The pages may have already been dirty, clear out old accounting so
156 * we can set things up properly
157 */
088545f6 158 clear_extent_bit(&inode->io_tree, start_pos, end_of_last_block,
e182163d 159 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
bd015294 160 cached);
7703bdd8 161
088545f6 162 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
330a5827 163 extra_bits, cached);
d0215f3e
JB
164 if (err)
165 return err;
9ed74f2d 166
c8b97818
CM
167 for (i = 0; i < num_pages; i++) {
168 struct page *p = pages[i];
f02a85d2
QW
169
170 btrfs_page_clamp_set_uptodate(fs_info, p, start_pos, num_bytes);
e4f94347 171 btrfs_page_clamp_clear_checked(fs_info, p, start_pos, num_bytes);
f02a85d2 172 btrfs_page_clamp_set_dirty(fs_info, p, start_pos, num_bytes);
a52d9a80 173 }
9f570b8d
JB
174
175 /*
176 * we've only changed i_size in ram, and we haven't updated
177 * the disk i_size. There is no need to log the inode
178 * at this time.
179 */
180 if (end_pos > isize)
088545f6 181 i_size_write(&inode->vfs_inode, end_pos);
a22285a6 182 return 0;
39279cc3
CM
183}
184
185/*
186 * this is very complex, but the basic idea is to drop all extents
187 * in the range start - end. hint_block is filled in with a block number
188 * that would be a good hint to the block allocator for this file.
189 *
190 * If an extent intersects the range but is not entirely inside the range
191 * it is either truncated or split. Anything entirely inside the range
192 * is deleted from the tree.
2766ff61
FM
193 *
194 * Note: the VFS' inode number of bytes is not updated, it's up to the caller
195 * to deal with that. We set the field 'bytes_found' of the arguments structure
196 * with the number of allocated bytes found in the target range, so that the
197 * caller can update the inode's number of bytes in an atomic way when
198 * replacing extents in a range to avoid races with stat(2).
39279cc3 199 */
5893dfb9
FM
200int btrfs_drop_extents(struct btrfs_trans_handle *trans,
201 struct btrfs_root *root, struct btrfs_inode *inode,
202 struct btrfs_drop_extents_args *args)
39279cc3 203{
0b246afa 204 struct btrfs_fs_info *fs_info = root->fs_info;
5f39d397 205 struct extent_buffer *leaf;
920bbbfb 206 struct btrfs_file_extent_item *fi;
82fa113f 207 struct btrfs_ref ref = { 0 };
00f5c795 208 struct btrfs_key key;
920bbbfb 209 struct btrfs_key new_key;
906c448c 210 u64 ino = btrfs_ino(inode);
5893dfb9 211 u64 search_start = args->start;
920bbbfb
YZ
212 u64 disk_bytenr = 0;
213 u64 num_bytes = 0;
214 u64 extent_offset = 0;
215 u64 extent_end = 0;
5893dfb9 216 u64 last_end = args->start;
920bbbfb
YZ
217 int del_nr = 0;
218 int del_slot = 0;
219 int extent_type;
ccd467d6 220 int recow;
00f5c795 221 int ret;
dc7fdde3 222 int modify_tree = -1;
27cdeb70 223 int update_refs;
c3308f84 224 int found = 0;
5893dfb9
FM
225 struct btrfs_path *path = args->path;
226
2766ff61 227 args->bytes_found = 0;
5893dfb9
FM
228 args->extent_inserted = false;
229
230 /* Must always have a path if ->replace_extent is true */
231 ASSERT(!(args->replace_extent && !args->path));
232
233 if (!path) {
234 path = btrfs_alloc_path();
235 if (!path) {
236 ret = -ENOMEM;
237 goto out;
238 }
239 }
39279cc3 240
5893dfb9 241 if (args->drop_cache)
4c0c8cfc 242 btrfs_drop_extent_map_range(inode, args->start, args->end - 1, false);
a52d9a80 243
5893dfb9 244 if (args->start >= inode->disk_i_size && !args->replace_extent)
dc7fdde3
CM
245 modify_tree = 0;
246
d175209b 247 update_refs = (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID);
d397712b 248 while (1) {
ccd467d6 249 recow = 0;
33345d01 250 ret = btrfs_lookup_file_extent(trans, root, path, ino,
dc7fdde3 251 search_start, modify_tree);
39279cc3 252 if (ret < 0)
920bbbfb 253 break;
5893dfb9 254 if (ret > 0 && path->slots[0] > 0 && search_start == args->start) {
920bbbfb
YZ
255 leaf = path->nodes[0];
256 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
33345d01 257 if (key.objectid == ino &&
920bbbfb
YZ
258 key.type == BTRFS_EXTENT_DATA_KEY)
259 path->slots[0]--;
39279cc3 260 }
920bbbfb 261 ret = 0;
8c2383c3 262next_slot:
5f39d397 263 leaf = path->nodes[0];
920bbbfb
YZ
264 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
265 BUG_ON(del_nr > 0);
266 ret = btrfs_next_leaf(root, path);
267 if (ret < 0)
268 break;
269 if (ret > 0) {
270 ret = 0;
271 break;
8c2383c3 272 }
920bbbfb
YZ
273 leaf = path->nodes[0];
274 recow = 1;
275 }
276
277 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
aeafbf84
FM
278
279 if (key.objectid > ino)
280 break;
281 if (WARN_ON_ONCE(key.objectid < ino) ||
282 key.type < BTRFS_EXTENT_DATA_KEY) {
283 ASSERT(del_nr == 0);
284 path->slots[0]++;
285 goto next_slot;
286 }
5893dfb9 287 if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= args->end)
920bbbfb
YZ
288 break;
289
290 fi = btrfs_item_ptr(leaf, path->slots[0],
291 struct btrfs_file_extent_item);
292 extent_type = btrfs_file_extent_type(leaf, fi);
293
294 if (extent_type == BTRFS_FILE_EXTENT_REG ||
295 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
296 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
297 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
298 extent_offset = btrfs_file_extent_offset(leaf, fi);
299 extent_end = key.offset +
300 btrfs_file_extent_num_bytes(leaf, fi);
301 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
302 extent_end = key.offset +
e41ca589 303 btrfs_file_extent_ram_bytes(leaf, fi);
8c2383c3 304 } else {
aeafbf84
FM
305 /* can't happen */
306 BUG();
39279cc3
CM
307 }
308
fc19c5e7
FM
309 /*
310 * Don't skip extent items representing 0 byte lengths. They
311 * used to be created (bug) if while punching holes we hit
312 * -ENOSPC condition. So if we find one here, just ensure we
313 * delete it, otherwise we would insert a new file extent item
314 * with the same key (offset) as that 0 bytes length file
315 * extent item in the call to setup_items_for_insert() later
316 * in this function.
317 */
62fe51c1
JB
318 if (extent_end == key.offset && extent_end >= search_start) {
319 last_end = extent_end;
fc19c5e7 320 goto delete_extent_item;
62fe51c1 321 }
fc19c5e7 322
920bbbfb
YZ
323 if (extent_end <= search_start) {
324 path->slots[0]++;
8c2383c3 325 goto next_slot;
39279cc3
CM
326 }
327
c3308f84 328 found = 1;
5893dfb9 329 search_start = max(key.offset, args->start);
dc7fdde3
CM
330 if (recow || !modify_tree) {
331 modify_tree = -1;
b3b4aa74 332 btrfs_release_path(path);
920bbbfb 333 continue;
39279cc3 334 }
6643558d 335
920bbbfb
YZ
336 /*
337 * | - range to drop - |
338 * | -------- extent -------- |
339 */
5893dfb9 340 if (args->start > key.offset && args->end < extent_end) {
920bbbfb 341 BUG_ON(del_nr > 0);
00fdf13a 342 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3f9e3df8 343 ret = -EOPNOTSUPP;
00fdf13a
LB
344 break;
345 }
920bbbfb
YZ
346
347 memcpy(&new_key, &key, sizeof(new_key));
5893dfb9 348 new_key.offset = args->start;
920bbbfb
YZ
349 ret = btrfs_duplicate_item(trans, root, path,
350 &new_key);
351 if (ret == -EAGAIN) {
b3b4aa74 352 btrfs_release_path(path);
920bbbfb 353 continue;
6643558d 354 }
920bbbfb
YZ
355 if (ret < 0)
356 break;
357
358 leaf = path->nodes[0];
359 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
360 struct btrfs_file_extent_item);
361 btrfs_set_file_extent_num_bytes(leaf, fi,
5893dfb9 362 args->start - key.offset);
920bbbfb
YZ
363
364 fi = btrfs_item_ptr(leaf, path->slots[0],
365 struct btrfs_file_extent_item);
366
5893dfb9 367 extent_offset += args->start - key.offset;
920bbbfb
YZ
368 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
369 btrfs_set_file_extent_num_bytes(leaf, fi,
5893dfb9 370 extent_end - args->start);
920bbbfb
YZ
371 btrfs_mark_buffer_dirty(leaf);
372
5dc562c5 373 if (update_refs && disk_bytenr > 0) {
82fa113f
QW
374 btrfs_init_generic_ref(&ref,
375 BTRFS_ADD_DELAYED_REF,
376 disk_bytenr, num_bytes, 0);
377 btrfs_init_data_ref(&ref,
920bbbfb
YZ
378 root->root_key.objectid,
379 new_key.objectid,
f42c5da6
NB
380 args->start - extent_offset,
381 0, false);
82fa113f 382 ret = btrfs_inc_extent_ref(trans, &ref);
162d053e
FM
383 if (ret) {
384 btrfs_abort_transaction(trans, ret);
385 break;
386 }
771ed689 387 }
5893dfb9 388 key.offset = args->start;
6643558d 389 }
62fe51c1
JB
390 /*
391 * From here on out we will have actually dropped something, so
392 * last_end can be updated.
393 */
394 last_end = extent_end;
395
920bbbfb
YZ
396 /*
397 * | ---- range to drop ----- |
398 * | -------- extent -------- |
399 */
5893dfb9 400 if (args->start <= key.offset && args->end < extent_end) {
00fdf13a 401 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3f9e3df8 402 ret = -EOPNOTSUPP;
00fdf13a
LB
403 break;
404 }
6643558d 405
920bbbfb 406 memcpy(&new_key, &key, sizeof(new_key));
5893dfb9 407 new_key.offset = args->end;
0b246afa 408 btrfs_set_item_key_safe(fs_info, path, &new_key);
6643558d 409
5893dfb9 410 extent_offset += args->end - key.offset;
920bbbfb
YZ
411 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
412 btrfs_set_file_extent_num_bytes(leaf, fi,
5893dfb9 413 extent_end - args->end);
920bbbfb 414 btrfs_mark_buffer_dirty(leaf);
2671485d 415 if (update_refs && disk_bytenr > 0)
2766ff61 416 args->bytes_found += args->end - key.offset;
920bbbfb 417 break;
39279cc3 418 }
771ed689 419
920bbbfb
YZ
420 search_start = extent_end;
421 /*
422 * | ---- range to drop ----- |
423 * | -------- extent -------- |
424 */
5893dfb9 425 if (args->start > key.offset && args->end >= extent_end) {
920bbbfb 426 BUG_ON(del_nr > 0);
00fdf13a 427 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3f9e3df8 428 ret = -EOPNOTSUPP;
00fdf13a
LB
429 break;
430 }
8c2383c3 431
920bbbfb 432 btrfs_set_file_extent_num_bytes(leaf, fi,
5893dfb9 433 args->start - key.offset);
920bbbfb 434 btrfs_mark_buffer_dirty(leaf);
2671485d 435 if (update_refs && disk_bytenr > 0)
2766ff61 436 args->bytes_found += extent_end - args->start;
5893dfb9 437 if (args->end == extent_end)
920bbbfb 438 break;
c8b97818 439
920bbbfb
YZ
440 path->slots[0]++;
441 goto next_slot;
31840ae1
ZY
442 }
443
920bbbfb
YZ
444 /*
445 * | ---- range to drop ----- |
446 * | ------ extent ------ |
447 */
5893dfb9 448 if (args->start <= key.offset && args->end >= extent_end) {
fc19c5e7 449delete_extent_item:
920bbbfb
YZ
450 if (del_nr == 0) {
451 del_slot = path->slots[0];
452 del_nr = 1;
453 } else {
454 BUG_ON(del_slot + del_nr != path->slots[0]);
455 del_nr++;
456 }
31840ae1 457
5dc562c5
JB
458 if (update_refs &&
459 extent_type == BTRFS_FILE_EXTENT_INLINE) {
2766ff61 460 args->bytes_found += extent_end - key.offset;
920bbbfb 461 extent_end = ALIGN(extent_end,
0b246afa 462 fs_info->sectorsize);
5dc562c5 463 } else if (update_refs && disk_bytenr > 0) {
ffd4bb2a
QW
464 btrfs_init_generic_ref(&ref,
465 BTRFS_DROP_DELAYED_REF,
466 disk_bytenr, num_bytes, 0);
467 btrfs_init_data_ref(&ref,
920bbbfb 468 root->root_key.objectid,
ffd4bb2a 469 key.objectid,
f42c5da6
NB
470 key.offset - extent_offset, 0,
471 false);
ffd4bb2a 472 ret = btrfs_free_extent(trans, &ref);
162d053e
FM
473 if (ret) {
474 btrfs_abort_transaction(trans, ret);
475 break;
476 }
2766ff61 477 args->bytes_found += extent_end - key.offset;
31840ae1 478 }
31840ae1 479
5893dfb9 480 if (args->end == extent_end)
920bbbfb
YZ
481 break;
482
483 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
484 path->slots[0]++;
485 goto next_slot;
486 }
487
488 ret = btrfs_del_items(trans, root, path, del_slot,
489 del_nr);
79787eaa 490 if (ret) {
66642832 491 btrfs_abort_transaction(trans, ret);
5dc562c5 492 break;
79787eaa 493 }
920bbbfb
YZ
494
495 del_nr = 0;
496 del_slot = 0;
497
b3b4aa74 498 btrfs_release_path(path);
920bbbfb 499 continue;
39279cc3 500 }
920bbbfb 501
290342f6 502 BUG();
39279cc3 503 }
920bbbfb 504
79787eaa 505 if (!ret && del_nr > 0) {
1acae57b
FDBM
506 /*
507 * Set path->slots[0] to first slot, so that after the delete
508 * if items are move off from our leaf to its immediate left or
509 * right neighbor leafs, we end up with a correct and adjusted
5893dfb9 510 * path->slots[0] for our insertion (if args->replace_extent).
1acae57b
FDBM
511 */
512 path->slots[0] = del_slot;
920bbbfb 513 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
79787eaa 514 if (ret)
66642832 515 btrfs_abort_transaction(trans, ret);
d5f37527 516 }
1acae57b 517
d5f37527
FDBM
518 leaf = path->nodes[0];
519 /*
520 * If btrfs_del_items() was called, it might have deleted a leaf, in
521 * which case it unlocked our path, so check path->locks[0] matches a
522 * write lock.
523 */
7ecb4c31 524 if (!ret && args->replace_extent &&
ac5887c8 525 path->locks[0] == BTRFS_WRITE_LOCK &&
e902baac 526 btrfs_leaf_free_space(leaf) >=
5893dfb9 527 sizeof(struct btrfs_item) + args->extent_item_size) {
d5f37527
FDBM
528
529 key.objectid = ino;
530 key.type = BTRFS_EXTENT_DATA_KEY;
5893dfb9 531 key.offset = args->start;
d5f37527
FDBM
532 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
533 struct btrfs_key slot_key;
534
535 btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
536 if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
537 path->slots[0]++;
1acae57b 538 }
f0641656 539 btrfs_setup_item_for_insert(root, path, &key, args->extent_item_size);
5893dfb9 540 args->extent_inserted = true;
6643558d 541 }
920bbbfb 542
5893dfb9
FM
543 if (!args->path)
544 btrfs_free_path(path);
545 else if (!args->extent_inserted)
1acae57b 546 btrfs_release_path(path);
5893dfb9
FM
547out:
548 args->drop_end = found ? min(args->end, last_end) : args->end;
5dc562c5 549
39279cc3
CM
550 return ret;
551}
552
d899e052 553static int extent_mergeable(struct extent_buffer *leaf, int slot,
6c7d54ac
YZ
554 u64 objectid, u64 bytenr, u64 orig_offset,
555 u64 *start, u64 *end)
d899e052
YZ
556{
557 struct btrfs_file_extent_item *fi;
558 struct btrfs_key key;
559 u64 extent_end;
560
561 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
562 return 0;
563
564 btrfs_item_key_to_cpu(leaf, &key, slot);
565 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
566 return 0;
567
568 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
569 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
570 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
6c7d54ac 571 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
d899e052
YZ
572 btrfs_file_extent_compression(leaf, fi) ||
573 btrfs_file_extent_encryption(leaf, fi) ||
574 btrfs_file_extent_other_encoding(leaf, fi))
575 return 0;
576
577 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
578 if ((*start && *start != key.offset) || (*end && *end != extent_end))
579 return 0;
580
581 *start = key.offset;
582 *end = extent_end;
583 return 1;
584}
585
586/*
587 * Mark extent in the range start - end as written.
588 *
589 * This changes extent type from 'pre-allocated' to 'regular'. If only
590 * part of extent is marked as written, the extent will be split into
591 * two or three.
592 */
593int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
7a6d7067 594 struct btrfs_inode *inode, u64 start, u64 end)
d899e052 595{
3ffbd68c 596 struct btrfs_fs_info *fs_info = trans->fs_info;
7a6d7067 597 struct btrfs_root *root = inode->root;
d899e052
YZ
598 struct extent_buffer *leaf;
599 struct btrfs_path *path;
600 struct btrfs_file_extent_item *fi;
82fa113f 601 struct btrfs_ref ref = { 0 };
d899e052 602 struct btrfs_key key;
920bbbfb 603 struct btrfs_key new_key;
d899e052
YZ
604 u64 bytenr;
605 u64 num_bytes;
606 u64 extent_end;
5d4f98a2 607 u64 orig_offset;
d899e052
YZ
608 u64 other_start;
609 u64 other_end;
920bbbfb
YZ
610 u64 split;
611 int del_nr = 0;
612 int del_slot = 0;
6c7d54ac 613 int recow;
e7b2ec3d 614 int ret = 0;
7a6d7067 615 u64 ino = btrfs_ino(inode);
d899e052 616
d899e052 617 path = btrfs_alloc_path();
d8926bb3
MF
618 if (!path)
619 return -ENOMEM;
d899e052 620again:
6c7d54ac 621 recow = 0;
920bbbfb 622 split = start;
33345d01 623 key.objectid = ino;
d899e052 624 key.type = BTRFS_EXTENT_DATA_KEY;
920bbbfb 625 key.offset = split;
d899e052
YZ
626
627 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
41415730
JB
628 if (ret < 0)
629 goto out;
d899e052
YZ
630 if (ret > 0 && path->slots[0] > 0)
631 path->slots[0]--;
632
633 leaf = path->nodes[0];
634 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
9c8e63db
JB
635 if (key.objectid != ino ||
636 key.type != BTRFS_EXTENT_DATA_KEY) {
637 ret = -EINVAL;
638 btrfs_abort_transaction(trans, ret);
639 goto out;
640 }
d899e052
YZ
641 fi = btrfs_item_ptr(leaf, path->slots[0],
642 struct btrfs_file_extent_item);
9c8e63db
JB
643 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) {
644 ret = -EINVAL;
645 btrfs_abort_transaction(trans, ret);
646 goto out;
647 }
d899e052 648 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
9c8e63db
JB
649 if (key.offset > start || extent_end < end) {
650 ret = -EINVAL;
651 btrfs_abort_transaction(trans, ret);
652 goto out;
653 }
d899e052
YZ
654
655 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
656 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
5d4f98a2 657 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
6c7d54ac
YZ
658 memcpy(&new_key, &key, sizeof(new_key));
659
660 if (start == key.offset && end < extent_end) {
661 other_start = 0;
662 other_end = start;
663 if (extent_mergeable(leaf, path->slots[0] - 1,
33345d01 664 ino, bytenr, orig_offset,
6c7d54ac
YZ
665 &other_start, &other_end)) {
666 new_key.offset = end;
0b246afa 667 btrfs_set_item_key_safe(fs_info, path, &new_key);
6c7d54ac
YZ
668 fi = btrfs_item_ptr(leaf, path->slots[0],
669 struct btrfs_file_extent_item);
224ecce5
JB
670 btrfs_set_file_extent_generation(leaf, fi,
671 trans->transid);
6c7d54ac
YZ
672 btrfs_set_file_extent_num_bytes(leaf, fi,
673 extent_end - end);
674 btrfs_set_file_extent_offset(leaf, fi,
675 end - orig_offset);
676 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
677 struct btrfs_file_extent_item);
224ecce5
JB
678 btrfs_set_file_extent_generation(leaf, fi,
679 trans->transid);
6c7d54ac
YZ
680 btrfs_set_file_extent_num_bytes(leaf, fi,
681 end - other_start);
682 btrfs_mark_buffer_dirty(leaf);
683 goto out;
684 }
685 }
686
687 if (start > key.offset && end == extent_end) {
688 other_start = end;
689 other_end = 0;
690 if (extent_mergeable(leaf, path->slots[0] + 1,
33345d01 691 ino, bytenr, orig_offset,
6c7d54ac
YZ
692 &other_start, &other_end)) {
693 fi = btrfs_item_ptr(leaf, path->slots[0],
694 struct btrfs_file_extent_item);
695 btrfs_set_file_extent_num_bytes(leaf, fi,
696 start - key.offset);
224ecce5
JB
697 btrfs_set_file_extent_generation(leaf, fi,
698 trans->transid);
6c7d54ac
YZ
699 path->slots[0]++;
700 new_key.offset = start;
0b246afa 701 btrfs_set_item_key_safe(fs_info, path, &new_key);
6c7d54ac
YZ
702
703 fi = btrfs_item_ptr(leaf, path->slots[0],
704 struct btrfs_file_extent_item);
224ecce5
JB
705 btrfs_set_file_extent_generation(leaf, fi,
706 trans->transid);
6c7d54ac
YZ
707 btrfs_set_file_extent_num_bytes(leaf, fi,
708 other_end - start);
709 btrfs_set_file_extent_offset(leaf, fi,
710 start - orig_offset);
711 btrfs_mark_buffer_dirty(leaf);
712 goto out;
713 }
714 }
d899e052 715
920bbbfb
YZ
716 while (start > key.offset || end < extent_end) {
717 if (key.offset == start)
718 split = end;
719
920bbbfb
YZ
720 new_key.offset = split;
721 ret = btrfs_duplicate_item(trans, root, path, &new_key);
722 if (ret == -EAGAIN) {
b3b4aa74 723 btrfs_release_path(path);
920bbbfb 724 goto again;
d899e052 725 }
79787eaa 726 if (ret < 0) {
66642832 727 btrfs_abort_transaction(trans, ret);
79787eaa
JM
728 goto out;
729 }
d899e052 730
920bbbfb
YZ
731 leaf = path->nodes[0];
732 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
d899e052 733 struct btrfs_file_extent_item);
224ecce5 734 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
d899e052 735 btrfs_set_file_extent_num_bytes(leaf, fi,
920bbbfb
YZ
736 split - key.offset);
737
738 fi = btrfs_item_ptr(leaf, path->slots[0],
739 struct btrfs_file_extent_item);
740
224ecce5 741 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
920bbbfb
YZ
742 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
743 btrfs_set_file_extent_num_bytes(leaf, fi,
744 extent_end - split);
d899e052
YZ
745 btrfs_mark_buffer_dirty(leaf);
746
82fa113f
QW
747 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, bytenr,
748 num_bytes, 0);
749 btrfs_init_data_ref(&ref, root->root_key.objectid, ino,
f42c5da6 750 orig_offset, 0, false);
82fa113f 751 ret = btrfs_inc_extent_ref(trans, &ref);
9c8e63db
JB
752 if (ret) {
753 btrfs_abort_transaction(trans, ret);
754 goto out;
755 }
d899e052 756
920bbbfb
YZ
757 if (split == start) {
758 key.offset = start;
759 } else {
9c8e63db
JB
760 if (start != key.offset) {
761 ret = -EINVAL;
762 btrfs_abort_transaction(trans, ret);
763 goto out;
764 }
d899e052 765 path->slots[0]--;
920bbbfb 766 extent_end = end;
d899e052 767 }
6c7d54ac 768 recow = 1;
d899e052
YZ
769 }
770
920bbbfb
YZ
771 other_start = end;
772 other_end = 0;
ffd4bb2a
QW
773 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
774 num_bytes, 0);
f42c5da6
NB
775 btrfs_init_data_ref(&ref, root->root_key.objectid, ino, orig_offset,
776 0, false);
6c7d54ac 777 if (extent_mergeable(leaf, path->slots[0] + 1,
33345d01 778 ino, bytenr, orig_offset,
6c7d54ac
YZ
779 &other_start, &other_end)) {
780 if (recow) {
b3b4aa74 781 btrfs_release_path(path);
6c7d54ac
YZ
782 goto again;
783 }
920bbbfb
YZ
784 extent_end = other_end;
785 del_slot = path->slots[0] + 1;
786 del_nr++;
ffd4bb2a 787 ret = btrfs_free_extent(trans, &ref);
9c8e63db
JB
788 if (ret) {
789 btrfs_abort_transaction(trans, ret);
790 goto out;
791 }
d899e052 792 }
920bbbfb
YZ
793 other_start = 0;
794 other_end = start;
6c7d54ac 795 if (extent_mergeable(leaf, path->slots[0] - 1,
33345d01 796 ino, bytenr, orig_offset,
6c7d54ac
YZ
797 &other_start, &other_end)) {
798 if (recow) {
b3b4aa74 799 btrfs_release_path(path);
6c7d54ac
YZ
800 goto again;
801 }
920bbbfb
YZ
802 key.offset = other_start;
803 del_slot = path->slots[0];
804 del_nr++;
ffd4bb2a 805 ret = btrfs_free_extent(trans, &ref);
9c8e63db
JB
806 if (ret) {
807 btrfs_abort_transaction(trans, ret);
808 goto out;
809 }
920bbbfb
YZ
810 }
811 if (del_nr == 0) {
3f6fae95
SL
812 fi = btrfs_item_ptr(leaf, path->slots[0],
813 struct btrfs_file_extent_item);
920bbbfb
YZ
814 btrfs_set_file_extent_type(leaf, fi,
815 BTRFS_FILE_EXTENT_REG);
224ecce5 816 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
920bbbfb 817 btrfs_mark_buffer_dirty(leaf);
6c7d54ac 818 } else {
3f6fae95
SL
819 fi = btrfs_item_ptr(leaf, del_slot - 1,
820 struct btrfs_file_extent_item);
6c7d54ac
YZ
821 btrfs_set_file_extent_type(leaf, fi,
822 BTRFS_FILE_EXTENT_REG);
224ecce5 823 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
6c7d54ac
YZ
824 btrfs_set_file_extent_num_bytes(leaf, fi,
825 extent_end - key.offset);
826 btrfs_mark_buffer_dirty(leaf);
920bbbfb 827
6c7d54ac 828 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
79787eaa 829 if (ret < 0) {
66642832 830 btrfs_abort_transaction(trans, ret);
79787eaa
JM
831 goto out;
832 }
6c7d54ac 833 }
920bbbfb 834out:
d899e052 835 btrfs_free_path(path);
e7b2ec3d 836 return ret;
d899e052
YZ
837}
838
b1bf862e
CM
839/*
840 * on error we return an unlocked page and the error value
841 * on success we return a locked page and 0
842 */
bb1591b4
CM
843static int prepare_uptodate_page(struct inode *inode,
844 struct page *page, u64 pos,
b6316429 845 bool force_uptodate)
b1bf862e 846{
fb12489b 847 struct folio *folio = page_folio(page);
b1bf862e
CM
848 int ret = 0;
849
09cbfeaf 850 if (((pos & (PAGE_SIZE - 1)) || force_uptodate) &&
b6316429 851 !PageUptodate(page)) {
fb12489b 852 ret = btrfs_read_folio(NULL, folio);
b1bf862e
CM
853 if (ret)
854 return ret;
855 lock_page(page);
856 if (!PageUptodate(page)) {
857 unlock_page(page);
858 return -EIO;
859 }
e0467866
QW
860
861 /*
fb12489b 862 * Since btrfs_read_folio() will unlock the folio before it
f913cff3 863 * returns, there is a window where btrfs_release_folio() can be
7c11d0ae
QW
864 * called to release the page. Here we check both inode
865 * mapping and PagePrivate() to make sure the page was not
866 * released.
e0467866
QW
867 *
868 * The private flag check is essential for subpage as we need
869 * to store extra bitmap using page->private.
870 */
871 if (page->mapping != inode->i_mapping || !PagePrivate(page)) {
bb1591b4
CM
872 unlock_page(page);
873 return -EAGAIN;
874 }
b1bf862e
CM
875 }
876 return 0;
877}
878
fc226000
SR
879static unsigned int get_prepare_fgp_flags(bool nowait)
880{
881 unsigned int fgp_flags = FGP_LOCK | FGP_ACCESSED | FGP_CREAT;
882
883 if (nowait)
884 fgp_flags |= FGP_NOWAIT;
885
886 return fgp_flags;
887}
888
889static gfp_t get_prepare_gfp_flags(struct inode *inode, bool nowait)
890{
891 gfp_t gfp;
892
893 gfp = btrfs_alloc_write_mask(inode->i_mapping);
894 if (nowait) {
895 gfp &= ~__GFP_DIRECT_RECLAIM;
896 gfp |= GFP_NOWAIT;
897 }
898
899 return gfp;
900}
901
39279cc3 902/*
376cc685 903 * this just gets pages into the page cache and locks them down.
39279cc3 904 */
b37392ea
MX
905static noinline int prepare_pages(struct inode *inode, struct page **pages,
906 size_t num_pages, loff_t pos,
fc226000
SR
907 size_t write_bytes, bool force_uptodate,
908 bool nowait)
39279cc3
CM
909{
910 int i;
09cbfeaf 911 unsigned long index = pos >> PAGE_SHIFT;
fc226000
SR
912 gfp_t mask = get_prepare_gfp_flags(inode, nowait);
913 unsigned int fgp_flags = get_prepare_fgp_flags(nowait);
fc28b62d 914 int err = 0;
376cc685 915 int faili;
8c2383c3 916
39279cc3 917 for (i = 0; i < num_pages; i++) {
bb1591b4 918again:
fc226000
SR
919 pages[i] = pagecache_get_page(inode->i_mapping, index + i,
920 fgp_flags, mask | __GFP_WRITE);
39279cc3 921 if (!pages[i]) {
b1bf862e 922 faili = i - 1;
fc226000
SR
923 if (nowait)
924 err = -EAGAIN;
925 else
926 err = -ENOMEM;
b1bf862e
CM
927 goto fail;
928 }
929
32443de3
QW
930 err = set_page_extent_mapped(pages[i]);
931 if (err < 0) {
932 faili = i;
933 goto fail;
934 }
935
b1bf862e 936 if (i == 0)
bb1591b4 937 err = prepare_uptodate_page(inode, pages[i], pos,
b6316429 938 force_uptodate);
bb1591b4
CM
939 if (!err && i == num_pages - 1)
940 err = prepare_uptodate_page(inode, pages[i],
b6316429 941 pos + write_bytes, false);
b1bf862e 942 if (err) {
09cbfeaf 943 put_page(pages[i]);
fc226000 944 if (!nowait && err == -EAGAIN) {
bb1591b4
CM
945 err = 0;
946 goto again;
947 }
b1bf862e
CM
948 faili = i - 1;
949 goto fail;
39279cc3 950 }
ccd467d6 951 wait_on_page_writeback(pages[i]);
39279cc3 952 }
376cc685
MX
953
954 return 0;
955fail:
956 while (faili >= 0) {
957 unlock_page(pages[faili]);
09cbfeaf 958 put_page(pages[faili]);
376cc685
MX
959 faili--;
960 }
961 return err;
962
963}
964
965/*
966 * This function locks the extent and properly waits for data=ordered extents
967 * to finish before allowing the pages to be modified if need.
968 *
969 * The return value:
970 * 1 - the extent is locked
971 * 0 - the extent is not locked, and everything is OK
972 * -EAGAIN - need re-prepare the pages
973 * the other < 0 number - Something wrong happens
974 */
975static noinline int
2cff578c 976lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages,
376cc685 977 size_t num_pages, loff_t pos,
2e78c927 978 size_t write_bytes,
2fcab928 979 u64 *lockstart, u64 *lockend, bool nowait,
376cc685
MX
980 struct extent_state **cached_state)
981{
3ffbd68c 982 struct btrfs_fs_info *fs_info = inode->root->fs_info;
376cc685
MX
983 u64 start_pos;
984 u64 last_pos;
985 int i;
986 int ret = 0;
987
0b246afa 988 start_pos = round_down(pos, fs_info->sectorsize);
e21139c6 989 last_pos = round_up(pos + write_bytes, fs_info->sectorsize) - 1;
376cc685 990
e3b8a485 991 if (start_pos < inode->vfs_inode.i_size) {
e6dcd2dc 992 struct btrfs_ordered_extent *ordered;
a7e3b975 993
2fcab928 994 if (nowait) {
83ae4133
JB
995 if (!try_lock_extent(&inode->io_tree, start_pos, last_pos,
996 cached_state)) {
2fcab928
SR
997 for (i = 0; i < num_pages; i++) {
998 unlock_page(pages[i]);
999 put_page(pages[i]);
1000 pages[i] = NULL;
1001 }
1002
1003 return -EAGAIN;
1004 }
1005 } else {
1006 lock_extent(&inode->io_tree, start_pos, last_pos, cached_state);
1007 }
1008
b88935bf
MX
1009 ordered = btrfs_lookup_ordered_range(inode, start_pos,
1010 last_pos - start_pos + 1);
e6dcd2dc 1011 if (ordered &&
bffe633e 1012 ordered->file_offset + ordered->num_bytes > start_pos &&
376cc685 1013 ordered->file_offset <= last_pos) {
570eb97b
JB
1014 unlock_extent(&inode->io_tree, start_pos, last_pos,
1015 cached_state);
e6dcd2dc
CM
1016 for (i = 0; i < num_pages; i++) {
1017 unlock_page(pages[i]);
09cbfeaf 1018 put_page(pages[i]);
e6dcd2dc 1019 }
c0a43603 1020 btrfs_start_ordered_extent(ordered, 1);
b88935bf
MX
1021 btrfs_put_ordered_extent(ordered);
1022 return -EAGAIN;
e6dcd2dc
CM
1023 }
1024 if (ordered)
1025 btrfs_put_ordered_extent(ordered);
7703bdd8 1026
376cc685
MX
1027 *lockstart = start_pos;
1028 *lockend = last_pos;
1029 ret = 1;
0762704b 1030 }
376cc685 1031
7703bdd8 1032 /*
32443de3
QW
1033 * We should be called after prepare_pages() which should have locked
1034 * all pages in the range.
7703bdd8 1035 */
32443de3 1036 for (i = 0; i < num_pages; i++)
e6dcd2dc 1037 WARN_ON(!PageLocked(pages[i]));
b1bf862e 1038
376cc685 1039 return ret;
39279cc3
CM
1040}
1041
d7a8ab4e
FM
1042/*
1043 * Check if we can do nocow write into the range [@pos, @pos + @write_bytes)
1044 *
1045 * @pos: File offset.
1046 * @write_bytes: The length to write, will be updated to the nocow writeable
1047 * range.
1048 *
1049 * This function will flush ordered extents in the range to ensure proper
1050 * nocow checks.
1051 *
1052 * Return:
1053 * > 0 If we can nocow, and updates @write_bytes.
1054 * 0 If we can't do a nocow write.
1055 * -EAGAIN If we can't do a nocow write because snapshoting of the inode's
1056 * root is in progress.
1057 * < 0 If an error happened.
1058 *
1059 * NOTE: Callers need to call btrfs_check_nocow_unlock() if we return > 0.
1060 */
1061int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos,
80f9d241 1062 size_t *write_bytes, bool nowait)
7ee9e440 1063{
3ffbd68c 1064 struct btrfs_fs_info *fs_info = inode->root->fs_info;
85b7ab67 1065 struct btrfs_root *root = inode->root;
632ddfa2 1066 struct extent_state *cached_state = NULL;
7ee9e440
JB
1067 u64 lockstart, lockend;
1068 u64 num_bytes;
1069 int ret;
1070
38d37aa9
QW
1071 if (!(inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
1072 return 0;
1073
d7a8ab4e 1074 if (!btrfs_drew_try_write_lock(&root->snapshot_lock))
5f791ec3 1075 return -EAGAIN;
8257b2dc 1076
0b246afa 1077 lockstart = round_down(pos, fs_info->sectorsize);
da17066c 1078 lockend = round_up(pos + *write_bytes,
0b246afa 1079 fs_info->sectorsize) - 1;
5dbb75ed 1080 num_bytes = lockend - lockstart + 1;
7ee9e440 1081
80f9d241 1082 if (nowait) {
632ddfa2
JB
1083 if (!btrfs_try_lock_ordered_range(inode, lockstart, lockend,
1084 &cached_state)) {
80f9d241
JB
1085 btrfs_drew_write_unlock(&root->snapshot_lock);
1086 return -EAGAIN;
1087 }
1088 } else {
632ddfa2
JB
1089 btrfs_lock_and_flush_ordered_range(inode, lockstart, lockend,
1090 &cached_state);
80f9d241 1091 }
85b7ab67 1092 ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes,
80f9d241
JB
1093 NULL, NULL, NULL, nowait, false);
1094 if (ret <= 0)
d7a8ab4e 1095 btrfs_drew_write_unlock(&root->snapshot_lock);
80f9d241 1096 else
c933956d
MX
1097 *write_bytes = min_t(size_t, *write_bytes ,
1098 num_bytes - pos + lockstart);
632ddfa2 1099 unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
7ee9e440
JB
1100
1101 return ret;
1102}
1103
38d37aa9
QW
1104void btrfs_check_nocow_unlock(struct btrfs_inode *inode)
1105{
1106 btrfs_drew_write_unlock(&inode->root->snapshot_lock);
1107}
1108
b8d8e1fd
GR
1109static void update_time_for_write(struct inode *inode)
1110{
1111 struct timespec64 now;
1112
1113 if (IS_NOCMTIME(inode))
1114 return;
1115
1116 now = current_time(inode);
1117 if (!timespec64_equal(&inode->i_mtime, &now))
1118 inode->i_mtime = now;
1119
1120 if (!timespec64_equal(&inode->i_ctime, &now))
1121 inode->i_ctime = now;
1122
1123 if (IS_I_VERSION(inode))
1124 inode_inc_iversion(inode);
1125}
1126
1127static int btrfs_write_check(struct kiocb *iocb, struct iov_iter *from,
1128 size_t count)
1129{
1130 struct file *file = iocb->ki_filp;
1131 struct inode *inode = file_inode(file);
1132 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1133 loff_t pos = iocb->ki_pos;
1134 int ret;
1135 loff_t oldsize;
1136 loff_t start_pos;
1137
d7a8ab4e
FM
1138 /*
1139 * Quickly bail out on NOWAIT writes if we don't have the nodatacow or
1140 * prealloc flags, as without those flags we always have to COW. We will
1141 * later check if we can really COW into the target range (using
1142 * can_nocow_extent() at btrfs_get_blocks_direct_write()).
1143 */
1144 if ((iocb->ki_flags & IOCB_NOWAIT) &&
1145 !(BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
1146 return -EAGAIN;
b8d8e1fd
GR
1147
1148 current->backing_dev_info = inode_to_bdi(inode);
1149 ret = file_remove_privs(file);
1150 if (ret)
1151 return ret;
1152
1153 /*
1154 * We reserve space for updating the inode when we reserve space for the
1155 * extent we are going to write, so we will enospc out there. We don't
1156 * need to start yet another transaction to update the inode as we will
1157 * update the inode when we finish writing whatever data we write.
1158 */
1159 update_time_for_write(inode);
1160
1161 start_pos = round_down(pos, fs_info->sectorsize);
1162 oldsize = i_size_read(inode);
1163 if (start_pos > oldsize) {
1164 /* Expand hole size to cover write data, preventing empty gap */
1165 loff_t end_pos = round_up(pos + count, fs_info->sectorsize);
1166
b06359a3 1167 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, end_pos);
b8d8e1fd
GR
1168 if (ret) {
1169 current->backing_dev_info = NULL;
1170 return ret;
1171 }
1172 }
1173
1174 return 0;
1175}
1176
e4af400a
GR
1177static noinline ssize_t btrfs_buffered_write(struct kiocb *iocb,
1178 struct iov_iter *i)
4b46fce2 1179{
e4af400a 1180 struct file *file = iocb->ki_filp;
c3523706 1181 loff_t pos;
496ad9aa 1182 struct inode *inode = file_inode(file);
0b246afa 1183 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
11c65dcc 1184 struct page **pages = NULL;
364ecf36 1185 struct extent_changeset *data_reserved = NULL;
7ee9e440 1186 u64 release_bytes = 0;
376cc685
MX
1187 u64 lockstart;
1188 u64 lockend;
d0215f3e
JB
1189 size_t num_written = 0;
1190 int nrptrs;
c3523706 1191 ssize_t ret;
7ee9e440 1192 bool only_release_metadata = false;
b6316429 1193 bool force_page_uptodate = false;
5e8b9ef3 1194 loff_t old_isize = i_size_read(inode);
c3523706 1195 unsigned int ilock_flags = 0;
304e45ac 1196 const bool nowait = (iocb->ki_flags & IOCB_NOWAIT);
965f47ae 1197 unsigned int bdp_flags = (nowait ? BDP_ASYNC : 0);
c3523706 1198
304e45ac 1199 if (nowait)
c3523706
GR
1200 ilock_flags |= BTRFS_ILOCK_TRY;
1201
29b6352b 1202 ret = btrfs_inode_lock(BTRFS_I(inode), ilock_flags);
c3523706
GR
1203 if (ret < 0)
1204 return ret;
4b46fce2 1205
c3523706
GR
1206 ret = generic_write_checks(iocb, i);
1207 if (ret <= 0)
1208 goto out;
1209
1210 ret = btrfs_write_check(iocb, i, ret);
1211 if (ret < 0)
1212 goto out;
1213
1214 pos = iocb->ki_pos;
09cbfeaf
KS
1215 nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE),
1216 PAGE_SIZE / (sizeof(struct page *)));
142349f5
WF
1217 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1218 nrptrs = max(nrptrs, 8);
31e818fe 1219 pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
c3523706
GR
1220 if (!pages) {
1221 ret = -ENOMEM;
1222 goto out;
1223 }
ab93dbec 1224
d0215f3e 1225 while (iov_iter_count(i) > 0) {
c67d970f 1226 struct extent_state *cached_state = NULL;
7073017a 1227 size_t offset = offset_in_page(pos);
2e78c927 1228 size_t sector_offset;
d0215f3e 1229 size_t write_bytes = min(iov_iter_count(i),
09cbfeaf 1230 nrptrs * (size_t)PAGE_SIZE -
8c2383c3 1231 offset);
eefa45f5 1232 size_t num_pages;
7ee9e440 1233 size_t reserve_bytes;
d0215f3e
JB
1234 size_t dirty_pages;
1235 size_t copied;
2e78c927
CR
1236 size_t dirty_sectors;
1237 size_t num_sectors;
79f015f2 1238 int extents_locked;
39279cc3 1239
914ee295
XZ
1240 /*
1241 * Fault pages before locking them in prepare_pages
1242 * to avoid recursive lock
1243 */
a6294593 1244 if (unlikely(fault_in_iov_iter_readable(i, write_bytes))) {
914ee295 1245 ret = -EFAULT;
d0215f3e 1246 break;
914ee295
XZ
1247 }
1248
a0e248bb 1249 only_release_metadata = false;
da17066c 1250 sector_offset = pos & (fs_info->sectorsize - 1);
d9d8b2a5 1251
364ecf36 1252 extent_changeset_release(data_reserved);
36ea6f3e
NB
1253 ret = btrfs_check_data_free_space(BTRFS_I(inode),
1254 &data_reserved, pos,
304e45ac 1255 write_bytes, nowait);
c6887cd1 1256 if (ret < 0) {
80f9d241
JB
1257 int can_nocow;
1258
304e45ac
SR
1259 if (nowait && (ret == -ENOSPC || ret == -EAGAIN)) {
1260 ret = -EAGAIN;
1261 break;
1262 }
1263
eefa45f5
GR
1264 /*
1265 * If we don't have to COW at the offset, reserve
1266 * metadata only. write_bytes may get smaller than
1267 * requested here.
1268 */
80f9d241 1269 can_nocow = btrfs_check_nocow_lock(BTRFS_I(inode), pos,
304e45ac 1270 &write_bytes, nowait);
80f9d241
JB
1271 if (can_nocow < 0)
1272 ret = can_nocow;
1273 if (can_nocow > 0)
1274 ret = 0;
1275 if (ret)
c6887cd1 1276 break;
80f9d241 1277 only_release_metadata = true;
c6887cd1 1278 }
1832a6d5 1279
eefa45f5
GR
1280 num_pages = DIV_ROUND_UP(write_bytes + offset, PAGE_SIZE);
1281 WARN_ON(num_pages > nrptrs);
1282 reserve_bytes = round_up(write_bytes + sector_offset,
1283 fs_info->sectorsize);
8b62f87b 1284 WARN_ON(reserve_bytes == 0);
9f3db423 1285 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
28c9b1e7 1286 reserve_bytes,
304e45ac 1287 reserve_bytes, nowait);
7ee9e440
JB
1288 if (ret) {
1289 if (!only_release_metadata)
25ce28ca 1290 btrfs_free_reserved_data_space(BTRFS_I(inode),
bc42bda2
QW
1291 data_reserved, pos,
1292 write_bytes);
8257b2dc 1293 else
38d37aa9 1294 btrfs_check_nocow_unlock(BTRFS_I(inode));
a348c8d4
FM
1295
1296 if (nowait && ret == -ENOSPC)
1297 ret = -EAGAIN;
7ee9e440
JB
1298 break;
1299 }
1300
1301 release_bytes = reserve_bytes;
376cc685 1302again:
965f47ae 1303 ret = balance_dirty_pages_ratelimited_flags(inode->i_mapping, bdp_flags);
eb81b682
FM
1304 if (ret) {
1305 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
965f47ae 1306 break;
eb81b682 1307 }
965f47ae 1308
4a64001f
JB
1309 /*
1310 * This is going to setup the pages array with the number of
1311 * pages we want, so we don't really need to worry about the
1312 * contents of pages from loop to loop
1313 */
b37392ea 1314 ret = prepare_pages(inode, pages, num_pages,
fc226000 1315 pos, write_bytes, force_page_uptodate, false);
8b62f87b
JB
1316 if (ret) {
1317 btrfs_delalloc_release_extents(BTRFS_I(inode),
8702ba93 1318 reserve_bytes);
d0215f3e 1319 break;
8b62f87b 1320 }
39279cc3 1321
79f015f2
GR
1322 extents_locked = lock_and_cleanup_extent_if_need(
1323 BTRFS_I(inode), pages,
2cff578c 1324 num_pages, pos, write_bytes, &lockstart,
304e45ac 1325 &lockend, nowait, &cached_state);
79f015f2 1326 if (extents_locked < 0) {
304e45ac 1327 if (!nowait && extents_locked == -EAGAIN)
376cc685 1328 goto again;
304e45ac 1329
8b62f87b 1330 btrfs_delalloc_release_extents(BTRFS_I(inode),
8702ba93 1331 reserve_bytes);
79f015f2 1332 ret = extents_locked;
376cc685 1333 break;
376cc685
MX
1334 }
1335
ee22f0c4 1336 copied = btrfs_copy_from_user(pos, write_bytes, pages, i);
b1bf862e 1337
0b246afa 1338 num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes);
56244ef1 1339 dirty_sectors = round_up(copied + sector_offset,
0b246afa
JM
1340 fs_info->sectorsize);
1341 dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors);
56244ef1 1342
b1bf862e
CM
1343 /*
1344 * if we have trouble faulting in the pages, fall
1345 * back to one page at a time
1346 */
1347 if (copied < write_bytes)
1348 nrptrs = 1;
1349
b6316429
JB
1350 if (copied == 0) {
1351 force_page_uptodate = true;
56244ef1 1352 dirty_sectors = 0;
b1bf862e 1353 dirty_pages = 0;
b6316429
JB
1354 } else {
1355 force_page_uptodate = false;
ed6078f7 1356 dirty_pages = DIV_ROUND_UP(copied + offset,
09cbfeaf 1357 PAGE_SIZE);
b6316429 1358 }
914ee295 1359
2e78c927 1360 if (num_sectors > dirty_sectors) {
8b8b08cb 1361 /* release everything except the sectors we dirtied */
265fdfa6 1362 release_bytes -= dirty_sectors << fs_info->sectorsize_bits;
485290a7 1363 if (only_release_metadata) {
691fa059 1364 btrfs_delalloc_release_metadata(BTRFS_I(inode),
43b18595 1365 release_bytes, true);
485290a7
QW
1366 } else {
1367 u64 __pos;
1368
da17066c 1369 __pos = round_down(pos,
0b246afa 1370 fs_info->sectorsize) +
09cbfeaf 1371 (dirty_pages << PAGE_SHIFT);
86d52921 1372 btrfs_delalloc_release_space(BTRFS_I(inode),
bc42bda2 1373 data_reserved, __pos,
43b18595 1374 release_bytes, true);
485290a7 1375 }
914ee295
XZ
1376 }
1377
2e78c927 1378 release_bytes = round_up(copied + sector_offset,
0b246afa 1379 fs_info->sectorsize);
376cc685 1380
aa8c1a41
GR
1381 ret = btrfs_dirty_pages(BTRFS_I(inode), pages,
1382 dirty_pages, pos, copied,
1383 &cached_state, only_release_metadata);
c67d970f
FM
1384
1385 /*
1386 * If we have not locked the extent range, because the range's
1387 * start offset is >= i_size, we might still have a non-NULL
1388 * cached extent state, acquired while marking the extent range
1389 * as delalloc through btrfs_dirty_pages(). Therefore free any
1390 * possible cached extent state to avoid a memory leak.
1391 */
79f015f2 1392 if (extents_locked)
570eb97b
JB
1393 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart,
1394 lockend, &cached_state);
c67d970f
FM
1395 else
1396 free_extent_state(cached_state);
1397
8702ba93 1398 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
f1de9683 1399 if (ret) {
e4f94347 1400 btrfs_drop_pages(fs_info, pages, num_pages, pos, copied);
376cc685 1401 break;
f1de9683 1402 }
39279cc3 1403
376cc685 1404 release_bytes = 0;
8257b2dc 1405 if (only_release_metadata)
38d37aa9 1406 btrfs_check_nocow_unlock(BTRFS_I(inode));
8257b2dc 1407
e4f94347 1408 btrfs_drop_pages(fs_info, pages, num_pages, pos, copied);
f1de9683 1409
d0215f3e
JB
1410 cond_resched();
1411
914ee295
XZ
1412 pos += copied;
1413 num_written += copied;
d0215f3e 1414 }
39279cc3 1415
d0215f3e
JB
1416 kfree(pages);
1417
7ee9e440 1418 if (release_bytes) {
8257b2dc 1419 if (only_release_metadata) {
38d37aa9 1420 btrfs_check_nocow_unlock(BTRFS_I(inode));
691fa059 1421 btrfs_delalloc_release_metadata(BTRFS_I(inode),
43b18595 1422 release_bytes, true);
8257b2dc 1423 } else {
86d52921
NB
1424 btrfs_delalloc_release_space(BTRFS_I(inode),
1425 data_reserved,
bc42bda2 1426 round_down(pos, fs_info->sectorsize),
43b18595 1427 release_bytes, true);
8257b2dc 1428 }
7ee9e440
JB
1429 }
1430
364ecf36 1431 extent_changeset_free(data_reserved);
5e8b9ef3
GR
1432 if (num_written > 0) {
1433 pagecache_isize_extended(inode, old_isize, iocb->ki_pos);
1434 iocb->ki_pos += num_written;
1435 }
c3523706 1436out:
e5d4d75b 1437 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
d0215f3e
JB
1438 return num_written ? num_written : ret;
1439}
1440
4e4cabec
GR
1441static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
1442 const struct iov_iter *iter, loff_t offset)
1443{
1444 const u32 blocksize_mask = fs_info->sectorsize - 1;
1445
1446 if (offset & blocksize_mask)
1447 return -EINVAL;
1448
1449 if (iov_iter_alignment(iter) & blocksize_mask)
1450 return -EINVAL;
1451
1452 return 0;
1453}
1454
1455static ssize_t btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from)
d0215f3e
JB
1456{
1457 struct file *file = iocb->ki_filp;
728404da 1458 struct inode *inode = file_inode(file);
4e4cabec 1459 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
c3523706 1460 loff_t pos;
4e4cabec 1461 ssize_t written = 0;
d0215f3e 1462 ssize_t written_buffered;
51bd9563 1463 size_t prev_left = 0;
d0215f3e 1464 loff_t endbyte;
c3523706
GR
1465 ssize_t err;
1466 unsigned int ilock_flags = 0;
8184620a 1467 struct iomap_dio *dio;
c3523706
GR
1468
1469 if (iocb->ki_flags & IOCB_NOWAIT)
1470 ilock_flags |= BTRFS_ILOCK_TRY;
1471
e9adabb9
GR
1472 /* If the write DIO is within EOF, use a shared lock */
1473 if (iocb->ki_pos + iov_iter_count(from) <= i_size_read(inode))
1474 ilock_flags |= BTRFS_ILOCK_SHARED;
1475
1476relock:
29b6352b 1477 err = btrfs_inode_lock(BTRFS_I(inode), ilock_flags);
c3523706
GR
1478 if (err < 0)
1479 return err;
1480
1481 err = generic_write_checks(iocb, from);
1482 if (err <= 0) {
e5d4d75b 1483 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
c3523706
GR
1484 return err;
1485 }
d0215f3e 1486
c3523706
GR
1487 err = btrfs_write_check(iocb, from, err);
1488 if (err < 0) {
e5d4d75b 1489 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
c3523706
GR
1490 goto out;
1491 }
1492
1493 pos = iocb->ki_pos;
e9adabb9
GR
1494 /*
1495 * Re-check since file size may have changed just before taking the
1496 * lock or pos may have changed because of O_APPEND in generic_write_check()
1497 */
1498 if ((ilock_flags & BTRFS_ILOCK_SHARED) &&
1499 pos + iov_iter_count(from) > i_size_read(inode)) {
e5d4d75b 1500 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
e9adabb9
GR
1501 ilock_flags &= ~BTRFS_ILOCK_SHARED;
1502 goto relock;
1503 }
c3523706
GR
1504
1505 if (check_direct_IO(fs_info, from, pos)) {
e5d4d75b 1506 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
4e4cabec 1507 goto buffered;
c3523706 1508 }
4e4cabec 1509
51bd9563
FM
1510 /*
1511 * The iov_iter can be mapped to the same file range we are writing to.
1512 * If that's the case, then we will deadlock in the iomap code, because
1513 * it first calls our callback btrfs_dio_iomap_begin(), which will create
1514 * an ordered extent, and after that it will fault in the pages that the
1515 * iov_iter refers to. During the fault in we end up in the readahead
1516 * pages code (starting at btrfs_readahead()), which will lock the range,
1517 * find that ordered extent and then wait for it to complete (at
1518 * btrfs_lock_and_flush_ordered_range()), resulting in a deadlock since
1519 * obviously the ordered extent can never complete as we didn't submit
1520 * yet the respective bio(s). This always happens when the buffer is
1521 * memory mapped to the same file range, since the iomap DIO code always
1522 * invalidates pages in the target file range (after starting and waiting
1523 * for any writeback).
1524 *
1525 * So here we disable page faults in the iov_iter and then retry if we
1526 * got -EFAULT, faulting in the pages before the retry.
1527 */
51bd9563 1528 from->nofault = true;
8184620a 1529 dio = btrfs_dio_write(iocb, from, written);
51bd9563 1530 from->nofault = false;
d0215f3e 1531
8184620a
FM
1532 /*
1533 * iomap_dio_complete() will call btrfs_sync_file() if we have a dsync
1534 * iocb, and that needs to lock the inode. So unlock it before calling
1535 * iomap_dio_complete() to avoid a deadlock.
1536 */
e5d4d75b 1537 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
8184620a
FM
1538
1539 if (IS_ERR_OR_NULL(dio))
1540 err = PTR_ERR_OR_ZERO(dio);
1541 else
1542 err = iomap_dio_complete(dio);
1543
51bd9563
FM
1544 /* No increment (+=) because iomap returns a cumulative value. */
1545 if (err > 0)
1546 written = err;
1547
1548 if (iov_iter_count(from) > 0 && (err == -EFAULT || err > 0)) {
1549 const size_t left = iov_iter_count(from);
1550 /*
1551 * We have more data left to write. Try to fault in as many as
1552 * possible of the remainder pages and retry. We do this without
1553 * releasing and locking again the inode, to prevent races with
1554 * truncate.
1555 *
1556 * Also, in case the iov refers to pages in the file range of the
1557 * file we want to write to (due to a mmap), we could enter an
1558 * infinite loop if we retry after faulting the pages in, since
1559 * iomap will invalidate any pages in the range early on, before
1560 * it tries to fault in the pages of the iov. So we keep track of
1561 * how much was left of iov in the previous EFAULT and fallback
1562 * to buffered IO in case we haven't made any progress.
1563 */
1564 if (left == prev_left) {
1565 err = -ENOTBLK;
1566 } else {
1567 fault_in_iov_iter_readable(from, left);
1568 prev_left = left;
8184620a 1569 goto relock;
51bd9563 1570 }
a42fa643
GR
1571 }
1572
ac5e6669
FM
1573 /*
1574 * If 'err' is -ENOTBLK or we have not written all data, then it means
1575 * we must fallback to buffered IO.
1576 */
51bd9563 1577 if ((err < 0 && err != -ENOTBLK) || !iov_iter_count(from))
c3523706 1578 goto out;
d0215f3e 1579
4e4cabec 1580buffered:
ac5e6669
FM
1581 /*
1582 * If we are in a NOWAIT context, then return -EAGAIN to signal the caller
1583 * it must retry the operation in a context where blocking is acceptable,
20af93d9
FM
1584 * because even if we end up not blocking during the buffered IO attempt
1585 * below, we will block when flushing and waiting for the IO.
ac5e6669
FM
1586 */
1587 if (iocb->ki_flags & IOCB_NOWAIT) {
1588 err = -EAGAIN;
1589 goto out;
1590 }
1591
e4af400a
GR
1592 pos = iocb->ki_pos;
1593 written_buffered = btrfs_buffered_write(iocb, from);
d0215f3e
JB
1594 if (written_buffered < 0) {
1595 err = written_buffered;
1596 goto out;
39279cc3 1597 }
075bdbdb
FM
1598 /*
1599 * Ensure all data is persisted. We want the next direct IO read to be
1600 * able to read what was just written.
1601 */
d0215f3e 1602 endbyte = pos + written_buffered - 1;
728404da 1603 err = btrfs_fdatawrite_range(inode, pos, endbyte);
075bdbdb
FM
1604 if (err)
1605 goto out;
728404da 1606 err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
d0215f3e
JB
1607 if (err)
1608 goto out;
1609 written += written_buffered;
867c4f93 1610 iocb->ki_pos = pos + written_buffered;
09cbfeaf
KS
1611 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT,
1612 endbyte >> PAGE_SHIFT);
39279cc3 1613out:
51bd9563 1614 return err < 0 ? err : written;
d0215f3e 1615}
5b92ee72 1616
7c0c7269
OS
1617static ssize_t btrfs_encoded_write(struct kiocb *iocb, struct iov_iter *from,
1618 const struct btrfs_ioctl_encoded_io_args *encoded)
1619{
1620 struct file *file = iocb->ki_filp;
1621 struct inode *inode = file_inode(file);
1622 loff_t count;
1623 ssize_t ret;
1624
29b6352b 1625 btrfs_inode_lock(BTRFS_I(inode), 0);
7c0c7269
OS
1626 count = encoded->len;
1627 ret = generic_write_checks_count(iocb, &count);
1628 if (ret == 0 && count != encoded->len) {
1629 /*
1630 * The write got truncated by generic_write_checks_count(). We
1631 * can't do a partial encoded write.
1632 */
1633 ret = -EFBIG;
1634 }
1635 if (ret || encoded->len == 0)
1636 goto out;
1637
1638 ret = btrfs_write_check(iocb, from, encoded->len);
1639 if (ret < 0)
1640 goto out;
1641
1642 ret = btrfs_do_encoded_write(iocb, from, encoded);
1643out:
e5d4d75b 1644 btrfs_inode_unlock(BTRFS_I(inode), 0);
7c0c7269
OS
1645 return ret;
1646}
1647
1648ssize_t btrfs_do_write_iter(struct kiocb *iocb, struct iov_iter *from,
1649 const struct btrfs_ioctl_encoded_io_args *encoded)
d0215f3e
JB
1650{
1651 struct file *file = iocb->ki_filp;
14971657 1652 struct btrfs_inode *inode = BTRFS_I(file_inode(file));
7c0c7269 1653 ssize_t num_written, num_sync;
91b94c5d 1654 const bool sync = iocb_is_dsync(iocb);
d0215f3e 1655
c86537a4
GR
1656 /*
1657 * If the fs flips readonly due to some impossible error, although we
1658 * have opened a file as writable, we have to stop this write operation
1659 * to ensure consistency.
1660 */
84961539 1661 if (BTRFS_FS_ERROR(inode->root->fs_info))
c86537a4
GR
1662 return -EROFS;
1663
926078b2 1664 if (encoded && (iocb->ki_flags & IOCB_NOWAIT))
91f9943e
CH
1665 return -EOPNOTSUPP;
1666
b812ce28 1667 if (sync)
14971657 1668 atomic_inc(&inode->sync_writers);
b812ce28 1669
7c0c7269
OS
1670 if (encoded) {
1671 num_written = btrfs_encoded_write(iocb, from, encoded);
1672 num_sync = encoded->len;
1673 } else if (iocb->ki_flags & IOCB_DIRECT) {
c1867eb3
DS
1674 num_written = btrfs_direct_write(iocb, from);
1675 num_sync = num_written;
7c0c7269 1676 } else {
c1867eb3
DS
1677 num_written = btrfs_buffered_write(iocb, from);
1678 num_sync = num_written;
7c0c7269 1679 }
d0215f3e 1680
bc0939fc
FM
1681 btrfs_set_inode_last_sub_trans(inode);
1682
7c0c7269
OS
1683 if (num_sync > 0) {
1684 num_sync = generic_write_sync(iocb, num_sync);
1685 if (num_sync < 0)
1686 num_written = num_sync;
1687 }
0a3404dc 1688
b812ce28 1689 if (sync)
14971657 1690 atomic_dec(&inode->sync_writers);
b8d8e1fd 1691
39279cc3 1692 current->backing_dev_info = NULL;
c3523706 1693 return num_written;
39279cc3
CM
1694}
1695
7c0c7269
OS
1696static ssize_t btrfs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1697{
1698 return btrfs_do_write_iter(iocb, from, NULL);
1699}
1700
d397712b 1701int btrfs_release_file(struct inode *inode, struct file *filp)
e1b81e67 1702{
23b5ec74
JB
1703 struct btrfs_file_private *private = filp->private_data;
1704
3c32c721 1705 if (private) {
23b5ec74 1706 kfree(private->filldir_buf);
3c32c721
FM
1707 free_extent_state(private->llseek_cached_state);
1708 kfree(private);
1709 filp->private_data = NULL;
1710 }
23b5ec74 1711
f6dc45c7 1712 /*
1fd4033d
NB
1713 * Set by setattr when we are about to truncate a file from a non-zero
1714 * size to a zero size. This tries to flush down new bytes that may
1715 * have been written if the application were using truncate to replace
1716 * a file in place.
f6dc45c7 1717 */
1fd4033d 1718 if (test_and_clear_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
f6dc45c7
CM
1719 &BTRFS_I(inode)->runtime_flags))
1720 filemap_flush(inode->i_mapping);
e1b81e67
M
1721 return 0;
1722}
1723
669249ee
FM
1724static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
1725{
1726 int ret;
343e4fc1 1727 struct blk_plug plug;
669249ee 1728
343e4fc1
LB
1729 /*
1730 * This is only called in fsync, which would do synchronous writes, so
1731 * a plug can merge adjacent IOs as much as possible. Esp. in case of
1732 * multiple disks using raid profile, a large IO can be split to
1733 * several segments of stripe length (currently 64K).
1734 */
1735 blk_start_plug(&plug);
669249ee 1736 atomic_inc(&BTRFS_I(inode)->sync_writers);
728404da 1737 ret = btrfs_fdatawrite_range(inode, start, end);
669249ee 1738 atomic_dec(&BTRFS_I(inode)->sync_writers);
343e4fc1 1739 blk_finish_plug(&plug);
669249ee
FM
1740
1741 return ret;
1742}
1743
626e9f41
FM
1744static inline bool skip_inode_logging(const struct btrfs_log_ctx *ctx)
1745{
1746 struct btrfs_inode *inode = BTRFS_I(ctx->inode);
1747 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1748
1749 if (btrfs_inode_in_log(inode, fs_info->generation) &&
1750 list_empty(&ctx->ordered_extents))
1751 return true;
1752
1753 /*
1754 * If we are doing a fast fsync we can not bail out if the inode's
1755 * last_trans is <= then the last committed transaction, because we only
1756 * update the last_trans of the inode during ordered extent completion,
1757 * and for a fast fsync we don't wait for that, we only wait for the
1758 * writeback to complete.
1759 */
1760 if (inode->last_trans <= fs_info->last_trans_committed &&
1761 (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) ||
1762 list_empty(&ctx->ordered_extents)))
1763 return true;
1764
1765 return false;
1766}
1767
d352ac68
CM
1768/*
1769 * fsync call for both files and directories. This logs the inode into
1770 * the tree log instead of forcing full commits whenever possible.
1771 *
1772 * It needs to call filemap_fdatawait so that all ordered extent updates are
1773 * in the metadata btree are up to date for copying to the log.
1774 *
1775 * It drops the inode mutex before doing the tree log commit. This is an
1776 * important optimization for directories because holding the mutex prevents
1777 * new operations on the dir while we write to disk.
1778 */
02c24a82 1779int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
39279cc3 1780{
de17e793 1781 struct dentry *dentry = file_dentry(file);
2b0143b5 1782 struct inode *inode = d_inode(dentry);
0b246afa 1783 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3 1784 struct btrfs_root *root = BTRFS_I(inode)->root;
39279cc3 1785 struct btrfs_trans_handle *trans;
8b050d35 1786 struct btrfs_log_ctx ctx;
333427a5 1787 int ret = 0, err;
48778179
FM
1788 u64 len;
1789 bool full_sync;
39279cc3 1790
1abe9b8a 1791 trace_btrfs_sync_file(file, datasync);
257c62e1 1792
ebb70442
LB
1793 btrfs_init_log_ctx(&ctx, inode);
1794
95418ed1 1795 /*
48778179
FM
1796 * Always set the range to a full range, otherwise we can get into
1797 * several problems, from missing file extent items to represent holes
1798 * when not using the NO_HOLES feature, to log tree corruption due to
1799 * races between hole detection during logging and completion of ordered
1800 * extents outside the range, to missing checksums due to ordered extents
1801 * for which we flushed only a subset of their pages.
95418ed1 1802 */
48778179
FM
1803 start = 0;
1804 end = LLONG_MAX;
1805 len = (u64)LLONG_MAX + 1;
95418ed1 1806
90abccf2
MX
1807 /*
1808 * We write the dirty pages in the range and wait until they complete
1809 * out of the ->i_mutex. If so, we can flush the dirty pages by
2ab28f32
JB
1810 * multi-task, and make the performance up. See
1811 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
90abccf2 1812 */
669249ee 1813 ret = start_ordered_ops(inode, start, end);
90abccf2 1814 if (ret)
333427a5 1815 goto out;
90abccf2 1816
29b6352b 1817 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
c495144b 1818
2ecb7923 1819 atomic_inc(&root->log_batch);
b5e6c3e1 1820
aab15e8e 1821 /*
885f46d8
FM
1822 * Before we acquired the inode's lock and the mmap lock, someone may
1823 * have dirtied more pages in the target range. We need to make sure
1824 * that writeback for any such pages does not start while we are logging
1825 * the inode, because if it does, any of the following might happen when
1826 * we are not doing a full inode sync:
aab15e8e
FM
1827 *
1828 * 1) We log an extent after its writeback finishes but before its
1829 * checksums are added to the csum tree, leading to -EIO errors
1830 * when attempting to read the extent after a log replay.
1831 *
1832 * 2) We can end up logging an extent before its writeback finishes.
1833 * Therefore after the log replay we will have a file extent item
1834 * pointing to an unwritten extent (and no data checksums as well).
1835 *
1836 * So trigger writeback for any eventual new dirty pages and then we
1837 * wait for all ordered extents to complete below.
1838 */
1839 ret = start_ordered_ops(inode, start, end);
1840 if (ret) {
e5d4d75b 1841 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
aab15e8e
FM
1842 goto out;
1843 }
1844
cef7820d
FM
1845 /*
1846 * Always check for the full sync flag while holding the inode's lock,
1847 * to avoid races with other tasks. The flag must be either set all the
1848 * time during logging or always off all the time while logging.
1849 * We check the flag here after starting delalloc above, because when
1850 * running delalloc the full sync flag may be set if we need to drop
1851 * extra extent map ranges due to temporary memory allocation failures.
1852 */
1853 full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1854 &BTRFS_I(inode)->runtime_flags);
1855
669249ee 1856 /*
b5e6c3e1 1857 * We have to do this here to avoid the priority inversion of waiting on
52042d8e 1858 * IO of a lower priority task while holding a transaction open.
ba0b084a 1859 *
48778179
FM
1860 * For a full fsync we wait for the ordered extents to complete while
1861 * for a fast fsync we wait just for writeback to complete, and then
1862 * attach the ordered extents to the transaction so that a transaction
1863 * commit waits for their completion, to avoid data loss if we fsync,
1864 * the current transaction commits before the ordered extents complete
1865 * and a power failure happens right after that.
d8e3fb10
NA
1866 *
1867 * For zoned filesystem, if a write IO uses a ZONE_APPEND command, the
1868 * logical address recorded in the ordered extent may change. We need
1869 * to wait for the IO to stabilize the logical address.
669249ee 1870 */
d8e3fb10 1871 if (full_sync || btrfs_is_zoned(fs_info)) {
48778179
FM
1872 ret = btrfs_wait_ordered_range(inode, start, len);
1873 } else {
1874 /*
1875 * Get our ordered extents as soon as possible to avoid doing
1876 * checksum lookups in the csum tree, and use instead the
1877 * checksums attached to the ordered extents.
1878 */
1879 btrfs_get_ordered_extents_for_logging(BTRFS_I(inode),
1880 &ctx.ordered_extents);
1881 ret = filemap_fdatawait_range(inode->i_mapping, start, end);
0ef8b726 1882 }
48778179
FM
1883
1884 if (ret)
1885 goto out_release_extents;
1886
2ecb7923 1887 atomic_inc(&root->log_batch);
257c62e1 1888
a4abeea4 1889 smp_mb();
626e9f41 1890 if (skip_inode_logging(&ctx)) {
5dc562c5 1891 /*
01327610 1892 * We've had everything committed since the last time we were
5dc562c5
JB
1893 * modified so clear this flag in case it was set for whatever
1894 * reason, it's no longer relevant.
1895 */
1896 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1897 &BTRFS_I(inode)->runtime_flags);
0596a904
FM
1898 /*
1899 * An ordered extent might have started before and completed
1900 * already with io errors, in which case the inode was not
1901 * updated and we end up here. So check the inode's mapping
333427a5
JL
1902 * for any errors that might have happened since we last
1903 * checked called fsync.
0596a904 1904 */
333427a5 1905 ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err);
48778179 1906 goto out_release_extents;
15ee9bc7 1907 }
15ee9bc7 1908
5039eddc
JB
1909 /*
1910 * We use start here because we will need to wait on the IO to complete
1911 * in btrfs_sync_log, which could require joining a transaction (for
1912 * example checking cross references in the nocow path). If we use join
1913 * here we could get into a situation where we're waiting on IO to
1914 * happen that is blocked on a transaction trying to commit. With start
1915 * we inc the extwriter counter, so we wait for all extwriters to exit
52042d8e 1916 * before we start blocking joiners. This comment is to keep somebody
5039eddc
JB
1917 * from thinking they are super smart and changing this to
1918 * btrfs_join_transaction *cough*Josef*cough*.
1919 */
a22285a6
YZ
1920 trans = btrfs_start_transaction(root, 0);
1921 if (IS_ERR(trans)) {
1922 ret = PTR_ERR(trans);
48778179 1923 goto out_release_extents;
39279cc3 1924 }
d0c2f4fa 1925 trans->in_fsync = true;
e02119d5 1926
48778179
FM
1927 ret = btrfs_log_dentry_safe(trans, dentry, &ctx);
1928 btrfs_release_log_ctx_extents(&ctx);
02c24a82 1929 if (ret < 0) {
a0634be5 1930 /* Fallthrough and commit/free transaction. */
f31f09f6 1931 ret = BTRFS_LOG_FORCE_COMMIT;
02c24a82 1932 }
49eb7e46
CM
1933
1934 /* we've logged all the items and now have a consistent
1935 * version of the file in the log. It is possible that
1936 * someone will come in and modify the file, but that's
1937 * fine because the log is consistent on disk, and we
1938 * have references to all of the file's extents
1939 *
1940 * It is possible that someone will come in and log the
1941 * file again, but that will end up using the synchronization
1942 * inside btrfs_sync_log to keep things safe.
1943 */
e5d4d75b 1944 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
49eb7e46 1945
bf7ba8ee
JB
1946 if (ret == BTRFS_NO_LOG_SYNC) {
1947 ret = btrfs_end_transaction(trans);
1948 goto out;
1949 }
1950
1951 /* We successfully logged the inode, attempt to sync the log. */
1952 if (!ret) {
1953 ret = btrfs_sync_log(trans, root, &ctx);
0ef8b726 1954 if (!ret) {
bf7ba8ee
JB
1955 ret = btrfs_end_transaction(trans);
1956 goto out;
48778179 1957 }
bf7ba8ee
JB
1958 }
1959
1960 /*
1961 * At this point we need to commit the transaction because we had
1962 * btrfs_need_log_full_commit() or some other error.
1963 *
1964 * If we didn't do a full sync we have to stop the trans handle, wait on
1965 * the ordered extents, start it again and commit the transaction. If
1966 * we attempt to wait on the ordered extents here we could deadlock with
1967 * something like fallocate() that is holding the extent lock trying to
1968 * start a transaction while some other thread is trying to commit the
1969 * transaction while we (fsync) are currently holding the transaction
1970 * open.
1971 */
1972 if (!full_sync) {
3a45bb20 1973 ret = btrfs_end_transaction(trans);
bf7ba8ee
JB
1974 if (ret)
1975 goto out;
1976 ret = btrfs_wait_ordered_range(inode, start, len);
1977 if (ret)
1978 goto out;
1979
1980 /*
1981 * This is safe to use here because we're only interested in
1982 * making sure the transaction that had the ordered extents is
1983 * committed. We aren't waiting on anything past this point,
1984 * we're purely getting the transaction and committing it.
1985 */
1986 trans = btrfs_attach_transaction_barrier(root);
1987 if (IS_ERR(trans)) {
1988 ret = PTR_ERR(trans);
1989
1990 /*
1991 * We committed the transaction and there's no currently
1992 * running transaction, this means everything we care
1993 * about made it to disk and we are done.
1994 */
1995 if (ret == -ENOENT)
1996 ret = 0;
1997 goto out;
1998 }
e02119d5 1999 }
bf7ba8ee
JB
2000
2001 ret = btrfs_commit_transaction(trans);
39279cc3 2002out:
ebb70442 2003 ASSERT(list_empty(&ctx.list));
e09d94c9 2004 ASSERT(list_empty(&ctx.conflict_inodes));
333427a5
JL
2005 err = file_check_and_advance_wb_err(file);
2006 if (!ret)
2007 ret = err;
014e4ac4 2008 return ret > 0 ? -EIO : ret;
48778179
FM
2009
2010out_release_extents:
2011 btrfs_release_log_ctx_extents(&ctx);
e5d4d75b 2012 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
48778179 2013 goto out;
39279cc3
CM
2014}
2015
f0f37e2f 2016static const struct vm_operations_struct btrfs_file_vm_ops = {
92fee66d 2017 .fault = filemap_fault,
f1820361 2018 .map_pages = filemap_map_pages,
9ebefb18
CM
2019 .page_mkwrite = btrfs_page_mkwrite,
2020};
2021
2022static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma)
2023{
058a457e
MX
2024 struct address_space *mapping = filp->f_mapping;
2025
7e0a1265 2026 if (!mapping->a_ops->read_folio)
058a457e
MX
2027 return -ENOEXEC;
2028
9ebefb18 2029 file_accessed(filp);
058a457e 2030 vma->vm_ops = &btrfs_file_vm_ops;
058a457e 2031
9ebefb18
CM
2032 return 0;
2033}
2034
35339c24 2035static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf,
2aaa6655
JB
2036 int slot, u64 start, u64 end)
2037{
2038 struct btrfs_file_extent_item *fi;
2039 struct btrfs_key key;
2040
2041 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2042 return 0;
2043
2044 btrfs_item_key_to_cpu(leaf, &key, slot);
35339c24 2045 if (key.objectid != btrfs_ino(inode) ||
2aaa6655
JB
2046 key.type != BTRFS_EXTENT_DATA_KEY)
2047 return 0;
2048
2049 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2050
2051 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2052 return 0;
2053
2054 if (btrfs_file_extent_disk_bytenr(leaf, fi))
2055 return 0;
2056
2057 if (key.offset == end)
2058 return 1;
2059 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2060 return 1;
2061 return 0;
2062}
2063
a012a74e
NB
2064static int fill_holes(struct btrfs_trans_handle *trans,
2065 struct btrfs_inode *inode,
2066 struct btrfs_path *path, u64 offset, u64 end)
2aaa6655 2067{
3ffbd68c 2068 struct btrfs_fs_info *fs_info = trans->fs_info;
a012a74e 2069 struct btrfs_root *root = inode->root;
2aaa6655
JB
2070 struct extent_buffer *leaf;
2071 struct btrfs_file_extent_item *fi;
2072 struct extent_map *hole_em;
2aaa6655
JB
2073 struct btrfs_key key;
2074 int ret;
2075
0b246afa 2076 if (btrfs_fs_incompat(fs_info, NO_HOLES))
16e7549f
JB
2077 goto out;
2078
a012a74e 2079 key.objectid = btrfs_ino(inode);
2aaa6655
JB
2080 key.type = BTRFS_EXTENT_DATA_KEY;
2081 key.offset = offset;
2082
2aaa6655 2083 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
f94480bd
JB
2084 if (ret <= 0) {
2085 /*
2086 * We should have dropped this offset, so if we find it then
2087 * something has gone horribly wrong.
2088 */
2089 if (ret == 0)
2090 ret = -EINVAL;
2aaa6655 2091 return ret;
f94480bd 2092 }
2aaa6655
JB
2093
2094 leaf = path->nodes[0];
a012a74e 2095 if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) {
2aaa6655
JB
2096 u64 num_bytes;
2097
2098 path->slots[0]--;
2099 fi = btrfs_item_ptr(leaf, path->slots[0],
2100 struct btrfs_file_extent_item);
2101 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2102 end - offset;
2103 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2104 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2105 btrfs_set_file_extent_offset(leaf, fi, 0);
e6e3dec6 2106 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2aaa6655
JB
2107 btrfs_mark_buffer_dirty(leaf);
2108 goto out;
2109 }
2110
1707e26d 2111 if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2aaa6655
JB
2112 u64 num_bytes;
2113
2aaa6655 2114 key.offset = offset;
0b246afa 2115 btrfs_set_item_key_safe(fs_info, path, &key);
2aaa6655
JB
2116 fi = btrfs_item_ptr(leaf, path->slots[0],
2117 struct btrfs_file_extent_item);
2118 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2119 offset;
2120 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2121 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2122 btrfs_set_file_extent_offset(leaf, fi, 0);
e6e3dec6 2123 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2aaa6655
JB
2124 btrfs_mark_buffer_dirty(leaf);
2125 goto out;
2126 }
2127 btrfs_release_path(path);
2128
d1f68ba0
OS
2129 ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset,
2130 end - offset);
2aaa6655
JB
2131 if (ret)
2132 return ret;
2133
2134out:
2135 btrfs_release_path(path);
2136
2137 hole_em = alloc_extent_map();
2138 if (!hole_em) {
4c0c8cfc 2139 btrfs_drop_extent_map_range(inode, offset, end - 1, false);
23e3337f 2140 btrfs_set_inode_full_sync(inode);
2aaa6655
JB
2141 } else {
2142 hole_em->start = offset;
2143 hole_em->len = end - offset;
cc95bef6 2144 hole_em->ram_bytes = hole_em->len;
2aaa6655
JB
2145 hole_em->orig_start = offset;
2146
2147 hole_em->block_start = EXTENT_MAP_HOLE;
2148 hole_em->block_len = 0;
b4939680 2149 hole_em->orig_block_len = 0;
2aaa6655
JB
2150 hole_em->compress_type = BTRFS_COMPRESS_NONE;
2151 hole_em->generation = trans->transid;
2152
a1ba4c08 2153 ret = btrfs_replace_extent_map_range(inode, hole_em, true);
2aaa6655
JB
2154 free_extent_map(hole_em);
2155 if (ret)
23e3337f 2156 btrfs_set_inode_full_sync(inode);
2aaa6655
JB
2157 }
2158
2159 return 0;
2160}
2161
d7781546
QW
2162/*
2163 * Find a hole extent on given inode and change start/len to the end of hole
2164 * extent.(hole/vacuum extent whose em->start <= start &&
2165 * em->start + em->len > start)
2166 * When a hole extent is found, return 1 and modify start/len.
2167 */
dea46d84 2168static int find_first_non_hole(struct btrfs_inode *inode, u64 *start, u64 *len)
d7781546 2169{
dea46d84 2170 struct btrfs_fs_info *fs_info = inode->root->fs_info;
d7781546
QW
2171 struct extent_map *em;
2172 int ret = 0;
2173
dea46d84 2174 em = btrfs_get_extent(inode, NULL, 0,
609805d8 2175 round_down(*start, fs_info->sectorsize),
39b07b5d 2176 round_up(*len, fs_info->sectorsize));
9986277e
DC
2177 if (IS_ERR(em))
2178 return PTR_ERR(em);
d7781546
QW
2179
2180 /* Hole or vacuum extent(only exists in no-hole mode) */
2181 if (em->block_start == EXTENT_MAP_HOLE) {
2182 ret = 1;
2183 *len = em->start + em->len > *start + *len ?
2184 0 : *start + *len - em->start - em->len;
2185 *start = em->start + em->len;
2186 }
2187 free_extent_map(em);
2188 return ret;
2189}
2190
55961c8a
FM
2191static void btrfs_punch_hole_lock_range(struct inode *inode,
2192 const u64 lockstart,
2193 const u64 lockend,
2194 struct extent_state **cached_state)
f27451f2 2195{
0528476b
QW
2196 /*
2197 * For subpage case, if the range is not at page boundary, we could
2198 * have pages at the leading/tailing part of the range.
2199 * This could lead to dead loop since filemap_range_has_page()
2200 * will always return true.
2201 * So here we need to do extra page alignment for
2202 * filemap_range_has_page().
2203 */
2204 const u64 page_lockstart = round_up(lockstart, PAGE_SIZE);
2205 const u64 page_lockend = round_down(lockend + 1, PAGE_SIZE) - 1;
2206
f27451f2 2207 while (1) {
f27451f2
FM
2208 truncate_pagecache_range(inode, lockstart, lockend);
2209
570eb97b
JB
2210 lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2211 cached_state);
f27451f2 2212 /*
55961c8a
FM
2213 * We can't have ordered extents in the range, nor dirty/writeback
2214 * pages, because we have locked the inode's VFS lock in exclusive
2215 * mode, we have locked the inode's i_mmap_lock in exclusive mode,
2216 * we have flushed all delalloc in the range and we have waited
2217 * for any ordered extents in the range to complete.
2218 * We can race with anyone reading pages from this range, so after
2219 * locking the range check if we have pages in the range, and if
2220 * we do, unlock the range and retry.
f27451f2 2221 */
55961c8a
FM
2222 if (!filemap_range_has_page(inode->i_mapping, page_lockstart,
2223 page_lockend))
f27451f2 2224 break;
55961c8a 2225
570eb97b
JB
2226 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2227 cached_state);
f27451f2 2228 }
63c34cb4
FM
2229
2230 btrfs_assert_inode_range_clean(BTRFS_I(inode), lockstart, lockend);
f27451f2
FM
2231}
2232
0cbb5bdf 2233static int btrfs_insert_replace_extent(struct btrfs_trans_handle *trans,
03fcb1ab 2234 struct btrfs_inode *inode,
690a5dbf 2235 struct btrfs_path *path,
bf385648 2236 struct btrfs_replace_extent_info *extent_info,
2766ff61
FM
2237 const u64 replace_len,
2238 const u64 bytes_to_drop)
690a5dbf 2239{
03fcb1ab
NB
2240 struct btrfs_fs_info *fs_info = trans->fs_info;
2241 struct btrfs_root *root = inode->root;
690a5dbf
FM
2242 struct btrfs_file_extent_item *extent;
2243 struct extent_buffer *leaf;
2244 struct btrfs_key key;
2245 int slot;
2246 struct btrfs_ref ref = { 0 };
690a5dbf
FM
2247 int ret;
2248
bf385648 2249 if (replace_len == 0)
690a5dbf
FM
2250 return 0;
2251
bf385648 2252 if (extent_info->disk_offset == 0 &&
2766ff61 2253 btrfs_fs_incompat(fs_info, NO_HOLES)) {
03fcb1ab 2254 btrfs_update_inode_bytes(inode, 0, bytes_to_drop);
690a5dbf 2255 return 0;
2766ff61 2256 }
690a5dbf 2257
03fcb1ab 2258 key.objectid = btrfs_ino(inode);
690a5dbf 2259 key.type = BTRFS_EXTENT_DATA_KEY;
bf385648 2260 key.offset = extent_info->file_offset;
690a5dbf 2261 ret = btrfs_insert_empty_item(trans, root, path, &key,
fb870f6c 2262 sizeof(struct btrfs_file_extent_item));
690a5dbf
FM
2263 if (ret)
2264 return ret;
2265 leaf = path->nodes[0];
2266 slot = path->slots[0];
bf385648 2267 write_extent_buffer(leaf, extent_info->extent_buf,
690a5dbf 2268 btrfs_item_ptr_offset(leaf, slot),
fb870f6c 2269 sizeof(struct btrfs_file_extent_item));
690a5dbf 2270 extent = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
fb870f6c 2271 ASSERT(btrfs_file_extent_type(leaf, extent) != BTRFS_FILE_EXTENT_INLINE);
bf385648
FM
2272 btrfs_set_file_extent_offset(leaf, extent, extent_info->data_offset);
2273 btrfs_set_file_extent_num_bytes(leaf, extent, replace_len);
2274 if (extent_info->is_new_extent)
8fccebfa 2275 btrfs_set_file_extent_generation(leaf, extent, trans->transid);
690a5dbf
FM
2276 btrfs_mark_buffer_dirty(leaf);
2277 btrfs_release_path(path);
2278
03fcb1ab
NB
2279 ret = btrfs_inode_set_file_extent_range(inode, extent_info->file_offset,
2280 replace_len);
9ddc959e
JB
2281 if (ret)
2282 return ret;
2283
690a5dbf 2284 /* If it's a hole, nothing more needs to be done. */
2766ff61 2285 if (extent_info->disk_offset == 0) {
03fcb1ab 2286 btrfs_update_inode_bytes(inode, 0, bytes_to_drop);
690a5dbf 2287 return 0;
2766ff61 2288 }
690a5dbf 2289
03fcb1ab 2290 btrfs_update_inode_bytes(inode, replace_len, bytes_to_drop);
8fccebfa 2291
bf385648
FM
2292 if (extent_info->is_new_extent && extent_info->insertions == 0) {
2293 key.objectid = extent_info->disk_offset;
8fccebfa 2294 key.type = BTRFS_EXTENT_ITEM_KEY;
bf385648 2295 key.offset = extent_info->disk_len;
8fccebfa 2296 ret = btrfs_alloc_reserved_file_extent(trans, root,
03fcb1ab 2297 btrfs_ino(inode),
bf385648
FM
2298 extent_info->file_offset,
2299 extent_info->qgroup_reserved,
8fccebfa
FM
2300 &key);
2301 } else {
2302 u64 ref_offset;
2303
2304 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF,
bf385648
FM
2305 extent_info->disk_offset,
2306 extent_info->disk_len, 0);
2307 ref_offset = extent_info->file_offset - extent_info->data_offset;
8fccebfa 2308 btrfs_init_data_ref(&ref, root->root_key.objectid,
f42c5da6 2309 btrfs_ino(inode), ref_offset, 0, false);
8fccebfa
FM
2310 ret = btrfs_inc_extent_ref(trans, &ref);
2311 }
2312
bf385648 2313 extent_info->insertions++;
690a5dbf
FM
2314
2315 return ret;
2316}
2317
9cba40a6
FM
2318/*
2319 * The respective range must have been previously locked, as well as the inode.
2320 * The end offset is inclusive (last byte of the range).
bf385648
FM
2321 * @extent_info is NULL for fallocate's hole punching and non-NULL when replacing
2322 * the file range with an extent.
2323 * When not punching a hole, we don't want to end up in a state where we dropped
2324 * extents without inserting a new one, so we must abort the transaction to avoid
2325 * a corruption.
9cba40a6 2326 */
bfc78479
NB
2327int btrfs_replace_file_extents(struct btrfs_inode *inode,
2328 struct btrfs_path *path, const u64 start,
2329 const u64 end,
2330 struct btrfs_replace_extent_info *extent_info,
2331 struct btrfs_trans_handle **trans_out)
9cba40a6 2332{
5893dfb9 2333 struct btrfs_drop_extents_args drop_args = { 0 };
bfc78479
NB
2334 struct btrfs_root *root = inode->root;
2335 struct btrfs_fs_info *fs_info = root->fs_info;
2bd36e7b 2336 u64 min_size = btrfs_calc_insert_metadata_size(fs_info, 1);
bfc78479 2337 u64 ino_size = round_up(inode->vfs_inode.i_size, fs_info->sectorsize);
9cba40a6
FM
2338 struct btrfs_trans_handle *trans = NULL;
2339 struct btrfs_block_rsv *rsv;
2340 unsigned int rsv_count;
2341 u64 cur_offset;
9cba40a6
FM
2342 u64 len = end - start;
2343 int ret = 0;
2344
2345 if (end <= start)
2346 return -EINVAL;
2347
2348 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
2349 if (!rsv) {
2350 ret = -ENOMEM;
2351 goto out;
2352 }
2bd36e7b 2353 rsv->size = btrfs_calc_insert_metadata_size(fs_info, 1);
710d5921 2354 rsv->failfast = true;
9cba40a6
FM
2355
2356 /*
2357 * 1 - update the inode
2358 * 1 - removing the extents in the range
bf385648
FM
2359 * 1 - adding the hole extent if no_holes isn't set or if we are
2360 * replacing the range with a new extent
9cba40a6 2361 */
bf385648 2362 if (!btrfs_fs_incompat(fs_info, NO_HOLES) || extent_info)
690a5dbf
FM
2363 rsv_count = 3;
2364 else
2365 rsv_count = 2;
2366
9cba40a6
FM
2367 trans = btrfs_start_transaction(root, rsv_count);
2368 if (IS_ERR(trans)) {
2369 ret = PTR_ERR(trans);
2370 trans = NULL;
2371 goto out_free;
2372 }
2373
2374 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
2375 min_size, false);
650c9cab
FM
2376 if (WARN_ON(ret))
2377 goto out_trans;
9cba40a6
FM
2378 trans->block_rsv = rsv;
2379
2380 cur_offset = start;
5893dfb9
FM
2381 drop_args.path = path;
2382 drop_args.end = end + 1;
2383 drop_args.drop_cache = true;
9cba40a6 2384 while (cur_offset < end) {
5893dfb9 2385 drop_args.start = cur_offset;
bfc78479 2386 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
2766ff61
FM
2387 /* If we are punching a hole decrement the inode's byte count */
2388 if (!extent_info)
bfc78479 2389 btrfs_update_inode_bytes(inode, 0,
2766ff61 2390 drop_args.bytes_found);
690a5dbf
FM
2391 if (ret != -ENOSPC) {
2392 /*
4afb912f
JB
2393 * The only time we don't want to abort is if we are
2394 * attempting to clone a partial inline extent, in which
2395 * case we'll get EOPNOTSUPP. However if we aren't
2396 * clone we need to abort no matter what, because if we
2397 * got EOPNOTSUPP via prealloc then we messed up and
2398 * need to abort.
690a5dbf 2399 */
4afb912f
JB
2400 if (ret &&
2401 (ret != -EOPNOTSUPP ||
2402 (extent_info && extent_info->is_new_extent)))
690a5dbf 2403 btrfs_abort_transaction(trans, ret);
9cba40a6 2404 break;
690a5dbf 2405 }
9cba40a6
FM
2406
2407 trans->block_rsv = &fs_info->trans_block_rsv;
2408
5893dfb9 2409 if (!extent_info && cur_offset < drop_args.drop_end &&
690a5dbf 2410 cur_offset < ino_size) {
bfc78479
NB
2411 ret = fill_holes(trans, inode, path, cur_offset,
2412 drop_args.drop_end);
9cba40a6
FM
2413 if (ret) {
2414 /*
2415 * If we failed then we didn't insert our hole
2416 * entries for the area we dropped, so now the
2417 * fs is corrupted, so we must abort the
2418 * transaction.
2419 */
2420 btrfs_abort_transaction(trans, ret);
2421 break;
2422 }
5893dfb9 2423 } else if (!extent_info && cur_offset < drop_args.drop_end) {
9ddc959e
JB
2424 /*
2425 * We are past the i_size here, but since we didn't
2426 * insert holes we need to clear the mapped area so we
2427 * know to not set disk_i_size in this area until a new
2428 * file extent is inserted here.
2429 */
bfc78479 2430 ret = btrfs_inode_clear_file_extent_range(inode,
5893dfb9
FM
2431 cur_offset,
2432 drop_args.drop_end - cur_offset);
9ddc959e
JB
2433 if (ret) {
2434 /*
2435 * We couldn't clear our area, so we could
2436 * presumably adjust up and corrupt the fs, so
2437 * we need to abort.
2438 */
2439 btrfs_abort_transaction(trans, ret);
2440 break;
2441 }
9cba40a6
FM
2442 }
2443
5893dfb9
FM
2444 if (extent_info &&
2445 drop_args.drop_end > extent_info->file_offset) {
2446 u64 replace_len = drop_args.drop_end -
2447 extent_info->file_offset;
690a5dbf 2448
bfc78479
NB
2449 ret = btrfs_insert_replace_extent(trans, inode, path,
2450 extent_info, replace_len,
03fcb1ab 2451 drop_args.bytes_found);
690a5dbf
FM
2452 if (ret) {
2453 btrfs_abort_transaction(trans, ret);
2454 break;
2455 }
bf385648
FM
2456 extent_info->data_len -= replace_len;
2457 extent_info->data_offset += replace_len;
2458 extent_info->file_offset += replace_len;
690a5dbf
FM
2459 }
2460
983d8209
FM
2461 /*
2462 * We are releasing our handle on the transaction, balance the
2463 * dirty pages of the btree inode and flush delayed items, and
2464 * then get a new transaction handle, which may now point to a
2465 * new transaction in case someone else may have committed the
2466 * transaction we used to replace/drop file extent items. So
2467 * bump the inode's iversion and update mtime and ctime except
2468 * if we are called from a dedupe context. This is because a
2469 * power failure/crash may happen after the transaction is
2470 * committed and before we finish replacing/dropping all the
2471 * file extent items we need.
2472 */
2473 inode_inc_iversion(&inode->vfs_inode);
2474
2475 if (!extent_info || extent_info->update_times) {
2476 inode->vfs_inode.i_mtime = current_time(&inode->vfs_inode);
2477 inode->vfs_inode.i_ctime = inode->vfs_inode.i_mtime;
2478 }
2479
bfc78479 2480 ret = btrfs_update_inode(trans, root, inode);
9cba40a6
FM
2481 if (ret)
2482 break;
2483
2484 btrfs_end_transaction(trans);
2485 btrfs_btree_balance_dirty(fs_info);
2486
2487 trans = btrfs_start_transaction(root, rsv_count);
2488 if (IS_ERR(trans)) {
2489 ret = PTR_ERR(trans);
2490 trans = NULL;
2491 break;
2492 }
2493
2494 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
2495 rsv, min_size, false);
650c9cab
FM
2496 if (WARN_ON(ret))
2497 break;
9cba40a6
FM
2498 trans->block_rsv = rsv;
2499
3227788c
BC
2500 cur_offset = drop_args.drop_end;
2501 len = end - cur_offset;
2502 if (!extent_info && len) {
bfc78479 2503 ret = find_first_non_hole(inode, &cur_offset, &len);
690a5dbf
FM
2504 if (unlikely(ret < 0))
2505 break;
2506 if (ret && !len) {
2507 ret = 0;
2508 break;
2509 }
9cba40a6
FM
2510 }
2511 }
2512
690a5dbf
FM
2513 /*
2514 * If we were cloning, force the next fsync to be a full one since we
2515 * we replaced (or just dropped in the case of cloning holes when
e2b84217
FM
2516 * NO_HOLES is enabled) file extent items and did not setup new extent
2517 * maps for the replacement extents (or holes).
690a5dbf 2518 */
bf385648 2519 if (extent_info && !extent_info->is_new_extent)
23e3337f 2520 btrfs_set_inode_full_sync(inode);
690a5dbf 2521
9cba40a6
FM
2522 if (ret)
2523 goto out_trans;
2524
2525 trans->block_rsv = &fs_info->trans_block_rsv;
2526 /*
2527 * If we are using the NO_HOLES feature we might have had already an
2528 * hole that overlaps a part of the region [lockstart, lockend] and
2529 * ends at (or beyond) lockend. Since we have no file extent items to
2530 * represent holes, drop_end can be less than lockend and so we must
2531 * make sure we have an extent map representing the existing hole (the
2532 * call to __btrfs_drop_extents() might have dropped the existing extent
2533 * map representing the existing hole), otherwise the fast fsync path
2534 * will not record the existence of the hole region
2535 * [existing_hole_start, lockend].
2536 */
5893dfb9
FM
2537 if (drop_args.drop_end <= end)
2538 drop_args.drop_end = end + 1;
9cba40a6
FM
2539 /*
2540 * Don't insert file hole extent item if it's for a range beyond eof
2541 * (because it's useless) or if it represents a 0 bytes range (when
2542 * cur_offset == drop_end).
2543 */
5893dfb9
FM
2544 if (!extent_info && cur_offset < ino_size &&
2545 cur_offset < drop_args.drop_end) {
bfc78479
NB
2546 ret = fill_holes(trans, inode, path, cur_offset,
2547 drop_args.drop_end);
9cba40a6
FM
2548 if (ret) {
2549 /* Same comment as above. */
2550 btrfs_abort_transaction(trans, ret);
2551 goto out_trans;
2552 }
5893dfb9 2553 } else if (!extent_info && cur_offset < drop_args.drop_end) {
9ddc959e 2554 /* See the comment in the loop above for the reasoning here. */
bfc78479
NB
2555 ret = btrfs_inode_clear_file_extent_range(inode, cur_offset,
2556 drop_args.drop_end - cur_offset);
9ddc959e
JB
2557 if (ret) {
2558 btrfs_abort_transaction(trans, ret);
2559 goto out_trans;
2560 }
2561
9cba40a6 2562 }
bf385648 2563 if (extent_info) {
bfc78479 2564 ret = btrfs_insert_replace_extent(trans, inode, path,
03fcb1ab
NB
2565 extent_info, extent_info->data_len,
2566 drop_args.bytes_found);
690a5dbf
FM
2567 if (ret) {
2568 btrfs_abort_transaction(trans, ret);
2569 goto out_trans;
2570 }
2571 }
9cba40a6
FM
2572
2573out_trans:
2574 if (!trans)
2575 goto out_free;
2576
2577 trans->block_rsv = &fs_info->trans_block_rsv;
2578 if (ret)
2579 btrfs_end_transaction(trans);
2580 else
2581 *trans_out = trans;
2582out_free:
2583 btrfs_free_block_rsv(fs_info, rsv);
2584out:
2585 return ret;
2586}
2587
05fd9564 2588static int btrfs_punch_hole(struct file *file, loff_t offset, loff_t len)
2aaa6655 2589{
05fd9564 2590 struct inode *inode = file_inode(file);
0b246afa 2591 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2aaa6655
JB
2592 struct btrfs_root *root = BTRFS_I(inode)->root;
2593 struct extent_state *cached_state = NULL;
2594 struct btrfs_path *path;
9cba40a6 2595 struct btrfs_trans_handle *trans = NULL;
d7781546
QW
2596 u64 lockstart;
2597 u64 lockend;
2598 u64 tail_start;
2599 u64 tail_len;
2600 u64 orig_start = offset;
2aaa6655 2601 int ret = 0;
9703fefe 2602 bool same_block;
a1a50f60 2603 u64 ino_size;
9703fefe 2604 bool truncated_block = false;
e8c1c76e 2605 bool updated_inode = false;
2aaa6655 2606
29b6352b 2607 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
bd6526d0 2608
0ef8b726
JB
2609 ret = btrfs_wait_ordered_range(inode, offset, len);
2610 if (ret)
bd6526d0 2611 goto out_only_mutex;
2aaa6655 2612
0b246afa 2613 ino_size = round_up(inode->i_size, fs_info->sectorsize);
dea46d84 2614 ret = find_first_non_hole(BTRFS_I(inode), &offset, &len);
d7781546
QW
2615 if (ret < 0)
2616 goto out_only_mutex;
2617 if (ret && !len) {
2618 /* Already in a large hole */
2619 ret = 0;
2620 goto out_only_mutex;
2621 }
2622
05fd9564
DW
2623 ret = file_modified(file);
2624 if (ret)
2625 goto out_only_mutex;
2626
ee8ba05c
JB
2627 lockstart = round_up(offset, fs_info->sectorsize);
2628 lockend = round_down(offset + len, fs_info->sectorsize) - 1;
0b246afa
JM
2629 same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset))
2630 == (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1));
7426cc04 2631 /*
9703fefe 2632 * We needn't truncate any block which is beyond the end of the file
7426cc04
MX
2633 * because we are sure there is no data there.
2634 */
2aaa6655 2635 /*
9703fefe
CR
2636 * Only do this if we are in the same block and we aren't doing the
2637 * entire block.
2aaa6655 2638 */
0b246afa 2639 if (same_block && len < fs_info->sectorsize) {
e8c1c76e 2640 if (offset < ino_size) {
9703fefe 2641 truncated_block = true;
217f42eb
NB
2642 ret = btrfs_truncate_block(BTRFS_I(inode), offset, len,
2643 0);
e8c1c76e
FM
2644 } else {
2645 ret = 0;
2646 }
d7781546 2647 goto out_only_mutex;
2aaa6655
JB
2648 }
2649
9703fefe 2650 /* zero back part of the first block */
12870f1c 2651 if (offset < ino_size) {
9703fefe 2652 truncated_block = true;
217f42eb 2653 ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0);
7426cc04 2654 if (ret) {
e5d4d75b 2655 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
7426cc04
MX
2656 return ret;
2657 }
2aaa6655
JB
2658 }
2659
d7781546
QW
2660 /* Check the aligned pages after the first unaligned page,
2661 * if offset != orig_start, which means the first unaligned page
01327610 2662 * including several following pages are already in holes,
d7781546
QW
2663 * the extra check can be skipped */
2664 if (offset == orig_start) {
2665 /* after truncate page, check hole again */
2666 len = offset + len - lockstart;
2667 offset = lockstart;
dea46d84 2668 ret = find_first_non_hole(BTRFS_I(inode), &offset, &len);
d7781546
QW
2669 if (ret < 0)
2670 goto out_only_mutex;
2671 if (ret && !len) {
2672 ret = 0;
2673 goto out_only_mutex;
2674 }
2675 lockstart = offset;
2676 }
2677
2678 /* Check the tail unaligned part is in a hole */
2679 tail_start = lockend + 1;
2680 tail_len = offset + len - tail_start;
2681 if (tail_len) {
dea46d84 2682 ret = find_first_non_hole(BTRFS_I(inode), &tail_start, &tail_len);
d7781546
QW
2683 if (unlikely(ret < 0))
2684 goto out_only_mutex;
2685 if (!ret) {
2686 /* zero the front end of the last page */
2687 if (tail_start + tail_len < ino_size) {
9703fefe 2688 truncated_block = true;
217f42eb 2689 ret = btrfs_truncate_block(BTRFS_I(inode),
9703fefe
CR
2690 tail_start + tail_len,
2691 0, 1);
d7781546
QW
2692 if (ret)
2693 goto out_only_mutex;
51f395ad 2694 }
0061280d 2695 }
2aaa6655
JB
2696 }
2697
2698 if (lockend < lockstart) {
e8c1c76e
FM
2699 ret = 0;
2700 goto out_only_mutex;
2aaa6655
JB
2701 }
2702
55961c8a 2703 btrfs_punch_hole_lock_range(inode, lockstart, lockend, &cached_state);
2aaa6655
JB
2704
2705 path = btrfs_alloc_path();
2706 if (!path) {
2707 ret = -ENOMEM;
2708 goto out;
2709 }
2710
bfc78479
NB
2711 ret = btrfs_replace_file_extents(BTRFS_I(inode), path, lockstart,
2712 lockend, NULL, &trans);
9cba40a6
FM
2713 btrfs_free_path(path);
2714 if (ret)
2715 goto out;
2aaa6655 2716
9cba40a6 2717 ASSERT(trans != NULL);
e1f5790e 2718 inode_inc_iversion(inode);
c1867eb3
DS
2719 inode->i_mtime = current_time(inode);
2720 inode->i_ctime = inode->i_mtime;
9a56fcd1 2721 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
e8c1c76e 2722 updated_inode = true;
3a45bb20 2723 btrfs_end_transaction(trans);
2ff7e61e 2724 btrfs_btree_balance_dirty(fs_info);
2aaa6655 2725out:
570eb97b
JB
2726 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2727 &cached_state);
d7781546 2728out_only_mutex:
9cba40a6 2729 if (!updated_inode && truncated_block && !ret) {
e8c1c76e
FM
2730 /*
2731 * If we only end up zeroing part of a page, we still need to
2732 * update the inode item, so that all the time fields are
2733 * updated as well as the necessary btrfs inode in memory fields
2734 * for detecting, at fsync time, if the inode isn't yet in the
2735 * log tree or it's there but not up to date.
2736 */
17900668
FM
2737 struct timespec64 now = current_time(inode);
2738
2739 inode_inc_iversion(inode);
2740 inode->i_mtime = now;
2741 inode->i_ctime = now;
e8c1c76e
FM
2742 trans = btrfs_start_transaction(root, 1);
2743 if (IS_ERR(trans)) {
9cba40a6 2744 ret = PTR_ERR(trans);
e8c1c76e 2745 } else {
9cba40a6
FM
2746 int ret2;
2747
9a56fcd1 2748 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
9cba40a6
FM
2749 ret2 = btrfs_end_transaction(trans);
2750 if (!ret)
2751 ret = ret2;
e8c1c76e
FM
2752 }
2753 }
e5d4d75b 2754 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
9cba40a6 2755 return ret;
2aaa6655
JB
2756}
2757
14524a84
QW
2758/* Helper structure to record which range is already reserved */
2759struct falloc_range {
2760 struct list_head list;
2761 u64 start;
2762 u64 len;
2763};
2764
2765/*
2766 * Helper function to add falloc range
2767 *
2768 * Caller should have locked the larger range of extent containing
2769 * [start, len)
2770 */
2771static int add_falloc_range(struct list_head *head, u64 start, u64 len)
2772{
14524a84
QW
2773 struct falloc_range *range = NULL;
2774
77d25534
NB
2775 if (!list_empty(head)) {
2776 /*
2777 * As fallocate iterates by bytenr order, we only need to check
2778 * the last range.
2779 */
2780 range = list_last_entry(head, struct falloc_range, list);
2781 if (range->start + range->len == start) {
2782 range->len += len;
2783 return 0;
2784 }
14524a84 2785 }
77d25534 2786
32fc932e 2787 range = kmalloc(sizeof(*range), GFP_KERNEL);
14524a84
QW
2788 if (!range)
2789 return -ENOMEM;
2790 range->start = start;
2791 range->len = len;
2792 list_add_tail(&range->list, head);
2793 return 0;
2794}
2795
f27451f2
FM
2796static int btrfs_fallocate_update_isize(struct inode *inode,
2797 const u64 end,
2798 const int mode)
2799{
2800 struct btrfs_trans_handle *trans;
2801 struct btrfs_root *root = BTRFS_I(inode)->root;
2802 int ret;
2803 int ret2;
2804
2805 if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode))
2806 return 0;
2807
2808 trans = btrfs_start_transaction(root, 1);
2809 if (IS_ERR(trans))
2810 return PTR_ERR(trans);
2811
2812 inode->i_ctime = current_time(inode);
2813 i_size_write(inode, end);
76aea537 2814 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
9a56fcd1 2815 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
f27451f2
FM
2816 ret2 = btrfs_end_transaction(trans);
2817
2818 return ret ? ret : ret2;
2819}
2820
81fdf638 2821enum {
f262fa8d
DS
2822 RANGE_BOUNDARY_WRITTEN_EXTENT,
2823 RANGE_BOUNDARY_PREALLOC_EXTENT,
2824 RANGE_BOUNDARY_HOLE,
81fdf638
FM
2825};
2826
948dfeb8 2827static int btrfs_zero_range_check_range_boundary(struct btrfs_inode *inode,
f27451f2
FM
2828 u64 offset)
2829{
ee8ba05c 2830 const u64 sectorsize = inode->root->fs_info->sectorsize;
f27451f2 2831 struct extent_map *em;
81fdf638 2832 int ret;
f27451f2
FM
2833
2834 offset = round_down(offset, sectorsize);
948dfeb8 2835 em = btrfs_get_extent(inode, NULL, 0, offset, sectorsize);
f27451f2
FM
2836 if (IS_ERR(em))
2837 return PTR_ERR(em);
2838
2839 if (em->block_start == EXTENT_MAP_HOLE)
81fdf638
FM
2840 ret = RANGE_BOUNDARY_HOLE;
2841 else if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2842 ret = RANGE_BOUNDARY_PREALLOC_EXTENT;
2843 else
2844 ret = RANGE_BOUNDARY_WRITTEN_EXTENT;
f27451f2
FM
2845
2846 free_extent_map(em);
2847 return ret;
2848}
2849
2850static int btrfs_zero_range(struct inode *inode,
2851 loff_t offset,
2852 loff_t len,
2853 const int mode)
2854{
2855 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2856 struct extent_map *em;
2857 struct extent_changeset *data_reserved = NULL;
2858 int ret;
2859 u64 alloc_hint = 0;
ee8ba05c 2860 const u64 sectorsize = fs_info->sectorsize;
f27451f2
FM
2861 u64 alloc_start = round_down(offset, sectorsize);
2862 u64 alloc_end = round_up(offset + len, sectorsize);
2863 u64 bytes_to_reserve = 0;
2864 bool space_reserved = false;
2865
39b07b5d
OS
2866 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start,
2867 alloc_end - alloc_start);
f27451f2
FM
2868 if (IS_ERR(em)) {
2869 ret = PTR_ERR(em);
2870 goto out;
2871 }
2872
2873 /*
2874 * Avoid hole punching and extent allocation for some cases. More cases
2875 * could be considered, but these are unlikely common and we keep things
2876 * as simple as possible for now. Also, intentionally, if the target
2877 * range contains one or more prealloc extents together with regular
2878 * extents and holes, we drop all the existing extents and allocate a
2879 * new prealloc extent, so that we get a larger contiguous disk extent.
2880 */
2881 if (em->start <= alloc_start &&
2882 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
2883 const u64 em_end = em->start + em->len;
2884
2885 if (em_end >= offset + len) {
2886 /*
2887 * The whole range is already a prealloc extent,
2888 * do nothing except updating the inode's i_size if
2889 * needed.
2890 */
2891 free_extent_map(em);
2892 ret = btrfs_fallocate_update_isize(inode, offset + len,
2893 mode);
2894 goto out;
2895 }
2896 /*
2897 * Part of the range is already a prealloc extent, so operate
2898 * only on the remaining part of the range.
2899 */
2900 alloc_start = em_end;
2901 ASSERT(IS_ALIGNED(alloc_start, sectorsize));
2902 len = offset + len - alloc_start;
2903 offset = alloc_start;
2904 alloc_hint = em->block_start + em->len;
2905 }
2906 free_extent_map(em);
2907
2908 if (BTRFS_BYTES_TO_BLKS(fs_info, offset) ==
2909 BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) {
39b07b5d
OS
2910 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start,
2911 sectorsize);
f27451f2
FM
2912 if (IS_ERR(em)) {
2913 ret = PTR_ERR(em);
2914 goto out;
2915 }
2916
2917 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
2918 free_extent_map(em);
2919 ret = btrfs_fallocate_update_isize(inode, offset + len,
2920 mode);
2921 goto out;
2922 }
2923 if (len < sectorsize && em->block_start != EXTENT_MAP_HOLE) {
2924 free_extent_map(em);
217f42eb
NB
2925 ret = btrfs_truncate_block(BTRFS_I(inode), offset, len,
2926 0);
f27451f2
FM
2927 if (!ret)
2928 ret = btrfs_fallocate_update_isize(inode,
2929 offset + len,
2930 mode);
2931 return ret;
2932 }
2933 free_extent_map(em);
2934 alloc_start = round_down(offset, sectorsize);
2935 alloc_end = alloc_start + sectorsize;
2936 goto reserve_space;
2937 }
2938
2939 alloc_start = round_up(offset, sectorsize);
2940 alloc_end = round_down(offset + len, sectorsize);
2941
2942 /*
2943 * For unaligned ranges, check the pages at the boundaries, they might
2944 * map to an extent, in which case we need to partially zero them, or
2945 * they might map to a hole, in which case we need our allocation range
2946 * to cover them.
2947 */
2948 if (!IS_ALIGNED(offset, sectorsize)) {
948dfeb8
NB
2949 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
2950 offset);
f27451f2
FM
2951 if (ret < 0)
2952 goto out;
81fdf638 2953 if (ret == RANGE_BOUNDARY_HOLE) {
f27451f2
FM
2954 alloc_start = round_down(offset, sectorsize);
2955 ret = 0;
81fdf638 2956 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
217f42eb 2957 ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0);
f27451f2
FM
2958 if (ret)
2959 goto out;
81fdf638
FM
2960 } else {
2961 ret = 0;
f27451f2
FM
2962 }
2963 }
2964
2965 if (!IS_ALIGNED(offset + len, sectorsize)) {
948dfeb8 2966 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
f27451f2
FM
2967 offset + len);
2968 if (ret < 0)
2969 goto out;
81fdf638 2970 if (ret == RANGE_BOUNDARY_HOLE) {
f27451f2
FM
2971 alloc_end = round_up(offset + len, sectorsize);
2972 ret = 0;
81fdf638 2973 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
217f42eb
NB
2974 ret = btrfs_truncate_block(BTRFS_I(inode), offset + len,
2975 0, 1);
f27451f2
FM
2976 if (ret)
2977 goto out;
81fdf638
FM
2978 } else {
2979 ret = 0;
f27451f2
FM
2980 }
2981 }
2982
2983reserve_space:
2984 if (alloc_start < alloc_end) {
2985 struct extent_state *cached_state = NULL;
2986 const u64 lockstart = alloc_start;
2987 const u64 lockend = alloc_end - 1;
2988
2989 bytes_to_reserve = alloc_end - alloc_start;
2990 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
2991 bytes_to_reserve);
2992 if (ret < 0)
2993 goto out;
2994 space_reserved = true;
55961c8a
FM
2995 btrfs_punch_hole_lock_range(inode, lockstart, lockend,
2996 &cached_state);
7661a3e0 2997 ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), &data_reserved,
a7f8b1c2 2998 alloc_start, bytes_to_reserve);
4f6a49de 2999 if (ret) {
570eb97b
JB
3000 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart,
3001 lockend, &cached_state);
a7f8b1c2 3002 goto out;
4f6a49de 3003 }
f27451f2
FM
3004 ret = btrfs_prealloc_file_range(inode, mode, alloc_start,
3005 alloc_end - alloc_start,
3006 i_blocksize(inode),
3007 offset + len, &alloc_hint);
570eb97b
JB
3008 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3009 &cached_state);
f27451f2 3010 /* btrfs_prealloc_file_range releases reserved space on error */
9f13ce74 3011 if (ret) {
f27451f2 3012 space_reserved = false;
9f13ce74
FM
3013 goto out;
3014 }
f27451f2 3015 }
9f13ce74 3016 ret = btrfs_fallocate_update_isize(inode, offset + len, mode);
f27451f2
FM
3017 out:
3018 if (ret && space_reserved)
25ce28ca 3019 btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved,
f27451f2
FM
3020 alloc_start, bytes_to_reserve);
3021 extent_changeset_free(data_reserved);
3022
3023 return ret;
3024}
3025
2fe17c10
CH
3026static long btrfs_fallocate(struct file *file, int mode,
3027 loff_t offset, loff_t len)
3028{
496ad9aa 3029 struct inode *inode = file_inode(file);
2fe17c10 3030 struct extent_state *cached_state = NULL;
364ecf36 3031 struct extent_changeset *data_reserved = NULL;
14524a84
QW
3032 struct falloc_range *range;
3033 struct falloc_range *tmp;
3034 struct list_head reserve_list;
2fe17c10
CH
3035 u64 cur_offset;
3036 u64 last_byte;
3037 u64 alloc_start;
3038 u64 alloc_end;
3039 u64 alloc_hint = 0;
3040 u64 locked_end;
14524a84 3041 u64 actual_end = 0;
47e1d1c7
FM
3042 u64 data_space_needed = 0;
3043 u64 data_space_reserved = 0;
3044 u64 qgroup_reserved = 0;
2fe17c10 3045 struct extent_map *em;
ee8ba05c 3046 int blocksize = BTRFS_I(inode)->root->fs_info->sectorsize;
2fe17c10
CH
3047 int ret;
3048
f1569c4c
NA
3049 /* Do not allow fallocate in ZONED mode */
3050 if (btrfs_is_zoned(btrfs_sb(inode->i_sb)))
3051 return -EOPNOTSUPP;
3052
797f4277
MX
3053 alloc_start = round_down(offset, blocksize);
3054 alloc_end = round_up(offset + len, blocksize);
18513091 3055 cur_offset = alloc_start;
2fe17c10 3056
2aaa6655 3057 /* Make sure we aren't being give some crap mode */
f27451f2
FM
3058 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
3059 FALLOC_FL_ZERO_RANGE))
2fe17c10
CH
3060 return -EOPNOTSUPP;
3061
2aaa6655 3062 if (mode & FALLOC_FL_PUNCH_HOLE)
05fd9564 3063 return btrfs_punch_hole(file, offset, len);
2aaa6655 3064
29b6352b 3065 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
2a162ce9
DI
3066
3067 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
3068 ret = inode_newsize_ok(inode, offset + len);
3069 if (ret)
3070 goto out;
3071 }
2fe17c10 3072
05fd9564
DW
3073 ret = file_modified(file);
3074 if (ret)
3075 goto out;
3076
14524a84
QW
3077 /*
3078 * TODO: Move these two operations after we have checked
3079 * accurate reserved space, or fallocate can still fail but
3080 * with page truncated or size expanded.
3081 *
3082 * But that's a minor problem and won't do much harm BTW.
3083 */
2fe17c10 3084 if (alloc_start > inode->i_size) {
b06359a3 3085 ret = btrfs_cont_expand(BTRFS_I(inode), i_size_read(inode),
a41ad394 3086 alloc_start);
2fe17c10
CH
3087 if (ret)
3088 goto out;
0f6925fa 3089 } else if (offset + len > inode->i_size) {
a71754fc
JB
3090 /*
3091 * If we are fallocating from the end of the file onward we
9703fefe
CR
3092 * need to zero out the end of the block if i_size lands in the
3093 * middle of a block.
a71754fc 3094 */
217f42eb 3095 ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size, 0, 0);
a71754fc
JB
3096 if (ret)
3097 goto out;
2fe17c10
CH
3098 }
3099
a71754fc 3100 /*
ffa8fc60
FM
3101 * We have locked the inode at the VFS level (in exclusive mode) and we
3102 * have locked the i_mmap_lock lock (in exclusive mode). Now before
3103 * locking the file range, flush all dealloc in the range and wait for
3104 * all ordered extents in the range to complete. After this we can lock
3105 * the file range and, due to the previous locking we did, we know there
3106 * can't be more delalloc or ordered extents in the range.
a71754fc 3107 */
0ef8b726
JB
3108 ret = btrfs_wait_ordered_range(inode, alloc_start,
3109 alloc_end - alloc_start);
3110 if (ret)
3111 goto out;
a71754fc 3112
f27451f2
FM
3113 if (mode & FALLOC_FL_ZERO_RANGE) {
3114 ret = btrfs_zero_range(inode, offset, len, mode);
e5d4d75b 3115 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
f27451f2
FM
3116 return ret;
3117 }
3118
2fe17c10 3119 locked_end = alloc_end - 1;
570eb97b
JB
3120 lock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3121 &cached_state);
2fe17c10 3122
63c34cb4
FM
3123 btrfs_assert_inode_range_clean(BTRFS_I(inode), alloc_start, locked_end);
3124
14524a84
QW
3125 /* First, check if we exceed the qgroup limit */
3126 INIT_LIST_HEAD(&reserve_list);
6b7d6e93 3127 while (cur_offset < alloc_end) {
fc4f21b1 3128 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
39b07b5d 3129 alloc_end - cur_offset);
9986277e
DC
3130 if (IS_ERR(em)) {
3131 ret = PTR_ERR(em);
79787eaa
JM
3132 break;
3133 }
2fe17c10 3134 last_byte = min(extent_map_end(em), alloc_end);
f1e490a7 3135 actual_end = min_t(u64, extent_map_end(em), offset + len);
797f4277 3136 last_byte = ALIGN(last_byte, blocksize);
2fe17c10
CH
3137 if (em->block_start == EXTENT_MAP_HOLE ||
3138 (cur_offset >= inode->i_size &&
3139 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
47e1d1c7
FM
3140 const u64 range_len = last_byte - cur_offset;
3141
3142 ret = add_falloc_range(&reserve_list, cur_offset, range_len);
14524a84
QW
3143 if (ret < 0) {
3144 free_extent_map(em);
3145 break;
3d850dd4 3146 }
7661a3e0 3147 ret = btrfs_qgroup_reserve_data(BTRFS_I(inode),
47e1d1c7 3148 &data_reserved, cur_offset, range_len);
be2d253c
FM
3149 if (ret < 0) {
3150 free_extent_map(em);
14524a84 3151 break;
be2d253c 3152 }
47e1d1c7
FM
3153 qgroup_reserved += range_len;
3154 data_space_needed += range_len;
2fe17c10
CH
3155 }
3156 free_extent_map(em);
2fe17c10 3157 cur_offset = last_byte;
14524a84
QW
3158 }
3159
47e1d1c7
FM
3160 if (!ret && data_space_needed > 0) {
3161 /*
3162 * We are safe to reserve space here as we can't have delalloc
3163 * in the range, see above.
3164 */
3165 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3166 data_space_needed);
3167 if (!ret)
3168 data_space_reserved = data_space_needed;
3169 }
3170
14524a84
QW
3171 /*
3172 * If ret is still 0, means we're OK to fallocate.
3173 * Or just cleanup the list and exit.
3174 */
3175 list_for_each_entry_safe(range, tmp, &reserve_list, list) {
47e1d1c7 3176 if (!ret) {
14524a84
QW
3177 ret = btrfs_prealloc_file_range(inode, mode,
3178 range->start,
93407472 3179 range->len, i_blocksize(inode),
14524a84 3180 offset + len, &alloc_hint);
47e1d1c7
FM
3181 /*
3182 * btrfs_prealloc_file_range() releases space even
3183 * if it returns an error.
3184 */
3185 data_space_reserved -= range->len;
3186 qgroup_reserved -= range->len;
3187 } else if (data_space_reserved > 0) {
25ce28ca 3188 btrfs_free_reserved_data_space(BTRFS_I(inode),
47e1d1c7
FM
3189 data_reserved, range->start,
3190 range->len);
3191 data_space_reserved -= range->len;
3192 qgroup_reserved -= range->len;
3193 } else if (qgroup_reserved > 0) {
3194 btrfs_qgroup_free_data(BTRFS_I(inode), data_reserved,
3195 range->start, range->len);
3196 qgroup_reserved -= range->len;
3197 }
14524a84
QW
3198 list_del(&range->list);
3199 kfree(range);
3200 }
3201 if (ret < 0)
3202 goto out_unlock;
3203
f27451f2
FM
3204 /*
3205 * We didn't need to allocate any more space, but we still extended the
3206 * size of the file so we need to update i_size and the inode item.
3207 */
3208 ret = btrfs_fallocate_update_isize(inode, actual_end, mode);
14524a84 3209out_unlock:
570eb97b
JB
3210 unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3211 &cached_state);
2fe17c10 3212out:
e5d4d75b 3213 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
364ecf36 3214 extent_changeset_free(data_reserved);
2fe17c10
CH
3215 return ret;
3216}
3217
b6e83356 3218/*
ac3c0d36
FM
3219 * Helper for btrfs_find_delalloc_in_range(). Find a subrange in a given range
3220 * that has unflushed and/or flushing delalloc. There might be other adjacent
3221 * subranges after the one it found, so btrfs_find_delalloc_in_range() keeps
3222 * looping while it gets adjacent subranges, and merging them together.
b6e83356
FM
3223 */
3224static bool find_delalloc_subrange(struct btrfs_inode *inode, u64 start, u64 end,
b3e744fe 3225 struct extent_state **cached_state,
af979fd6 3226 bool *search_io_tree,
b6e83356
FM
3227 u64 *delalloc_start_ret, u64 *delalloc_end_ret)
3228{
40daf3e0 3229 u64 len = end + 1 - start;
8ddc8274
FM
3230 u64 delalloc_len = 0;
3231 struct btrfs_ordered_extent *oe;
3232 u64 oe_start;
3233 u64 oe_end;
b6e83356
FM
3234
3235 /*
3236 * Search the io tree first for EXTENT_DELALLOC. If we find any, it
3237 * means we have delalloc (dirty pages) for which writeback has not
3238 * started yet.
3239 */
8ddc8274
FM
3240 if (*search_io_tree) {
3241 spin_lock(&inode->lock);
3242 if (inode->delalloc_bytes > 0) {
3243 spin_unlock(&inode->lock);
3244 *delalloc_start_ret = start;
3245 delalloc_len = count_range_bits(&inode->io_tree,
3246 delalloc_start_ret, end,
8c6e53a7 3247 len, EXTENT_DELALLOC, 1,
b3e744fe 3248 cached_state);
8ddc8274
FM
3249 } else {
3250 spin_unlock(&inode->lock);
3251 }
a2853ffc
FM
3252 }
3253
40daf3e0
FM
3254 if (delalloc_len > 0) {
3255 /*
3256 * If delalloc was found then *delalloc_start_ret has a sector size
3257 * aligned value (rounded down).
3258 */
b6e83356
FM
3259 *delalloc_end_ret = *delalloc_start_ret + delalloc_len - 1;
3260
40daf3e0
FM
3261 if (*delalloc_start_ret == start) {
3262 /* Delalloc for the whole range, nothing more to do. */
3263 if (*delalloc_end_ret == end)
3264 return true;
8ddc8274 3265 /* Else trim our search range for ordered extents. */
40daf3e0
FM
3266 start = *delalloc_end_ret + 1;
3267 len = end + 1 - start;
3268 }
af979fd6
FM
3269 } else {
3270 /* No delalloc, future calls don't need to search again. */
3271 *search_io_tree = false;
40daf3e0
FM
3272 }
3273
a2853ffc 3274 /*
8ddc8274
FM
3275 * Now also check if there's any ordered extent in the range.
3276 * We do this because:
b6e83356
FM
3277 *
3278 * 1) When delalloc is flushed, the file range is locked, we clear the
8ddc8274
FM
3279 * EXTENT_DELALLOC bit from the io tree and create an extent map and
3280 * an ordered extent for the write. So we might just have been called
3281 * after delalloc is flushed and before the ordered extent completes
3282 * and inserts the new file extent item in the subvolume's btree;
b6e83356 3283 *
8ddc8274 3284 * 2) We may have an ordered extent created by flushing delalloc for a
b6e83356
FM
3285 * subrange that starts before the subrange we found marked with
3286 * EXTENT_DELALLOC in the io tree.
8ddc8274
FM
3287 *
3288 * We could also use the extent map tree to find such delalloc that is
3289 * being flushed, but using the ordered extents tree is more efficient
3290 * because it's usually much smaller as ordered extents are removed from
3291 * the tree once they complete. With the extent maps, we mau have them
3292 * in the extent map tree for a very long time, and they were either
3293 * created by previous writes or loaded by read operations.
b6e83356 3294 */
8ddc8274
FM
3295 oe = btrfs_lookup_first_ordered_range(inode, start, len);
3296 if (!oe)
d47704bd 3297 return (delalloc_len > 0);
d47704bd 3298
8ddc8274
FM
3299 /* The ordered extent may span beyond our search range. */
3300 oe_start = max(oe->file_offset, start);
3301 oe_end = min(oe->file_offset + oe->num_bytes - 1, end);
b6e83356 3302
8ddc8274 3303 btrfs_put_ordered_extent(oe);
b6e83356 3304
8ddc8274 3305 /* Don't have unflushed delalloc, return the ordered extent range. */
b6e83356 3306 if (delalloc_len == 0) {
8ddc8274
FM
3307 *delalloc_start_ret = oe_start;
3308 *delalloc_end_ret = oe_end;
b6e83356
FM
3309 return true;
3310 }
3311
3312 /*
8ddc8274
FM
3313 * We have both unflushed delalloc (io_tree) and an ordered extent.
3314 * If the ranges are adjacent returned a combined range, otherwise
3315 * return the leftmost range.
b6e83356 3316 */
8ddc8274
FM
3317 if (oe_start < *delalloc_start_ret) {
3318 if (oe_end < *delalloc_start_ret)
3319 *delalloc_end_ret = oe_end;
3320 *delalloc_start_ret = oe_start;
3321 } else if (*delalloc_end_ret + 1 == oe_start) {
3322 *delalloc_end_ret = oe_end;
b6e83356
FM
3323 }
3324
b6e83356
FM
3325 return true;
3326}
3327
3328/*
3329 * Check if there's delalloc in a given range.
3330 *
3331 * @inode: The inode.
3332 * @start: The start offset of the range. It does not need to be
3333 * sector size aligned.
3334 * @end: The end offset (inclusive value) of the search range.
3335 * It does not need to be sector size aligned.
b3e744fe
FM
3336 * @cached_state: Extent state record used for speeding up delalloc
3337 * searches in the inode's io_tree. Can be NULL.
b6e83356
FM
3338 * @delalloc_start_ret: Output argument, set to the start offset of the
3339 * subrange found with delalloc (may not be sector size
3340 * aligned).
3341 * @delalloc_end_ret: Output argument, set to he end offset (inclusive value)
3342 * of the subrange found with delalloc.
3343 *
3344 * Returns true if a subrange with delalloc is found within the given range, and
3345 * if so it sets @delalloc_start_ret and @delalloc_end_ret with the start and
3346 * end offsets of the subrange.
3347 */
ac3c0d36 3348bool btrfs_find_delalloc_in_range(struct btrfs_inode *inode, u64 start, u64 end,
b3e744fe 3349 struct extent_state **cached_state,
ac3c0d36 3350 u64 *delalloc_start_ret, u64 *delalloc_end_ret)
b6e83356
FM
3351{
3352 u64 cur_offset = round_down(start, inode->root->fs_info->sectorsize);
3353 u64 prev_delalloc_end = 0;
af979fd6 3354 bool search_io_tree = true;
b6e83356
FM
3355 bool ret = false;
3356
2f2e84ca 3357 while (cur_offset <= end) {
b6e83356
FM
3358 u64 delalloc_start;
3359 u64 delalloc_end;
3360 bool delalloc;
3361
3362 delalloc = find_delalloc_subrange(inode, cur_offset, end,
b3e744fe 3363 cached_state, &search_io_tree,
b6e83356
FM
3364 &delalloc_start,
3365 &delalloc_end);
3366 if (!delalloc)
3367 break;
3368
3369 if (prev_delalloc_end == 0) {
3370 /* First subrange found. */
3371 *delalloc_start_ret = max(delalloc_start, start);
3372 *delalloc_end_ret = delalloc_end;
3373 ret = true;
3374 } else if (delalloc_start == prev_delalloc_end + 1) {
3375 /* Subrange adjacent to the previous one, merge them. */
3376 *delalloc_end_ret = delalloc_end;
3377 } else {
3378 /* Subrange not adjacent to the previous one, exit. */
3379 break;
3380 }
3381
3382 prev_delalloc_end = delalloc_end;
3383 cur_offset = delalloc_end + 1;
3384 cond_resched();
3385 }
3386
3387 return ret;
3388}
3389
3390/*
3391 * Check if there's a hole or delalloc range in a range representing a hole (or
3392 * prealloc extent) found in the inode's subvolume btree.
3393 *
3394 * @inode: The inode.
3395 * @whence: Seek mode (SEEK_DATA or SEEK_HOLE).
3396 * @start: Start offset of the hole region. It does not need to be sector
3397 * size aligned.
3398 * @end: End offset (inclusive value) of the hole region. It does not
3399 * need to be sector size aligned.
3400 * @start_ret: Return parameter, used to set the start of the subrange in the
3401 * hole that matches the search criteria (seek mode), if such
3402 * subrange is found (return value of the function is true).
3403 * The value returned here may not be sector size aligned.
3404 *
3405 * Returns true if a subrange matching the given seek mode is found, and if one
3406 * is found, it updates @start_ret with the start of the subrange.
3407 */
3408static bool find_desired_extent_in_hole(struct btrfs_inode *inode, int whence,
3c32c721 3409 struct extent_state **cached_state,
b6e83356
FM
3410 u64 start, u64 end, u64 *start_ret)
3411{
3412 u64 delalloc_start;
3413 u64 delalloc_end;
3414 bool delalloc;
3415
3c32c721 3416 delalloc = btrfs_find_delalloc_in_range(inode, start, end, cached_state,
ac3c0d36 3417 &delalloc_start, &delalloc_end);
b6e83356
FM
3418 if (delalloc && whence == SEEK_DATA) {
3419 *start_ret = delalloc_start;
3420 return true;
3421 }
3422
3423 if (delalloc && whence == SEEK_HOLE) {
3424 /*
3425 * We found delalloc but it starts after out start offset. So we
3426 * have a hole between our start offset and the delalloc start.
3427 */
3428 if (start < delalloc_start) {
3429 *start_ret = start;
3430 return true;
3431 }
3432 /*
3433 * Delalloc range starts at our start offset.
3434 * If the delalloc range's length is smaller than our range,
3435 * then it means we have a hole that starts where the delalloc
3436 * subrange ends.
3437 */
3438 if (delalloc_end < end) {
3439 *start_ret = delalloc_end + 1;
3440 return true;
3441 }
3442
3443 /* There's delalloc for the whole range. */
3444 return false;
3445 }
3446
3447 if (!delalloc && whence == SEEK_HOLE) {
3448 *start_ret = start;
3449 return true;
3450 }
3451
3452 /*
3453 * No delalloc in the range and we are seeking for data. The caller has
3454 * to iterate to the next extent item in the subvolume btree.
3455 */
3456 return false;
3457}
3458
3c32c721 3459static loff_t find_desired_extent(struct file *file, loff_t offset, int whence)
b2675157 3460{
3c32c721
FM
3461 struct btrfs_inode *inode = BTRFS_I(file->f_mapping->host);
3462 struct btrfs_file_private *private = file->private_data;
cca5de97 3463 struct btrfs_fs_info *fs_info = inode->root->fs_info;
b2675157 3464 struct extent_state *cached_state = NULL;
3c32c721 3465 struct extent_state **delalloc_cached_state;
b6e83356
FM
3466 const loff_t i_size = i_size_read(&inode->vfs_inode);
3467 const u64 ino = btrfs_ino(inode);
3468 struct btrfs_root *root = inode->root;
3469 struct btrfs_path *path;
3470 struct btrfs_key key;
3471 u64 last_extent_end;
4d1a40c6
LB
3472 u64 lockstart;
3473 u64 lockend;
3474 u64 start;
b6e83356
FM
3475 int ret;
3476 bool found = false;
b2675157 3477
bc80230e 3478 if (i_size == 0 || offset >= i_size)
4d1a40c6
LB
3479 return -ENXIO;
3480
b6e83356
FM
3481 /*
3482 * Quick path. If the inode has no prealloc extents and its number of
3483 * bytes used matches its i_size, then it can not have holes.
3484 */
3485 if (whence == SEEK_HOLE &&
3486 !(inode->flags & BTRFS_INODE_PREALLOC) &&
3487 inode_get_bytes(&inode->vfs_inode) == i_size)
3488 return i_size;
3489
3c32c721
FM
3490 if (!private) {
3491 private = kzalloc(sizeof(*private), GFP_KERNEL);
3492 /*
3493 * No worries if memory allocation failed.
3494 * The private structure is used only for speeding up multiple
3495 * lseek SEEK_HOLE/DATA calls to a file when there's delalloc,
3496 * so everything will still be correct.
3497 */
3498 file->private_data = private;
3499 }
3500
3501 if (private)
3502 delalloc_cached_state = &private->llseek_cached_state;
3503 else
3504 delalloc_cached_state = NULL;
3505
4d1a40c6 3506 /*
bc80230e 3507 * offset can be negative, in this case we start finding DATA/HOLE from
4d1a40c6
LB
3508 * the very start of the file.
3509 */
bc80230e 3510 start = max_t(loff_t, 0, offset);
4d1a40c6 3511
0b246afa 3512 lockstart = round_down(start, fs_info->sectorsize);
d79b7c26 3513 lockend = round_up(i_size, fs_info->sectorsize);
b2675157 3514 if (lockend <= lockstart)
0b246afa 3515 lockend = lockstart + fs_info->sectorsize;
1214b53f 3516 lockend--;
b6e83356
FM
3517
3518 path = btrfs_alloc_path();
3519 if (!path)
3520 return -ENOMEM;
3521 path->reada = READA_FORWARD;
3522
3523 key.objectid = ino;
3524 key.type = BTRFS_EXTENT_DATA_KEY;
3525 key.offset = start;
3526
3527 last_extent_end = lockstart;
b2675157 3528
570eb97b 3529 lock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
b2675157 3530
b6e83356
FM
3531 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3532 if (ret < 0) {
3533 goto out;
3534 } else if (ret > 0 && path->slots[0] > 0) {
3535 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
3536 if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY)
3537 path->slots[0]--;
3538 }
3539
d79b7c26 3540 while (start < i_size) {
b6e83356
FM
3541 struct extent_buffer *leaf = path->nodes[0];
3542 struct btrfs_file_extent_item *extent;
3543 u64 extent_end;
3544
3545 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3546 ret = btrfs_next_leaf(root, path);
3547 if (ret < 0)
3548 goto out;
3549 else if (ret > 0)
3550 break;
3551
3552 leaf = path->nodes[0];
b2675157
JB
3553 }
3554
b6e83356
FM
3555 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3556 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
7f4ca37c 3557 break;
b2675157 3558
b6e83356
FM
3559 extent_end = btrfs_file_extent_end(path);
3560
3561 /*
3562 * In the first iteration we may have a slot that points to an
3563 * extent that ends before our start offset, so skip it.
3564 */
3565 if (extent_end <= start) {
3566 path->slots[0]++;
3567 continue;
3568 }
3569
3570 /* We have an implicit hole, NO_HOLES feature is likely set. */
3571 if (last_extent_end < key.offset) {
3572 u64 search_start = last_extent_end;
3573 u64 found_start;
3574
3575 /*
3576 * First iteration, @start matches @offset and it's
3577 * within the hole.
3578 */
3579 if (start == offset)
3580 search_start = offset;
3581
3582 found = find_desired_extent_in_hole(inode, whence,
3c32c721 3583 delalloc_cached_state,
b6e83356
FM
3584 search_start,
3585 key.offset - 1,
3586 &found_start);
3587 if (found) {
3588 start = found_start;
3589 break;
3590 }
3591 /*
3592 * Didn't find data or a hole (due to delalloc) in the
3593 * implicit hole range, so need to analyze the extent.
3594 */
3595 }
3596
3597 extent = btrfs_item_ptr(leaf, path->slots[0],
3598 struct btrfs_file_extent_item);
3599
3600 if (btrfs_file_extent_disk_bytenr(leaf, extent) == 0 ||
3601 btrfs_file_extent_type(leaf, extent) ==
3602 BTRFS_FILE_EXTENT_PREALLOC) {
3603 /*
3604 * Explicit hole or prealloc extent, search for delalloc.
3605 * A prealloc extent is treated like a hole.
3606 */
3607 u64 search_start = key.offset;
3608 u64 found_start;
3609
3610 /*
3611 * First iteration, @start matches @offset and it's
3612 * within the hole.
3613 */
3614 if (start == offset)
3615 search_start = offset;
3616
3617 found = find_desired_extent_in_hole(inode, whence,
3c32c721 3618 delalloc_cached_state,
b6e83356
FM
3619 search_start,
3620 extent_end - 1,
3621 &found_start);
3622 if (found) {
3623 start = found_start;
3624 break;
3625 }
3626 /*
3627 * Didn't find data or a hole (due to delalloc) in the
3628 * implicit hole range, so need to analyze the next
3629 * extent item.
3630 */
3631 } else {
3632 /*
3633 * Found a regular or inline extent.
3634 * If we are seeking for data, adjust the start offset
3635 * and stop, we're done.
3636 */
3637 if (whence == SEEK_DATA) {
3638 start = max_t(u64, key.offset, offset);
3639 found = true;
3640 break;
3641 }
3642 /*
3643 * Else, we are seeking for a hole, check the next file
3644 * extent item.
3645 */
3646 }
3647
3648 start = extent_end;
3649 last_extent_end = extent_end;
3650 path->slots[0]++;
aed0ca18
FM
3651 if (fatal_signal_pending(current)) {
3652 ret = -EINTR;
b6e83356 3653 goto out;
aed0ca18 3654 }
b2675157
JB
3655 cond_resched();
3656 }
b6e83356
FM
3657
3658 /* We have an implicit hole from the last extent found up to i_size. */
3659 if (!found && start < i_size) {
3c32c721
FM
3660 found = find_desired_extent_in_hole(inode, whence,
3661 delalloc_cached_state, start,
b6e83356
FM
3662 i_size - 1, &start);
3663 if (!found)
3664 start = i_size;
3665 }
3666
3667out:
570eb97b 3668 unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
b6e83356
FM
3669 btrfs_free_path(path);
3670
3671 if (ret < 0)
3672 return ret;
3673
3674 if (whence == SEEK_DATA && start >= i_size)
3675 return -ENXIO;
bc80230e 3676
b6e83356 3677 return min_t(loff_t, start, i_size);
b2675157
JB
3678}
3679
965c8e59 3680static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
b2675157
JB
3681{
3682 struct inode *inode = file->f_mapping->host;
b2675157 3683
965c8e59 3684 switch (whence) {
2034f3b4
NB
3685 default:
3686 return generic_file_llseek(file, offset, whence);
b2675157
JB
3687 case SEEK_DATA:
3688 case SEEK_HOLE:
29b6352b 3689 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
3c32c721 3690 offset = find_desired_extent(file, offset, whence);
e5d4d75b 3691 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
bc80230e 3692 break;
b2675157
JB
3693 }
3694
bc80230e
NB
3695 if (offset < 0)
3696 return offset;
3697
2034f3b4 3698 return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
b2675157
JB
3699}
3700
edf064e7
GR
3701static int btrfs_file_open(struct inode *inode, struct file *filp)
3702{
14605409
BB
3703 int ret;
3704
926078b2 3705 filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC | FMODE_BUF_WASYNC;
14605409
BB
3706
3707 ret = fsverity_file_open(inode, filp);
3708 if (ret)
3709 return ret;
edf064e7
GR
3710 return generic_file_open(inode, filp);
3711}
3712
4e4cabec
GR
3713static int check_direct_read(struct btrfs_fs_info *fs_info,
3714 const struct iov_iter *iter, loff_t offset)
3715{
3716 int ret;
3717 int i, seg;
3718
3719 ret = check_direct_IO(fs_info, iter, offset);
3720 if (ret < 0)
3721 return ret;
3722
3723 if (!iter_is_iovec(iter))
3724 return 0;
3725
3726 for (seg = 0; seg < iter->nr_segs; seg++)
3727 for (i = seg + 1; i < iter->nr_segs; i++)
3728 if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
3729 return -EINVAL;
3730 return 0;
3731}
3732
3733static ssize_t btrfs_direct_read(struct kiocb *iocb, struct iov_iter *to)
3734{
3735 struct inode *inode = file_inode(iocb->ki_filp);
51bd9563
FM
3736 size_t prev_left = 0;
3737 ssize_t read = 0;
4e4cabec
GR
3738 ssize_t ret;
3739
14605409
BB
3740 if (fsverity_active(inode))
3741 return 0;
3742
4e4cabec
GR
3743 if (check_direct_read(btrfs_sb(inode->i_sb), to, iocb->ki_pos))
3744 return 0;
3745
29b6352b 3746 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
51bd9563
FM
3747again:
3748 /*
3749 * This is similar to what we do for direct IO writes, see the comment
3750 * at btrfs_direct_write(), but we also disable page faults in addition
3751 * to disabling them only at the iov_iter level. This is because when
3752 * reading from a hole or prealloc extent, iomap calls iov_iter_zero(),
3753 * which can still trigger page fault ins despite having set ->nofault
3754 * to true of our 'to' iov_iter.
3755 *
3756 * The difference to direct IO writes is that we deadlock when trying
3757 * to lock the extent range in the inode's tree during he page reads
3758 * triggered by the fault in (while for writes it is due to waiting for
3759 * our own ordered extent). This is because for direct IO reads,
3760 * btrfs_dio_iomap_begin() returns with the extent range locked, which
3761 * is only unlocked in the endio callback (end_bio_extent_readpage()).
3762 */
3763 pagefault_disable();
3764 to->nofault = true;
8184620a 3765 ret = btrfs_dio_read(iocb, to, read);
51bd9563
FM
3766 to->nofault = false;
3767 pagefault_enable();
3768
3769 /* No increment (+=) because iomap returns a cumulative value. */
3770 if (ret > 0)
3771 read = ret;
3772
3773 if (iov_iter_count(to) > 0 && (ret == -EFAULT || ret > 0)) {
3774 const size_t left = iov_iter_count(to);
3775
3776 if (left == prev_left) {
3777 /*
3778 * We didn't make any progress since the last attempt,
3779 * fallback to a buffered read for the remainder of the
3780 * range. This is just to avoid any possibility of looping
3781 * for too long.
3782 */
3783 ret = read;
3784 } else {
3785 /*
3786 * We made some progress since the last retry or this is
3787 * the first time we are retrying. Fault in as many pages
3788 * as possible and retry.
3789 */
3790 fault_in_iov_iter_writeable(to, left);
3791 prev_left = left;
3792 goto again;
3793 }
3794 }
e5d4d75b 3795 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
51bd9563 3796 return ret < 0 ? ret : read;
4e4cabec
GR
3797}
3798
f85781fb
GR
3799static ssize_t btrfs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
3800{
3801 ssize_t ret = 0;
3802
3803 if (iocb->ki_flags & IOCB_DIRECT) {
4e4cabec 3804 ret = btrfs_direct_read(iocb, to);
0425e7ba
JT
3805 if (ret < 0 || !iov_iter_count(to) ||
3806 iocb->ki_pos >= i_size_read(file_inode(iocb->ki_filp)))
f85781fb
GR
3807 return ret;
3808 }
3809
87fa0f3e 3810 return filemap_read(iocb, to, ret);
f85781fb
GR
3811}
3812
828c0950 3813const struct file_operations btrfs_file_operations = {
b2675157 3814 .llseek = btrfs_file_llseek,
f85781fb 3815 .read_iter = btrfs_file_read_iter,
e9906a98 3816 .splice_read = generic_file_splice_read,
b30ac0fc 3817 .write_iter = btrfs_file_write_iter,
d7776591 3818 .splice_write = iter_file_splice_write,
9ebefb18 3819 .mmap = btrfs_file_mmap,
edf064e7 3820 .open = btrfs_file_open,
e1b81e67 3821 .release = btrfs_release_file,
b0c58223 3822 .get_unmapped_area = thp_get_unmapped_area,
39279cc3 3823 .fsync = btrfs_sync_file,
2fe17c10 3824 .fallocate = btrfs_fallocate,
34287aa3 3825 .unlocked_ioctl = btrfs_ioctl,
39279cc3 3826#ifdef CONFIG_COMPAT
4c63c245 3827 .compat_ioctl = btrfs_compat_ioctl,
39279cc3 3828#endif
2e5dfc99 3829 .remap_file_range = btrfs_remap_file_range,
39279cc3 3830};
9247f317 3831
728404da
FM
3832int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
3833{
3834 int ret;
3835
3836 /*
3837 * So with compression we will find and lock a dirty page and clear the
3838 * first one as dirty, setup an async extent, and immediately return
3839 * with the entire range locked but with nobody actually marked with
3840 * writeback. So we can't just filemap_write_and_wait_range() and
3841 * expect it to work since it will just kick off a thread to do the
3842 * actual work. So we need to call filemap_fdatawrite_range _again_
3843 * since it will wait on the page lock, which won't be unlocked until
3844 * after the pages have been marked as writeback and so we're good to go
3845 * from there. We have to do this otherwise we'll miss the ordered
3846 * extents and that results in badness. Please Josef, do not think you
3847 * know better and pull this out at some point in the future, it is
3848 * right and you are wrong.
3849 */
3850 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3851 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
3852 &BTRFS_I(inode)->runtime_flags))
3853 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3854
3855 return ret;
3856}
This page took 1.704668 seconds and 4 git commands to generate.