]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * linux/mm/slab.c | |
3 | * Written by Mark Hemment, 1996/97. | |
4 | * ([email protected]) | |
5 | * | |
6 | * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli | |
7 | * | |
8 | * Major cleanup, different bufctl logic, per-cpu arrays | |
9 | * (c) 2000 Manfred Spraul | |
10 | * | |
11 | * Cleanup, make the head arrays unconditional, preparation for NUMA | |
12 | * (c) 2002 Manfred Spraul | |
13 | * | |
14 | * An implementation of the Slab Allocator as described in outline in; | |
15 | * UNIX Internals: The New Frontiers by Uresh Vahalia | |
16 | * Pub: Prentice Hall ISBN 0-13-101908-2 | |
17 | * or with a little more detail in; | |
18 | * The Slab Allocator: An Object-Caching Kernel Memory Allocator | |
19 | * Jeff Bonwick (Sun Microsystems). | |
20 | * Presented at: USENIX Summer 1994 Technical Conference | |
21 | * | |
22 | * The memory is organized in caches, one cache for each object type. | |
23 | * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct) | |
24 | * Each cache consists out of many slabs (they are small (usually one | |
25 | * page long) and always contiguous), and each slab contains multiple | |
26 | * initialized objects. | |
27 | * | |
28 | * This means, that your constructor is used only for newly allocated | |
183ff22b | 29 | * slabs and you must pass objects with the same initializations to |
1da177e4 LT |
30 | * kmem_cache_free. |
31 | * | |
32 | * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM, | |
33 | * normal). If you need a special memory type, then must create a new | |
34 | * cache for that memory type. | |
35 | * | |
36 | * In order to reduce fragmentation, the slabs are sorted in 3 groups: | |
37 | * full slabs with 0 free objects | |
38 | * partial slabs | |
39 | * empty slabs with no allocated objects | |
40 | * | |
41 | * If partial slabs exist, then new allocations come from these slabs, | |
42 | * otherwise from empty slabs or new slabs are allocated. | |
43 | * | |
44 | * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache | |
45 | * during kmem_cache_destroy(). The caller must prevent concurrent allocs. | |
46 | * | |
47 | * Each cache has a short per-cpu head array, most allocs | |
48 | * and frees go into that array, and if that array overflows, then 1/2 | |
49 | * of the entries in the array are given back into the global cache. | |
50 | * The head array is strictly LIFO and should improve the cache hit rates. | |
51 | * On SMP, it additionally reduces the spinlock operations. | |
52 | * | |
a737b3e2 | 53 | * The c_cpuarray may not be read with enabled local interrupts - |
1da177e4 LT |
54 | * it's changed with a smp_call_function(). |
55 | * | |
56 | * SMP synchronization: | |
57 | * constructors and destructors are called without any locking. | |
343e0d7a | 58 | * Several members in struct kmem_cache and struct slab never change, they |
1da177e4 LT |
59 | * are accessed without any locking. |
60 | * The per-cpu arrays are never accessed from the wrong cpu, no locking, | |
61 | * and local interrupts are disabled so slab code is preempt-safe. | |
62 | * The non-constant members are protected with a per-cache irq spinlock. | |
63 | * | |
64 | * Many thanks to Mark Hemment, who wrote another per-cpu slab patch | |
65 | * in 2000 - many ideas in the current implementation are derived from | |
66 | * his patch. | |
67 | * | |
68 | * Further notes from the original documentation: | |
69 | * | |
70 | * 11 April '97. Started multi-threading - markhe | |
18004c5d | 71 | * The global cache-chain is protected by the mutex 'slab_mutex'. |
1da177e4 LT |
72 | * The sem is only needed when accessing/extending the cache-chain, which |
73 | * can never happen inside an interrupt (kmem_cache_create(), | |
74 | * kmem_cache_shrink() and kmem_cache_reap()). | |
75 | * | |
76 | * At present, each engine can be growing a cache. This should be blocked. | |
77 | * | |
e498be7d CL |
78 | * 15 March 2005. NUMA slab allocator. |
79 | * Shai Fultheim <[email protected]>. | |
80 | * Shobhit Dayal <[email protected]> | |
81 | * Alok N Kataria <[email protected]> | |
82 | * Christoph Lameter <[email protected]> | |
83 | * | |
84 | * Modified the slab allocator to be node aware on NUMA systems. | |
85 | * Each node has its own list of partial, free and full slabs. | |
86 | * All object allocations for a node occur from node specific slab lists. | |
1da177e4 LT |
87 | */ |
88 | ||
1da177e4 LT |
89 | #include <linux/slab.h> |
90 | #include <linux/mm.h> | |
c9cf5528 | 91 | #include <linux/poison.h> |
1da177e4 LT |
92 | #include <linux/swap.h> |
93 | #include <linux/cache.h> | |
94 | #include <linux/interrupt.h> | |
95 | #include <linux/init.h> | |
96 | #include <linux/compiler.h> | |
101a5001 | 97 | #include <linux/cpuset.h> |
a0ec95a8 | 98 | #include <linux/proc_fs.h> |
1da177e4 LT |
99 | #include <linux/seq_file.h> |
100 | #include <linux/notifier.h> | |
101 | #include <linux/kallsyms.h> | |
102 | #include <linux/cpu.h> | |
103 | #include <linux/sysctl.h> | |
104 | #include <linux/module.h> | |
105 | #include <linux/rcupdate.h> | |
543537bd | 106 | #include <linux/string.h> |
138ae663 | 107 | #include <linux/uaccess.h> |
e498be7d | 108 | #include <linux/nodemask.h> |
d5cff635 | 109 | #include <linux/kmemleak.h> |
dc85da15 | 110 | #include <linux/mempolicy.h> |
fc0abb14 | 111 | #include <linux/mutex.h> |
8a8b6502 | 112 | #include <linux/fault-inject.h> |
e7eebaf6 | 113 | #include <linux/rtmutex.h> |
6a2d7a95 | 114 | #include <linux/reciprocal_div.h> |
3ac7fe5a | 115 | #include <linux/debugobjects.h> |
c175eea4 | 116 | #include <linux/kmemcheck.h> |
8f9f8d9e | 117 | #include <linux/memory.h> |
268bb0ce | 118 | #include <linux/prefetch.h> |
1da177e4 | 119 | |
381760ea MG |
120 | #include <net/sock.h> |
121 | ||
1da177e4 LT |
122 | #include <asm/cacheflush.h> |
123 | #include <asm/tlbflush.h> | |
124 | #include <asm/page.h> | |
125 | ||
4dee6b64 SR |
126 | #include <trace/events/kmem.h> |
127 | ||
072bb0aa MG |
128 | #include "internal.h" |
129 | ||
b9ce5ef4 GC |
130 | #include "slab.h" |
131 | ||
1da177e4 | 132 | /* |
50953fe9 | 133 | * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON. |
1da177e4 LT |
134 | * 0 for faster, smaller code (especially in the critical paths). |
135 | * | |
136 | * STATS - 1 to collect stats for /proc/slabinfo. | |
137 | * 0 for faster, smaller code (especially in the critical paths). | |
138 | * | |
139 | * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible) | |
140 | */ | |
141 | ||
142 | #ifdef CONFIG_DEBUG_SLAB | |
143 | #define DEBUG 1 | |
144 | #define STATS 1 | |
145 | #define FORCED_DEBUG 1 | |
146 | #else | |
147 | #define DEBUG 0 | |
148 | #define STATS 0 | |
149 | #define FORCED_DEBUG 0 | |
150 | #endif | |
151 | ||
1da177e4 LT |
152 | /* Shouldn't this be in a header file somewhere? */ |
153 | #define BYTES_PER_WORD sizeof(void *) | |
87a927c7 | 154 | #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long)) |
1da177e4 | 155 | |
1da177e4 LT |
156 | #ifndef ARCH_KMALLOC_FLAGS |
157 | #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN | |
158 | #endif | |
159 | ||
072bb0aa MG |
160 | /* |
161 | * true if a page was allocated from pfmemalloc reserves for network-based | |
162 | * swap | |
163 | */ | |
164 | static bool pfmemalloc_active __read_mostly; | |
165 | ||
1da177e4 LT |
166 | /* |
167 | * kmem_bufctl_t: | |
168 | * | |
169 | * Bufctl's are used for linking objs within a slab | |
170 | * linked offsets. | |
171 | * | |
172 | * This implementation relies on "struct page" for locating the cache & | |
173 | * slab an object belongs to. | |
174 | * This allows the bufctl structure to be small (one int), but limits | |
175 | * the number of objects a slab (not a cache) can contain when off-slab | |
176 | * bufctls are used. The limit is the size of the largest general cache | |
177 | * that does not use off-slab slabs. | |
178 | * For 32bit archs with 4 kB pages, is this 56. | |
179 | * This is not serious, as it is only for large objects, when it is unwise | |
180 | * to have too many per slab. | |
181 | * Note: This limit can be raised by introducing a general cache whose size | |
182 | * is less than 512 (PAGE_SIZE<<3), but greater than 256. | |
183 | */ | |
184 | ||
fa5b08d5 | 185 | typedef unsigned int kmem_bufctl_t; |
1da177e4 LT |
186 | #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0) |
187 | #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1) | |
871751e2 AV |
188 | #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2) |
189 | #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3) | |
1da177e4 | 190 | |
1da177e4 LT |
191 | /* |
192 | * struct slab_rcu | |
193 | * | |
194 | * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to | |
195 | * arrange for kmem_freepages to be called via RCU. This is useful if | |
196 | * we need to approach a kernel structure obliquely, from its address | |
197 | * obtained without the usual locking. We can lock the structure to | |
198 | * stabilize it and check it's still at the given address, only if we | |
199 | * can be sure that the memory has not been meanwhile reused for some | |
200 | * other kind of object (which our subsystem's lock might corrupt). | |
201 | * | |
202 | * rcu_read_lock before reading the address, then rcu_read_unlock after | |
203 | * taking the spinlock within the structure expected at that address. | |
1da177e4 LT |
204 | */ |
205 | struct slab_rcu { | |
b28a02de | 206 | struct rcu_head head; |
343e0d7a | 207 | struct kmem_cache *cachep; |
b28a02de | 208 | void *addr; |
1da177e4 LT |
209 | }; |
210 | ||
5bfe53a7 LJ |
211 | /* |
212 | * struct slab | |
213 | * | |
214 | * Manages the objs in a slab. Placed either at the beginning of mem allocated | |
215 | * for a slab, or allocated from an general cache. | |
216 | * Slabs are chained into three list: fully used, partial, fully free slabs. | |
217 | */ | |
218 | struct slab { | |
219 | union { | |
220 | struct { | |
221 | struct list_head list; | |
222 | unsigned long colouroff; | |
223 | void *s_mem; /* including colour offset */ | |
224 | unsigned int inuse; /* num of objs active in slab */ | |
225 | kmem_bufctl_t free; | |
226 | unsigned short nodeid; | |
227 | }; | |
228 | struct slab_rcu __slab_cover_slab_rcu; | |
229 | }; | |
230 | }; | |
231 | ||
1da177e4 LT |
232 | /* |
233 | * struct array_cache | |
234 | * | |
1da177e4 LT |
235 | * Purpose: |
236 | * - LIFO ordering, to hand out cache-warm objects from _alloc | |
237 | * - reduce the number of linked list operations | |
238 | * - reduce spinlock operations | |
239 | * | |
240 | * The limit is stored in the per-cpu structure to reduce the data cache | |
241 | * footprint. | |
242 | * | |
243 | */ | |
244 | struct array_cache { | |
245 | unsigned int avail; | |
246 | unsigned int limit; | |
247 | unsigned int batchcount; | |
248 | unsigned int touched; | |
e498be7d | 249 | spinlock_t lock; |
bda5b655 | 250 | void *entry[]; /* |
a737b3e2 AM |
251 | * Must have this definition in here for the proper |
252 | * alignment of array_cache. Also simplifies accessing | |
253 | * the entries. | |
072bb0aa MG |
254 | * |
255 | * Entries should not be directly dereferenced as | |
256 | * entries belonging to slabs marked pfmemalloc will | |
257 | * have the lower bits set SLAB_OBJ_PFMEMALLOC | |
a737b3e2 | 258 | */ |
1da177e4 LT |
259 | }; |
260 | ||
072bb0aa MG |
261 | #define SLAB_OBJ_PFMEMALLOC 1 |
262 | static inline bool is_obj_pfmemalloc(void *objp) | |
263 | { | |
264 | return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC; | |
265 | } | |
266 | ||
267 | static inline void set_obj_pfmemalloc(void **objp) | |
268 | { | |
269 | *objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC); | |
270 | return; | |
271 | } | |
272 | ||
273 | static inline void clear_obj_pfmemalloc(void **objp) | |
274 | { | |
275 | *objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC); | |
276 | } | |
277 | ||
a737b3e2 AM |
278 | /* |
279 | * bootstrap: The caches do not work without cpuarrays anymore, but the | |
280 | * cpuarrays are allocated from the generic caches... | |
1da177e4 LT |
281 | */ |
282 | #define BOOT_CPUCACHE_ENTRIES 1 | |
283 | struct arraycache_init { | |
284 | struct array_cache cache; | |
b28a02de | 285 | void *entries[BOOT_CPUCACHE_ENTRIES]; |
1da177e4 LT |
286 | }; |
287 | ||
288 | /* | |
e498be7d | 289 | * The slab lists for all objects. |
1da177e4 LT |
290 | */ |
291 | struct kmem_list3 { | |
b28a02de PE |
292 | struct list_head slabs_partial; /* partial list first, better asm code */ |
293 | struct list_head slabs_full; | |
294 | struct list_head slabs_free; | |
295 | unsigned long free_objects; | |
b28a02de | 296 | unsigned int free_limit; |
2e1217cf | 297 | unsigned int colour_next; /* Per-node cache coloring */ |
b28a02de PE |
298 | spinlock_t list_lock; |
299 | struct array_cache *shared; /* shared per node */ | |
300 | struct array_cache **alien; /* on other nodes */ | |
35386e3b CL |
301 | unsigned long next_reap; /* updated without locking */ |
302 | int free_touched; /* updated without locking */ | |
1da177e4 LT |
303 | }; |
304 | ||
e498be7d CL |
305 | /* |
306 | * Need this for bootstrapping a per node allocator. | |
307 | */ | |
556a169d | 308 | #define NUM_INIT_LISTS (3 * MAX_NUMNODES) |
68a1b195 | 309 | static struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS]; |
e498be7d | 310 | #define CACHE_CACHE 0 |
556a169d PE |
311 | #define SIZE_AC MAX_NUMNODES |
312 | #define SIZE_L3 (2 * MAX_NUMNODES) | |
e498be7d | 313 | |
ed11d9eb CL |
314 | static int drain_freelist(struct kmem_cache *cache, |
315 | struct kmem_list3 *l3, int tofree); | |
316 | static void free_block(struct kmem_cache *cachep, void **objpp, int len, | |
317 | int node); | |
83b519e8 | 318 | static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp); |
65f27f38 | 319 | static void cache_reap(struct work_struct *unused); |
ed11d9eb | 320 | |
e498be7d | 321 | /* |
a737b3e2 AM |
322 | * This function must be completely optimized away if a constant is passed to |
323 | * it. Mostly the same as what is in linux/slab.h except it returns an index. | |
e498be7d | 324 | */ |
7243cc05 | 325 | static __always_inline int index_of(const size_t size) |
e498be7d | 326 | { |
5ec8a847 SR |
327 | extern void __bad_size(void); |
328 | ||
e498be7d CL |
329 | if (__builtin_constant_p(size)) { |
330 | int i = 0; | |
331 | ||
332 | #define CACHE(x) \ | |
333 | if (size <=x) \ | |
334 | return i; \ | |
335 | else \ | |
336 | i++; | |
1c61fc40 | 337 | #include <linux/kmalloc_sizes.h> |
e498be7d | 338 | #undef CACHE |
5ec8a847 | 339 | __bad_size(); |
7243cc05 | 340 | } else |
5ec8a847 | 341 | __bad_size(); |
e498be7d CL |
342 | return 0; |
343 | } | |
344 | ||
e0a42726 IM |
345 | static int slab_early_init = 1; |
346 | ||
e498be7d CL |
347 | #define INDEX_AC index_of(sizeof(struct arraycache_init)) |
348 | #define INDEX_L3 index_of(sizeof(struct kmem_list3)) | |
1da177e4 | 349 | |
5295a74c | 350 | static void kmem_list3_init(struct kmem_list3 *parent) |
e498be7d CL |
351 | { |
352 | INIT_LIST_HEAD(&parent->slabs_full); | |
353 | INIT_LIST_HEAD(&parent->slabs_partial); | |
354 | INIT_LIST_HEAD(&parent->slabs_free); | |
355 | parent->shared = NULL; | |
356 | parent->alien = NULL; | |
2e1217cf | 357 | parent->colour_next = 0; |
e498be7d CL |
358 | spin_lock_init(&parent->list_lock); |
359 | parent->free_objects = 0; | |
360 | parent->free_touched = 0; | |
361 | } | |
362 | ||
a737b3e2 AM |
363 | #define MAKE_LIST(cachep, listp, slab, nodeid) \ |
364 | do { \ | |
365 | INIT_LIST_HEAD(listp); \ | |
366 | list_splice(&(cachep->nodelists[nodeid]->slab), listp); \ | |
e498be7d CL |
367 | } while (0) |
368 | ||
a737b3e2 AM |
369 | #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \ |
370 | do { \ | |
e498be7d CL |
371 | MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \ |
372 | MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \ | |
373 | MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \ | |
374 | } while (0) | |
1da177e4 | 375 | |
1da177e4 LT |
376 | #define CFLGS_OFF_SLAB (0x80000000UL) |
377 | #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB) | |
378 | ||
379 | #define BATCHREFILL_LIMIT 16 | |
a737b3e2 AM |
380 | /* |
381 | * Optimization question: fewer reaps means less probability for unnessary | |
382 | * cpucache drain/refill cycles. | |
1da177e4 | 383 | * |
dc6f3f27 | 384 | * OTOH the cpuarrays can contain lots of objects, |
1da177e4 LT |
385 | * which could lock up otherwise freeable slabs. |
386 | */ | |
387 | #define REAPTIMEOUT_CPUC (2*HZ) | |
388 | #define REAPTIMEOUT_LIST3 (4*HZ) | |
389 | ||
390 | #if STATS | |
391 | #define STATS_INC_ACTIVE(x) ((x)->num_active++) | |
392 | #define STATS_DEC_ACTIVE(x) ((x)->num_active--) | |
393 | #define STATS_INC_ALLOCED(x) ((x)->num_allocations++) | |
394 | #define STATS_INC_GROWN(x) ((x)->grown++) | |
ed11d9eb | 395 | #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y)) |
a737b3e2 AM |
396 | #define STATS_SET_HIGH(x) \ |
397 | do { \ | |
398 | if ((x)->num_active > (x)->high_mark) \ | |
399 | (x)->high_mark = (x)->num_active; \ | |
400 | } while (0) | |
1da177e4 LT |
401 | #define STATS_INC_ERR(x) ((x)->errors++) |
402 | #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++) | |
e498be7d | 403 | #define STATS_INC_NODEFREES(x) ((x)->node_frees++) |
fb7faf33 | 404 | #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++) |
a737b3e2 AM |
405 | #define STATS_SET_FREEABLE(x, i) \ |
406 | do { \ | |
407 | if ((x)->max_freeable < i) \ | |
408 | (x)->max_freeable = i; \ | |
409 | } while (0) | |
1da177e4 LT |
410 | #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit) |
411 | #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss) | |
412 | #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit) | |
413 | #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss) | |
414 | #else | |
415 | #define STATS_INC_ACTIVE(x) do { } while (0) | |
416 | #define STATS_DEC_ACTIVE(x) do { } while (0) | |
417 | #define STATS_INC_ALLOCED(x) do { } while (0) | |
418 | #define STATS_INC_GROWN(x) do { } while (0) | |
4e60c86b | 419 | #define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0) |
1da177e4 LT |
420 | #define STATS_SET_HIGH(x) do { } while (0) |
421 | #define STATS_INC_ERR(x) do { } while (0) | |
422 | #define STATS_INC_NODEALLOCS(x) do { } while (0) | |
e498be7d | 423 | #define STATS_INC_NODEFREES(x) do { } while (0) |
fb7faf33 | 424 | #define STATS_INC_ACOVERFLOW(x) do { } while (0) |
a737b3e2 | 425 | #define STATS_SET_FREEABLE(x, i) do { } while (0) |
1da177e4 LT |
426 | #define STATS_INC_ALLOCHIT(x) do { } while (0) |
427 | #define STATS_INC_ALLOCMISS(x) do { } while (0) | |
428 | #define STATS_INC_FREEHIT(x) do { } while (0) | |
429 | #define STATS_INC_FREEMISS(x) do { } while (0) | |
430 | #endif | |
431 | ||
432 | #if DEBUG | |
1da177e4 | 433 | |
a737b3e2 AM |
434 | /* |
435 | * memory layout of objects: | |
1da177e4 | 436 | * 0 : objp |
3dafccf2 | 437 | * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that |
1da177e4 LT |
438 | * the end of an object is aligned with the end of the real |
439 | * allocation. Catches writes behind the end of the allocation. | |
3dafccf2 | 440 | * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1: |
1da177e4 | 441 | * redzone word. |
3dafccf2 | 442 | * cachep->obj_offset: The real object. |
3b0efdfa CL |
443 | * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long] |
444 | * cachep->size - 1* BYTES_PER_WORD: last caller address | |
a737b3e2 | 445 | * [BYTES_PER_WORD long] |
1da177e4 | 446 | */ |
343e0d7a | 447 | static int obj_offset(struct kmem_cache *cachep) |
1da177e4 | 448 | { |
3dafccf2 | 449 | return cachep->obj_offset; |
1da177e4 LT |
450 | } |
451 | ||
b46b8f19 | 452 | static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp) |
1da177e4 LT |
453 | { |
454 | BUG_ON(!(cachep->flags & SLAB_RED_ZONE)); | |
b46b8f19 DW |
455 | return (unsigned long long*) (objp + obj_offset(cachep) - |
456 | sizeof(unsigned long long)); | |
1da177e4 LT |
457 | } |
458 | ||
b46b8f19 | 459 | static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp) |
1da177e4 LT |
460 | { |
461 | BUG_ON(!(cachep->flags & SLAB_RED_ZONE)); | |
462 | if (cachep->flags & SLAB_STORE_USER) | |
3b0efdfa | 463 | return (unsigned long long *)(objp + cachep->size - |
b46b8f19 | 464 | sizeof(unsigned long long) - |
87a927c7 | 465 | REDZONE_ALIGN); |
3b0efdfa | 466 | return (unsigned long long *) (objp + cachep->size - |
b46b8f19 | 467 | sizeof(unsigned long long)); |
1da177e4 LT |
468 | } |
469 | ||
343e0d7a | 470 | static void **dbg_userword(struct kmem_cache *cachep, void *objp) |
1da177e4 LT |
471 | { |
472 | BUG_ON(!(cachep->flags & SLAB_STORE_USER)); | |
3b0efdfa | 473 | return (void **)(objp + cachep->size - BYTES_PER_WORD); |
1da177e4 LT |
474 | } |
475 | ||
476 | #else | |
477 | ||
3dafccf2 | 478 | #define obj_offset(x) 0 |
b46b8f19 DW |
479 | #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;}) |
480 | #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;}) | |
1da177e4 LT |
481 | #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;}) |
482 | ||
483 | #endif | |
484 | ||
1da177e4 | 485 | /* |
3df1cccd DR |
486 | * Do not go above this order unless 0 objects fit into the slab or |
487 | * overridden on the command line. | |
1da177e4 | 488 | */ |
543585cc DR |
489 | #define SLAB_MAX_ORDER_HI 1 |
490 | #define SLAB_MAX_ORDER_LO 0 | |
491 | static int slab_max_order = SLAB_MAX_ORDER_LO; | |
3df1cccd | 492 | static bool slab_max_order_set __initdata; |
1da177e4 | 493 | |
6ed5eb22 PE |
494 | static inline struct kmem_cache *virt_to_cache(const void *obj) |
495 | { | |
b49af68f | 496 | struct page *page = virt_to_head_page(obj); |
35026088 | 497 | return page->slab_cache; |
6ed5eb22 PE |
498 | } |
499 | ||
500 | static inline struct slab *virt_to_slab(const void *obj) | |
501 | { | |
b49af68f | 502 | struct page *page = virt_to_head_page(obj); |
35026088 CL |
503 | |
504 | VM_BUG_ON(!PageSlab(page)); | |
505 | return page->slab_page; | |
6ed5eb22 PE |
506 | } |
507 | ||
8fea4e96 PE |
508 | static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab, |
509 | unsigned int idx) | |
510 | { | |
3b0efdfa | 511 | return slab->s_mem + cache->size * idx; |
8fea4e96 PE |
512 | } |
513 | ||
6a2d7a95 | 514 | /* |
3b0efdfa CL |
515 | * We want to avoid an expensive divide : (offset / cache->size) |
516 | * Using the fact that size is a constant for a particular cache, | |
517 | * we can replace (offset / cache->size) by | |
6a2d7a95 ED |
518 | * reciprocal_divide(offset, cache->reciprocal_buffer_size) |
519 | */ | |
520 | static inline unsigned int obj_to_index(const struct kmem_cache *cache, | |
521 | const struct slab *slab, void *obj) | |
8fea4e96 | 522 | { |
6a2d7a95 ED |
523 | u32 offset = (obj - slab->s_mem); |
524 | return reciprocal_divide(offset, cache->reciprocal_buffer_size); | |
8fea4e96 PE |
525 | } |
526 | ||
a737b3e2 AM |
527 | /* |
528 | * These are the default caches for kmalloc. Custom caches can have other sizes. | |
529 | */ | |
1da177e4 LT |
530 | struct cache_sizes malloc_sizes[] = { |
531 | #define CACHE(x) { .cs_size = (x) }, | |
532 | #include <linux/kmalloc_sizes.h> | |
533 | CACHE(ULONG_MAX) | |
534 | #undef CACHE | |
535 | }; | |
536 | EXPORT_SYMBOL(malloc_sizes); | |
537 | ||
538 | /* Must match cache_sizes above. Out of line to keep cache footprint low. */ | |
539 | struct cache_names { | |
540 | char *name; | |
541 | char *name_dma; | |
542 | }; | |
543 | ||
544 | static struct cache_names __initdata cache_names[] = { | |
545 | #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" }, | |
546 | #include <linux/kmalloc_sizes.h> | |
b28a02de | 547 | {NULL,} |
1da177e4 LT |
548 | #undef CACHE |
549 | }; | |
550 | ||
1da177e4 | 551 | static struct arraycache_init initarray_generic = |
b28a02de | 552 | { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} }; |
1da177e4 LT |
553 | |
554 | /* internal cache of cache description objs */ | |
9b030cb8 | 555 | static struct kmem_cache kmem_cache_boot = { |
b28a02de PE |
556 | .batchcount = 1, |
557 | .limit = BOOT_CPUCACHE_ENTRIES, | |
558 | .shared = 1, | |
3b0efdfa | 559 | .size = sizeof(struct kmem_cache), |
b28a02de | 560 | .name = "kmem_cache", |
1da177e4 LT |
561 | }; |
562 | ||
056c6241 RT |
563 | #define BAD_ALIEN_MAGIC 0x01020304ul |
564 | ||
f1aaee53 AV |
565 | #ifdef CONFIG_LOCKDEP |
566 | ||
567 | /* | |
568 | * Slab sometimes uses the kmalloc slabs to store the slab headers | |
569 | * for other slabs "off slab". | |
570 | * The locking for this is tricky in that it nests within the locks | |
571 | * of all other slabs in a few places; to deal with this special | |
572 | * locking we put on-slab caches into a separate lock-class. | |
056c6241 RT |
573 | * |
574 | * We set lock class for alien array caches which are up during init. | |
575 | * The lock annotation will be lost if all cpus of a node goes down and | |
576 | * then comes back up during hotplug | |
f1aaee53 | 577 | */ |
056c6241 RT |
578 | static struct lock_class_key on_slab_l3_key; |
579 | static struct lock_class_key on_slab_alc_key; | |
580 | ||
83835b3d PZ |
581 | static struct lock_class_key debugobj_l3_key; |
582 | static struct lock_class_key debugobj_alc_key; | |
583 | ||
584 | static void slab_set_lock_classes(struct kmem_cache *cachep, | |
585 | struct lock_class_key *l3_key, struct lock_class_key *alc_key, | |
586 | int q) | |
587 | { | |
588 | struct array_cache **alc; | |
589 | struct kmem_list3 *l3; | |
590 | int r; | |
591 | ||
592 | l3 = cachep->nodelists[q]; | |
593 | if (!l3) | |
594 | return; | |
595 | ||
596 | lockdep_set_class(&l3->list_lock, l3_key); | |
597 | alc = l3->alien; | |
598 | /* | |
599 | * FIXME: This check for BAD_ALIEN_MAGIC | |
600 | * should go away when common slab code is taught to | |
601 | * work even without alien caches. | |
602 | * Currently, non NUMA code returns BAD_ALIEN_MAGIC | |
603 | * for alloc_alien_cache, | |
604 | */ | |
605 | if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC) | |
606 | return; | |
607 | for_each_node(r) { | |
608 | if (alc[r]) | |
609 | lockdep_set_class(&alc[r]->lock, alc_key); | |
610 | } | |
611 | } | |
612 | ||
613 | static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node) | |
614 | { | |
615 | slab_set_lock_classes(cachep, &debugobj_l3_key, &debugobj_alc_key, node); | |
616 | } | |
617 | ||
618 | static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep) | |
619 | { | |
620 | int node; | |
621 | ||
622 | for_each_online_node(node) | |
623 | slab_set_debugobj_lock_classes_node(cachep, node); | |
624 | } | |
625 | ||
ce79ddc8 | 626 | static void init_node_lock_keys(int q) |
f1aaee53 | 627 | { |
056c6241 RT |
628 | struct cache_sizes *s = malloc_sizes; |
629 | ||
97d06609 | 630 | if (slab_state < UP) |
ce79ddc8 PE |
631 | return; |
632 | ||
633 | for (s = malloc_sizes; s->cs_size != ULONG_MAX; s++) { | |
ce79ddc8 | 634 | struct kmem_list3 *l3; |
ce79ddc8 PE |
635 | |
636 | l3 = s->cs_cachep->nodelists[q]; | |
637 | if (!l3 || OFF_SLAB(s->cs_cachep)) | |
00afa758 | 638 | continue; |
83835b3d PZ |
639 | |
640 | slab_set_lock_classes(s->cs_cachep, &on_slab_l3_key, | |
641 | &on_slab_alc_key, q); | |
f1aaee53 AV |
642 | } |
643 | } | |
ce79ddc8 | 644 | |
6ccfb5bc GC |
645 | static void on_slab_lock_classes_node(struct kmem_cache *cachep, int q) |
646 | { | |
647 | struct kmem_list3 *l3; | |
648 | l3 = cachep->nodelists[q]; | |
649 | if (!l3) | |
650 | return; | |
651 | ||
652 | slab_set_lock_classes(cachep, &on_slab_l3_key, | |
653 | &on_slab_alc_key, q); | |
654 | } | |
655 | ||
656 | static inline void on_slab_lock_classes(struct kmem_cache *cachep) | |
657 | { | |
658 | int node; | |
659 | ||
660 | VM_BUG_ON(OFF_SLAB(cachep)); | |
661 | for_each_node(node) | |
662 | on_slab_lock_classes_node(cachep, node); | |
663 | } | |
664 | ||
ce79ddc8 PE |
665 | static inline void init_lock_keys(void) |
666 | { | |
667 | int node; | |
668 | ||
669 | for_each_node(node) | |
670 | init_node_lock_keys(node); | |
671 | } | |
f1aaee53 | 672 | #else |
ce79ddc8 PE |
673 | static void init_node_lock_keys(int q) |
674 | { | |
675 | } | |
676 | ||
056c6241 | 677 | static inline void init_lock_keys(void) |
f1aaee53 AV |
678 | { |
679 | } | |
83835b3d | 680 | |
6ccfb5bc GC |
681 | static inline void on_slab_lock_classes(struct kmem_cache *cachep) |
682 | { | |
683 | } | |
684 | ||
685 | static inline void on_slab_lock_classes_node(struct kmem_cache *cachep, int node) | |
686 | { | |
687 | } | |
688 | ||
83835b3d PZ |
689 | static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node) |
690 | { | |
691 | } | |
692 | ||
693 | static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep) | |
694 | { | |
695 | } | |
f1aaee53 AV |
696 | #endif |
697 | ||
1871e52c | 698 | static DEFINE_PER_CPU(struct delayed_work, slab_reap_work); |
1da177e4 | 699 | |
343e0d7a | 700 | static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep) |
1da177e4 LT |
701 | { |
702 | return cachep->array[smp_processor_id()]; | |
703 | } | |
704 | ||
a737b3e2 AM |
705 | static inline struct kmem_cache *__find_general_cachep(size_t size, |
706 | gfp_t gfpflags) | |
1da177e4 LT |
707 | { |
708 | struct cache_sizes *csizep = malloc_sizes; | |
709 | ||
710 | #if DEBUG | |
711 | /* This happens if someone tries to call | |
b28a02de PE |
712 | * kmem_cache_create(), or __kmalloc(), before |
713 | * the generic caches are initialized. | |
714 | */ | |
c7e43c78 | 715 | BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL); |
1da177e4 | 716 | #endif |
6cb8f913 CL |
717 | if (!size) |
718 | return ZERO_SIZE_PTR; | |
719 | ||
1da177e4 LT |
720 | while (size > csizep->cs_size) |
721 | csizep++; | |
722 | ||
723 | /* | |
0abf40c1 | 724 | * Really subtle: The last entry with cs->cs_size==ULONG_MAX |
1da177e4 LT |
725 | * has cs_{dma,}cachep==NULL. Thus no special case |
726 | * for large kmalloc calls required. | |
727 | */ | |
4b51d669 | 728 | #ifdef CONFIG_ZONE_DMA |
1da177e4 LT |
729 | if (unlikely(gfpflags & GFP_DMA)) |
730 | return csizep->cs_dmacachep; | |
4b51d669 | 731 | #endif |
1da177e4 LT |
732 | return csizep->cs_cachep; |
733 | } | |
734 | ||
b221385b | 735 | static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags) |
97e2bde4 MS |
736 | { |
737 | return __find_general_cachep(size, gfpflags); | |
738 | } | |
97e2bde4 | 739 | |
fbaccacf | 740 | static size_t slab_mgmt_size(size_t nr_objs, size_t align) |
1da177e4 | 741 | { |
fbaccacf SR |
742 | return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align); |
743 | } | |
1da177e4 | 744 | |
a737b3e2 AM |
745 | /* |
746 | * Calculate the number of objects and left-over bytes for a given buffer size. | |
747 | */ | |
fbaccacf SR |
748 | static void cache_estimate(unsigned long gfporder, size_t buffer_size, |
749 | size_t align, int flags, size_t *left_over, | |
750 | unsigned int *num) | |
751 | { | |
752 | int nr_objs; | |
753 | size_t mgmt_size; | |
754 | size_t slab_size = PAGE_SIZE << gfporder; | |
1da177e4 | 755 | |
fbaccacf SR |
756 | /* |
757 | * The slab management structure can be either off the slab or | |
758 | * on it. For the latter case, the memory allocated for a | |
759 | * slab is used for: | |
760 | * | |
761 | * - The struct slab | |
762 | * - One kmem_bufctl_t for each object | |
763 | * - Padding to respect alignment of @align | |
764 | * - @buffer_size bytes for each object | |
765 | * | |
766 | * If the slab management structure is off the slab, then the | |
767 | * alignment will already be calculated into the size. Because | |
768 | * the slabs are all pages aligned, the objects will be at the | |
769 | * correct alignment when allocated. | |
770 | */ | |
771 | if (flags & CFLGS_OFF_SLAB) { | |
772 | mgmt_size = 0; | |
773 | nr_objs = slab_size / buffer_size; | |
774 | ||
775 | if (nr_objs > SLAB_LIMIT) | |
776 | nr_objs = SLAB_LIMIT; | |
777 | } else { | |
778 | /* | |
779 | * Ignore padding for the initial guess. The padding | |
780 | * is at most @align-1 bytes, and @buffer_size is at | |
781 | * least @align. In the worst case, this result will | |
782 | * be one greater than the number of objects that fit | |
783 | * into the memory allocation when taking the padding | |
784 | * into account. | |
785 | */ | |
786 | nr_objs = (slab_size - sizeof(struct slab)) / | |
787 | (buffer_size + sizeof(kmem_bufctl_t)); | |
788 | ||
789 | /* | |
790 | * This calculated number will be either the right | |
791 | * amount, or one greater than what we want. | |
792 | */ | |
793 | if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size | |
794 | > slab_size) | |
795 | nr_objs--; | |
796 | ||
797 | if (nr_objs > SLAB_LIMIT) | |
798 | nr_objs = SLAB_LIMIT; | |
799 | ||
800 | mgmt_size = slab_mgmt_size(nr_objs, align); | |
801 | } | |
802 | *num = nr_objs; | |
803 | *left_over = slab_size - nr_objs*buffer_size - mgmt_size; | |
1da177e4 LT |
804 | } |
805 | ||
f28510d3 | 806 | #if DEBUG |
d40cee24 | 807 | #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg) |
1da177e4 | 808 | |
a737b3e2 AM |
809 | static void __slab_error(const char *function, struct kmem_cache *cachep, |
810 | char *msg) | |
1da177e4 LT |
811 | { |
812 | printk(KERN_ERR "slab error in %s(): cache `%s': %s\n", | |
b28a02de | 813 | function, cachep->name, msg); |
1da177e4 | 814 | dump_stack(); |
373d4d09 | 815 | add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); |
1da177e4 | 816 | } |
f28510d3 | 817 | #endif |
1da177e4 | 818 | |
3395ee05 PM |
819 | /* |
820 | * By default on NUMA we use alien caches to stage the freeing of | |
821 | * objects allocated from other nodes. This causes massive memory | |
822 | * inefficiencies when using fake NUMA setup to split memory into a | |
823 | * large number of small nodes, so it can be disabled on the command | |
824 | * line | |
825 | */ | |
826 | ||
827 | static int use_alien_caches __read_mostly = 1; | |
828 | static int __init noaliencache_setup(char *s) | |
829 | { | |
830 | use_alien_caches = 0; | |
831 | return 1; | |
832 | } | |
833 | __setup("noaliencache", noaliencache_setup); | |
834 | ||
3df1cccd DR |
835 | static int __init slab_max_order_setup(char *str) |
836 | { | |
837 | get_option(&str, &slab_max_order); | |
838 | slab_max_order = slab_max_order < 0 ? 0 : | |
839 | min(slab_max_order, MAX_ORDER - 1); | |
840 | slab_max_order_set = true; | |
841 | ||
842 | return 1; | |
843 | } | |
844 | __setup("slab_max_order=", slab_max_order_setup); | |
845 | ||
8fce4d8e CL |
846 | #ifdef CONFIG_NUMA |
847 | /* | |
848 | * Special reaping functions for NUMA systems called from cache_reap(). | |
849 | * These take care of doing round robin flushing of alien caches (containing | |
850 | * objects freed on different nodes from which they were allocated) and the | |
851 | * flushing of remote pcps by calling drain_node_pages. | |
852 | */ | |
1871e52c | 853 | static DEFINE_PER_CPU(unsigned long, slab_reap_node); |
8fce4d8e CL |
854 | |
855 | static void init_reap_node(int cpu) | |
856 | { | |
857 | int node; | |
858 | ||
7d6e6d09 | 859 | node = next_node(cpu_to_mem(cpu), node_online_map); |
8fce4d8e | 860 | if (node == MAX_NUMNODES) |
442295c9 | 861 | node = first_node(node_online_map); |
8fce4d8e | 862 | |
1871e52c | 863 | per_cpu(slab_reap_node, cpu) = node; |
8fce4d8e CL |
864 | } |
865 | ||
866 | static void next_reap_node(void) | |
867 | { | |
909ea964 | 868 | int node = __this_cpu_read(slab_reap_node); |
8fce4d8e | 869 | |
8fce4d8e CL |
870 | node = next_node(node, node_online_map); |
871 | if (unlikely(node >= MAX_NUMNODES)) | |
872 | node = first_node(node_online_map); | |
909ea964 | 873 | __this_cpu_write(slab_reap_node, node); |
8fce4d8e CL |
874 | } |
875 | ||
876 | #else | |
877 | #define init_reap_node(cpu) do { } while (0) | |
878 | #define next_reap_node(void) do { } while (0) | |
879 | #endif | |
880 | ||
1da177e4 LT |
881 | /* |
882 | * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz | |
883 | * via the workqueue/eventd. | |
884 | * Add the CPU number into the expiration time to minimize the possibility of | |
885 | * the CPUs getting into lockstep and contending for the global cache chain | |
886 | * lock. | |
887 | */ | |
897e679b | 888 | static void __cpuinit start_cpu_timer(int cpu) |
1da177e4 | 889 | { |
1871e52c | 890 | struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu); |
1da177e4 LT |
891 | |
892 | /* | |
893 | * When this gets called from do_initcalls via cpucache_init(), | |
894 | * init_workqueues() has already run, so keventd will be setup | |
895 | * at that time. | |
896 | */ | |
52bad64d | 897 | if (keventd_up() && reap_work->work.func == NULL) { |
8fce4d8e | 898 | init_reap_node(cpu); |
203b42f7 | 899 | INIT_DEFERRABLE_WORK(reap_work, cache_reap); |
2b284214 AV |
900 | schedule_delayed_work_on(cpu, reap_work, |
901 | __round_jiffies_relative(HZ, cpu)); | |
1da177e4 LT |
902 | } |
903 | } | |
904 | ||
e498be7d | 905 | static struct array_cache *alloc_arraycache(int node, int entries, |
83b519e8 | 906 | int batchcount, gfp_t gfp) |
1da177e4 | 907 | { |
b28a02de | 908 | int memsize = sizeof(void *) * entries + sizeof(struct array_cache); |
1da177e4 LT |
909 | struct array_cache *nc = NULL; |
910 | ||
83b519e8 | 911 | nc = kmalloc_node(memsize, gfp, node); |
d5cff635 CM |
912 | /* |
913 | * The array_cache structures contain pointers to free object. | |
25985edc | 914 | * However, when such objects are allocated or transferred to another |
d5cff635 CM |
915 | * cache the pointers are not cleared and they could be counted as |
916 | * valid references during a kmemleak scan. Therefore, kmemleak must | |
917 | * not scan such objects. | |
918 | */ | |
919 | kmemleak_no_scan(nc); | |
1da177e4 LT |
920 | if (nc) { |
921 | nc->avail = 0; | |
922 | nc->limit = entries; | |
923 | nc->batchcount = batchcount; | |
924 | nc->touched = 0; | |
e498be7d | 925 | spin_lock_init(&nc->lock); |
1da177e4 LT |
926 | } |
927 | return nc; | |
928 | } | |
929 | ||
072bb0aa MG |
930 | static inline bool is_slab_pfmemalloc(struct slab *slabp) |
931 | { | |
932 | struct page *page = virt_to_page(slabp->s_mem); | |
933 | ||
934 | return PageSlabPfmemalloc(page); | |
935 | } | |
936 | ||
937 | /* Clears pfmemalloc_active if no slabs have pfmalloc set */ | |
938 | static void recheck_pfmemalloc_active(struct kmem_cache *cachep, | |
939 | struct array_cache *ac) | |
940 | { | |
941 | struct kmem_list3 *l3 = cachep->nodelists[numa_mem_id()]; | |
942 | struct slab *slabp; | |
943 | unsigned long flags; | |
944 | ||
945 | if (!pfmemalloc_active) | |
946 | return; | |
947 | ||
948 | spin_lock_irqsave(&l3->list_lock, flags); | |
949 | list_for_each_entry(slabp, &l3->slabs_full, list) | |
950 | if (is_slab_pfmemalloc(slabp)) | |
951 | goto out; | |
952 | ||
953 | list_for_each_entry(slabp, &l3->slabs_partial, list) | |
954 | if (is_slab_pfmemalloc(slabp)) | |
955 | goto out; | |
956 | ||
957 | list_for_each_entry(slabp, &l3->slabs_free, list) | |
958 | if (is_slab_pfmemalloc(slabp)) | |
959 | goto out; | |
960 | ||
961 | pfmemalloc_active = false; | |
962 | out: | |
963 | spin_unlock_irqrestore(&l3->list_lock, flags); | |
964 | } | |
965 | ||
381760ea | 966 | static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac, |
072bb0aa MG |
967 | gfp_t flags, bool force_refill) |
968 | { | |
969 | int i; | |
970 | void *objp = ac->entry[--ac->avail]; | |
971 | ||
972 | /* Ensure the caller is allowed to use objects from PFMEMALLOC slab */ | |
973 | if (unlikely(is_obj_pfmemalloc(objp))) { | |
974 | struct kmem_list3 *l3; | |
975 | ||
976 | if (gfp_pfmemalloc_allowed(flags)) { | |
977 | clear_obj_pfmemalloc(&objp); | |
978 | return objp; | |
979 | } | |
980 | ||
981 | /* The caller cannot use PFMEMALLOC objects, find another one */ | |
d014dc2e | 982 | for (i = 0; i < ac->avail; i++) { |
072bb0aa MG |
983 | /* If a !PFMEMALLOC object is found, swap them */ |
984 | if (!is_obj_pfmemalloc(ac->entry[i])) { | |
985 | objp = ac->entry[i]; | |
986 | ac->entry[i] = ac->entry[ac->avail]; | |
987 | ac->entry[ac->avail] = objp; | |
988 | return objp; | |
989 | } | |
990 | } | |
991 | ||
992 | /* | |
993 | * If there are empty slabs on the slabs_free list and we are | |
994 | * being forced to refill the cache, mark this one !pfmemalloc. | |
995 | */ | |
996 | l3 = cachep->nodelists[numa_mem_id()]; | |
997 | if (!list_empty(&l3->slabs_free) && force_refill) { | |
998 | struct slab *slabp = virt_to_slab(objp); | |
30c29bea | 999 | ClearPageSlabPfmemalloc(virt_to_head_page(slabp->s_mem)); |
072bb0aa MG |
1000 | clear_obj_pfmemalloc(&objp); |
1001 | recheck_pfmemalloc_active(cachep, ac); | |
1002 | return objp; | |
1003 | } | |
1004 | ||
1005 | /* No !PFMEMALLOC objects available */ | |
1006 | ac->avail++; | |
1007 | objp = NULL; | |
1008 | } | |
1009 | ||
1010 | return objp; | |
1011 | } | |
1012 | ||
381760ea MG |
1013 | static inline void *ac_get_obj(struct kmem_cache *cachep, |
1014 | struct array_cache *ac, gfp_t flags, bool force_refill) | |
1015 | { | |
1016 | void *objp; | |
1017 | ||
1018 | if (unlikely(sk_memalloc_socks())) | |
1019 | objp = __ac_get_obj(cachep, ac, flags, force_refill); | |
1020 | else | |
1021 | objp = ac->entry[--ac->avail]; | |
1022 | ||
1023 | return objp; | |
1024 | } | |
1025 | ||
1026 | static void *__ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac, | |
072bb0aa MG |
1027 | void *objp) |
1028 | { | |
1029 | if (unlikely(pfmemalloc_active)) { | |
1030 | /* Some pfmemalloc slabs exist, check if this is one */ | |
30c29bea | 1031 | struct page *page = virt_to_head_page(objp); |
072bb0aa MG |
1032 | if (PageSlabPfmemalloc(page)) |
1033 | set_obj_pfmemalloc(&objp); | |
1034 | } | |
1035 | ||
381760ea MG |
1036 | return objp; |
1037 | } | |
1038 | ||
1039 | static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac, | |
1040 | void *objp) | |
1041 | { | |
1042 | if (unlikely(sk_memalloc_socks())) | |
1043 | objp = __ac_put_obj(cachep, ac, objp); | |
1044 | ||
072bb0aa MG |
1045 | ac->entry[ac->avail++] = objp; |
1046 | } | |
1047 | ||
3ded175a CL |
1048 | /* |
1049 | * Transfer objects in one arraycache to another. | |
1050 | * Locking must be handled by the caller. | |
1051 | * | |
1052 | * Return the number of entries transferred. | |
1053 | */ | |
1054 | static int transfer_objects(struct array_cache *to, | |
1055 | struct array_cache *from, unsigned int max) | |
1056 | { | |
1057 | /* Figure out how many entries to transfer */ | |
732eacc0 | 1058 | int nr = min3(from->avail, max, to->limit - to->avail); |
3ded175a CL |
1059 | |
1060 | if (!nr) | |
1061 | return 0; | |
1062 | ||
1063 | memcpy(to->entry + to->avail, from->entry + from->avail -nr, | |
1064 | sizeof(void *) *nr); | |
1065 | ||
1066 | from->avail -= nr; | |
1067 | to->avail += nr; | |
3ded175a CL |
1068 | return nr; |
1069 | } | |
1070 | ||
765c4507 CL |
1071 | #ifndef CONFIG_NUMA |
1072 | ||
1073 | #define drain_alien_cache(cachep, alien) do { } while (0) | |
1074 | #define reap_alien(cachep, l3) do { } while (0) | |
1075 | ||
83b519e8 | 1076 | static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp) |
765c4507 CL |
1077 | { |
1078 | return (struct array_cache **)BAD_ALIEN_MAGIC; | |
1079 | } | |
1080 | ||
1081 | static inline void free_alien_cache(struct array_cache **ac_ptr) | |
1082 | { | |
1083 | } | |
1084 | ||
1085 | static inline int cache_free_alien(struct kmem_cache *cachep, void *objp) | |
1086 | { | |
1087 | return 0; | |
1088 | } | |
1089 | ||
1090 | static inline void *alternate_node_alloc(struct kmem_cache *cachep, | |
1091 | gfp_t flags) | |
1092 | { | |
1093 | return NULL; | |
1094 | } | |
1095 | ||
8b98c169 | 1096 | static inline void *____cache_alloc_node(struct kmem_cache *cachep, |
765c4507 CL |
1097 | gfp_t flags, int nodeid) |
1098 | { | |
1099 | return NULL; | |
1100 | } | |
1101 | ||
1102 | #else /* CONFIG_NUMA */ | |
1103 | ||
8b98c169 | 1104 | static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int); |
c61afb18 | 1105 | static void *alternate_node_alloc(struct kmem_cache *, gfp_t); |
dc85da15 | 1106 | |
83b519e8 | 1107 | static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp) |
e498be7d CL |
1108 | { |
1109 | struct array_cache **ac_ptr; | |
8ef82866 | 1110 | int memsize = sizeof(void *) * nr_node_ids; |
e498be7d CL |
1111 | int i; |
1112 | ||
1113 | if (limit > 1) | |
1114 | limit = 12; | |
f3186a9c | 1115 | ac_ptr = kzalloc_node(memsize, gfp, node); |
e498be7d CL |
1116 | if (ac_ptr) { |
1117 | for_each_node(i) { | |
f3186a9c | 1118 | if (i == node || !node_online(i)) |
e498be7d | 1119 | continue; |
83b519e8 | 1120 | ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp); |
e498be7d | 1121 | if (!ac_ptr[i]) { |
cc550def | 1122 | for (i--; i >= 0; i--) |
e498be7d CL |
1123 | kfree(ac_ptr[i]); |
1124 | kfree(ac_ptr); | |
1125 | return NULL; | |
1126 | } | |
1127 | } | |
1128 | } | |
1129 | return ac_ptr; | |
1130 | } | |
1131 | ||
5295a74c | 1132 | static void free_alien_cache(struct array_cache **ac_ptr) |
e498be7d CL |
1133 | { |
1134 | int i; | |
1135 | ||
1136 | if (!ac_ptr) | |
1137 | return; | |
e498be7d | 1138 | for_each_node(i) |
b28a02de | 1139 | kfree(ac_ptr[i]); |
e498be7d CL |
1140 | kfree(ac_ptr); |
1141 | } | |
1142 | ||
343e0d7a | 1143 | static void __drain_alien_cache(struct kmem_cache *cachep, |
5295a74c | 1144 | struct array_cache *ac, int node) |
e498be7d CL |
1145 | { |
1146 | struct kmem_list3 *rl3 = cachep->nodelists[node]; | |
1147 | ||
1148 | if (ac->avail) { | |
1149 | spin_lock(&rl3->list_lock); | |
e00946fe CL |
1150 | /* |
1151 | * Stuff objects into the remote nodes shared array first. | |
1152 | * That way we could avoid the overhead of putting the objects | |
1153 | * into the free lists and getting them back later. | |
1154 | */ | |
693f7d36 JS |
1155 | if (rl3->shared) |
1156 | transfer_objects(rl3->shared, ac, ac->limit); | |
e00946fe | 1157 | |
ff69416e | 1158 | free_block(cachep, ac->entry, ac->avail, node); |
e498be7d CL |
1159 | ac->avail = 0; |
1160 | spin_unlock(&rl3->list_lock); | |
1161 | } | |
1162 | } | |
1163 | ||
8fce4d8e CL |
1164 | /* |
1165 | * Called from cache_reap() to regularly drain alien caches round robin. | |
1166 | */ | |
1167 | static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3) | |
1168 | { | |
909ea964 | 1169 | int node = __this_cpu_read(slab_reap_node); |
8fce4d8e CL |
1170 | |
1171 | if (l3->alien) { | |
1172 | struct array_cache *ac = l3->alien[node]; | |
e00946fe CL |
1173 | |
1174 | if (ac && ac->avail && spin_trylock_irq(&ac->lock)) { | |
8fce4d8e CL |
1175 | __drain_alien_cache(cachep, ac, node); |
1176 | spin_unlock_irq(&ac->lock); | |
1177 | } | |
1178 | } | |
1179 | } | |
1180 | ||
a737b3e2 AM |
1181 | static void drain_alien_cache(struct kmem_cache *cachep, |
1182 | struct array_cache **alien) | |
e498be7d | 1183 | { |
b28a02de | 1184 | int i = 0; |
e498be7d CL |
1185 | struct array_cache *ac; |
1186 | unsigned long flags; | |
1187 | ||
1188 | for_each_online_node(i) { | |
4484ebf1 | 1189 | ac = alien[i]; |
e498be7d CL |
1190 | if (ac) { |
1191 | spin_lock_irqsave(&ac->lock, flags); | |
1192 | __drain_alien_cache(cachep, ac, i); | |
1193 | spin_unlock_irqrestore(&ac->lock, flags); | |
1194 | } | |
1195 | } | |
1196 | } | |
729bd0b7 | 1197 | |
873623df | 1198 | static inline int cache_free_alien(struct kmem_cache *cachep, void *objp) |
729bd0b7 PE |
1199 | { |
1200 | struct slab *slabp = virt_to_slab(objp); | |
1201 | int nodeid = slabp->nodeid; | |
1202 | struct kmem_list3 *l3; | |
1203 | struct array_cache *alien = NULL; | |
1ca4cb24 PE |
1204 | int node; |
1205 | ||
7d6e6d09 | 1206 | node = numa_mem_id(); |
729bd0b7 PE |
1207 | |
1208 | /* | |
1209 | * Make sure we are not freeing a object from another node to the array | |
1210 | * cache on this cpu. | |
1211 | */ | |
62918a03 | 1212 | if (likely(slabp->nodeid == node)) |
729bd0b7 PE |
1213 | return 0; |
1214 | ||
1ca4cb24 | 1215 | l3 = cachep->nodelists[node]; |
729bd0b7 PE |
1216 | STATS_INC_NODEFREES(cachep); |
1217 | if (l3->alien && l3->alien[nodeid]) { | |
1218 | alien = l3->alien[nodeid]; | |
873623df | 1219 | spin_lock(&alien->lock); |
729bd0b7 PE |
1220 | if (unlikely(alien->avail == alien->limit)) { |
1221 | STATS_INC_ACOVERFLOW(cachep); | |
1222 | __drain_alien_cache(cachep, alien, nodeid); | |
1223 | } | |
072bb0aa | 1224 | ac_put_obj(cachep, alien, objp); |
729bd0b7 PE |
1225 | spin_unlock(&alien->lock); |
1226 | } else { | |
1227 | spin_lock(&(cachep->nodelists[nodeid])->list_lock); | |
1228 | free_block(cachep, &objp, 1, nodeid); | |
1229 | spin_unlock(&(cachep->nodelists[nodeid])->list_lock); | |
1230 | } | |
1231 | return 1; | |
1232 | } | |
e498be7d CL |
1233 | #endif |
1234 | ||
8f9f8d9e DR |
1235 | /* |
1236 | * Allocates and initializes nodelists for a node on each slab cache, used for | |
1237 | * either memory or cpu hotplug. If memory is being hot-added, the kmem_list3 | |
1238 | * will be allocated off-node since memory is not yet online for the new node. | |
1239 | * When hotplugging memory or a cpu, existing nodelists are not replaced if | |
1240 | * already in use. | |
1241 | * | |
18004c5d | 1242 | * Must hold slab_mutex. |
8f9f8d9e DR |
1243 | */ |
1244 | static int init_cache_nodelists_node(int node) | |
1245 | { | |
1246 | struct kmem_cache *cachep; | |
1247 | struct kmem_list3 *l3; | |
1248 | const int memsize = sizeof(struct kmem_list3); | |
1249 | ||
18004c5d | 1250 | list_for_each_entry(cachep, &slab_caches, list) { |
8f9f8d9e DR |
1251 | /* |
1252 | * Set up the size64 kmemlist for cpu before we can | |
1253 | * begin anything. Make sure some other cpu on this | |
1254 | * node has not already allocated this | |
1255 | */ | |
1256 | if (!cachep->nodelists[node]) { | |
1257 | l3 = kmalloc_node(memsize, GFP_KERNEL, node); | |
1258 | if (!l3) | |
1259 | return -ENOMEM; | |
1260 | kmem_list3_init(l3); | |
1261 | l3->next_reap = jiffies + REAPTIMEOUT_LIST3 + | |
1262 | ((unsigned long)cachep) % REAPTIMEOUT_LIST3; | |
1263 | ||
1264 | /* | |
1265 | * The l3s don't come and go as CPUs come and | |
18004c5d | 1266 | * go. slab_mutex is sufficient |
8f9f8d9e DR |
1267 | * protection here. |
1268 | */ | |
1269 | cachep->nodelists[node] = l3; | |
1270 | } | |
1271 | ||
1272 | spin_lock_irq(&cachep->nodelists[node]->list_lock); | |
1273 | cachep->nodelists[node]->free_limit = | |
1274 | (1 + nr_cpus_node(node)) * | |
1275 | cachep->batchcount + cachep->num; | |
1276 | spin_unlock_irq(&cachep->nodelists[node]->list_lock); | |
1277 | } | |
1278 | return 0; | |
1279 | } | |
1280 | ||
fbf1e473 AM |
1281 | static void __cpuinit cpuup_canceled(long cpu) |
1282 | { | |
1283 | struct kmem_cache *cachep; | |
1284 | struct kmem_list3 *l3 = NULL; | |
7d6e6d09 | 1285 | int node = cpu_to_mem(cpu); |
a70f7302 | 1286 | const struct cpumask *mask = cpumask_of_node(node); |
fbf1e473 | 1287 | |
18004c5d | 1288 | list_for_each_entry(cachep, &slab_caches, list) { |
fbf1e473 AM |
1289 | struct array_cache *nc; |
1290 | struct array_cache *shared; | |
1291 | struct array_cache **alien; | |
fbf1e473 | 1292 | |
fbf1e473 AM |
1293 | /* cpu is dead; no one can alloc from it. */ |
1294 | nc = cachep->array[cpu]; | |
1295 | cachep->array[cpu] = NULL; | |
1296 | l3 = cachep->nodelists[node]; | |
1297 | ||
1298 | if (!l3) | |
1299 | goto free_array_cache; | |
1300 | ||
1301 | spin_lock_irq(&l3->list_lock); | |
1302 | ||
1303 | /* Free limit for this kmem_list3 */ | |
1304 | l3->free_limit -= cachep->batchcount; | |
1305 | if (nc) | |
1306 | free_block(cachep, nc->entry, nc->avail, node); | |
1307 | ||
58463c1f | 1308 | if (!cpumask_empty(mask)) { |
fbf1e473 AM |
1309 | spin_unlock_irq(&l3->list_lock); |
1310 | goto free_array_cache; | |
1311 | } | |
1312 | ||
1313 | shared = l3->shared; | |
1314 | if (shared) { | |
1315 | free_block(cachep, shared->entry, | |
1316 | shared->avail, node); | |
1317 | l3->shared = NULL; | |
1318 | } | |
1319 | ||
1320 | alien = l3->alien; | |
1321 | l3->alien = NULL; | |
1322 | ||
1323 | spin_unlock_irq(&l3->list_lock); | |
1324 | ||
1325 | kfree(shared); | |
1326 | if (alien) { | |
1327 | drain_alien_cache(cachep, alien); | |
1328 | free_alien_cache(alien); | |
1329 | } | |
1330 | free_array_cache: | |
1331 | kfree(nc); | |
1332 | } | |
1333 | /* | |
1334 | * In the previous loop, all the objects were freed to | |
1335 | * the respective cache's slabs, now we can go ahead and | |
1336 | * shrink each nodelist to its limit. | |
1337 | */ | |
18004c5d | 1338 | list_for_each_entry(cachep, &slab_caches, list) { |
fbf1e473 AM |
1339 | l3 = cachep->nodelists[node]; |
1340 | if (!l3) | |
1341 | continue; | |
1342 | drain_freelist(cachep, l3, l3->free_objects); | |
1343 | } | |
1344 | } | |
1345 | ||
1346 | static int __cpuinit cpuup_prepare(long cpu) | |
1da177e4 | 1347 | { |
343e0d7a | 1348 | struct kmem_cache *cachep; |
e498be7d | 1349 | struct kmem_list3 *l3 = NULL; |
7d6e6d09 | 1350 | int node = cpu_to_mem(cpu); |
8f9f8d9e | 1351 | int err; |
1da177e4 | 1352 | |
fbf1e473 AM |
1353 | /* |
1354 | * We need to do this right in the beginning since | |
1355 | * alloc_arraycache's are going to use this list. | |
1356 | * kmalloc_node allows us to add the slab to the right | |
1357 | * kmem_list3 and not this cpu's kmem_list3 | |
1358 | */ | |
8f9f8d9e DR |
1359 | err = init_cache_nodelists_node(node); |
1360 | if (err < 0) | |
1361 | goto bad; | |
fbf1e473 AM |
1362 | |
1363 | /* | |
1364 | * Now we can go ahead with allocating the shared arrays and | |
1365 | * array caches | |
1366 | */ | |
18004c5d | 1367 | list_for_each_entry(cachep, &slab_caches, list) { |
fbf1e473 AM |
1368 | struct array_cache *nc; |
1369 | struct array_cache *shared = NULL; | |
1370 | struct array_cache **alien = NULL; | |
1371 | ||
1372 | nc = alloc_arraycache(node, cachep->limit, | |
83b519e8 | 1373 | cachep->batchcount, GFP_KERNEL); |
fbf1e473 AM |
1374 | if (!nc) |
1375 | goto bad; | |
1376 | if (cachep->shared) { | |
1377 | shared = alloc_arraycache(node, | |
1378 | cachep->shared * cachep->batchcount, | |
83b519e8 | 1379 | 0xbaadf00d, GFP_KERNEL); |
12d00f6a AM |
1380 | if (!shared) { |
1381 | kfree(nc); | |
1da177e4 | 1382 | goto bad; |
12d00f6a | 1383 | } |
fbf1e473 AM |
1384 | } |
1385 | if (use_alien_caches) { | |
83b519e8 | 1386 | alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL); |
12d00f6a AM |
1387 | if (!alien) { |
1388 | kfree(shared); | |
1389 | kfree(nc); | |
fbf1e473 | 1390 | goto bad; |
12d00f6a | 1391 | } |
fbf1e473 AM |
1392 | } |
1393 | cachep->array[cpu] = nc; | |
1394 | l3 = cachep->nodelists[node]; | |
1395 | BUG_ON(!l3); | |
1396 | ||
1397 | spin_lock_irq(&l3->list_lock); | |
1398 | if (!l3->shared) { | |
1399 | /* | |
1400 | * We are serialised from CPU_DEAD or | |
1401 | * CPU_UP_CANCELLED by the cpucontrol lock | |
1402 | */ | |
1403 | l3->shared = shared; | |
1404 | shared = NULL; | |
1405 | } | |
4484ebf1 | 1406 | #ifdef CONFIG_NUMA |
fbf1e473 AM |
1407 | if (!l3->alien) { |
1408 | l3->alien = alien; | |
1409 | alien = NULL; | |
1da177e4 | 1410 | } |
fbf1e473 AM |
1411 | #endif |
1412 | spin_unlock_irq(&l3->list_lock); | |
1413 | kfree(shared); | |
1414 | free_alien_cache(alien); | |
83835b3d PZ |
1415 | if (cachep->flags & SLAB_DEBUG_OBJECTS) |
1416 | slab_set_debugobj_lock_classes_node(cachep, node); | |
6ccfb5bc GC |
1417 | else if (!OFF_SLAB(cachep) && |
1418 | !(cachep->flags & SLAB_DESTROY_BY_RCU)) | |
1419 | on_slab_lock_classes_node(cachep, node); | |
fbf1e473 | 1420 | } |
ce79ddc8 PE |
1421 | init_node_lock_keys(node); |
1422 | ||
fbf1e473 AM |
1423 | return 0; |
1424 | bad: | |
12d00f6a | 1425 | cpuup_canceled(cpu); |
fbf1e473 AM |
1426 | return -ENOMEM; |
1427 | } | |
1428 | ||
1429 | static int __cpuinit cpuup_callback(struct notifier_block *nfb, | |
1430 | unsigned long action, void *hcpu) | |
1431 | { | |
1432 | long cpu = (long)hcpu; | |
1433 | int err = 0; | |
1434 | ||
1435 | switch (action) { | |
fbf1e473 AM |
1436 | case CPU_UP_PREPARE: |
1437 | case CPU_UP_PREPARE_FROZEN: | |
18004c5d | 1438 | mutex_lock(&slab_mutex); |
fbf1e473 | 1439 | err = cpuup_prepare(cpu); |
18004c5d | 1440 | mutex_unlock(&slab_mutex); |
1da177e4 LT |
1441 | break; |
1442 | case CPU_ONLINE: | |
8bb78442 | 1443 | case CPU_ONLINE_FROZEN: |
1da177e4 LT |
1444 | start_cpu_timer(cpu); |
1445 | break; | |
1446 | #ifdef CONFIG_HOTPLUG_CPU | |
5830c590 | 1447 | case CPU_DOWN_PREPARE: |
8bb78442 | 1448 | case CPU_DOWN_PREPARE_FROZEN: |
5830c590 | 1449 | /* |
18004c5d | 1450 | * Shutdown cache reaper. Note that the slab_mutex is |
5830c590 CL |
1451 | * held so that if cache_reap() is invoked it cannot do |
1452 | * anything expensive but will only modify reap_work | |
1453 | * and reschedule the timer. | |
1454 | */ | |
afe2c511 | 1455 | cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu)); |
5830c590 | 1456 | /* Now the cache_reaper is guaranteed to be not running. */ |
1871e52c | 1457 | per_cpu(slab_reap_work, cpu).work.func = NULL; |
5830c590 CL |
1458 | break; |
1459 | case CPU_DOWN_FAILED: | |
8bb78442 | 1460 | case CPU_DOWN_FAILED_FROZEN: |
5830c590 CL |
1461 | start_cpu_timer(cpu); |
1462 | break; | |
1da177e4 | 1463 | case CPU_DEAD: |
8bb78442 | 1464 | case CPU_DEAD_FROZEN: |
4484ebf1 RT |
1465 | /* |
1466 | * Even if all the cpus of a node are down, we don't free the | |
1467 | * kmem_list3 of any cache. This to avoid a race between | |
1468 | * cpu_down, and a kmalloc allocation from another cpu for | |
1469 | * memory from the node of the cpu going down. The list3 | |
1470 | * structure is usually allocated from kmem_cache_create() and | |
1471 | * gets destroyed at kmem_cache_destroy(). | |
1472 | */ | |
183ff22b | 1473 | /* fall through */ |
8f5be20b | 1474 | #endif |
1da177e4 | 1475 | case CPU_UP_CANCELED: |
8bb78442 | 1476 | case CPU_UP_CANCELED_FROZEN: |
18004c5d | 1477 | mutex_lock(&slab_mutex); |
fbf1e473 | 1478 | cpuup_canceled(cpu); |
18004c5d | 1479 | mutex_unlock(&slab_mutex); |
1da177e4 | 1480 | break; |
1da177e4 | 1481 | } |
eac40680 | 1482 | return notifier_from_errno(err); |
1da177e4 LT |
1483 | } |
1484 | ||
74b85f37 CS |
1485 | static struct notifier_block __cpuinitdata cpucache_notifier = { |
1486 | &cpuup_callback, NULL, 0 | |
1487 | }; | |
1da177e4 | 1488 | |
8f9f8d9e DR |
1489 | #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG) |
1490 | /* | |
1491 | * Drains freelist for a node on each slab cache, used for memory hot-remove. | |
1492 | * Returns -EBUSY if all objects cannot be drained so that the node is not | |
1493 | * removed. | |
1494 | * | |
18004c5d | 1495 | * Must hold slab_mutex. |
8f9f8d9e DR |
1496 | */ |
1497 | static int __meminit drain_cache_nodelists_node(int node) | |
1498 | { | |
1499 | struct kmem_cache *cachep; | |
1500 | int ret = 0; | |
1501 | ||
18004c5d | 1502 | list_for_each_entry(cachep, &slab_caches, list) { |
8f9f8d9e DR |
1503 | struct kmem_list3 *l3; |
1504 | ||
1505 | l3 = cachep->nodelists[node]; | |
1506 | if (!l3) | |
1507 | continue; | |
1508 | ||
1509 | drain_freelist(cachep, l3, l3->free_objects); | |
1510 | ||
1511 | if (!list_empty(&l3->slabs_full) || | |
1512 | !list_empty(&l3->slabs_partial)) { | |
1513 | ret = -EBUSY; | |
1514 | break; | |
1515 | } | |
1516 | } | |
1517 | return ret; | |
1518 | } | |
1519 | ||
1520 | static int __meminit slab_memory_callback(struct notifier_block *self, | |
1521 | unsigned long action, void *arg) | |
1522 | { | |
1523 | struct memory_notify *mnb = arg; | |
1524 | int ret = 0; | |
1525 | int nid; | |
1526 | ||
1527 | nid = mnb->status_change_nid; | |
1528 | if (nid < 0) | |
1529 | goto out; | |
1530 | ||
1531 | switch (action) { | |
1532 | case MEM_GOING_ONLINE: | |
18004c5d | 1533 | mutex_lock(&slab_mutex); |
8f9f8d9e | 1534 | ret = init_cache_nodelists_node(nid); |
18004c5d | 1535 | mutex_unlock(&slab_mutex); |
8f9f8d9e DR |
1536 | break; |
1537 | case MEM_GOING_OFFLINE: | |
18004c5d | 1538 | mutex_lock(&slab_mutex); |
8f9f8d9e | 1539 | ret = drain_cache_nodelists_node(nid); |
18004c5d | 1540 | mutex_unlock(&slab_mutex); |
8f9f8d9e DR |
1541 | break; |
1542 | case MEM_ONLINE: | |
1543 | case MEM_OFFLINE: | |
1544 | case MEM_CANCEL_ONLINE: | |
1545 | case MEM_CANCEL_OFFLINE: | |
1546 | break; | |
1547 | } | |
1548 | out: | |
5fda1bd5 | 1549 | return notifier_from_errno(ret); |
8f9f8d9e DR |
1550 | } |
1551 | #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */ | |
1552 | ||
e498be7d CL |
1553 | /* |
1554 | * swap the static kmem_list3 with kmalloced memory | |
1555 | */ | |
8f9f8d9e DR |
1556 | static void __init init_list(struct kmem_cache *cachep, struct kmem_list3 *list, |
1557 | int nodeid) | |
e498be7d CL |
1558 | { |
1559 | struct kmem_list3 *ptr; | |
1560 | ||
83b519e8 | 1561 | ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_NOWAIT, nodeid); |
e498be7d CL |
1562 | BUG_ON(!ptr); |
1563 | ||
e498be7d | 1564 | memcpy(ptr, list, sizeof(struct kmem_list3)); |
2b2d5493 IM |
1565 | /* |
1566 | * Do not assume that spinlocks can be initialized via memcpy: | |
1567 | */ | |
1568 | spin_lock_init(&ptr->list_lock); | |
1569 | ||
e498be7d CL |
1570 | MAKE_ALL_LISTS(cachep, ptr, nodeid); |
1571 | cachep->nodelists[nodeid] = ptr; | |
e498be7d CL |
1572 | } |
1573 | ||
556a169d PE |
1574 | /* |
1575 | * For setting up all the kmem_list3s for cache whose buffer_size is same as | |
1576 | * size of kmem_list3. | |
1577 | */ | |
1578 | static void __init set_up_list3s(struct kmem_cache *cachep, int index) | |
1579 | { | |
1580 | int node; | |
1581 | ||
1582 | for_each_online_node(node) { | |
1583 | cachep->nodelists[node] = &initkmem_list3[index + node]; | |
1584 | cachep->nodelists[node]->next_reap = jiffies + | |
1585 | REAPTIMEOUT_LIST3 + | |
1586 | ((unsigned long)cachep) % REAPTIMEOUT_LIST3; | |
1587 | } | |
1588 | } | |
1589 | ||
3c583465 CL |
1590 | /* |
1591 | * The memory after the last cpu cache pointer is used for the | |
1592 | * the nodelists pointer. | |
1593 | */ | |
1594 | static void setup_nodelists_pointer(struct kmem_cache *cachep) | |
1595 | { | |
1596 | cachep->nodelists = (struct kmem_list3 **)&cachep->array[nr_cpu_ids]; | |
1597 | } | |
1598 | ||
a737b3e2 AM |
1599 | /* |
1600 | * Initialisation. Called after the page allocator have been initialised and | |
1601 | * before smp_init(). | |
1da177e4 LT |
1602 | */ |
1603 | void __init kmem_cache_init(void) | |
1604 | { | |
1da177e4 LT |
1605 | struct cache_sizes *sizes; |
1606 | struct cache_names *names; | |
e498be7d CL |
1607 | int i; |
1608 | ||
9b030cb8 | 1609 | kmem_cache = &kmem_cache_boot; |
3c583465 | 1610 | setup_nodelists_pointer(kmem_cache); |
9b030cb8 | 1611 | |
b6e68bc1 | 1612 | if (num_possible_nodes() == 1) |
62918a03 SS |
1613 | use_alien_caches = 0; |
1614 | ||
3c583465 | 1615 | for (i = 0; i < NUM_INIT_LISTS; i++) |
e498be7d | 1616 | kmem_list3_init(&initkmem_list3[i]); |
3c583465 | 1617 | |
9b030cb8 | 1618 | set_up_list3s(kmem_cache, CACHE_CACHE); |
1da177e4 LT |
1619 | |
1620 | /* | |
1621 | * Fragmentation resistance on low memory - only use bigger | |
3df1cccd DR |
1622 | * page orders on machines with more than 32MB of memory if |
1623 | * not overridden on the command line. | |
1da177e4 | 1624 | */ |
3df1cccd | 1625 | if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT) |
543585cc | 1626 | slab_max_order = SLAB_MAX_ORDER_HI; |
1da177e4 | 1627 | |
1da177e4 LT |
1628 | /* Bootstrap is tricky, because several objects are allocated |
1629 | * from caches that do not exist yet: | |
9b030cb8 CL |
1630 | * 1) initialize the kmem_cache cache: it contains the struct |
1631 | * kmem_cache structures of all caches, except kmem_cache itself: | |
1632 | * kmem_cache is statically allocated. | |
e498be7d CL |
1633 | * Initially an __init data area is used for the head array and the |
1634 | * kmem_list3 structures, it's replaced with a kmalloc allocated | |
1635 | * array at the end of the bootstrap. | |
1da177e4 | 1636 | * 2) Create the first kmalloc cache. |
343e0d7a | 1637 | * The struct kmem_cache for the new cache is allocated normally. |
e498be7d CL |
1638 | * An __init data area is used for the head array. |
1639 | * 3) Create the remaining kmalloc caches, with minimally sized | |
1640 | * head arrays. | |
9b030cb8 | 1641 | * 4) Replace the __init data head arrays for kmem_cache and the first |
1da177e4 | 1642 | * kmalloc cache with kmalloc allocated arrays. |
9b030cb8 | 1643 | * 5) Replace the __init data for kmem_list3 for kmem_cache and |
e498be7d CL |
1644 | * the other cache's with kmalloc allocated memory. |
1645 | * 6) Resize the head arrays of the kmalloc caches to their final sizes. | |
1da177e4 LT |
1646 | */ |
1647 | ||
9b030cb8 | 1648 | /* 1) create the kmem_cache */ |
1da177e4 | 1649 | |
8da3430d | 1650 | /* |
b56efcf0 | 1651 | * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids |
8da3430d | 1652 | */ |
2f9baa9f CL |
1653 | create_boot_cache(kmem_cache, "kmem_cache", |
1654 | offsetof(struct kmem_cache, array[nr_cpu_ids]) + | |
1655 | nr_node_ids * sizeof(struct kmem_list3 *), | |
1656 | SLAB_HWCACHE_ALIGN); | |
1657 | list_add(&kmem_cache->list, &slab_caches); | |
1da177e4 LT |
1658 | |
1659 | /* 2+3) create the kmalloc caches */ | |
1660 | sizes = malloc_sizes; | |
1661 | names = cache_names; | |
1662 | ||
a737b3e2 AM |
1663 | /* |
1664 | * Initialize the caches that provide memory for the array cache and the | |
1665 | * kmem_list3 structures first. Without this, further allocations will | |
1666 | * bug. | |
e498be7d CL |
1667 | */ |
1668 | ||
45530c44 CL |
1669 | sizes[INDEX_AC].cs_cachep = create_kmalloc_cache(names[INDEX_AC].name, |
1670 | sizes[INDEX_AC].cs_size, ARCH_KMALLOC_FLAGS); | |
1671 | ||
1672 | if (INDEX_AC != INDEX_L3) | |
1673 | sizes[INDEX_L3].cs_cachep = | |
1674 | create_kmalloc_cache(names[INDEX_L3].name, | |
1675 | sizes[INDEX_L3].cs_size, ARCH_KMALLOC_FLAGS); | |
e498be7d | 1676 | |
e0a42726 IM |
1677 | slab_early_init = 0; |
1678 | ||
1da177e4 | 1679 | while (sizes->cs_size != ULONG_MAX) { |
e498be7d CL |
1680 | /* |
1681 | * For performance, all the general caches are L1 aligned. | |
1da177e4 LT |
1682 | * This should be particularly beneficial on SMP boxes, as it |
1683 | * eliminates "false sharing". | |
1684 | * Note for systems short on memory removing the alignment will | |
e498be7d CL |
1685 | * allow tighter packing of the smaller caches. |
1686 | */ | |
45530c44 CL |
1687 | if (!sizes->cs_cachep) |
1688 | sizes->cs_cachep = create_kmalloc_cache(names->name, | |
1689 | sizes->cs_size, ARCH_KMALLOC_FLAGS); | |
1690 | ||
4b51d669 | 1691 | #ifdef CONFIG_ZONE_DMA |
45530c44 CL |
1692 | sizes->cs_dmacachep = create_kmalloc_cache( |
1693 | names->name_dma, sizes->cs_size, | |
1694 | SLAB_CACHE_DMA|ARCH_KMALLOC_FLAGS); | |
4b51d669 | 1695 | #endif |
1da177e4 LT |
1696 | sizes++; |
1697 | names++; | |
1698 | } | |
1699 | /* 4) Replace the bootstrap head arrays */ | |
1700 | { | |
2b2d5493 | 1701 | struct array_cache *ptr; |
e498be7d | 1702 | |
83b519e8 | 1703 | ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT); |
e498be7d | 1704 | |
9b030cb8 | 1705 | memcpy(ptr, cpu_cache_get(kmem_cache), |
b28a02de | 1706 | sizeof(struct arraycache_init)); |
2b2d5493 IM |
1707 | /* |
1708 | * Do not assume that spinlocks can be initialized via memcpy: | |
1709 | */ | |
1710 | spin_lock_init(&ptr->lock); | |
1711 | ||
9b030cb8 | 1712 | kmem_cache->array[smp_processor_id()] = ptr; |
e498be7d | 1713 | |
83b519e8 | 1714 | ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT); |
e498be7d | 1715 | |
9a2dba4b | 1716 | BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep) |
b28a02de | 1717 | != &initarray_generic.cache); |
9a2dba4b | 1718 | memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep), |
b28a02de | 1719 | sizeof(struct arraycache_init)); |
2b2d5493 IM |
1720 | /* |
1721 | * Do not assume that spinlocks can be initialized via memcpy: | |
1722 | */ | |
1723 | spin_lock_init(&ptr->lock); | |
1724 | ||
e498be7d | 1725 | malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] = |
b28a02de | 1726 | ptr; |
1da177e4 | 1727 | } |
e498be7d CL |
1728 | /* 5) Replace the bootstrap kmem_list3's */ |
1729 | { | |
1ca4cb24 PE |
1730 | int nid; |
1731 | ||
9c09a95c | 1732 | for_each_online_node(nid) { |
9b030cb8 | 1733 | init_list(kmem_cache, &initkmem_list3[CACHE_CACHE + nid], nid); |
556a169d | 1734 | |
e498be7d | 1735 | init_list(malloc_sizes[INDEX_AC].cs_cachep, |
1ca4cb24 | 1736 | &initkmem_list3[SIZE_AC + nid], nid); |
e498be7d CL |
1737 | |
1738 | if (INDEX_AC != INDEX_L3) { | |
1739 | init_list(malloc_sizes[INDEX_L3].cs_cachep, | |
1ca4cb24 | 1740 | &initkmem_list3[SIZE_L3 + nid], nid); |
e498be7d CL |
1741 | } |
1742 | } | |
1743 | } | |
1da177e4 | 1744 | |
97d06609 | 1745 | slab_state = UP; |
8429db5c PE |
1746 | } |
1747 | ||
1748 | void __init kmem_cache_init_late(void) | |
1749 | { | |
1750 | struct kmem_cache *cachep; | |
1751 | ||
97d06609 | 1752 | slab_state = UP; |
52cef189 | 1753 | |
8429db5c | 1754 | /* 6) resize the head arrays to their final sizes */ |
18004c5d CL |
1755 | mutex_lock(&slab_mutex); |
1756 | list_for_each_entry(cachep, &slab_caches, list) | |
8429db5c PE |
1757 | if (enable_cpucache(cachep, GFP_NOWAIT)) |
1758 | BUG(); | |
18004c5d | 1759 | mutex_unlock(&slab_mutex); |
056c6241 | 1760 | |
947ca185 MW |
1761 | /* Annotate slab for lockdep -- annotate the malloc caches */ |
1762 | init_lock_keys(); | |
1763 | ||
97d06609 CL |
1764 | /* Done! */ |
1765 | slab_state = FULL; | |
1766 | ||
a737b3e2 AM |
1767 | /* |
1768 | * Register a cpu startup notifier callback that initializes | |
1769 | * cpu_cache_get for all new cpus | |
1da177e4 LT |
1770 | */ |
1771 | register_cpu_notifier(&cpucache_notifier); | |
1da177e4 | 1772 | |
8f9f8d9e DR |
1773 | #ifdef CONFIG_NUMA |
1774 | /* | |
1775 | * Register a memory hotplug callback that initializes and frees | |
1776 | * nodelists. | |
1777 | */ | |
1778 | hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI); | |
1779 | #endif | |
1780 | ||
a737b3e2 AM |
1781 | /* |
1782 | * The reap timers are started later, with a module init call: That part | |
1783 | * of the kernel is not yet operational. | |
1da177e4 LT |
1784 | */ |
1785 | } | |
1786 | ||
1787 | static int __init cpucache_init(void) | |
1788 | { | |
1789 | int cpu; | |
1790 | ||
a737b3e2 AM |
1791 | /* |
1792 | * Register the timers that return unneeded pages to the page allocator | |
1da177e4 | 1793 | */ |
e498be7d | 1794 | for_each_online_cpu(cpu) |
a737b3e2 | 1795 | start_cpu_timer(cpu); |
a164f896 GC |
1796 | |
1797 | /* Done! */ | |
97d06609 | 1798 | slab_state = FULL; |
1da177e4 LT |
1799 | return 0; |
1800 | } | |
1da177e4 LT |
1801 | __initcall(cpucache_init); |
1802 | ||
8bdec192 RA |
1803 | static noinline void |
1804 | slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid) | |
1805 | { | |
1806 | struct kmem_list3 *l3; | |
1807 | struct slab *slabp; | |
1808 | unsigned long flags; | |
1809 | int node; | |
1810 | ||
1811 | printk(KERN_WARNING | |
1812 | "SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n", | |
1813 | nodeid, gfpflags); | |
1814 | printk(KERN_WARNING " cache: %s, object size: %d, order: %d\n", | |
3b0efdfa | 1815 | cachep->name, cachep->size, cachep->gfporder); |
8bdec192 RA |
1816 | |
1817 | for_each_online_node(node) { | |
1818 | unsigned long active_objs = 0, num_objs = 0, free_objects = 0; | |
1819 | unsigned long active_slabs = 0, num_slabs = 0; | |
1820 | ||
1821 | l3 = cachep->nodelists[node]; | |
1822 | if (!l3) | |
1823 | continue; | |
1824 | ||
1825 | spin_lock_irqsave(&l3->list_lock, flags); | |
1826 | list_for_each_entry(slabp, &l3->slabs_full, list) { | |
1827 | active_objs += cachep->num; | |
1828 | active_slabs++; | |
1829 | } | |
1830 | list_for_each_entry(slabp, &l3->slabs_partial, list) { | |
1831 | active_objs += slabp->inuse; | |
1832 | active_slabs++; | |
1833 | } | |
1834 | list_for_each_entry(slabp, &l3->slabs_free, list) | |
1835 | num_slabs++; | |
1836 | ||
1837 | free_objects += l3->free_objects; | |
1838 | spin_unlock_irqrestore(&l3->list_lock, flags); | |
1839 | ||
1840 | num_slabs += active_slabs; | |
1841 | num_objs = num_slabs * cachep->num; | |
1842 | printk(KERN_WARNING | |
1843 | " node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n", | |
1844 | node, active_slabs, num_slabs, active_objs, num_objs, | |
1845 | free_objects); | |
1846 | } | |
1847 | } | |
1848 | ||
1da177e4 LT |
1849 | /* |
1850 | * Interface to system's page allocator. No need to hold the cache-lock. | |
1851 | * | |
1852 | * If we requested dmaable memory, we will get it. Even if we | |
1853 | * did not request dmaable memory, we might get it, but that | |
1854 | * would be relatively rare and ignorable. | |
1855 | */ | |
343e0d7a | 1856 | static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid) |
1da177e4 LT |
1857 | { |
1858 | struct page *page; | |
e1b6aa6f | 1859 | int nr_pages; |
1da177e4 LT |
1860 | int i; |
1861 | ||
d6fef9da | 1862 | #ifndef CONFIG_MMU |
e1b6aa6f CH |
1863 | /* |
1864 | * Nommu uses slab's for process anonymous memory allocations, and thus | |
1865 | * requires __GFP_COMP to properly refcount higher order allocations | |
d6fef9da | 1866 | */ |
e1b6aa6f | 1867 | flags |= __GFP_COMP; |
d6fef9da | 1868 | #endif |
765c4507 | 1869 | |
a618e89f | 1870 | flags |= cachep->allocflags; |
e12ba74d MG |
1871 | if (cachep->flags & SLAB_RECLAIM_ACCOUNT) |
1872 | flags |= __GFP_RECLAIMABLE; | |
e1b6aa6f | 1873 | |
517d0869 | 1874 | page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder); |
8bdec192 RA |
1875 | if (!page) { |
1876 | if (!(flags & __GFP_NOWARN) && printk_ratelimit()) | |
1877 | slab_out_of_memory(cachep, flags, nodeid); | |
1da177e4 | 1878 | return NULL; |
8bdec192 | 1879 | } |
1da177e4 | 1880 | |
b37f1dd0 | 1881 | /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */ |
072bb0aa MG |
1882 | if (unlikely(page->pfmemalloc)) |
1883 | pfmemalloc_active = true; | |
1884 | ||
e1b6aa6f | 1885 | nr_pages = (1 << cachep->gfporder); |
1da177e4 | 1886 | if (cachep->flags & SLAB_RECLAIM_ACCOUNT) |
972d1a7b CL |
1887 | add_zone_page_state(page_zone(page), |
1888 | NR_SLAB_RECLAIMABLE, nr_pages); | |
1889 | else | |
1890 | add_zone_page_state(page_zone(page), | |
1891 | NR_SLAB_UNRECLAIMABLE, nr_pages); | |
072bb0aa | 1892 | for (i = 0; i < nr_pages; i++) { |
e1b6aa6f | 1893 | __SetPageSlab(page + i); |
c175eea4 | 1894 | |
072bb0aa MG |
1895 | if (page->pfmemalloc) |
1896 | SetPageSlabPfmemalloc(page + i); | |
1897 | } | |
1f458cbf | 1898 | memcg_bind_pages(cachep, cachep->gfporder); |
072bb0aa | 1899 | |
b1eeab67 VN |
1900 | if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) { |
1901 | kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid); | |
1902 | ||
1903 | if (cachep->ctor) | |
1904 | kmemcheck_mark_uninitialized_pages(page, nr_pages); | |
1905 | else | |
1906 | kmemcheck_mark_unallocated_pages(page, nr_pages); | |
1907 | } | |
c175eea4 | 1908 | |
e1b6aa6f | 1909 | return page_address(page); |
1da177e4 LT |
1910 | } |
1911 | ||
1912 | /* | |
1913 | * Interface to system's page release. | |
1914 | */ | |
343e0d7a | 1915 | static void kmem_freepages(struct kmem_cache *cachep, void *addr) |
1da177e4 | 1916 | { |
b28a02de | 1917 | unsigned long i = (1 << cachep->gfporder); |
1da177e4 LT |
1918 | struct page *page = virt_to_page(addr); |
1919 | const unsigned long nr_freed = i; | |
1920 | ||
b1eeab67 | 1921 | kmemcheck_free_shadow(page, cachep->gfporder); |
c175eea4 | 1922 | |
972d1a7b CL |
1923 | if (cachep->flags & SLAB_RECLAIM_ACCOUNT) |
1924 | sub_zone_page_state(page_zone(page), | |
1925 | NR_SLAB_RECLAIMABLE, nr_freed); | |
1926 | else | |
1927 | sub_zone_page_state(page_zone(page), | |
1928 | NR_SLAB_UNRECLAIMABLE, nr_freed); | |
1da177e4 | 1929 | while (i--) { |
f205b2fe | 1930 | BUG_ON(!PageSlab(page)); |
072bb0aa | 1931 | __ClearPageSlabPfmemalloc(page); |
f205b2fe | 1932 | __ClearPageSlab(page); |
1da177e4 LT |
1933 | page++; |
1934 | } | |
1f458cbf GC |
1935 | |
1936 | memcg_release_pages(cachep, cachep->gfporder); | |
1da177e4 LT |
1937 | if (current->reclaim_state) |
1938 | current->reclaim_state->reclaimed_slab += nr_freed; | |
d79923fa | 1939 | free_memcg_kmem_pages((unsigned long)addr, cachep->gfporder); |
1da177e4 LT |
1940 | } |
1941 | ||
1942 | static void kmem_rcu_free(struct rcu_head *head) | |
1943 | { | |
b28a02de | 1944 | struct slab_rcu *slab_rcu = (struct slab_rcu *)head; |
343e0d7a | 1945 | struct kmem_cache *cachep = slab_rcu->cachep; |
1da177e4 LT |
1946 | |
1947 | kmem_freepages(cachep, slab_rcu->addr); | |
1948 | if (OFF_SLAB(cachep)) | |
1949 | kmem_cache_free(cachep->slabp_cache, slab_rcu); | |
1950 | } | |
1951 | ||
1952 | #if DEBUG | |
1953 | ||
1954 | #ifdef CONFIG_DEBUG_PAGEALLOC | |
343e0d7a | 1955 | static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr, |
b28a02de | 1956 | unsigned long caller) |
1da177e4 | 1957 | { |
8c138bc0 | 1958 | int size = cachep->object_size; |
1da177e4 | 1959 | |
3dafccf2 | 1960 | addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)]; |
1da177e4 | 1961 | |
b28a02de | 1962 | if (size < 5 * sizeof(unsigned long)) |
1da177e4 LT |
1963 | return; |
1964 | ||
b28a02de PE |
1965 | *addr++ = 0x12345678; |
1966 | *addr++ = caller; | |
1967 | *addr++ = smp_processor_id(); | |
1968 | size -= 3 * sizeof(unsigned long); | |
1da177e4 LT |
1969 | { |
1970 | unsigned long *sptr = &caller; | |
1971 | unsigned long svalue; | |
1972 | ||
1973 | while (!kstack_end(sptr)) { | |
1974 | svalue = *sptr++; | |
1975 | if (kernel_text_address(svalue)) { | |
b28a02de | 1976 | *addr++ = svalue; |
1da177e4 LT |
1977 | size -= sizeof(unsigned long); |
1978 | if (size <= sizeof(unsigned long)) | |
1979 | break; | |
1980 | } | |
1981 | } | |
1982 | ||
1983 | } | |
b28a02de | 1984 | *addr++ = 0x87654321; |
1da177e4 LT |
1985 | } |
1986 | #endif | |
1987 | ||
343e0d7a | 1988 | static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val) |
1da177e4 | 1989 | { |
8c138bc0 | 1990 | int size = cachep->object_size; |
3dafccf2 | 1991 | addr = &((char *)addr)[obj_offset(cachep)]; |
1da177e4 LT |
1992 | |
1993 | memset(addr, val, size); | |
b28a02de | 1994 | *(unsigned char *)(addr + size - 1) = POISON_END; |
1da177e4 LT |
1995 | } |
1996 | ||
1997 | static void dump_line(char *data, int offset, int limit) | |
1998 | { | |
1999 | int i; | |
aa83aa40 DJ |
2000 | unsigned char error = 0; |
2001 | int bad_count = 0; | |
2002 | ||
fdde6abb | 2003 | printk(KERN_ERR "%03x: ", offset); |
aa83aa40 DJ |
2004 | for (i = 0; i < limit; i++) { |
2005 | if (data[offset + i] != POISON_FREE) { | |
2006 | error = data[offset + i]; | |
2007 | bad_count++; | |
2008 | } | |
aa83aa40 | 2009 | } |
fdde6abb SAS |
2010 | print_hex_dump(KERN_CONT, "", 0, 16, 1, |
2011 | &data[offset], limit, 1); | |
aa83aa40 DJ |
2012 | |
2013 | if (bad_count == 1) { | |
2014 | error ^= POISON_FREE; | |
2015 | if (!(error & (error - 1))) { | |
2016 | printk(KERN_ERR "Single bit error detected. Probably " | |
2017 | "bad RAM.\n"); | |
2018 | #ifdef CONFIG_X86 | |
2019 | printk(KERN_ERR "Run memtest86+ or a similar memory " | |
2020 | "test tool.\n"); | |
2021 | #else | |
2022 | printk(KERN_ERR "Run a memory test tool.\n"); | |
2023 | #endif | |
2024 | } | |
2025 | } | |
1da177e4 LT |
2026 | } |
2027 | #endif | |
2028 | ||
2029 | #if DEBUG | |
2030 | ||
343e0d7a | 2031 | static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines) |
1da177e4 LT |
2032 | { |
2033 | int i, size; | |
2034 | char *realobj; | |
2035 | ||
2036 | if (cachep->flags & SLAB_RED_ZONE) { | |
b46b8f19 | 2037 | printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n", |
a737b3e2 AM |
2038 | *dbg_redzone1(cachep, objp), |
2039 | *dbg_redzone2(cachep, objp)); | |
1da177e4 LT |
2040 | } |
2041 | ||
2042 | if (cachep->flags & SLAB_STORE_USER) { | |
2043 | printk(KERN_ERR "Last user: [<%p>]", | |
a737b3e2 | 2044 | *dbg_userword(cachep, objp)); |
1da177e4 | 2045 | print_symbol("(%s)", |
a737b3e2 | 2046 | (unsigned long)*dbg_userword(cachep, objp)); |
1da177e4 LT |
2047 | printk("\n"); |
2048 | } | |
3dafccf2 | 2049 | realobj = (char *)objp + obj_offset(cachep); |
8c138bc0 | 2050 | size = cachep->object_size; |
b28a02de | 2051 | for (i = 0; i < size && lines; i += 16, lines--) { |
1da177e4 LT |
2052 | int limit; |
2053 | limit = 16; | |
b28a02de PE |
2054 | if (i + limit > size) |
2055 | limit = size - i; | |
1da177e4 LT |
2056 | dump_line(realobj, i, limit); |
2057 | } | |
2058 | } | |
2059 | ||
343e0d7a | 2060 | static void check_poison_obj(struct kmem_cache *cachep, void *objp) |
1da177e4 LT |
2061 | { |
2062 | char *realobj; | |
2063 | int size, i; | |
2064 | int lines = 0; | |
2065 | ||
3dafccf2 | 2066 | realobj = (char *)objp + obj_offset(cachep); |
8c138bc0 | 2067 | size = cachep->object_size; |
1da177e4 | 2068 | |
b28a02de | 2069 | for (i = 0; i < size; i++) { |
1da177e4 | 2070 | char exp = POISON_FREE; |
b28a02de | 2071 | if (i == size - 1) |
1da177e4 LT |
2072 | exp = POISON_END; |
2073 | if (realobj[i] != exp) { | |
2074 | int limit; | |
2075 | /* Mismatch ! */ | |
2076 | /* Print header */ | |
2077 | if (lines == 0) { | |
b28a02de | 2078 | printk(KERN_ERR |
face37f5 DJ |
2079 | "Slab corruption (%s): %s start=%p, len=%d\n", |
2080 | print_tainted(), cachep->name, realobj, size); | |
1da177e4 LT |
2081 | print_objinfo(cachep, objp, 0); |
2082 | } | |
2083 | /* Hexdump the affected line */ | |
b28a02de | 2084 | i = (i / 16) * 16; |
1da177e4 | 2085 | limit = 16; |
b28a02de PE |
2086 | if (i + limit > size) |
2087 | limit = size - i; | |
1da177e4 LT |
2088 | dump_line(realobj, i, limit); |
2089 | i += 16; | |
2090 | lines++; | |
2091 | /* Limit to 5 lines */ | |
2092 | if (lines > 5) | |
2093 | break; | |
2094 | } | |
2095 | } | |
2096 | if (lines != 0) { | |
2097 | /* Print some data about the neighboring objects, if they | |
2098 | * exist: | |
2099 | */ | |
6ed5eb22 | 2100 | struct slab *slabp = virt_to_slab(objp); |
8fea4e96 | 2101 | unsigned int objnr; |
1da177e4 | 2102 | |
8fea4e96 | 2103 | objnr = obj_to_index(cachep, slabp, objp); |
1da177e4 | 2104 | if (objnr) { |
8fea4e96 | 2105 | objp = index_to_obj(cachep, slabp, objnr - 1); |
3dafccf2 | 2106 | realobj = (char *)objp + obj_offset(cachep); |
1da177e4 | 2107 | printk(KERN_ERR "Prev obj: start=%p, len=%d\n", |
b28a02de | 2108 | realobj, size); |
1da177e4 LT |
2109 | print_objinfo(cachep, objp, 2); |
2110 | } | |
b28a02de | 2111 | if (objnr + 1 < cachep->num) { |
8fea4e96 | 2112 | objp = index_to_obj(cachep, slabp, objnr + 1); |
3dafccf2 | 2113 | realobj = (char *)objp + obj_offset(cachep); |
1da177e4 | 2114 | printk(KERN_ERR "Next obj: start=%p, len=%d\n", |
b28a02de | 2115 | realobj, size); |
1da177e4 LT |
2116 | print_objinfo(cachep, objp, 2); |
2117 | } | |
2118 | } | |
2119 | } | |
2120 | #endif | |
2121 | ||
12dd36fa | 2122 | #if DEBUG |
e79aec29 | 2123 | static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp) |
1da177e4 | 2124 | { |
1da177e4 LT |
2125 | int i; |
2126 | for (i = 0; i < cachep->num; i++) { | |
8fea4e96 | 2127 | void *objp = index_to_obj(cachep, slabp, i); |
1da177e4 LT |
2128 | |
2129 | if (cachep->flags & SLAB_POISON) { | |
2130 | #ifdef CONFIG_DEBUG_PAGEALLOC | |
3b0efdfa | 2131 | if (cachep->size % PAGE_SIZE == 0 && |
a737b3e2 | 2132 | OFF_SLAB(cachep)) |
b28a02de | 2133 | kernel_map_pages(virt_to_page(objp), |
3b0efdfa | 2134 | cachep->size / PAGE_SIZE, 1); |
1da177e4 LT |
2135 | else |
2136 | check_poison_obj(cachep, objp); | |
2137 | #else | |
2138 | check_poison_obj(cachep, objp); | |
2139 | #endif | |
2140 | } | |
2141 | if (cachep->flags & SLAB_RED_ZONE) { | |
2142 | if (*dbg_redzone1(cachep, objp) != RED_INACTIVE) | |
2143 | slab_error(cachep, "start of a freed object " | |
b28a02de | 2144 | "was overwritten"); |
1da177e4 LT |
2145 | if (*dbg_redzone2(cachep, objp) != RED_INACTIVE) |
2146 | slab_error(cachep, "end of a freed object " | |
b28a02de | 2147 | "was overwritten"); |
1da177e4 | 2148 | } |
1da177e4 | 2149 | } |
12dd36fa | 2150 | } |
1da177e4 | 2151 | #else |
e79aec29 | 2152 | static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp) |
12dd36fa | 2153 | { |
12dd36fa | 2154 | } |
1da177e4 LT |
2155 | #endif |
2156 | ||
911851e6 RD |
2157 | /** |
2158 | * slab_destroy - destroy and release all objects in a slab | |
2159 | * @cachep: cache pointer being destroyed | |
2160 | * @slabp: slab pointer being destroyed | |
2161 | * | |
12dd36fa | 2162 | * Destroy all the objs in a slab, and release the mem back to the system. |
a737b3e2 AM |
2163 | * Before calling the slab must have been unlinked from the cache. The |
2164 | * cache-lock is not held/needed. | |
12dd36fa | 2165 | */ |
343e0d7a | 2166 | static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp) |
12dd36fa MD |
2167 | { |
2168 | void *addr = slabp->s_mem - slabp->colouroff; | |
2169 | ||
e79aec29 | 2170 | slab_destroy_debugcheck(cachep, slabp); |
1da177e4 LT |
2171 | if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) { |
2172 | struct slab_rcu *slab_rcu; | |
2173 | ||
b28a02de | 2174 | slab_rcu = (struct slab_rcu *)slabp; |
1da177e4 LT |
2175 | slab_rcu->cachep = cachep; |
2176 | slab_rcu->addr = addr; | |
2177 | call_rcu(&slab_rcu->head, kmem_rcu_free); | |
2178 | } else { | |
2179 | kmem_freepages(cachep, addr); | |
873623df IM |
2180 | if (OFF_SLAB(cachep)) |
2181 | kmem_cache_free(cachep->slabp_cache, slabp); | |
1da177e4 LT |
2182 | } |
2183 | } | |
2184 | ||
4d268eba | 2185 | /** |
a70773dd RD |
2186 | * calculate_slab_order - calculate size (page order) of slabs |
2187 | * @cachep: pointer to the cache that is being created | |
2188 | * @size: size of objects to be created in this cache. | |
2189 | * @align: required alignment for the objects. | |
2190 | * @flags: slab allocation flags | |
2191 | * | |
2192 | * Also calculates the number of objects per slab. | |
4d268eba PE |
2193 | * |
2194 | * This could be made much more intelligent. For now, try to avoid using | |
2195 | * high order pages for slabs. When the gfp() functions are more friendly | |
2196 | * towards high-order requests, this should be changed. | |
2197 | */ | |
a737b3e2 | 2198 | static size_t calculate_slab_order(struct kmem_cache *cachep, |
ee13d785 | 2199 | size_t size, size_t align, unsigned long flags) |
4d268eba | 2200 | { |
b1ab41c4 | 2201 | unsigned long offslab_limit; |
4d268eba | 2202 | size_t left_over = 0; |
9888e6fa | 2203 | int gfporder; |
4d268eba | 2204 | |
0aa817f0 | 2205 | for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) { |
4d268eba PE |
2206 | unsigned int num; |
2207 | size_t remainder; | |
2208 | ||
9888e6fa | 2209 | cache_estimate(gfporder, size, align, flags, &remainder, &num); |
4d268eba PE |
2210 | if (!num) |
2211 | continue; | |
9888e6fa | 2212 | |
b1ab41c4 IM |
2213 | if (flags & CFLGS_OFF_SLAB) { |
2214 | /* | |
2215 | * Max number of objs-per-slab for caches which | |
2216 | * use off-slab slabs. Needed to avoid a possible | |
2217 | * looping condition in cache_grow(). | |
2218 | */ | |
2219 | offslab_limit = size - sizeof(struct slab); | |
2220 | offslab_limit /= sizeof(kmem_bufctl_t); | |
2221 | ||
2222 | if (num > offslab_limit) | |
2223 | break; | |
2224 | } | |
4d268eba | 2225 | |
9888e6fa | 2226 | /* Found something acceptable - save it away */ |
4d268eba | 2227 | cachep->num = num; |
9888e6fa | 2228 | cachep->gfporder = gfporder; |
4d268eba PE |
2229 | left_over = remainder; |
2230 | ||
f78bb8ad LT |
2231 | /* |
2232 | * A VFS-reclaimable slab tends to have most allocations | |
2233 | * as GFP_NOFS and we really don't want to have to be allocating | |
2234 | * higher-order pages when we are unable to shrink dcache. | |
2235 | */ | |
2236 | if (flags & SLAB_RECLAIM_ACCOUNT) | |
2237 | break; | |
2238 | ||
4d268eba PE |
2239 | /* |
2240 | * Large number of objects is good, but very large slabs are | |
2241 | * currently bad for the gfp()s. | |
2242 | */ | |
543585cc | 2243 | if (gfporder >= slab_max_order) |
4d268eba PE |
2244 | break; |
2245 | ||
9888e6fa LT |
2246 | /* |
2247 | * Acceptable internal fragmentation? | |
2248 | */ | |
a737b3e2 | 2249 | if (left_over * 8 <= (PAGE_SIZE << gfporder)) |
4d268eba PE |
2250 | break; |
2251 | } | |
2252 | return left_over; | |
2253 | } | |
2254 | ||
83b519e8 | 2255 | static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp) |
f30cf7d1 | 2256 | { |
97d06609 | 2257 | if (slab_state >= FULL) |
83b519e8 | 2258 | return enable_cpucache(cachep, gfp); |
2ed3a4ef | 2259 | |
97d06609 | 2260 | if (slab_state == DOWN) { |
f30cf7d1 | 2261 | /* |
2f9baa9f CL |
2262 | * Note: Creation of first cache (kmem_cache). |
2263 | * The setup_list3s is taken care | |
2264 | * of by the caller of __kmem_cache_create | |
2265 | */ | |
2266 | cachep->array[smp_processor_id()] = &initarray_generic.cache; | |
2267 | slab_state = PARTIAL; | |
2268 | } else if (slab_state == PARTIAL) { | |
2269 | /* | |
2270 | * Note: the second kmem_cache_create must create the cache | |
f30cf7d1 PE |
2271 | * that's used by kmalloc(24), otherwise the creation of |
2272 | * further caches will BUG(). | |
2273 | */ | |
2274 | cachep->array[smp_processor_id()] = &initarray_generic.cache; | |
2275 | ||
2276 | /* | |
2277 | * If the cache that's used by kmalloc(sizeof(kmem_list3)) is | |
2f9baa9f | 2278 | * the second cache, then we need to set up all its list3s, |
f30cf7d1 PE |
2279 | * otherwise the creation of further caches will BUG(). |
2280 | */ | |
2281 | set_up_list3s(cachep, SIZE_AC); | |
2282 | if (INDEX_AC == INDEX_L3) | |
97d06609 | 2283 | slab_state = PARTIAL_L3; |
f30cf7d1 | 2284 | else |
97d06609 | 2285 | slab_state = PARTIAL_ARRAYCACHE; |
f30cf7d1 | 2286 | } else { |
2f9baa9f | 2287 | /* Remaining boot caches */ |
f30cf7d1 | 2288 | cachep->array[smp_processor_id()] = |
83b519e8 | 2289 | kmalloc(sizeof(struct arraycache_init), gfp); |
f30cf7d1 | 2290 | |
97d06609 | 2291 | if (slab_state == PARTIAL_ARRAYCACHE) { |
f30cf7d1 | 2292 | set_up_list3s(cachep, SIZE_L3); |
97d06609 | 2293 | slab_state = PARTIAL_L3; |
f30cf7d1 PE |
2294 | } else { |
2295 | int node; | |
556a169d | 2296 | for_each_online_node(node) { |
f30cf7d1 PE |
2297 | cachep->nodelists[node] = |
2298 | kmalloc_node(sizeof(struct kmem_list3), | |
eb91f1d0 | 2299 | gfp, node); |
f30cf7d1 PE |
2300 | BUG_ON(!cachep->nodelists[node]); |
2301 | kmem_list3_init(cachep->nodelists[node]); | |
2302 | } | |
2303 | } | |
2304 | } | |
7d6e6d09 | 2305 | cachep->nodelists[numa_mem_id()]->next_reap = |
f30cf7d1 PE |
2306 | jiffies + REAPTIMEOUT_LIST3 + |
2307 | ((unsigned long)cachep) % REAPTIMEOUT_LIST3; | |
2308 | ||
2309 | cpu_cache_get(cachep)->avail = 0; | |
2310 | cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES; | |
2311 | cpu_cache_get(cachep)->batchcount = 1; | |
2312 | cpu_cache_get(cachep)->touched = 0; | |
2313 | cachep->batchcount = 1; | |
2314 | cachep->limit = BOOT_CPUCACHE_ENTRIES; | |
2ed3a4ef | 2315 | return 0; |
f30cf7d1 PE |
2316 | } |
2317 | ||
1da177e4 | 2318 | /** |
039363f3 | 2319 | * __kmem_cache_create - Create a cache. |
a755b76a | 2320 | * @cachep: cache management descriptor |
1da177e4 | 2321 | * @flags: SLAB flags |
1da177e4 LT |
2322 | * |
2323 | * Returns a ptr to the cache on success, NULL on failure. | |
2324 | * Cannot be called within a int, but can be interrupted. | |
20c2df83 | 2325 | * The @ctor is run when new pages are allocated by the cache. |
1da177e4 | 2326 | * |
1da177e4 LT |
2327 | * The flags are |
2328 | * | |
2329 | * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5) | |
2330 | * to catch references to uninitialised memory. | |
2331 | * | |
2332 | * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check | |
2333 | * for buffer overruns. | |
2334 | * | |
1da177e4 LT |
2335 | * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware |
2336 | * cacheline. This can be beneficial if you're counting cycles as closely | |
2337 | * as davem. | |
2338 | */ | |
278b1bb1 | 2339 | int |
8a13a4cc | 2340 | __kmem_cache_create (struct kmem_cache *cachep, unsigned long flags) |
1da177e4 LT |
2341 | { |
2342 | size_t left_over, slab_size, ralign; | |
83b519e8 | 2343 | gfp_t gfp; |
278b1bb1 | 2344 | int err; |
8a13a4cc | 2345 | size_t size = cachep->size; |
1da177e4 | 2346 | |
1da177e4 | 2347 | #if DEBUG |
1da177e4 LT |
2348 | #if FORCED_DEBUG |
2349 | /* | |
2350 | * Enable redzoning and last user accounting, except for caches with | |
2351 | * large objects, if the increased size would increase the object size | |
2352 | * above the next power of two: caches with object sizes just above a | |
2353 | * power of two have a significant amount of internal fragmentation. | |
2354 | */ | |
87a927c7 DW |
2355 | if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN + |
2356 | 2 * sizeof(unsigned long long))) | |
b28a02de | 2357 | flags |= SLAB_RED_ZONE | SLAB_STORE_USER; |
1da177e4 LT |
2358 | if (!(flags & SLAB_DESTROY_BY_RCU)) |
2359 | flags |= SLAB_POISON; | |
2360 | #endif | |
2361 | if (flags & SLAB_DESTROY_BY_RCU) | |
2362 | BUG_ON(flags & SLAB_POISON); | |
2363 | #endif | |
1da177e4 | 2364 | |
a737b3e2 AM |
2365 | /* |
2366 | * Check that size is in terms of words. This is needed to avoid | |
1da177e4 LT |
2367 | * unaligned accesses for some archs when redzoning is used, and makes |
2368 | * sure any on-slab bufctl's are also correctly aligned. | |
2369 | */ | |
b28a02de PE |
2370 | if (size & (BYTES_PER_WORD - 1)) { |
2371 | size += (BYTES_PER_WORD - 1); | |
2372 | size &= ~(BYTES_PER_WORD - 1); | |
1da177e4 LT |
2373 | } |
2374 | ||
ca5f9703 | 2375 | /* |
87a927c7 DW |
2376 | * Redzoning and user store require word alignment or possibly larger. |
2377 | * Note this will be overridden by architecture or caller mandated | |
2378 | * alignment if either is greater than BYTES_PER_WORD. | |
ca5f9703 | 2379 | */ |
87a927c7 DW |
2380 | if (flags & SLAB_STORE_USER) |
2381 | ralign = BYTES_PER_WORD; | |
2382 | ||
2383 | if (flags & SLAB_RED_ZONE) { | |
2384 | ralign = REDZONE_ALIGN; | |
2385 | /* If redzoning, ensure that the second redzone is suitably | |
2386 | * aligned, by adjusting the object size accordingly. */ | |
2387 | size += REDZONE_ALIGN - 1; | |
2388 | size &= ~(REDZONE_ALIGN - 1); | |
2389 | } | |
ca5f9703 | 2390 | |
a44b56d3 | 2391 | /* 3) caller mandated alignment */ |
8a13a4cc CL |
2392 | if (ralign < cachep->align) { |
2393 | ralign = cachep->align; | |
1da177e4 | 2394 | } |
3ff84a7f PE |
2395 | /* disable debug if necessary */ |
2396 | if (ralign > __alignof__(unsigned long long)) | |
a44b56d3 | 2397 | flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER); |
a737b3e2 | 2398 | /* |
ca5f9703 | 2399 | * 4) Store it. |
1da177e4 | 2400 | */ |
8a13a4cc | 2401 | cachep->align = ralign; |
1da177e4 | 2402 | |
83b519e8 PE |
2403 | if (slab_is_available()) |
2404 | gfp = GFP_KERNEL; | |
2405 | else | |
2406 | gfp = GFP_NOWAIT; | |
2407 | ||
3c583465 | 2408 | setup_nodelists_pointer(cachep); |
1da177e4 | 2409 | #if DEBUG |
1da177e4 | 2410 | |
ca5f9703 PE |
2411 | /* |
2412 | * Both debugging options require word-alignment which is calculated | |
2413 | * into align above. | |
2414 | */ | |
1da177e4 | 2415 | if (flags & SLAB_RED_ZONE) { |
1da177e4 | 2416 | /* add space for red zone words */ |
3ff84a7f PE |
2417 | cachep->obj_offset += sizeof(unsigned long long); |
2418 | size += 2 * sizeof(unsigned long long); | |
1da177e4 LT |
2419 | } |
2420 | if (flags & SLAB_STORE_USER) { | |
ca5f9703 | 2421 | /* user store requires one word storage behind the end of |
87a927c7 DW |
2422 | * the real object. But if the second red zone needs to be |
2423 | * aligned to 64 bits, we must allow that much space. | |
1da177e4 | 2424 | */ |
87a927c7 DW |
2425 | if (flags & SLAB_RED_ZONE) |
2426 | size += REDZONE_ALIGN; | |
2427 | else | |
2428 | size += BYTES_PER_WORD; | |
1da177e4 LT |
2429 | } |
2430 | #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC) | |
b28a02de | 2431 | if (size >= malloc_sizes[INDEX_L3 + 1].cs_size |
608da7e3 TH |
2432 | && cachep->object_size > cache_line_size() |
2433 | && ALIGN(size, cachep->align) < PAGE_SIZE) { | |
2434 | cachep->obj_offset += PAGE_SIZE - ALIGN(size, cachep->align); | |
1da177e4 LT |
2435 | size = PAGE_SIZE; |
2436 | } | |
2437 | #endif | |
2438 | #endif | |
2439 | ||
e0a42726 IM |
2440 | /* |
2441 | * Determine if the slab management is 'on' or 'off' slab. | |
2442 | * (bootstrapping cannot cope with offslab caches so don't do | |
e7cb55b9 CM |
2443 | * it too early on. Always use on-slab management when |
2444 | * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak) | |
e0a42726 | 2445 | */ |
e7cb55b9 CM |
2446 | if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init && |
2447 | !(flags & SLAB_NOLEAKTRACE)) | |
1da177e4 LT |
2448 | /* |
2449 | * Size is large, assume best to place the slab management obj | |
2450 | * off-slab (should allow better packing of objs). | |
2451 | */ | |
2452 | flags |= CFLGS_OFF_SLAB; | |
2453 | ||
8a13a4cc | 2454 | size = ALIGN(size, cachep->align); |
1da177e4 | 2455 | |
8a13a4cc | 2456 | left_over = calculate_slab_order(cachep, size, cachep->align, flags); |
1da177e4 | 2457 | |
8a13a4cc | 2458 | if (!cachep->num) |
278b1bb1 | 2459 | return -E2BIG; |
1da177e4 | 2460 | |
b28a02de | 2461 | slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t) |
8a13a4cc | 2462 | + sizeof(struct slab), cachep->align); |
1da177e4 LT |
2463 | |
2464 | /* | |
2465 | * If the slab has been placed off-slab, and we have enough space then | |
2466 | * move it on-slab. This is at the expense of any extra colouring. | |
2467 | */ | |
2468 | if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) { | |
2469 | flags &= ~CFLGS_OFF_SLAB; | |
2470 | left_over -= slab_size; | |
2471 | } | |
2472 | ||
2473 | if (flags & CFLGS_OFF_SLAB) { | |
2474 | /* really off slab. No need for manual alignment */ | |
b28a02de PE |
2475 | slab_size = |
2476 | cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab); | |
67461365 RL |
2477 | |
2478 | #ifdef CONFIG_PAGE_POISONING | |
2479 | /* If we're going to use the generic kernel_map_pages() | |
2480 | * poisoning, then it's going to smash the contents of | |
2481 | * the redzone and userword anyhow, so switch them off. | |
2482 | */ | |
2483 | if (size % PAGE_SIZE == 0 && flags & SLAB_POISON) | |
2484 | flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER); | |
2485 | #endif | |
1da177e4 LT |
2486 | } |
2487 | ||
2488 | cachep->colour_off = cache_line_size(); | |
2489 | /* Offset must be a multiple of the alignment. */ | |
8a13a4cc CL |
2490 | if (cachep->colour_off < cachep->align) |
2491 | cachep->colour_off = cachep->align; | |
b28a02de | 2492 | cachep->colour = left_over / cachep->colour_off; |
1da177e4 LT |
2493 | cachep->slab_size = slab_size; |
2494 | cachep->flags = flags; | |
a618e89f | 2495 | cachep->allocflags = 0; |
4b51d669 | 2496 | if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA)) |
a618e89f | 2497 | cachep->allocflags |= GFP_DMA; |
3b0efdfa | 2498 | cachep->size = size; |
6a2d7a95 | 2499 | cachep->reciprocal_buffer_size = reciprocal_value(size); |
1da177e4 | 2500 | |
e5ac9c5a | 2501 | if (flags & CFLGS_OFF_SLAB) { |
b2d55073 | 2502 | cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u); |
e5ac9c5a RT |
2503 | /* |
2504 | * This is a possibility for one of the malloc_sizes caches. | |
2505 | * But since we go off slab only for object size greater than | |
2506 | * PAGE_SIZE/8, and malloc_sizes gets created in ascending order, | |
2507 | * this should not happen at all. | |
2508 | * But leave a BUG_ON for some lucky dude. | |
2509 | */ | |
6cb8f913 | 2510 | BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache)); |
e5ac9c5a | 2511 | } |
1da177e4 | 2512 | |
278b1bb1 CL |
2513 | err = setup_cpu_cache(cachep, gfp); |
2514 | if (err) { | |
12c3667f | 2515 | __kmem_cache_shutdown(cachep); |
278b1bb1 | 2516 | return err; |
2ed3a4ef | 2517 | } |
1da177e4 | 2518 | |
83835b3d PZ |
2519 | if (flags & SLAB_DEBUG_OBJECTS) { |
2520 | /* | |
2521 | * Would deadlock through slab_destroy()->call_rcu()-> | |
2522 | * debug_object_activate()->kmem_cache_alloc(). | |
2523 | */ | |
2524 | WARN_ON_ONCE(flags & SLAB_DESTROY_BY_RCU); | |
2525 | ||
2526 | slab_set_debugobj_lock_classes(cachep); | |
6ccfb5bc GC |
2527 | } else if (!OFF_SLAB(cachep) && !(flags & SLAB_DESTROY_BY_RCU)) |
2528 | on_slab_lock_classes(cachep); | |
83835b3d | 2529 | |
278b1bb1 | 2530 | return 0; |
1da177e4 | 2531 | } |
1da177e4 LT |
2532 | |
2533 | #if DEBUG | |
2534 | static void check_irq_off(void) | |
2535 | { | |
2536 | BUG_ON(!irqs_disabled()); | |
2537 | } | |
2538 | ||
2539 | static void check_irq_on(void) | |
2540 | { | |
2541 | BUG_ON(irqs_disabled()); | |
2542 | } | |
2543 | ||
343e0d7a | 2544 | static void check_spinlock_acquired(struct kmem_cache *cachep) |
1da177e4 LT |
2545 | { |
2546 | #ifdef CONFIG_SMP | |
2547 | check_irq_off(); | |
7d6e6d09 | 2548 | assert_spin_locked(&cachep->nodelists[numa_mem_id()]->list_lock); |
1da177e4 LT |
2549 | #endif |
2550 | } | |
e498be7d | 2551 | |
343e0d7a | 2552 | static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node) |
e498be7d CL |
2553 | { |
2554 | #ifdef CONFIG_SMP | |
2555 | check_irq_off(); | |
2556 | assert_spin_locked(&cachep->nodelists[node]->list_lock); | |
2557 | #endif | |
2558 | } | |
2559 | ||
1da177e4 LT |
2560 | #else |
2561 | #define check_irq_off() do { } while(0) | |
2562 | #define check_irq_on() do { } while(0) | |
2563 | #define check_spinlock_acquired(x) do { } while(0) | |
e498be7d | 2564 | #define check_spinlock_acquired_node(x, y) do { } while(0) |
1da177e4 LT |
2565 | #endif |
2566 | ||
aab2207c CL |
2567 | static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3, |
2568 | struct array_cache *ac, | |
2569 | int force, int node); | |
2570 | ||
1da177e4 LT |
2571 | static void do_drain(void *arg) |
2572 | { | |
a737b3e2 | 2573 | struct kmem_cache *cachep = arg; |
1da177e4 | 2574 | struct array_cache *ac; |
7d6e6d09 | 2575 | int node = numa_mem_id(); |
1da177e4 LT |
2576 | |
2577 | check_irq_off(); | |
9a2dba4b | 2578 | ac = cpu_cache_get(cachep); |
ff69416e CL |
2579 | spin_lock(&cachep->nodelists[node]->list_lock); |
2580 | free_block(cachep, ac->entry, ac->avail, node); | |
2581 | spin_unlock(&cachep->nodelists[node]->list_lock); | |
1da177e4 LT |
2582 | ac->avail = 0; |
2583 | } | |
2584 | ||
343e0d7a | 2585 | static void drain_cpu_caches(struct kmem_cache *cachep) |
1da177e4 | 2586 | { |
e498be7d CL |
2587 | struct kmem_list3 *l3; |
2588 | int node; | |
2589 | ||
15c8b6c1 | 2590 | on_each_cpu(do_drain, cachep, 1); |
1da177e4 | 2591 | check_irq_on(); |
b28a02de | 2592 | for_each_online_node(node) { |
e498be7d | 2593 | l3 = cachep->nodelists[node]; |
a4523a8b RD |
2594 | if (l3 && l3->alien) |
2595 | drain_alien_cache(cachep, l3->alien); | |
2596 | } | |
2597 | ||
2598 | for_each_online_node(node) { | |
2599 | l3 = cachep->nodelists[node]; | |
2600 | if (l3) | |
aab2207c | 2601 | drain_array(cachep, l3, l3->shared, 1, node); |
e498be7d | 2602 | } |
1da177e4 LT |
2603 | } |
2604 | ||
ed11d9eb CL |
2605 | /* |
2606 | * Remove slabs from the list of free slabs. | |
2607 | * Specify the number of slabs to drain in tofree. | |
2608 | * | |
2609 | * Returns the actual number of slabs released. | |
2610 | */ | |
2611 | static int drain_freelist(struct kmem_cache *cache, | |
2612 | struct kmem_list3 *l3, int tofree) | |
1da177e4 | 2613 | { |
ed11d9eb CL |
2614 | struct list_head *p; |
2615 | int nr_freed; | |
1da177e4 | 2616 | struct slab *slabp; |
1da177e4 | 2617 | |
ed11d9eb CL |
2618 | nr_freed = 0; |
2619 | while (nr_freed < tofree && !list_empty(&l3->slabs_free)) { | |
1da177e4 | 2620 | |
ed11d9eb | 2621 | spin_lock_irq(&l3->list_lock); |
e498be7d | 2622 | p = l3->slabs_free.prev; |
ed11d9eb CL |
2623 | if (p == &l3->slabs_free) { |
2624 | spin_unlock_irq(&l3->list_lock); | |
2625 | goto out; | |
2626 | } | |
1da177e4 | 2627 | |
ed11d9eb | 2628 | slabp = list_entry(p, struct slab, list); |
1da177e4 | 2629 | #if DEBUG |
40094fa6 | 2630 | BUG_ON(slabp->inuse); |
1da177e4 LT |
2631 | #endif |
2632 | list_del(&slabp->list); | |
ed11d9eb CL |
2633 | /* |
2634 | * Safe to drop the lock. The slab is no longer linked | |
2635 | * to the cache. | |
2636 | */ | |
2637 | l3->free_objects -= cache->num; | |
e498be7d | 2638 | spin_unlock_irq(&l3->list_lock); |
ed11d9eb CL |
2639 | slab_destroy(cache, slabp); |
2640 | nr_freed++; | |
1da177e4 | 2641 | } |
ed11d9eb CL |
2642 | out: |
2643 | return nr_freed; | |
1da177e4 LT |
2644 | } |
2645 | ||
18004c5d | 2646 | /* Called with slab_mutex held to protect against cpu hotplug */ |
343e0d7a | 2647 | static int __cache_shrink(struct kmem_cache *cachep) |
e498be7d CL |
2648 | { |
2649 | int ret = 0, i = 0; | |
2650 | struct kmem_list3 *l3; | |
2651 | ||
2652 | drain_cpu_caches(cachep); | |
2653 | ||
2654 | check_irq_on(); | |
2655 | for_each_online_node(i) { | |
2656 | l3 = cachep->nodelists[i]; | |
ed11d9eb CL |
2657 | if (!l3) |
2658 | continue; | |
2659 | ||
2660 | drain_freelist(cachep, l3, l3->free_objects); | |
2661 | ||
2662 | ret += !list_empty(&l3->slabs_full) || | |
2663 | !list_empty(&l3->slabs_partial); | |
e498be7d CL |
2664 | } |
2665 | return (ret ? 1 : 0); | |
2666 | } | |
2667 | ||
1da177e4 LT |
2668 | /** |
2669 | * kmem_cache_shrink - Shrink a cache. | |
2670 | * @cachep: The cache to shrink. | |
2671 | * | |
2672 | * Releases as many slabs as possible for a cache. | |
2673 | * To help debugging, a zero exit status indicates all slabs were released. | |
2674 | */ | |
343e0d7a | 2675 | int kmem_cache_shrink(struct kmem_cache *cachep) |
1da177e4 | 2676 | { |
8f5be20b | 2677 | int ret; |
40094fa6 | 2678 | BUG_ON(!cachep || in_interrupt()); |
1da177e4 | 2679 | |
95402b38 | 2680 | get_online_cpus(); |
18004c5d | 2681 | mutex_lock(&slab_mutex); |
8f5be20b | 2682 | ret = __cache_shrink(cachep); |
18004c5d | 2683 | mutex_unlock(&slab_mutex); |
95402b38 | 2684 | put_online_cpus(); |
8f5be20b | 2685 | return ret; |
1da177e4 LT |
2686 | } |
2687 | EXPORT_SYMBOL(kmem_cache_shrink); | |
2688 | ||
945cf2b6 | 2689 | int __kmem_cache_shutdown(struct kmem_cache *cachep) |
1da177e4 | 2690 | { |
12c3667f CL |
2691 | int i; |
2692 | struct kmem_list3 *l3; | |
2693 | int rc = __cache_shrink(cachep); | |
1da177e4 | 2694 | |
12c3667f CL |
2695 | if (rc) |
2696 | return rc; | |
1da177e4 | 2697 | |
12c3667f CL |
2698 | for_each_online_cpu(i) |
2699 | kfree(cachep->array[i]); | |
1da177e4 | 2700 | |
12c3667f CL |
2701 | /* NUMA: free the list3 structures */ |
2702 | for_each_online_node(i) { | |
2703 | l3 = cachep->nodelists[i]; | |
2704 | if (l3) { | |
2705 | kfree(l3->shared); | |
2706 | free_alien_cache(l3->alien); | |
2707 | kfree(l3); | |
2708 | } | |
2709 | } | |
2710 | return 0; | |
1da177e4 | 2711 | } |
1da177e4 | 2712 | |
e5ac9c5a RT |
2713 | /* |
2714 | * Get the memory for a slab management obj. | |
2715 | * For a slab cache when the slab descriptor is off-slab, slab descriptors | |
2716 | * always come from malloc_sizes caches. The slab descriptor cannot | |
2717 | * come from the same cache which is getting created because, | |
2718 | * when we are searching for an appropriate cache for these | |
2719 | * descriptors in kmem_cache_create, we search through the malloc_sizes array. | |
2720 | * If we are creating a malloc_sizes cache here it would not be visible to | |
2721 | * kmem_find_general_cachep till the initialization is complete. | |
2722 | * Hence we cannot have slabp_cache same as the original cache. | |
2723 | */ | |
343e0d7a | 2724 | static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp, |
5b74ada7 RT |
2725 | int colour_off, gfp_t local_flags, |
2726 | int nodeid) | |
1da177e4 LT |
2727 | { |
2728 | struct slab *slabp; | |
b28a02de | 2729 | |
1da177e4 LT |
2730 | if (OFF_SLAB(cachep)) { |
2731 | /* Slab management obj is off-slab. */ | |
5b74ada7 | 2732 | slabp = kmem_cache_alloc_node(cachep->slabp_cache, |
8759ec50 | 2733 | local_flags, nodeid); |
d5cff635 CM |
2734 | /* |
2735 | * If the first object in the slab is leaked (it's allocated | |
2736 | * but no one has a reference to it), we want to make sure | |
2737 | * kmemleak does not treat the ->s_mem pointer as a reference | |
2738 | * to the object. Otherwise we will not report the leak. | |
2739 | */ | |
c017b4be CM |
2740 | kmemleak_scan_area(&slabp->list, sizeof(struct list_head), |
2741 | local_flags); | |
1da177e4 LT |
2742 | if (!slabp) |
2743 | return NULL; | |
2744 | } else { | |
b28a02de | 2745 | slabp = objp + colour_off; |
1da177e4 LT |
2746 | colour_off += cachep->slab_size; |
2747 | } | |
2748 | slabp->inuse = 0; | |
2749 | slabp->colouroff = colour_off; | |
b28a02de | 2750 | slabp->s_mem = objp + colour_off; |
5b74ada7 | 2751 | slabp->nodeid = nodeid; |
e51bfd0a | 2752 | slabp->free = 0; |
1da177e4 LT |
2753 | return slabp; |
2754 | } | |
2755 | ||
2756 | static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp) | |
2757 | { | |
b28a02de | 2758 | return (kmem_bufctl_t *) (slabp + 1); |
1da177e4 LT |
2759 | } |
2760 | ||
343e0d7a | 2761 | static void cache_init_objs(struct kmem_cache *cachep, |
a35afb83 | 2762 | struct slab *slabp) |
1da177e4 LT |
2763 | { |
2764 | int i; | |
2765 | ||
2766 | for (i = 0; i < cachep->num; i++) { | |
8fea4e96 | 2767 | void *objp = index_to_obj(cachep, slabp, i); |
1da177e4 LT |
2768 | #if DEBUG |
2769 | /* need to poison the objs? */ | |
2770 | if (cachep->flags & SLAB_POISON) | |
2771 | poison_obj(cachep, objp, POISON_FREE); | |
2772 | if (cachep->flags & SLAB_STORE_USER) | |
2773 | *dbg_userword(cachep, objp) = NULL; | |
2774 | ||
2775 | if (cachep->flags & SLAB_RED_ZONE) { | |
2776 | *dbg_redzone1(cachep, objp) = RED_INACTIVE; | |
2777 | *dbg_redzone2(cachep, objp) = RED_INACTIVE; | |
2778 | } | |
2779 | /* | |
a737b3e2 AM |
2780 | * Constructors are not allowed to allocate memory from the same |
2781 | * cache which they are a constructor for. Otherwise, deadlock. | |
2782 | * They must also be threaded. | |
1da177e4 LT |
2783 | */ |
2784 | if (cachep->ctor && !(cachep->flags & SLAB_POISON)) | |
51cc5068 | 2785 | cachep->ctor(objp + obj_offset(cachep)); |
1da177e4 LT |
2786 | |
2787 | if (cachep->flags & SLAB_RED_ZONE) { | |
2788 | if (*dbg_redzone2(cachep, objp) != RED_INACTIVE) | |
2789 | slab_error(cachep, "constructor overwrote the" | |
b28a02de | 2790 | " end of an object"); |
1da177e4 LT |
2791 | if (*dbg_redzone1(cachep, objp) != RED_INACTIVE) |
2792 | slab_error(cachep, "constructor overwrote the" | |
b28a02de | 2793 | " start of an object"); |
1da177e4 | 2794 | } |
3b0efdfa | 2795 | if ((cachep->size % PAGE_SIZE) == 0 && |
a737b3e2 | 2796 | OFF_SLAB(cachep) && cachep->flags & SLAB_POISON) |
b28a02de | 2797 | kernel_map_pages(virt_to_page(objp), |
3b0efdfa | 2798 | cachep->size / PAGE_SIZE, 0); |
1da177e4 LT |
2799 | #else |
2800 | if (cachep->ctor) | |
51cc5068 | 2801 | cachep->ctor(objp); |
1da177e4 | 2802 | #endif |
b28a02de | 2803 | slab_bufctl(slabp)[i] = i + 1; |
1da177e4 | 2804 | } |
b28a02de | 2805 | slab_bufctl(slabp)[i - 1] = BUFCTL_END; |
1da177e4 LT |
2806 | } |
2807 | ||
343e0d7a | 2808 | static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags) |
1da177e4 | 2809 | { |
4b51d669 CL |
2810 | if (CONFIG_ZONE_DMA_FLAG) { |
2811 | if (flags & GFP_DMA) | |
a618e89f | 2812 | BUG_ON(!(cachep->allocflags & GFP_DMA)); |
4b51d669 | 2813 | else |
a618e89f | 2814 | BUG_ON(cachep->allocflags & GFP_DMA); |
4b51d669 | 2815 | } |
1da177e4 LT |
2816 | } |
2817 | ||
a737b3e2 AM |
2818 | static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp, |
2819 | int nodeid) | |
78d382d7 | 2820 | { |
8fea4e96 | 2821 | void *objp = index_to_obj(cachep, slabp, slabp->free); |
78d382d7 MD |
2822 | kmem_bufctl_t next; |
2823 | ||
2824 | slabp->inuse++; | |
2825 | next = slab_bufctl(slabp)[slabp->free]; | |
2826 | #if DEBUG | |
2827 | slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE; | |
2828 | WARN_ON(slabp->nodeid != nodeid); | |
2829 | #endif | |
2830 | slabp->free = next; | |
2831 | ||
2832 | return objp; | |
2833 | } | |
2834 | ||
a737b3e2 AM |
2835 | static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp, |
2836 | void *objp, int nodeid) | |
78d382d7 | 2837 | { |
8fea4e96 | 2838 | unsigned int objnr = obj_to_index(cachep, slabp, objp); |
78d382d7 MD |
2839 | |
2840 | #if DEBUG | |
2841 | /* Verify that the slab belongs to the intended node */ | |
2842 | WARN_ON(slabp->nodeid != nodeid); | |
2843 | ||
871751e2 | 2844 | if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) { |
78d382d7 | 2845 | printk(KERN_ERR "slab: double free detected in cache " |
a737b3e2 | 2846 | "'%s', objp %p\n", cachep->name, objp); |
78d382d7 MD |
2847 | BUG(); |
2848 | } | |
2849 | #endif | |
2850 | slab_bufctl(slabp)[objnr] = slabp->free; | |
2851 | slabp->free = objnr; | |
2852 | slabp->inuse--; | |
2853 | } | |
2854 | ||
4776874f PE |
2855 | /* |
2856 | * Map pages beginning at addr to the given cache and slab. This is required | |
2857 | * for the slab allocator to be able to lookup the cache and slab of a | |
ccd35fb9 | 2858 | * virtual address for kfree, ksize, and slab debugging. |
4776874f PE |
2859 | */ |
2860 | static void slab_map_pages(struct kmem_cache *cache, struct slab *slab, | |
2861 | void *addr) | |
1da177e4 | 2862 | { |
4776874f | 2863 | int nr_pages; |
1da177e4 LT |
2864 | struct page *page; |
2865 | ||
4776874f | 2866 | page = virt_to_page(addr); |
84097518 | 2867 | |
4776874f | 2868 | nr_pages = 1; |
84097518 | 2869 | if (likely(!PageCompound(page))) |
4776874f PE |
2870 | nr_pages <<= cache->gfporder; |
2871 | ||
1da177e4 | 2872 | do { |
35026088 CL |
2873 | page->slab_cache = cache; |
2874 | page->slab_page = slab; | |
1da177e4 | 2875 | page++; |
4776874f | 2876 | } while (--nr_pages); |
1da177e4 LT |
2877 | } |
2878 | ||
2879 | /* | |
2880 | * Grow (by 1) the number of slabs within a cache. This is called by | |
2881 | * kmem_cache_alloc() when there are no active objs left in a cache. | |
2882 | */ | |
3c517a61 CL |
2883 | static int cache_grow(struct kmem_cache *cachep, |
2884 | gfp_t flags, int nodeid, void *objp) | |
1da177e4 | 2885 | { |
b28a02de | 2886 | struct slab *slabp; |
b28a02de PE |
2887 | size_t offset; |
2888 | gfp_t local_flags; | |
e498be7d | 2889 | struct kmem_list3 *l3; |
1da177e4 | 2890 | |
a737b3e2 AM |
2891 | /* |
2892 | * Be lazy and only check for valid flags here, keeping it out of the | |
2893 | * critical path in kmem_cache_alloc(). | |
1da177e4 | 2894 | */ |
6cb06229 CL |
2895 | BUG_ON(flags & GFP_SLAB_BUG_MASK); |
2896 | local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK); | |
1da177e4 | 2897 | |
2e1217cf | 2898 | /* Take the l3 list lock to change the colour_next on this node */ |
1da177e4 | 2899 | check_irq_off(); |
2e1217cf RT |
2900 | l3 = cachep->nodelists[nodeid]; |
2901 | spin_lock(&l3->list_lock); | |
1da177e4 LT |
2902 | |
2903 | /* Get colour for the slab, and cal the next value. */ | |
2e1217cf RT |
2904 | offset = l3->colour_next; |
2905 | l3->colour_next++; | |
2906 | if (l3->colour_next >= cachep->colour) | |
2907 | l3->colour_next = 0; | |
2908 | spin_unlock(&l3->list_lock); | |
1da177e4 | 2909 | |
2e1217cf | 2910 | offset *= cachep->colour_off; |
1da177e4 LT |
2911 | |
2912 | if (local_flags & __GFP_WAIT) | |
2913 | local_irq_enable(); | |
2914 | ||
2915 | /* | |
2916 | * The test for missing atomic flag is performed here, rather than | |
2917 | * the more obvious place, simply to reduce the critical path length | |
2918 | * in kmem_cache_alloc(). If a caller is seriously mis-behaving they | |
2919 | * will eventually be caught here (where it matters). | |
2920 | */ | |
2921 | kmem_flagcheck(cachep, flags); | |
2922 | ||
a737b3e2 AM |
2923 | /* |
2924 | * Get mem for the objs. Attempt to allocate a physical page from | |
2925 | * 'nodeid'. | |
e498be7d | 2926 | */ |
3c517a61 | 2927 | if (!objp) |
b8c1c5da | 2928 | objp = kmem_getpages(cachep, local_flags, nodeid); |
a737b3e2 | 2929 | if (!objp) |
1da177e4 LT |
2930 | goto failed; |
2931 | ||
2932 | /* Get slab management. */ | |
3c517a61 | 2933 | slabp = alloc_slabmgmt(cachep, objp, offset, |
6cb06229 | 2934 | local_flags & ~GFP_CONSTRAINT_MASK, nodeid); |
a737b3e2 | 2935 | if (!slabp) |
1da177e4 LT |
2936 | goto opps1; |
2937 | ||
4776874f | 2938 | slab_map_pages(cachep, slabp, objp); |
1da177e4 | 2939 | |
a35afb83 | 2940 | cache_init_objs(cachep, slabp); |
1da177e4 LT |
2941 | |
2942 | if (local_flags & __GFP_WAIT) | |
2943 | local_irq_disable(); | |
2944 | check_irq_off(); | |
e498be7d | 2945 | spin_lock(&l3->list_lock); |
1da177e4 LT |
2946 | |
2947 | /* Make slab active. */ | |
e498be7d | 2948 | list_add_tail(&slabp->list, &(l3->slabs_free)); |
1da177e4 | 2949 | STATS_INC_GROWN(cachep); |
e498be7d CL |
2950 | l3->free_objects += cachep->num; |
2951 | spin_unlock(&l3->list_lock); | |
1da177e4 | 2952 | return 1; |
a737b3e2 | 2953 | opps1: |
1da177e4 | 2954 | kmem_freepages(cachep, objp); |
a737b3e2 | 2955 | failed: |
1da177e4 LT |
2956 | if (local_flags & __GFP_WAIT) |
2957 | local_irq_disable(); | |
2958 | return 0; | |
2959 | } | |
2960 | ||
2961 | #if DEBUG | |
2962 | ||
2963 | /* | |
2964 | * Perform extra freeing checks: | |
2965 | * - detect bad pointers. | |
2966 | * - POISON/RED_ZONE checking | |
1da177e4 LT |
2967 | */ |
2968 | static void kfree_debugcheck(const void *objp) | |
2969 | { | |
1da177e4 LT |
2970 | if (!virt_addr_valid(objp)) { |
2971 | printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n", | |
b28a02de PE |
2972 | (unsigned long)objp); |
2973 | BUG(); | |
1da177e4 | 2974 | } |
1da177e4 LT |
2975 | } |
2976 | ||
58ce1fd5 PE |
2977 | static inline void verify_redzone_free(struct kmem_cache *cache, void *obj) |
2978 | { | |
b46b8f19 | 2979 | unsigned long long redzone1, redzone2; |
58ce1fd5 PE |
2980 | |
2981 | redzone1 = *dbg_redzone1(cache, obj); | |
2982 | redzone2 = *dbg_redzone2(cache, obj); | |
2983 | ||
2984 | /* | |
2985 | * Redzone is ok. | |
2986 | */ | |
2987 | if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE) | |
2988 | return; | |
2989 | ||
2990 | if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE) | |
2991 | slab_error(cache, "double free detected"); | |
2992 | else | |
2993 | slab_error(cache, "memory outside object was overwritten"); | |
2994 | ||
b46b8f19 | 2995 | printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n", |
58ce1fd5 PE |
2996 | obj, redzone1, redzone2); |
2997 | } | |
2998 | ||
343e0d7a | 2999 | static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp, |
7c0cb9c6 | 3000 | unsigned long caller) |
1da177e4 LT |
3001 | { |
3002 | struct page *page; | |
3003 | unsigned int objnr; | |
3004 | struct slab *slabp; | |
3005 | ||
80cbd911 MW |
3006 | BUG_ON(virt_to_cache(objp) != cachep); |
3007 | ||
3dafccf2 | 3008 | objp -= obj_offset(cachep); |
1da177e4 | 3009 | kfree_debugcheck(objp); |
b49af68f | 3010 | page = virt_to_head_page(objp); |
1da177e4 | 3011 | |
35026088 | 3012 | slabp = page->slab_page; |
1da177e4 LT |
3013 | |
3014 | if (cachep->flags & SLAB_RED_ZONE) { | |
58ce1fd5 | 3015 | verify_redzone_free(cachep, objp); |
1da177e4 LT |
3016 | *dbg_redzone1(cachep, objp) = RED_INACTIVE; |
3017 | *dbg_redzone2(cachep, objp) = RED_INACTIVE; | |
3018 | } | |
3019 | if (cachep->flags & SLAB_STORE_USER) | |
7c0cb9c6 | 3020 | *dbg_userword(cachep, objp) = (void *)caller; |
1da177e4 | 3021 | |
8fea4e96 | 3022 | objnr = obj_to_index(cachep, slabp, objp); |
1da177e4 LT |
3023 | |
3024 | BUG_ON(objnr >= cachep->num); | |
8fea4e96 | 3025 | BUG_ON(objp != index_to_obj(cachep, slabp, objnr)); |
1da177e4 | 3026 | |
871751e2 AV |
3027 | #ifdef CONFIG_DEBUG_SLAB_LEAK |
3028 | slab_bufctl(slabp)[objnr] = BUFCTL_FREE; | |
3029 | #endif | |
1da177e4 LT |
3030 | if (cachep->flags & SLAB_POISON) { |
3031 | #ifdef CONFIG_DEBUG_PAGEALLOC | |
3b0efdfa | 3032 | if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) { |
7c0cb9c6 | 3033 | store_stackinfo(cachep, objp, caller); |
b28a02de | 3034 | kernel_map_pages(virt_to_page(objp), |
3b0efdfa | 3035 | cachep->size / PAGE_SIZE, 0); |
1da177e4 LT |
3036 | } else { |
3037 | poison_obj(cachep, objp, POISON_FREE); | |
3038 | } | |
3039 | #else | |
3040 | poison_obj(cachep, objp, POISON_FREE); | |
3041 | #endif | |
3042 | } | |
3043 | return objp; | |
3044 | } | |
3045 | ||
343e0d7a | 3046 | static void check_slabp(struct kmem_cache *cachep, struct slab *slabp) |
1da177e4 LT |
3047 | { |
3048 | kmem_bufctl_t i; | |
3049 | int entries = 0; | |
b28a02de | 3050 | |
1da177e4 LT |
3051 | /* Check slab's freelist to see if this obj is there. */ |
3052 | for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) { | |
3053 | entries++; | |
3054 | if (entries > cachep->num || i >= cachep->num) | |
3055 | goto bad; | |
3056 | } | |
3057 | if (entries != cachep->num - slabp->inuse) { | |
a737b3e2 AM |
3058 | bad: |
3059 | printk(KERN_ERR "slab: Internal list corruption detected in " | |
face37f5 DJ |
3060 | "cache '%s'(%d), slabp %p(%d). Tainted(%s). Hexdump:\n", |
3061 | cachep->name, cachep->num, slabp, slabp->inuse, | |
3062 | print_tainted()); | |
fdde6abb SAS |
3063 | print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, slabp, |
3064 | sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t), | |
3065 | 1); | |
1da177e4 LT |
3066 | BUG(); |
3067 | } | |
3068 | } | |
3069 | #else | |
3070 | #define kfree_debugcheck(x) do { } while(0) | |
3071 | #define cache_free_debugcheck(x,objp,z) (objp) | |
3072 | #define check_slabp(x,y) do { } while(0) | |
3073 | #endif | |
3074 | ||
072bb0aa MG |
3075 | static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags, |
3076 | bool force_refill) | |
1da177e4 LT |
3077 | { |
3078 | int batchcount; | |
3079 | struct kmem_list3 *l3; | |
3080 | struct array_cache *ac; | |
1ca4cb24 PE |
3081 | int node; |
3082 | ||
1da177e4 | 3083 | check_irq_off(); |
7d6e6d09 | 3084 | node = numa_mem_id(); |
072bb0aa MG |
3085 | if (unlikely(force_refill)) |
3086 | goto force_grow; | |
3087 | retry: | |
9a2dba4b | 3088 | ac = cpu_cache_get(cachep); |
1da177e4 LT |
3089 | batchcount = ac->batchcount; |
3090 | if (!ac->touched && batchcount > BATCHREFILL_LIMIT) { | |
a737b3e2 AM |
3091 | /* |
3092 | * If there was little recent activity on this cache, then | |
3093 | * perform only a partial refill. Otherwise we could generate | |
3094 | * refill bouncing. | |
1da177e4 LT |
3095 | */ |
3096 | batchcount = BATCHREFILL_LIMIT; | |
3097 | } | |
1ca4cb24 | 3098 | l3 = cachep->nodelists[node]; |
e498be7d CL |
3099 | |
3100 | BUG_ON(ac->avail > 0 || !l3); | |
3101 | spin_lock(&l3->list_lock); | |
1da177e4 | 3102 | |
3ded175a | 3103 | /* See if we can refill from the shared array */ |
44b57f1c NP |
3104 | if (l3->shared && transfer_objects(ac, l3->shared, batchcount)) { |
3105 | l3->shared->touched = 1; | |
3ded175a | 3106 | goto alloc_done; |
44b57f1c | 3107 | } |
3ded175a | 3108 | |
1da177e4 LT |
3109 | while (batchcount > 0) { |
3110 | struct list_head *entry; | |
3111 | struct slab *slabp; | |
3112 | /* Get slab alloc is to come from. */ | |
3113 | entry = l3->slabs_partial.next; | |
3114 | if (entry == &l3->slabs_partial) { | |
3115 | l3->free_touched = 1; | |
3116 | entry = l3->slabs_free.next; | |
3117 | if (entry == &l3->slabs_free) | |
3118 | goto must_grow; | |
3119 | } | |
3120 | ||
3121 | slabp = list_entry(entry, struct slab, list); | |
3122 | check_slabp(cachep, slabp); | |
3123 | check_spinlock_acquired(cachep); | |
714b8171 PE |
3124 | |
3125 | /* | |
3126 | * The slab was either on partial or free list so | |
3127 | * there must be at least one object available for | |
3128 | * allocation. | |
3129 | */ | |
249b9f33 | 3130 | BUG_ON(slabp->inuse >= cachep->num); |
714b8171 | 3131 | |
1da177e4 | 3132 | while (slabp->inuse < cachep->num && batchcount--) { |
1da177e4 LT |
3133 | STATS_INC_ALLOCED(cachep); |
3134 | STATS_INC_ACTIVE(cachep); | |
3135 | STATS_SET_HIGH(cachep); | |
3136 | ||
072bb0aa MG |
3137 | ac_put_obj(cachep, ac, slab_get_obj(cachep, slabp, |
3138 | node)); | |
1da177e4 LT |
3139 | } |
3140 | check_slabp(cachep, slabp); | |
3141 | ||
3142 | /* move slabp to correct slabp list: */ | |
3143 | list_del(&slabp->list); | |
3144 | if (slabp->free == BUFCTL_END) | |
3145 | list_add(&slabp->list, &l3->slabs_full); | |
3146 | else | |
3147 | list_add(&slabp->list, &l3->slabs_partial); | |
3148 | } | |
3149 | ||
a737b3e2 | 3150 | must_grow: |
1da177e4 | 3151 | l3->free_objects -= ac->avail; |
a737b3e2 | 3152 | alloc_done: |
e498be7d | 3153 | spin_unlock(&l3->list_lock); |
1da177e4 LT |
3154 | |
3155 | if (unlikely(!ac->avail)) { | |
3156 | int x; | |
072bb0aa | 3157 | force_grow: |
3c517a61 | 3158 | x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL); |
e498be7d | 3159 | |
a737b3e2 | 3160 | /* cache_grow can reenable interrupts, then ac could change. */ |
9a2dba4b | 3161 | ac = cpu_cache_get(cachep); |
51cd8e6f | 3162 | node = numa_mem_id(); |
072bb0aa MG |
3163 | |
3164 | /* no objects in sight? abort */ | |
3165 | if (!x && (ac->avail == 0 || force_refill)) | |
1da177e4 LT |
3166 | return NULL; |
3167 | ||
a737b3e2 | 3168 | if (!ac->avail) /* objects refilled by interrupt? */ |
1da177e4 LT |
3169 | goto retry; |
3170 | } | |
3171 | ac->touched = 1; | |
072bb0aa MG |
3172 | |
3173 | return ac_get_obj(cachep, ac, flags, force_refill); | |
1da177e4 LT |
3174 | } |
3175 | ||
a737b3e2 AM |
3176 | static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep, |
3177 | gfp_t flags) | |
1da177e4 LT |
3178 | { |
3179 | might_sleep_if(flags & __GFP_WAIT); | |
3180 | #if DEBUG | |
3181 | kmem_flagcheck(cachep, flags); | |
3182 | #endif | |
3183 | } | |
3184 | ||
3185 | #if DEBUG | |
a737b3e2 | 3186 | static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep, |
7c0cb9c6 | 3187 | gfp_t flags, void *objp, unsigned long caller) |
1da177e4 | 3188 | { |
b28a02de | 3189 | if (!objp) |
1da177e4 | 3190 | return objp; |
b28a02de | 3191 | if (cachep->flags & SLAB_POISON) { |
1da177e4 | 3192 | #ifdef CONFIG_DEBUG_PAGEALLOC |
3b0efdfa | 3193 | if ((cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep)) |
b28a02de | 3194 | kernel_map_pages(virt_to_page(objp), |
3b0efdfa | 3195 | cachep->size / PAGE_SIZE, 1); |
1da177e4 LT |
3196 | else |
3197 | check_poison_obj(cachep, objp); | |
3198 | #else | |
3199 | check_poison_obj(cachep, objp); | |
3200 | #endif | |
3201 | poison_obj(cachep, objp, POISON_INUSE); | |
3202 | } | |
3203 | if (cachep->flags & SLAB_STORE_USER) | |
7c0cb9c6 | 3204 | *dbg_userword(cachep, objp) = (void *)caller; |
1da177e4 LT |
3205 | |
3206 | if (cachep->flags & SLAB_RED_ZONE) { | |
a737b3e2 AM |
3207 | if (*dbg_redzone1(cachep, objp) != RED_INACTIVE || |
3208 | *dbg_redzone2(cachep, objp) != RED_INACTIVE) { | |
3209 | slab_error(cachep, "double free, or memory outside" | |
3210 | " object was overwritten"); | |
b28a02de | 3211 | printk(KERN_ERR |
b46b8f19 | 3212 | "%p: redzone 1:0x%llx, redzone 2:0x%llx\n", |
a737b3e2 AM |
3213 | objp, *dbg_redzone1(cachep, objp), |
3214 | *dbg_redzone2(cachep, objp)); | |
1da177e4 LT |
3215 | } |
3216 | *dbg_redzone1(cachep, objp) = RED_ACTIVE; | |
3217 | *dbg_redzone2(cachep, objp) = RED_ACTIVE; | |
3218 | } | |
871751e2 AV |
3219 | #ifdef CONFIG_DEBUG_SLAB_LEAK |
3220 | { | |
3221 | struct slab *slabp; | |
3222 | unsigned objnr; | |
3223 | ||
35026088 | 3224 | slabp = virt_to_head_page(objp)->slab_page; |
3b0efdfa | 3225 | objnr = (unsigned)(objp - slabp->s_mem) / cachep->size; |
871751e2 AV |
3226 | slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE; |
3227 | } | |
3228 | #endif | |
3dafccf2 | 3229 | objp += obj_offset(cachep); |
4f104934 | 3230 | if (cachep->ctor && cachep->flags & SLAB_POISON) |
51cc5068 | 3231 | cachep->ctor(objp); |
7ea466f2 TH |
3232 | if (ARCH_SLAB_MINALIGN && |
3233 | ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) { | |
a44b56d3 | 3234 | printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n", |
c225150b | 3235 | objp, (int)ARCH_SLAB_MINALIGN); |
a44b56d3 | 3236 | } |
1da177e4 LT |
3237 | return objp; |
3238 | } | |
3239 | #else | |
3240 | #define cache_alloc_debugcheck_after(a,b,objp,d) (objp) | |
3241 | #endif | |
3242 | ||
773ff60e | 3243 | static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags) |
8a8b6502 | 3244 | { |
9b030cb8 | 3245 | if (cachep == kmem_cache) |
773ff60e | 3246 | return false; |
8a8b6502 | 3247 | |
8c138bc0 | 3248 | return should_failslab(cachep->object_size, flags, cachep->flags); |
8a8b6502 AM |
3249 | } |
3250 | ||
343e0d7a | 3251 | static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags) |
1da177e4 | 3252 | { |
b28a02de | 3253 | void *objp; |
1da177e4 | 3254 | struct array_cache *ac; |
072bb0aa | 3255 | bool force_refill = false; |
1da177e4 | 3256 | |
5c382300 | 3257 | check_irq_off(); |
8a8b6502 | 3258 | |
9a2dba4b | 3259 | ac = cpu_cache_get(cachep); |
1da177e4 | 3260 | if (likely(ac->avail)) { |
1da177e4 | 3261 | ac->touched = 1; |
072bb0aa MG |
3262 | objp = ac_get_obj(cachep, ac, flags, false); |
3263 | ||
ddbf2e83 | 3264 | /* |
072bb0aa MG |
3265 | * Allow for the possibility all avail objects are not allowed |
3266 | * by the current flags | |
ddbf2e83 | 3267 | */ |
072bb0aa MG |
3268 | if (objp) { |
3269 | STATS_INC_ALLOCHIT(cachep); | |
3270 | goto out; | |
3271 | } | |
3272 | force_refill = true; | |
1da177e4 | 3273 | } |
072bb0aa MG |
3274 | |
3275 | STATS_INC_ALLOCMISS(cachep); | |
3276 | objp = cache_alloc_refill(cachep, flags, force_refill); | |
3277 | /* | |
3278 | * the 'ac' may be updated by cache_alloc_refill(), | |
3279 | * and kmemleak_erase() requires its correct value. | |
3280 | */ | |
3281 | ac = cpu_cache_get(cachep); | |
3282 | ||
3283 | out: | |
d5cff635 CM |
3284 | /* |
3285 | * To avoid a false negative, if an object that is in one of the | |
3286 | * per-CPU caches is leaked, we need to make sure kmemleak doesn't | |
3287 | * treat the array pointers as a reference to the object. | |
3288 | */ | |
f3d8b53a O |
3289 | if (objp) |
3290 | kmemleak_erase(&ac->entry[ac->avail]); | |
5c382300 AK |
3291 | return objp; |
3292 | } | |
3293 | ||
e498be7d | 3294 | #ifdef CONFIG_NUMA |
c61afb18 | 3295 | /* |
b2455396 | 3296 | * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY. |
c61afb18 PJ |
3297 | * |
3298 | * If we are in_interrupt, then process context, including cpusets and | |
3299 | * mempolicy, may not apply and should not be used for allocation policy. | |
3300 | */ | |
3301 | static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags) | |
3302 | { | |
3303 | int nid_alloc, nid_here; | |
3304 | ||
765c4507 | 3305 | if (in_interrupt() || (flags & __GFP_THISNODE)) |
c61afb18 | 3306 | return NULL; |
7d6e6d09 | 3307 | nid_alloc = nid_here = numa_mem_id(); |
c61afb18 | 3308 | if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD)) |
6adef3eb | 3309 | nid_alloc = cpuset_slab_spread_node(); |
c61afb18 | 3310 | else if (current->mempolicy) |
e7b691b0 | 3311 | nid_alloc = slab_node(); |
c61afb18 | 3312 | if (nid_alloc != nid_here) |
8b98c169 | 3313 | return ____cache_alloc_node(cachep, flags, nid_alloc); |
c61afb18 PJ |
3314 | return NULL; |
3315 | } | |
3316 | ||
765c4507 CL |
3317 | /* |
3318 | * Fallback function if there was no memory available and no objects on a | |
3c517a61 CL |
3319 | * certain node and fall back is permitted. First we scan all the |
3320 | * available nodelists for available objects. If that fails then we | |
3321 | * perform an allocation without specifying a node. This allows the page | |
3322 | * allocator to do its reclaim / fallback magic. We then insert the | |
3323 | * slab into the proper nodelist and then allocate from it. | |
765c4507 | 3324 | */ |
8c8cc2c1 | 3325 | static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags) |
765c4507 | 3326 | { |
8c8cc2c1 PE |
3327 | struct zonelist *zonelist; |
3328 | gfp_t local_flags; | |
dd1a239f | 3329 | struct zoneref *z; |
54a6eb5c MG |
3330 | struct zone *zone; |
3331 | enum zone_type high_zoneidx = gfp_zone(flags); | |
765c4507 | 3332 | void *obj = NULL; |
3c517a61 | 3333 | int nid; |
cc9a6c87 | 3334 | unsigned int cpuset_mems_cookie; |
8c8cc2c1 PE |
3335 | |
3336 | if (flags & __GFP_THISNODE) | |
3337 | return NULL; | |
3338 | ||
6cb06229 | 3339 | local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK); |
765c4507 | 3340 | |
cc9a6c87 MG |
3341 | retry_cpuset: |
3342 | cpuset_mems_cookie = get_mems_allowed(); | |
e7b691b0 | 3343 | zonelist = node_zonelist(slab_node(), flags); |
cc9a6c87 | 3344 | |
3c517a61 CL |
3345 | retry: |
3346 | /* | |
3347 | * Look through allowed nodes for objects available | |
3348 | * from existing per node queues. | |
3349 | */ | |
54a6eb5c MG |
3350 | for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { |
3351 | nid = zone_to_nid(zone); | |
aedb0eb1 | 3352 | |
54a6eb5c | 3353 | if (cpuset_zone_allowed_hardwall(zone, flags) && |
3c517a61 | 3354 | cache->nodelists[nid] && |
481c5346 | 3355 | cache->nodelists[nid]->free_objects) { |
3c517a61 CL |
3356 | obj = ____cache_alloc_node(cache, |
3357 | flags | GFP_THISNODE, nid); | |
481c5346 CL |
3358 | if (obj) |
3359 | break; | |
3360 | } | |
3c517a61 CL |
3361 | } |
3362 | ||
cfce6604 | 3363 | if (!obj) { |
3c517a61 CL |
3364 | /* |
3365 | * This allocation will be performed within the constraints | |
3366 | * of the current cpuset / memory policy requirements. | |
3367 | * We may trigger various forms of reclaim on the allowed | |
3368 | * set and go into memory reserves if necessary. | |
3369 | */ | |
dd47ea75 CL |
3370 | if (local_flags & __GFP_WAIT) |
3371 | local_irq_enable(); | |
3372 | kmem_flagcheck(cache, flags); | |
7d6e6d09 | 3373 | obj = kmem_getpages(cache, local_flags, numa_mem_id()); |
dd47ea75 CL |
3374 | if (local_flags & __GFP_WAIT) |
3375 | local_irq_disable(); | |
3c517a61 CL |
3376 | if (obj) { |
3377 | /* | |
3378 | * Insert into the appropriate per node queues | |
3379 | */ | |
3380 | nid = page_to_nid(virt_to_page(obj)); | |
3381 | if (cache_grow(cache, flags, nid, obj)) { | |
3382 | obj = ____cache_alloc_node(cache, | |
3383 | flags | GFP_THISNODE, nid); | |
3384 | if (!obj) | |
3385 | /* | |
3386 | * Another processor may allocate the | |
3387 | * objects in the slab since we are | |
3388 | * not holding any locks. | |
3389 | */ | |
3390 | goto retry; | |
3391 | } else { | |
b6a60451 | 3392 | /* cache_grow already freed obj */ |
3c517a61 CL |
3393 | obj = NULL; |
3394 | } | |
3395 | } | |
aedb0eb1 | 3396 | } |
cc9a6c87 MG |
3397 | |
3398 | if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !obj)) | |
3399 | goto retry_cpuset; | |
765c4507 CL |
3400 | return obj; |
3401 | } | |
3402 | ||
e498be7d CL |
3403 | /* |
3404 | * A interface to enable slab creation on nodeid | |
1da177e4 | 3405 | */ |
8b98c169 | 3406 | static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, |
a737b3e2 | 3407 | int nodeid) |
e498be7d CL |
3408 | { |
3409 | struct list_head *entry; | |
b28a02de PE |
3410 | struct slab *slabp; |
3411 | struct kmem_list3 *l3; | |
3412 | void *obj; | |
b28a02de PE |
3413 | int x; |
3414 | ||
3415 | l3 = cachep->nodelists[nodeid]; | |
3416 | BUG_ON(!l3); | |
3417 | ||
a737b3e2 | 3418 | retry: |
ca3b9b91 | 3419 | check_irq_off(); |
b28a02de PE |
3420 | spin_lock(&l3->list_lock); |
3421 | entry = l3->slabs_partial.next; | |
3422 | if (entry == &l3->slabs_partial) { | |
3423 | l3->free_touched = 1; | |
3424 | entry = l3->slabs_free.next; | |
3425 | if (entry == &l3->slabs_free) | |
3426 | goto must_grow; | |
3427 | } | |
3428 | ||
3429 | slabp = list_entry(entry, struct slab, list); | |
3430 | check_spinlock_acquired_node(cachep, nodeid); | |
3431 | check_slabp(cachep, slabp); | |
3432 | ||
3433 | STATS_INC_NODEALLOCS(cachep); | |
3434 | STATS_INC_ACTIVE(cachep); | |
3435 | STATS_SET_HIGH(cachep); | |
3436 | ||
3437 | BUG_ON(slabp->inuse == cachep->num); | |
3438 | ||
78d382d7 | 3439 | obj = slab_get_obj(cachep, slabp, nodeid); |
b28a02de PE |
3440 | check_slabp(cachep, slabp); |
3441 | l3->free_objects--; | |
3442 | /* move slabp to correct slabp list: */ | |
3443 | list_del(&slabp->list); | |
3444 | ||
a737b3e2 | 3445 | if (slabp->free == BUFCTL_END) |
b28a02de | 3446 | list_add(&slabp->list, &l3->slabs_full); |
a737b3e2 | 3447 | else |
b28a02de | 3448 | list_add(&slabp->list, &l3->slabs_partial); |
e498be7d | 3449 | |
b28a02de PE |
3450 | spin_unlock(&l3->list_lock); |
3451 | goto done; | |
e498be7d | 3452 | |
a737b3e2 | 3453 | must_grow: |
b28a02de | 3454 | spin_unlock(&l3->list_lock); |
3c517a61 | 3455 | x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL); |
765c4507 CL |
3456 | if (x) |
3457 | goto retry; | |
1da177e4 | 3458 | |
8c8cc2c1 | 3459 | return fallback_alloc(cachep, flags); |
e498be7d | 3460 | |
a737b3e2 | 3461 | done: |
b28a02de | 3462 | return obj; |
e498be7d | 3463 | } |
8c8cc2c1 PE |
3464 | |
3465 | /** | |
3466 | * kmem_cache_alloc_node - Allocate an object on the specified node | |
3467 | * @cachep: The cache to allocate from. | |
3468 | * @flags: See kmalloc(). | |
3469 | * @nodeid: node number of the target node. | |
3470 | * @caller: return address of caller, used for debug information | |
3471 | * | |
3472 | * Identical to kmem_cache_alloc but it will allocate memory on the given | |
3473 | * node, which can improve the performance for cpu bound structures. | |
3474 | * | |
3475 | * Fallback to other node is possible if __GFP_THISNODE is not set. | |
3476 | */ | |
3477 | static __always_inline void * | |
48356303 | 3478 | slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid, |
7c0cb9c6 | 3479 | unsigned long caller) |
8c8cc2c1 PE |
3480 | { |
3481 | unsigned long save_flags; | |
3482 | void *ptr; | |
7d6e6d09 | 3483 | int slab_node = numa_mem_id(); |
8c8cc2c1 | 3484 | |
dcce284a | 3485 | flags &= gfp_allowed_mask; |
7e85ee0c | 3486 | |
cf40bd16 NP |
3487 | lockdep_trace_alloc(flags); |
3488 | ||
773ff60e | 3489 | if (slab_should_failslab(cachep, flags)) |
824ebef1 AM |
3490 | return NULL; |
3491 | ||
d79923fa GC |
3492 | cachep = memcg_kmem_get_cache(cachep, flags); |
3493 | ||
8c8cc2c1 PE |
3494 | cache_alloc_debugcheck_before(cachep, flags); |
3495 | local_irq_save(save_flags); | |
3496 | ||
eacbbae3 | 3497 | if (nodeid == NUMA_NO_NODE) |
7d6e6d09 | 3498 | nodeid = slab_node; |
8c8cc2c1 PE |
3499 | |
3500 | if (unlikely(!cachep->nodelists[nodeid])) { | |
3501 | /* Node not bootstrapped yet */ | |
3502 | ptr = fallback_alloc(cachep, flags); | |
3503 | goto out; | |
3504 | } | |
3505 | ||
7d6e6d09 | 3506 | if (nodeid == slab_node) { |
8c8cc2c1 PE |
3507 | /* |
3508 | * Use the locally cached objects if possible. | |
3509 | * However ____cache_alloc does not allow fallback | |
3510 | * to other nodes. It may fail while we still have | |
3511 | * objects on other nodes available. | |
3512 | */ | |
3513 | ptr = ____cache_alloc(cachep, flags); | |
3514 | if (ptr) | |
3515 | goto out; | |
3516 | } | |
3517 | /* ___cache_alloc_node can fall back to other nodes */ | |
3518 | ptr = ____cache_alloc_node(cachep, flags, nodeid); | |
3519 | out: | |
3520 | local_irq_restore(save_flags); | |
3521 | ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller); | |
8c138bc0 | 3522 | kmemleak_alloc_recursive(ptr, cachep->object_size, 1, cachep->flags, |
d5cff635 | 3523 | flags); |
8c8cc2c1 | 3524 | |
c175eea4 | 3525 | if (likely(ptr)) |
8c138bc0 | 3526 | kmemcheck_slab_alloc(cachep, flags, ptr, cachep->object_size); |
c175eea4 | 3527 | |
d07dbea4 | 3528 | if (unlikely((flags & __GFP_ZERO) && ptr)) |
8c138bc0 | 3529 | memset(ptr, 0, cachep->object_size); |
d07dbea4 | 3530 | |
8c8cc2c1 PE |
3531 | return ptr; |
3532 | } | |
3533 | ||
3534 | static __always_inline void * | |
3535 | __do_cache_alloc(struct kmem_cache *cache, gfp_t flags) | |
3536 | { | |
3537 | void *objp; | |
3538 | ||
3539 | if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) { | |
3540 | objp = alternate_node_alloc(cache, flags); | |
3541 | if (objp) | |
3542 | goto out; | |
3543 | } | |
3544 | objp = ____cache_alloc(cache, flags); | |
3545 | ||
3546 | /* | |
3547 | * We may just have run out of memory on the local node. | |
3548 | * ____cache_alloc_node() knows how to locate memory on other nodes | |
3549 | */ | |
7d6e6d09 LS |
3550 | if (!objp) |
3551 | objp = ____cache_alloc_node(cache, flags, numa_mem_id()); | |
8c8cc2c1 PE |
3552 | |
3553 | out: | |
3554 | return objp; | |
3555 | } | |
3556 | #else | |
3557 | ||
3558 | static __always_inline void * | |
3559 | __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags) | |
3560 | { | |
3561 | return ____cache_alloc(cachep, flags); | |
3562 | } | |
3563 | ||
3564 | #endif /* CONFIG_NUMA */ | |
3565 | ||
3566 | static __always_inline void * | |
48356303 | 3567 | slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller) |
8c8cc2c1 PE |
3568 | { |
3569 | unsigned long save_flags; | |
3570 | void *objp; | |
3571 | ||
dcce284a | 3572 | flags &= gfp_allowed_mask; |
7e85ee0c | 3573 | |
cf40bd16 NP |
3574 | lockdep_trace_alloc(flags); |
3575 | ||
773ff60e | 3576 | if (slab_should_failslab(cachep, flags)) |
824ebef1 AM |
3577 | return NULL; |
3578 | ||
d79923fa GC |
3579 | cachep = memcg_kmem_get_cache(cachep, flags); |
3580 | ||
8c8cc2c1 PE |
3581 | cache_alloc_debugcheck_before(cachep, flags); |
3582 | local_irq_save(save_flags); | |
3583 | objp = __do_cache_alloc(cachep, flags); | |
3584 | local_irq_restore(save_flags); | |
3585 | objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller); | |
8c138bc0 | 3586 | kmemleak_alloc_recursive(objp, cachep->object_size, 1, cachep->flags, |
d5cff635 | 3587 | flags); |
8c8cc2c1 PE |
3588 | prefetchw(objp); |
3589 | ||
c175eea4 | 3590 | if (likely(objp)) |
8c138bc0 | 3591 | kmemcheck_slab_alloc(cachep, flags, objp, cachep->object_size); |
c175eea4 | 3592 | |
d07dbea4 | 3593 | if (unlikely((flags & __GFP_ZERO) && objp)) |
8c138bc0 | 3594 | memset(objp, 0, cachep->object_size); |
d07dbea4 | 3595 | |
8c8cc2c1 PE |
3596 | return objp; |
3597 | } | |
e498be7d CL |
3598 | |
3599 | /* | |
3600 | * Caller needs to acquire correct kmem_list's list_lock | |
3601 | */ | |
343e0d7a | 3602 | static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects, |
b28a02de | 3603 | int node) |
1da177e4 LT |
3604 | { |
3605 | int i; | |
e498be7d | 3606 | struct kmem_list3 *l3; |
1da177e4 LT |
3607 | |
3608 | for (i = 0; i < nr_objects; i++) { | |
072bb0aa | 3609 | void *objp; |
1da177e4 | 3610 | struct slab *slabp; |
1da177e4 | 3611 | |
072bb0aa MG |
3612 | clear_obj_pfmemalloc(&objpp[i]); |
3613 | objp = objpp[i]; | |
3614 | ||
6ed5eb22 | 3615 | slabp = virt_to_slab(objp); |
ff69416e | 3616 | l3 = cachep->nodelists[node]; |
1da177e4 | 3617 | list_del(&slabp->list); |
ff69416e | 3618 | check_spinlock_acquired_node(cachep, node); |
1da177e4 | 3619 | check_slabp(cachep, slabp); |
78d382d7 | 3620 | slab_put_obj(cachep, slabp, objp, node); |
1da177e4 | 3621 | STATS_DEC_ACTIVE(cachep); |
e498be7d | 3622 | l3->free_objects++; |
1da177e4 LT |
3623 | check_slabp(cachep, slabp); |
3624 | ||
3625 | /* fixup slab chains */ | |
3626 | if (slabp->inuse == 0) { | |
e498be7d CL |
3627 | if (l3->free_objects > l3->free_limit) { |
3628 | l3->free_objects -= cachep->num; | |
e5ac9c5a RT |
3629 | /* No need to drop any previously held |
3630 | * lock here, even if we have a off-slab slab | |
3631 | * descriptor it is guaranteed to come from | |
3632 | * a different cache, refer to comments before | |
3633 | * alloc_slabmgmt. | |
3634 | */ | |
1da177e4 LT |
3635 | slab_destroy(cachep, slabp); |
3636 | } else { | |
e498be7d | 3637 | list_add(&slabp->list, &l3->slabs_free); |
1da177e4 LT |
3638 | } |
3639 | } else { | |
3640 | /* Unconditionally move a slab to the end of the | |
3641 | * partial list on free - maximum time for the | |
3642 | * other objects to be freed, too. | |
3643 | */ | |
e498be7d | 3644 | list_add_tail(&slabp->list, &l3->slabs_partial); |
1da177e4 LT |
3645 | } |
3646 | } | |
3647 | } | |
3648 | ||
343e0d7a | 3649 | static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac) |
1da177e4 LT |
3650 | { |
3651 | int batchcount; | |
e498be7d | 3652 | struct kmem_list3 *l3; |
7d6e6d09 | 3653 | int node = numa_mem_id(); |
1da177e4 LT |
3654 | |
3655 | batchcount = ac->batchcount; | |
3656 | #if DEBUG | |
3657 | BUG_ON(!batchcount || batchcount > ac->avail); | |
3658 | #endif | |
3659 | check_irq_off(); | |
ff69416e | 3660 | l3 = cachep->nodelists[node]; |
873623df | 3661 | spin_lock(&l3->list_lock); |
e498be7d CL |
3662 | if (l3->shared) { |
3663 | struct array_cache *shared_array = l3->shared; | |
b28a02de | 3664 | int max = shared_array->limit - shared_array->avail; |
1da177e4 LT |
3665 | if (max) { |
3666 | if (batchcount > max) | |
3667 | batchcount = max; | |
e498be7d | 3668 | memcpy(&(shared_array->entry[shared_array->avail]), |
b28a02de | 3669 | ac->entry, sizeof(void *) * batchcount); |
1da177e4 LT |
3670 | shared_array->avail += batchcount; |
3671 | goto free_done; | |
3672 | } | |
3673 | } | |
3674 | ||
ff69416e | 3675 | free_block(cachep, ac->entry, batchcount, node); |
a737b3e2 | 3676 | free_done: |
1da177e4 LT |
3677 | #if STATS |
3678 | { | |
3679 | int i = 0; | |
3680 | struct list_head *p; | |
3681 | ||
e498be7d CL |
3682 | p = l3->slabs_free.next; |
3683 | while (p != &(l3->slabs_free)) { | |
1da177e4 LT |
3684 | struct slab *slabp; |
3685 | ||
3686 | slabp = list_entry(p, struct slab, list); | |
3687 | BUG_ON(slabp->inuse); | |
3688 | ||
3689 | i++; | |
3690 | p = p->next; | |
3691 | } | |
3692 | STATS_SET_FREEABLE(cachep, i); | |
3693 | } | |
3694 | #endif | |
e498be7d | 3695 | spin_unlock(&l3->list_lock); |
1da177e4 | 3696 | ac->avail -= batchcount; |
a737b3e2 | 3697 | memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail); |
1da177e4 LT |
3698 | } |
3699 | ||
3700 | /* | |
a737b3e2 AM |
3701 | * Release an obj back to its cache. If the obj has a constructed state, it must |
3702 | * be in this state _before_ it is released. Called with disabled ints. | |
1da177e4 | 3703 | */ |
a947eb95 | 3704 | static inline void __cache_free(struct kmem_cache *cachep, void *objp, |
7c0cb9c6 | 3705 | unsigned long caller) |
1da177e4 | 3706 | { |
9a2dba4b | 3707 | struct array_cache *ac = cpu_cache_get(cachep); |
1da177e4 LT |
3708 | |
3709 | check_irq_off(); | |
d5cff635 | 3710 | kmemleak_free_recursive(objp, cachep->flags); |
a947eb95 | 3711 | objp = cache_free_debugcheck(cachep, objp, caller); |
1da177e4 | 3712 | |
8c138bc0 | 3713 | kmemcheck_slab_free(cachep, objp, cachep->object_size); |
c175eea4 | 3714 | |
1807a1aa SS |
3715 | /* |
3716 | * Skip calling cache_free_alien() when the platform is not numa. | |
3717 | * This will avoid cache misses that happen while accessing slabp (which | |
3718 | * is per page memory reference) to get nodeid. Instead use a global | |
3719 | * variable to skip the call, which is mostly likely to be present in | |
3720 | * the cache. | |
3721 | */ | |
b6e68bc1 | 3722 | if (nr_online_nodes > 1 && cache_free_alien(cachep, objp)) |
729bd0b7 PE |
3723 | return; |
3724 | ||
1da177e4 LT |
3725 | if (likely(ac->avail < ac->limit)) { |
3726 | STATS_INC_FREEHIT(cachep); | |
1da177e4 LT |
3727 | } else { |
3728 | STATS_INC_FREEMISS(cachep); | |
3729 | cache_flusharray(cachep, ac); | |
1da177e4 | 3730 | } |
42c8c99c | 3731 | |
072bb0aa | 3732 | ac_put_obj(cachep, ac, objp); |
1da177e4 LT |
3733 | } |
3734 | ||
3735 | /** | |
3736 | * kmem_cache_alloc - Allocate an object | |
3737 | * @cachep: The cache to allocate from. | |
3738 | * @flags: See kmalloc(). | |
3739 | * | |
3740 | * Allocate an object from this cache. The flags are only relevant | |
3741 | * if the cache has no available objects. | |
3742 | */ | |
343e0d7a | 3743 | void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags) |
1da177e4 | 3744 | { |
48356303 | 3745 | void *ret = slab_alloc(cachep, flags, _RET_IP_); |
36555751 | 3746 | |
ca2b84cb | 3747 | trace_kmem_cache_alloc(_RET_IP_, ret, |
8c138bc0 | 3748 | cachep->object_size, cachep->size, flags); |
36555751 EGM |
3749 | |
3750 | return ret; | |
1da177e4 LT |
3751 | } |
3752 | EXPORT_SYMBOL(kmem_cache_alloc); | |
3753 | ||
0f24f128 | 3754 | #ifdef CONFIG_TRACING |
85beb586 | 3755 | void * |
4052147c | 3756 | kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size) |
36555751 | 3757 | { |
85beb586 SR |
3758 | void *ret; |
3759 | ||
48356303 | 3760 | ret = slab_alloc(cachep, flags, _RET_IP_); |
85beb586 SR |
3761 | |
3762 | trace_kmalloc(_RET_IP_, ret, | |
ff4fcd01 | 3763 | size, cachep->size, flags); |
85beb586 | 3764 | return ret; |
36555751 | 3765 | } |
85beb586 | 3766 | EXPORT_SYMBOL(kmem_cache_alloc_trace); |
36555751 EGM |
3767 | #endif |
3768 | ||
1da177e4 | 3769 | #ifdef CONFIG_NUMA |
8b98c169 CH |
3770 | void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid) |
3771 | { | |
48356303 | 3772 | void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_); |
36555751 | 3773 | |
ca2b84cb | 3774 | trace_kmem_cache_alloc_node(_RET_IP_, ret, |
8c138bc0 | 3775 | cachep->object_size, cachep->size, |
ca2b84cb | 3776 | flags, nodeid); |
36555751 EGM |
3777 | |
3778 | return ret; | |
8b98c169 | 3779 | } |
1da177e4 LT |
3780 | EXPORT_SYMBOL(kmem_cache_alloc_node); |
3781 | ||
0f24f128 | 3782 | #ifdef CONFIG_TRACING |
4052147c | 3783 | void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep, |
85beb586 | 3784 | gfp_t flags, |
4052147c EG |
3785 | int nodeid, |
3786 | size_t size) | |
36555751 | 3787 | { |
85beb586 SR |
3788 | void *ret; |
3789 | ||
592f4145 | 3790 | ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_); |
7c0cb9c6 | 3791 | |
85beb586 | 3792 | trace_kmalloc_node(_RET_IP_, ret, |
ff4fcd01 | 3793 | size, cachep->size, |
85beb586 SR |
3794 | flags, nodeid); |
3795 | return ret; | |
36555751 | 3796 | } |
85beb586 | 3797 | EXPORT_SYMBOL(kmem_cache_alloc_node_trace); |
36555751 EGM |
3798 | #endif |
3799 | ||
8b98c169 | 3800 | static __always_inline void * |
7c0cb9c6 | 3801 | __do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller) |
97e2bde4 | 3802 | { |
343e0d7a | 3803 | struct kmem_cache *cachep; |
97e2bde4 MS |
3804 | |
3805 | cachep = kmem_find_general_cachep(size, flags); | |
6cb8f913 CL |
3806 | if (unlikely(ZERO_OR_NULL_PTR(cachep))) |
3807 | return cachep; | |
4052147c | 3808 | return kmem_cache_alloc_node_trace(cachep, flags, node, size); |
97e2bde4 | 3809 | } |
8b98c169 | 3810 | |
0bb38a5c | 3811 | #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING) |
8b98c169 CH |
3812 | void *__kmalloc_node(size_t size, gfp_t flags, int node) |
3813 | { | |
7c0cb9c6 | 3814 | return __do_kmalloc_node(size, flags, node, _RET_IP_); |
8b98c169 | 3815 | } |
dbe5e69d | 3816 | EXPORT_SYMBOL(__kmalloc_node); |
8b98c169 CH |
3817 | |
3818 | void *__kmalloc_node_track_caller(size_t size, gfp_t flags, | |
ce71e27c | 3819 | int node, unsigned long caller) |
8b98c169 | 3820 | { |
7c0cb9c6 | 3821 | return __do_kmalloc_node(size, flags, node, caller); |
8b98c169 CH |
3822 | } |
3823 | EXPORT_SYMBOL(__kmalloc_node_track_caller); | |
3824 | #else | |
3825 | void *__kmalloc_node(size_t size, gfp_t flags, int node) | |
3826 | { | |
7c0cb9c6 | 3827 | return __do_kmalloc_node(size, flags, node, 0); |
8b98c169 CH |
3828 | } |
3829 | EXPORT_SYMBOL(__kmalloc_node); | |
0bb38a5c | 3830 | #endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */ |
8b98c169 | 3831 | #endif /* CONFIG_NUMA */ |
1da177e4 LT |
3832 | |
3833 | /** | |
800590f5 | 3834 | * __do_kmalloc - allocate memory |
1da177e4 | 3835 | * @size: how many bytes of memory are required. |
800590f5 | 3836 | * @flags: the type of memory to allocate (see kmalloc). |
911851e6 | 3837 | * @caller: function caller for debug tracking of the caller |
1da177e4 | 3838 | */ |
7fd6b141 | 3839 | static __always_inline void *__do_kmalloc(size_t size, gfp_t flags, |
7c0cb9c6 | 3840 | unsigned long caller) |
1da177e4 | 3841 | { |
343e0d7a | 3842 | struct kmem_cache *cachep; |
36555751 | 3843 | void *ret; |
1da177e4 | 3844 | |
97e2bde4 MS |
3845 | /* If you want to save a few bytes .text space: replace |
3846 | * __ with kmem_. | |
3847 | * Then kmalloc uses the uninlined functions instead of the inline | |
3848 | * functions. | |
3849 | */ | |
3850 | cachep = __find_general_cachep(size, flags); | |
a5c96d8a LT |
3851 | if (unlikely(ZERO_OR_NULL_PTR(cachep))) |
3852 | return cachep; | |
48356303 | 3853 | ret = slab_alloc(cachep, flags, caller); |
36555751 | 3854 | |
7c0cb9c6 | 3855 | trace_kmalloc(caller, ret, |
3b0efdfa | 3856 | size, cachep->size, flags); |
36555751 EGM |
3857 | |
3858 | return ret; | |
7fd6b141 PE |
3859 | } |
3860 | ||
7fd6b141 | 3861 | |
0bb38a5c | 3862 | #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING) |
7fd6b141 PE |
3863 | void *__kmalloc(size_t size, gfp_t flags) |
3864 | { | |
7c0cb9c6 | 3865 | return __do_kmalloc(size, flags, _RET_IP_); |
1da177e4 LT |
3866 | } |
3867 | EXPORT_SYMBOL(__kmalloc); | |
3868 | ||
ce71e27c | 3869 | void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller) |
7fd6b141 | 3870 | { |
7c0cb9c6 | 3871 | return __do_kmalloc(size, flags, caller); |
7fd6b141 PE |
3872 | } |
3873 | EXPORT_SYMBOL(__kmalloc_track_caller); | |
1d2c8eea CH |
3874 | |
3875 | #else | |
3876 | void *__kmalloc(size_t size, gfp_t flags) | |
3877 | { | |
7c0cb9c6 | 3878 | return __do_kmalloc(size, flags, 0); |
1d2c8eea CH |
3879 | } |
3880 | EXPORT_SYMBOL(__kmalloc); | |
7fd6b141 PE |
3881 | #endif |
3882 | ||
1da177e4 LT |
3883 | /** |
3884 | * kmem_cache_free - Deallocate an object | |
3885 | * @cachep: The cache the allocation was from. | |
3886 | * @objp: The previously allocated object. | |
3887 | * | |
3888 | * Free an object which was previously allocated from this | |
3889 | * cache. | |
3890 | */ | |
343e0d7a | 3891 | void kmem_cache_free(struct kmem_cache *cachep, void *objp) |
1da177e4 LT |
3892 | { |
3893 | unsigned long flags; | |
b9ce5ef4 GC |
3894 | cachep = cache_from_obj(cachep, objp); |
3895 | if (!cachep) | |
3896 | return; | |
1da177e4 LT |
3897 | |
3898 | local_irq_save(flags); | |
d97d476b | 3899 | debug_check_no_locks_freed(objp, cachep->object_size); |
3ac7fe5a | 3900 | if (!(cachep->flags & SLAB_DEBUG_OBJECTS)) |
8c138bc0 | 3901 | debug_check_no_obj_freed(objp, cachep->object_size); |
7c0cb9c6 | 3902 | __cache_free(cachep, objp, _RET_IP_); |
1da177e4 | 3903 | local_irq_restore(flags); |
36555751 | 3904 | |
ca2b84cb | 3905 | trace_kmem_cache_free(_RET_IP_, objp); |
1da177e4 LT |
3906 | } |
3907 | EXPORT_SYMBOL(kmem_cache_free); | |
3908 | ||
1da177e4 LT |
3909 | /** |
3910 | * kfree - free previously allocated memory | |
3911 | * @objp: pointer returned by kmalloc. | |
3912 | * | |
80e93eff PE |
3913 | * If @objp is NULL, no operation is performed. |
3914 | * | |
1da177e4 LT |
3915 | * Don't free memory not originally allocated by kmalloc() |
3916 | * or you will run into trouble. | |
3917 | */ | |
3918 | void kfree(const void *objp) | |
3919 | { | |
343e0d7a | 3920 | struct kmem_cache *c; |
1da177e4 LT |
3921 | unsigned long flags; |
3922 | ||
2121db74 PE |
3923 | trace_kfree(_RET_IP_, objp); |
3924 | ||
6cb8f913 | 3925 | if (unlikely(ZERO_OR_NULL_PTR(objp))) |
1da177e4 LT |
3926 | return; |
3927 | local_irq_save(flags); | |
3928 | kfree_debugcheck(objp); | |
6ed5eb22 | 3929 | c = virt_to_cache(objp); |
8c138bc0 CL |
3930 | debug_check_no_locks_freed(objp, c->object_size); |
3931 | ||
3932 | debug_check_no_obj_freed(objp, c->object_size); | |
7c0cb9c6 | 3933 | __cache_free(c, (void *)objp, _RET_IP_); |
1da177e4 LT |
3934 | local_irq_restore(flags); |
3935 | } | |
3936 | EXPORT_SYMBOL(kfree); | |
3937 | ||
e498be7d | 3938 | /* |
183ff22b | 3939 | * This initializes kmem_list3 or resizes various caches for all nodes. |
e498be7d | 3940 | */ |
83b519e8 | 3941 | static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp) |
e498be7d CL |
3942 | { |
3943 | int node; | |
3944 | struct kmem_list3 *l3; | |
cafeb02e | 3945 | struct array_cache *new_shared; |
3395ee05 | 3946 | struct array_cache **new_alien = NULL; |
e498be7d | 3947 | |
9c09a95c | 3948 | for_each_online_node(node) { |
cafeb02e | 3949 | |
3395ee05 | 3950 | if (use_alien_caches) { |
83b519e8 | 3951 | new_alien = alloc_alien_cache(node, cachep->limit, gfp); |
3395ee05 PM |
3952 | if (!new_alien) |
3953 | goto fail; | |
3954 | } | |
cafeb02e | 3955 | |
63109846 ED |
3956 | new_shared = NULL; |
3957 | if (cachep->shared) { | |
3958 | new_shared = alloc_arraycache(node, | |
0718dc2a | 3959 | cachep->shared*cachep->batchcount, |
83b519e8 | 3960 | 0xbaadf00d, gfp); |
63109846 ED |
3961 | if (!new_shared) { |
3962 | free_alien_cache(new_alien); | |
3963 | goto fail; | |
3964 | } | |
0718dc2a | 3965 | } |
cafeb02e | 3966 | |
a737b3e2 AM |
3967 | l3 = cachep->nodelists[node]; |
3968 | if (l3) { | |
cafeb02e CL |
3969 | struct array_cache *shared = l3->shared; |
3970 | ||
e498be7d CL |
3971 | spin_lock_irq(&l3->list_lock); |
3972 | ||
cafeb02e | 3973 | if (shared) |
0718dc2a CL |
3974 | free_block(cachep, shared->entry, |
3975 | shared->avail, node); | |
e498be7d | 3976 | |
cafeb02e CL |
3977 | l3->shared = new_shared; |
3978 | if (!l3->alien) { | |
e498be7d CL |
3979 | l3->alien = new_alien; |
3980 | new_alien = NULL; | |
3981 | } | |
b28a02de | 3982 | l3->free_limit = (1 + nr_cpus_node(node)) * |
a737b3e2 | 3983 | cachep->batchcount + cachep->num; |
e498be7d | 3984 | spin_unlock_irq(&l3->list_lock); |
cafeb02e | 3985 | kfree(shared); |
e498be7d CL |
3986 | free_alien_cache(new_alien); |
3987 | continue; | |
3988 | } | |
83b519e8 | 3989 | l3 = kmalloc_node(sizeof(struct kmem_list3), gfp, node); |
0718dc2a CL |
3990 | if (!l3) { |
3991 | free_alien_cache(new_alien); | |
3992 | kfree(new_shared); | |
e498be7d | 3993 | goto fail; |
0718dc2a | 3994 | } |
e498be7d CL |
3995 | |
3996 | kmem_list3_init(l3); | |
3997 | l3->next_reap = jiffies + REAPTIMEOUT_LIST3 + | |
a737b3e2 | 3998 | ((unsigned long)cachep) % REAPTIMEOUT_LIST3; |
cafeb02e | 3999 | l3->shared = new_shared; |
e498be7d | 4000 | l3->alien = new_alien; |
b28a02de | 4001 | l3->free_limit = (1 + nr_cpus_node(node)) * |
a737b3e2 | 4002 | cachep->batchcount + cachep->num; |
e498be7d CL |
4003 | cachep->nodelists[node] = l3; |
4004 | } | |
cafeb02e | 4005 | return 0; |
0718dc2a | 4006 | |
a737b3e2 | 4007 | fail: |
3b0efdfa | 4008 | if (!cachep->list.next) { |
0718dc2a CL |
4009 | /* Cache is not active yet. Roll back what we did */ |
4010 | node--; | |
4011 | while (node >= 0) { | |
4012 | if (cachep->nodelists[node]) { | |
4013 | l3 = cachep->nodelists[node]; | |
4014 | ||
4015 | kfree(l3->shared); | |
4016 | free_alien_cache(l3->alien); | |
4017 | kfree(l3); | |
4018 | cachep->nodelists[node] = NULL; | |
4019 | } | |
4020 | node--; | |
4021 | } | |
4022 | } | |
cafeb02e | 4023 | return -ENOMEM; |
e498be7d CL |
4024 | } |
4025 | ||
1da177e4 | 4026 | struct ccupdate_struct { |
343e0d7a | 4027 | struct kmem_cache *cachep; |
acfe7d74 | 4028 | struct array_cache *new[0]; |
1da177e4 LT |
4029 | }; |
4030 | ||
4031 | static void do_ccupdate_local(void *info) | |
4032 | { | |
a737b3e2 | 4033 | struct ccupdate_struct *new = info; |
1da177e4 LT |
4034 | struct array_cache *old; |
4035 | ||
4036 | check_irq_off(); | |
9a2dba4b | 4037 | old = cpu_cache_get(new->cachep); |
e498be7d | 4038 | |
1da177e4 LT |
4039 | new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()]; |
4040 | new->new[smp_processor_id()] = old; | |
4041 | } | |
4042 | ||
18004c5d | 4043 | /* Always called with the slab_mutex held */ |
943a451a | 4044 | static int __do_tune_cpucache(struct kmem_cache *cachep, int limit, |
83b519e8 | 4045 | int batchcount, int shared, gfp_t gfp) |
1da177e4 | 4046 | { |
d2e7b7d0 | 4047 | struct ccupdate_struct *new; |
2ed3a4ef | 4048 | int i; |
1da177e4 | 4049 | |
acfe7d74 ED |
4050 | new = kzalloc(sizeof(*new) + nr_cpu_ids * sizeof(struct array_cache *), |
4051 | gfp); | |
d2e7b7d0 SS |
4052 | if (!new) |
4053 | return -ENOMEM; | |
4054 | ||
e498be7d | 4055 | for_each_online_cpu(i) { |
7d6e6d09 | 4056 | new->new[i] = alloc_arraycache(cpu_to_mem(i), limit, |
83b519e8 | 4057 | batchcount, gfp); |
d2e7b7d0 | 4058 | if (!new->new[i]) { |
b28a02de | 4059 | for (i--; i >= 0; i--) |
d2e7b7d0 SS |
4060 | kfree(new->new[i]); |
4061 | kfree(new); | |
e498be7d | 4062 | return -ENOMEM; |
1da177e4 LT |
4063 | } |
4064 | } | |
d2e7b7d0 | 4065 | new->cachep = cachep; |
1da177e4 | 4066 | |
15c8b6c1 | 4067 | on_each_cpu(do_ccupdate_local, (void *)new, 1); |
e498be7d | 4068 | |
1da177e4 | 4069 | check_irq_on(); |
1da177e4 LT |
4070 | cachep->batchcount = batchcount; |
4071 | cachep->limit = limit; | |
e498be7d | 4072 | cachep->shared = shared; |
1da177e4 | 4073 | |
e498be7d | 4074 | for_each_online_cpu(i) { |
d2e7b7d0 | 4075 | struct array_cache *ccold = new->new[i]; |
1da177e4 LT |
4076 | if (!ccold) |
4077 | continue; | |
7d6e6d09 LS |
4078 | spin_lock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock); |
4079 | free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i)); | |
4080 | spin_unlock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock); | |
1da177e4 LT |
4081 | kfree(ccold); |
4082 | } | |
d2e7b7d0 | 4083 | kfree(new); |
83b519e8 | 4084 | return alloc_kmemlist(cachep, gfp); |
1da177e4 LT |
4085 | } |
4086 | ||
943a451a GC |
4087 | static int do_tune_cpucache(struct kmem_cache *cachep, int limit, |
4088 | int batchcount, int shared, gfp_t gfp) | |
4089 | { | |
4090 | int ret; | |
4091 | struct kmem_cache *c = NULL; | |
4092 | int i = 0; | |
4093 | ||
4094 | ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp); | |
4095 | ||
4096 | if (slab_state < FULL) | |
4097 | return ret; | |
4098 | ||
4099 | if ((ret < 0) || !is_root_cache(cachep)) | |
4100 | return ret; | |
4101 | ||
ebe945c2 | 4102 | VM_BUG_ON(!mutex_is_locked(&slab_mutex)); |
943a451a GC |
4103 | for_each_memcg_cache_index(i) { |
4104 | c = cache_from_memcg(cachep, i); | |
4105 | if (c) | |
4106 | /* return value determined by the parent cache only */ | |
4107 | __do_tune_cpucache(c, limit, batchcount, shared, gfp); | |
4108 | } | |
4109 | ||
4110 | return ret; | |
4111 | } | |
4112 | ||
18004c5d | 4113 | /* Called with slab_mutex held always */ |
83b519e8 | 4114 | static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp) |
1da177e4 LT |
4115 | { |
4116 | int err; | |
943a451a GC |
4117 | int limit = 0; |
4118 | int shared = 0; | |
4119 | int batchcount = 0; | |
4120 | ||
4121 | if (!is_root_cache(cachep)) { | |
4122 | struct kmem_cache *root = memcg_root_cache(cachep); | |
4123 | limit = root->limit; | |
4124 | shared = root->shared; | |
4125 | batchcount = root->batchcount; | |
4126 | } | |
1da177e4 | 4127 | |
943a451a GC |
4128 | if (limit && shared && batchcount) |
4129 | goto skip_setup; | |
a737b3e2 AM |
4130 | /* |
4131 | * The head array serves three purposes: | |
1da177e4 LT |
4132 | * - create a LIFO ordering, i.e. return objects that are cache-warm |
4133 | * - reduce the number of spinlock operations. | |
a737b3e2 | 4134 | * - reduce the number of linked list operations on the slab and |
1da177e4 LT |
4135 | * bufctl chains: array operations are cheaper. |
4136 | * The numbers are guessed, we should auto-tune as described by | |
4137 | * Bonwick. | |
4138 | */ | |
3b0efdfa | 4139 | if (cachep->size > 131072) |
1da177e4 | 4140 | limit = 1; |
3b0efdfa | 4141 | else if (cachep->size > PAGE_SIZE) |
1da177e4 | 4142 | limit = 8; |
3b0efdfa | 4143 | else if (cachep->size > 1024) |
1da177e4 | 4144 | limit = 24; |
3b0efdfa | 4145 | else if (cachep->size > 256) |
1da177e4 LT |
4146 | limit = 54; |
4147 | else | |
4148 | limit = 120; | |
4149 | ||
a737b3e2 AM |
4150 | /* |
4151 | * CPU bound tasks (e.g. network routing) can exhibit cpu bound | |
1da177e4 LT |
4152 | * allocation behaviour: Most allocs on one cpu, most free operations |
4153 | * on another cpu. For these cases, an efficient object passing between | |
4154 | * cpus is necessary. This is provided by a shared array. The array | |
4155 | * replaces Bonwick's magazine layer. | |
4156 | * On uniprocessor, it's functionally equivalent (but less efficient) | |
4157 | * to a larger limit. Thus disabled by default. | |
4158 | */ | |
4159 | shared = 0; | |
3b0efdfa | 4160 | if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1) |
1da177e4 | 4161 | shared = 8; |
1da177e4 LT |
4162 | |
4163 | #if DEBUG | |
a737b3e2 AM |
4164 | /* |
4165 | * With debugging enabled, large batchcount lead to excessively long | |
4166 | * periods with disabled local interrupts. Limit the batchcount | |
1da177e4 LT |
4167 | */ |
4168 | if (limit > 32) | |
4169 | limit = 32; | |
4170 | #endif | |
943a451a GC |
4171 | batchcount = (limit + 1) / 2; |
4172 | skip_setup: | |
4173 | err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp); | |
1da177e4 LT |
4174 | if (err) |
4175 | printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n", | |
b28a02de | 4176 | cachep->name, -err); |
2ed3a4ef | 4177 | return err; |
1da177e4 LT |
4178 | } |
4179 | ||
1b55253a CL |
4180 | /* |
4181 | * Drain an array if it contains any elements taking the l3 lock only if | |
b18e7e65 CL |
4182 | * necessary. Note that the l3 listlock also protects the array_cache |
4183 | * if drain_array() is used on the shared array. | |
1b55253a | 4184 | */ |
68a1b195 | 4185 | static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3, |
1b55253a | 4186 | struct array_cache *ac, int force, int node) |
1da177e4 LT |
4187 | { |
4188 | int tofree; | |
4189 | ||
1b55253a CL |
4190 | if (!ac || !ac->avail) |
4191 | return; | |
1da177e4 LT |
4192 | if (ac->touched && !force) { |
4193 | ac->touched = 0; | |
b18e7e65 | 4194 | } else { |
1b55253a | 4195 | spin_lock_irq(&l3->list_lock); |
b18e7e65 CL |
4196 | if (ac->avail) { |
4197 | tofree = force ? ac->avail : (ac->limit + 4) / 5; | |
4198 | if (tofree > ac->avail) | |
4199 | tofree = (ac->avail + 1) / 2; | |
4200 | free_block(cachep, ac->entry, tofree, node); | |
4201 | ac->avail -= tofree; | |
4202 | memmove(ac->entry, &(ac->entry[tofree]), | |
4203 | sizeof(void *) * ac->avail); | |
4204 | } | |
1b55253a | 4205 | spin_unlock_irq(&l3->list_lock); |
1da177e4 LT |
4206 | } |
4207 | } | |
4208 | ||
4209 | /** | |
4210 | * cache_reap - Reclaim memory from caches. | |
05fb6bf0 | 4211 | * @w: work descriptor |
1da177e4 LT |
4212 | * |
4213 | * Called from workqueue/eventd every few seconds. | |
4214 | * Purpose: | |
4215 | * - clear the per-cpu caches for this CPU. | |
4216 | * - return freeable pages to the main free memory pool. | |
4217 | * | |
a737b3e2 AM |
4218 | * If we cannot acquire the cache chain mutex then just give up - we'll try |
4219 | * again on the next iteration. | |
1da177e4 | 4220 | */ |
7c5cae36 | 4221 | static void cache_reap(struct work_struct *w) |
1da177e4 | 4222 | { |
7a7c381d | 4223 | struct kmem_cache *searchp; |
e498be7d | 4224 | struct kmem_list3 *l3; |
7d6e6d09 | 4225 | int node = numa_mem_id(); |
bf6aede7 | 4226 | struct delayed_work *work = to_delayed_work(w); |
1da177e4 | 4227 | |
18004c5d | 4228 | if (!mutex_trylock(&slab_mutex)) |
1da177e4 | 4229 | /* Give up. Setup the next iteration. */ |
7c5cae36 | 4230 | goto out; |
1da177e4 | 4231 | |
18004c5d | 4232 | list_for_each_entry(searchp, &slab_caches, list) { |
1da177e4 LT |
4233 | check_irq_on(); |
4234 | ||
35386e3b CL |
4235 | /* |
4236 | * We only take the l3 lock if absolutely necessary and we | |
4237 | * have established with reasonable certainty that | |
4238 | * we can do some work if the lock was obtained. | |
4239 | */ | |
aab2207c | 4240 | l3 = searchp->nodelists[node]; |
35386e3b | 4241 | |
8fce4d8e | 4242 | reap_alien(searchp, l3); |
1da177e4 | 4243 | |
aab2207c | 4244 | drain_array(searchp, l3, cpu_cache_get(searchp), 0, node); |
1da177e4 | 4245 | |
35386e3b CL |
4246 | /* |
4247 | * These are racy checks but it does not matter | |
4248 | * if we skip one check or scan twice. | |
4249 | */ | |
e498be7d | 4250 | if (time_after(l3->next_reap, jiffies)) |
35386e3b | 4251 | goto next; |
1da177e4 | 4252 | |
e498be7d | 4253 | l3->next_reap = jiffies + REAPTIMEOUT_LIST3; |
1da177e4 | 4254 | |
aab2207c | 4255 | drain_array(searchp, l3, l3->shared, 0, node); |
1da177e4 | 4256 | |
ed11d9eb | 4257 | if (l3->free_touched) |
e498be7d | 4258 | l3->free_touched = 0; |
ed11d9eb CL |
4259 | else { |
4260 | int freed; | |
1da177e4 | 4261 | |
ed11d9eb CL |
4262 | freed = drain_freelist(searchp, l3, (l3->free_limit + |
4263 | 5 * searchp->num - 1) / (5 * searchp->num)); | |
4264 | STATS_ADD_REAPED(searchp, freed); | |
4265 | } | |
35386e3b | 4266 | next: |
1da177e4 LT |
4267 | cond_resched(); |
4268 | } | |
4269 | check_irq_on(); | |
18004c5d | 4270 | mutex_unlock(&slab_mutex); |
8fce4d8e | 4271 | next_reap_node(); |
7c5cae36 | 4272 | out: |
a737b3e2 | 4273 | /* Set up the next iteration */ |
7c5cae36 | 4274 | schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC)); |
1da177e4 LT |
4275 | } |
4276 | ||
158a9624 | 4277 | #ifdef CONFIG_SLABINFO |
0d7561c6 | 4278 | void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo) |
1da177e4 | 4279 | { |
b28a02de PE |
4280 | struct slab *slabp; |
4281 | unsigned long active_objs; | |
4282 | unsigned long num_objs; | |
4283 | unsigned long active_slabs = 0; | |
4284 | unsigned long num_slabs, free_objects = 0, shared_avail = 0; | |
e498be7d | 4285 | const char *name; |
1da177e4 | 4286 | char *error = NULL; |
e498be7d CL |
4287 | int node; |
4288 | struct kmem_list3 *l3; | |
1da177e4 | 4289 | |
1da177e4 LT |
4290 | active_objs = 0; |
4291 | num_slabs = 0; | |
e498be7d CL |
4292 | for_each_online_node(node) { |
4293 | l3 = cachep->nodelists[node]; | |
4294 | if (!l3) | |
4295 | continue; | |
4296 | ||
ca3b9b91 RT |
4297 | check_irq_on(); |
4298 | spin_lock_irq(&l3->list_lock); | |
e498be7d | 4299 | |
7a7c381d | 4300 | list_for_each_entry(slabp, &l3->slabs_full, list) { |
e498be7d CL |
4301 | if (slabp->inuse != cachep->num && !error) |
4302 | error = "slabs_full accounting error"; | |
4303 | active_objs += cachep->num; | |
4304 | active_slabs++; | |
4305 | } | |
7a7c381d | 4306 | list_for_each_entry(slabp, &l3->slabs_partial, list) { |
e498be7d CL |
4307 | if (slabp->inuse == cachep->num && !error) |
4308 | error = "slabs_partial inuse accounting error"; | |
4309 | if (!slabp->inuse && !error) | |
4310 | error = "slabs_partial/inuse accounting error"; | |
4311 | active_objs += slabp->inuse; | |
4312 | active_slabs++; | |
4313 | } | |
7a7c381d | 4314 | list_for_each_entry(slabp, &l3->slabs_free, list) { |
e498be7d CL |
4315 | if (slabp->inuse && !error) |
4316 | error = "slabs_free/inuse accounting error"; | |
4317 | num_slabs++; | |
4318 | } | |
4319 | free_objects += l3->free_objects; | |
4484ebf1 RT |
4320 | if (l3->shared) |
4321 | shared_avail += l3->shared->avail; | |
e498be7d | 4322 | |
ca3b9b91 | 4323 | spin_unlock_irq(&l3->list_lock); |
1da177e4 | 4324 | } |
b28a02de PE |
4325 | num_slabs += active_slabs; |
4326 | num_objs = num_slabs * cachep->num; | |
e498be7d | 4327 | if (num_objs - active_objs != free_objects && !error) |
1da177e4 LT |
4328 | error = "free_objects accounting error"; |
4329 | ||
b28a02de | 4330 | name = cachep->name; |
1da177e4 LT |
4331 | if (error) |
4332 | printk(KERN_ERR "slab: cache %s error: %s\n", name, error); | |
4333 | ||
0d7561c6 GC |
4334 | sinfo->active_objs = active_objs; |
4335 | sinfo->num_objs = num_objs; | |
4336 | sinfo->active_slabs = active_slabs; | |
4337 | sinfo->num_slabs = num_slabs; | |
4338 | sinfo->shared_avail = shared_avail; | |
4339 | sinfo->limit = cachep->limit; | |
4340 | sinfo->batchcount = cachep->batchcount; | |
4341 | sinfo->shared = cachep->shared; | |
4342 | sinfo->objects_per_slab = cachep->num; | |
4343 | sinfo->cache_order = cachep->gfporder; | |
4344 | } | |
4345 | ||
4346 | void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep) | |
4347 | { | |
1da177e4 | 4348 | #if STATS |
b28a02de | 4349 | { /* list3 stats */ |
1da177e4 LT |
4350 | unsigned long high = cachep->high_mark; |
4351 | unsigned long allocs = cachep->num_allocations; | |
4352 | unsigned long grown = cachep->grown; | |
4353 | unsigned long reaped = cachep->reaped; | |
4354 | unsigned long errors = cachep->errors; | |
4355 | unsigned long max_freeable = cachep->max_freeable; | |
1da177e4 | 4356 | unsigned long node_allocs = cachep->node_allocs; |
e498be7d | 4357 | unsigned long node_frees = cachep->node_frees; |
fb7faf33 | 4358 | unsigned long overflows = cachep->node_overflow; |
1da177e4 | 4359 | |
e92dd4fd JP |
4360 | seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu " |
4361 | "%4lu %4lu %4lu %4lu %4lu", | |
4362 | allocs, high, grown, | |
4363 | reaped, errors, max_freeable, node_allocs, | |
4364 | node_frees, overflows); | |
1da177e4 LT |
4365 | } |
4366 | /* cpu stats */ | |
4367 | { | |
4368 | unsigned long allochit = atomic_read(&cachep->allochit); | |
4369 | unsigned long allocmiss = atomic_read(&cachep->allocmiss); | |
4370 | unsigned long freehit = atomic_read(&cachep->freehit); | |
4371 | unsigned long freemiss = atomic_read(&cachep->freemiss); | |
4372 | ||
4373 | seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu", | |
b28a02de | 4374 | allochit, allocmiss, freehit, freemiss); |
1da177e4 LT |
4375 | } |
4376 | #endif | |
1da177e4 LT |
4377 | } |
4378 | ||
1da177e4 LT |
4379 | #define MAX_SLABINFO_WRITE 128 |
4380 | /** | |
4381 | * slabinfo_write - Tuning for the slab allocator | |
4382 | * @file: unused | |
4383 | * @buffer: user buffer | |
4384 | * @count: data length | |
4385 | * @ppos: unused | |
4386 | */ | |
b7454ad3 | 4387 | ssize_t slabinfo_write(struct file *file, const char __user *buffer, |
b28a02de | 4388 | size_t count, loff_t *ppos) |
1da177e4 | 4389 | { |
b28a02de | 4390 | char kbuf[MAX_SLABINFO_WRITE + 1], *tmp; |
1da177e4 | 4391 | int limit, batchcount, shared, res; |
7a7c381d | 4392 | struct kmem_cache *cachep; |
b28a02de | 4393 | |
1da177e4 LT |
4394 | if (count > MAX_SLABINFO_WRITE) |
4395 | return -EINVAL; | |
4396 | if (copy_from_user(&kbuf, buffer, count)) | |
4397 | return -EFAULT; | |
b28a02de | 4398 | kbuf[MAX_SLABINFO_WRITE] = '\0'; |
1da177e4 LT |
4399 | |
4400 | tmp = strchr(kbuf, ' '); | |
4401 | if (!tmp) | |
4402 | return -EINVAL; | |
4403 | *tmp = '\0'; | |
4404 | tmp++; | |
4405 | if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3) | |
4406 | return -EINVAL; | |
4407 | ||
4408 | /* Find the cache in the chain of caches. */ | |
18004c5d | 4409 | mutex_lock(&slab_mutex); |
1da177e4 | 4410 | res = -EINVAL; |
18004c5d | 4411 | list_for_each_entry(cachep, &slab_caches, list) { |
1da177e4 | 4412 | if (!strcmp(cachep->name, kbuf)) { |
a737b3e2 AM |
4413 | if (limit < 1 || batchcount < 1 || |
4414 | batchcount > limit || shared < 0) { | |
e498be7d | 4415 | res = 0; |
1da177e4 | 4416 | } else { |
e498be7d | 4417 | res = do_tune_cpucache(cachep, limit, |
83b519e8 PE |
4418 | batchcount, shared, |
4419 | GFP_KERNEL); | |
1da177e4 LT |
4420 | } |
4421 | break; | |
4422 | } | |
4423 | } | |
18004c5d | 4424 | mutex_unlock(&slab_mutex); |
1da177e4 LT |
4425 | if (res >= 0) |
4426 | res = count; | |
4427 | return res; | |
4428 | } | |
871751e2 AV |
4429 | |
4430 | #ifdef CONFIG_DEBUG_SLAB_LEAK | |
4431 | ||
4432 | static void *leaks_start(struct seq_file *m, loff_t *pos) | |
4433 | { | |
18004c5d CL |
4434 | mutex_lock(&slab_mutex); |
4435 | return seq_list_start(&slab_caches, *pos); | |
871751e2 AV |
4436 | } |
4437 | ||
4438 | static inline int add_caller(unsigned long *n, unsigned long v) | |
4439 | { | |
4440 | unsigned long *p; | |
4441 | int l; | |
4442 | if (!v) | |
4443 | return 1; | |
4444 | l = n[1]; | |
4445 | p = n + 2; | |
4446 | while (l) { | |
4447 | int i = l/2; | |
4448 | unsigned long *q = p + 2 * i; | |
4449 | if (*q == v) { | |
4450 | q[1]++; | |
4451 | return 1; | |
4452 | } | |
4453 | if (*q > v) { | |
4454 | l = i; | |
4455 | } else { | |
4456 | p = q + 2; | |
4457 | l -= i + 1; | |
4458 | } | |
4459 | } | |
4460 | if (++n[1] == n[0]) | |
4461 | return 0; | |
4462 | memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n)); | |
4463 | p[0] = v; | |
4464 | p[1] = 1; | |
4465 | return 1; | |
4466 | } | |
4467 | ||
4468 | static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s) | |
4469 | { | |
4470 | void *p; | |
4471 | int i; | |
4472 | if (n[0] == n[1]) | |
4473 | return; | |
3b0efdfa | 4474 | for (i = 0, p = s->s_mem; i < c->num; i++, p += c->size) { |
871751e2 AV |
4475 | if (slab_bufctl(s)[i] != BUFCTL_ACTIVE) |
4476 | continue; | |
4477 | if (!add_caller(n, (unsigned long)*dbg_userword(c, p))) | |
4478 | return; | |
4479 | } | |
4480 | } | |
4481 | ||
4482 | static void show_symbol(struct seq_file *m, unsigned long address) | |
4483 | { | |
4484 | #ifdef CONFIG_KALLSYMS | |
871751e2 | 4485 | unsigned long offset, size; |
9281acea | 4486 | char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN]; |
871751e2 | 4487 | |
a5c43dae | 4488 | if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) { |
871751e2 | 4489 | seq_printf(m, "%s+%#lx/%#lx", name, offset, size); |
a5c43dae | 4490 | if (modname[0]) |
871751e2 AV |
4491 | seq_printf(m, " [%s]", modname); |
4492 | return; | |
4493 | } | |
4494 | #endif | |
4495 | seq_printf(m, "%p", (void *)address); | |
4496 | } | |
4497 | ||
4498 | static int leaks_show(struct seq_file *m, void *p) | |
4499 | { | |
0672aa7c | 4500 | struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list); |
871751e2 AV |
4501 | struct slab *slabp; |
4502 | struct kmem_list3 *l3; | |
4503 | const char *name; | |
4504 | unsigned long *n = m->private; | |
4505 | int node; | |
4506 | int i; | |
4507 | ||
4508 | if (!(cachep->flags & SLAB_STORE_USER)) | |
4509 | return 0; | |
4510 | if (!(cachep->flags & SLAB_RED_ZONE)) | |
4511 | return 0; | |
4512 | ||
4513 | /* OK, we can do it */ | |
4514 | ||
4515 | n[1] = 0; | |
4516 | ||
4517 | for_each_online_node(node) { | |
4518 | l3 = cachep->nodelists[node]; | |
4519 | if (!l3) | |
4520 | continue; | |
4521 | ||
4522 | check_irq_on(); | |
4523 | spin_lock_irq(&l3->list_lock); | |
4524 | ||
7a7c381d | 4525 | list_for_each_entry(slabp, &l3->slabs_full, list) |
871751e2 | 4526 | handle_slab(n, cachep, slabp); |
7a7c381d | 4527 | list_for_each_entry(slabp, &l3->slabs_partial, list) |
871751e2 | 4528 | handle_slab(n, cachep, slabp); |
871751e2 AV |
4529 | spin_unlock_irq(&l3->list_lock); |
4530 | } | |
4531 | name = cachep->name; | |
4532 | if (n[0] == n[1]) { | |
4533 | /* Increase the buffer size */ | |
18004c5d | 4534 | mutex_unlock(&slab_mutex); |
871751e2 AV |
4535 | m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL); |
4536 | if (!m->private) { | |
4537 | /* Too bad, we are really out */ | |
4538 | m->private = n; | |
18004c5d | 4539 | mutex_lock(&slab_mutex); |
871751e2 AV |
4540 | return -ENOMEM; |
4541 | } | |
4542 | *(unsigned long *)m->private = n[0] * 2; | |
4543 | kfree(n); | |
18004c5d | 4544 | mutex_lock(&slab_mutex); |
871751e2 AV |
4545 | /* Now make sure this entry will be retried */ |
4546 | m->count = m->size; | |
4547 | return 0; | |
4548 | } | |
4549 | for (i = 0; i < n[1]; i++) { | |
4550 | seq_printf(m, "%s: %lu ", name, n[2*i+3]); | |
4551 | show_symbol(m, n[2*i+2]); | |
4552 | seq_putc(m, '\n'); | |
4553 | } | |
d2e7b7d0 | 4554 | |
871751e2 AV |
4555 | return 0; |
4556 | } | |
4557 | ||
b7454ad3 GC |
4558 | static void *s_next(struct seq_file *m, void *p, loff_t *pos) |
4559 | { | |
4560 | return seq_list_next(p, &slab_caches, pos); | |
4561 | } | |
4562 | ||
4563 | static void s_stop(struct seq_file *m, void *p) | |
4564 | { | |
4565 | mutex_unlock(&slab_mutex); | |
4566 | } | |
4567 | ||
a0ec95a8 | 4568 | static const struct seq_operations slabstats_op = { |
871751e2 AV |
4569 | .start = leaks_start, |
4570 | .next = s_next, | |
4571 | .stop = s_stop, | |
4572 | .show = leaks_show, | |
4573 | }; | |
a0ec95a8 AD |
4574 | |
4575 | static int slabstats_open(struct inode *inode, struct file *file) | |
4576 | { | |
4577 | unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL); | |
4578 | int ret = -ENOMEM; | |
4579 | if (n) { | |
4580 | ret = seq_open(file, &slabstats_op); | |
4581 | if (!ret) { | |
4582 | struct seq_file *m = file->private_data; | |
4583 | *n = PAGE_SIZE / (2 * sizeof(unsigned long)); | |
4584 | m->private = n; | |
4585 | n = NULL; | |
4586 | } | |
4587 | kfree(n); | |
4588 | } | |
4589 | return ret; | |
4590 | } | |
4591 | ||
4592 | static const struct file_operations proc_slabstats_operations = { | |
4593 | .open = slabstats_open, | |
4594 | .read = seq_read, | |
4595 | .llseek = seq_lseek, | |
4596 | .release = seq_release_private, | |
4597 | }; | |
4598 | #endif | |
4599 | ||
4600 | static int __init slab_proc_init(void) | |
4601 | { | |
4602 | #ifdef CONFIG_DEBUG_SLAB_LEAK | |
4603 | proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations); | |
871751e2 | 4604 | #endif |
a0ec95a8 AD |
4605 | return 0; |
4606 | } | |
4607 | module_init(slab_proc_init); | |
1da177e4 LT |
4608 | #endif |
4609 | ||
00e145b6 MS |
4610 | /** |
4611 | * ksize - get the actual amount of memory allocated for a given object | |
4612 | * @objp: Pointer to the object | |
4613 | * | |
4614 | * kmalloc may internally round up allocations and return more memory | |
4615 | * than requested. ksize() can be used to determine the actual amount of | |
4616 | * memory allocated. The caller may use this additional memory, even though | |
4617 | * a smaller amount of memory was initially specified with the kmalloc call. | |
4618 | * The caller must guarantee that objp points to a valid object previously | |
4619 | * allocated with either kmalloc() or kmem_cache_alloc(). The object | |
4620 | * must not be freed during the duration of the call. | |
4621 | */ | |
fd76bab2 | 4622 | size_t ksize(const void *objp) |
1da177e4 | 4623 | { |
ef8b4520 CL |
4624 | BUG_ON(!objp); |
4625 | if (unlikely(objp == ZERO_SIZE_PTR)) | |
00e145b6 | 4626 | return 0; |
1da177e4 | 4627 | |
8c138bc0 | 4628 | return virt_to_cache(objp)->object_size; |
1da177e4 | 4629 | } |
b1aabecd | 4630 | EXPORT_SYMBOL(ksize); |