]>
Commit | Line | Data |
---|---|---|
0a8165d7 | 1 | /* |
e05df3b1 JK |
2 | * fs/f2fs/node.c |
3 | * | |
4 | * Copyright (c) 2012 Samsung Electronics Co., Ltd. | |
5 | * http://www.samsung.com/ | |
6 | * | |
7 | * This program is free software; you can redistribute it and/or modify | |
8 | * it under the terms of the GNU General Public License version 2 as | |
9 | * published by the Free Software Foundation. | |
10 | */ | |
11 | #include <linux/fs.h> | |
12 | #include <linux/f2fs_fs.h> | |
13 | #include <linux/mpage.h> | |
14 | #include <linux/backing-dev.h> | |
15 | #include <linux/blkdev.h> | |
16 | #include <linux/pagevec.h> | |
17 | #include <linux/swap.h> | |
18 | ||
19 | #include "f2fs.h" | |
20 | #include "node.h" | |
21 | #include "segment.h" | |
51dd6249 | 22 | #include <trace/events/f2fs.h> |
e05df3b1 JK |
23 | |
24 | static struct kmem_cache *nat_entry_slab; | |
25 | static struct kmem_cache *free_nid_slab; | |
26 | ||
27 | static void clear_node_page_dirty(struct page *page) | |
28 | { | |
29 | struct address_space *mapping = page->mapping; | |
30 | struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb); | |
31 | unsigned int long flags; | |
32 | ||
33 | if (PageDirty(page)) { | |
34 | spin_lock_irqsave(&mapping->tree_lock, flags); | |
35 | radix_tree_tag_clear(&mapping->page_tree, | |
36 | page_index(page), | |
37 | PAGECACHE_TAG_DIRTY); | |
38 | spin_unlock_irqrestore(&mapping->tree_lock, flags); | |
39 | ||
40 | clear_page_dirty_for_io(page); | |
41 | dec_page_count(sbi, F2FS_DIRTY_NODES); | |
42 | } | |
43 | ClearPageUptodate(page); | |
44 | } | |
45 | ||
46 | static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid) | |
47 | { | |
48 | pgoff_t index = current_nat_addr(sbi, nid); | |
49 | return get_meta_page(sbi, index); | |
50 | } | |
51 | ||
52 | static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid) | |
53 | { | |
54 | struct page *src_page; | |
55 | struct page *dst_page; | |
56 | pgoff_t src_off; | |
57 | pgoff_t dst_off; | |
58 | void *src_addr; | |
59 | void *dst_addr; | |
60 | struct f2fs_nm_info *nm_i = NM_I(sbi); | |
61 | ||
62 | src_off = current_nat_addr(sbi, nid); | |
63 | dst_off = next_nat_addr(sbi, src_off); | |
64 | ||
65 | /* get current nat block page with lock */ | |
66 | src_page = get_meta_page(sbi, src_off); | |
67 | ||
68 | /* Dirty src_page means that it is already the new target NAT page. */ | |
69 | if (PageDirty(src_page)) | |
70 | return src_page; | |
71 | ||
72 | dst_page = grab_meta_page(sbi, dst_off); | |
73 | ||
74 | src_addr = page_address(src_page); | |
75 | dst_addr = page_address(dst_page); | |
76 | memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE); | |
77 | set_page_dirty(dst_page); | |
78 | f2fs_put_page(src_page, 1); | |
79 | ||
80 | set_to_next_nat(nm_i, nid); | |
81 | ||
82 | return dst_page; | |
83 | } | |
84 | ||
0a8165d7 | 85 | /* |
e05df3b1 JK |
86 | * Readahead NAT pages |
87 | */ | |
88 | static void ra_nat_pages(struct f2fs_sb_info *sbi, int nid) | |
89 | { | |
90 | struct address_space *mapping = sbi->meta_inode->i_mapping; | |
91 | struct f2fs_nm_info *nm_i = NM_I(sbi); | |
c718379b | 92 | struct blk_plug plug; |
e05df3b1 JK |
93 | struct page *page; |
94 | pgoff_t index; | |
95 | int i; | |
96 | ||
c718379b JK |
97 | blk_start_plug(&plug); |
98 | ||
e05df3b1 JK |
99 | for (i = 0; i < FREE_NID_PAGES; i++, nid += NAT_ENTRY_PER_BLOCK) { |
100 | if (nid >= nm_i->max_nid) | |
101 | nid = 0; | |
102 | index = current_nat_addr(sbi, nid); | |
103 | ||
104 | page = grab_cache_page(mapping, index); | |
105 | if (!page) | |
106 | continue; | |
393ff91f | 107 | if (PageUptodate(page)) { |
e05df3b1 JK |
108 | f2fs_put_page(page, 1); |
109 | continue; | |
110 | } | |
393ff91f JK |
111 | if (f2fs_readpage(sbi, page, index, READ)) |
112 | continue; | |
113 | ||
369a708c | 114 | f2fs_put_page(page, 0); |
e05df3b1 | 115 | } |
c718379b | 116 | blk_finish_plug(&plug); |
e05df3b1 JK |
117 | } |
118 | ||
119 | static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n) | |
120 | { | |
121 | return radix_tree_lookup(&nm_i->nat_root, n); | |
122 | } | |
123 | ||
124 | static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i, | |
125 | nid_t start, unsigned int nr, struct nat_entry **ep) | |
126 | { | |
127 | return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr); | |
128 | } | |
129 | ||
130 | static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e) | |
131 | { | |
132 | list_del(&e->list); | |
133 | radix_tree_delete(&nm_i->nat_root, nat_get_nid(e)); | |
134 | nm_i->nat_cnt--; | |
135 | kmem_cache_free(nat_entry_slab, e); | |
136 | } | |
137 | ||
138 | int is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid) | |
139 | { | |
140 | struct f2fs_nm_info *nm_i = NM_I(sbi); | |
141 | struct nat_entry *e; | |
142 | int is_cp = 1; | |
143 | ||
144 | read_lock(&nm_i->nat_tree_lock); | |
145 | e = __lookup_nat_cache(nm_i, nid); | |
146 | if (e && !e->checkpointed) | |
147 | is_cp = 0; | |
148 | read_unlock(&nm_i->nat_tree_lock); | |
149 | return is_cp; | |
150 | } | |
151 | ||
152 | static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid) | |
153 | { | |
154 | struct nat_entry *new; | |
155 | ||
156 | new = kmem_cache_alloc(nat_entry_slab, GFP_ATOMIC); | |
157 | if (!new) | |
158 | return NULL; | |
159 | if (radix_tree_insert(&nm_i->nat_root, nid, new)) { | |
160 | kmem_cache_free(nat_entry_slab, new); | |
161 | return NULL; | |
162 | } | |
163 | memset(new, 0, sizeof(struct nat_entry)); | |
164 | nat_set_nid(new, nid); | |
165 | list_add_tail(&new->list, &nm_i->nat_entries); | |
166 | nm_i->nat_cnt++; | |
167 | return new; | |
168 | } | |
169 | ||
170 | static void cache_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid, | |
171 | struct f2fs_nat_entry *ne) | |
172 | { | |
173 | struct nat_entry *e; | |
174 | retry: | |
175 | write_lock(&nm_i->nat_tree_lock); | |
176 | e = __lookup_nat_cache(nm_i, nid); | |
177 | if (!e) { | |
178 | e = grab_nat_entry(nm_i, nid); | |
179 | if (!e) { | |
180 | write_unlock(&nm_i->nat_tree_lock); | |
181 | goto retry; | |
182 | } | |
183 | nat_set_blkaddr(e, le32_to_cpu(ne->block_addr)); | |
184 | nat_set_ino(e, le32_to_cpu(ne->ino)); | |
185 | nat_set_version(e, ne->version); | |
186 | e->checkpointed = true; | |
187 | } | |
188 | write_unlock(&nm_i->nat_tree_lock); | |
189 | } | |
190 | ||
191 | static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni, | |
192 | block_t new_blkaddr) | |
193 | { | |
194 | struct f2fs_nm_info *nm_i = NM_I(sbi); | |
195 | struct nat_entry *e; | |
196 | retry: | |
197 | write_lock(&nm_i->nat_tree_lock); | |
198 | e = __lookup_nat_cache(nm_i, ni->nid); | |
199 | if (!e) { | |
200 | e = grab_nat_entry(nm_i, ni->nid); | |
201 | if (!e) { | |
202 | write_unlock(&nm_i->nat_tree_lock); | |
203 | goto retry; | |
204 | } | |
205 | e->ni = *ni; | |
206 | e->checkpointed = true; | |
207 | BUG_ON(ni->blk_addr == NEW_ADDR); | |
208 | } else if (new_blkaddr == NEW_ADDR) { | |
209 | /* | |
210 | * when nid is reallocated, | |
211 | * previous nat entry can be remained in nat cache. | |
212 | * So, reinitialize it with new information. | |
213 | */ | |
214 | e->ni = *ni; | |
215 | BUG_ON(ni->blk_addr != NULL_ADDR); | |
216 | } | |
217 | ||
218 | if (new_blkaddr == NEW_ADDR) | |
219 | e->checkpointed = false; | |
220 | ||
221 | /* sanity check */ | |
222 | BUG_ON(nat_get_blkaddr(e) != ni->blk_addr); | |
223 | BUG_ON(nat_get_blkaddr(e) == NULL_ADDR && | |
224 | new_blkaddr == NULL_ADDR); | |
225 | BUG_ON(nat_get_blkaddr(e) == NEW_ADDR && | |
226 | new_blkaddr == NEW_ADDR); | |
227 | BUG_ON(nat_get_blkaddr(e) != NEW_ADDR && | |
228 | nat_get_blkaddr(e) != NULL_ADDR && | |
229 | new_blkaddr == NEW_ADDR); | |
230 | ||
231 | /* increament version no as node is removed */ | |
232 | if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) { | |
233 | unsigned char version = nat_get_version(e); | |
234 | nat_set_version(e, inc_node_version(version)); | |
235 | } | |
236 | ||
237 | /* change address */ | |
238 | nat_set_blkaddr(e, new_blkaddr); | |
239 | __set_nat_cache_dirty(nm_i, e); | |
240 | write_unlock(&nm_i->nat_tree_lock); | |
241 | } | |
242 | ||
243 | static int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink) | |
244 | { | |
245 | struct f2fs_nm_info *nm_i = NM_I(sbi); | |
246 | ||
6cac3759 | 247 | if (nm_i->nat_cnt <= NM_WOUT_THRESHOLD) |
e05df3b1 JK |
248 | return 0; |
249 | ||
250 | write_lock(&nm_i->nat_tree_lock); | |
251 | while (nr_shrink && !list_empty(&nm_i->nat_entries)) { | |
252 | struct nat_entry *ne; | |
253 | ne = list_first_entry(&nm_i->nat_entries, | |
254 | struct nat_entry, list); | |
255 | __del_from_nat_cache(nm_i, ne); | |
256 | nr_shrink--; | |
257 | } | |
258 | write_unlock(&nm_i->nat_tree_lock); | |
259 | return nr_shrink; | |
260 | } | |
261 | ||
0a8165d7 | 262 | /* |
e05df3b1 JK |
263 | * This function returns always success |
264 | */ | |
265 | void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni) | |
266 | { | |
267 | struct f2fs_nm_info *nm_i = NM_I(sbi); | |
268 | struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); | |
269 | struct f2fs_summary_block *sum = curseg->sum_blk; | |
270 | nid_t start_nid = START_NID(nid); | |
271 | struct f2fs_nat_block *nat_blk; | |
272 | struct page *page = NULL; | |
273 | struct f2fs_nat_entry ne; | |
274 | struct nat_entry *e; | |
275 | int i; | |
276 | ||
be4124f8 | 277 | memset(&ne, 0, sizeof(struct f2fs_nat_entry)); |
e05df3b1 JK |
278 | ni->nid = nid; |
279 | ||
280 | /* Check nat cache */ | |
281 | read_lock(&nm_i->nat_tree_lock); | |
282 | e = __lookup_nat_cache(nm_i, nid); | |
283 | if (e) { | |
284 | ni->ino = nat_get_ino(e); | |
285 | ni->blk_addr = nat_get_blkaddr(e); | |
286 | ni->version = nat_get_version(e); | |
287 | } | |
288 | read_unlock(&nm_i->nat_tree_lock); | |
289 | if (e) | |
290 | return; | |
291 | ||
292 | /* Check current segment summary */ | |
293 | mutex_lock(&curseg->curseg_mutex); | |
294 | i = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 0); | |
295 | if (i >= 0) { | |
296 | ne = nat_in_journal(sum, i); | |
297 | node_info_from_raw_nat(ni, &ne); | |
298 | } | |
299 | mutex_unlock(&curseg->curseg_mutex); | |
300 | if (i >= 0) | |
301 | goto cache; | |
302 | ||
303 | /* Fill node_info from nat page */ | |
304 | page = get_current_nat_page(sbi, start_nid); | |
305 | nat_blk = (struct f2fs_nat_block *)page_address(page); | |
306 | ne = nat_blk->entries[nid - start_nid]; | |
307 | node_info_from_raw_nat(ni, &ne); | |
308 | f2fs_put_page(page, 1); | |
309 | cache: | |
310 | /* cache nat entry */ | |
311 | cache_nat_entry(NM_I(sbi), nid, &ne); | |
312 | } | |
313 | ||
0a8165d7 | 314 | /* |
e05df3b1 JK |
315 | * The maximum depth is four. |
316 | * Offset[0] will have raw inode offset. | |
317 | */ | |
de93653f JK |
318 | static int get_node_path(struct f2fs_inode_info *fi, long block, |
319 | int offset[4], unsigned int noffset[4]) | |
e05df3b1 | 320 | { |
de93653f | 321 | const long direct_index = ADDRS_PER_INODE(fi); |
e05df3b1 JK |
322 | const long direct_blks = ADDRS_PER_BLOCK; |
323 | const long dptrs_per_blk = NIDS_PER_BLOCK; | |
324 | const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK; | |
325 | const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK; | |
326 | int n = 0; | |
327 | int level = 0; | |
328 | ||
329 | noffset[0] = 0; | |
330 | ||
331 | if (block < direct_index) { | |
25c0a6e5 | 332 | offset[n] = block; |
e05df3b1 JK |
333 | goto got; |
334 | } | |
335 | block -= direct_index; | |
336 | if (block < direct_blks) { | |
337 | offset[n++] = NODE_DIR1_BLOCK; | |
338 | noffset[n] = 1; | |
25c0a6e5 | 339 | offset[n] = block; |
e05df3b1 JK |
340 | level = 1; |
341 | goto got; | |
342 | } | |
343 | block -= direct_blks; | |
344 | if (block < direct_blks) { | |
345 | offset[n++] = NODE_DIR2_BLOCK; | |
346 | noffset[n] = 2; | |
25c0a6e5 | 347 | offset[n] = block; |
e05df3b1 JK |
348 | level = 1; |
349 | goto got; | |
350 | } | |
351 | block -= direct_blks; | |
352 | if (block < indirect_blks) { | |
353 | offset[n++] = NODE_IND1_BLOCK; | |
354 | noffset[n] = 3; | |
355 | offset[n++] = block / direct_blks; | |
356 | noffset[n] = 4 + offset[n - 1]; | |
25c0a6e5 | 357 | offset[n] = block % direct_blks; |
e05df3b1 JK |
358 | level = 2; |
359 | goto got; | |
360 | } | |
361 | block -= indirect_blks; | |
362 | if (block < indirect_blks) { | |
363 | offset[n++] = NODE_IND2_BLOCK; | |
364 | noffset[n] = 4 + dptrs_per_blk; | |
365 | offset[n++] = block / direct_blks; | |
366 | noffset[n] = 5 + dptrs_per_blk + offset[n - 1]; | |
25c0a6e5 | 367 | offset[n] = block % direct_blks; |
e05df3b1 JK |
368 | level = 2; |
369 | goto got; | |
370 | } | |
371 | block -= indirect_blks; | |
372 | if (block < dindirect_blks) { | |
373 | offset[n++] = NODE_DIND_BLOCK; | |
374 | noffset[n] = 5 + (dptrs_per_blk * 2); | |
375 | offset[n++] = block / indirect_blks; | |
376 | noffset[n] = 6 + (dptrs_per_blk * 2) + | |
377 | offset[n - 1] * (dptrs_per_blk + 1); | |
378 | offset[n++] = (block / direct_blks) % dptrs_per_blk; | |
379 | noffset[n] = 7 + (dptrs_per_blk * 2) + | |
380 | offset[n - 2] * (dptrs_per_blk + 1) + | |
381 | offset[n - 1]; | |
25c0a6e5 | 382 | offset[n] = block % direct_blks; |
e05df3b1 JK |
383 | level = 3; |
384 | goto got; | |
385 | } else { | |
386 | BUG(); | |
387 | } | |
388 | got: | |
389 | return level; | |
390 | } | |
391 | ||
392 | /* | |
393 | * Caller should call f2fs_put_dnode(dn). | |
39936837 JK |
394 | * Also, it should grab and release a mutex by calling mutex_lock_op() and |
395 | * mutex_unlock_op() only if ro is not set RDONLY_NODE. | |
396 | * In the case of RDONLY_NODE, we don't need to care about mutex. | |
e05df3b1 | 397 | */ |
266e97a8 | 398 | int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode) |
e05df3b1 JK |
399 | { |
400 | struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb); | |
401 | struct page *npage[4]; | |
402 | struct page *parent; | |
403 | int offset[4]; | |
404 | unsigned int noffset[4]; | |
405 | nid_t nids[4]; | |
406 | int level, i; | |
407 | int err = 0; | |
408 | ||
de93653f | 409 | level = get_node_path(F2FS_I(dn->inode), index, offset, noffset); |
e05df3b1 JK |
410 | |
411 | nids[0] = dn->inode->i_ino; | |
1646cfac | 412 | npage[0] = dn->inode_page; |
e05df3b1 | 413 | |
1646cfac JK |
414 | if (!npage[0]) { |
415 | npage[0] = get_node_page(sbi, nids[0]); | |
416 | if (IS_ERR(npage[0])) | |
417 | return PTR_ERR(npage[0]); | |
418 | } | |
e05df3b1 | 419 | parent = npage[0]; |
52c2db3f CL |
420 | if (level != 0) |
421 | nids[1] = get_nid(parent, offset[0], true); | |
e05df3b1 JK |
422 | dn->inode_page = npage[0]; |
423 | dn->inode_page_locked = true; | |
424 | ||
425 | /* get indirect or direct nodes */ | |
426 | for (i = 1; i <= level; i++) { | |
427 | bool done = false; | |
428 | ||
266e97a8 | 429 | if (!nids[i] && mode == ALLOC_NODE) { |
e05df3b1 JK |
430 | /* alloc new node */ |
431 | if (!alloc_nid(sbi, &(nids[i]))) { | |
e05df3b1 JK |
432 | err = -ENOSPC; |
433 | goto release_pages; | |
434 | } | |
435 | ||
436 | dn->nid = nids[i]; | |
8ae8f162 | 437 | npage[i] = new_node_page(dn, noffset[i], NULL); |
e05df3b1 JK |
438 | if (IS_ERR(npage[i])) { |
439 | alloc_nid_failed(sbi, nids[i]); | |
e05df3b1 JK |
440 | err = PTR_ERR(npage[i]); |
441 | goto release_pages; | |
442 | } | |
443 | ||
444 | set_nid(parent, offset[i - 1], nids[i], i == 1); | |
445 | alloc_nid_done(sbi, nids[i]); | |
e05df3b1 | 446 | done = true; |
266e97a8 | 447 | } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) { |
e05df3b1 JK |
448 | npage[i] = get_node_page_ra(parent, offset[i - 1]); |
449 | if (IS_ERR(npage[i])) { | |
450 | err = PTR_ERR(npage[i]); | |
451 | goto release_pages; | |
452 | } | |
453 | done = true; | |
454 | } | |
455 | if (i == 1) { | |
456 | dn->inode_page_locked = false; | |
457 | unlock_page(parent); | |
458 | } else { | |
459 | f2fs_put_page(parent, 1); | |
460 | } | |
461 | ||
462 | if (!done) { | |
463 | npage[i] = get_node_page(sbi, nids[i]); | |
464 | if (IS_ERR(npage[i])) { | |
465 | err = PTR_ERR(npage[i]); | |
466 | f2fs_put_page(npage[0], 0); | |
467 | goto release_out; | |
468 | } | |
469 | } | |
470 | if (i < level) { | |
471 | parent = npage[i]; | |
472 | nids[i + 1] = get_nid(parent, offset[i], false); | |
473 | } | |
474 | } | |
475 | dn->nid = nids[level]; | |
476 | dn->ofs_in_node = offset[level]; | |
477 | dn->node_page = npage[level]; | |
478 | dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node); | |
479 | return 0; | |
480 | ||
481 | release_pages: | |
482 | f2fs_put_page(parent, 1); | |
483 | if (i > 1) | |
484 | f2fs_put_page(npage[0], 0); | |
485 | release_out: | |
486 | dn->inode_page = NULL; | |
487 | dn->node_page = NULL; | |
488 | return err; | |
489 | } | |
490 | ||
491 | static void truncate_node(struct dnode_of_data *dn) | |
492 | { | |
493 | struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb); | |
494 | struct node_info ni; | |
495 | ||
496 | get_node_info(sbi, dn->nid, &ni); | |
71e9fec5 JK |
497 | if (dn->inode->i_blocks == 0) { |
498 | BUG_ON(ni.blk_addr != NULL_ADDR); | |
499 | goto invalidate; | |
500 | } | |
e05df3b1 JK |
501 | BUG_ON(ni.blk_addr == NULL_ADDR); |
502 | ||
e05df3b1 | 503 | /* Deallocate node address */ |
71e9fec5 | 504 | invalidate_blocks(sbi, ni.blk_addr); |
e05df3b1 JK |
505 | dec_valid_node_count(sbi, dn->inode, 1); |
506 | set_node_addr(sbi, &ni, NULL_ADDR); | |
507 | ||
508 | if (dn->nid == dn->inode->i_ino) { | |
509 | remove_orphan_inode(sbi, dn->nid); | |
510 | dec_valid_inode_count(sbi); | |
511 | } else { | |
512 | sync_inode_page(dn); | |
513 | } | |
71e9fec5 | 514 | invalidate: |
e05df3b1 JK |
515 | clear_node_page_dirty(dn->node_page); |
516 | F2FS_SET_SB_DIRT(sbi); | |
517 | ||
518 | f2fs_put_page(dn->node_page, 1); | |
519 | dn->node_page = NULL; | |
51dd6249 | 520 | trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr); |
e05df3b1 JK |
521 | } |
522 | ||
523 | static int truncate_dnode(struct dnode_of_data *dn) | |
524 | { | |
525 | struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb); | |
526 | struct page *page; | |
527 | ||
528 | if (dn->nid == 0) | |
529 | return 1; | |
530 | ||
531 | /* get direct node */ | |
532 | page = get_node_page(sbi, dn->nid); | |
533 | if (IS_ERR(page) && PTR_ERR(page) == -ENOENT) | |
534 | return 1; | |
535 | else if (IS_ERR(page)) | |
536 | return PTR_ERR(page); | |
537 | ||
538 | /* Make dnode_of_data for parameter */ | |
539 | dn->node_page = page; | |
540 | dn->ofs_in_node = 0; | |
541 | truncate_data_blocks(dn); | |
542 | truncate_node(dn); | |
543 | return 1; | |
544 | } | |
545 | ||
546 | static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs, | |
547 | int ofs, int depth) | |
548 | { | |
549 | struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb); | |
550 | struct dnode_of_data rdn = *dn; | |
551 | struct page *page; | |
552 | struct f2fs_node *rn; | |
553 | nid_t child_nid; | |
554 | unsigned int child_nofs; | |
555 | int freed = 0; | |
556 | int i, ret; | |
557 | ||
558 | if (dn->nid == 0) | |
559 | return NIDS_PER_BLOCK + 1; | |
560 | ||
51dd6249 NJ |
561 | trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr); |
562 | ||
e05df3b1 | 563 | page = get_node_page(sbi, dn->nid); |
51dd6249 NJ |
564 | if (IS_ERR(page)) { |
565 | trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page)); | |
e05df3b1 | 566 | return PTR_ERR(page); |
51dd6249 | 567 | } |
e05df3b1 | 568 | |
45590710 | 569 | rn = F2FS_NODE(page); |
e05df3b1 JK |
570 | if (depth < 3) { |
571 | for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) { | |
572 | child_nid = le32_to_cpu(rn->in.nid[i]); | |
573 | if (child_nid == 0) | |
574 | continue; | |
575 | rdn.nid = child_nid; | |
576 | ret = truncate_dnode(&rdn); | |
577 | if (ret < 0) | |
578 | goto out_err; | |
579 | set_nid(page, i, 0, false); | |
580 | } | |
581 | } else { | |
582 | child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1; | |
583 | for (i = ofs; i < NIDS_PER_BLOCK; i++) { | |
584 | child_nid = le32_to_cpu(rn->in.nid[i]); | |
585 | if (child_nid == 0) { | |
586 | child_nofs += NIDS_PER_BLOCK + 1; | |
587 | continue; | |
588 | } | |
589 | rdn.nid = child_nid; | |
590 | ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1); | |
591 | if (ret == (NIDS_PER_BLOCK + 1)) { | |
592 | set_nid(page, i, 0, false); | |
593 | child_nofs += ret; | |
594 | } else if (ret < 0 && ret != -ENOENT) { | |
595 | goto out_err; | |
596 | } | |
597 | } | |
598 | freed = child_nofs; | |
599 | } | |
600 | ||
601 | if (!ofs) { | |
602 | /* remove current indirect node */ | |
603 | dn->node_page = page; | |
604 | truncate_node(dn); | |
605 | freed++; | |
606 | } else { | |
607 | f2fs_put_page(page, 1); | |
608 | } | |
51dd6249 | 609 | trace_f2fs_truncate_nodes_exit(dn->inode, freed); |
e05df3b1 JK |
610 | return freed; |
611 | ||
612 | out_err: | |
613 | f2fs_put_page(page, 1); | |
51dd6249 | 614 | trace_f2fs_truncate_nodes_exit(dn->inode, ret); |
e05df3b1 JK |
615 | return ret; |
616 | } | |
617 | ||
618 | static int truncate_partial_nodes(struct dnode_of_data *dn, | |
619 | struct f2fs_inode *ri, int *offset, int depth) | |
620 | { | |
621 | struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb); | |
622 | struct page *pages[2]; | |
623 | nid_t nid[3]; | |
624 | nid_t child_nid; | |
625 | int err = 0; | |
626 | int i; | |
627 | int idx = depth - 2; | |
628 | ||
629 | nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]); | |
630 | if (!nid[0]) | |
631 | return 0; | |
632 | ||
633 | /* get indirect nodes in the path */ | |
634 | for (i = 0; i < depth - 1; i++) { | |
635 | /* refernece count'll be increased */ | |
636 | pages[i] = get_node_page(sbi, nid[i]); | |
637 | if (IS_ERR(pages[i])) { | |
638 | depth = i + 1; | |
639 | err = PTR_ERR(pages[i]); | |
640 | goto fail; | |
641 | } | |
642 | nid[i + 1] = get_nid(pages[i], offset[i + 1], false); | |
643 | } | |
644 | ||
645 | /* free direct nodes linked to a partial indirect node */ | |
646 | for (i = offset[depth - 1]; i < NIDS_PER_BLOCK; i++) { | |
647 | child_nid = get_nid(pages[idx], i, false); | |
648 | if (!child_nid) | |
649 | continue; | |
650 | dn->nid = child_nid; | |
651 | err = truncate_dnode(dn); | |
652 | if (err < 0) | |
653 | goto fail; | |
654 | set_nid(pages[idx], i, 0, false); | |
655 | } | |
656 | ||
657 | if (offset[depth - 1] == 0) { | |
658 | dn->node_page = pages[idx]; | |
659 | dn->nid = nid[idx]; | |
660 | truncate_node(dn); | |
661 | } else { | |
662 | f2fs_put_page(pages[idx], 1); | |
663 | } | |
664 | offset[idx]++; | |
665 | offset[depth - 1] = 0; | |
666 | fail: | |
667 | for (i = depth - 3; i >= 0; i--) | |
668 | f2fs_put_page(pages[i], 1); | |
51dd6249 NJ |
669 | |
670 | trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err); | |
671 | ||
e05df3b1 JK |
672 | return err; |
673 | } | |
674 | ||
0a8165d7 | 675 | /* |
e05df3b1 JK |
676 | * All the block addresses of data and nodes should be nullified. |
677 | */ | |
678 | int truncate_inode_blocks(struct inode *inode, pgoff_t from) | |
679 | { | |
680 | struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); | |
afcb7ca0 | 681 | struct address_space *node_mapping = sbi->node_inode->i_mapping; |
e05df3b1 JK |
682 | int err = 0, cont = 1; |
683 | int level, offset[4], noffset[4]; | |
7dd690c8 | 684 | unsigned int nofs = 0; |
e05df3b1 JK |
685 | struct f2fs_node *rn; |
686 | struct dnode_of_data dn; | |
687 | struct page *page; | |
688 | ||
51dd6249 NJ |
689 | trace_f2fs_truncate_inode_blocks_enter(inode, from); |
690 | ||
de93653f | 691 | level = get_node_path(F2FS_I(inode), from, offset, noffset); |
afcb7ca0 | 692 | restart: |
e05df3b1 | 693 | page = get_node_page(sbi, inode->i_ino); |
51dd6249 NJ |
694 | if (IS_ERR(page)) { |
695 | trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page)); | |
e05df3b1 | 696 | return PTR_ERR(page); |
51dd6249 | 697 | } |
e05df3b1 JK |
698 | |
699 | set_new_dnode(&dn, inode, page, NULL, 0); | |
700 | unlock_page(page); | |
701 | ||
45590710 | 702 | rn = F2FS_NODE(page); |
e05df3b1 JK |
703 | switch (level) { |
704 | case 0: | |
705 | case 1: | |
706 | nofs = noffset[1]; | |
707 | break; | |
708 | case 2: | |
709 | nofs = noffset[1]; | |
710 | if (!offset[level - 1]) | |
711 | goto skip_partial; | |
712 | err = truncate_partial_nodes(&dn, &rn->i, offset, level); | |
713 | if (err < 0 && err != -ENOENT) | |
714 | goto fail; | |
715 | nofs += 1 + NIDS_PER_BLOCK; | |
716 | break; | |
717 | case 3: | |
718 | nofs = 5 + 2 * NIDS_PER_BLOCK; | |
719 | if (!offset[level - 1]) | |
720 | goto skip_partial; | |
721 | err = truncate_partial_nodes(&dn, &rn->i, offset, level); | |
722 | if (err < 0 && err != -ENOENT) | |
723 | goto fail; | |
724 | break; | |
725 | default: | |
726 | BUG(); | |
727 | } | |
728 | ||
729 | skip_partial: | |
730 | while (cont) { | |
731 | dn.nid = le32_to_cpu(rn->i.i_nid[offset[0] - NODE_DIR1_BLOCK]); | |
732 | switch (offset[0]) { | |
733 | case NODE_DIR1_BLOCK: | |
734 | case NODE_DIR2_BLOCK: | |
735 | err = truncate_dnode(&dn); | |
736 | break; | |
737 | ||
738 | case NODE_IND1_BLOCK: | |
739 | case NODE_IND2_BLOCK: | |
740 | err = truncate_nodes(&dn, nofs, offset[1], 2); | |
741 | break; | |
742 | ||
743 | case NODE_DIND_BLOCK: | |
744 | err = truncate_nodes(&dn, nofs, offset[1], 3); | |
745 | cont = 0; | |
746 | break; | |
747 | ||
748 | default: | |
749 | BUG(); | |
750 | } | |
751 | if (err < 0 && err != -ENOENT) | |
752 | goto fail; | |
753 | if (offset[1] == 0 && | |
754 | rn->i.i_nid[offset[0] - NODE_DIR1_BLOCK]) { | |
755 | lock_page(page); | |
afcb7ca0 JK |
756 | if (page->mapping != node_mapping) { |
757 | f2fs_put_page(page, 1); | |
758 | goto restart; | |
759 | } | |
e05df3b1 JK |
760 | wait_on_page_writeback(page); |
761 | rn->i.i_nid[offset[0] - NODE_DIR1_BLOCK] = 0; | |
762 | set_page_dirty(page); | |
763 | unlock_page(page); | |
764 | } | |
765 | offset[1] = 0; | |
766 | offset[0]++; | |
767 | nofs += err; | |
768 | } | |
769 | fail: | |
770 | f2fs_put_page(page, 0); | |
51dd6249 | 771 | trace_f2fs_truncate_inode_blocks_exit(inode, err); |
e05df3b1 JK |
772 | return err > 0 ? 0 : err; |
773 | } | |
774 | ||
39936837 JK |
775 | /* |
776 | * Caller should grab and release a mutex by calling mutex_lock_op() and | |
777 | * mutex_unlock_op(). | |
778 | */ | |
e05df3b1 JK |
779 | int remove_inode_page(struct inode *inode) |
780 | { | |
781 | struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); | |
782 | struct page *page; | |
783 | nid_t ino = inode->i_ino; | |
784 | struct dnode_of_data dn; | |
785 | ||
e05df3b1 | 786 | page = get_node_page(sbi, ino); |
39936837 | 787 | if (IS_ERR(page)) |
e05df3b1 | 788 | return PTR_ERR(page); |
e05df3b1 JK |
789 | |
790 | if (F2FS_I(inode)->i_xattr_nid) { | |
791 | nid_t nid = F2FS_I(inode)->i_xattr_nid; | |
792 | struct page *npage = get_node_page(sbi, nid); | |
793 | ||
39936837 | 794 | if (IS_ERR(npage)) |
e05df3b1 | 795 | return PTR_ERR(npage); |
e05df3b1 JK |
796 | |
797 | F2FS_I(inode)->i_xattr_nid = 0; | |
798 | set_new_dnode(&dn, inode, page, npage, nid); | |
799 | dn.inode_page_locked = 1; | |
800 | truncate_node(&dn); | |
801 | } | |
e05df3b1 | 802 | |
71e9fec5 JK |
803 | /* 0 is possible, after f2fs_new_inode() is failed */ |
804 | BUG_ON(inode->i_blocks != 0 && inode->i_blocks != 1); | |
805 | set_new_dnode(&dn, inode, page, page, ino); | |
806 | truncate_node(&dn); | |
e05df3b1 JK |
807 | return 0; |
808 | } | |
809 | ||
44a83ff6 | 810 | struct page *new_inode_page(struct inode *inode, const struct qstr *name) |
e05df3b1 | 811 | { |
e05df3b1 JK |
812 | struct dnode_of_data dn; |
813 | ||
814 | /* allocate inode page for new inode */ | |
815 | set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino); | |
44a83ff6 JK |
816 | |
817 | /* caller should f2fs_put_page(page, 1); */ | |
8ae8f162 | 818 | return new_node_page(&dn, 0, NULL); |
e05df3b1 JK |
819 | } |
820 | ||
8ae8f162 JK |
821 | struct page *new_node_page(struct dnode_of_data *dn, |
822 | unsigned int ofs, struct page *ipage) | |
e05df3b1 JK |
823 | { |
824 | struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb); | |
825 | struct address_space *mapping = sbi->node_inode->i_mapping; | |
826 | struct node_info old_ni, new_ni; | |
827 | struct page *page; | |
828 | int err; | |
829 | ||
830 | if (is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)) | |
831 | return ERR_PTR(-EPERM); | |
832 | ||
833 | page = grab_cache_page(mapping, dn->nid); | |
834 | if (!page) | |
835 | return ERR_PTR(-ENOMEM); | |
836 | ||
9c02740c JK |
837 | if (!inc_valid_node_count(sbi, dn->inode, 1)) { |
838 | err = -ENOSPC; | |
839 | goto fail; | |
840 | } | |
e05df3b1 | 841 | |
9c02740c | 842 | get_node_info(sbi, dn->nid, &old_ni); |
e05df3b1 JK |
843 | |
844 | /* Reinitialize old_ni with new node page */ | |
845 | BUG_ON(old_ni.blk_addr != NULL_ADDR); | |
846 | new_ni = old_ni; | |
847 | new_ni.ino = dn->inode->i_ino; | |
e05df3b1 | 848 | set_node_addr(sbi, &new_ni, NEW_ADDR); |
9c02740c JK |
849 | |
850 | fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true); | |
398b1ac5 | 851 | set_cold_node(dn->inode, page); |
9c02740c JK |
852 | SetPageUptodate(page); |
853 | set_page_dirty(page); | |
e05df3b1 | 854 | |
479bd73a JK |
855 | if (ofs == XATTR_NODE_OFFSET) |
856 | F2FS_I(dn->inode)->i_xattr_nid = dn->nid; | |
857 | ||
e05df3b1 | 858 | dn->node_page = page; |
8ae8f162 JK |
859 | if (ipage) |
860 | update_inode(dn->inode, ipage); | |
861 | else | |
862 | sync_inode_page(dn); | |
e05df3b1 JK |
863 | if (ofs == 0) |
864 | inc_valid_inode_count(sbi); | |
865 | ||
866 | return page; | |
867 | ||
868 | fail: | |
71e9fec5 | 869 | clear_node_page_dirty(page); |
e05df3b1 JK |
870 | f2fs_put_page(page, 1); |
871 | return ERR_PTR(err); | |
872 | } | |
873 | ||
56ae674c JK |
874 | /* |
875 | * Caller should do after getting the following values. | |
876 | * 0: f2fs_put_page(page, 0) | |
877 | * LOCKED_PAGE: f2fs_put_page(page, 1) | |
878 | * error: nothing | |
879 | */ | |
e05df3b1 JK |
880 | static int read_node_page(struct page *page, int type) |
881 | { | |
882 | struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb); | |
883 | struct node_info ni; | |
884 | ||
885 | get_node_info(sbi, page->index, &ni); | |
886 | ||
393ff91f JK |
887 | if (ni.blk_addr == NULL_ADDR) { |
888 | f2fs_put_page(page, 1); | |
e05df3b1 | 889 | return -ENOENT; |
393ff91f JK |
890 | } |
891 | ||
56ae674c JK |
892 | if (PageUptodate(page)) |
893 | return LOCKED_PAGE; | |
393ff91f | 894 | |
e05df3b1 JK |
895 | return f2fs_readpage(sbi, page, ni.blk_addr, type); |
896 | } | |
897 | ||
0a8165d7 | 898 | /* |
e05df3b1 JK |
899 | * Readahead a node page |
900 | */ | |
901 | void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid) | |
902 | { | |
903 | struct address_space *mapping = sbi->node_inode->i_mapping; | |
904 | struct page *apage; | |
56ae674c | 905 | int err; |
e05df3b1 JK |
906 | |
907 | apage = find_get_page(mapping, nid); | |
393ff91f JK |
908 | if (apage && PageUptodate(apage)) { |
909 | f2fs_put_page(apage, 0); | |
910 | return; | |
911 | } | |
e05df3b1 JK |
912 | f2fs_put_page(apage, 0); |
913 | ||
914 | apage = grab_cache_page(mapping, nid); | |
915 | if (!apage) | |
916 | return; | |
917 | ||
56ae674c JK |
918 | err = read_node_page(apage, READA); |
919 | if (err == 0) | |
393ff91f | 920 | f2fs_put_page(apage, 0); |
56ae674c JK |
921 | else if (err == LOCKED_PAGE) |
922 | f2fs_put_page(apage, 1); | |
e05df3b1 JK |
923 | } |
924 | ||
925 | struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid) | |
926 | { | |
e05df3b1 | 927 | struct address_space *mapping = sbi->node_inode->i_mapping; |
56ae674c JK |
928 | struct page *page; |
929 | int err; | |
afcb7ca0 | 930 | repeat: |
e05df3b1 JK |
931 | page = grab_cache_page(mapping, nid); |
932 | if (!page) | |
933 | return ERR_PTR(-ENOMEM); | |
934 | ||
935 | err = read_node_page(page, READ_SYNC); | |
56ae674c | 936 | if (err < 0) |
e05df3b1 | 937 | return ERR_PTR(err); |
56ae674c JK |
938 | else if (err == LOCKED_PAGE) |
939 | goto got_it; | |
e05df3b1 | 940 | |
393ff91f JK |
941 | lock_page(page); |
942 | if (!PageUptodate(page)) { | |
943 | f2fs_put_page(page, 1); | |
944 | return ERR_PTR(-EIO); | |
945 | } | |
afcb7ca0 JK |
946 | if (page->mapping != mapping) { |
947 | f2fs_put_page(page, 1); | |
948 | goto repeat; | |
949 | } | |
56ae674c | 950 | got_it: |
e05df3b1 JK |
951 | BUG_ON(nid != nid_of_node(page)); |
952 | mark_page_accessed(page); | |
953 | return page; | |
954 | } | |
955 | ||
0a8165d7 | 956 | /* |
e05df3b1 JK |
957 | * Return a locked page for the desired node page. |
958 | * And, readahead MAX_RA_NODE number of node pages. | |
959 | */ | |
960 | struct page *get_node_page_ra(struct page *parent, int start) | |
961 | { | |
962 | struct f2fs_sb_info *sbi = F2FS_SB(parent->mapping->host->i_sb); | |
963 | struct address_space *mapping = sbi->node_inode->i_mapping; | |
c718379b | 964 | struct blk_plug plug; |
e05df3b1 | 965 | struct page *page; |
56ae674c JK |
966 | int err, i, end; |
967 | nid_t nid; | |
e05df3b1 JK |
968 | |
969 | /* First, try getting the desired direct node. */ | |
970 | nid = get_nid(parent, start, false); | |
971 | if (!nid) | |
972 | return ERR_PTR(-ENOENT); | |
afcb7ca0 | 973 | repeat: |
e05df3b1 JK |
974 | page = grab_cache_page(mapping, nid); |
975 | if (!page) | |
976 | return ERR_PTR(-ENOMEM); | |
977 | ||
66d36a29 | 978 | err = read_node_page(page, READ_SYNC); |
56ae674c | 979 | if (err < 0) |
e05df3b1 | 980 | return ERR_PTR(err); |
56ae674c JK |
981 | else if (err == LOCKED_PAGE) |
982 | goto page_hit; | |
e05df3b1 | 983 | |
c718379b JK |
984 | blk_start_plug(&plug); |
985 | ||
e05df3b1 JK |
986 | /* Then, try readahead for siblings of the desired node */ |
987 | end = start + MAX_RA_NODE; | |
988 | end = min(end, NIDS_PER_BLOCK); | |
989 | for (i = start + 1; i < end; i++) { | |
990 | nid = get_nid(parent, i, false); | |
991 | if (!nid) | |
992 | continue; | |
993 | ra_node_page(sbi, nid); | |
994 | } | |
995 | ||
c718379b JK |
996 | blk_finish_plug(&plug); |
997 | ||
e05df3b1 | 998 | lock_page(page); |
afcb7ca0 JK |
999 | if (page->mapping != mapping) { |
1000 | f2fs_put_page(page, 1); | |
1001 | goto repeat; | |
1002 | } | |
e0f56cb4 | 1003 | page_hit: |
56ae674c | 1004 | if (!PageUptodate(page)) { |
e05df3b1 JK |
1005 | f2fs_put_page(page, 1); |
1006 | return ERR_PTR(-EIO); | |
1007 | } | |
393ff91f | 1008 | mark_page_accessed(page); |
e05df3b1 JK |
1009 | return page; |
1010 | } | |
1011 | ||
1012 | void sync_inode_page(struct dnode_of_data *dn) | |
1013 | { | |
1014 | if (IS_INODE(dn->node_page) || dn->inode_page == dn->node_page) { | |
1015 | update_inode(dn->inode, dn->node_page); | |
1016 | } else if (dn->inode_page) { | |
1017 | if (!dn->inode_page_locked) | |
1018 | lock_page(dn->inode_page); | |
1019 | update_inode(dn->inode, dn->inode_page); | |
1020 | if (!dn->inode_page_locked) | |
1021 | unlock_page(dn->inode_page); | |
1022 | } else { | |
39936837 | 1023 | update_inode_page(dn->inode); |
e05df3b1 JK |
1024 | } |
1025 | } | |
1026 | ||
1027 | int sync_node_pages(struct f2fs_sb_info *sbi, nid_t ino, | |
1028 | struct writeback_control *wbc) | |
1029 | { | |
1030 | struct address_space *mapping = sbi->node_inode->i_mapping; | |
1031 | pgoff_t index, end; | |
1032 | struct pagevec pvec; | |
1033 | int step = ino ? 2 : 0; | |
1034 | int nwritten = 0, wrote = 0; | |
1035 | ||
1036 | pagevec_init(&pvec, 0); | |
1037 | ||
1038 | next_step: | |
1039 | index = 0; | |
1040 | end = LONG_MAX; | |
1041 | ||
1042 | while (index <= end) { | |
1043 | int i, nr_pages; | |
1044 | nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, | |
1045 | PAGECACHE_TAG_DIRTY, | |
1046 | min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); | |
1047 | if (nr_pages == 0) | |
1048 | break; | |
1049 | ||
1050 | for (i = 0; i < nr_pages; i++) { | |
1051 | struct page *page = pvec.pages[i]; | |
1052 | ||
1053 | /* | |
1054 | * flushing sequence with step: | |
1055 | * 0. indirect nodes | |
1056 | * 1. dentry dnodes | |
1057 | * 2. file dnodes | |
1058 | */ | |
1059 | if (step == 0 && IS_DNODE(page)) | |
1060 | continue; | |
1061 | if (step == 1 && (!IS_DNODE(page) || | |
1062 | is_cold_node(page))) | |
1063 | continue; | |
1064 | if (step == 2 && (!IS_DNODE(page) || | |
1065 | !is_cold_node(page))) | |
1066 | continue; | |
1067 | ||
1068 | /* | |
1069 | * If an fsync mode, | |
1070 | * we should not skip writing node pages. | |
1071 | */ | |
1072 | if (ino && ino_of_node(page) == ino) | |
1073 | lock_page(page); | |
1074 | else if (!trylock_page(page)) | |
1075 | continue; | |
1076 | ||
1077 | if (unlikely(page->mapping != mapping)) { | |
1078 | continue_unlock: | |
1079 | unlock_page(page); | |
1080 | continue; | |
1081 | } | |
1082 | if (ino && ino_of_node(page) != ino) | |
1083 | goto continue_unlock; | |
1084 | ||
1085 | if (!PageDirty(page)) { | |
1086 | /* someone wrote it for us */ | |
1087 | goto continue_unlock; | |
1088 | } | |
1089 | ||
1090 | if (!clear_page_dirty_for_io(page)) | |
1091 | goto continue_unlock; | |
1092 | ||
1093 | /* called by fsync() */ | |
1094 | if (ino && IS_DNODE(page)) { | |
1095 | int mark = !is_checkpointed_node(sbi, ino); | |
1096 | set_fsync_mark(page, 1); | |
1097 | if (IS_INODE(page)) | |
1098 | set_dentry_mark(page, mark); | |
1099 | nwritten++; | |
1100 | } else { | |
1101 | set_fsync_mark(page, 0); | |
1102 | set_dentry_mark(page, 0); | |
1103 | } | |
1104 | mapping->a_ops->writepage(page, wbc); | |
1105 | wrote++; | |
1106 | ||
1107 | if (--wbc->nr_to_write == 0) | |
1108 | break; | |
1109 | } | |
1110 | pagevec_release(&pvec); | |
1111 | cond_resched(); | |
1112 | ||
1113 | if (wbc->nr_to_write == 0) { | |
1114 | step = 2; | |
1115 | break; | |
1116 | } | |
1117 | } | |
1118 | ||
1119 | if (step < 2) { | |
1120 | step++; | |
1121 | goto next_step; | |
1122 | } | |
1123 | ||
1124 | if (wrote) | |
1125 | f2fs_submit_bio(sbi, NODE, wbc->sync_mode == WB_SYNC_ALL); | |
1126 | ||
1127 | return nwritten; | |
1128 | } | |
1129 | ||
1130 | static int f2fs_write_node_page(struct page *page, | |
1131 | struct writeback_control *wbc) | |
1132 | { | |
1133 | struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb); | |
1134 | nid_t nid; | |
e05df3b1 JK |
1135 | block_t new_addr; |
1136 | struct node_info ni; | |
1137 | ||
e05df3b1 JK |
1138 | wait_on_page_writeback(page); |
1139 | ||
e05df3b1 JK |
1140 | /* get old block addr of this node page */ |
1141 | nid = nid_of_node(page); | |
e05df3b1 JK |
1142 | BUG_ON(page->index != nid); |
1143 | ||
1144 | get_node_info(sbi, nid, &ni); | |
1145 | ||
1146 | /* This page is already truncated */ | |
39936837 JK |
1147 | if (ni.blk_addr == NULL_ADDR) { |
1148 | dec_page_count(sbi, F2FS_DIRTY_NODES); | |
1149 | unlock_page(page); | |
1150 | return 0; | |
1151 | } | |
e05df3b1 | 1152 | |
08d8058b JK |
1153 | if (wbc->for_reclaim) { |
1154 | dec_page_count(sbi, F2FS_DIRTY_NODES); | |
1155 | wbc->pages_skipped++; | |
1156 | set_page_dirty(page); | |
08d8058b JK |
1157 | return AOP_WRITEPAGE_ACTIVATE; |
1158 | } | |
1159 | ||
39936837 | 1160 | mutex_lock(&sbi->node_write); |
e05df3b1 | 1161 | set_page_writeback(page); |
e05df3b1 JK |
1162 | write_node_page(sbi, page, nid, ni.blk_addr, &new_addr); |
1163 | set_node_addr(sbi, &ni, new_addr); | |
1164 | dec_page_count(sbi, F2FS_DIRTY_NODES); | |
39936837 | 1165 | mutex_unlock(&sbi->node_write); |
e05df3b1 JK |
1166 | unlock_page(page); |
1167 | return 0; | |
1168 | } | |
1169 | ||
a7fdffbd JK |
1170 | /* |
1171 | * It is very important to gather dirty pages and write at once, so that we can | |
1172 | * submit a big bio without interfering other data writes. | |
1173 | * Be default, 512 pages (2MB), a segment size, is quite reasonable. | |
1174 | */ | |
1175 | #define COLLECT_DIRTY_NODES 512 | |
e05df3b1 JK |
1176 | static int f2fs_write_node_pages(struct address_space *mapping, |
1177 | struct writeback_control *wbc) | |
1178 | { | |
1179 | struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb); | |
e05df3b1 JK |
1180 | long nr_to_write = wbc->nr_to_write; |
1181 | ||
a7fdffbd | 1182 | /* First check balancing cached NAT entries */ |
e05df3b1 | 1183 | if (try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK)) { |
b7473754 | 1184 | f2fs_sync_fs(sbi->sb, true); |
e05df3b1 JK |
1185 | return 0; |
1186 | } | |
1187 | ||
a7fdffbd JK |
1188 | /* collect a number of dirty node pages and write together */ |
1189 | if (get_pages(sbi, F2FS_DIRTY_NODES) < COLLECT_DIRTY_NODES) | |
1190 | return 0; | |
1191 | ||
e05df3b1 | 1192 | /* if mounting is failed, skip writing node pages */ |
ac5d156c | 1193 | wbc->nr_to_write = max_hw_blocks(sbi); |
e05df3b1 | 1194 | sync_node_pages(sbi, 0, wbc); |
ac5d156c | 1195 | wbc->nr_to_write = nr_to_write - (max_hw_blocks(sbi) - wbc->nr_to_write); |
e05df3b1 JK |
1196 | return 0; |
1197 | } | |
1198 | ||
1199 | static int f2fs_set_node_page_dirty(struct page *page) | |
1200 | { | |
1201 | struct address_space *mapping = page->mapping; | |
1202 | struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb); | |
1203 | ||
1204 | SetPageUptodate(page); | |
1205 | if (!PageDirty(page)) { | |
1206 | __set_page_dirty_nobuffers(page); | |
1207 | inc_page_count(sbi, F2FS_DIRTY_NODES); | |
1208 | SetPagePrivate(page); | |
1209 | return 1; | |
1210 | } | |
1211 | return 0; | |
1212 | } | |
1213 | ||
d47992f8 LC |
1214 | static void f2fs_invalidate_node_page(struct page *page, unsigned int offset, |
1215 | unsigned int length) | |
e05df3b1 JK |
1216 | { |
1217 | struct inode *inode = page->mapping->host; | |
1218 | struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); | |
1219 | if (PageDirty(page)) | |
1220 | dec_page_count(sbi, F2FS_DIRTY_NODES); | |
1221 | ClearPagePrivate(page); | |
1222 | } | |
1223 | ||
1224 | static int f2fs_release_node_page(struct page *page, gfp_t wait) | |
1225 | { | |
1226 | ClearPagePrivate(page); | |
c3850aa1 | 1227 | return 1; |
e05df3b1 JK |
1228 | } |
1229 | ||
0a8165d7 | 1230 | /* |
e05df3b1 JK |
1231 | * Structure of the f2fs node operations |
1232 | */ | |
1233 | const struct address_space_operations f2fs_node_aops = { | |
1234 | .writepage = f2fs_write_node_page, | |
1235 | .writepages = f2fs_write_node_pages, | |
1236 | .set_page_dirty = f2fs_set_node_page_dirty, | |
1237 | .invalidatepage = f2fs_invalidate_node_page, | |
1238 | .releasepage = f2fs_release_node_page, | |
1239 | }; | |
1240 | ||
1241 | static struct free_nid *__lookup_free_nid_list(nid_t n, struct list_head *head) | |
1242 | { | |
1243 | struct list_head *this; | |
3aa770a9 | 1244 | struct free_nid *i; |
e05df3b1 JK |
1245 | list_for_each(this, head) { |
1246 | i = list_entry(this, struct free_nid, list); | |
1247 | if (i->nid == n) | |
3aa770a9 | 1248 | return i; |
e05df3b1 | 1249 | } |
3aa770a9 | 1250 | return NULL; |
e05df3b1 JK |
1251 | } |
1252 | ||
1253 | static void __del_from_free_nid_list(struct free_nid *i) | |
1254 | { | |
1255 | list_del(&i->list); | |
1256 | kmem_cache_free(free_nid_slab, i); | |
1257 | } | |
1258 | ||
59bbd474 | 1259 | static int add_free_nid(struct f2fs_nm_info *nm_i, nid_t nid, bool build) |
e05df3b1 JK |
1260 | { |
1261 | struct free_nid *i; | |
59bbd474 JK |
1262 | struct nat_entry *ne; |
1263 | bool allocated = false; | |
e05df3b1 JK |
1264 | |
1265 | if (nm_i->fcnt > 2 * MAX_FREE_NIDS) | |
23d38844 | 1266 | return -1; |
9198aceb JK |
1267 | |
1268 | /* 0 nid should not be used */ | |
1269 | if (nid == 0) | |
1270 | return 0; | |
59bbd474 JK |
1271 | |
1272 | if (!build) | |
1273 | goto retry; | |
1274 | ||
1275 | /* do not add allocated nids */ | |
1276 | read_lock(&nm_i->nat_tree_lock); | |
1277 | ne = __lookup_nat_cache(nm_i, nid); | |
1278 | if (ne && nat_get_blkaddr(ne) != NULL_ADDR) | |
1279 | allocated = true; | |
1280 | read_unlock(&nm_i->nat_tree_lock); | |
1281 | if (allocated) | |
1282 | return 0; | |
e05df3b1 JK |
1283 | retry: |
1284 | i = kmem_cache_alloc(free_nid_slab, GFP_NOFS); | |
1285 | if (!i) { | |
1286 | cond_resched(); | |
1287 | goto retry; | |
1288 | } | |
1289 | i->nid = nid; | |
1290 | i->state = NID_NEW; | |
1291 | ||
1292 | spin_lock(&nm_i->free_nid_list_lock); | |
1293 | if (__lookup_free_nid_list(nid, &nm_i->free_nid_list)) { | |
1294 | spin_unlock(&nm_i->free_nid_list_lock); | |
1295 | kmem_cache_free(free_nid_slab, i); | |
1296 | return 0; | |
1297 | } | |
1298 | list_add_tail(&i->list, &nm_i->free_nid_list); | |
1299 | nm_i->fcnt++; | |
1300 | spin_unlock(&nm_i->free_nid_list_lock); | |
1301 | return 1; | |
1302 | } | |
1303 | ||
1304 | static void remove_free_nid(struct f2fs_nm_info *nm_i, nid_t nid) | |
1305 | { | |
1306 | struct free_nid *i; | |
1307 | spin_lock(&nm_i->free_nid_list_lock); | |
1308 | i = __lookup_free_nid_list(nid, &nm_i->free_nid_list); | |
1309 | if (i && i->state == NID_NEW) { | |
1310 | __del_from_free_nid_list(i); | |
1311 | nm_i->fcnt--; | |
1312 | } | |
1313 | spin_unlock(&nm_i->free_nid_list_lock); | |
1314 | } | |
1315 | ||
8760952d | 1316 | static void scan_nat_page(struct f2fs_nm_info *nm_i, |
e05df3b1 JK |
1317 | struct page *nat_page, nid_t start_nid) |
1318 | { | |
1319 | struct f2fs_nat_block *nat_blk = page_address(nat_page); | |
1320 | block_t blk_addr; | |
e05df3b1 JK |
1321 | int i; |
1322 | ||
e05df3b1 JK |
1323 | i = start_nid % NAT_ENTRY_PER_BLOCK; |
1324 | ||
1325 | for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) { | |
23d38844 | 1326 | |
04431c44 JK |
1327 | if (start_nid >= nm_i->max_nid) |
1328 | break; | |
23d38844 HL |
1329 | |
1330 | blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr); | |
e05df3b1 | 1331 | BUG_ON(blk_addr == NEW_ADDR); |
23d38844 | 1332 | if (blk_addr == NULL_ADDR) { |
59bbd474 | 1333 | if (add_free_nid(nm_i, start_nid, true) < 0) |
23d38844 HL |
1334 | break; |
1335 | } | |
e05df3b1 | 1336 | } |
e05df3b1 JK |
1337 | } |
1338 | ||
1339 | static void build_free_nids(struct f2fs_sb_info *sbi) | |
1340 | { | |
e05df3b1 JK |
1341 | struct f2fs_nm_info *nm_i = NM_I(sbi); |
1342 | struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); | |
1343 | struct f2fs_summary_block *sum = curseg->sum_blk; | |
8760952d | 1344 | int i = 0; |
55008d84 | 1345 | nid_t nid = nm_i->next_scan_nid; |
e05df3b1 | 1346 | |
55008d84 JK |
1347 | /* Enough entries */ |
1348 | if (nm_i->fcnt > NAT_ENTRY_PER_BLOCK) | |
1349 | return; | |
e05df3b1 | 1350 | |
55008d84 | 1351 | /* readahead nat pages to be scanned */ |
e05df3b1 JK |
1352 | ra_nat_pages(sbi, nid); |
1353 | ||
1354 | while (1) { | |
1355 | struct page *page = get_current_nat_page(sbi, nid); | |
1356 | ||
8760952d | 1357 | scan_nat_page(nm_i, page, nid); |
e05df3b1 JK |
1358 | f2fs_put_page(page, 1); |
1359 | ||
1360 | nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK)); | |
55008d84 | 1361 | if (nid >= nm_i->max_nid) |
e05df3b1 | 1362 | nid = 0; |
55008d84 JK |
1363 | |
1364 | if (i++ == FREE_NID_PAGES) | |
e05df3b1 JK |
1365 | break; |
1366 | } | |
1367 | ||
55008d84 JK |
1368 | /* go to the next free nat pages to find free nids abundantly */ |
1369 | nm_i->next_scan_nid = nid; | |
e05df3b1 JK |
1370 | |
1371 | /* find free nids from current sum_pages */ | |
1372 | mutex_lock(&curseg->curseg_mutex); | |
1373 | for (i = 0; i < nats_in_cursum(sum); i++) { | |
1374 | block_t addr = le32_to_cpu(nat_in_journal(sum, i).block_addr); | |
1375 | nid = le32_to_cpu(nid_in_journal(sum, i)); | |
1376 | if (addr == NULL_ADDR) | |
59bbd474 | 1377 | add_free_nid(nm_i, nid, true); |
e05df3b1 JK |
1378 | else |
1379 | remove_free_nid(nm_i, nid); | |
1380 | } | |
1381 | mutex_unlock(&curseg->curseg_mutex); | |
e05df3b1 JK |
1382 | } |
1383 | ||
1384 | /* | |
1385 | * If this function returns success, caller can obtain a new nid | |
1386 | * from second parameter of this function. | |
1387 | * The returned nid could be used ino as well as nid when inode is created. | |
1388 | */ | |
1389 | bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid) | |
1390 | { | |
1391 | struct f2fs_nm_info *nm_i = NM_I(sbi); | |
1392 | struct free_nid *i = NULL; | |
1393 | struct list_head *this; | |
1394 | retry: | |
55008d84 JK |
1395 | if (sbi->total_valid_node_count + 1 >= nm_i->max_nid) |
1396 | return false; | |
e05df3b1 | 1397 | |
e05df3b1 | 1398 | spin_lock(&nm_i->free_nid_list_lock); |
e05df3b1 | 1399 | |
55008d84 JK |
1400 | /* We should not use stale free nids created by build_free_nids */ |
1401 | if (nm_i->fcnt && !sbi->on_build_free_nids) { | |
1402 | BUG_ON(list_empty(&nm_i->free_nid_list)); | |
1403 | list_for_each(this, &nm_i->free_nid_list) { | |
1404 | i = list_entry(this, struct free_nid, list); | |
1405 | if (i->state == NID_NEW) | |
1406 | break; | |
1407 | } | |
e05df3b1 | 1408 | |
55008d84 JK |
1409 | BUG_ON(i->state != NID_NEW); |
1410 | *nid = i->nid; | |
1411 | i->state = NID_ALLOC; | |
1412 | nm_i->fcnt--; | |
1413 | spin_unlock(&nm_i->free_nid_list_lock); | |
1414 | return true; | |
1415 | } | |
e05df3b1 | 1416 | spin_unlock(&nm_i->free_nid_list_lock); |
55008d84 JK |
1417 | |
1418 | /* Let's scan nat pages and its caches to get free nids */ | |
1419 | mutex_lock(&nm_i->build_lock); | |
1420 | sbi->on_build_free_nids = 1; | |
1421 | build_free_nids(sbi); | |
1422 | sbi->on_build_free_nids = 0; | |
1423 | mutex_unlock(&nm_i->build_lock); | |
1424 | goto retry; | |
e05df3b1 JK |
1425 | } |
1426 | ||
0a8165d7 | 1427 | /* |
e05df3b1 JK |
1428 | * alloc_nid() should be called prior to this function. |
1429 | */ | |
1430 | void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid) | |
1431 | { | |
1432 | struct f2fs_nm_info *nm_i = NM_I(sbi); | |
1433 | struct free_nid *i; | |
1434 | ||
1435 | spin_lock(&nm_i->free_nid_list_lock); | |
1436 | i = __lookup_free_nid_list(nid, &nm_i->free_nid_list); | |
49952fa1 JK |
1437 | BUG_ON(!i || i->state != NID_ALLOC); |
1438 | __del_from_free_nid_list(i); | |
e05df3b1 JK |
1439 | spin_unlock(&nm_i->free_nid_list_lock); |
1440 | } | |
1441 | ||
0a8165d7 | 1442 | /* |
e05df3b1 JK |
1443 | * alloc_nid() should be called prior to this function. |
1444 | */ | |
1445 | void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid) | |
1446 | { | |
49952fa1 JK |
1447 | struct f2fs_nm_info *nm_i = NM_I(sbi); |
1448 | struct free_nid *i; | |
1449 | ||
1450 | spin_lock(&nm_i->free_nid_list_lock); | |
1451 | i = __lookup_free_nid_list(nid, &nm_i->free_nid_list); | |
1452 | BUG_ON(!i || i->state != NID_ALLOC); | |
95630cba HL |
1453 | if (nm_i->fcnt > 2 * MAX_FREE_NIDS) { |
1454 | __del_from_free_nid_list(i); | |
1455 | } else { | |
1456 | i->state = NID_NEW; | |
1457 | nm_i->fcnt++; | |
1458 | } | |
49952fa1 | 1459 | spin_unlock(&nm_i->free_nid_list_lock); |
e05df3b1 JK |
1460 | } |
1461 | ||
1462 | void recover_node_page(struct f2fs_sb_info *sbi, struct page *page, | |
1463 | struct f2fs_summary *sum, struct node_info *ni, | |
1464 | block_t new_blkaddr) | |
1465 | { | |
1466 | rewrite_node_page(sbi, page, sum, ni->blk_addr, new_blkaddr); | |
1467 | set_node_addr(sbi, ni, new_blkaddr); | |
1468 | clear_node_page_dirty(page); | |
1469 | } | |
1470 | ||
1471 | int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page) | |
1472 | { | |
1473 | struct address_space *mapping = sbi->node_inode->i_mapping; | |
1474 | struct f2fs_node *src, *dst; | |
1475 | nid_t ino = ino_of_node(page); | |
1476 | struct node_info old_ni, new_ni; | |
1477 | struct page *ipage; | |
1478 | ||
1479 | ipage = grab_cache_page(mapping, ino); | |
1480 | if (!ipage) | |
1481 | return -ENOMEM; | |
1482 | ||
1483 | /* Should not use this inode from free nid list */ | |
1484 | remove_free_nid(NM_I(sbi), ino); | |
1485 | ||
1486 | get_node_info(sbi, ino, &old_ni); | |
1487 | SetPageUptodate(ipage); | |
1488 | fill_node_footer(ipage, ino, ino, 0, true); | |
1489 | ||
45590710 GZ |
1490 | src = F2FS_NODE(page); |
1491 | dst = F2FS_NODE(ipage); | |
e05df3b1 JK |
1492 | |
1493 | memcpy(dst, src, (unsigned long)&src->i.i_ext - (unsigned long)&src->i); | |
1494 | dst->i.i_size = 0; | |
25ca923b JK |
1495 | dst->i.i_blocks = cpu_to_le64(1); |
1496 | dst->i.i_links = cpu_to_le32(1); | |
e05df3b1 JK |
1497 | dst->i.i_xattr_nid = 0; |
1498 | ||
1499 | new_ni = old_ni; | |
1500 | new_ni.ino = ino; | |
1501 | ||
65e5cd0a JK |
1502 | if (!inc_valid_node_count(sbi, NULL, 1)) |
1503 | WARN_ON(1); | |
e05df3b1 JK |
1504 | set_node_addr(sbi, &new_ni, NEW_ADDR); |
1505 | inc_valid_inode_count(sbi); | |
e05df3b1 JK |
1506 | f2fs_put_page(ipage, 1); |
1507 | return 0; | |
1508 | } | |
1509 | ||
1510 | int restore_node_summary(struct f2fs_sb_info *sbi, | |
1511 | unsigned int segno, struct f2fs_summary_block *sum) | |
1512 | { | |
1513 | struct f2fs_node *rn; | |
1514 | struct f2fs_summary *sum_entry; | |
1515 | struct page *page; | |
1516 | block_t addr; | |
1517 | int i, last_offset; | |
1518 | ||
1519 | /* alloc temporal page for read node */ | |
1520 | page = alloc_page(GFP_NOFS | __GFP_ZERO); | |
e27dae4d DC |
1521 | if (!page) |
1522 | return -ENOMEM; | |
e05df3b1 JK |
1523 | lock_page(page); |
1524 | ||
1525 | /* scan the node segment */ | |
1526 | last_offset = sbi->blocks_per_seg; | |
1527 | addr = START_BLOCK(sbi, segno); | |
1528 | sum_entry = &sum->entries[0]; | |
1529 | ||
1530 | for (i = 0; i < last_offset; i++, sum_entry++) { | |
393ff91f JK |
1531 | /* |
1532 | * In order to read next node page, | |
1533 | * we must clear PageUptodate flag. | |
1534 | */ | |
1535 | ClearPageUptodate(page); | |
1536 | ||
e05df3b1 JK |
1537 | if (f2fs_readpage(sbi, page, addr, READ_SYNC)) |
1538 | goto out; | |
1539 | ||
393ff91f | 1540 | lock_page(page); |
45590710 | 1541 | rn = F2FS_NODE(page); |
e05df3b1 JK |
1542 | sum_entry->nid = rn->footer.nid; |
1543 | sum_entry->version = 0; | |
1544 | sum_entry->ofs_in_node = 0; | |
1545 | addr++; | |
e05df3b1 | 1546 | } |
e05df3b1 | 1547 | unlock_page(page); |
393ff91f | 1548 | out: |
e05df3b1 JK |
1549 | __free_pages(page, 0); |
1550 | return 0; | |
1551 | } | |
1552 | ||
1553 | static bool flush_nats_in_journal(struct f2fs_sb_info *sbi) | |
1554 | { | |
1555 | struct f2fs_nm_info *nm_i = NM_I(sbi); | |
1556 | struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); | |
1557 | struct f2fs_summary_block *sum = curseg->sum_blk; | |
1558 | int i; | |
1559 | ||
1560 | mutex_lock(&curseg->curseg_mutex); | |
1561 | ||
1562 | if (nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES) { | |
1563 | mutex_unlock(&curseg->curseg_mutex); | |
1564 | return false; | |
1565 | } | |
1566 | ||
1567 | for (i = 0; i < nats_in_cursum(sum); i++) { | |
1568 | struct nat_entry *ne; | |
1569 | struct f2fs_nat_entry raw_ne; | |
1570 | nid_t nid = le32_to_cpu(nid_in_journal(sum, i)); | |
1571 | ||
1572 | raw_ne = nat_in_journal(sum, i); | |
1573 | retry: | |
1574 | write_lock(&nm_i->nat_tree_lock); | |
1575 | ne = __lookup_nat_cache(nm_i, nid); | |
1576 | if (ne) { | |
1577 | __set_nat_cache_dirty(nm_i, ne); | |
1578 | write_unlock(&nm_i->nat_tree_lock); | |
1579 | continue; | |
1580 | } | |
1581 | ne = grab_nat_entry(nm_i, nid); | |
1582 | if (!ne) { | |
1583 | write_unlock(&nm_i->nat_tree_lock); | |
1584 | goto retry; | |
1585 | } | |
1586 | nat_set_blkaddr(ne, le32_to_cpu(raw_ne.block_addr)); | |
1587 | nat_set_ino(ne, le32_to_cpu(raw_ne.ino)); | |
1588 | nat_set_version(ne, raw_ne.version); | |
1589 | __set_nat_cache_dirty(nm_i, ne); | |
1590 | write_unlock(&nm_i->nat_tree_lock); | |
1591 | } | |
1592 | update_nats_in_cursum(sum, -i); | |
1593 | mutex_unlock(&curseg->curseg_mutex); | |
1594 | return true; | |
1595 | } | |
1596 | ||
0a8165d7 | 1597 | /* |
e05df3b1 JK |
1598 | * This function is called during the checkpointing process. |
1599 | */ | |
1600 | void flush_nat_entries(struct f2fs_sb_info *sbi) | |
1601 | { | |
1602 | struct f2fs_nm_info *nm_i = NM_I(sbi); | |
1603 | struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); | |
1604 | struct f2fs_summary_block *sum = curseg->sum_blk; | |
1605 | struct list_head *cur, *n; | |
1606 | struct page *page = NULL; | |
1607 | struct f2fs_nat_block *nat_blk = NULL; | |
1608 | nid_t start_nid = 0, end_nid = 0; | |
1609 | bool flushed; | |
1610 | ||
1611 | flushed = flush_nats_in_journal(sbi); | |
1612 | ||
1613 | if (!flushed) | |
1614 | mutex_lock(&curseg->curseg_mutex); | |
1615 | ||
1616 | /* 1) flush dirty nat caches */ | |
1617 | list_for_each_safe(cur, n, &nm_i->dirty_nat_entries) { | |
1618 | struct nat_entry *ne; | |
1619 | nid_t nid; | |
1620 | struct f2fs_nat_entry raw_ne; | |
1621 | int offset = -1; | |
2b50638d | 1622 | block_t new_blkaddr; |
e05df3b1 JK |
1623 | |
1624 | ne = list_entry(cur, struct nat_entry, list); | |
1625 | nid = nat_get_nid(ne); | |
1626 | ||
1627 | if (nat_get_blkaddr(ne) == NEW_ADDR) | |
1628 | continue; | |
1629 | if (flushed) | |
1630 | goto to_nat_page; | |
1631 | ||
1632 | /* if there is room for nat enries in curseg->sumpage */ | |
1633 | offset = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 1); | |
1634 | if (offset >= 0) { | |
1635 | raw_ne = nat_in_journal(sum, offset); | |
e05df3b1 JK |
1636 | goto flush_now; |
1637 | } | |
1638 | to_nat_page: | |
1639 | if (!page || (start_nid > nid || nid > end_nid)) { | |
1640 | if (page) { | |
1641 | f2fs_put_page(page, 1); | |
1642 | page = NULL; | |
1643 | } | |
1644 | start_nid = START_NID(nid); | |
1645 | end_nid = start_nid + NAT_ENTRY_PER_BLOCK - 1; | |
1646 | ||
1647 | /* | |
1648 | * get nat block with dirty flag, increased reference | |
1649 | * count, mapped and lock | |
1650 | */ | |
1651 | page = get_next_nat_page(sbi, start_nid); | |
1652 | nat_blk = page_address(page); | |
1653 | } | |
1654 | ||
1655 | BUG_ON(!nat_blk); | |
1656 | raw_ne = nat_blk->entries[nid - start_nid]; | |
e05df3b1 JK |
1657 | flush_now: |
1658 | new_blkaddr = nat_get_blkaddr(ne); | |
1659 | ||
1660 | raw_ne.ino = cpu_to_le32(nat_get_ino(ne)); | |
1661 | raw_ne.block_addr = cpu_to_le32(new_blkaddr); | |
1662 | raw_ne.version = nat_get_version(ne); | |
1663 | ||
1664 | if (offset < 0) { | |
1665 | nat_blk->entries[nid - start_nid] = raw_ne; | |
1666 | } else { | |
1667 | nat_in_journal(sum, offset) = raw_ne; | |
1668 | nid_in_journal(sum, offset) = cpu_to_le32(nid); | |
1669 | } | |
1670 | ||
fa372417 | 1671 | if (nat_get_blkaddr(ne) == NULL_ADDR && |
59bbd474 | 1672 | add_free_nid(NM_I(sbi), nid, false) <= 0) { |
e05df3b1 JK |
1673 | write_lock(&nm_i->nat_tree_lock); |
1674 | __del_from_nat_cache(nm_i, ne); | |
1675 | write_unlock(&nm_i->nat_tree_lock); | |
e05df3b1 JK |
1676 | } else { |
1677 | write_lock(&nm_i->nat_tree_lock); | |
1678 | __clear_nat_cache_dirty(nm_i, ne); | |
1679 | ne->checkpointed = true; | |
1680 | write_unlock(&nm_i->nat_tree_lock); | |
1681 | } | |
1682 | } | |
1683 | if (!flushed) | |
1684 | mutex_unlock(&curseg->curseg_mutex); | |
1685 | f2fs_put_page(page, 1); | |
1686 | ||
1687 | /* 2) shrink nat caches if necessary */ | |
1688 | try_to_free_nats(sbi, nm_i->nat_cnt - NM_WOUT_THRESHOLD); | |
1689 | } | |
1690 | ||
1691 | static int init_node_manager(struct f2fs_sb_info *sbi) | |
1692 | { | |
1693 | struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi); | |
1694 | struct f2fs_nm_info *nm_i = NM_I(sbi); | |
1695 | unsigned char *version_bitmap; | |
1696 | unsigned int nat_segs, nat_blocks; | |
1697 | ||
1698 | nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr); | |
1699 | ||
1700 | /* segment_count_nat includes pair segment so divide to 2. */ | |
1701 | nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1; | |
1702 | nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg); | |
1703 | nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nat_blocks; | |
1704 | nm_i->fcnt = 0; | |
1705 | nm_i->nat_cnt = 0; | |
1706 | ||
1707 | INIT_LIST_HEAD(&nm_i->free_nid_list); | |
1708 | INIT_RADIX_TREE(&nm_i->nat_root, GFP_ATOMIC); | |
1709 | INIT_LIST_HEAD(&nm_i->nat_entries); | |
1710 | INIT_LIST_HEAD(&nm_i->dirty_nat_entries); | |
1711 | ||
1712 | mutex_init(&nm_i->build_lock); | |
1713 | spin_lock_init(&nm_i->free_nid_list_lock); | |
1714 | rwlock_init(&nm_i->nat_tree_lock); | |
1715 | ||
e05df3b1 | 1716 | nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid); |
79b5793b | 1717 | nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP); |
e05df3b1 JK |
1718 | version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP); |
1719 | if (!version_bitmap) | |
1720 | return -EFAULT; | |
1721 | ||
79b5793b AG |
1722 | nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size, |
1723 | GFP_KERNEL); | |
1724 | if (!nm_i->nat_bitmap) | |
1725 | return -ENOMEM; | |
e05df3b1 JK |
1726 | return 0; |
1727 | } | |
1728 | ||
1729 | int build_node_manager(struct f2fs_sb_info *sbi) | |
1730 | { | |
1731 | int err; | |
1732 | ||
1733 | sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL); | |
1734 | if (!sbi->nm_info) | |
1735 | return -ENOMEM; | |
1736 | ||
1737 | err = init_node_manager(sbi); | |
1738 | if (err) | |
1739 | return err; | |
1740 | ||
1741 | build_free_nids(sbi); | |
1742 | return 0; | |
1743 | } | |
1744 | ||
1745 | void destroy_node_manager(struct f2fs_sb_info *sbi) | |
1746 | { | |
1747 | struct f2fs_nm_info *nm_i = NM_I(sbi); | |
1748 | struct free_nid *i, *next_i; | |
1749 | struct nat_entry *natvec[NATVEC_SIZE]; | |
1750 | nid_t nid = 0; | |
1751 | unsigned int found; | |
1752 | ||
1753 | if (!nm_i) | |
1754 | return; | |
1755 | ||
1756 | /* destroy free nid list */ | |
1757 | spin_lock(&nm_i->free_nid_list_lock); | |
1758 | list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) { | |
1759 | BUG_ON(i->state == NID_ALLOC); | |
1760 | __del_from_free_nid_list(i); | |
1761 | nm_i->fcnt--; | |
1762 | } | |
1763 | BUG_ON(nm_i->fcnt); | |
1764 | spin_unlock(&nm_i->free_nid_list_lock); | |
1765 | ||
1766 | /* destroy nat cache */ | |
1767 | write_lock(&nm_i->nat_tree_lock); | |
1768 | while ((found = __gang_lookup_nat_cache(nm_i, | |
1769 | nid, NATVEC_SIZE, natvec))) { | |
1770 | unsigned idx; | |
1771 | for (idx = 0; idx < found; idx++) { | |
1772 | struct nat_entry *e = natvec[idx]; | |
1773 | nid = nat_get_nid(e) + 1; | |
1774 | __del_from_nat_cache(nm_i, e); | |
1775 | } | |
1776 | } | |
1777 | BUG_ON(nm_i->nat_cnt); | |
1778 | write_unlock(&nm_i->nat_tree_lock); | |
1779 | ||
1780 | kfree(nm_i->nat_bitmap); | |
1781 | sbi->nm_info = NULL; | |
1782 | kfree(nm_i); | |
1783 | } | |
1784 | ||
6e6093a8 | 1785 | int __init create_node_manager_caches(void) |
e05df3b1 JK |
1786 | { |
1787 | nat_entry_slab = f2fs_kmem_cache_create("nat_entry", | |
1788 | sizeof(struct nat_entry), NULL); | |
1789 | if (!nat_entry_slab) | |
1790 | return -ENOMEM; | |
1791 | ||
1792 | free_nid_slab = f2fs_kmem_cache_create("free_nid", | |
1793 | sizeof(struct free_nid), NULL); | |
1794 | if (!free_nid_slab) { | |
1795 | kmem_cache_destroy(nat_entry_slab); | |
1796 | return -ENOMEM; | |
1797 | } | |
1798 | return 0; | |
1799 | } | |
1800 | ||
1801 | void destroy_node_manager_caches(void) | |
1802 | { | |
1803 | kmem_cache_destroy(free_nid_slab); | |
1804 | kmem_cache_destroy(nat_entry_slab); | |
1805 | } |