]>
Commit | Line | Data |
---|---|---|
0a8165d7 | 1 | /* |
e05df3b1 JK |
2 | * fs/f2fs/node.c |
3 | * | |
4 | * Copyright (c) 2012 Samsung Electronics Co., Ltd. | |
5 | * http://www.samsung.com/ | |
6 | * | |
7 | * This program is free software; you can redistribute it and/or modify | |
8 | * it under the terms of the GNU General Public License version 2 as | |
9 | * published by the Free Software Foundation. | |
10 | */ | |
11 | #include <linux/fs.h> | |
12 | #include <linux/f2fs_fs.h> | |
13 | #include <linux/mpage.h> | |
14 | #include <linux/backing-dev.h> | |
15 | #include <linux/blkdev.h> | |
16 | #include <linux/pagevec.h> | |
17 | #include <linux/swap.h> | |
18 | ||
19 | #include "f2fs.h" | |
20 | #include "node.h" | |
21 | #include "segment.h" | |
22 | ||
23 | static struct kmem_cache *nat_entry_slab; | |
24 | static struct kmem_cache *free_nid_slab; | |
25 | ||
26 | static void clear_node_page_dirty(struct page *page) | |
27 | { | |
28 | struct address_space *mapping = page->mapping; | |
29 | struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb); | |
30 | unsigned int long flags; | |
31 | ||
32 | if (PageDirty(page)) { | |
33 | spin_lock_irqsave(&mapping->tree_lock, flags); | |
34 | radix_tree_tag_clear(&mapping->page_tree, | |
35 | page_index(page), | |
36 | PAGECACHE_TAG_DIRTY); | |
37 | spin_unlock_irqrestore(&mapping->tree_lock, flags); | |
38 | ||
39 | clear_page_dirty_for_io(page); | |
40 | dec_page_count(sbi, F2FS_DIRTY_NODES); | |
41 | } | |
42 | ClearPageUptodate(page); | |
43 | } | |
44 | ||
45 | static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid) | |
46 | { | |
47 | pgoff_t index = current_nat_addr(sbi, nid); | |
48 | return get_meta_page(sbi, index); | |
49 | } | |
50 | ||
51 | static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid) | |
52 | { | |
53 | struct page *src_page; | |
54 | struct page *dst_page; | |
55 | pgoff_t src_off; | |
56 | pgoff_t dst_off; | |
57 | void *src_addr; | |
58 | void *dst_addr; | |
59 | struct f2fs_nm_info *nm_i = NM_I(sbi); | |
60 | ||
61 | src_off = current_nat_addr(sbi, nid); | |
62 | dst_off = next_nat_addr(sbi, src_off); | |
63 | ||
64 | /* get current nat block page with lock */ | |
65 | src_page = get_meta_page(sbi, src_off); | |
66 | ||
67 | /* Dirty src_page means that it is already the new target NAT page. */ | |
68 | if (PageDirty(src_page)) | |
69 | return src_page; | |
70 | ||
71 | dst_page = grab_meta_page(sbi, dst_off); | |
72 | ||
73 | src_addr = page_address(src_page); | |
74 | dst_addr = page_address(dst_page); | |
75 | memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE); | |
76 | set_page_dirty(dst_page); | |
77 | f2fs_put_page(src_page, 1); | |
78 | ||
79 | set_to_next_nat(nm_i, nid); | |
80 | ||
81 | return dst_page; | |
82 | } | |
83 | ||
0a8165d7 | 84 | /* |
e05df3b1 JK |
85 | * Readahead NAT pages |
86 | */ | |
87 | static void ra_nat_pages(struct f2fs_sb_info *sbi, int nid) | |
88 | { | |
89 | struct address_space *mapping = sbi->meta_inode->i_mapping; | |
90 | struct f2fs_nm_info *nm_i = NM_I(sbi); | |
91 | struct page *page; | |
92 | pgoff_t index; | |
93 | int i; | |
94 | ||
95 | for (i = 0; i < FREE_NID_PAGES; i++, nid += NAT_ENTRY_PER_BLOCK) { | |
96 | if (nid >= nm_i->max_nid) | |
97 | nid = 0; | |
98 | index = current_nat_addr(sbi, nid); | |
99 | ||
100 | page = grab_cache_page(mapping, index); | |
101 | if (!page) | |
102 | continue; | |
103 | if (f2fs_readpage(sbi, page, index, READ)) { | |
104 | f2fs_put_page(page, 1); | |
105 | continue; | |
106 | } | |
107 | page_cache_release(page); | |
108 | } | |
109 | } | |
110 | ||
111 | static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n) | |
112 | { | |
113 | return radix_tree_lookup(&nm_i->nat_root, n); | |
114 | } | |
115 | ||
116 | static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i, | |
117 | nid_t start, unsigned int nr, struct nat_entry **ep) | |
118 | { | |
119 | return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr); | |
120 | } | |
121 | ||
122 | static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e) | |
123 | { | |
124 | list_del(&e->list); | |
125 | radix_tree_delete(&nm_i->nat_root, nat_get_nid(e)); | |
126 | nm_i->nat_cnt--; | |
127 | kmem_cache_free(nat_entry_slab, e); | |
128 | } | |
129 | ||
130 | int is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid) | |
131 | { | |
132 | struct f2fs_nm_info *nm_i = NM_I(sbi); | |
133 | struct nat_entry *e; | |
134 | int is_cp = 1; | |
135 | ||
136 | read_lock(&nm_i->nat_tree_lock); | |
137 | e = __lookup_nat_cache(nm_i, nid); | |
138 | if (e && !e->checkpointed) | |
139 | is_cp = 0; | |
140 | read_unlock(&nm_i->nat_tree_lock); | |
141 | return is_cp; | |
142 | } | |
143 | ||
144 | static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid) | |
145 | { | |
146 | struct nat_entry *new; | |
147 | ||
148 | new = kmem_cache_alloc(nat_entry_slab, GFP_ATOMIC); | |
149 | if (!new) | |
150 | return NULL; | |
151 | if (radix_tree_insert(&nm_i->nat_root, nid, new)) { | |
152 | kmem_cache_free(nat_entry_slab, new); | |
153 | return NULL; | |
154 | } | |
155 | memset(new, 0, sizeof(struct nat_entry)); | |
156 | nat_set_nid(new, nid); | |
157 | list_add_tail(&new->list, &nm_i->nat_entries); | |
158 | nm_i->nat_cnt++; | |
159 | return new; | |
160 | } | |
161 | ||
162 | static void cache_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid, | |
163 | struct f2fs_nat_entry *ne) | |
164 | { | |
165 | struct nat_entry *e; | |
166 | retry: | |
167 | write_lock(&nm_i->nat_tree_lock); | |
168 | e = __lookup_nat_cache(nm_i, nid); | |
169 | if (!e) { | |
170 | e = grab_nat_entry(nm_i, nid); | |
171 | if (!e) { | |
172 | write_unlock(&nm_i->nat_tree_lock); | |
173 | goto retry; | |
174 | } | |
175 | nat_set_blkaddr(e, le32_to_cpu(ne->block_addr)); | |
176 | nat_set_ino(e, le32_to_cpu(ne->ino)); | |
177 | nat_set_version(e, ne->version); | |
178 | e->checkpointed = true; | |
179 | } | |
180 | write_unlock(&nm_i->nat_tree_lock); | |
181 | } | |
182 | ||
183 | static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni, | |
184 | block_t new_blkaddr) | |
185 | { | |
186 | struct f2fs_nm_info *nm_i = NM_I(sbi); | |
187 | struct nat_entry *e; | |
188 | retry: | |
189 | write_lock(&nm_i->nat_tree_lock); | |
190 | e = __lookup_nat_cache(nm_i, ni->nid); | |
191 | if (!e) { | |
192 | e = grab_nat_entry(nm_i, ni->nid); | |
193 | if (!e) { | |
194 | write_unlock(&nm_i->nat_tree_lock); | |
195 | goto retry; | |
196 | } | |
197 | e->ni = *ni; | |
198 | e->checkpointed = true; | |
199 | BUG_ON(ni->blk_addr == NEW_ADDR); | |
200 | } else if (new_blkaddr == NEW_ADDR) { | |
201 | /* | |
202 | * when nid is reallocated, | |
203 | * previous nat entry can be remained in nat cache. | |
204 | * So, reinitialize it with new information. | |
205 | */ | |
206 | e->ni = *ni; | |
207 | BUG_ON(ni->blk_addr != NULL_ADDR); | |
208 | } | |
209 | ||
210 | if (new_blkaddr == NEW_ADDR) | |
211 | e->checkpointed = false; | |
212 | ||
213 | /* sanity check */ | |
214 | BUG_ON(nat_get_blkaddr(e) != ni->blk_addr); | |
215 | BUG_ON(nat_get_blkaddr(e) == NULL_ADDR && | |
216 | new_blkaddr == NULL_ADDR); | |
217 | BUG_ON(nat_get_blkaddr(e) == NEW_ADDR && | |
218 | new_blkaddr == NEW_ADDR); | |
219 | BUG_ON(nat_get_blkaddr(e) != NEW_ADDR && | |
220 | nat_get_blkaddr(e) != NULL_ADDR && | |
221 | new_blkaddr == NEW_ADDR); | |
222 | ||
223 | /* increament version no as node is removed */ | |
224 | if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) { | |
225 | unsigned char version = nat_get_version(e); | |
226 | nat_set_version(e, inc_node_version(version)); | |
227 | } | |
228 | ||
229 | /* change address */ | |
230 | nat_set_blkaddr(e, new_blkaddr); | |
231 | __set_nat_cache_dirty(nm_i, e); | |
232 | write_unlock(&nm_i->nat_tree_lock); | |
233 | } | |
234 | ||
235 | static int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink) | |
236 | { | |
237 | struct f2fs_nm_info *nm_i = NM_I(sbi); | |
238 | ||
239 | if (nm_i->nat_cnt < 2 * NM_WOUT_THRESHOLD) | |
240 | return 0; | |
241 | ||
242 | write_lock(&nm_i->nat_tree_lock); | |
243 | while (nr_shrink && !list_empty(&nm_i->nat_entries)) { | |
244 | struct nat_entry *ne; | |
245 | ne = list_first_entry(&nm_i->nat_entries, | |
246 | struct nat_entry, list); | |
247 | __del_from_nat_cache(nm_i, ne); | |
248 | nr_shrink--; | |
249 | } | |
250 | write_unlock(&nm_i->nat_tree_lock); | |
251 | return nr_shrink; | |
252 | } | |
253 | ||
0a8165d7 | 254 | /* |
e05df3b1 JK |
255 | * This function returns always success |
256 | */ | |
257 | void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni) | |
258 | { | |
259 | struct f2fs_nm_info *nm_i = NM_I(sbi); | |
260 | struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); | |
261 | struct f2fs_summary_block *sum = curseg->sum_blk; | |
262 | nid_t start_nid = START_NID(nid); | |
263 | struct f2fs_nat_block *nat_blk; | |
264 | struct page *page = NULL; | |
265 | struct f2fs_nat_entry ne; | |
266 | struct nat_entry *e; | |
267 | int i; | |
268 | ||
be4124f8 | 269 | memset(&ne, 0, sizeof(struct f2fs_nat_entry)); |
e05df3b1 JK |
270 | ni->nid = nid; |
271 | ||
272 | /* Check nat cache */ | |
273 | read_lock(&nm_i->nat_tree_lock); | |
274 | e = __lookup_nat_cache(nm_i, nid); | |
275 | if (e) { | |
276 | ni->ino = nat_get_ino(e); | |
277 | ni->blk_addr = nat_get_blkaddr(e); | |
278 | ni->version = nat_get_version(e); | |
279 | } | |
280 | read_unlock(&nm_i->nat_tree_lock); | |
281 | if (e) | |
282 | return; | |
283 | ||
284 | /* Check current segment summary */ | |
285 | mutex_lock(&curseg->curseg_mutex); | |
286 | i = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 0); | |
287 | if (i >= 0) { | |
288 | ne = nat_in_journal(sum, i); | |
289 | node_info_from_raw_nat(ni, &ne); | |
290 | } | |
291 | mutex_unlock(&curseg->curseg_mutex); | |
292 | if (i >= 0) | |
293 | goto cache; | |
294 | ||
295 | /* Fill node_info from nat page */ | |
296 | page = get_current_nat_page(sbi, start_nid); | |
297 | nat_blk = (struct f2fs_nat_block *)page_address(page); | |
298 | ne = nat_blk->entries[nid - start_nid]; | |
299 | node_info_from_raw_nat(ni, &ne); | |
300 | f2fs_put_page(page, 1); | |
301 | cache: | |
302 | /* cache nat entry */ | |
303 | cache_nat_entry(NM_I(sbi), nid, &ne); | |
304 | } | |
305 | ||
0a8165d7 | 306 | /* |
e05df3b1 JK |
307 | * The maximum depth is four. |
308 | * Offset[0] will have raw inode offset. | |
309 | */ | |
310 | static int get_node_path(long block, int offset[4], unsigned int noffset[4]) | |
311 | { | |
312 | const long direct_index = ADDRS_PER_INODE; | |
313 | const long direct_blks = ADDRS_PER_BLOCK; | |
314 | const long dptrs_per_blk = NIDS_PER_BLOCK; | |
315 | const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK; | |
316 | const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK; | |
317 | int n = 0; | |
318 | int level = 0; | |
319 | ||
320 | noffset[0] = 0; | |
321 | ||
322 | if (block < direct_index) { | |
323 | offset[n++] = block; | |
324 | level = 0; | |
325 | goto got; | |
326 | } | |
327 | block -= direct_index; | |
328 | if (block < direct_blks) { | |
329 | offset[n++] = NODE_DIR1_BLOCK; | |
330 | noffset[n] = 1; | |
331 | offset[n++] = block; | |
332 | level = 1; | |
333 | goto got; | |
334 | } | |
335 | block -= direct_blks; | |
336 | if (block < direct_blks) { | |
337 | offset[n++] = NODE_DIR2_BLOCK; | |
338 | noffset[n] = 2; | |
339 | offset[n++] = block; | |
340 | level = 1; | |
341 | goto got; | |
342 | } | |
343 | block -= direct_blks; | |
344 | if (block < indirect_blks) { | |
345 | offset[n++] = NODE_IND1_BLOCK; | |
346 | noffset[n] = 3; | |
347 | offset[n++] = block / direct_blks; | |
348 | noffset[n] = 4 + offset[n - 1]; | |
349 | offset[n++] = block % direct_blks; | |
350 | level = 2; | |
351 | goto got; | |
352 | } | |
353 | block -= indirect_blks; | |
354 | if (block < indirect_blks) { | |
355 | offset[n++] = NODE_IND2_BLOCK; | |
356 | noffset[n] = 4 + dptrs_per_blk; | |
357 | offset[n++] = block / direct_blks; | |
358 | noffset[n] = 5 + dptrs_per_blk + offset[n - 1]; | |
359 | offset[n++] = block % direct_blks; | |
360 | level = 2; | |
361 | goto got; | |
362 | } | |
363 | block -= indirect_blks; | |
364 | if (block < dindirect_blks) { | |
365 | offset[n++] = NODE_DIND_BLOCK; | |
366 | noffset[n] = 5 + (dptrs_per_blk * 2); | |
367 | offset[n++] = block / indirect_blks; | |
368 | noffset[n] = 6 + (dptrs_per_blk * 2) + | |
369 | offset[n - 1] * (dptrs_per_blk + 1); | |
370 | offset[n++] = (block / direct_blks) % dptrs_per_blk; | |
371 | noffset[n] = 7 + (dptrs_per_blk * 2) + | |
372 | offset[n - 2] * (dptrs_per_blk + 1) + | |
373 | offset[n - 1]; | |
374 | offset[n++] = block % direct_blks; | |
375 | level = 3; | |
376 | goto got; | |
377 | } else { | |
378 | BUG(); | |
379 | } | |
380 | got: | |
381 | return level; | |
382 | } | |
383 | ||
384 | /* | |
385 | * Caller should call f2fs_put_dnode(dn). | |
386 | */ | |
387 | int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int ro) | |
388 | { | |
389 | struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb); | |
390 | struct page *npage[4]; | |
391 | struct page *parent; | |
392 | int offset[4]; | |
393 | unsigned int noffset[4]; | |
394 | nid_t nids[4]; | |
395 | int level, i; | |
396 | int err = 0; | |
397 | ||
398 | level = get_node_path(index, offset, noffset); | |
399 | ||
400 | nids[0] = dn->inode->i_ino; | |
401 | npage[0] = get_node_page(sbi, nids[0]); | |
402 | if (IS_ERR(npage[0])) | |
403 | return PTR_ERR(npage[0]); | |
404 | ||
405 | parent = npage[0]; | |
406 | nids[1] = get_nid(parent, offset[0], true); | |
407 | dn->inode_page = npage[0]; | |
408 | dn->inode_page_locked = true; | |
409 | ||
410 | /* get indirect or direct nodes */ | |
411 | for (i = 1; i <= level; i++) { | |
412 | bool done = false; | |
413 | ||
414 | if (!nids[i] && !ro) { | |
415 | mutex_lock_op(sbi, NODE_NEW); | |
416 | ||
417 | /* alloc new node */ | |
418 | if (!alloc_nid(sbi, &(nids[i]))) { | |
419 | mutex_unlock_op(sbi, NODE_NEW); | |
420 | err = -ENOSPC; | |
421 | goto release_pages; | |
422 | } | |
423 | ||
424 | dn->nid = nids[i]; | |
425 | npage[i] = new_node_page(dn, noffset[i]); | |
426 | if (IS_ERR(npage[i])) { | |
427 | alloc_nid_failed(sbi, nids[i]); | |
428 | mutex_unlock_op(sbi, NODE_NEW); | |
429 | err = PTR_ERR(npage[i]); | |
430 | goto release_pages; | |
431 | } | |
432 | ||
433 | set_nid(parent, offset[i - 1], nids[i], i == 1); | |
434 | alloc_nid_done(sbi, nids[i]); | |
435 | mutex_unlock_op(sbi, NODE_NEW); | |
436 | done = true; | |
437 | } else if (ro && i == level && level > 1) { | |
438 | npage[i] = get_node_page_ra(parent, offset[i - 1]); | |
439 | if (IS_ERR(npage[i])) { | |
440 | err = PTR_ERR(npage[i]); | |
441 | goto release_pages; | |
442 | } | |
443 | done = true; | |
444 | } | |
445 | if (i == 1) { | |
446 | dn->inode_page_locked = false; | |
447 | unlock_page(parent); | |
448 | } else { | |
449 | f2fs_put_page(parent, 1); | |
450 | } | |
451 | ||
452 | if (!done) { | |
453 | npage[i] = get_node_page(sbi, nids[i]); | |
454 | if (IS_ERR(npage[i])) { | |
455 | err = PTR_ERR(npage[i]); | |
456 | f2fs_put_page(npage[0], 0); | |
457 | goto release_out; | |
458 | } | |
459 | } | |
460 | if (i < level) { | |
461 | parent = npage[i]; | |
462 | nids[i + 1] = get_nid(parent, offset[i], false); | |
463 | } | |
464 | } | |
465 | dn->nid = nids[level]; | |
466 | dn->ofs_in_node = offset[level]; | |
467 | dn->node_page = npage[level]; | |
468 | dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node); | |
469 | return 0; | |
470 | ||
471 | release_pages: | |
472 | f2fs_put_page(parent, 1); | |
473 | if (i > 1) | |
474 | f2fs_put_page(npage[0], 0); | |
475 | release_out: | |
476 | dn->inode_page = NULL; | |
477 | dn->node_page = NULL; | |
478 | return err; | |
479 | } | |
480 | ||
481 | static void truncate_node(struct dnode_of_data *dn) | |
482 | { | |
483 | struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb); | |
484 | struct node_info ni; | |
485 | ||
486 | get_node_info(sbi, dn->nid, &ni); | |
487 | BUG_ON(ni.blk_addr == NULL_ADDR); | |
488 | ||
489 | if (ni.blk_addr != NULL_ADDR) | |
490 | invalidate_blocks(sbi, ni.blk_addr); | |
491 | ||
492 | /* Deallocate node address */ | |
493 | dec_valid_node_count(sbi, dn->inode, 1); | |
494 | set_node_addr(sbi, &ni, NULL_ADDR); | |
495 | ||
496 | if (dn->nid == dn->inode->i_ino) { | |
497 | remove_orphan_inode(sbi, dn->nid); | |
498 | dec_valid_inode_count(sbi); | |
499 | } else { | |
500 | sync_inode_page(dn); | |
501 | } | |
502 | ||
503 | clear_node_page_dirty(dn->node_page); | |
504 | F2FS_SET_SB_DIRT(sbi); | |
505 | ||
506 | f2fs_put_page(dn->node_page, 1); | |
507 | dn->node_page = NULL; | |
508 | } | |
509 | ||
510 | static int truncate_dnode(struct dnode_of_data *dn) | |
511 | { | |
512 | struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb); | |
513 | struct page *page; | |
514 | ||
515 | if (dn->nid == 0) | |
516 | return 1; | |
517 | ||
518 | /* get direct node */ | |
519 | page = get_node_page(sbi, dn->nid); | |
520 | if (IS_ERR(page) && PTR_ERR(page) == -ENOENT) | |
521 | return 1; | |
522 | else if (IS_ERR(page)) | |
523 | return PTR_ERR(page); | |
524 | ||
525 | /* Make dnode_of_data for parameter */ | |
526 | dn->node_page = page; | |
527 | dn->ofs_in_node = 0; | |
528 | truncate_data_blocks(dn); | |
529 | truncate_node(dn); | |
530 | return 1; | |
531 | } | |
532 | ||
533 | static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs, | |
534 | int ofs, int depth) | |
535 | { | |
536 | struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb); | |
537 | struct dnode_of_data rdn = *dn; | |
538 | struct page *page; | |
539 | struct f2fs_node *rn; | |
540 | nid_t child_nid; | |
541 | unsigned int child_nofs; | |
542 | int freed = 0; | |
543 | int i, ret; | |
544 | ||
545 | if (dn->nid == 0) | |
546 | return NIDS_PER_BLOCK + 1; | |
547 | ||
548 | page = get_node_page(sbi, dn->nid); | |
549 | if (IS_ERR(page)) | |
550 | return PTR_ERR(page); | |
551 | ||
552 | rn = (struct f2fs_node *)page_address(page); | |
553 | if (depth < 3) { | |
554 | for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) { | |
555 | child_nid = le32_to_cpu(rn->in.nid[i]); | |
556 | if (child_nid == 0) | |
557 | continue; | |
558 | rdn.nid = child_nid; | |
559 | ret = truncate_dnode(&rdn); | |
560 | if (ret < 0) | |
561 | goto out_err; | |
562 | set_nid(page, i, 0, false); | |
563 | } | |
564 | } else { | |
565 | child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1; | |
566 | for (i = ofs; i < NIDS_PER_BLOCK; i++) { | |
567 | child_nid = le32_to_cpu(rn->in.nid[i]); | |
568 | if (child_nid == 0) { | |
569 | child_nofs += NIDS_PER_BLOCK + 1; | |
570 | continue; | |
571 | } | |
572 | rdn.nid = child_nid; | |
573 | ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1); | |
574 | if (ret == (NIDS_PER_BLOCK + 1)) { | |
575 | set_nid(page, i, 0, false); | |
576 | child_nofs += ret; | |
577 | } else if (ret < 0 && ret != -ENOENT) { | |
578 | goto out_err; | |
579 | } | |
580 | } | |
581 | freed = child_nofs; | |
582 | } | |
583 | ||
584 | if (!ofs) { | |
585 | /* remove current indirect node */ | |
586 | dn->node_page = page; | |
587 | truncate_node(dn); | |
588 | freed++; | |
589 | } else { | |
590 | f2fs_put_page(page, 1); | |
591 | } | |
592 | return freed; | |
593 | ||
594 | out_err: | |
595 | f2fs_put_page(page, 1); | |
596 | return ret; | |
597 | } | |
598 | ||
599 | static int truncate_partial_nodes(struct dnode_of_data *dn, | |
600 | struct f2fs_inode *ri, int *offset, int depth) | |
601 | { | |
602 | struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb); | |
603 | struct page *pages[2]; | |
604 | nid_t nid[3]; | |
605 | nid_t child_nid; | |
606 | int err = 0; | |
607 | int i; | |
608 | int idx = depth - 2; | |
609 | ||
610 | nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]); | |
611 | if (!nid[0]) | |
612 | return 0; | |
613 | ||
614 | /* get indirect nodes in the path */ | |
615 | for (i = 0; i < depth - 1; i++) { | |
616 | /* refernece count'll be increased */ | |
617 | pages[i] = get_node_page(sbi, nid[i]); | |
618 | if (IS_ERR(pages[i])) { | |
619 | depth = i + 1; | |
620 | err = PTR_ERR(pages[i]); | |
621 | goto fail; | |
622 | } | |
623 | nid[i + 1] = get_nid(pages[i], offset[i + 1], false); | |
624 | } | |
625 | ||
626 | /* free direct nodes linked to a partial indirect node */ | |
627 | for (i = offset[depth - 1]; i < NIDS_PER_BLOCK; i++) { | |
628 | child_nid = get_nid(pages[idx], i, false); | |
629 | if (!child_nid) | |
630 | continue; | |
631 | dn->nid = child_nid; | |
632 | err = truncate_dnode(dn); | |
633 | if (err < 0) | |
634 | goto fail; | |
635 | set_nid(pages[idx], i, 0, false); | |
636 | } | |
637 | ||
638 | if (offset[depth - 1] == 0) { | |
639 | dn->node_page = pages[idx]; | |
640 | dn->nid = nid[idx]; | |
641 | truncate_node(dn); | |
642 | } else { | |
643 | f2fs_put_page(pages[idx], 1); | |
644 | } | |
645 | offset[idx]++; | |
646 | offset[depth - 1] = 0; | |
647 | fail: | |
648 | for (i = depth - 3; i >= 0; i--) | |
649 | f2fs_put_page(pages[i], 1); | |
650 | return err; | |
651 | } | |
652 | ||
0a8165d7 | 653 | /* |
e05df3b1 JK |
654 | * All the block addresses of data and nodes should be nullified. |
655 | */ | |
656 | int truncate_inode_blocks(struct inode *inode, pgoff_t from) | |
657 | { | |
658 | struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); | |
659 | int err = 0, cont = 1; | |
660 | int level, offset[4], noffset[4]; | |
661 | unsigned int nofs; | |
662 | struct f2fs_node *rn; | |
663 | struct dnode_of_data dn; | |
664 | struct page *page; | |
665 | ||
666 | level = get_node_path(from, offset, noffset); | |
667 | ||
668 | page = get_node_page(sbi, inode->i_ino); | |
669 | if (IS_ERR(page)) | |
670 | return PTR_ERR(page); | |
671 | ||
672 | set_new_dnode(&dn, inode, page, NULL, 0); | |
673 | unlock_page(page); | |
674 | ||
675 | rn = page_address(page); | |
676 | switch (level) { | |
677 | case 0: | |
678 | case 1: | |
679 | nofs = noffset[1]; | |
680 | break; | |
681 | case 2: | |
682 | nofs = noffset[1]; | |
683 | if (!offset[level - 1]) | |
684 | goto skip_partial; | |
685 | err = truncate_partial_nodes(&dn, &rn->i, offset, level); | |
686 | if (err < 0 && err != -ENOENT) | |
687 | goto fail; | |
688 | nofs += 1 + NIDS_PER_BLOCK; | |
689 | break; | |
690 | case 3: | |
691 | nofs = 5 + 2 * NIDS_PER_BLOCK; | |
692 | if (!offset[level - 1]) | |
693 | goto skip_partial; | |
694 | err = truncate_partial_nodes(&dn, &rn->i, offset, level); | |
695 | if (err < 0 && err != -ENOENT) | |
696 | goto fail; | |
697 | break; | |
698 | default: | |
699 | BUG(); | |
700 | } | |
701 | ||
702 | skip_partial: | |
703 | while (cont) { | |
704 | dn.nid = le32_to_cpu(rn->i.i_nid[offset[0] - NODE_DIR1_BLOCK]); | |
705 | switch (offset[0]) { | |
706 | case NODE_DIR1_BLOCK: | |
707 | case NODE_DIR2_BLOCK: | |
708 | err = truncate_dnode(&dn); | |
709 | break; | |
710 | ||
711 | case NODE_IND1_BLOCK: | |
712 | case NODE_IND2_BLOCK: | |
713 | err = truncate_nodes(&dn, nofs, offset[1], 2); | |
714 | break; | |
715 | ||
716 | case NODE_DIND_BLOCK: | |
717 | err = truncate_nodes(&dn, nofs, offset[1], 3); | |
718 | cont = 0; | |
719 | break; | |
720 | ||
721 | default: | |
722 | BUG(); | |
723 | } | |
724 | if (err < 0 && err != -ENOENT) | |
725 | goto fail; | |
726 | if (offset[1] == 0 && | |
727 | rn->i.i_nid[offset[0] - NODE_DIR1_BLOCK]) { | |
728 | lock_page(page); | |
729 | wait_on_page_writeback(page); | |
730 | rn->i.i_nid[offset[0] - NODE_DIR1_BLOCK] = 0; | |
731 | set_page_dirty(page); | |
732 | unlock_page(page); | |
733 | } | |
734 | offset[1] = 0; | |
735 | offset[0]++; | |
736 | nofs += err; | |
737 | } | |
738 | fail: | |
739 | f2fs_put_page(page, 0); | |
740 | return err > 0 ? 0 : err; | |
741 | } | |
742 | ||
743 | int remove_inode_page(struct inode *inode) | |
744 | { | |
745 | struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); | |
746 | struct page *page; | |
747 | nid_t ino = inode->i_ino; | |
748 | struct dnode_of_data dn; | |
749 | ||
750 | mutex_lock_op(sbi, NODE_TRUNC); | |
751 | page = get_node_page(sbi, ino); | |
752 | if (IS_ERR(page)) { | |
753 | mutex_unlock_op(sbi, NODE_TRUNC); | |
754 | return PTR_ERR(page); | |
755 | } | |
756 | ||
757 | if (F2FS_I(inode)->i_xattr_nid) { | |
758 | nid_t nid = F2FS_I(inode)->i_xattr_nid; | |
759 | struct page *npage = get_node_page(sbi, nid); | |
760 | ||
761 | if (IS_ERR(npage)) { | |
762 | mutex_unlock_op(sbi, NODE_TRUNC); | |
763 | return PTR_ERR(npage); | |
764 | } | |
765 | ||
766 | F2FS_I(inode)->i_xattr_nid = 0; | |
767 | set_new_dnode(&dn, inode, page, npage, nid); | |
768 | dn.inode_page_locked = 1; | |
769 | truncate_node(&dn); | |
770 | } | |
771 | if (inode->i_blocks == 1) { | |
772 | /* inernally call f2fs_put_page() */ | |
773 | set_new_dnode(&dn, inode, page, page, ino); | |
774 | truncate_node(&dn); | |
775 | } else if (inode->i_blocks == 0) { | |
776 | struct node_info ni; | |
777 | get_node_info(sbi, inode->i_ino, &ni); | |
778 | ||
779 | /* called after f2fs_new_inode() is failed */ | |
780 | BUG_ON(ni.blk_addr != NULL_ADDR); | |
781 | f2fs_put_page(page, 1); | |
782 | } else { | |
783 | BUG(); | |
784 | } | |
785 | mutex_unlock_op(sbi, NODE_TRUNC); | |
786 | return 0; | |
787 | } | |
788 | ||
789 | int new_inode_page(struct inode *inode, struct dentry *dentry) | |
790 | { | |
791 | struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); | |
792 | struct page *page; | |
793 | struct dnode_of_data dn; | |
794 | ||
795 | /* allocate inode page for new inode */ | |
796 | set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino); | |
797 | mutex_lock_op(sbi, NODE_NEW); | |
798 | page = new_node_page(&dn, 0); | |
799 | init_dent_inode(dentry, page); | |
800 | mutex_unlock_op(sbi, NODE_NEW); | |
801 | if (IS_ERR(page)) | |
802 | return PTR_ERR(page); | |
803 | f2fs_put_page(page, 1); | |
804 | return 0; | |
805 | } | |
806 | ||
807 | struct page *new_node_page(struct dnode_of_data *dn, unsigned int ofs) | |
808 | { | |
809 | struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb); | |
810 | struct address_space *mapping = sbi->node_inode->i_mapping; | |
811 | struct node_info old_ni, new_ni; | |
812 | struct page *page; | |
813 | int err; | |
814 | ||
815 | if (is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)) | |
816 | return ERR_PTR(-EPERM); | |
817 | ||
818 | page = grab_cache_page(mapping, dn->nid); | |
819 | if (!page) | |
820 | return ERR_PTR(-ENOMEM); | |
821 | ||
822 | get_node_info(sbi, dn->nid, &old_ni); | |
823 | ||
824 | SetPageUptodate(page); | |
825 | fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true); | |
826 | ||
827 | /* Reinitialize old_ni with new node page */ | |
828 | BUG_ON(old_ni.blk_addr != NULL_ADDR); | |
829 | new_ni = old_ni; | |
830 | new_ni.ino = dn->inode->i_ino; | |
831 | ||
832 | if (!inc_valid_node_count(sbi, dn->inode, 1)) { | |
833 | err = -ENOSPC; | |
834 | goto fail; | |
835 | } | |
836 | set_node_addr(sbi, &new_ni, NEW_ADDR); | |
398b1ac5 | 837 | set_cold_node(dn->inode, page); |
e05df3b1 JK |
838 | |
839 | dn->node_page = page; | |
840 | sync_inode_page(dn); | |
841 | set_page_dirty(page); | |
e05df3b1 JK |
842 | if (ofs == 0) |
843 | inc_valid_inode_count(sbi); | |
844 | ||
845 | return page; | |
846 | ||
847 | fail: | |
848 | f2fs_put_page(page, 1); | |
849 | return ERR_PTR(err); | |
850 | } | |
851 | ||
852 | static int read_node_page(struct page *page, int type) | |
853 | { | |
854 | struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb); | |
855 | struct node_info ni; | |
856 | ||
857 | get_node_info(sbi, page->index, &ni); | |
858 | ||
859 | if (ni.blk_addr == NULL_ADDR) | |
860 | return -ENOENT; | |
861 | return f2fs_readpage(sbi, page, ni.blk_addr, type); | |
862 | } | |
863 | ||
0a8165d7 | 864 | /* |
e05df3b1 JK |
865 | * Readahead a node page |
866 | */ | |
867 | void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid) | |
868 | { | |
869 | struct address_space *mapping = sbi->node_inode->i_mapping; | |
870 | struct page *apage; | |
871 | ||
872 | apage = find_get_page(mapping, nid); | |
873 | if (apage && PageUptodate(apage)) | |
874 | goto release_out; | |
875 | f2fs_put_page(apage, 0); | |
876 | ||
877 | apage = grab_cache_page(mapping, nid); | |
878 | if (!apage) | |
879 | return; | |
880 | ||
881 | if (read_node_page(apage, READA)) | |
882 | goto unlock_out; | |
883 | ||
884 | page_cache_release(apage); | |
885 | return; | |
886 | ||
887 | unlock_out: | |
888 | unlock_page(apage); | |
889 | release_out: | |
890 | page_cache_release(apage); | |
891 | } | |
892 | ||
893 | struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid) | |
894 | { | |
895 | int err; | |
896 | struct page *page; | |
897 | struct address_space *mapping = sbi->node_inode->i_mapping; | |
898 | ||
899 | page = grab_cache_page(mapping, nid); | |
900 | if (!page) | |
901 | return ERR_PTR(-ENOMEM); | |
902 | ||
903 | err = read_node_page(page, READ_SYNC); | |
904 | if (err) { | |
905 | f2fs_put_page(page, 1); | |
906 | return ERR_PTR(err); | |
907 | } | |
908 | ||
909 | BUG_ON(nid != nid_of_node(page)); | |
910 | mark_page_accessed(page); | |
911 | return page; | |
912 | } | |
913 | ||
0a8165d7 | 914 | /* |
e05df3b1 JK |
915 | * Return a locked page for the desired node page. |
916 | * And, readahead MAX_RA_NODE number of node pages. | |
917 | */ | |
918 | struct page *get_node_page_ra(struct page *parent, int start) | |
919 | { | |
920 | struct f2fs_sb_info *sbi = F2FS_SB(parent->mapping->host->i_sb); | |
921 | struct address_space *mapping = sbi->node_inode->i_mapping; | |
922 | int i, end; | |
923 | int err = 0; | |
924 | nid_t nid; | |
925 | struct page *page; | |
926 | ||
927 | /* First, try getting the desired direct node. */ | |
928 | nid = get_nid(parent, start, false); | |
929 | if (!nid) | |
930 | return ERR_PTR(-ENOENT); | |
931 | ||
932 | page = find_get_page(mapping, nid); | |
933 | if (page && PageUptodate(page)) | |
934 | goto page_hit; | |
935 | f2fs_put_page(page, 0); | |
936 | ||
937 | repeat: | |
938 | page = grab_cache_page(mapping, nid); | |
939 | if (!page) | |
940 | return ERR_PTR(-ENOMEM); | |
941 | ||
942 | err = read_node_page(page, READA); | |
943 | if (err) { | |
944 | f2fs_put_page(page, 1); | |
945 | return ERR_PTR(err); | |
946 | } | |
947 | ||
948 | /* Then, try readahead for siblings of the desired node */ | |
949 | end = start + MAX_RA_NODE; | |
950 | end = min(end, NIDS_PER_BLOCK); | |
951 | for (i = start + 1; i < end; i++) { | |
952 | nid = get_nid(parent, i, false); | |
953 | if (!nid) | |
954 | continue; | |
955 | ra_node_page(sbi, nid); | |
956 | } | |
957 | ||
958 | page_hit: | |
959 | lock_page(page); | |
960 | if (PageError(page)) { | |
961 | f2fs_put_page(page, 1); | |
962 | return ERR_PTR(-EIO); | |
963 | } | |
964 | ||
965 | /* Has the page been truncated? */ | |
966 | if (page->mapping != mapping) { | |
967 | f2fs_put_page(page, 1); | |
968 | goto repeat; | |
969 | } | |
970 | return page; | |
971 | } | |
972 | ||
973 | void sync_inode_page(struct dnode_of_data *dn) | |
974 | { | |
975 | if (IS_INODE(dn->node_page) || dn->inode_page == dn->node_page) { | |
976 | update_inode(dn->inode, dn->node_page); | |
977 | } else if (dn->inode_page) { | |
978 | if (!dn->inode_page_locked) | |
979 | lock_page(dn->inode_page); | |
980 | update_inode(dn->inode, dn->inode_page); | |
981 | if (!dn->inode_page_locked) | |
982 | unlock_page(dn->inode_page); | |
983 | } else { | |
984 | f2fs_write_inode(dn->inode, NULL); | |
985 | } | |
986 | } | |
987 | ||
988 | int sync_node_pages(struct f2fs_sb_info *sbi, nid_t ino, | |
989 | struct writeback_control *wbc) | |
990 | { | |
991 | struct address_space *mapping = sbi->node_inode->i_mapping; | |
992 | pgoff_t index, end; | |
993 | struct pagevec pvec; | |
994 | int step = ino ? 2 : 0; | |
995 | int nwritten = 0, wrote = 0; | |
996 | ||
997 | pagevec_init(&pvec, 0); | |
998 | ||
999 | next_step: | |
1000 | index = 0; | |
1001 | end = LONG_MAX; | |
1002 | ||
1003 | while (index <= end) { | |
1004 | int i, nr_pages; | |
1005 | nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, | |
1006 | PAGECACHE_TAG_DIRTY, | |
1007 | min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); | |
1008 | if (nr_pages == 0) | |
1009 | break; | |
1010 | ||
1011 | for (i = 0; i < nr_pages; i++) { | |
1012 | struct page *page = pvec.pages[i]; | |
1013 | ||
1014 | /* | |
1015 | * flushing sequence with step: | |
1016 | * 0. indirect nodes | |
1017 | * 1. dentry dnodes | |
1018 | * 2. file dnodes | |
1019 | */ | |
1020 | if (step == 0 && IS_DNODE(page)) | |
1021 | continue; | |
1022 | if (step == 1 && (!IS_DNODE(page) || | |
1023 | is_cold_node(page))) | |
1024 | continue; | |
1025 | if (step == 2 && (!IS_DNODE(page) || | |
1026 | !is_cold_node(page))) | |
1027 | continue; | |
1028 | ||
1029 | /* | |
1030 | * If an fsync mode, | |
1031 | * we should not skip writing node pages. | |
1032 | */ | |
1033 | if (ino && ino_of_node(page) == ino) | |
1034 | lock_page(page); | |
1035 | else if (!trylock_page(page)) | |
1036 | continue; | |
1037 | ||
1038 | if (unlikely(page->mapping != mapping)) { | |
1039 | continue_unlock: | |
1040 | unlock_page(page); | |
1041 | continue; | |
1042 | } | |
1043 | if (ino && ino_of_node(page) != ino) | |
1044 | goto continue_unlock; | |
1045 | ||
1046 | if (!PageDirty(page)) { | |
1047 | /* someone wrote it for us */ | |
1048 | goto continue_unlock; | |
1049 | } | |
1050 | ||
1051 | if (!clear_page_dirty_for_io(page)) | |
1052 | goto continue_unlock; | |
1053 | ||
1054 | /* called by fsync() */ | |
1055 | if (ino && IS_DNODE(page)) { | |
1056 | int mark = !is_checkpointed_node(sbi, ino); | |
1057 | set_fsync_mark(page, 1); | |
1058 | if (IS_INODE(page)) | |
1059 | set_dentry_mark(page, mark); | |
1060 | nwritten++; | |
1061 | } else { | |
1062 | set_fsync_mark(page, 0); | |
1063 | set_dentry_mark(page, 0); | |
1064 | } | |
1065 | mapping->a_ops->writepage(page, wbc); | |
1066 | wrote++; | |
1067 | ||
1068 | if (--wbc->nr_to_write == 0) | |
1069 | break; | |
1070 | } | |
1071 | pagevec_release(&pvec); | |
1072 | cond_resched(); | |
1073 | ||
1074 | if (wbc->nr_to_write == 0) { | |
1075 | step = 2; | |
1076 | break; | |
1077 | } | |
1078 | } | |
1079 | ||
1080 | if (step < 2) { | |
1081 | step++; | |
1082 | goto next_step; | |
1083 | } | |
1084 | ||
1085 | if (wrote) | |
1086 | f2fs_submit_bio(sbi, NODE, wbc->sync_mode == WB_SYNC_ALL); | |
1087 | ||
1088 | return nwritten; | |
1089 | } | |
1090 | ||
1091 | static int f2fs_write_node_page(struct page *page, | |
1092 | struct writeback_control *wbc) | |
1093 | { | |
1094 | struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb); | |
1095 | nid_t nid; | |
1096 | unsigned int nofs; | |
1097 | block_t new_addr; | |
1098 | struct node_info ni; | |
1099 | ||
1100 | if (wbc->for_reclaim) { | |
1101 | dec_page_count(sbi, F2FS_DIRTY_NODES); | |
1102 | wbc->pages_skipped++; | |
1103 | set_page_dirty(page); | |
1104 | return AOP_WRITEPAGE_ACTIVATE; | |
1105 | } | |
1106 | ||
1107 | wait_on_page_writeback(page); | |
1108 | ||
1109 | mutex_lock_op(sbi, NODE_WRITE); | |
1110 | ||
1111 | /* get old block addr of this node page */ | |
1112 | nid = nid_of_node(page); | |
1113 | nofs = ofs_of_node(page); | |
1114 | BUG_ON(page->index != nid); | |
1115 | ||
1116 | get_node_info(sbi, nid, &ni); | |
1117 | ||
1118 | /* This page is already truncated */ | |
1119 | if (ni.blk_addr == NULL_ADDR) | |
1120 | return 0; | |
1121 | ||
1122 | set_page_writeback(page); | |
1123 | ||
1124 | /* insert node offset */ | |
1125 | write_node_page(sbi, page, nid, ni.blk_addr, &new_addr); | |
1126 | set_node_addr(sbi, &ni, new_addr); | |
1127 | dec_page_count(sbi, F2FS_DIRTY_NODES); | |
1128 | ||
1129 | mutex_unlock_op(sbi, NODE_WRITE); | |
1130 | unlock_page(page); | |
1131 | return 0; | |
1132 | } | |
1133 | ||
1134 | static int f2fs_write_node_pages(struct address_space *mapping, | |
1135 | struct writeback_control *wbc) | |
1136 | { | |
1137 | struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb); | |
1138 | struct block_device *bdev = sbi->sb->s_bdev; | |
1139 | long nr_to_write = wbc->nr_to_write; | |
1140 | ||
1141 | if (wbc->for_kupdate) | |
1142 | return 0; | |
1143 | ||
1144 | if (get_pages(sbi, F2FS_DIRTY_NODES) == 0) | |
1145 | return 0; | |
1146 | ||
1147 | if (try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK)) { | |
1148 | write_checkpoint(sbi, false, false); | |
1149 | return 0; | |
1150 | } | |
1151 | ||
1152 | /* if mounting is failed, skip writing node pages */ | |
1153 | wbc->nr_to_write = bio_get_nr_vecs(bdev); | |
1154 | sync_node_pages(sbi, 0, wbc); | |
1155 | wbc->nr_to_write = nr_to_write - | |
1156 | (bio_get_nr_vecs(bdev) - wbc->nr_to_write); | |
1157 | return 0; | |
1158 | } | |
1159 | ||
1160 | static int f2fs_set_node_page_dirty(struct page *page) | |
1161 | { | |
1162 | struct address_space *mapping = page->mapping; | |
1163 | struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb); | |
1164 | ||
1165 | SetPageUptodate(page); | |
1166 | if (!PageDirty(page)) { | |
1167 | __set_page_dirty_nobuffers(page); | |
1168 | inc_page_count(sbi, F2FS_DIRTY_NODES); | |
1169 | SetPagePrivate(page); | |
1170 | return 1; | |
1171 | } | |
1172 | return 0; | |
1173 | } | |
1174 | ||
1175 | static void f2fs_invalidate_node_page(struct page *page, unsigned long offset) | |
1176 | { | |
1177 | struct inode *inode = page->mapping->host; | |
1178 | struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); | |
1179 | if (PageDirty(page)) | |
1180 | dec_page_count(sbi, F2FS_DIRTY_NODES); | |
1181 | ClearPagePrivate(page); | |
1182 | } | |
1183 | ||
1184 | static int f2fs_release_node_page(struct page *page, gfp_t wait) | |
1185 | { | |
1186 | ClearPagePrivate(page); | |
1187 | return 0; | |
1188 | } | |
1189 | ||
0a8165d7 | 1190 | /* |
e05df3b1 JK |
1191 | * Structure of the f2fs node operations |
1192 | */ | |
1193 | const struct address_space_operations f2fs_node_aops = { | |
1194 | .writepage = f2fs_write_node_page, | |
1195 | .writepages = f2fs_write_node_pages, | |
1196 | .set_page_dirty = f2fs_set_node_page_dirty, | |
1197 | .invalidatepage = f2fs_invalidate_node_page, | |
1198 | .releasepage = f2fs_release_node_page, | |
1199 | }; | |
1200 | ||
1201 | static struct free_nid *__lookup_free_nid_list(nid_t n, struct list_head *head) | |
1202 | { | |
1203 | struct list_head *this; | |
1204 | struct free_nid *i = NULL; | |
1205 | list_for_each(this, head) { | |
1206 | i = list_entry(this, struct free_nid, list); | |
1207 | if (i->nid == n) | |
1208 | break; | |
1209 | i = NULL; | |
1210 | } | |
1211 | return i; | |
1212 | } | |
1213 | ||
1214 | static void __del_from_free_nid_list(struct free_nid *i) | |
1215 | { | |
1216 | list_del(&i->list); | |
1217 | kmem_cache_free(free_nid_slab, i); | |
1218 | } | |
1219 | ||
1220 | static int add_free_nid(struct f2fs_nm_info *nm_i, nid_t nid) | |
1221 | { | |
1222 | struct free_nid *i; | |
1223 | ||
1224 | if (nm_i->fcnt > 2 * MAX_FREE_NIDS) | |
1225 | return 0; | |
1226 | retry: | |
1227 | i = kmem_cache_alloc(free_nid_slab, GFP_NOFS); | |
1228 | if (!i) { | |
1229 | cond_resched(); | |
1230 | goto retry; | |
1231 | } | |
1232 | i->nid = nid; | |
1233 | i->state = NID_NEW; | |
1234 | ||
1235 | spin_lock(&nm_i->free_nid_list_lock); | |
1236 | if (__lookup_free_nid_list(nid, &nm_i->free_nid_list)) { | |
1237 | spin_unlock(&nm_i->free_nid_list_lock); | |
1238 | kmem_cache_free(free_nid_slab, i); | |
1239 | return 0; | |
1240 | } | |
1241 | list_add_tail(&i->list, &nm_i->free_nid_list); | |
1242 | nm_i->fcnt++; | |
1243 | spin_unlock(&nm_i->free_nid_list_lock); | |
1244 | return 1; | |
1245 | } | |
1246 | ||
1247 | static void remove_free_nid(struct f2fs_nm_info *nm_i, nid_t nid) | |
1248 | { | |
1249 | struct free_nid *i; | |
1250 | spin_lock(&nm_i->free_nid_list_lock); | |
1251 | i = __lookup_free_nid_list(nid, &nm_i->free_nid_list); | |
1252 | if (i && i->state == NID_NEW) { | |
1253 | __del_from_free_nid_list(i); | |
1254 | nm_i->fcnt--; | |
1255 | } | |
1256 | spin_unlock(&nm_i->free_nid_list_lock); | |
1257 | } | |
1258 | ||
1259 | static int scan_nat_page(struct f2fs_nm_info *nm_i, | |
1260 | struct page *nat_page, nid_t start_nid) | |
1261 | { | |
1262 | struct f2fs_nat_block *nat_blk = page_address(nat_page); | |
1263 | block_t blk_addr; | |
1264 | int fcnt = 0; | |
1265 | int i; | |
1266 | ||
1267 | /* 0 nid should not be used */ | |
1268 | if (start_nid == 0) | |
1269 | ++start_nid; | |
1270 | ||
1271 | i = start_nid % NAT_ENTRY_PER_BLOCK; | |
1272 | ||
1273 | for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) { | |
1274 | blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr); | |
1275 | BUG_ON(blk_addr == NEW_ADDR); | |
1276 | if (blk_addr == NULL_ADDR) | |
1277 | fcnt += add_free_nid(nm_i, start_nid); | |
1278 | } | |
1279 | return fcnt; | |
1280 | } | |
1281 | ||
1282 | static void build_free_nids(struct f2fs_sb_info *sbi) | |
1283 | { | |
1284 | struct free_nid *fnid, *next_fnid; | |
1285 | struct f2fs_nm_info *nm_i = NM_I(sbi); | |
1286 | struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); | |
1287 | struct f2fs_summary_block *sum = curseg->sum_blk; | |
1288 | nid_t nid = 0; | |
1289 | bool is_cycled = false; | |
1290 | int fcnt = 0; | |
1291 | int i; | |
1292 | ||
1293 | nid = nm_i->next_scan_nid; | |
1294 | nm_i->init_scan_nid = nid; | |
1295 | ||
1296 | ra_nat_pages(sbi, nid); | |
1297 | ||
1298 | while (1) { | |
1299 | struct page *page = get_current_nat_page(sbi, nid); | |
1300 | ||
1301 | fcnt += scan_nat_page(nm_i, page, nid); | |
1302 | f2fs_put_page(page, 1); | |
1303 | ||
1304 | nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK)); | |
1305 | ||
1306 | if (nid >= nm_i->max_nid) { | |
1307 | nid = 0; | |
1308 | is_cycled = true; | |
1309 | } | |
1310 | if (fcnt > MAX_FREE_NIDS) | |
1311 | break; | |
1312 | if (is_cycled && nm_i->init_scan_nid <= nid) | |
1313 | break; | |
1314 | } | |
1315 | ||
1316 | nm_i->next_scan_nid = nid; | |
1317 | ||
1318 | /* find free nids from current sum_pages */ | |
1319 | mutex_lock(&curseg->curseg_mutex); | |
1320 | for (i = 0; i < nats_in_cursum(sum); i++) { | |
1321 | block_t addr = le32_to_cpu(nat_in_journal(sum, i).block_addr); | |
1322 | nid = le32_to_cpu(nid_in_journal(sum, i)); | |
1323 | if (addr == NULL_ADDR) | |
1324 | add_free_nid(nm_i, nid); | |
1325 | else | |
1326 | remove_free_nid(nm_i, nid); | |
1327 | } | |
1328 | mutex_unlock(&curseg->curseg_mutex); | |
1329 | ||
1330 | /* remove the free nids from current allocated nids */ | |
1331 | list_for_each_entry_safe(fnid, next_fnid, &nm_i->free_nid_list, list) { | |
1332 | struct nat_entry *ne; | |
1333 | ||
1334 | read_lock(&nm_i->nat_tree_lock); | |
1335 | ne = __lookup_nat_cache(nm_i, fnid->nid); | |
1336 | if (ne && nat_get_blkaddr(ne) != NULL_ADDR) | |
1337 | remove_free_nid(nm_i, fnid->nid); | |
1338 | read_unlock(&nm_i->nat_tree_lock); | |
1339 | } | |
1340 | } | |
1341 | ||
1342 | /* | |
1343 | * If this function returns success, caller can obtain a new nid | |
1344 | * from second parameter of this function. | |
1345 | * The returned nid could be used ino as well as nid when inode is created. | |
1346 | */ | |
1347 | bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid) | |
1348 | { | |
1349 | struct f2fs_nm_info *nm_i = NM_I(sbi); | |
1350 | struct free_nid *i = NULL; | |
1351 | struct list_head *this; | |
1352 | retry: | |
1353 | mutex_lock(&nm_i->build_lock); | |
1354 | if (!nm_i->fcnt) { | |
1355 | /* scan NAT in order to build free nid list */ | |
1356 | build_free_nids(sbi); | |
1357 | if (!nm_i->fcnt) { | |
1358 | mutex_unlock(&nm_i->build_lock); | |
1359 | return false; | |
1360 | } | |
1361 | } | |
1362 | mutex_unlock(&nm_i->build_lock); | |
1363 | ||
1364 | /* | |
1365 | * We check fcnt again since previous check is racy as | |
1366 | * we didn't hold free_nid_list_lock. So other thread | |
1367 | * could consume all of free nids. | |
1368 | */ | |
1369 | spin_lock(&nm_i->free_nid_list_lock); | |
1370 | if (!nm_i->fcnt) { | |
1371 | spin_unlock(&nm_i->free_nid_list_lock); | |
1372 | goto retry; | |
1373 | } | |
1374 | ||
1375 | BUG_ON(list_empty(&nm_i->free_nid_list)); | |
1376 | list_for_each(this, &nm_i->free_nid_list) { | |
1377 | i = list_entry(this, struct free_nid, list); | |
1378 | if (i->state == NID_NEW) | |
1379 | break; | |
1380 | } | |
1381 | ||
1382 | BUG_ON(i->state != NID_NEW); | |
1383 | *nid = i->nid; | |
1384 | i->state = NID_ALLOC; | |
1385 | nm_i->fcnt--; | |
1386 | spin_unlock(&nm_i->free_nid_list_lock); | |
1387 | return true; | |
1388 | } | |
1389 | ||
0a8165d7 | 1390 | /* |
e05df3b1 JK |
1391 | * alloc_nid() should be called prior to this function. |
1392 | */ | |
1393 | void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid) | |
1394 | { | |
1395 | struct f2fs_nm_info *nm_i = NM_I(sbi); | |
1396 | struct free_nid *i; | |
1397 | ||
1398 | spin_lock(&nm_i->free_nid_list_lock); | |
1399 | i = __lookup_free_nid_list(nid, &nm_i->free_nid_list); | |
1400 | if (i) { | |
1401 | BUG_ON(i->state != NID_ALLOC); | |
1402 | __del_from_free_nid_list(i); | |
1403 | } | |
1404 | spin_unlock(&nm_i->free_nid_list_lock); | |
1405 | } | |
1406 | ||
0a8165d7 | 1407 | /* |
e05df3b1 JK |
1408 | * alloc_nid() should be called prior to this function. |
1409 | */ | |
1410 | void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid) | |
1411 | { | |
1412 | alloc_nid_done(sbi, nid); | |
1413 | add_free_nid(NM_I(sbi), nid); | |
1414 | } | |
1415 | ||
1416 | void recover_node_page(struct f2fs_sb_info *sbi, struct page *page, | |
1417 | struct f2fs_summary *sum, struct node_info *ni, | |
1418 | block_t new_blkaddr) | |
1419 | { | |
1420 | rewrite_node_page(sbi, page, sum, ni->blk_addr, new_blkaddr); | |
1421 | set_node_addr(sbi, ni, new_blkaddr); | |
1422 | clear_node_page_dirty(page); | |
1423 | } | |
1424 | ||
1425 | int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page) | |
1426 | { | |
1427 | struct address_space *mapping = sbi->node_inode->i_mapping; | |
1428 | struct f2fs_node *src, *dst; | |
1429 | nid_t ino = ino_of_node(page); | |
1430 | struct node_info old_ni, new_ni; | |
1431 | struct page *ipage; | |
1432 | ||
1433 | ipage = grab_cache_page(mapping, ino); | |
1434 | if (!ipage) | |
1435 | return -ENOMEM; | |
1436 | ||
1437 | /* Should not use this inode from free nid list */ | |
1438 | remove_free_nid(NM_I(sbi), ino); | |
1439 | ||
1440 | get_node_info(sbi, ino, &old_ni); | |
1441 | SetPageUptodate(ipage); | |
1442 | fill_node_footer(ipage, ino, ino, 0, true); | |
1443 | ||
1444 | src = (struct f2fs_node *)page_address(page); | |
1445 | dst = (struct f2fs_node *)page_address(ipage); | |
1446 | ||
1447 | memcpy(dst, src, (unsigned long)&src->i.i_ext - (unsigned long)&src->i); | |
1448 | dst->i.i_size = 0; | |
25ca923b JK |
1449 | dst->i.i_blocks = cpu_to_le64(1); |
1450 | dst->i.i_links = cpu_to_le32(1); | |
e05df3b1 JK |
1451 | dst->i.i_xattr_nid = 0; |
1452 | ||
1453 | new_ni = old_ni; | |
1454 | new_ni.ino = ino; | |
1455 | ||
1456 | set_node_addr(sbi, &new_ni, NEW_ADDR); | |
1457 | inc_valid_inode_count(sbi); | |
1458 | ||
1459 | f2fs_put_page(ipage, 1); | |
1460 | return 0; | |
1461 | } | |
1462 | ||
1463 | int restore_node_summary(struct f2fs_sb_info *sbi, | |
1464 | unsigned int segno, struct f2fs_summary_block *sum) | |
1465 | { | |
1466 | struct f2fs_node *rn; | |
1467 | struct f2fs_summary *sum_entry; | |
1468 | struct page *page; | |
1469 | block_t addr; | |
1470 | int i, last_offset; | |
1471 | ||
1472 | /* alloc temporal page for read node */ | |
1473 | page = alloc_page(GFP_NOFS | __GFP_ZERO); | |
1474 | if (IS_ERR(page)) | |
1475 | return PTR_ERR(page); | |
1476 | lock_page(page); | |
1477 | ||
1478 | /* scan the node segment */ | |
1479 | last_offset = sbi->blocks_per_seg; | |
1480 | addr = START_BLOCK(sbi, segno); | |
1481 | sum_entry = &sum->entries[0]; | |
1482 | ||
1483 | for (i = 0; i < last_offset; i++, sum_entry++) { | |
1484 | if (f2fs_readpage(sbi, page, addr, READ_SYNC)) | |
1485 | goto out; | |
1486 | ||
1487 | rn = (struct f2fs_node *)page_address(page); | |
1488 | sum_entry->nid = rn->footer.nid; | |
1489 | sum_entry->version = 0; | |
1490 | sum_entry->ofs_in_node = 0; | |
1491 | addr++; | |
1492 | ||
1493 | /* | |
1494 | * In order to read next node page, | |
1495 | * we must clear PageUptodate flag. | |
1496 | */ | |
1497 | ClearPageUptodate(page); | |
1498 | } | |
1499 | out: | |
1500 | unlock_page(page); | |
1501 | __free_pages(page, 0); | |
1502 | return 0; | |
1503 | } | |
1504 | ||
1505 | static bool flush_nats_in_journal(struct f2fs_sb_info *sbi) | |
1506 | { | |
1507 | struct f2fs_nm_info *nm_i = NM_I(sbi); | |
1508 | struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); | |
1509 | struct f2fs_summary_block *sum = curseg->sum_blk; | |
1510 | int i; | |
1511 | ||
1512 | mutex_lock(&curseg->curseg_mutex); | |
1513 | ||
1514 | if (nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES) { | |
1515 | mutex_unlock(&curseg->curseg_mutex); | |
1516 | return false; | |
1517 | } | |
1518 | ||
1519 | for (i = 0; i < nats_in_cursum(sum); i++) { | |
1520 | struct nat_entry *ne; | |
1521 | struct f2fs_nat_entry raw_ne; | |
1522 | nid_t nid = le32_to_cpu(nid_in_journal(sum, i)); | |
1523 | ||
1524 | raw_ne = nat_in_journal(sum, i); | |
1525 | retry: | |
1526 | write_lock(&nm_i->nat_tree_lock); | |
1527 | ne = __lookup_nat_cache(nm_i, nid); | |
1528 | if (ne) { | |
1529 | __set_nat_cache_dirty(nm_i, ne); | |
1530 | write_unlock(&nm_i->nat_tree_lock); | |
1531 | continue; | |
1532 | } | |
1533 | ne = grab_nat_entry(nm_i, nid); | |
1534 | if (!ne) { | |
1535 | write_unlock(&nm_i->nat_tree_lock); | |
1536 | goto retry; | |
1537 | } | |
1538 | nat_set_blkaddr(ne, le32_to_cpu(raw_ne.block_addr)); | |
1539 | nat_set_ino(ne, le32_to_cpu(raw_ne.ino)); | |
1540 | nat_set_version(ne, raw_ne.version); | |
1541 | __set_nat_cache_dirty(nm_i, ne); | |
1542 | write_unlock(&nm_i->nat_tree_lock); | |
1543 | } | |
1544 | update_nats_in_cursum(sum, -i); | |
1545 | mutex_unlock(&curseg->curseg_mutex); | |
1546 | return true; | |
1547 | } | |
1548 | ||
0a8165d7 | 1549 | /* |
e05df3b1 JK |
1550 | * This function is called during the checkpointing process. |
1551 | */ | |
1552 | void flush_nat_entries(struct f2fs_sb_info *sbi) | |
1553 | { | |
1554 | struct f2fs_nm_info *nm_i = NM_I(sbi); | |
1555 | struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); | |
1556 | struct f2fs_summary_block *sum = curseg->sum_blk; | |
1557 | struct list_head *cur, *n; | |
1558 | struct page *page = NULL; | |
1559 | struct f2fs_nat_block *nat_blk = NULL; | |
1560 | nid_t start_nid = 0, end_nid = 0; | |
1561 | bool flushed; | |
1562 | ||
1563 | flushed = flush_nats_in_journal(sbi); | |
1564 | ||
1565 | if (!flushed) | |
1566 | mutex_lock(&curseg->curseg_mutex); | |
1567 | ||
1568 | /* 1) flush dirty nat caches */ | |
1569 | list_for_each_safe(cur, n, &nm_i->dirty_nat_entries) { | |
1570 | struct nat_entry *ne; | |
1571 | nid_t nid; | |
1572 | struct f2fs_nat_entry raw_ne; | |
1573 | int offset = -1; | |
1574 | block_t old_blkaddr, new_blkaddr; | |
1575 | ||
1576 | ne = list_entry(cur, struct nat_entry, list); | |
1577 | nid = nat_get_nid(ne); | |
1578 | ||
1579 | if (nat_get_blkaddr(ne) == NEW_ADDR) | |
1580 | continue; | |
1581 | if (flushed) | |
1582 | goto to_nat_page; | |
1583 | ||
1584 | /* if there is room for nat enries in curseg->sumpage */ | |
1585 | offset = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 1); | |
1586 | if (offset >= 0) { | |
1587 | raw_ne = nat_in_journal(sum, offset); | |
1588 | old_blkaddr = le32_to_cpu(raw_ne.block_addr); | |
1589 | goto flush_now; | |
1590 | } | |
1591 | to_nat_page: | |
1592 | if (!page || (start_nid > nid || nid > end_nid)) { | |
1593 | if (page) { | |
1594 | f2fs_put_page(page, 1); | |
1595 | page = NULL; | |
1596 | } | |
1597 | start_nid = START_NID(nid); | |
1598 | end_nid = start_nid + NAT_ENTRY_PER_BLOCK - 1; | |
1599 | ||
1600 | /* | |
1601 | * get nat block with dirty flag, increased reference | |
1602 | * count, mapped and lock | |
1603 | */ | |
1604 | page = get_next_nat_page(sbi, start_nid); | |
1605 | nat_blk = page_address(page); | |
1606 | } | |
1607 | ||
1608 | BUG_ON(!nat_blk); | |
1609 | raw_ne = nat_blk->entries[nid - start_nid]; | |
1610 | old_blkaddr = le32_to_cpu(raw_ne.block_addr); | |
1611 | flush_now: | |
1612 | new_blkaddr = nat_get_blkaddr(ne); | |
1613 | ||
1614 | raw_ne.ino = cpu_to_le32(nat_get_ino(ne)); | |
1615 | raw_ne.block_addr = cpu_to_le32(new_blkaddr); | |
1616 | raw_ne.version = nat_get_version(ne); | |
1617 | ||
1618 | if (offset < 0) { | |
1619 | nat_blk->entries[nid - start_nid] = raw_ne; | |
1620 | } else { | |
1621 | nat_in_journal(sum, offset) = raw_ne; | |
1622 | nid_in_journal(sum, offset) = cpu_to_le32(nid); | |
1623 | } | |
1624 | ||
1625 | if (nat_get_blkaddr(ne) == NULL_ADDR) { | |
1626 | write_lock(&nm_i->nat_tree_lock); | |
1627 | __del_from_nat_cache(nm_i, ne); | |
1628 | write_unlock(&nm_i->nat_tree_lock); | |
1629 | ||
1630 | /* We can reuse this freed nid at this point */ | |
1631 | add_free_nid(NM_I(sbi), nid); | |
1632 | } else { | |
1633 | write_lock(&nm_i->nat_tree_lock); | |
1634 | __clear_nat_cache_dirty(nm_i, ne); | |
1635 | ne->checkpointed = true; | |
1636 | write_unlock(&nm_i->nat_tree_lock); | |
1637 | } | |
1638 | } | |
1639 | if (!flushed) | |
1640 | mutex_unlock(&curseg->curseg_mutex); | |
1641 | f2fs_put_page(page, 1); | |
1642 | ||
1643 | /* 2) shrink nat caches if necessary */ | |
1644 | try_to_free_nats(sbi, nm_i->nat_cnt - NM_WOUT_THRESHOLD); | |
1645 | } | |
1646 | ||
1647 | static int init_node_manager(struct f2fs_sb_info *sbi) | |
1648 | { | |
1649 | struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi); | |
1650 | struct f2fs_nm_info *nm_i = NM_I(sbi); | |
1651 | unsigned char *version_bitmap; | |
1652 | unsigned int nat_segs, nat_blocks; | |
1653 | ||
1654 | nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr); | |
1655 | ||
1656 | /* segment_count_nat includes pair segment so divide to 2. */ | |
1657 | nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1; | |
1658 | nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg); | |
1659 | nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nat_blocks; | |
1660 | nm_i->fcnt = 0; | |
1661 | nm_i->nat_cnt = 0; | |
1662 | ||
1663 | INIT_LIST_HEAD(&nm_i->free_nid_list); | |
1664 | INIT_RADIX_TREE(&nm_i->nat_root, GFP_ATOMIC); | |
1665 | INIT_LIST_HEAD(&nm_i->nat_entries); | |
1666 | INIT_LIST_HEAD(&nm_i->dirty_nat_entries); | |
1667 | ||
1668 | mutex_init(&nm_i->build_lock); | |
1669 | spin_lock_init(&nm_i->free_nid_list_lock); | |
1670 | rwlock_init(&nm_i->nat_tree_lock); | |
1671 | ||
1672 | nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP); | |
1673 | nm_i->init_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid); | |
1674 | nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid); | |
1675 | ||
1676 | nm_i->nat_bitmap = kzalloc(nm_i->bitmap_size, GFP_KERNEL); | |
1677 | if (!nm_i->nat_bitmap) | |
1678 | return -ENOMEM; | |
1679 | version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP); | |
1680 | if (!version_bitmap) | |
1681 | return -EFAULT; | |
1682 | ||
1683 | /* copy version bitmap */ | |
1684 | memcpy(nm_i->nat_bitmap, version_bitmap, nm_i->bitmap_size); | |
1685 | return 0; | |
1686 | } | |
1687 | ||
1688 | int build_node_manager(struct f2fs_sb_info *sbi) | |
1689 | { | |
1690 | int err; | |
1691 | ||
1692 | sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL); | |
1693 | if (!sbi->nm_info) | |
1694 | return -ENOMEM; | |
1695 | ||
1696 | err = init_node_manager(sbi); | |
1697 | if (err) | |
1698 | return err; | |
1699 | ||
1700 | build_free_nids(sbi); | |
1701 | return 0; | |
1702 | } | |
1703 | ||
1704 | void destroy_node_manager(struct f2fs_sb_info *sbi) | |
1705 | { | |
1706 | struct f2fs_nm_info *nm_i = NM_I(sbi); | |
1707 | struct free_nid *i, *next_i; | |
1708 | struct nat_entry *natvec[NATVEC_SIZE]; | |
1709 | nid_t nid = 0; | |
1710 | unsigned int found; | |
1711 | ||
1712 | if (!nm_i) | |
1713 | return; | |
1714 | ||
1715 | /* destroy free nid list */ | |
1716 | spin_lock(&nm_i->free_nid_list_lock); | |
1717 | list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) { | |
1718 | BUG_ON(i->state == NID_ALLOC); | |
1719 | __del_from_free_nid_list(i); | |
1720 | nm_i->fcnt--; | |
1721 | } | |
1722 | BUG_ON(nm_i->fcnt); | |
1723 | spin_unlock(&nm_i->free_nid_list_lock); | |
1724 | ||
1725 | /* destroy nat cache */ | |
1726 | write_lock(&nm_i->nat_tree_lock); | |
1727 | while ((found = __gang_lookup_nat_cache(nm_i, | |
1728 | nid, NATVEC_SIZE, natvec))) { | |
1729 | unsigned idx; | |
1730 | for (idx = 0; idx < found; idx++) { | |
1731 | struct nat_entry *e = natvec[idx]; | |
1732 | nid = nat_get_nid(e) + 1; | |
1733 | __del_from_nat_cache(nm_i, e); | |
1734 | } | |
1735 | } | |
1736 | BUG_ON(nm_i->nat_cnt); | |
1737 | write_unlock(&nm_i->nat_tree_lock); | |
1738 | ||
1739 | kfree(nm_i->nat_bitmap); | |
1740 | sbi->nm_info = NULL; | |
1741 | kfree(nm_i); | |
1742 | } | |
1743 | ||
1744 | int create_node_manager_caches(void) | |
1745 | { | |
1746 | nat_entry_slab = f2fs_kmem_cache_create("nat_entry", | |
1747 | sizeof(struct nat_entry), NULL); | |
1748 | if (!nat_entry_slab) | |
1749 | return -ENOMEM; | |
1750 | ||
1751 | free_nid_slab = f2fs_kmem_cache_create("free_nid", | |
1752 | sizeof(struct free_nid), NULL); | |
1753 | if (!free_nid_slab) { | |
1754 | kmem_cache_destroy(nat_entry_slab); | |
1755 | return -ENOMEM; | |
1756 | } | |
1757 | return 0; | |
1758 | } | |
1759 | ||
1760 | void destroy_node_manager_caches(void) | |
1761 | { | |
1762 | kmem_cache_destroy(free_nid_slab); | |
1763 | kmem_cache_destroy(nat_entry_slab); | |
1764 | } |