]>
Commit | Line | Data |
---|---|---|
ca9f4942 BR |
1 | // SPDX-License-Identifier: GPL-2.0 |
2 | /* | |
3 | * Secure pages management: Migration of pages between normal and secure | |
4 | * memory of KVM guests. | |
5 | * | |
6 | * Copyright 2018 Bharata B Rao, IBM Corp. <[email protected]> | |
7 | */ | |
8 | ||
9 | /* | |
10 | * A pseries guest can be run as secure guest on Ultravisor-enabled | |
11 | * POWER platforms. On such platforms, this driver will be used to manage | |
12 | * the movement of guest pages between the normal memory managed by | |
13 | * hypervisor (HV) and secure memory managed by Ultravisor (UV). | |
14 | * | |
15 | * The page-in or page-out requests from UV will come to HV as hcalls and | |
16 | * HV will call back into UV via ultracalls to satisfy these page requests. | |
17 | * | |
18 | * Private ZONE_DEVICE memory equal to the amount of secure memory | |
19 | * available in the platform for running secure guests is hotplugged. | |
20 | * Whenever a page belonging to the guest becomes secure, a page from this | |
21 | * private device memory is used to represent and track that secure page | |
60f0a643 BR |
22 | * on the HV side. Some pages (like virtio buffers, VPA pages etc) are |
23 | * shared between UV and HV. However such pages aren't represented by | |
24 | * device private memory and mappings to shared memory exist in both | |
25 | * UV and HV page tables. | |
ca9f4942 BR |
26 | */ |
27 | ||
28 | /* | |
29 | * Notes on locking | |
30 | * | |
31 | * kvm->arch.uvmem_lock is a per-guest lock that prevents concurrent | |
32 | * page-in and page-out requests for the same GPA. Concurrent accesses | |
33 | * can either come via UV (guest vCPUs requesting for same page) | |
34 | * or when HV and guest simultaneously access the same page. | |
35 | * This mutex serializes the migration of page from HV(normal) to | |
36 | * UV(secure) and vice versa. So the serialization points are around | |
37 | * migrate_vma routines and page-in/out routines. | |
38 | * | |
39 | * Per-guest mutex comes with a cost though. Mainly it serializes the | |
40 | * fault path as page-out can occur when HV faults on accessing secure | |
41 | * guest pages. Currently UV issues page-in requests for all the guest | |
42 | * PFNs one at a time during early boot (UV_ESM uvcall), so this is | |
43 | * not a cause for concern. Also currently the number of page-outs caused | |
44 | * by HV touching secure pages is very very low. If an when UV supports | |
45 | * overcommitting, then we might see concurrent guest driven page-outs. | |
46 | * | |
47 | * Locking order | |
48 | * | |
49 | * 1. kvm->srcu - Protects KVM memslots | |
50 | * 2. kvm->mm->mmap_sem - find_vma, migrate_vma_pages and helpers, ksm_madvise | |
51 | * 3. kvm->arch.uvmem_lock - protects read/writes to uvmem slots thus acting | |
52 | * as sync-points for page-in/out | |
53 | */ | |
54 | ||
55 | /* | |
56 | * Notes on page size | |
57 | * | |
58 | * Currently UV uses 2MB mappings internally, but will issue H_SVM_PAGE_IN | |
59 | * and H_SVM_PAGE_OUT hcalls in PAGE_SIZE(64K) granularity. HV tracks | |
60 | * secure GPAs at 64K page size and maintains one device PFN for each | |
61 | * 64K secure GPA. UV_PAGE_IN and UV_PAGE_OUT calls by HV are also issued | |
62 | * for 64K page at a time. | |
63 | * | |
64 | * HV faulting on secure pages: When HV touches any secure page, it | |
65 | * faults and issues a UV_PAGE_OUT request with 64K page size. Currently | |
66 | * UV splits and remaps the 2MB page if necessary and copies out the | |
67 | * required 64K page contents. | |
68 | * | |
60f0a643 BR |
69 | * Shared pages: Whenever guest shares a secure page, UV will split and |
70 | * remap the 2MB page if required and issue H_SVM_PAGE_IN with 64K page size. | |
71 | * | |
008e359c BR |
72 | * HV invalidating a page: When a regular page belonging to secure |
73 | * guest gets unmapped, HV informs UV with UV_PAGE_INVAL of 64K | |
74 | * page size. Using 64K page size is correct here because any non-secure | |
75 | * page will essentially be of 64K page size. Splitting by UV during sharing | |
76 | * and page-out ensures this. | |
77 | * | |
78 | * Page fault handling: When HV handles page fault of a page belonging | |
79 | * to secure guest, it sends that to UV with a 64K UV_PAGE_IN request. | |
80 | * Using 64K size is correct here too as UV would have split the 2MB page | |
81 | * into 64k mappings and would have done page-outs earlier. | |
82 | * | |
ca9f4942 BR |
83 | * In summary, the current secure pages handling code in HV assumes |
84 | * 64K page size and in fact fails any page-in/page-out requests of | |
85 | * non-64K size upfront. If and when UV starts supporting multiple | |
86 | * page-sizes, we need to break this assumption. | |
87 | */ | |
88 | ||
89 | #include <linux/pagemap.h> | |
90 | #include <linux/migrate.h> | |
91 | #include <linux/kvm_host.h> | |
92 | #include <linux/ksm.h> | |
93 | #include <asm/ultravisor.h> | |
94 | #include <asm/mman.h> | |
95 | #include <asm/kvm_ppc.h> | |
96 | ||
97 | static struct dev_pagemap kvmppc_uvmem_pgmap; | |
98 | static unsigned long *kvmppc_uvmem_bitmap; | |
99 | static DEFINE_SPINLOCK(kvmppc_uvmem_bitmap_lock); | |
100 | ||
101 | #define KVMPPC_UVMEM_PFN (1UL << 63) | |
102 | ||
103 | struct kvmppc_uvmem_slot { | |
104 | struct list_head list; | |
105 | unsigned long nr_pfns; | |
106 | unsigned long base_pfn; | |
107 | unsigned long *pfns; | |
108 | }; | |
109 | ||
110 | struct kvmppc_uvmem_page_pvt { | |
111 | struct kvm *kvm; | |
112 | unsigned long gpa; | |
60f0a643 | 113 | bool skip_page_out; |
ca9f4942 BR |
114 | }; |
115 | ||
9a5788c6 PM |
116 | bool kvmppc_uvmem_available(void) |
117 | { | |
118 | /* | |
119 | * If kvmppc_uvmem_bitmap != NULL, then there is an ultravisor | |
120 | * and our data structures have been initialized successfully. | |
121 | */ | |
122 | return !!kvmppc_uvmem_bitmap; | |
123 | } | |
124 | ||
ca9f4942 BR |
125 | int kvmppc_uvmem_slot_init(struct kvm *kvm, const struct kvm_memory_slot *slot) |
126 | { | |
127 | struct kvmppc_uvmem_slot *p; | |
128 | ||
129 | p = kzalloc(sizeof(*p), GFP_KERNEL); | |
130 | if (!p) | |
131 | return -ENOMEM; | |
132 | p->pfns = vzalloc(array_size(slot->npages, sizeof(*p->pfns))); | |
133 | if (!p->pfns) { | |
134 | kfree(p); | |
135 | return -ENOMEM; | |
136 | } | |
137 | p->nr_pfns = slot->npages; | |
138 | p->base_pfn = slot->base_gfn; | |
139 | ||
140 | mutex_lock(&kvm->arch.uvmem_lock); | |
141 | list_add(&p->list, &kvm->arch.uvmem_pfns); | |
142 | mutex_unlock(&kvm->arch.uvmem_lock); | |
143 | ||
144 | return 0; | |
145 | } | |
146 | ||
147 | /* | |
148 | * All device PFNs are already released by the time we come here. | |
149 | */ | |
150 | void kvmppc_uvmem_slot_free(struct kvm *kvm, const struct kvm_memory_slot *slot) | |
151 | { | |
152 | struct kvmppc_uvmem_slot *p, *next; | |
153 | ||
154 | mutex_lock(&kvm->arch.uvmem_lock); | |
155 | list_for_each_entry_safe(p, next, &kvm->arch.uvmem_pfns, list) { | |
156 | if (p->base_pfn == slot->base_gfn) { | |
157 | vfree(p->pfns); | |
158 | list_del(&p->list); | |
159 | kfree(p); | |
160 | break; | |
161 | } | |
162 | } | |
163 | mutex_unlock(&kvm->arch.uvmem_lock); | |
164 | } | |
165 | ||
166 | static void kvmppc_uvmem_pfn_insert(unsigned long gfn, unsigned long uvmem_pfn, | |
167 | struct kvm *kvm) | |
168 | { | |
169 | struct kvmppc_uvmem_slot *p; | |
170 | ||
171 | list_for_each_entry(p, &kvm->arch.uvmem_pfns, list) { | |
172 | if (gfn >= p->base_pfn && gfn < p->base_pfn + p->nr_pfns) { | |
173 | unsigned long index = gfn - p->base_pfn; | |
174 | ||
175 | p->pfns[index] = uvmem_pfn | KVMPPC_UVMEM_PFN; | |
176 | return; | |
177 | } | |
178 | } | |
179 | } | |
180 | ||
181 | static void kvmppc_uvmem_pfn_remove(unsigned long gfn, struct kvm *kvm) | |
182 | { | |
183 | struct kvmppc_uvmem_slot *p; | |
184 | ||
185 | list_for_each_entry(p, &kvm->arch.uvmem_pfns, list) { | |
186 | if (gfn >= p->base_pfn && gfn < p->base_pfn + p->nr_pfns) { | |
187 | p->pfns[gfn - p->base_pfn] = 0; | |
188 | return; | |
189 | } | |
190 | } | |
191 | } | |
192 | ||
193 | static bool kvmppc_gfn_is_uvmem_pfn(unsigned long gfn, struct kvm *kvm, | |
194 | unsigned long *uvmem_pfn) | |
195 | { | |
196 | struct kvmppc_uvmem_slot *p; | |
197 | ||
198 | list_for_each_entry(p, &kvm->arch.uvmem_pfns, list) { | |
199 | if (gfn >= p->base_pfn && gfn < p->base_pfn + p->nr_pfns) { | |
200 | unsigned long index = gfn - p->base_pfn; | |
201 | ||
202 | if (p->pfns[index] & KVMPPC_UVMEM_PFN) { | |
203 | if (uvmem_pfn) | |
204 | *uvmem_pfn = p->pfns[index] & | |
205 | ~KVMPPC_UVMEM_PFN; | |
206 | return true; | |
207 | } else | |
208 | return false; | |
209 | } | |
210 | } | |
211 | return false; | |
212 | } | |
213 | ||
214 | unsigned long kvmppc_h_svm_init_start(struct kvm *kvm) | |
215 | { | |
216 | struct kvm_memslots *slots; | |
217 | struct kvm_memory_slot *memslot; | |
218 | int ret = H_SUCCESS; | |
219 | int srcu_idx; | |
220 | ||
377f02d4 LD |
221 | kvm->arch.secure_guest = KVMPPC_SECURE_INIT_START; |
222 | ||
ca9f4942 BR |
223 | if (!kvmppc_uvmem_bitmap) |
224 | return H_UNSUPPORTED; | |
225 | ||
226 | /* Only radix guests can be secure guests */ | |
227 | if (!kvm_is_radix(kvm)) | |
228 | return H_UNSUPPORTED; | |
229 | ||
9a5788c6 PM |
230 | /* NAK the transition to secure if not enabled */ |
231 | if (!kvm->arch.svm_enabled) | |
232 | return H_AUTHORITY; | |
233 | ||
ca9f4942 BR |
234 | srcu_idx = srcu_read_lock(&kvm->srcu); |
235 | slots = kvm_memslots(kvm); | |
236 | kvm_for_each_memslot(memslot, slots) { | |
237 | if (kvmppc_uvmem_slot_init(kvm, memslot)) { | |
238 | ret = H_PARAMETER; | |
239 | goto out; | |
240 | } | |
241 | ret = uv_register_mem_slot(kvm->arch.lpid, | |
242 | memslot->base_gfn << PAGE_SHIFT, | |
243 | memslot->npages * PAGE_SIZE, | |
244 | 0, memslot->id); | |
245 | if (ret < 0) { | |
246 | kvmppc_uvmem_slot_free(kvm, memslot); | |
247 | ret = H_PARAMETER; | |
248 | goto out; | |
249 | } | |
250 | } | |
ca9f4942 BR |
251 | out: |
252 | srcu_read_unlock(&kvm->srcu, srcu_idx); | |
253 | return ret; | |
254 | } | |
255 | ||
256 | unsigned long kvmppc_h_svm_init_done(struct kvm *kvm) | |
257 | { | |
258 | if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START)) | |
259 | return H_UNSUPPORTED; | |
260 | ||
261 | kvm->arch.secure_guest |= KVMPPC_SECURE_INIT_DONE; | |
262 | pr_info("LPID %d went secure\n", kvm->arch.lpid); | |
263 | return H_SUCCESS; | |
264 | } | |
265 | ||
c3262257 BR |
266 | /* |
267 | * Drop device pages that we maintain for the secure guest | |
268 | * | |
269 | * We first mark the pages to be skipped from UV_PAGE_OUT when there | |
270 | * is HV side fault on these pages. Next we *get* these pages, forcing | |
271 | * fault on them, do fault time migration to replace the device PTEs in | |
272 | * QEMU page table with normal PTEs from newly allocated pages. | |
273 | */ | |
274 | void kvmppc_uvmem_drop_pages(const struct kvm_memory_slot *free, | |
ce477a7a | 275 | struct kvm *kvm, bool skip_page_out) |
c3262257 BR |
276 | { |
277 | int i; | |
278 | struct kvmppc_uvmem_page_pvt *pvt; | |
279 | unsigned long pfn, uvmem_pfn; | |
280 | unsigned long gfn = free->base_gfn; | |
281 | ||
282 | for (i = free->npages; i; --i, ++gfn) { | |
283 | struct page *uvmem_page; | |
284 | ||
285 | mutex_lock(&kvm->arch.uvmem_lock); | |
286 | if (!kvmppc_gfn_is_uvmem_pfn(gfn, kvm, &uvmem_pfn)) { | |
287 | mutex_unlock(&kvm->arch.uvmem_lock); | |
288 | continue; | |
289 | } | |
290 | ||
291 | uvmem_page = pfn_to_page(uvmem_pfn); | |
292 | pvt = uvmem_page->zone_device_data; | |
ce477a7a | 293 | pvt->skip_page_out = skip_page_out; |
c3262257 BR |
294 | mutex_unlock(&kvm->arch.uvmem_lock); |
295 | ||
296 | pfn = gfn_to_pfn(kvm, gfn); | |
297 | if (is_error_noslot_pfn(pfn)) | |
298 | continue; | |
299 | kvm_release_pfn_clean(pfn); | |
300 | } | |
301 | } | |
302 | ||
3a43970d SB |
303 | unsigned long kvmppc_h_svm_init_abort(struct kvm *kvm) |
304 | { | |
305 | int srcu_idx; | |
306 | struct kvm_memory_slot *memslot; | |
307 | ||
308 | /* | |
309 | * Expect to be called only after INIT_START and before INIT_DONE. | |
310 | * If INIT_DONE was completed, use normal VM termination sequence. | |
311 | */ | |
312 | if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START)) | |
313 | return H_UNSUPPORTED; | |
314 | ||
315 | if (kvm->arch.secure_guest & KVMPPC_SECURE_INIT_DONE) | |
316 | return H_STATE; | |
317 | ||
318 | srcu_idx = srcu_read_lock(&kvm->srcu); | |
319 | ||
320 | kvm_for_each_memslot(memslot, kvm_memslots(kvm)) | |
321 | kvmppc_uvmem_drop_pages(memslot, kvm, false); | |
322 | ||
323 | srcu_read_unlock(&kvm->srcu, srcu_idx); | |
324 | ||
325 | kvm->arch.secure_guest = 0; | |
326 | uv_svm_terminate(kvm->arch.lpid); | |
327 | ||
328 | return H_PARAMETER; | |
329 | } | |
330 | ||
ca9f4942 BR |
331 | /* |
332 | * Get a free device PFN from the pool | |
333 | * | |
334 | * Called when a normal page is moved to secure memory (UV_PAGE_IN). Device | |
335 | * PFN will be used to keep track of the secure page on HV side. | |
336 | * | |
337 | * Called with kvm->arch.uvmem_lock held | |
338 | */ | |
339 | static struct page *kvmppc_uvmem_get_page(unsigned long gpa, struct kvm *kvm) | |
340 | { | |
341 | struct page *dpage = NULL; | |
342 | unsigned long bit, uvmem_pfn; | |
343 | struct kvmppc_uvmem_page_pvt *pvt; | |
344 | unsigned long pfn_last, pfn_first; | |
345 | ||
346 | pfn_first = kvmppc_uvmem_pgmap.res.start >> PAGE_SHIFT; | |
347 | pfn_last = pfn_first + | |
348 | (resource_size(&kvmppc_uvmem_pgmap.res) >> PAGE_SHIFT); | |
349 | ||
350 | spin_lock(&kvmppc_uvmem_bitmap_lock); | |
351 | bit = find_first_zero_bit(kvmppc_uvmem_bitmap, | |
352 | pfn_last - pfn_first); | |
353 | if (bit >= (pfn_last - pfn_first)) | |
354 | goto out; | |
355 | bitmap_set(kvmppc_uvmem_bitmap, bit, 1); | |
356 | spin_unlock(&kvmppc_uvmem_bitmap_lock); | |
357 | ||
358 | pvt = kzalloc(sizeof(*pvt), GFP_KERNEL); | |
359 | if (!pvt) | |
360 | goto out_clear; | |
361 | ||
362 | uvmem_pfn = bit + pfn_first; | |
363 | kvmppc_uvmem_pfn_insert(gpa >> PAGE_SHIFT, uvmem_pfn, kvm); | |
364 | ||
365 | pvt->gpa = gpa; | |
366 | pvt->kvm = kvm; | |
367 | ||
368 | dpage = pfn_to_page(uvmem_pfn); | |
369 | dpage->zone_device_data = pvt; | |
370 | get_page(dpage); | |
371 | lock_page(dpage); | |
372 | return dpage; | |
373 | out_clear: | |
374 | spin_lock(&kvmppc_uvmem_bitmap_lock); | |
375 | bitmap_clear(kvmppc_uvmem_bitmap, bit, 1); | |
376 | out: | |
377 | spin_unlock(&kvmppc_uvmem_bitmap_lock); | |
378 | return NULL; | |
379 | } | |
380 | ||
381 | /* | |
382 | * Alloc a PFN from private device memory pool and copy page from normal | |
383 | * memory to secure memory using UV_PAGE_IN uvcall. | |
384 | */ | |
385 | static int | |
386 | kvmppc_svm_page_in(struct vm_area_struct *vma, unsigned long start, | |
387 | unsigned long end, unsigned long gpa, struct kvm *kvm, | |
388 | unsigned long page_shift, bool *downgrade) | |
389 | { | |
390 | unsigned long src_pfn, dst_pfn = 0; | |
391 | struct migrate_vma mig; | |
392 | struct page *spage; | |
393 | unsigned long pfn; | |
394 | struct page *dpage; | |
395 | int ret = 0; | |
396 | ||
397 | memset(&mig, 0, sizeof(mig)); | |
398 | mig.vma = vma; | |
399 | mig.start = start; | |
400 | mig.end = end; | |
401 | mig.src = &src_pfn; | |
402 | mig.dst = &dst_pfn; | |
403 | ||
404 | /* | |
405 | * We come here with mmap_sem write lock held just for | |
406 | * ksm_madvise(), otherwise we only need read mmap_sem. | |
407 | * Hence downgrade to read lock once ksm_madvise() is done. | |
408 | */ | |
409 | ret = ksm_madvise(vma, vma->vm_start, vma->vm_end, | |
410 | MADV_UNMERGEABLE, &vma->vm_flags); | |
d8ed45c5 | 411 | mmap_write_downgrade(kvm->mm); |
ca9f4942 BR |
412 | *downgrade = true; |
413 | if (ret) | |
414 | return ret; | |
415 | ||
416 | ret = migrate_vma_setup(&mig); | |
417 | if (ret) | |
418 | return ret; | |
419 | ||
420 | if (!(*mig.src & MIGRATE_PFN_MIGRATE)) { | |
421 | ret = -1; | |
422 | goto out_finalize; | |
423 | } | |
424 | ||
425 | dpage = kvmppc_uvmem_get_page(gpa, kvm); | |
426 | if (!dpage) { | |
427 | ret = -1; | |
428 | goto out_finalize; | |
429 | } | |
430 | ||
431 | pfn = *mig.src >> MIGRATE_PFN_SHIFT; | |
432 | spage = migrate_pfn_to_page(*mig.src); | |
433 | if (spage) | |
434 | uv_page_in(kvm->arch.lpid, pfn << page_shift, gpa, 0, | |
435 | page_shift); | |
436 | ||
437 | *mig.dst = migrate_pfn(page_to_pfn(dpage)) | MIGRATE_PFN_LOCKED; | |
438 | migrate_vma_pages(&mig); | |
439 | out_finalize: | |
440 | migrate_vma_finalize(&mig); | |
441 | return ret; | |
442 | } | |
443 | ||
60f0a643 BR |
444 | /* |
445 | * Shares the page with HV, thus making it a normal page. | |
446 | * | |
447 | * - If the page is already secure, then provision a new page and share | |
448 | * - If the page is a normal page, share the existing page | |
449 | * | |
450 | * In the former case, uses dev_pagemap_ops.migrate_to_ram handler | |
451 | * to unmap the device page from QEMU's page tables. | |
452 | */ | |
453 | static unsigned long | |
454 | kvmppc_share_page(struct kvm *kvm, unsigned long gpa, unsigned long page_shift) | |
455 | { | |
456 | ||
457 | int ret = H_PARAMETER; | |
458 | struct page *uvmem_page; | |
459 | struct kvmppc_uvmem_page_pvt *pvt; | |
460 | unsigned long pfn; | |
461 | unsigned long gfn = gpa >> page_shift; | |
462 | int srcu_idx; | |
463 | unsigned long uvmem_pfn; | |
464 | ||
465 | srcu_idx = srcu_read_lock(&kvm->srcu); | |
466 | mutex_lock(&kvm->arch.uvmem_lock); | |
467 | if (kvmppc_gfn_is_uvmem_pfn(gfn, kvm, &uvmem_pfn)) { | |
468 | uvmem_page = pfn_to_page(uvmem_pfn); | |
469 | pvt = uvmem_page->zone_device_data; | |
470 | pvt->skip_page_out = true; | |
471 | } | |
472 | ||
473 | retry: | |
474 | mutex_unlock(&kvm->arch.uvmem_lock); | |
475 | pfn = gfn_to_pfn(kvm, gfn); | |
476 | if (is_error_noslot_pfn(pfn)) | |
477 | goto out; | |
478 | ||
479 | mutex_lock(&kvm->arch.uvmem_lock); | |
480 | if (kvmppc_gfn_is_uvmem_pfn(gfn, kvm, &uvmem_pfn)) { | |
481 | uvmem_page = pfn_to_page(uvmem_pfn); | |
482 | pvt = uvmem_page->zone_device_data; | |
483 | pvt->skip_page_out = true; | |
484 | kvm_release_pfn_clean(pfn); | |
485 | goto retry; | |
486 | } | |
487 | ||
488 | if (!uv_page_in(kvm->arch.lpid, pfn << page_shift, gpa, 0, page_shift)) | |
489 | ret = H_SUCCESS; | |
490 | kvm_release_pfn_clean(pfn); | |
491 | mutex_unlock(&kvm->arch.uvmem_lock); | |
492 | out: | |
493 | srcu_read_unlock(&kvm->srcu, srcu_idx); | |
494 | return ret; | |
495 | } | |
496 | ||
ca9f4942 BR |
497 | /* |
498 | * H_SVM_PAGE_IN: Move page from normal memory to secure memory. | |
60f0a643 BR |
499 | * |
500 | * H_PAGE_IN_SHARED flag makes the page shared which means that the same | |
501 | * memory in is visible from both UV and HV. | |
ca9f4942 BR |
502 | */ |
503 | unsigned long | |
504 | kvmppc_h_svm_page_in(struct kvm *kvm, unsigned long gpa, | |
505 | unsigned long flags, unsigned long page_shift) | |
506 | { | |
507 | bool downgrade = false; | |
508 | unsigned long start, end; | |
509 | struct vm_area_struct *vma; | |
510 | int srcu_idx; | |
511 | unsigned long gfn = gpa >> page_shift; | |
512 | int ret; | |
513 | ||
514 | if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START)) | |
515 | return H_UNSUPPORTED; | |
516 | ||
517 | if (page_shift != PAGE_SHIFT) | |
518 | return H_P3; | |
519 | ||
60f0a643 | 520 | if (flags & ~H_PAGE_IN_SHARED) |
ca9f4942 BR |
521 | return H_P2; |
522 | ||
60f0a643 BR |
523 | if (flags & H_PAGE_IN_SHARED) |
524 | return kvmppc_share_page(kvm, gpa, page_shift); | |
525 | ||
ca9f4942 BR |
526 | ret = H_PARAMETER; |
527 | srcu_idx = srcu_read_lock(&kvm->srcu); | |
d8ed45c5 | 528 | mmap_write_lock(kvm->mm); |
ca9f4942 BR |
529 | |
530 | start = gfn_to_hva(kvm, gfn); | |
531 | if (kvm_is_error_hva(start)) | |
532 | goto out; | |
533 | ||
534 | mutex_lock(&kvm->arch.uvmem_lock); | |
535 | /* Fail the page-in request of an already paged-in page */ | |
536 | if (kvmppc_gfn_is_uvmem_pfn(gfn, kvm, NULL)) | |
537 | goto out_unlock; | |
538 | ||
539 | end = start + (1UL << page_shift); | |
540 | vma = find_vma_intersection(kvm->mm, start, end); | |
541 | if (!vma || vma->vm_start > start || vma->vm_end < end) | |
542 | goto out_unlock; | |
543 | ||
544 | if (!kvmppc_svm_page_in(vma, start, end, gpa, kvm, page_shift, | |
545 | &downgrade)) | |
546 | ret = H_SUCCESS; | |
547 | out_unlock: | |
548 | mutex_unlock(&kvm->arch.uvmem_lock); | |
549 | out: | |
550 | if (downgrade) | |
d8ed45c5 | 551 | mmap_read_unlock(kvm->mm); |
ca9f4942 | 552 | else |
d8ed45c5 | 553 | mmap_write_unlock(kvm->mm); |
ca9f4942 BR |
554 | srcu_read_unlock(&kvm->srcu, srcu_idx); |
555 | return ret; | |
556 | } | |
557 | ||
558 | /* | |
559 | * Provision a new page on HV side and copy over the contents | |
560 | * from secure memory using UV_PAGE_OUT uvcall. | |
561 | */ | |
562 | static int | |
563 | kvmppc_svm_page_out(struct vm_area_struct *vma, unsigned long start, | |
564 | unsigned long end, unsigned long page_shift, | |
565 | struct kvm *kvm, unsigned long gpa) | |
566 | { | |
567 | unsigned long src_pfn, dst_pfn = 0; | |
568 | struct migrate_vma mig; | |
569 | struct page *dpage, *spage; | |
60f0a643 | 570 | struct kvmppc_uvmem_page_pvt *pvt; |
ca9f4942 BR |
571 | unsigned long pfn; |
572 | int ret = U_SUCCESS; | |
573 | ||
574 | memset(&mig, 0, sizeof(mig)); | |
575 | mig.vma = vma; | |
576 | mig.start = start; | |
577 | mig.end = end; | |
578 | mig.src = &src_pfn; | |
579 | mig.dst = &dst_pfn; | |
800bb1c8 | 580 | mig.src_owner = &kvmppc_uvmem_pgmap; |
ca9f4942 BR |
581 | |
582 | mutex_lock(&kvm->arch.uvmem_lock); | |
583 | /* The requested page is already paged-out, nothing to do */ | |
584 | if (!kvmppc_gfn_is_uvmem_pfn(gpa >> page_shift, kvm, NULL)) | |
585 | goto out; | |
586 | ||
587 | ret = migrate_vma_setup(&mig); | |
588 | if (ret) | |
e032e3b5 | 589 | goto out; |
ca9f4942 BR |
590 | |
591 | spage = migrate_pfn_to_page(*mig.src); | |
592 | if (!spage || !(*mig.src & MIGRATE_PFN_MIGRATE)) | |
593 | goto out_finalize; | |
594 | ||
595 | if (!is_zone_device_page(spage)) | |
596 | goto out_finalize; | |
597 | ||
598 | dpage = alloc_page_vma(GFP_HIGHUSER, vma, start); | |
599 | if (!dpage) { | |
600 | ret = -1; | |
601 | goto out_finalize; | |
602 | } | |
603 | ||
604 | lock_page(dpage); | |
60f0a643 | 605 | pvt = spage->zone_device_data; |
ca9f4942 BR |
606 | pfn = page_to_pfn(dpage); |
607 | ||
60f0a643 BR |
608 | /* |
609 | * This function is used in two cases: | |
610 | * - When HV touches a secure page, for which we do UV_PAGE_OUT | |
611 | * - When a secure page is converted to shared page, we *get* | |
612 | * the page to essentially unmap the device page. In this | |
613 | * case we skip page-out. | |
614 | */ | |
615 | if (!pvt->skip_page_out) | |
616 | ret = uv_page_out(kvm->arch.lpid, pfn << page_shift, | |
617 | gpa, 0, page_shift); | |
618 | ||
ca9f4942 BR |
619 | if (ret == U_SUCCESS) |
620 | *mig.dst = migrate_pfn(pfn) | MIGRATE_PFN_LOCKED; | |
621 | else { | |
622 | unlock_page(dpage); | |
623 | __free_page(dpage); | |
624 | goto out_finalize; | |
625 | } | |
626 | ||
627 | migrate_vma_pages(&mig); | |
628 | out_finalize: | |
629 | migrate_vma_finalize(&mig); | |
630 | out: | |
631 | mutex_unlock(&kvm->arch.uvmem_lock); | |
632 | return ret; | |
633 | } | |
634 | ||
635 | /* | |
636 | * Fault handler callback that gets called when HV touches any page that | |
637 | * has been moved to secure memory, we ask UV to give back the page by | |
638 | * issuing UV_PAGE_OUT uvcall. | |
639 | * | |
640 | * This eventually results in dropping of device PFN and the newly | |
641 | * provisioned page/PFN gets populated in QEMU page tables. | |
642 | */ | |
643 | static vm_fault_t kvmppc_uvmem_migrate_to_ram(struct vm_fault *vmf) | |
644 | { | |
645 | struct kvmppc_uvmem_page_pvt *pvt = vmf->page->zone_device_data; | |
646 | ||
647 | if (kvmppc_svm_page_out(vmf->vma, vmf->address, | |
648 | vmf->address + PAGE_SIZE, PAGE_SHIFT, | |
649 | pvt->kvm, pvt->gpa)) | |
650 | return VM_FAULT_SIGBUS; | |
651 | else | |
652 | return 0; | |
653 | } | |
654 | ||
655 | /* | |
656 | * Release the device PFN back to the pool | |
657 | * | |
658 | * Gets called when secure page becomes a normal page during H_SVM_PAGE_OUT. | |
659 | * Gets called with kvm->arch.uvmem_lock held. | |
660 | */ | |
661 | static void kvmppc_uvmem_page_free(struct page *page) | |
662 | { | |
663 | unsigned long pfn = page_to_pfn(page) - | |
664 | (kvmppc_uvmem_pgmap.res.start >> PAGE_SHIFT); | |
665 | struct kvmppc_uvmem_page_pvt *pvt; | |
666 | ||
667 | spin_lock(&kvmppc_uvmem_bitmap_lock); | |
668 | bitmap_clear(kvmppc_uvmem_bitmap, pfn, 1); | |
669 | spin_unlock(&kvmppc_uvmem_bitmap_lock); | |
670 | ||
671 | pvt = page->zone_device_data; | |
672 | page->zone_device_data = NULL; | |
673 | kvmppc_uvmem_pfn_remove(pvt->gpa >> PAGE_SHIFT, pvt->kvm); | |
674 | kfree(pvt); | |
675 | } | |
676 | ||
677 | static const struct dev_pagemap_ops kvmppc_uvmem_ops = { | |
678 | .page_free = kvmppc_uvmem_page_free, | |
679 | .migrate_to_ram = kvmppc_uvmem_migrate_to_ram, | |
680 | }; | |
681 | ||
682 | /* | |
683 | * H_SVM_PAGE_OUT: Move page from secure memory to normal memory. | |
684 | */ | |
685 | unsigned long | |
686 | kvmppc_h_svm_page_out(struct kvm *kvm, unsigned long gpa, | |
687 | unsigned long flags, unsigned long page_shift) | |
688 | { | |
689 | unsigned long gfn = gpa >> page_shift; | |
690 | unsigned long start, end; | |
691 | struct vm_area_struct *vma; | |
692 | int srcu_idx; | |
693 | int ret; | |
694 | ||
695 | if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START)) | |
696 | return H_UNSUPPORTED; | |
697 | ||
698 | if (page_shift != PAGE_SHIFT) | |
699 | return H_P3; | |
700 | ||
701 | if (flags) | |
702 | return H_P2; | |
703 | ||
704 | ret = H_PARAMETER; | |
705 | srcu_idx = srcu_read_lock(&kvm->srcu); | |
d8ed45c5 | 706 | mmap_read_lock(kvm->mm); |
ca9f4942 BR |
707 | start = gfn_to_hva(kvm, gfn); |
708 | if (kvm_is_error_hva(start)) | |
709 | goto out; | |
710 | ||
711 | end = start + (1UL << page_shift); | |
712 | vma = find_vma_intersection(kvm->mm, start, end); | |
713 | if (!vma || vma->vm_start > start || vma->vm_end < end) | |
714 | goto out; | |
715 | ||
716 | if (!kvmppc_svm_page_out(vma, start, end, page_shift, kvm, gpa)) | |
717 | ret = H_SUCCESS; | |
718 | out: | |
d8ed45c5 | 719 | mmap_read_unlock(kvm->mm); |
ca9f4942 BR |
720 | srcu_read_unlock(&kvm->srcu, srcu_idx); |
721 | return ret; | |
722 | } | |
723 | ||
008e359c BR |
724 | int kvmppc_send_page_to_uv(struct kvm *kvm, unsigned long gfn) |
725 | { | |
726 | unsigned long pfn; | |
727 | int ret = U_SUCCESS; | |
728 | ||
729 | pfn = gfn_to_pfn(kvm, gfn); | |
730 | if (is_error_noslot_pfn(pfn)) | |
731 | return -EFAULT; | |
732 | ||
733 | mutex_lock(&kvm->arch.uvmem_lock); | |
734 | if (kvmppc_gfn_is_uvmem_pfn(gfn, kvm, NULL)) | |
735 | goto out; | |
736 | ||
737 | ret = uv_page_in(kvm->arch.lpid, pfn << PAGE_SHIFT, gfn << PAGE_SHIFT, | |
738 | 0, PAGE_SHIFT); | |
739 | out: | |
740 | kvm_release_pfn_clean(pfn); | |
741 | mutex_unlock(&kvm->arch.uvmem_lock); | |
742 | return (ret == U_SUCCESS) ? RESUME_GUEST : -EFAULT; | |
743 | } | |
744 | ||
ca9f4942 BR |
745 | static u64 kvmppc_get_secmem_size(void) |
746 | { | |
747 | struct device_node *np; | |
748 | int i, len; | |
749 | const __be32 *prop; | |
750 | u64 size = 0; | |
751 | ||
752 | np = of_find_compatible_node(NULL, NULL, "ibm,uv-firmware"); | |
753 | if (!np) | |
754 | goto out; | |
755 | ||
756 | prop = of_get_property(np, "secure-memory-ranges", &len); | |
757 | if (!prop) | |
758 | goto out_put; | |
759 | ||
760 | for (i = 0; i < len / (sizeof(*prop) * 4); i++) | |
761 | size += of_read_number(prop + (i * 4) + 2, 2); | |
762 | ||
763 | out_put: | |
764 | of_node_put(np); | |
765 | out: | |
766 | return size; | |
767 | } | |
768 | ||
769 | int kvmppc_uvmem_init(void) | |
770 | { | |
771 | int ret = 0; | |
772 | unsigned long size; | |
773 | struct resource *res; | |
774 | void *addr; | |
775 | unsigned long pfn_last, pfn_first; | |
776 | ||
777 | size = kvmppc_get_secmem_size(); | |
778 | if (!size) { | |
779 | /* | |
780 | * Don't fail the initialization of kvm-hv module if | |
781 | * the platform doesn't export ibm,uv-firmware node. | |
782 | * Let normal guests run on such PEF-disabled platform. | |
783 | */ | |
784 | pr_info("KVMPPC-UVMEM: No support for secure guests\n"); | |
785 | goto out; | |
786 | } | |
787 | ||
788 | res = request_free_mem_region(&iomem_resource, size, "kvmppc_uvmem"); | |
789 | if (IS_ERR(res)) { | |
790 | ret = PTR_ERR(res); | |
791 | goto out; | |
792 | } | |
793 | ||
794 | kvmppc_uvmem_pgmap.type = MEMORY_DEVICE_PRIVATE; | |
795 | kvmppc_uvmem_pgmap.res = *res; | |
796 | kvmppc_uvmem_pgmap.ops = &kvmppc_uvmem_ops; | |
f894ddd5 CH |
797 | /* just one global instance: */ |
798 | kvmppc_uvmem_pgmap.owner = &kvmppc_uvmem_pgmap; | |
ca9f4942 BR |
799 | addr = memremap_pages(&kvmppc_uvmem_pgmap, NUMA_NO_NODE); |
800 | if (IS_ERR(addr)) { | |
801 | ret = PTR_ERR(addr); | |
802 | goto out_free_region; | |
803 | } | |
804 | ||
805 | pfn_first = res->start >> PAGE_SHIFT; | |
806 | pfn_last = pfn_first + (resource_size(res) >> PAGE_SHIFT); | |
807 | kvmppc_uvmem_bitmap = kcalloc(BITS_TO_LONGS(pfn_last - pfn_first), | |
808 | sizeof(unsigned long), GFP_KERNEL); | |
809 | if (!kvmppc_uvmem_bitmap) { | |
810 | ret = -ENOMEM; | |
811 | goto out_unmap; | |
812 | } | |
813 | ||
814 | pr_info("KVMPPC-UVMEM: Secure Memory size 0x%lx\n", size); | |
815 | return ret; | |
816 | out_unmap: | |
817 | memunmap_pages(&kvmppc_uvmem_pgmap); | |
818 | out_free_region: | |
819 | release_mem_region(res->start, size); | |
820 | out: | |
821 | return ret; | |
822 | } | |
823 | ||
824 | void kvmppc_uvmem_free(void) | |
825 | { | |
9bee484b FR |
826 | if (!kvmppc_uvmem_bitmap) |
827 | return; | |
828 | ||
ca9f4942 BR |
829 | memunmap_pages(&kvmppc_uvmem_pgmap); |
830 | release_mem_region(kvmppc_uvmem_pgmap.res.start, | |
831 | resource_size(&kvmppc_uvmem_pgmap.res)); | |
832 | kfree(kvmppc_uvmem_bitmap); | |
833 | } |