]>
Commit | Line | Data |
---|---|---|
ca9f4942 BR |
1 | // SPDX-License-Identifier: GPL-2.0 |
2 | /* | |
3 | * Secure pages management: Migration of pages between normal and secure | |
4 | * memory of KVM guests. | |
5 | * | |
6 | * Copyright 2018 Bharata B Rao, IBM Corp. <[email protected]> | |
7 | */ | |
8 | ||
9 | /* | |
10 | * A pseries guest can be run as secure guest on Ultravisor-enabled | |
11 | * POWER platforms. On such platforms, this driver will be used to manage | |
12 | * the movement of guest pages between the normal memory managed by | |
13 | * hypervisor (HV) and secure memory managed by Ultravisor (UV). | |
14 | * | |
15 | * The page-in or page-out requests from UV will come to HV as hcalls and | |
16 | * HV will call back into UV via ultracalls to satisfy these page requests. | |
17 | * | |
18 | * Private ZONE_DEVICE memory equal to the amount of secure memory | |
19 | * available in the platform for running secure guests is hotplugged. | |
20 | * Whenever a page belonging to the guest becomes secure, a page from this | |
21 | * private device memory is used to represent and track that secure page | |
60f0a643 BR |
22 | * on the HV side. Some pages (like virtio buffers, VPA pages etc) are |
23 | * shared between UV and HV. However such pages aren't represented by | |
24 | * device private memory and mappings to shared memory exist in both | |
25 | * UV and HV page tables. | |
ca9f4942 BR |
26 | */ |
27 | ||
28 | /* | |
29 | * Notes on locking | |
30 | * | |
31 | * kvm->arch.uvmem_lock is a per-guest lock that prevents concurrent | |
32 | * page-in and page-out requests for the same GPA. Concurrent accesses | |
33 | * can either come via UV (guest vCPUs requesting for same page) | |
34 | * or when HV and guest simultaneously access the same page. | |
35 | * This mutex serializes the migration of page from HV(normal) to | |
36 | * UV(secure) and vice versa. So the serialization points are around | |
37 | * migrate_vma routines and page-in/out routines. | |
38 | * | |
39 | * Per-guest mutex comes with a cost though. Mainly it serializes the | |
40 | * fault path as page-out can occur when HV faults on accessing secure | |
41 | * guest pages. Currently UV issues page-in requests for all the guest | |
42 | * PFNs one at a time during early boot (UV_ESM uvcall), so this is | |
43 | * not a cause for concern. Also currently the number of page-outs caused | |
44 | * by HV touching secure pages is very very low. If an when UV supports | |
45 | * overcommitting, then we might see concurrent guest driven page-outs. | |
46 | * | |
47 | * Locking order | |
48 | * | |
49 | * 1. kvm->srcu - Protects KVM memslots | |
50 | * 2. kvm->mm->mmap_sem - find_vma, migrate_vma_pages and helpers, ksm_madvise | |
51 | * 3. kvm->arch.uvmem_lock - protects read/writes to uvmem slots thus acting | |
52 | * as sync-points for page-in/out | |
53 | */ | |
54 | ||
55 | /* | |
56 | * Notes on page size | |
57 | * | |
58 | * Currently UV uses 2MB mappings internally, but will issue H_SVM_PAGE_IN | |
59 | * and H_SVM_PAGE_OUT hcalls in PAGE_SIZE(64K) granularity. HV tracks | |
60 | * secure GPAs at 64K page size and maintains one device PFN for each | |
61 | * 64K secure GPA. UV_PAGE_IN and UV_PAGE_OUT calls by HV are also issued | |
62 | * for 64K page at a time. | |
63 | * | |
64 | * HV faulting on secure pages: When HV touches any secure page, it | |
65 | * faults and issues a UV_PAGE_OUT request with 64K page size. Currently | |
66 | * UV splits and remaps the 2MB page if necessary and copies out the | |
67 | * required 64K page contents. | |
68 | * | |
60f0a643 BR |
69 | * Shared pages: Whenever guest shares a secure page, UV will split and |
70 | * remap the 2MB page if required and issue H_SVM_PAGE_IN with 64K page size. | |
71 | * | |
ca9f4942 BR |
72 | * In summary, the current secure pages handling code in HV assumes |
73 | * 64K page size and in fact fails any page-in/page-out requests of | |
74 | * non-64K size upfront. If and when UV starts supporting multiple | |
75 | * page-sizes, we need to break this assumption. | |
76 | */ | |
77 | ||
78 | #include <linux/pagemap.h> | |
79 | #include <linux/migrate.h> | |
80 | #include <linux/kvm_host.h> | |
81 | #include <linux/ksm.h> | |
82 | #include <asm/ultravisor.h> | |
83 | #include <asm/mman.h> | |
84 | #include <asm/kvm_ppc.h> | |
85 | ||
86 | static struct dev_pagemap kvmppc_uvmem_pgmap; | |
87 | static unsigned long *kvmppc_uvmem_bitmap; | |
88 | static DEFINE_SPINLOCK(kvmppc_uvmem_bitmap_lock); | |
89 | ||
90 | #define KVMPPC_UVMEM_PFN (1UL << 63) | |
91 | ||
92 | struct kvmppc_uvmem_slot { | |
93 | struct list_head list; | |
94 | unsigned long nr_pfns; | |
95 | unsigned long base_pfn; | |
96 | unsigned long *pfns; | |
97 | }; | |
98 | ||
99 | struct kvmppc_uvmem_page_pvt { | |
100 | struct kvm *kvm; | |
101 | unsigned long gpa; | |
60f0a643 | 102 | bool skip_page_out; |
ca9f4942 BR |
103 | }; |
104 | ||
105 | int kvmppc_uvmem_slot_init(struct kvm *kvm, const struct kvm_memory_slot *slot) | |
106 | { | |
107 | struct kvmppc_uvmem_slot *p; | |
108 | ||
109 | p = kzalloc(sizeof(*p), GFP_KERNEL); | |
110 | if (!p) | |
111 | return -ENOMEM; | |
112 | p->pfns = vzalloc(array_size(slot->npages, sizeof(*p->pfns))); | |
113 | if (!p->pfns) { | |
114 | kfree(p); | |
115 | return -ENOMEM; | |
116 | } | |
117 | p->nr_pfns = slot->npages; | |
118 | p->base_pfn = slot->base_gfn; | |
119 | ||
120 | mutex_lock(&kvm->arch.uvmem_lock); | |
121 | list_add(&p->list, &kvm->arch.uvmem_pfns); | |
122 | mutex_unlock(&kvm->arch.uvmem_lock); | |
123 | ||
124 | return 0; | |
125 | } | |
126 | ||
127 | /* | |
128 | * All device PFNs are already released by the time we come here. | |
129 | */ | |
130 | void kvmppc_uvmem_slot_free(struct kvm *kvm, const struct kvm_memory_slot *slot) | |
131 | { | |
132 | struct kvmppc_uvmem_slot *p, *next; | |
133 | ||
134 | mutex_lock(&kvm->arch.uvmem_lock); | |
135 | list_for_each_entry_safe(p, next, &kvm->arch.uvmem_pfns, list) { | |
136 | if (p->base_pfn == slot->base_gfn) { | |
137 | vfree(p->pfns); | |
138 | list_del(&p->list); | |
139 | kfree(p); | |
140 | break; | |
141 | } | |
142 | } | |
143 | mutex_unlock(&kvm->arch.uvmem_lock); | |
144 | } | |
145 | ||
146 | static void kvmppc_uvmem_pfn_insert(unsigned long gfn, unsigned long uvmem_pfn, | |
147 | struct kvm *kvm) | |
148 | { | |
149 | struct kvmppc_uvmem_slot *p; | |
150 | ||
151 | list_for_each_entry(p, &kvm->arch.uvmem_pfns, list) { | |
152 | if (gfn >= p->base_pfn && gfn < p->base_pfn + p->nr_pfns) { | |
153 | unsigned long index = gfn - p->base_pfn; | |
154 | ||
155 | p->pfns[index] = uvmem_pfn | KVMPPC_UVMEM_PFN; | |
156 | return; | |
157 | } | |
158 | } | |
159 | } | |
160 | ||
161 | static void kvmppc_uvmem_pfn_remove(unsigned long gfn, struct kvm *kvm) | |
162 | { | |
163 | struct kvmppc_uvmem_slot *p; | |
164 | ||
165 | list_for_each_entry(p, &kvm->arch.uvmem_pfns, list) { | |
166 | if (gfn >= p->base_pfn && gfn < p->base_pfn + p->nr_pfns) { | |
167 | p->pfns[gfn - p->base_pfn] = 0; | |
168 | return; | |
169 | } | |
170 | } | |
171 | } | |
172 | ||
173 | static bool kvmppc_gfn_is_uvmem_pfn(unsigned long gfn, struct kvm *kvm, | |
174 | unsigned long *uvmem_pfn) | |
175 | { | |
176 | struct kvmppc_uvmem_slot *p; | |
177 | ||
178 | list_for_each_entry(p, &kvm->arch.uvmem_pfns, list) { | |
179 | if (gfn >= p->base_pfn && gfn < p->base_pfn + p->nr_pfns) { | |
180 | unsigned long index = gfn - p->base_pfn; | |
181 | ||
182 | if (p->pfns[index] & KVMPPC_UVMEM_PFN) { | |
183 | if (uvmem_pfn) | |
184 | *uvmem_pfn = p->pfns[index] & | |
185 | ~KVMPPC_UVMEM_PFN; | |
186 | return true; | |
187 | } else | |
188 | return false; | |
189 | } | |
190 | } | |
191 | return false; | |
192 | } | |
193 | ||
194 | unsigned long kvmppc_h_svm_init_start(struct kvm *kvm) | |
195 | { | |
196 | struct kvm_memslots *slots; | |
197 | struct kvm_memory_slot *memslot; | |
198 | int ret = H_SUCCESS; | |
199 | int srcu_idx; | |
200 | ||
201 | if (!kvmppc_uvmem_bitmap) | |
202 | return H_UNSUPPORTED; | |
203 | ||
204 | /* Only radix guests can be secure guests */ | |
205 | if (!kvm_is_radix(kvm)) | |
206 | return H_UNSUPPORTED; | |
207 | ||
208 | srcu_idx = srcu_read_lock(&kvm->srcu); | |
209 | slots = kvm_memslots(kvm); | |
210 | kvm_for_each_memslot(memslot, slots) { | |
211 | if (kvmppc_uvmem_slot_init(kvm, memslot)) { | |
212 | ret = H_PARAMETER; | |
213 | goto out; | |
214 | } | |
215 | ret = uv_register_mem_slot(kvm->arch.lpid, | |
216 | memslot->base_gfn << PAGE_SHIFT, | |
217 | memslot->npages * PAGE_SIZE, | |
218 | 0, memslot->id); | |
219 | if (ret < 0) { | |
220 | kvmppc_uvmem_slot_free(kvm, memslot); | |
221 | ret = H_PARAMETER; | |
222 | goto out; | |
223 | } | |
224 | } | |
225 | kvm->arch.secure_guest |= KVMPPC_SECURE_INIT_START; | |
226 | out: | |
227 | srcu_read_unlock(&kvm->srcu, srcu_idx); | |
228 | return ret; | |
229 | } | |
230 | ||
231 | unsigned long kvmppc_h_svm_init_done(struct kvm *kvm) | |
232 | { | |
233 | if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START)) | |
234 | return H_UNSUPPORTED; | |
235 | ||
236 | kvm->arch.secure_guest |= KVMPPC_SECURE_INIT_DONE; | |
237 | pr_info("LPID %d went secure\n", kvm->arch.lpid); | |
238 | return H_SUCCESS; | |
239 | } | |
240 | ||
241 | /* | |
242 | * Get a free device PFN from the pool | |
243 | * | |
244 | * Called when a normal page is moved to secure memory (UV_PAGE_IN). Device | |
245 | * PFN will be used to keep track of the secure page on HV side. | |
246 | * | |
247 | * Called with kvm->arch.uvmem_lock held | |
248 | */ | |
249 | static struct page *kvmppc_uvmem_get_page(unsigned long gpa, struct kvm *kvm) | |
250 | { | |
251 | struct page *dpage = NULL; | |
252 | unsigned long bit, uvmem_pfn; | |
253 | struct kvmppc_uvmem_page_pvt *pvt; | |
254 | unsigned long pfn_last, pfn_first; | |
255 | ||
256 | pfn_first = kvmppc_uvmem_pgmap.res.start >> PAGE_SHIFT; | |
257 | pfn_last = pfn_first + | |
258 | (resource_size(&kvmppc_uvmem_pgmap.res) >> PAGE_SHIFT); | |
259 | ||
260 | spin_lock(&kvmppc_uvmem_bitmap_lock); | |
261 | bit = find_first_zero_bit(kvmppc_uvmem_bitmap, | |
262 | pfn_last - pfn_first); | |
263 | if (bit >= (pfn_last - pfn_first)) | |
264 | goto out; | |
265 | bitmap_set(kvmppc_uvmem_bitmap, bit, 1); | |
266 | spin_unlock(&kvmppc_uvmem_bitmap_lock); | |
267 | ||
268 | pvt = kzalloc(sizeof(*pvt), GFP_KERNEL); | |
269 | if (!pvt) | |
270 | goto out_clear; | |
271 | ||
272 | uvmem_pfn = bit + pfn_first; | |
273 | kvmppc_uvmem_pfn_insert(gpa >> PAGE_SHIFT, uvmem_pfn, kvm); | |
274 | ||
275 | pvt->gpa = gpa; | |
276 | pvt->kvm = kvm; | |
277 | ||
278 | dpage = pfn_to_page(uvmem_pfn); | |
279 | dpage->zone_device_data = pvt; | |
280 | get_page(dpage); | |
281 | lock_page(dpage); | |
282 | return dpage; | |
283 | out_clear: | |
284 | spin_lock(&kvmppc_uvmem_bitmap_lock); | |
285 | bitmap_clear(kvmppc_uvmem_bitmap, bit, 1); | |
286 | out: | |
287 | spin_unlock(&kvmppc_uvmem_bitmap_lock); | |
288 | return NULL; | |
289 | } | |
290 | ||
291 | /* | |
292 | * Alloc a PFN from private device memory pool and copy page from normal | |
293 | * memory to secure memory using UV_PAGE_IN uvcall. | |
294 | */ | |
295 | static int | |
296 | kvmppc_svm_page_in(struct vm_area_struct *vma, unsigned long start, | |
297 | unsigned long end, unsigned long gpa, struct kvm *kvm, | |
298 | unsigned long page_shift, bool *downgrade) | |
299 | { | |
300 | unsigned long src_pfn, dst_pfn = 0; | |
301 | struct migrate_vma mig; | |
302 | struct page *spage; | |
303 | unsigned long pfn; | |
304 | struct page *dpage; | |
305 | int ret = 0; | |
306 | ||
307 | memset(&mig, 0, sizeof(mig)); | |
308 | mig.vma = vma; | |
309 | mig.start = start; | |
310 | mig.end = end; | |
311 | mig.src = &src_pfn; | |
312 | mig.dst = &dst_pfn; | |
313 | ||
314 | /* | |
315 | * We come here with mmap_sem write lock held just for | |
316 | * ksm_madvise(), otherwise we only need read mmap_sem. | |
317 | * Hence downgrade to read lock once ksm_madvise() is done. | |
318 | */ | |
319 | ret = ksm_madvise(vma, vma->vm_start, vma->vm_end, | |
320 | MADV_UNMERGEABLE, &vma->vm_flags); | |
321 | downgrade_write(&kvm->mm->mmap_sem); | |
322 | *downgrade = true; | |
323 | if (ret) | |
324 | return ret; | |
325 | ||
326 | ret = migrate_vma_setup(&mig); | |
327 | if (ret) | |
328 | return ret; | |
329 | ||
330 | if (!(*mig.src & MIGRATE_PFN_MIGRATE)) { | |
331 | ret = -1; | |
332 | goto out_finalize; | |
333 | } | |
334 | ||
335 | dpage = kvmppc_uvmem_get_page(gpa, kvm); | |
336 | if (!dpage) { | |
337 | ret = -1; | |
338 | goto out_finalize; | |
339 | } | |
340 | ||
341 | pfn = *mig.src >> MIGRATE_PFN_SHIFT; | |
342 | spage = migrate_pfn_to_page(*mig.src); | |
343 | if (spage) | |
344 | uv_page_in(kvm->arch.lpid, pfn << page_shift, gpa, 0, | |
345 | page_shift); | |
346 | ||
347 | *mig.dst = migrate_pfn(page_to_pfn(dpage)) | MIGRATE_PFN_LOCKED; | |
348 | migrate_vma_pages(&mig); | |
349 | out_finalize: | |
350 | migrate_vma_finalize(&mig); | |
351 | return ret; | |
352 | } | |
353 | ||
60f0a643 BR |
354 | /* |
355 | * Shares the page with HV, thus making it a normal page. | |
356 | * | |
357 | * - If the page is already secure, then provision a new page and share | |
358 | * - If the page is a normal page, share the existing page | |
359 | * | |
360 | * In the former case, uses dev_pagemap_ops.migrate_to_ram handler | |
361 | * to unmap the device page from QEMU's page tables. | |
362 | */ | |
363 | static unsigned long | |
364 | kvmppc_share_page(struct kvm *kvm, unsigned long gpa, unsigned long page_shift) | |
365 | { | |
366 | ||
367 | int ret = H_PARAMETER; | |
368 | struct page *uvmem_page; | |
369 | struct kvmppc_uvmem_page_pvt *pvt; | |
370 | unsigned long pfn; | |
371 | unsigned long gfn = gpa >> page_shift; | |
372 | int srcu_idx; | |
373 | unsigned long uvmem_pfn; | |
374 | ||
375 | srcu_idx = srcu_read_lock(&kvm->srcu); | |
376 | mutex_lock(&kvm->arch.uvmem_lock); | |
377 | if (kvmppc_gfn_is_uvmem_pfn(gfn, kvm, &uvmem_pfn)) { | |
378 | uvmem_page = pfn_to_page(uvmem_pfn); | |
379 | pvt = uvmem_page->zone_device_data; | |
380 | pvt->skip_page_out = true; | |
381 | } | |
382 | ||
383 | retry: | |
384 | mutex_unlock(&kvm->arch.uvmem_lock); | |
385 | pfn = gfn_to_pfn(kvm, gfn); | |
386 | if (is_error_noslot_pfn(pfn)) | |
387 | goto out; | |
388 | ||
389 | mutex_lock(&kvm->arch.uvmem_lock); | |
390 | if (kvmppc_gfn_is_uvmem_pfn(gfn, kvm, &uvmem_pfn)) { | |
391 | uvmem_page = pfn_to_page(uvmem_pfn); | |
392 | pvt = uvmem_page->zone_device_data; | |
393 | pvt->skip_page_out = true; | |
394 | kvm_release_pfn_clean(pfn); | |
395 | goto retry; | |
396 | } | |
397 | ||
398 | if (!uv_page_in(kvm->arch.lpid, pfn << page_shift, gpa, 0, page_shift)) | |
399 | ret = H_SUCCESS; | |
400 | kvm_release_pfn_clean(pfn); | |
401 | mutex_unlock(&kvm->arch.uvmem_lock); | |
402 | out: | |
403 | srcu_read_unlock(&kvm->srcu, srcu_idx); | |
404 | return ret; | |
405 | } | |
406 | ||
ca9f4942 BR |
407 | /* |
408 | * H_SVM_PAGE_IN: Move page from normal memory to secure memory. | |
60f0a643 BR |
409 | * |
410 | * H_PAGE_IN_SHARED flag makes the page shared which means that the same | |
411 | * memory in is visible from both UV and HV. | |
ca9f4942 BR |
412 | */ |
413 | unsigned long | |
414 | kvmppc_h_svm_page_in(struct kvm *kvm, unsigned long gpa, | |
415 | unsigned long flags, unsigned long page_shift) | |
416 | { | |
417 | bool downgrade = false; | |
418 | unsigned long start, end; | |
419 | struct vm_area_struct *vma; | |
420 | int srcu_idx; | |
421 | unsigned long gfn = gpa >> page_shift; | |
422 | int ret; | |
423 | ||
424 | if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START)) | |
425 | return H_UNSUPPORTED; | |
426 | ||
427 | if (page_shift != PAGE_SHIFT) | |
428 | return H_P3; | |
429 | ||
60f0a643 | 430 | if (flags & ~H_PAGE_IN_SHARED) |
ca9f4942 BR |
431 | return H_P2; |
432 | ||
60f0a643 BR |
433 | if (flags & H_PAGE_IN_SHARED) |
434 | return kvmppc_share_page(kvm, gpa, page_shift); | |
435 | ||
ca9f4942 BR |
436 | ret = H_PARAMETER; |
437 | srcu_idx = srcu_read_lock(&kvm->srcu); | |
438 | down_write(&kvm->mm->mmap_sem); | |
439 | ||
440 | start = gfn_to_hva(kvm, gfn); | |
441 | if (kvm_is_error_hva(start)) | |
442 | goto out; | |
443 | ||
444 | mutex_lock(&kvm->arch.uvmem_lock); | |
445 | /* Fail the page-in request of an already paged-in page */ | |
446 | if (kvmppc_gfn_is_uvmem_pfn(gfn, kvm, NULL)) | |
447 | goto out_unlock; | |
448 | ||
449 | end = start + (1UL << page_shift); | |
450 | vma = find_vma_intersection(kvm->mm, start, end); | |
451 | if (!vma || vma->vm_start > start || vma->vm_end < end) | |
452 | goto out_unlock; | |
453 | ||
454 | if (!kvmppc_svm_page_in(vma, start, end, gpa, kvm, page_shift, | |
455 | &downgrade)) | |
456 | ret = H_SUCCESS; | |
457 | out_unlock: | |
458 | mutex_unlock(&kvm->arch.uvmem_lock); | |
459 | out: | |
460 | if (downgrade) | |
461 | up_read(&kvm->mm->mmap_sem); | |
462 | else | |
463 | up_write(&kvm->mm->mmap_sem); | |
464 | srcu_read_unlock(&kvm->srcu, srcu_idx); | |
465 | return ret; | |
466 | } | |
467 | ||
468 | /* | |
469 | * Provision a new page on HV side and copy over the contents | |
470 | * from secure memory using UV_PAGE_OUT uvcall. | |
471 | */ | |
472 | static int | |
473 | kvmppc_svm_page_out(struct vm_area_struct *vma, unsigned long start, | |
474 | unsigned long end, unsigned long page_shift, | |
475 | struct kvm *kvm, unsigned long gpa) | |
476 | { | |
477 | unsigned long src_pfn, dst_pfn = 0; | |
478 | struct migrate_vma mig; | |
479 | struct page *dpage, *spage; | |
60f0a643 | 480 | struct kvmppc_uvmem_page_pvt *pvt; |
ca9f4942 BR |
481 | unsigned long pfn; |
482 | int ret = U_SUCCESS; | |
483 | ||
484 | memset(&mig, 0, sizeof(mig)); | |
485 | mig.vma = vma; | |
486 | mig.start = start; | |
487 | mig.end = end; | |
488 | mig.src = &src_pfn; | |
489 | mig.dst = &dst_pfn; | |
490 | ||
491 | mutex_lock(&kvm->arch.uvmem_lock); | |
492 | /* The requested page is already paged-out, nothing to do */ | |
493 | if (!kvmppc_gfn_is_uvmem_pfn(gpa >> page_shift, kvm, NULL)) | |
494 | goto out; | |
495 | ||
496 | ret = migrate_vma_setup(&mig); | |
497 | if (ret) | |
498 | return ret; | |
499 | ||
500 | spage = migrate_pfn_to_page(*mig.src); | |
501 | if (!spage || !(*mig.src & MIGRATE_PFN_MIGRATE)) | |
502 | goto out_finalize; | |
503 | ||
504 | if (!is_zone_device_page(spage)) | |
505 | goto out_finalize; | |
506 | ||
507 | dpage = alloc_page_vma(GFP_HIGHUSER, vma, start); | |
508 | if (!dpage) { | |
509 | ret = -1; | |
510 | goto out_finalize; | |
511 | } | |
512 | ||
513 | lock_page(dpage); | |
60f0a643 | 514 | pvt = spage->zone_device_data; |
ca9f4942 BR |
515 | pfn = page_to_pfn(dpage); |
516 | ||
60f0a643 BR |
517 | /* |
518 | * This function is used in two cases: | |
519 | * - When HV touches a secure page, for which we do UV_PAGE_OUT | |
520 | * - When a secure page is converted to shared page, we *get* | |
521 | * the page to essentially unmap the device page. In this | |
522 | * case we skip page-out. | |
523 | */ | |
524 | if (!pvt->skip_page_out) | |
525 | ret = uv_page_out(kvm->arch.lpid, pfn << page_shift, | |
526 | gpa, 0, page_shift); | |
527 | ||
ca9f4942 BR |
528 | if (ret == U_SUCCESS) |
529 | *mig.dst = migrate_pfn(pfn) | MIGRATE_PFN_LOCKED; | |
530 | else { | |
531 | unlock_page(dpage); | |
532 | __free_page(dpage); | |
533 | goto out_finalize; | |
534 | } | |
535 | ||
536 | migrate_vma_pages(&mig); | |
537 | out_finalize: | |
538 | migrate_vma_finalize(&mig); | |
539 | out: | |
540 | mutex_unlock(&kvm->arch.uvmem_lock); | |
541 | return ret; | |
542 | } | |
543 | ||
544 | /* | |
545 | * Fault handler callback that gets called when HV touches any page that | |
546 | * has been moved to secure memory, we ask UV to give back the page by | |
547 | * issuing UV_PAGE_OUT uvcall. | |
548 | * | |
549 | * This eventually results in dropping of device PFN and the newly | |
550 | * provisioned page/PFN gets populated in QEMU page tables. | |
551 | */ | |
552 | static vm_fault_t kvmppc_uvmem_migrate_to_ram(struct vm_fault *vmf) | |
553 | { | |
554 | struct kvmppc_uvmem_page_pvt *pvt = vmf->page->zone_device_data; | |
555 | ||
556 | if (kvmppc_svm_page_out(vmf->vma, vmf->address, | |
557 | vmf->address + PAGE_SIZE, PAGE_SHIFT, | |
558 | pvt->kvm, pvt->gpa)) | |
559 | return VM_FAULT_SIGBUS; | |
560 | else | |
561 | return 0; | |
562 | } | |
563 | ||
564 | /* | |
565 | * Release the device PFN back to the pool | |
566 | * | |
567 | * Gets called when secure page becomes a normal page during H_SVM_PAGE_OUT. | |
568 | * Gets called with kvm->arch.uvmem_lock held. | |
569 | */ | |
570 | static void kvmppc_uvmem_page_free(struct page *page) | |
571 | { | |
572 | unsigned long pfn = page_to_pfn(page) - | |
573 | (kvmppc_uvmem_pgmap.res.start >> PAGE_SHIFT); | |
574 | struct kvmppc_uvmem_page_pvt *pvt; | |
575 | ||
576 | spin_lock(&kvmppc_uvmem_bitmap_lock); | |
577 | bitmap_clear(kvmppc_uvmem_bitmap, pfn, 1); | |
578 | spin_unlock(&kvmppc_uvmem_bitmap_lock); | |
579 | ||
580 | pvt = page->zone_device_data; | |
581 | page->zone_device_data = NULL; | |
582 | kvmppc_uvmem_pfn_remove(pvt->gpa >> PAGE_SHIFT, pvt->kvm); | |
583 | kfree(pvt); | |
584 | } | |
585 | ||
586 | static const struct dev_pagemap_ops kvmppc_uvmem_ops = { | |
587 | .page_free = kvmppc_uvmem_page_free, | |
588 | .migrate_to_ram = kvmppc_uvmem_migrate_to_ram, | |
589 | }; | |
590 | ||
591 | /* | |
592 | * H_SVM_PAGE_OUT: Move page from secure memory to normal memory. | |
593 | */ | |
594 | unsigned long | |
595 | kvmppc_h_svm_page_out(struct kvm *kvm, unsigned long gpa, | |
596 | unsigned long flags, unsigned long page_shift) | |
597 | { | |
598 | unsigned long gfn = gpa >> page_shift; | |
599 | unsigned long start, end; | |
600 | struct vm_area_struct *vma; | |
601 | int srcu_idx; | |
602 | int ret; | |
603 | ||
604 | if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START)) | |
605 | return H_UNSUPPORTED; | |
606 | ||
607 | if (page_shift != PAGE_SHIFT) | |
608 | return H_P3; | |
609 | ||
610 | if (flags) | |
611 | return H_P2; | |
612 | ||
613 | ret = H_PARAMETER; | |
614 | srcu_idx = srcu_read_lock(&kvm->srcu); | |
615 | down_read(&kvm->mm->mmap_sem); | |
616 | start = gfn_to_hva(kvm, gfn); | |
617 | if (kvm_is_error_hva(start)) | |
618 | goto out; | |
619 | ||
620 | end = start + (1UL << page_shift); | |
621 | vma = find_vma_intersection(kvm->mm, start, end); | |
622 | if (!vma || vma->vm_start > start || vma->vm_end < end) | |
623 | goto out; | |
624 | ||
625 | if (!kvmppc_svm_page_out(vma, start, end, page_shift, kvm, gpa)) | |
626 | ret = H_SUCCESS; | |
627 | out: | |
628 | up_read(&kvm->mm->mmap_sem); | |
629 | srcu_read_unlock(&kvm->srcu, srcu_idx); | |
630 | return ret; | |
631 | } | |
632 | ||
633 | static u64 kvmppc_get_secmem_size(void) | |
634 | { | |
635 | struct device_node *np; | |
636 | int i, len; | |
637 | const __be32 *prop; | |
638 | u64 size = 0; | |
639 | ||
640 | np = of_find_compatible_node(NULL, NULL, "ibm,uv-firmware"); | |
641 | if (!np) | |
642 | goto out; | |
643 | ||
644 | prop = of_get_property(np, "secure-memory-ranges", &len); | |
645 | if (!prop) | |
646 | goto out_put; | |
647 | ||
648 | for (i = 0; i < len / (sizeof(*prop) * 4); i++) | |
649 | size += of_read_number(prop + (i * 4) + 2, 2); | |
650 | ||
651 | out_put: | |
652 | of_node_put(np); | |
653 | out: | |
654 | return size; | |
655 | } | |
656 | ||
657 | int kvmppc_uvmem_init(void) | |
658 | { | |
659 | int ret = 0; | |
660 | unsigned long size; | |
661 | struct resource *res; | |
662 | void *addr; | |
663 | unsigned long pfn_last, pfn_first; | |
664 | ||
665 | size = kvmppc_get_secmem_size(); | |
666 | if (!size) { | |
667 | /* | |
668 | * Don't fail the initialization of kvm-hv module if | |
669 | * the platform doesn't export ibm,uv-firmware node. | |
670 | * Let normal guests run on such PEF-disabled platform. | |
671 | */ | |
672 | pr_info("KVMPPC-UVMEM: No support for secure guests\n"); | |
673 | goto out; | |
674 | } | |
675 | ||
676 | res = request_free_mem_region(&iomem_resource, size, "kvmppc_uvmem"); | |
677 | if (IS_ERR(res)) { | |
678 | ret = PTR_ERR(res); | |
679 | goto out; | |
680 | } | |
681 | ||
682 | kvmppc_uvmem_pgmap.type = MEMORY_DEVICE_PRIVATE; | |
683 | kvmppc_uvmem_pgmap.res = *res; | |
684 | kvmppc_uvmem_pgmap.ops = &kvmppc_uvmem_ops; | |
685 | addr = memremap_pages(&kvmppc_uvmem_pgmap, NUMA_NO_NODE); | |
686 | if (IS_ERR(addr)) { | |
687 | ret = PTR_ERR(addr); | |
688 | goto out_free_region; | |
689 | } | |
690 | ||
691 | pfn_first = res->start >> PAGE_SHIFT; | |
692 | pfn_last = pfn_first + (resource_size(res) >> PAGE_SHIFT); | |
693 | kvmppc_uvmem_bitmap = kcalloc(BITS_TO_LONGS(pfn_last - pfn_first), | |
694 | sizeof(unsigned long), GFP_KERNEL); | |
695 | if (!kvmppc_uvmem_bitmap) { | |
696 | ret = -ENOMEM; | |
697 | goto out_unmap; | |
698 | } | |
699 | ||
700 | pr_info("KVMPPC-UVMEM: Secure Memory size 0x%lx\n", size); | |
701 | return ret; | |
702 | out_unmap: | |
703 | memunmap_pages(&kvmppc_uvmem_pgmap); | |
704 | out_free_region: | |
705 | release_mem_region(res->start, size); | |
706 | out: | |
707 | return ret; | |
708 | } | |
709 | ||
710 | void kvmppc_uvmem_free(void) | |
711 | { | |
712 | memunmap_pages(&kvmppc_uvmem_pgmap); | |
713 | release_mem_region(kvmppc_uvmem_pgmap.res.start, | |
714 | resource_size(&kvmppc_uvmem_pgmap.res)); | |
715 | kfree(kvmppc_uvmem_bitmap); | |
716 | } |