]>
Commit | Line | Data |
---|---|---|
45051539 | 1 | // SPDX-License-Identifier: GPL-2.0-only |
3c7b4e6b CM |
2 | /* |
3 | * mm/kmemleak.c | |
4 | * | |
5 | * Copyright (C) 2008 ARM Limited | |
6 | * Written by Catalin Marinas <[email protected]> | |
7 | * | |
3c7b4e6b | 8 | * For more information on the algorithm and kmemleak usage, please see |
22901c6c | 9 | * Documentation/dev-tools/kmemleak.rst. |
3c7b4e6b CM |
10 | * |
11 | * Notes on locking | |
12 | * ---------------- | |
13 | * | |
14 | * The following locks and mutexes are used by kmemleak: | |
15 | * | |
8c96f1bc | 16 | * - kmemleak_lock (raw_spinlock_t): protects the object_list modifications and |
3c7b4e6b CM |
17 | * accesses to the object_tree_root. The object_list is the main list |
18 | * holding the metadata (struct kmemleak_object) for the allocated memory | |
85d3a316 | 19 | * blocks. The object_tree_root is a red black tree used to look-up |
3c7b4e6b CM |
20 | * metadata based on a pointer to the corresponding memory block. The |
21 | * kmemleak_object structures are added to the object_list and | |
22 | * object_tree_root in the create_object() function called from the | |
23 | * kmemleak_alloc() callback and removed in delete_object() called from the | |
24 | * kmemleak_free() callback | |
8c96f1bc HZ |
25 | * - kmemleak_object.lock (raw_spinlock_t): protects a kmemleak_object. |
26 | * Accesses to the metadata (e.g. count) are protected by this lock. Note | |
27 | * that some members of this structure may be protected by other means | |
28 | * (atomic or kmemleak_lock). This lock is also held when scanning the | |
29 | * corresponding memory block to avoid the kernel freeing it via the | |
30 | * kmemleak_free() callback. This is less heavyweight than holding a global | |
31 | * lock like kmemleak_lock during scanning. | |
3c7b4e6b CM |
32 | * - scan_mutex (mutex): ensures that only one thread may scan the memory for |
33 | * unreferenced objects at a time. The gray_list contains the objects which | |
34 | * are already referenced or marked as false positives and need to be | |
35 | * scanned. This list is only modified during a scanning episode when the | |
36 | * scan_mutex is held. At the end of a scan, the gray_list is always empty. | |
37 | * Note that the kmemleak_object.use_count is incremented when an object is | |
4698c1f2 CM |
38 | * added to the gray_list and therefore cannot be freed. This mutex also |
39 | * prevents multiple users of the "kmemleak" debugfs file together with | |
40 | * modifications to the memory scanning parameters including the scan_thread | |
41 | * pointer | |
3c7b4e6b | 42 | * |
93ada579 | 43 | * Locks and mutexes are acquired/nested in the following order: |
9d5a4c73 | 44 | * |
93ada579 CM |
45 | * scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING) |
46 | * | |
47 | * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex | |
48 | * regions. | |
9d5a4c73 | 49 | * |
3c7b4e6b CM |
50 | * The kmemleak_object structures have a use_count incremented or decremented |
51 | * using the get_object()/put_object() functions. When the use_count becomes | |
52 | * 0, this count can no longer be incremented and put_object() schedules the | |
53 | * kmemleak_object freeing via an RCU callback. All calls to the get_object() | |
54 | * function must be protected by rcu_read_lock() to avoid accessing a freed | |
55 | * structure. | |
56 | */ | |
57 | ||
ae281064 JP |
58 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
59 | ||
3c7b4e6b CM |
60 | #include <linux/init.h> |
61 | #include <linux/kernel.h> | |
62 | #include <linux/list.h> | |
3f07c014 | 63 | #include <linux/sched/signal.h> |
29930025 | 64 | #include <linux/sched/task.h> |
68db0cf1 | 65 | #include <linux/sched/task_stack.h> |
3c7b4e6b CM |
66 | #include <linux/jiffies.h> |
67 | #include <linux/delay.h> | |
b95f1b31 | 68 | #include <linux/export.h> |
3c7b4e6b | 69 | #include <linux/kthread.h> |
85d3a316 | 70 | #include <linux/rbtree.h> |
3c7b4e6b CM |
71 | #include <linux/fs.h> |
72 | #include <linux/debugfs.h> | |
73 | #include <linux/seq_file.h> | |
74 | #include <linux/cpumask.h> | |
75 | #include <linux/spinlock.h> | |
154221c3 | 76 | #include <linux/module.h> |
3c7b4e6b CM |
77 | #include <linux/mutex.h> |
78 | #include <linux/rcupdate.h> | |
79 | #include <linux/stacktrace.h> | |
80 | #include <linux/cache.h> | |
81 | #include <linux/percpu.h> | |
57c8a661 | 82 | #include <linux/memblock.h> |
9099daed | 83 | #include <linux/pfn.h> |
3c7b4e6b CM |
84 | #include <linux/mmzone.h> |
85 | #include <linux/slab.h> | |
86 | #include <linux/thread_info.h> | |
87 | #include <linux/err.h> | |
88 | #include <linux/uaccess.h> | |
89 | #include <linux/string.h> | |
90 | #include <linux/nodemask.h> | |
91 | #include <linux/mm.h> | |
179a8100 | 92 | #include <linux/workqueue.h> |
04609ccc | 93 | #include <linux/crc32.h> |
3c7b4e6b CM |
94 | |
95 | #include <asm/sections.h> | |
96 | #include <asm/processor.h> | |
60063497 | 97 | #include <linux/atomic.h> |
3c7b4e6b | 98 | |
e79ed2f1 | 99 | #include <linux/kasan.h> |
95511580 | 100 | #include <linux/kfence.h> |
3c7b4e6b | 101 | #include <linux/kmemleak.h> |
029aeff5 | 102 | #include <linux/memory_hotplug.h> |
3c7b4e6b CM |
103 | |
104 | /* | |
105 | * Kmemleak configuration and common defines. | |
106 | */ | |
107 | #define MAX_TRACE 16 /* stack trace length */ | |
3c7b4e6b | 108 | #define MSECS_MIN_AGE 5000 /* minimum object age for reporting */ |
3c7b4e6b CM |
109 | #define SECS_FIRST_SCAN 60 /* delay before the first scan */ |
110 | #define SECS_SCAN_WAIT 600 /* subsequent auto scanning delay */ | |
af98603d | 111 | #define MAX_SCAN_SIZE 4096 /* maximum size of a scanned block */ |
3c7b4e6b CM |
112 | |
113 | #define BYTES_PER_POINTER sizeof(void *) | |
114 | ||
216c04b0 | 115 | /* GFP bitmask for kmemleak internal allocations */ |
20b5c303 | 116 | #define gfp_kmemleak_mask(gfp) (((gfp) & (GFP_KERNEL | GFP_ATOMIC)) | \ |
6ae4bd1f | 117 | __GFP_NORETRY | __GFP_NOMEMALLOC | \ |
df9576de | 118 | __GFP_NOWARN) |
216c04b0 | 119 | |
3c7b4e6b CM |
120 | /* scanning area inside a memory block */ |
121 | struct kmemleak_scan_area { | |
122 | struct hlist_node node; | |
c017b4be CM |
123 | unsigned long start; |
124 | size_t size; | |
3c7b4e6b CM |
125 | }; |
126 | ||
a1084c87 LR |
127 | #define KMEMLEAK_GREY 0 |
128 | #define KMEMLEAK_BLACK -1 | |
129 | ||
3c7b4e6b CM |
130 | /* |
131 | * Structure holding the metadata for each allocated memory block. | |
132 | * Modifications to such objects should be made while holding the | |
133 | * object->lock. Insertions or deletions from object_list, gray_list or | |
85d3a316 | 134 | * rb_node are already protected by the corresponding locks or mutex (see |
3c7b4e6b CM |
135 | * the notes on locking above). These objects are reference-counted |
136 | * (use_count) and freed using the RCU mechanism. | |
137 | */ | |
138 | struct kmemleak_object { | |
8c96f1bc | 139 | raw_spinlock_t lock; |
f66abf09 | 140 | unsigned int flags; /* object status flags */ |
3c7b4e6b CM |
141 | struct list_head object_list; |
142 | struct list_head gray_list; | |
85d3a316 | 143 | struct rb_node rb_node; |
3c7b4e6b CM |
144 | struct rcu_head rcu; /* object_list lockless traversal */ |
145 | /* object usage count; object freed when use_count == 0 */ | |
146 | atomic_t use_count; | |
147 | unsigned long pointer; | |
148 | size_t size; | |
94f4a161 CM |
149 | /* pass surplus references to this pointer */ |
150 | unsigned long excess_ref; | |
3c7b4e6b CM |
151 | /* minimum number of a pointers found before it is considered leak */ |
152 | int min_count; | |
153 | /* the total number of pointers found pointing to this object */ | |
154 | int count; | |
04609ccc CM |
155 | /* checksum for detecting modified objects */ |
156 | u32 checksum; | |
3c7b4e6b CM |
157 | /* memory ranges to be scanned inside an object (empty for all) */ |
158 | struct hlist_head area_list; | |
159 | unsigned long trace[MAX_TRACE]; | |
160 | unsigned int trace_len; | |
161 | unsigned long jiffies; /* creation timestamp */ | |
162 | pid_t pid; /* pid of the current task */ | |
163 | char comm[TASK_COMM_LEN]; /* executable name */ | |
164 | }; | |
165 | ||
166 | /* flag representing the memory block allocation status */ | |
167 | #define OBJECT_ALLOCATED (1 << 0) | |
168 | /* flag set after the first reporting of an unreference object */ | |
169 | #define OBJECT_REPORTED (1 << 1) | |
170 | /* flag set to not scan the object */ | |
171 | #define OBJECT_NO_SCAN (1 << 2) | |
dba82d94 CM |
172 | /* flag set to fully scan the object when scan_area allocation failed */ |
173 | #define OBJECT_FULL_SCAN (1 << 3) | |
3c7b4e6b | 174 | |
154221c3 | 175 | #define HEX_PREFIX " " |
0494e082 SS |
176 | /* number of bytes to print per line; must be 16 or 32 */ |
177 | #define HEX_ROW_SIZE 16 | |
178 | /* number of bytes to print at a time (1, 2, 4, 8) */ | |
179 | #define HEX_GROUP_SIZE 1 | |
180 | /* include ASCII after the hex output */ | |
181 | #define HEX_ASCII 1 | |
182 | /* max number of lines to be printed */ | |
183 | #define HEX_MAX_LINES 2 | |
184 | ||
3c7b4e6b CM |
185 | /* the list of all allocated objects */ |
186 | static LIST_HEAD(object_list); | |
187 | /* the list of gray-colored objects (see color_gray comment below) */ | |
188 | static LIST_HEAD(gray_list); | |
0647398a | 189 | /* memory pool allocation */ |
c5665868 | 190 | static struct kmemleak_object mem_pool[CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE]; |
0647398a CM |
191 | static int mem_pool_free_count = ARRAY_SIZE(mem_pool); |
192 | static LIST_HEAD(mem_pool_free_list); | |
85d3a316 ML |
193 | /* search tree for object boundaries */ |
194 | static struct rb_root object_tree_root = RB_ROOT; | |
8c96f1bc HZ |
195 | /* protecting the access to object_list and object_tree_root */ |
196 | static DEFINE_RAW_SPINLOCK(kmemleak_lock); | |
3c7b4e6b CM |
197 | |
198 | /* allocation caches for kmemleak internal data */ | |
199 | static struct kmem_cache *object_cache; | |
200 | static struct kmem_cache *scan_area_cache; | |
201 | ||
202 | /* set if tracing memory operations is enabled */ | |
c5665868 | 203 | static int kmemleak_enabled = 1; |
c5f3b1a5 | 204 | /* same as above but only for the kmemleak_free() callback */ |
c5665868 | 205 | static int kmemleak_free_enabled = 1; |
3c7b4e6b | 206 | /* set in the late_initcall if there were no errors */ |
8910ae89 | 207 | static int kmemleak_initialized; |
5f79020c | 208 | /* set if a kmemleak warning was issued */ |
8910ae89 | 209 | static int kmemleak_warning; |
5f79020c | 210 | /* set if a fatal kmemleak error has occurred */ |
8910ae89 | 211 | static int kmemleak_error; |
3c7b4e6b CM |
212 | |
213 | /* minimum and maximum address that may be valid pointers */ | |
214 | static unsigned long min_addr = ULONG_MAX; | |
215 | static unsigned long max_addr; | |
216 | ||
3c7b4e6b | 217 | static struct task_struct *scan_thread; |
acf4968e | 218 | /* used to avoid reporting of recently allocated objects */ |
3c7b4e6b | 219 | static unsigned long jiffies_min_age; |
acf4968e | 220 | static unsigned long jiffies_last_scan; |
3c7b4e6b | 221 | /* delay between automatic memory scannings */ |
54dd200c | 222 | static unsigned long jiffies_scan_wait; |
3c7b4e6b | 223 | /* enables or disables the task stacks scanning */ |
e0a2a160 | 224 | static int kmemleak_stack_scan = 1; |
4698c1f2 | 225 | /* protects the memory scanning, parameters and debug/kmemleak file access */ |
3c7b4e6b | 226 | static DEFINE_MUTEX(scan_mutex); |
ab0155a2 JB |
227 | /* setting kmemleak=on, will set this var, skipping the disable */ |
228 | static int kmemleak_skip_disable; | |
dc9b3f42 LZ |
229 | /* If there are leaks that can be reported */ |
230 | static bool kmemleak_found_leaks; | |
3c7b4e6b | 231 | |
154221c3 VW |
232 | static bool kmemleak_verbose; |
233 | module_param_named(verbose, kmemleak_verbose, bool, 0600); | |
234 | ||
3c7b4e6b CM |
235 | static void kmemleak_disable(void); |
236 | ||
237 | /* | |
238 | * Print a warning and dump the stack trace. | |
239 | */ | |
5f79020c | 240 | #define kmemleak_warn(x...) do { \ |
598d8091 | 241 | pr_warn(x); \ |
5f79020c | 242 | dump_stack(); \ |
8910ae89 | 243 | kmemleak_warning = 1; \ |
3c7b4e6b CM |
244 | } while (0) |
245 | ||
246 | /* | |
25985edc | 247 | * Macro invoked when a serious kmemleak condition occurred and cannot be |
2030117d | 248 | * recovered from. Kmemleak will be disabled and further allocation/freeing |
3c7b4e6b CM |
249 | * tracing no longer available. |
250 | */ | |
000814f4 | 251 | #define kmemleak_stop(x...) do { \ |
3c7b4e6b CM |
252 | kmemleak_warn(x); \ |
253 | kmemleak_disable(); \ | |
254 | } while (0) | |
255 | ||
154221c3 VW |
256 | #define warn_or_seq_printf(seq, fmt, ...) do { \ |
257 | if (seq) \ | |
258 | seq_printf(seq, fmt, ##__VA_ARGS__); \ | |
259 | else \ | |
260 | pr_warn(fmt, ##__VA_ARGS__); \ | |
261 | } while (0) | |
262 | ||
263 | static void warn_or_seq_hex_dump(struct seq_file *seq, int prefix_type, | |
264 | int rowsize, int groupsize, const void *buf, | |
265 | size_t len, bool ascii) | |
266 | { | |
267 | if (seq) | |
268 | seq_hex_dump(seq, HEX_PREFIX, prefix_type, rowsize, groupsize, | |
269 | buf, len, ascii); | |
270 | else | |
271 | print_hex_dump(KERN_WARNING, pr_fmt(HEX_PREFIX), prefix_type, | |
272 | rowsize, groupsize, buf, len, ascii); | |
273 | } | |
274 | ||
0494e082 SS |
275 | /* |
276 | * Printing of the objects hex dump to the seq file. The number of lines to be | |
277 | * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The | |
278 | * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called | |
279 | * with the object->lock held. | |
280 | */ | |
281 | static void hex_dump_object(struct seq_file *seq, | |
282 | struct kmemleak_object *object) | |
283 | { | |
284 | const u8 *ptr = (const u8 *)object->pointer; | |
6fc37c49 | 285 | size_t len; |
0494e082 SS |
286 | |
287 | /* limit the number of lines to HEX_MAX_LINES */ | |
6fc37c49 | 288 | len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE); |
0494e082 | 289 | |
154221c3 | 290 | warn_or_seq_printf(seq, " hex dump (first %zu bytes):\n", len); |
5c335fe0 | 291 | kasan_disable_current(); |
154221c3 | 292 | warn_or_seq_hex_dump(seq, DUMP_PREFIX_NONE, HEX_ROW_SIZE, |
6c7a00b8 | 293 | HEX_GROUP_SIZE, kasan_reset_tag((void *)ptr), len, HEX_ASCII); |
5c335fe0 | 294 | kasan_enable_current(); |
0494e082 SS |
295 | } |
296 | ||
3c7b4e6b CM |
297 | /* |
298 | * Object colors, encoded with count and min_count: | |
299 | * - white - orphan object, not enough references to it (count < min_count) | |
300 | * - gray - not orphan, not marked as false positive (min_count == 0) or | |
301 | * sufficient references to it (count >= min_count) | |
302 | * - black - ignore, it doesn't contain references (e.g. text section) | |
303 | * (min_count == -1). No function defined for this color. | |
304 | * Newly created objects don't have any color assigned (object->count == -1) | |
305 | * before the next memory scan when they become white. | |
306 | */ | |
4a558dd6 | 307 | static bool color_white(const struct kmemleak_object *object) |
3c7b4e6b | 308 | { |
a1084c87 LR |
309 | return object->count != KMEMLEAK_BLACK && |
310 | object->count < object->min_count; | |
3c7b4e6b CM |
311 | } |
312 | ||
4a558dd6 | 313 | static bool color_gray(const struct kmemleak_object *object) |
3c7b4e6b | 314 | { |
a1084c87 LR |
315 | return object->min_count != KMEMLEAK_BLACK && |
316 | object->count >= object->min_count; | |
3c7b4e6b CM |
317 | } |
318 | ||
3c7b4e6b CM |
319 | /* |
320 | * Objects are considered unreferenced only if their color is white, they have | |
321 | * not be deleted and have a minimum age to avoid false positives caused by | |
322 | * pointers temporarily stored in CPU registers. | |
323 | */ | |
4a558dd6 | 324 | static bool unreferenced_object(struct kmemleak_object *object) |
3c7b4e6b | 325 | { |
04609ccc | 326 | return (color_white(object) && object->flags & OBJECT_ALLOCATED) && |
acf4968e CM |
327 | time_before_eq(object->jiffies + jiffies_min_age, |
328 | jiffies_last_scan); | |
3c7b4e6b CM |
329 | } |
330 | ||
331 | /* | |
bab4a34a CM |
332 | * Printing of the unreferenced objects information to the seq file. The |
333 | * print_unreferenced function must be called with the object->lock held. | |
3c7b4e6b | 334 | */ |
3c7b4e6b CM |
335 | static void print_unreferenced(struct seq_file *seq, |
336 | struct kmemleak_object *object) | |
337 | { | |
338 | int i; | |
fefdd336 | 339 | unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies); |
3c7b4e6b | 340 | |
154221c3 | 341 | warn_or_seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n", |
bab4a34a | 342 | object->pointer, object->size); |
154221c3 | 343 | warn_or_seq_printf(seq, " comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n", |
fefdd336 CM |
344 | object->comm, object->pid, object->jiffies, |
345 | msecs_age / 1000, msecs_age % 1000); | |
0494e082 | 346 | hex_dump_object(seq, object); |
154221c3 | 347 | warn_or_seq_printf(seq, " backtrace:\n"); |
3c7b4e6b CM |
348 | |
349 | for (i = 0; i < object->trace_len; i++) { | |
350 | void *ptr = (void *)object->trace[i]; | |
154221c3 | 351 | warn_or_seq_printf(seq, " [<%p>] %pS\n", ptr, ptr); |
3c7b4e6b CM |
352 | } |
353 | } | |
354 | ||
355 | /* | |
356 | * Print the kmemleak_object information. This function is used mainly for | |
357 | * debugging special cases when kmemleak operations. It must be called with | |
358 | * the object->lock held. | |
359 | */ | |
360 | static void dump_object_info(struct kmemleak_object *object) | |
361 | { | |
ae281064 | 362 | pr_notice("Object 0x%08lx (size %zu):\n", |
85d3a316 | 363 | object->pointer, object->size); |
3c7b4e6b CM |
364 | pr_notice(" comm \"%s\", pid %d, jiffies %lu\n", |
365 | object->comm, object->pid, object->jiffies); | |
366 | pr_notice(" min_count = %d\n", object->min_count); | |
367 | pr_notice(" count = %d\n", object->count); | |
f66abf09 | 368 | pr_notice(" flags = 0x%x\n", object->flags); |
aae0ad7a | 369 | pr_notice(" checksum = %u\n", object->checksum); |
3c7b4e6b | 370 | pr_notice(" backtrace:\n"); |
07984aad | 371 | stack_trace_print(object->trace, object->trace_len, 4); |
3c7b4e6b CM |
372 | } |
373 | ||
374 | /* | |
85d3a316 | 375 | * Look-up a memory block metadata (kmemleak_object) in the object search |
3c7b4e6b CM |
376 | * tree based on a pointer value. If alias is 0, only values pointing to the |
377 | * beginning of the memory block are allowed. The kmemleak_lock must be held | |
378 | * when calling this function. | |
379 | */ | |
380 | static struct kmemleak_object *lookup_object(unsigned long ptr, int alias) | |
381 | { | |
85d3a316 ML |
382 | struct rb_node *rb = object_tree_root.rb_node; |
383 | ||
384 | while (rb) { | |
385 | struct kmemleak_object *object = | |
386 | rb_entry(rb, struct kmemleak_object, rb_node); | |
387 | if (ptr < object->pointer) | |
388 | rb = object->rb_node.rb_left; | |
389 | else if (object->pointer + object->size <= ptr) | |
390 | rb = object->rb_node.rb_right; | |
391 | else if (object->pointer == ptr || alias) | |
392 | return object; | |
393 | else { | |
5f79020c CM |
394 | kmemleak_warn("Found object by alias at 0x%08lx\n", |
395 | ptr); | |
a7686a45 | 396 | dump_object_info(object); |
85d3a316 | 397 | break; |
3c7b4e6b | 398 | } |
85d3a316 ML |
399 | } |
400 | return NULL; | |
3c7b4e6b CM |
401 | } |
402 | ||
403 | /* | |
404 | * Increment the object use_count. Return 1 if successful or 0 otherwise. Note | |
405 | * that once an object's use_count reached 0, the RCU freeing was already | |
406 | * registered and the object should no longer be used. This function must be | |
407 | * called under the protection of rcu_read_lock(). | |
408 | */ | |
409 | static int get_object(struct kmemleak_object *object) | |
410 | { | |
411 | return atomic_inc_not_zero(&object->use_count); | |
412 | } | |
413 | ||
0647398a CM |
414 | /* |
415 | * Memory pool allocation and freeing. kmemleak_lock must not be held. | |
416 | */ | |
417 | static struct kmemleak_object *mem_pool_alloc(gfp_t gfp) | |
418 | { | |
419 | unsigned long flags; | |
420 | struct kmemleak_object *object; | |
421 | ||
422 | /* try the slab allocator first */ | |
c5665868 CM |
423 | if (object_cache) { |
424 | object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp)); | |
425 | if (object) | |
426 | return object; | |
427 | } | |
0647398a CM |
428 | |
429 | /* slab allocation failed, try the memory pool */ | |
8c96f1bc | 430 | raw_spin_lock_irqsave(&kmemleak_lock, flags); |
0647398a CM |
431 | object = list_first_entry_or_null(&mem_pool_free_list, |
432 | typeof(*object), object_list); | |
433 | if (object) | |
434 | list_del(&object->object_list); | |
435 | else if (mem_pool_free_count) | |
436 | object = &mem_pool[--mem_pool_free_count]; | |
c5665868 CM |
437 | else |
438 | pr_warn_once("Memory pool empty, consider increasing CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE\n"); | |
8c96f1bc | 439 | raw_spin_unlock_irqrestore(&kmemleak_lock, flags); |
0647398a CM |
440 | |
441 | return object; | |
442 | } | |
443 | ||
444 | /* | |
445 | * Return the object to either the slab allocator or the memory pool. | |
446 | */ | |
447 | static void mem_pool_free(struct kmemleak_object *object) | |
448 | { | |
449 | unsigned long flags; | |
450 | ||
451 | if (object < mem_pool || object >= mem_pool + ARRAY_SIZE(mem_pool)) { | |
452 | kmem_cache_free(object_cache, object); | |
453 | return; | |
454 | } | |
455 | ||
456 | /* add the object to the memory pool free list */ | |
8c96f1bc | 457 | raw_spin_lock_irqsave(&kmemleak_lock, flags); |
0647398a | 458 | list_add(&object->object_list, &mem_pool_free_list); |
8c96f1bc | 459 | raw_spin_unlock_irqrestore(&kmemleak_lock, flags); |
0647398a CM |
460 | } |
461 | ||
3c7b4e6b CM |
462 | /* |
463 | * RCU callback to free a kmemleak_object. | |
464 | */ | |
465 | static void free_object_rcu(struct rcu_head *rcu) | |
466 | { | |
b67bfe0d | 467 | struct hlist_node *tmp; |
3c7b4e6b CM |
468 | struct kmemleak_scan_area *area; |
469 | struct kmemleak_object *object = | |
470 | container_of(rcu, struct kmemleak_object, rcu); | |
471 | ||
472 | /* | |
473 | * Once use_count is 0 (guaranteed by put_object), there is no other | |
474 | * code accessing this object, hence no need for locking. | |
475 | */ | |
b67bfe0d SL |
476 | hlist_for_each_entry_safe(area, tmp, &object->area_list, node) { |
477 | hlist_del(&area->node); | |
3c7b4e6b CM |
478 | kmem_cache_free(scan_area_cache, area); |
479 | } | |
0647398a | 480 | mem_pool_free(object); |
3c7b4e6b CM |
481 | } |
482 | ||
483 | /* | |
484 | * Decrement the object use_count. Once the count is 0, free the object using | |
485 | * an RCU callback. Since put_object() may be called via the kmemleak_free() -> | |
486 | * delete_object() path, the delayed RCU freeing ensures that there is no | |
487 | * recursive call to the kernel allocator. Lock-less RCU object_list traversal | |
488 | * is also possible. | |
489 | */ | |
490 | static void put_object(struct kmemleak_object *object) | |
491 | { | |
492 | if (!atomic_dec_and_test(&object->use_count)) | |
493 | return; | |
494 | ||
495 | /* should only get here after delete_object was called */ | |
496 | WARN_ON(object->flags & OBJECT_ALLOCATED); | |
497 | ||
c5665868 CM |
498 | /* |
499 | * It may be too early for the RCU callbacks, however, there is no | |
500 | * concurrent object_list traversal when !object_cache and all objects | |
501 | * came from the memory pool. Free the object directly. | |
502 | */ | |
503 | if (object_cache) | |
504 | call_rcu(&object->rcu, free_object_rcu); | |
505 | else | |
506 | free_object_rcu(&object->rcu); | |
3c7b4e6b CM |
507 | } |
508 | ||
509 | /* | |
85d3a316 | 510 | * Look up an object in the object search tree and increase its use_count. |
3c7b4e6b CM |
511 | */ |
512 | static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias) | |
513 | { | |
514 | unsigned long flags; | |
9fbed254 | 515 | struct kmemleak_object *object; |
3c7b4e6b CM |
516 | |
517 | rcu_read_lock(); | |
8c96f1bc | 518 | raw_spin_lock_irqsave(&kmemleak_lock, flags); |
93ada579 | 519 | object = lookup_object(ptr, alias); |
8c96f1bc | 520 | raw_spin_unlock_irqrestore(&kmemleak_lock, flags); |
3c7b4e6b CM |
521 | |
522 | /* check whether the object is still available */ | |
523 | if (object && !get_object(object)) | |
524 | object = NULL; | |
525 | rcu_read_unlock(); | |
526 | ||
527 | return object; | |
528 | } | |
529 | ||
2abd839a CM |
530 | /* |
531 | * Remove an object from the object_tree_root and object_list. Must be called | |
532 | * with the kmemleak_lock held _if_ kmemleak is still enabled. | |
533 | */ | |
534 | static void __remove_object(struct kmemleak_object *object) | |
535 | { | |
536 | rb_erase(&object->rb_node, &object_tree_root); | |
537 | list_del_rcu(&object->object_list); | |
538 | } | |
539 | ||
e781a9ab CM |
540 | /* |
541 | * Look up an object in the object search tree and remove it from both | |
542 | * object_tree_root and object_list. The returned object's use_count should be | |
543 | * at least 1, as initially set by create_object(). | |
544 | */ | |
545 | static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias) | |
546 | { | |
547 | unsigned long flags; | |
548 | struct kmemleak_object *object; | |
549 | ||
8c96f1bc | 550 | raw_spin_lock_irqsave(&kmemleak_lock, flags); |
e781a9ab | 551 | object = lookup_object(ptr, alias); |
2abd839a CM |
552 | if (object) |
553 | __remove_object(object); | |
8c96f1bc | 554 | raw_spin_unlock_irqrestore(&kmemleak_lock, flags); |
e781a9ab CM |
555 | |
556 | return object; | |
557 | } | |
558 | ||
fd678967 CM |
559 | /* |
560 | * Save stack trace to the given array of MAX_TRACE size. | |
561 | */ | |
562 | static int __save_stack_trace(unsigned long *trace) | |
563 | { | |
07984aad | 564 | return stack_trace_save(trace, MAX_TRACE, 2); |
fd678967 CM |
565 | } |
566 | ||
3c7b4e6b CM |
567 | /* |
568 | * Create the metadata (struct kmemleak_object) corresponding to an allocated | |
569 | * memory block and add it to the object_list and object_tree_root. | |
570 | */ | |
fd678967 CM |
571 | static struct kmemleak_object *create_object(unsigned long ptr, size_t size, |
572 | int min_count, gfp_t gfp) | |
3c7b4e6b CM |
573 | { |
574 | unsigned long flags; | |
85d3a316 ML |
575 | struct kmemleak_object *object, *parent; |
576 | struct rb_node **link, *rb_parent; | |
a2f77575 | 577 | unsigned long untagged_ptr; |
3c7b4e6b | 578 | |
0647398a | 579 | object = mem_pool_alloc(gfp); |
3c7b4e6b | 580 | if (!object) { |
598d8091 | 581 | pr_warn("Cannot allocate a kmemleak_object structure\n"); |
6ae4bd1f | 582 | kmemleak_disable(); |
fd678967 | 583 | return NULL; |
3c7b4e6b CM |
584 | } |
585 | ||
586 | INIT_LIST_HEAD(&object->object_list); | |
587 | INIT_LIST_HEAD(&object->gray_list); | |
588 | INIT_HLIST_HEAD(&object->area_list); | |
8c96f1bc | 589 | raw_spin_lock_init(&object->lock); |
3c7b4e6b | 590 | atomic_set(&object->use_count, 1); |
04609ccc | 591 | object->flags = OBJECT_ALLOCATED; |
3c7b4e6b | 592 | object->pointer = ptr; |
95511580 | 593 | object->size = kfence_ksize((void *)ptr) ?: size; |
94f4a161 | 594 | object->excess_ref = 0; |
3c7b4e6b | 595 | object->min_count = min_count; |
04609ccc | 596 | object->count = 0; /* white color initially */ |
3c7b4e6b | 597 | object->jiffies = jiffies; |
04609ccc | 598 | object->checksum = 0; |
3c7b4e6b CM |
599 | |
600 | /* task information */ | |
601 | if (in_irq()) { | |
602 | object->pid = 0; | |
603 | strncpy(object->comm, "hardirq", sizeof(object->comm)); | |
6ef90569 | 604 | } else if (in_serving_softirq()) { |
3c7b4e6b CM |
605 | object->pid = 0; |
606 | strncpy(object->comm, "softirq", sizeof(object->comm)); | |
607 | } else { | |
608 | object->pid = current->pid; | |
609 | /* | |
610 | * There is a small chance of a race with set_task_comm(), | |
611 | * however using get_task_comm() here may cause locking | |
612 | * dependency issues with current->alloc_lock. In the worst | |
613 | * case, the command line is not correct. | |
614 | */ | |
615 | strncpy(object->comm, current->comm, sizeof(object->comm)); | |
616 | } | |
617 | ||
618 | /* kernel backtrace */ | |
fd678967 | 619 | object->trace_len = __save_stack_trace(object->trace); |
3c7b4e6b | 620 | |
8c96f1bc | 621 | raw_spin_lock_irqsave(&kmemleak_lock, flags); |
0580a181 | 622 | |
a2f77575 AK |
623 | untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr); |
624 | min_addr = min(min_addr, untagged_ptr); | |
625 | max_addr = max(max_addr, untagged_ptr + size); | |
85d3a316 ML |
626 | link = &object_tree_root.rb_node; |
627 | rb_parent = NULL; | |
628 | while (*link) { | |
629 | rb_parent = *link; | |
630 | parent = rb_entry(rb_parent, struct kmemleak_object, rb_node); | |
631 | if (ptr + size <= parent->pointer) | |
632 | link = &parent->rb_node.rb_left; | |
633 | else if (parent->pointer + parent->size <= ptr) | |
634 | link = &parent->rb_node.rb_right; | |
635 | else { | |
756a025f | 636 | kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n", |
85d3a316 | 637 | ptr); |
9d5a4c73 CM |
638 | /* |
639 | * No need for parent->lock here since "parent" cannot | |
640 | * be freed while the kmemleak_lock is held. | |
641 | */ | |
642 | dump_object_info(parent); | |
85d3a316 | 643 | kmem_cache_free(object_cache, object); |
9d5a4c73 | 644 | object = NULL; |
85d3a316 ML |
645 | goto out; |
646 | } | |
3c7b4e6b | 647 | } |
85d3a316 ML |
648 | rb_link_node(&object->rb_node, rb_parent, link); |
649 | rb_insert_color(&object->rb_node, &object_tree_root); | |
650 | ||
3c7b4e6b CM |
651 | list_add_tail_rcu(&object->object_list, &object_list); |
652 | out: | |
8c96f1bc | 653 | raw_spin_unlock_irqrestore(&kmemleak_lock, flags); |
fd678967 | 654 | return object; |
3c7b4e6b CM |
655 | } |
656 | ||
657 | /* | |
e781a9ab | 658 | * Mark the object as not allocated and schedule RCU freeing via put_object(). |
3c7b4e6b | 659 | */ |
53238a60 | 660 | static void __delete_object(struct kmemleak_object *object) |
3c7b4e6b CM |
661 | { |
662 | unsigned long flags; | |
3c7b4e6b | 663 | |
3c7b4e6b | 664 | WARN_ON(!(object->flags & OBJECT_ALLOCATED)); |
e781a9ab | 665 | WARN_ON(atomic_read(&object->use_count) < 1); |
3c7b4e6b CM |
666 | |
667 | /* | |
668 | * Locking here also ensures that the corresponding memory block | |
669 | * cannot be freed when it is being scanned. | |
670 | */ | |
8c96f1bc | 671 | raw_spin_lock_irqsave(&object->lock, flags); |
3c7b4e6b | 672 | object->flags &= ~OBJECT_ALLOCATED; |
8c96f1bc | 673 | raw_spin_unlock_irqrestore(&object->lock, flags); |
3c7b4e6b CM |
674 | put_object(object); |
675 | } | |
676 | ||
53238a60 CM |
677 | /* |
678 | * Look up the metadata (struct kmemleak_object) corresponding to ptr and | |
679 | * delete it. | |
680 | */ | |
681 | static void delete_object_full(unsigned long ptr) | |
682 | { | |
683 | struct kmemleak_object *object; | |
684 | ||
e781a9ab | 685 | object = find_and_remove_object(ptr, 0); |
53238a60 CM |
686 | if (!object) { |
687 | #ifdef DEBUG | |
688 | kmemleak_warn("Freeing unknown object at 0x%08lx\n", | |
689 | ptr); | |
690 | #endif | |
691 | return; | |
692 | } | |
693 | __delete_object(object); | |
53238a60 CM |
694 | } |
695 | ||
696 | /* | |
697 | * Look up the metadata (struct kmemleak_object) corresponding to ptr and | |
698 | * delete it. If the memory block is partially freed, the function may create | |
699 | * additional metadata for the remaining parts of the block. | |
700 | */ | |
701 | static void delete_object_part(unsigned long ptr, size_t size) | |
702 | { | |
703 | struct kmemleak_object *object; | |
704 | unsigned long start, end; | |
705 | ||
e781a9ab | 706 | object = find_and_remove_object(ptr, 1); |
53238a60 CM |
707 | if (!object) { |
708 | #ifdef DEBUG | |
756a025f JP |
709 | kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n", |
710 | ptr, size); | |
53238a60 CM |
711 | #endif |
712 | return; | |
713 | } | |
53238a60 CM |
714 | |
715 | /* | |
716 | * Create one or two objects that may result from the memory block | |
717 | * split. Note that partial freeing is only done by free_bootmem() and | |
c5665868 | 718 | * this happens before kmemleak_init() is called. |
53238a60 CM |
719 | */ |
720 | start = object->pointer; | |
721 | end = object->pointer + object->size; | |
722 | if (ptr > start) | |
723 | create_object(start, ptr - start, object->min_count, | |
724 | GFP_KERNEL); | |
725 | if (ptr + size < end) | |
726 | create_object(ptr + size, end - ptr - size, object->min_count, | |
727 | GFP_KERNEL); | |
728 | ||
e781a9ab | 729 | __delete_object(object); |
53238a60 | 730 | } |
a1084c87 LR |
731 | |
732 | static void __paint_it(struct kmemleak_object *object, int color) | |
733 | { | |
734 | object->min_count = color; | |
735 | if (color == KMEMLEAK_BLACK) | |
736 | object->flags |= OBJECT_NO_SCAN; | |
737 | } | |
738 | ||
739 | static void paint_it(struct kmemleak_object *object, int color) | |
3c7b4e6b CM |
740 | { |
741 | unsigned long flags; | |
a1084c87 | 742 | |
8c96f1bc | 743 | raw_spin_lock_irqsave(&object->lock, flags); |
a1084c87 | 744 | __paint_it(object, color); |
8c96f1bc | 745 | raw_spin_unlock_irqrestore(&object->lock, flags); |
a1084c87 LR |
746 | } |
747 | ||
748 | static void paint_ptr(unsigned long ptr, int color) | |
749 | { | |
3c7b4e6b CM |
750 | struct kmemleak_object *object; |
751 | ||
752 | object = find_and_get_object(ptr, 0); | |
753 | if (!object) { | |
756a025f JP |
754 | kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n", |
755 | ptr, | |
a1084c87 LR |
756 | (color == KMEMLEAK_GREY) ? "Grey" : |
757 | (color == KMEMLEAK_BLACK) ? "Black" : "Unknown"); | |
3c7b4e6b CM |
758 | return; |
759 | } | |
a1084c87 | 760 | paint_it(object, color); |
3c7b4e6b CM |
761 | put_object(object); |
762 | } | |
763 | ||
a1084c87 | 764 | /* |
145b64b9 | 765 | * Mark an object permanently as gray-colored so that it can no longer be |
a1084c87 LR |
766 | * reported as a leak. This is used in general to mark a false positive. |
767 | */ | |
768 | static void make_gray_object(unsigned long ptr) | |
769 | { | |
770 | paint_ptr(ptr, KMEMLEAK_GREY); | |
771 | } | |
772 | ||
3c7b4e6b CM |
773 | /* |
774 | * Mark the object as black-colored so that it is ignored from scans and | |
775 | * reporting. | |
776 | */ | |
777 | static void make_black_object(unsigned long ptr) | |
778 | { | |
a1084c87 | 779 | paint_ptr(ptr, KMEMLEAK_BLACK); |
3c7b4e6b CM |
780 | } |
781 | ||
782 | /* | |
783 | * Add a scanning area to the object. If at least one such area is added, | |
784 | * kmemleak will only scan these ranges rather than the whole memory block. | |
785 | */ | |
c017b4be | 786 | static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp) |
3c7b4e6b CM |
787 | { |
788 | unsigned long flags; | |
789 | struct kmemleak_object *object; | |
c5665868 | 790 | struct kmemleak_scan_area *area = NULL; |
3c7b4e6b | 791 | |
c017b4be | 792 | object = find_and_get_object(ptr, 1); |
3c7b4e6b | 793 | if (!object) { |
ae281064 JP |
794 | kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n", |
795 | ptr); | |
3c7b4e6b CM |
796 | return; |
797 | } | |
798 | ||
c5665868 CM |
799 | if (scan_area_cache) |
800 | area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp)); | |
3c7b4e6b | 801 | |
8c96f1bc | 802 | raw_spin_lock_irqsave(&object->lock, flags); |
dba82d94 CM |
803 | if (!area) { |
804 | pr_warn_once("Cannot allocate a scan area, scanning the full object\n"); | |
805 | /* mark the object for full scan to avoid false positives */ | |
806 | object->flags |= OBJECT_FULL_SCAN; | |
807 | goto out_unlock; | |
808 | } | |
7f88f88f CM |
809 | if (size == SIZE_MAX) { |
810 | size = object->pointer + object->size - ptr; | |
811 | } else if (ptr + size > object->pointer + object->size) { | |
ae281064 | 812 | kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr); |
3c7b4e6b CM |
813 | dump_object_info(object); |
814 | kmem_cache_free(scan_area_cache, area); | |
815 | goto out_unlock; | |
816 | } | |
817 | ||
818 | INIT_HLIST_NODE(&area->node); | |
c017b4be CM |
819 | area->start = ptr; |
820 | area->size = size; | |
3c7b4e6b CM |
821 | |
822 | hlist_add_head(&area->node, &object->area_list); | |
823 | out_unlock: | |
8c96f1bc | 824 | raw_spin_unlock_irqrestore(&object->lock, flags); |
3c7b4e6b CM |
825 | put_object(object); |
826 | } | |
827 | ||
94f4a161 CM |
828 | /* |
829 | * Any surplus references (object already gray) to 'ptr' are passed to | |
830 | * 'excess_ref'. This is used in the vmalloc() case where a pointer to | |
831 | * vm_struct may be used as an alternative reference to the vmalloc'ed object | |
832 | * (see free_thread_stack()). | |
833 | */ | |
834 | static void object_set_excess_ref(unsigned long ptr, unsigned long excess_ref) | |
835 | { | |
836 | unsigned long flags; | |
837 | struct kmemleak_object *object; | |
838 | ||
839 | object = find_and_get_object(ptr, 0); | |
840 | if (!object) { | |
841 | kmemleak_warn("Setting excess_ref on unknown object at 0x%08lx\n", | |
842 | ptr); | |
843 | return; | |
844 | } | |
845 | ||
8c96f1bc | 846 | raw_spin_lock_irqsave(&object->lock, flags); |
94f4a161 | 847 | object->excess_ref = excess_ref; |
8c96f1bc | 848 | raw_spin_unlock_irqrestore(&object->lock, flags); |
94f4a161 CM |
849 | put_object(object); |
850 | } | |
851 | ||
3c7b4e6b CM |
852 | /* |
853 | * Set the OBJECT_NO_SCAN flag for the object corresponding to the give | |
854 | * pointer. Such object will not be scanned by kmemleak but references to it | |
855 | * are searched. | |
856 | */ | |
857 | static void object_no_scan(unsigned long ptr) | |
858 | { | |
859 | unsigned long flags; | |
860 | struct kmemleak_object *object; | |
861 | ||
862 | object = find_and_get_object(ptr, 0); | |
863 | if (!object) { | |
ae281064 | 864 | kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr); |
3c7b4e6b CM |
865 | return; |
866 | } | |
867 | ||
8c96f1bc | 868 | raw_spin_lock_irqsave(&object->lock, flags); |
3c7b4e6b | 869 | object->flags |= OBJECT_NO_SCAN; |
8c96f1bc | 870 | raw_spin_unlock_irqrestore(&object->lock, flags); |
3c7b4e6b CM |
871 | put_object(object); |
872 | } | |
873 | ||
a2b6bf63 CM |
874 | /** |
875 | * kmemleak_alloc - register a newly allocated object | |
876 | * @ptr: pointer to beginning of the object | |
877 | * @size: size of the object | |
878 | * @min_count: minimum number of references to this object. If during memory | |
879 | * scanning a number of references less than @min_count is found, | |
880 | * the object is reported as a memory leak. If @min_count is 0, | |
881 | * the object is never reported as a leak. If @min_count is -1, | |
882 | * the object is ignored (not scanned and not reported as a leak) | |
883 | * @gfp: kmalloc() flags used for kmemleak internal memory allocations | |
884 | * | |
885 | * This function is called from the kernel allocators when a new object | |
94f4a161 | 886 | * (memory block) is allocated (kmem_cache_alloc, kmalloc etc.). |
3c7b4e6b | 887 | */ |
a6186d89 CM |
888 | void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count, |
889 | gfp_t gfp) | |
3c7b4e6b CM |
890 | { |
891 | pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count); | |
892 | ||
8910ae89 | 893 | if (kmemleak_enabled && ptr && !IS_ERR(ptr)) |
3c7b4e6b | 894 | create_object((unsigned long)ptr, size, min_count, gfp); |
3c7b4e6b CM |
895 | } |
896 | EXPORT_SYMBOL_GPL(kmemleak_alloc); | |
897 | ||
f528f0b8 CM |
898 | /** |
899 | * kmemleak_alloc_percpu - register a newly allocated __percpu object | |
900 | * @ptr: __percpu pointer to beginning of the object | |
901 | * @size: size of the object | |
8a8c35fa | 902 | * @gfp: flags used for kmemleak internal memory allocations |
f528f0b8 CM |
903 | * |
904 | * This function is called from the kernel percpu allocator when a new object | |
8a8c35fa | 905 | * (memory block) is allocated (alloc_percpu). |
f528f0b8 | 906 | */ |
8a8c35fa LF |
907 | void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size, |
908 | gfp_t gfp) | |
f528f0b8 CM |
909 | { |
910 | unsigned int cpu; | |
911 | ||
912 | pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size); | |
913 | ||
914 | /* | |
915 | * Percpu allocations are only scanned and not reported as leaks | |
916 | * (min_count is set to 0). | |
917 | */ | |
8910ae89 | 918 | if (kmemleak_enabled && ptr && !IS_ERR(ptr)) |
f528f0b8 CM |
919 | for_each_possible_cpu(cpu) |
920 | create_object((unsigned long)per_cpu_ptr(ptr, cpu), | |
8a8c35fa | 921 | size, 0, gfp); |
f528f0b8 CM |
922 | } |
923 | EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu); | |
924 | ||
94f4a161 CM |
925 | /** |
926 | * kmemleak_vmalloc - register a newly vmalloc'ed object | |
927 | * @area: pointer to vm_struct | |
928 | * @size: size of the object | |
929 | * @gfp: __vmalloc() flags used for kmemleak internal memory allocations | |
930 | * | |
931 | * This function is called from the vmalloc() kernel allocator when a new | |
932 | * object (memory block) is allocated. | |
933 | */ | |
934 | void __ref kmemleak_vmalloc(const struct vm_struct *area, size_t size, gfp_t gfp) | |
935 | { | |
936 | pr_debug("%s(0x%p, %zu)\n", __func__, area, size); | |
937 | ||
938 | /* | |
939 | * A min_count = 2 is needed because vm_struct contains a reference to | |
940 | * the virtual address of the vmalloc'ed block. | |
941 | */ | |
942 | if (kmemleak_enabled) { | |
943 | create_object((unsigned long)area->addr, size, 2, gfp); | |
944 | object_set_excess_ref((unsigned long)area, | |
945 | (unsigned long)area->addr); | |
94f4a161 CM |
946 | } |
947 | } | |
948 | EXPORT_SYMBOL_GPL(kmemleak_vmalloc); | |
949 | ||
a2b6bf63 CM |
950 | /** |
951 | * kmemleak_free - unregister a previously registered object | |
952 | * @ptr: pointer to beginning of the object | |
953 | * | |
954 | * This function is called from the kernel allocators when an object (memory | |
955 | * block) is freed (kmem_cache_free, kfree, vfree etc.). | |
3c7b4e6b | 956 | */ |
a6186d89 | 957 | void __ref kmemleak_free(const void *ptr) |
3c7b4e6b CM |
958 | { |
959 | pr_debug("%s(0x%p)\n", __func__, ptr); | |
960 | ||
c5f3b1a5 | 961 | if (kmemleak_free_enabled && ptr && !IS_ERR(ptr)) |
53238a60 | 962 | delete_object_full((unsigned long)ptr); |
3c7b4e6b CM |
963 | } |
964 | EXPORT_SYMBOL_GPL(kmemleak_free); | |
965 | ||
a2b6bf63 CM |
966 | /** |
967 | * kmemleak_free_part - partially unregister a previously registered object | |
968 | * @ptr: pointer to the beginning or inside the object. This also | |
969 | * represents the start of the range to be freed | |
970 | * @size: size to be unregistered | |
971 | * | |
972 | * This function is called when only a part of a memory block is freed | |
973 | * (usually from the bootmem allocator). | |
53238a60 | 974 | */ |
a6186d89 | 975 | void __ref kmemleak_free_part(const void *ptr, size_t size) |
53238a60 CM |
976 | { |
977 | pr_debug("%s(0x%p)\n", __func__, ptr); | |
978 | ||
8910ae89 | 979 | if (kmemleak_enabled && ptr && !IS_ERR(ptr)) |
53238a60 | 980 | delete_object_part((unsigned long)ptr, size); |
53238a60 CM |
981 | } |
982 | EXPORT_SYMBOL_GPL(kmemleak_free_part); | |
983 | ||
f528f0b8 CM |
984 | /** |
985 | * kmemleak_free_percpu - unregister a previously registered __percpu object | |
986 | * @ptr: __percpu pointer to beginning of the object | |
987 | * | |
988 | * This function is called from the kernel percpu allocator when an object | |
989 | * (memory block) is freed (free_percpu). | |
990 | */ | |
991 | void __ref kmemleak_free_percpu(const void __percpu *ptr) | |
992 | { | |
993 | unsigned int cpu; | |
994 | ||
995 | pr_debug("%s(0x%p)\n", __func__, ptr); | |
996 | ||
c5f3b1a5 | 997 | if (kmemleak_free_enabled && ptr && !IS_ERR(ptr)) |
f528f0b8 CM |
998 | for_each_possible_cpu(cpu) |
999 | delete_object_full((unsigned long)per_cpu_ptr(ptr, | |
1000 | cpu)); | |
f528f0b8 CM |
1001 | } |
1002 | EXPORT_SYMBOL_GPL(kmemleak_free_percpu); | |
1003 | ||
ffe2c748 CM |
1004 | /** |
1005 | * kmemleak_update_trace - update object allocation stack trace | |
1006 | * @ptr: pointer to beginning of the object | |
1007 | * | |
1008 | * Override the object allocation stack trace for cases where the actual | |
1009 | * allocation place is not always useful. | |
1010 | */ | |
1011 | void __ref kmemleak_update_trace(const void *ptr) | |
1012 | { | |
1013 | struct kmemleak_object *object; | |
1014 | unsigned long flags; | |
1015 | ||
1016 | pr_debug("%s(0x%p)\n", __func__, ptr); | |
1017 | ||
1018 | if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr)) | |
1019 | return; | |
1020 | ||
1021 | object = find_and_get_object((unsigned long)ptr, 1); | |
1022 | if (!object) { | |
1023 | #ifdef DEBUG | |
1024 | kmemleak_warn("Updating stack trace for unknown object at %p\n", | |
1025 | ptr); | |
1026 | #endif | |
1027 | return; | |
1028 | } | |
1029 | ||
8c96f1bc | 1030 | raw_spin_lock_irqsave(&object->lock, flags); |
ffe2c748 | 1031 | object->trace_len = __save_stack_trace(object->trace); |
8c96f1bc | 1032 | raw_spin_unlock_irqrestore(&object->lock, flags); |
ffe2c748 CM |
1033 | |
1034 | put_object(object); | |
1035 | } | |
1036 | EXPORT_SYMBOL(kmemleak_update_trace); | |
1037 | ||
a2b6bf63 CM |
1038 | /** |
1039 | * kmemleak_not_leak - mark an allocated object as false positive | |
1040 | * @ptr: pointer to beginning of the object | |
1041 | * | |
1042 | * Calling this function on an object will cause the memory block to no longer | |
1043 | * be reported as leak and always be scanned. | |
3c7b4e6b | 1044 | */ |
a6186d89 | 1045 | void __ref kmemleak_not_leak(const void *ptr) |
3c7b4e6b CM |
1046 | { |
1047 | pr_debug("%s(0x%p)\n", __func__, ptr); | |
1048 | ||
8910ae89 | 1049 | if (kmemleak_enabled && ptr && !IS_ERR(ptr)) |
3c7b4e6b | 1050 | make_gray_object((unsigned long)ptr); |
3c7b4e6b CM |
1051 | } |
1052 | EXPORT_SYMBOL(kmemleak_not_leak); | |
1053 | ||
a2b6bf63 CM |
1054 | /** |
1055 | * kmemleak_ignore - ignore an allocated object | |
1056 | * @ptr: pointer to beginning of the object | |
1057 | * | |
1058 | * Calling this function on an object will cause the memory block to be | |
1059 | * ignored (not scanned and not reported as a leak). This is usually done when | |
1060 | * it is known that the corresponding block is not a leak and does not contain | |
1061 | * any references to other allocated memory blocks. | |
3c7b4e6b | 1062 | */ |
a6186d89 | 1063 | void __ref kmemleak_ignore(const void *ptr) |
3c7b4e6b CM |
1064 | { |
1065 | pr_debug("%s(0x%p)\n", __func__, ptr); | |
1066 | ||
8910ae89 | 1067 | if (kmemleak_enabled && ptr && !IS_ERR(ptr)) |
3c7b4e6b | 1068 | make_black_object((unsigned long)ptr); |
3c7b4e6b CM |
1069 | } |
1070 | EXPORT_SYMBOL(kmemleak_ignore); | |
1071 | ||
a2b6bf63 CM |
1072 | /** |
1073 | * kmemleak_scan_area - limit the range to be scanned in an allocated object | |
1074 | * @ptr: pointer to beginning or inside the object. This also | |
1075 | * represents the start of the scan area | |
1076 | * @size: size of the scan area | |
1077 | * @gfp: kmalloc() flags used for kmemleak internal memory allocations | |
1078 | * | |
1079 | * This function is used when it is known that only certain parts of an object | |
1080 | * contain references to other objects. Kmemleak will only scan these areas | |
1081 | * reducing the number false negatives. | |
3c7b4e6b | 1082 | */ |
c017b4be | 1083 | void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp) |
3c7b4e6b CM |
1084 | { |
1085 | pr_debug("%s(0x%p)\n", __func__, ptr); | |
1086 | ||
8910ae89 | 1087 | if (kmemleak_enabled && ptr && size && !IS_ERR(ptr)) |
c017b4be | 1088 | add_scan_area((unsigned long)ptr, size, gfp); |
3c7b4e6b CM |
1089 | } |
1090 | EXPORT_SYMBOL(kmemleak_scan_area); | |
1091 | ||
a2b6bf63 CM |
1092 | /** |
1093 | * kmemleak_no_scan - do not scan an allocated object | |
1094 | * @ptr: pointer to beginning of the object | |
1095 | * | |
1096 | * This function notifies kmemleak not to scan the given memory block. Useful | |
1097 | * in situations where it is known that the given object does not contain any | |
1098 | * references to other objects. Kmemleak will not scan such objects reducing | |
1099 | * the number of false negatives. | |
3c7b4e6b | 1100 | */ |
a6186d89 | 1101 | void __ref kmemleak_no_scan(const void *ptr) |
3c7b4e6b CM |
1102 | { |
1103 | pr_debug("%s(0x%p)\n", __func__, ptr); | |
1104 | ||
8910ae89 | 1105 | if (kmemleak_enabled && ptr && !IS_ERR(ptr)) |
3c7b4e6b | 1106 | object_no_scan((unsigned long)ptr); |
3c7b4e6b CM |
1107 | } |
1108 | EXPORT_SYMBOL(kmemleak_no_scan); | |
1109 | ||
9099daed CM |
1110 | /** |
1111 | * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical | |
1112 | * address argument | |
e8b098fc MR |
1113 | * @phys: physical address of the object |
1114 | * @size: size of the object | |
1115 | * @min_count: minimum number of references to this object. | |
1116 | * See kmemleak_alloc() | |
1117 | * @gfp: kmalloc() flags used for kmemleak internal memory allocations | |
9099daed CM |
1118 | */ |
1119 | void __ref kmemleak_alloc_phys(phys_addr_t phys, size_t size, int min_count, | |
1120 | gfp_t gfp) | |
1121 | { | |
1122 | if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn) | |
1123 | kmemleak_alloc(__va(phys), size, min_count, gfp); | |
1124 | } | |
1125 | EXPORT_SYMBOL(kmemleak_alloc_phys); | |
1126 | ||
1127 | /** | |
1128 | * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a | |
1129 | * physical address argument | |
e8b098fc MR |
1130 | * @phys: physical address if the beginning or inside an object. This |
1131 | * also represents the start of the range to be freed | |
1132 | * @size: size to be unregistered | |
9099daed CM |
1133 | */ |
1134 | void __ref kmemleak_free_part_phys(phys_addr_t phys, size_t size) | |
1135 | { | |
1136 | if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn) | |
1137 | kmemleak_free_part(__va(phys), size); | |
1138 | } | |
1139 | EXPORT_SYMBOL(kmemleak_free_part_phys); | |
1140 | ||
1141 | /** | |
1142 | * kmemleak_not_leak_phys - similar to kmemleak_not_leak but taking a physical | |
1143 | * address argument | |
e8b098fc | 1144 | * @phys: physical address of the object |
9099daed CM |
1145 | */ |
1146 | void __ref kmemleak_not_leak_phys(phys_addr_t phys) | |
1147 | { | |
1148 | if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn) | |
1149 | kmemleak_not_leak(__va(phys)); | |
1150 | } | |
1151 | EXPORT_SYMBOL(kmemleak_not_leak_phys); | |
1152 | ||
1153 | /** | |
1154 | * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical | |
1155 | * address argument | |
e8b098fc | 1156 | * @phys: physical address of the object |
9099daed CM |
1157 | */ |
1158 | void __ref kmemleak_ignore_phys(phys_addr_t phys) | |
1159 | { | |
1160 | if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn) | |
1161 | kmemleak_ignore(__va(phys)); | |
1162 | } | |
1163 | EXPORT_SYMBOL(kmemleak_ignore_phys); | |
1164 | ||
04609ccc CM |
1165 | /* |
1166 | * Update an object's checksum and return true if it was modified. | |
1167 | */ | |
1168 | static bool update_checksum(struct kmemleak_object *object) | |
1169 | { | |
1170 | u32 old_csum = object->checksum; | |
1171 | ||
e79ed2f1 | 1172 | kasan_disable_current(); |
69d0b54d | 1173 | kcsan_disable_current(); |
6c7a00b8 | 1174 | object->checksum = crc32(0, kasan_reset_tag((void *)object->pointer), object->size); |
e79ed2f1 | 1175 | kasan_enable_current(); |
69d0b54d | 1176 | kcsan_enable_current(); |
e79ed2f1 | 1177 | |
04609ccc CM |
1178 | return object->checksum != old_csum; |
1179 | } | |
1180 | ||
04f70d13 CM |
1181 | /* |
1182 | * Update an object's references. object->lock must be held by the caller. | |
1183 | */ | |
1184 | static void update_refs(struct kmemleak_object *object) | |
1185 | { | |
1186 | if (!color_white(object)) { | |
1187 | /* non-orphan, ignored or new */ | |
1188 | return; | |
1189 | } | |
1190 | ||
1191 | /* | |
1192 | * Increase the object's reference count (number of pointers to the | |
1193 | * memory block). If this count reaches the required minimum, the | |
1194 | * object's color will become gray and it will be added to the | |
1195 | * gray_list. | |
1196 | */ | |
1197 | object->count++; | |
1198 | if (color_gray(object)) { | |
1199 | /* put_object() called when removing from gray_list */ | |
1200 | WARN_ON(!get_object(object)); | |
1201 | list_add_tail(&object->gray_list, &gray_list); | |
1202 | } | |
1203 | } | |
1204 | ||
3c7b4e6b | 1205 | /* |
0b5121ef | 1206 | * Memory scanning is a long process and it needs to be interruptible. This |
25985edc | 1207 | * function checks whether such interrupt condition occurred. |
3c7b4e6b CM |
1208 | */ |
1209 | static int scan_should_stop(void) | |
1210 | { | |
8910ae89 | 1211 | if (!kmemleak_enabled) |
3c7b4e6b CM |
1212 | return 1; |
1213 | ||
1214 | /* | |
1215 | * This function may be called from either process or kthread context, | |
1216 | * hence the need to check for both stop conditions. | |
1217 | */ | |
1218 | if (current->mm) | |
1219 | return signal_pending(current); | |
1220 | else | |
1221 | return kthread_should_stop(); | |
1222 | ||
1223 | return 0; | |
1224 | } | |
1225 | ||
1226 | /* | |
1227 | * Scan a memory block (exclusive range) for valid pointers and add those | |
1228 | * found to the gray list. | |
1229 | */ | |
1230 | static void scan_block(void *_start, void *_end, | |
93ada579 | 1231 | struct kmemleak_object *scanned) |
3c7b4e6b CM |
1232 | { |
1233 | unsigned long *ptr; | |
1234 | unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER); | |
1235 | unsigned long *end = _end - (BYTES_PER_POINTER - 1); | |
93ada579 | 1236 | unsigned long flags; |
a2f77575 | 1237 | unsigned long untagged_ptr; |
3c7b4e6b | 1238 | |
8c96f1bc | 1239 | raw_spin_lock_irqsave(&kmemleak_lock, flags); |
3c7b4e6b | 1240 | for (ptr = start; ptr < end; ptr++) { |
3c7b4e6b | 1241 | struct kmemleak_object *object; |
8e019366 | 1242 | unsigned long pointer; |
94f4a161 | 1243 | unsigned long excess_ref; |
3c7b4e6b CM |
1244 | |
1245 | if (scan_should_stop()) | |
1246 | break; | |
1247 | ||
e79ed2f1 | 1248 | kasan_disable_current(); |
6c7a00b8 | 1249 | pointer = *(unsigned long *)kasan_reset_tag((void *)ptr); |
e79ed2f1 | 1250 | kasan_enable_current(); |
8e019366 | 1251 | |
a2f77575 AK |
1252 | untagged_ptr = (unsigned long)kasan_reset_tag((void *)pointer); |
1253 | if (untagged_ptr < min_addr || untagged_ptr >= max_addr) | |
93ada579 CM |
1254 | continue; |
1255 | ||
1256 | /* | |
1257 | * No need for get_object() here since we hold kmemleak_lock. | |
1258 | * object->use_count cannot be dropped to 0 while the object | |
1259 | * is still present in object_tree_root and object_list | |
1260 | * (with updates protected by kmemleak_lock). | |
1261 | */ | |
1262 | object = lookup_object(pointer, 1); | |
3c7b4e6b CM |
1263 | if (!object) |
1264 | continue; | |
93ada579 | 1265 | if (object == scanned) |
3c7b4e6b | 1266 | /* self referenced, ignore */ |
3c7b4e6b | 1267 | continue; |
3c7b4e6b CM |
1268 | |
1269 | /* | |
1270 | * Avoid the lockdep recursive warning on object->lock being | |
1271 | * previously acquired in scan_object(). These locks are | |
1272 | * enclosed by scan_mutex. | |
1273 | */ | |
8c96f1bc | 1274 | raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING); |
94f4a161 CM |
1275 | /* only pass surplus references (object already gray) */ |
1276 | if (color_gray(object)) { | |
1277 | excess_ref = object->excess_ref; | |
1278 | /* no need for update_refs() if object already gray */ | |
1279 | } else { | |
1280 | excess_ref = 0; | |
1281 | update_refs(object); | |
1282 | } | |
8c96f1bc | 1283 | raw_spin_unlock(&object->lock); |
94f4a161 CM |
1284 | |
1285 | if (excess_ref) { | |
1286 | object = lookup_object(excess_ref, 0); | |
1287 | if (!object) | |
1288 | continue; | |
1289 | if (object == scanned) | |
1290 | /* circular reference, ignore */ | |
1291 | continue; | |
8c96f1bc | 1292 | raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING); |
94f4a161 | 1293 | update_refs(object); |
8c96f1bc | 1294 | raw_spin_unlock(&object->lock); |
94f4a161 | 1295 | } |
93ada579 | 1296 | } |
8c96f1bc | 1297 | raw_spin_unlock_irqrestore(&kmemleak_lock, flags); |
93ada579 | 1298 | } |
0587da40 | 1299 | |
93ada579 CM |
1300 | /* |
1301 | * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency. | |
1302 | */ | |
dce5b0bd | 1303 | #ifdef CONFIG_SMP |
93ada579 CM |
1304 | static void scan_large_block(void *start, void *end) |
1305 | { | |
1306 | void *next; | |
1307 | ||
1308 | while (start < end) { | |
1309 | next = min(start + MAX_SCAN_SIZE, end); | |
1310 | scan_block(start, next, NULL); | |
1311 | start = next; | |
1312 | cond_resched(); | |
3c7b4e6b CM |
1313 | } |
1314 | } | |
dce5b0bd | 1315 | #endif |
3c7b4e6b CM |
1316 | |
1317 | /* | |
1318 | * Scan a memory block corresponding to a kmemleak_object. A condition is | |
1319 | * that object->use_count >= 1. | |
1320 | */ | |
1321 | static void scan_object(struct kmemleak_object *object) | |
1322 | { | |
1323 | struct kmemleak_scan_area *area; | |
3c7b4e6b CM |
1324 | unsigned long flags; |
1325 | ||
1326 | /* | |
21ae2956 UKK |
1327 | * Once the object->lock is acquired, the corresponding memory block |
1328 | * cannot be freed (the same lock is acquired in delete_object). | |
3c7b4e6b | 1329 | */ |
8c96f1bc | 1330 | raw_spin_lock_irqsave(&object->lock, flags); |
3c7b4e6b CM |
1331 | if (object->flags & OBJECT_NO_SCAN) |
1332 | goto out; | |
1333 | if (!(object->flags & OBJECT_ALLOCATED)) | |
1334 | /* already freed object */ | |
1335 | goto out; | |
dba82d94 CM |
1336 | if (hlist_empty(&object->area_list) || |
1337 | object->flags & OBJECT_FULL_SCAN) { | |
af98603d CM |
1338 | void *start = (void *)object->pointer; |
1339 | void *end = (void *)(object->pointer + object->size); | |
93ada579 CM |
1340 | void *next; |
1341 | ||
1342 | do { | |
1343 | next = min(start + MAX_SCAN_SIZE, end); | |
1344 | scan_block(start, next, object); | |
af98603d | 1345 | |
93ada579 CM |
1346 | start = next; |
1347 | if (start >= end) | |
1348 | break; | |
af98603d | 1349 | |
8c96f1bc | 1350 | raw_spin_unlock_irqrestore(&object->lock, flags); |
af98603d | 1351 | cond_resched(); |
8c96f1bc | 1352 | raw_spin_lock_irqsave(&object->lock, flags); |
93ada579 | 1353 | } while (object->flags & OBJECT_ALLOCATED); |
af98603d | 1354 | } else |
b67bfe0d | 1355 | hlist_for_each_entry(area, &object->area_list, node) |
c017b4be CM |
1356 | scan_block((void *)area->start, |
1357 | (void *)(area->start + area->size), | |
93ada579 | 1358 | object); |
3c7b4e6b | 1359 | out: |
8c96f1bc | 1360 | raw_spin_unlock_irqrestore(&object->lock, flags); |
3c7b4e6b CM |
1361 | } |
1362 | ||
04609ccc CM |
1363 | /* |
1364 | * Scan the objects already referenced (gray objects). More objects will be | |
1365 | * referenced and, if there are no memory leaks, all the objects are scanned. | |
1366 | */ | |
1367 | static void scan_gray_list(void) | |
1368 | { | |
1369 | struct kmemleak_object *object, *tmp; | |
1370 | ||
1371 | /* | |
1372 | * The list traversal is safe for both tail additions and removals | |
1373 | * from inside the loop. The kmemleak objects cannot be freed from | |
1374 | * outside the loop because their use_count was incremented. | |
1375 | */ | |
1376 | object = list_entry(gray_list.next, typeof(*object), gray_list); | |
1377 | while (&object->gray_list != &gray_list) { | |
1378 | cond_resched(); | |
1379 | ||
1380 | /* may add new objects to the list */ | |
1381 | if (!scan_should_stop()) | |
1382 | scan_object(object); | |
1383 | ||
1384 | tmp = list_entry(object->gray_list.next, typeof(*object), | |
1385 | gray_list); | |
1386 | ||
1387 | /* remove the object from the list and release it */ | |
1388 | list_del(&object->gray_list); | |
1389 | put_object(object); | |
1390 | ||
1391 | object = tmp; | |
1392 | } | |
1393 | WARN_ON(!list_empty(&gray_list)); | |
1394 | } | |
1395 | ||
3c7b4e6b CM |
1396 | /* |
1397 | * Scan data sections and all the referenced memory blocks allocated via the | |
1398 | * kernel's standard allocators. This function must be called with the | |
1399 | * scan_mutex held. | |
1400 | */ | |
1401 | static void kmemleak_scan(void) | |
1402 | { | |
1403 | unsigned long flags; | |
04609ccc | 1404 | struct kmemleak_object *object; |
3c7b4e6b | 1405 | int i; |
4698c1f2 | 1406 | int new_leaks = 0; |
3c7b4e6b | 1407 | |
acf4968e CM |
1408 | jiffies_last_scan = jiffies; |
1409 | ||
3c7b4e6b CM |
1410 | /* prepare the kmemleak_object's */ |
1411 | rcu_read_lock(); | |
1412 | list_for_each_entry_rcu(object, &object_list, object_list) { | |
8c96f1bc | 1413 | raw_spin_lock_irqsave(&object->lock, flags); |
3c7b4e6b CM |
1414 | #ifdef DEBUG |
1415 | /* | |
1416 | * With a few exceptions there should be a maximum of | |
1417 | * 1 reference to any object at this point. | |
1418 | */ | |
1419 | if (atomic_read(&object->use_count) > 1) { | |
ae281064 | 1420 | pr_debug("object->use_count = %d\n", |
3c7b4e6b CM |
1421 | atomic_read(&object->use_count)); |
1422 | dump_object_info(object); | |
1423 | } | |
1424 | #endif | |
1425 | /* reset the reference count (whiten the object) */ | |
1426 | object->count = 0; | |
1427 | if (color_gray(object) && get_object(object)) | |
1428 | list_add_tail(&object->gray_list, &gray_list); | |
1429 | ||
8c96f1bc | 1430 | raw_spin_unlock_irqrestore(&object->lock, flags); |
3c7b4e6b CM |
1431 | } |
1432 | rcu_read_unlock(); | |
1433 | ||
3c7b4e6b CM |
1434 | #ifdef CONFIG_SMP |
1435 | /* per-cpu sections scanning */ | |
1436 | for_each_possible_cpu(i) | |
93ada579 CM |
1437 | scan_large_block(__per_cpu_start + per_cpu_offset(i), |
1438 | __per_cpu_end + per_cpu_offset(i)); | |
3c7b4e6b CM |
1439 | #endif |
1440 | ||
1441 | /* | |
029aeff5 | 1442 | * Struct page scanning for each node. |
3c7b4e6b | 1443 | */ |
bfc8c901 | 1444 | get_online_mems(); |
3c7b4e6b | 1445 | for_each_online_node(i) { |
108bcc96 CS |
1446 | unsigned long start_pfn = node_start_pfn(i); |
1447 | unsigned long end_pfn = node_end_pfn(i); | |
3c7b4e6b CM |
1448 | unsigned long pfn; |
1449 | ||
1450 | for (pfn = start_pfn; pfn < end_pfn; pfn++) { | |
9f1eb38e | 1451 | struct page *page = pfn_to_online_page(pfn); |
3c7b4e6b | 1452 | |
9f1eb38e OS |
1453 | if (!page) |
1454 | continue; | |
1455 | ||
1456 | /* only scan pages belonging to this node */ | |
1457 | if (page_to_nid(page) != i) | |
3c7b4e6b | 1458 | continue; |
3c7b4e6b CM |
1459 | /* only scan if page is in use */ |
1460 | if (page_count(page) == 0) | |
1461 | continue; | |
93ada579 | 1462 | scan_block(page, page + 1, NULL); |
13ab183d | 1463 | if (!(pfn & 63)) |
bde5f6bc | 1464 | cond_resched(); |
3c7b4e6b CM |
1465 | } |
1466 | } | |
bfc8c901 | 1467 | put_online_mems(); |
3c7b4e6b CM |
1468 | |
1469 | /* | |
43ed5d6e | 1470 | * Scanning the task stacks (may introduce false negatives). |
3c7b4e6b CM |
1471 | */ |
1472 | if (kmemleak_stack_scan) { | |
43ed5d6e CM |
1473 | struct task_struct *p, *g; |
1474 | ||
c4b28963 DB |
1475 | rcu_read_lock(); |
1476 | for_each_process_thread(g, p) { | |
37df49f4 CM |
1477 | void *stack = try_get_task_stack(p); |
1478 | if (stack) { | |
1479 | scan_block(stack, stack + THREAD_SIZE, NULL); | |
1480 | put_task_stack(p); | |
1481 | } | |
c4b28963 DB |
1482 | } |
1483 | rcu_read_unlock(); | |
3c7b4e6b CM |
1484 | } |
1485 | ||
1486 | /* | |
1487 | * Scan the objects already referenced from the sections scanned | |
04609ccc | 1488 | * above. |
3c7b4e6b | 1489 | */ |
04609ccc | 1490 | scan_gray_list(); |
2587362e CM |
1491 | |
1492 | /* | |
04609ccc CM |
1493 | * Check for new or unreferenced objects modified since the previous |
1494 | * scan and color them gray until the next scan. | |
2587362e CM |
1495 | */ |
1496 | rcu_read_lock(); | |
1497 | list_for_each_entry_rcu(object, &object_list, object_list) { | |
8c96f1bc | 1498 | raw_spin_lock_irqsave(&object->lock, flags); |
04609ccc CM |
1499 | if (color_white(object) && (object->flags & OBJECT_ALLOCATED) |
1500 | && update_checksum(object) && get_object(object)) { | |
1501 | /* color it gray temporarily */ | |
1502 | object->count = object->min_count; | |
2587362e CM |
1503 | list_add_tail(&object->gray_list, &gray_list); |
1504 | } | |
8c96f1bc | 1505 | raw_spin_unlock_irqrestore(&object->lock, flags); |
2587362e CM |
1506 | } |
1507 | rcu_read_unlock(); | |
1508 | ||
04609ccc CM |
1509 | /* |
1510 | * Re-scan the gray list for modified unreferenced objects. | |
1511 | */ | |
1512 | scan_gray_list(); | |
4698c1f2 | 1513 | |
17bb9e0d | 1514 | /* |
04609ccc | 1515 | * If scanning was stopped do not report any new unreferenced objects. |
17bb9e0d | 1516 | */ |
04609ccc | 1517 | if (scan_should_stop()) |
17bb9e0d CM |
1518 | return; |
1519 | ||
4698c1f2 CM |
1520 | /* |
1521 | * Scanning result reporting. | |
1522 | */ | |
1523 | rcu_read_lock(); | |
1524 | list_for_each_entry_rcu(object, &object_list, object_list) { | |
8c96f1bc | 1525 | raw_spin_lock_irqsave(&object->lock, flags); |
4698c1f2 CM |
1526 | if (unreferenced_object(object) && |
1527 | !(object->flags & OBJECT_REPORTED)) { | |
1528 | object->flags |= OBJECT_REPORTED; | |
154221c3 VW |
1529 | |
1530 | if (kmemleak_verbose) | |
1531 | print_unreferenced(NULL, object); | |
1532 | ||
4698c1f2 CM |
1533 | new_leaks++; |
1534 | } | |
8c96f1bc | 1535 | raw_spin_unlock_irqrestore(&object->lock, flags); |
4698c1f2 CM |
1536 | } |
1537 | rcu_read_unlock(); | |
1538 | ||
dc9b3f42 LZ |
1539 | if (new_leaks) { |
1540 | kmemleak_found_leaks = true; | |
1541 | ||
756a025f JP |
1542 | pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n", |
1543 | new_leaks); | |
dc9b3f42 | 1544 | } |
4698c1f2 | 1545 | |
3c7b4e6b CM |
1546 | } |
1547 | ||
1548 | /* | |
1549 | * Thread function performing automatic memory scanning. Unreferenced objects | |
1550 | * at the end of a memory scan are reported but only the first time. | |
1551 | */ | |
1552 | static int kmemleak_scan_thread(void *arg) | |
1553 | { | |
d53ce042 | 1554 | static int first_run = IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN); |
3c7b4e6b | 1555 | |
ae281064 | 1556 | pr_info("Automatic memory scanning thread started\n"); |
bf2a76b3 | 1557 | set_user_nice(current, 10); |
3c7b4e6b CM |
1558 | |
1559 | /* | |
1560 | * Wait before the first scan to allow the system to fully initialize. | |
1561 | */ | |
1562 | if (first_run) { | |
98c42d94 | 1563 | signed long timeout = msecs_to_jiffies(SECS_FIRST_SCAN * 1000); |
3c7b4e6b | 1564 | first_run = 0; |
98c42d94 VN |
1565 | while (timeout && !kthread_should_stop()) |
1566 | timeout = schedule_timeout_interruptible(timeout); | |
3c7b4e6b CM |
1567 | } |
1568 | ||
1569 | while (!kthread_should_stop()) { | |
54dd200c | 1570 | signed long timeout = READ_ONCE(jiffies_scan_wait); |
3c7b4e6b CM |
1571 | |
1572 | mutex_lock(&scan_mutex); | |
3c7b4e6b | 1573 | kmemleak_scan(); |
3c7b4e6b | 1574 | mutex_unlock(&scan_mutex); |
4698c1f2 | 1575 | |
3c7b4e6b CM |
1576 | /* wait before the next scan */ |
1577 | while (timeout && !kthread_should_stop()) | |
1578 | timeout = schedule_timeout_interruptible(timeout); | |
1579 | } | |
1580 | ||
ae281064 | 1581 | pr_info("Automatic memory scanning thread ended\n"); |
3c7b4e6b CM |
1582 | |
1583 | return 0; | |
1584 | } | |
1585 | ||
1586 | /* | |
1587 | * Start the automatic memory scanning thread. This function must be called | |
4698c1f2 | 1588 | * with the scan_mutex held. |
3c7b4e6b | 1589 | */ |
7eb0d5e5 | 1590 | static void start_scan_thread(void) |
3c7b4e6b CM |
1591 | { |
1592 | if (scan_thread) | |
1593 | return; | |
1594 | scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak"); | |
1595 | if (IS_ERR(scan_thread)) { | |
598d8091 | 1596 | pr_warn("Failed to create the scan thread\n"); |
3c7b4e6b CM |
1597 | scan_thread = NULL; |
1598 | } | |
1599 | } | |
1600 | ||
1601 | /* | |
914b6dff | 1602 | * Stop the automatic memory scanning thread. |
3c7b4e6b | 1603 | */ |
7eb0d5e5 | 1604 | static void stop_scan_thread(void) |
3c7b4e6b CM |
1605 | { |
1606 | if (scan_thread) { | |
1607 | kthread_stop(scan_thread); | |
1608 | scan_thread = NULL; | |
1609 | } | |
1610 | } | |
1611 | ||
1612 | /* | |
1613 | * Iterate over the object_list and return the first valid object at or after | |
1614 | * the required position with its use_count incremented. The function triggers | |
1615 | * a memory scanning when the pos argument points to the first position. | |
1616 | */ | |
1617 | static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos) | |
1618 | { | |
1619 | struct kmemleak_object *object; | |
1620 | loff_t n = *pos; | |
b87324d0 CM |
1621 | int err; |
1622 | ||
1623 | err = mutex_lock_interruptible(&scan_mutex); | |
1624 | if (err < 0) | |
1625 | return ERR_PTR(err); | |
3c7b4e6b | 1626 | |
3c7b4e6b CM |
1627 | rcu_read_lock(); |
1628 | list_for_each_entry_rcu(object, &object_list, object_list) { | |
1629 | if (n-- > 0) | |
1630 | continue; | |
1631 | if (get_object(object)) | |
1632 | goto out; | |
1633 | } | |
1634 | object = NULL; | |
1635 | out: | |
3c7b4e6b CM |
1636 | return object; |
1637 | } | |
1638 | ||
1639 | /* | |
1640 | * Return the next object in the object_list. The function decrements the | |
1641 | * use_count of the previous object and increases that of the next one. | |
1642 | */ | |
1643 | static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos) | |
1644 | { | |
1645 | struct kmemleak_object *prev_obj = v; | |
1646 | struct kmemleak_object *next_obj = NULL; | |
58fac095 | 1647 | struct kmemleak_object *obj = prev_obj; |
3c7b4e6b CM |
1648 | |
1649 | ++(*pos); | |
3c7b4e6b | 1650 | |
58fac095 | 1651 | list_for_each_entry_continue_rcu(obj, &object_list, object_list) { |
52c3ce4e CM |
1652 | if (get_object(obj)) { |
1653 | next_obj = obj; | |
3c7b4e6b | 1654 | break; |
52c3ce4e | 1655 | } |
3c7b4e6b | 1656 | } |
288c857d | 1657 | |
3c7b4e6b CM |
1658 | put_object(prev_obj); |
1659 | return next_obj; | |
1660 | } | |
1661 | ||
1662 | /* | |
1663 | * Decrement the use_count of the last object required, if any. | |
1664 | */ | |
1665 | static void kmemleak_seq_stop(struct seq_file *seq, void *v) | |
1666 | { | |
b87324d0 CM |
1667 | if (!IS_ERR(v)) { |
1668 | /* | |
1669 | * kmemleak_seq_start may return ERR_PTR if the scan_mutex | |
1670 | * waiting was interrupted, so only release it if !IS_ERR. | |
1671 | */ | |
f5886c7f | 1672 | rcu_read_unlock(); |
b87324d0 CM |
1673 | mutex_unlock(&scan_mutex); |
1674 | if (v) | |
1675 | put_object(v); | |
1676 | } | |
3c7b4e6b CM |
1677 | } |
1678 | ||
1679 | /* | |
1680 | * Print the information for an unreferenced object to the seq file. | |
1681 | */ | |
1682 | static int kmemleak_seq_show(struct seq_file *seq, void *v) | |
1683 | { | |
1684 | struct kmemleak_object *object = v; | |
1685 | unsigned long flags; | |
1686 | ||
8c96f1bc | 1687 | raw_spin_lock_irqsave(&object->lock, flags); |
288c857d | 1688 | if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object)) |
17bb9e0d | 1689 | print_unreferenced(seq, object); |
8c96f1bc | 1690 | raw_spin_unlock_irqrestore(&object->lock, flags); |
3c7b4e6b CM |
1691 | return 0; |
1692 | } | |
1693 | ||
1694 | static const struct seq_operations kmemleak_seq_ops = { | |
1695 | .start = kmemleak_seq_start, | |
1696 | .next = kmemleak_seq_next, | |
1697 | .stop = kmemleak_seq_stop, | |
1698 | .show = kmemleak_seq_show, | |
1699 | }; | |
1700 | ||
1701 | static int kmemleak_open(struct inode *inode, struct file *file) | |
1702 | { | |
b87324d0 | 1703 | return seq_open(file, &kmemleak_seq_ops); |
3c7b4e6b CM |
1704 | } |
1705 | ||
189d84ed CM |
1706 | static int dump_str_object_info(const char *str) |
1707 | { | |
1708 | unsigned long flags; | |
1709 | struct kmemleak_object *object; | |
1710 | unsigned long addr; | |
1711 | ||
dc053733 AP |
1712 | if (kstrtoul(str, 0, &addr)) |
1713 | return -EINVAL; | |
189d84ed CM |
1714 | object = find_and_get_object(addr, 0); |
1715 | if (!object) { | |
1716 | pr_info("Unknown object at 0x%08lx\n", addr); | |
1717 | return -EINVAL; | |
1718 | } | |
1719 | ||
8c96f1bc | 1720 | raw_spin_lock_irqsave(&object->lock, flags); |
189d84ed | 1721 | dump_object_info(object); |
8c96f1bc | 1722 | raw_spin_unlock_irqrestore(&object->lock, flags); |
189d84ed CM |
1723 | |
1724 | put_object(object); | |
1725 | return 0; | |
1726 | } | |
1727 | ||
30b37101 LR |
1728 | /* |
1729 | * We use grey instead of black to ensure we can do future scans on the same | |
1730 | * objects. If we did not do future scans these black objects could | |
1731 | * potentially contain references to newly allocated objects in the future and | |
1732 | * we'd end up with false positives. | |
1733 | */ | |
1734 | static void kmemleak_clear(void) | |
1735 | { | |
1736 | struct kmemleak_object *object; | |
1737 | unsigned long flags; | |
1738 | ||
1739 | rcu_read_lock(); | |
1740 | list_for_each_entry_rcu(object, &object_list, object_list) { | |
8c96f1bc | 1741 | raw_spin_lock_irqsave(&object->lock, flags); |
30b37101 LR |
1742 | if ((object->flags & OBJECT_REPORTED) && |
1743 | unreferenced_object(object)) | |
a1084c87 | 1744 | __paint_it(object, KMEMLEAK_GREY); |
8c96f1bc | 1745 | raw_spin_unlock_irqrestore(&object->lock, flags); |
30b37101 LR |
1746 | } |
1747 | rcu_read_unlock(); | |
dc9b3f42 LZ |
1748 | |
1749 | kmemleak_found_leaks = false; | |
30b37101 LR |
1750 | } |
1751 | ||
c89da70c LZ |
1752 | static void __kmemleak_do_cleanup(void); |
1753 | ||
3c7b4e6b CM |
1754 | /* |
1755 | * File write operation to configure kmemleak at run-time. The following | |
1756 | * commands can be written to the /sys/kernel/debug/kmemleak file: | |
1757 | * off - disable kmemleak (irreversible) | |
1758 | * stack=on - enable the task stacks scanning | |
1759 | * stack=off - disable the tasks stacks scanning | |
1760 | * scan=on - start the automatic memory scanning thread | |
1761 | * scan=off - stop the automatic memory scanning thread | |
1762 | * scan=... - set the automatic memory scanning period in seconds (0 to | |
1763 | * disable it) | |
4698c1f2 | 1764 | * scan - trigger a memory scan |
30b37101 | 1765 | * clear - mark all current reported unreferenced kmemleak objects as |
c89da70c LZ |
1766 | * grey to ignore printing them, or free all kmemleak objects |
1767 | * if kmemleak has been disabled. | |
189d84ed | 1768 | * dump=... - dump information about the object found at the given address |
3c7b4e6b CM |
1769 | */ |
1770 | static ssize_t kmemleak_write(struct file *file, const char __user *user_buf, | |
1771 | size_t size, loff_t *ppos) | |
1772 | { | |
1773 | char buf[64]; | |
1774 | int buf_size; | |
b87324d0 | 1775 | int ret; |
3c7b4e6b CM |
1776 | |
1777 | buf_size = min(size, (sizeof(buf) - 1)); | |
1778 | if (strncpy_from_user(buf, user_buf, buf_size) < 0) | |
1779 | return -EFAULT; | |
1780 | buf[buf_size] = 0; | |
1781 | ||
b87324d0 CM |
1782 | ret = mutex_lock_interruptible(&scan_mutex); |
1783 | if (ret < 0) | |
1784 | return ret; | |
1785 | ||
c89da70c | 1786 | if (strncmp(buf, "clear", 5) == 0) { |
8910ae89 | 1787 | if (kmemleak_enabled) |
c89da70c LZ |
1788 | kmemleak_clear(); |
1789 | else | |
1790 | __kmemleak_do_cleanup(); | |
1791 | goto out; | |
1792 | } | |
1793 | ||
8910ae89 | 1794 | if (!kmemleak_enabled) { |
4e4dfce2 | 1795 | ret = -EPERM; |
c89da70c LZ |
1796 | goto out; |
1797 | } | |
1798 | ||
3c7b4e6b CM |
1799 | if (strncmp(buf, "off", 3) == 0) |
1800 | kmemleak_disable(); | |
1801 | else if (strncmp(buf, "stack=on", 8) == 0) | |
1802 | kmemleak_stack_scan = 1; | |
1803 | else if (strncmp(buf, "stack=off", 9) == 0) | |
1804 | kmemleak_stack_scan = 0; | |
1805 | else if (strncmp(buf, "scan=on", 7) == 0) | |
1806 | start_scan_thread(); | |
1807 | else if (strncmp(buf, "scan=off", 8) == 0) | |
1808 | stop_scan_thread(); | |
1809 | else if (strncmp(buf, "scan=", 5) == 0) { | |
54dd200c YX |
1810 | unsigned secs; |
1811 | unsigned long msecs; | |
3c7b4e6b | 1812 | |
54dd200c | 1813 | ret = kstrtouint(buf + 5, 0, &secs); |
b87324d0 CM |
1814 | if (ret < 0) |
1815 | goto out; | |
54dd200c YX |
1816 | |
1817 | msecs = secs * MSEC_PER_SEC; | |
1818 | if (msecs > UINT_MAX) | |
1819 | msecs = UINT_MAX; | |
1820 | ||
3c7b4e6b | 1821 | stop_scan_thread(); |
54dd200c YX |
1822 | if (msecs) { |
1823 | WRITE_ONCE(jiffies_scan_wait, msecs_to_jiffies(msecs)); | |
3c7b4e6b CM |
1824 | start_scan_thread(); |
1825 | } | |
4698c1f2 CM |
1826 | } else if (strncmp(buf, "scan", 4) == 0) |
1827 | kmemleak_scan(); | |
189d84ed CM |
1828 | else if (strncmp(buf, "dump=", 5) == 0) |
1829 | ret = dump_str_object_info(buf + 5); | |
4698c1f2 | 1830 | else |
b87324d0 CM |
1831 | ret = -EINVAL; |
1832 | ||
1833 | out: | |
1834 | mutex_unlock(&scan_mutex); | |
1835 | if (ret < 0) | |
1836 | return ret; | |
3c7b4e6b CM |
1837 | |
1838 | /* ignore the rest of the buffer, only one command at a time */ | |
1839 | *ppos += size; | |
1840 | return size; | |
1841 | } | |
1842 | ||
1843 | static const struct file_operations kmemleak_fops = { | |
1844 | .owner = THIS_MODULE, | |
1845 | .open = kmemleak_open, | |
1846 | .read = seq_read, | |
1847 | .write = kmemleak_write, | |
1848 | .llseek = seq_lseek, | |
5f3bf19a | 1849 | .release = seq_release, |
3c7b4e6b CM |
1850 | }; |
1851 | ||
c89da70c LZ |
1852 | static void __kmemleak_do_cleanup(void) |
1853 | { | |
2abd839a | 1854 | struct kmemleak_object *object, *tmp; |
c89da70c | 1855 | |
2abd839a CM |
1856 | /* |
1857 | * Kmemleak has already been disabled, no need for RCU list traversal | |
1858 | * or kmemleak_lock held. | |
1859 | */ | |
1860 | list_for_each_entry_safe(object, tmp, &object_list, object_list) { | |
1861 | __remove_object(object); | |
1862 | __delete_object(object); | |
1863 | } | |
c89da70c LZ |
1864 | } |
1865 | ||
3c7b4e6b | 1866 | /* |
74341703 CM |
1867 | * Stop the memory scanning thread and free the kmemleak internal objects if |
1868 | * no previous scan thread (otherwise, kmemleak may still have some useful | |
1869 | * information on memory leaks). | |
3c7b4e6b | 1870 | */ |
179a8100 | 1871 | static void kmemleak_do_cleanup(struct work_struct *work) |
3c7b4e6b | 1872 | { |
3c7b4e6b | 1873 | stop_scan_thread(); |
3c7b4e6b | 1874 | |
914b6dff | 1875 | mutex_lock(&scan_mutex); |
c5f3b1a5 | 1876 | /* |
914b6dff VM |
1877 | * Once it is made sure that kmemleak_scan has stopped, it is safe to no |
1878 | * longer track object freeing. Ordering of the scan thread stopping and | |
1879 | * the memory accesses below is guaranteed by the kthread_stop() | |
1880 | * function. | |
c5f3b1a5 CM |
1881 | */ |
1882 | kmemleak_free_enabled = 0; | |
914b6dff | 1883 | mutex_unlock(&scan_mutex); |
c5f3b1a5 | 1884 | |
c89da70c LZ |
1885 | if (!kmemleak_found_leaks) |
1886 | __kmemleak_do_cleanup(); | |
1887 | else | |
756a025f | 1888 | pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n"); |
3c7b4e6b CM |
1889 | } |
1890 | ||
179a8100 | 1891 | static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup); |
3c7b4e6b CM |
1892 | |
1893 | /* | |
1894 | * Disable kmemleak. No memory allocation/freeing will be traced once this | |
1895 | * function is called. Disabling kmemleak is an irreversible operation. | |
1896 | */ | |
1897 | static void kmemleak_disable(void) | |
1898 | { | |
1899 | /* atomically check whether it was already invoked */ | |
8910ae89 | 1900 | if (cmpxchg(&kmemleak_error, 0, 1)) |
3c7b4e6b CM |
1901 | return; |
1902 | ||
1903 | /* stop any memory operation tracing */ | |
8910ae89 | 1904 | kmemleak_enabled = 0; |
3c7b4e6b CM |
1905 | |
1906 | /* check whether it is too early for a kernel thread */ | |
8910ae89 | 1907 | if (kmemleak_initialized) |
179a8100 | 1908 | schedule_work(&cleanup_work); |
c5f3b1a5 CM |
1909 | else |
1910 | kmemleak_free_enabled = 0; | |
3c7b4e6b CM |
1911 | |
1912 | pr_info("Kernel memory leak detector disabled\n"); | |
1913 | } | |
1914 | ||
1915 | /* | |
1916 | * Allow boot-time kmemleak disabling (enabled by default). | |
1917 | */ | |
8bd30c10 | 1918 | static int __init kmemleak_boot_config(char *str) |
3c7b4e6b CM |
1919 | { |
1920 | if (!str) | |
1921 | return -EINVAL; | |
1922 | if (strcmp(str, "off") == 0) | |
1923 | kmemleak_disable(); | |
ab0155a2 JB |
1924 | else if (strcmp(str, "on") == 0) |
1925 | kmemleak_skip_disable = 1; | |
1926 | else | |
3c7b4e6b CM |
1927 | return -EINVAL; |
1928 | return 0; | |
1929 | } | |
1930 | early_param("kmemleak", kmemleak_boot_config); | |
1931 | ||
1932 | /* | |
2030117d | 1933 | * Kmemleak initialization. |
3c7b4e6b CM |
1934 | */ |
1935 | void __init kmemleak_init(void) | |
1936 | { | |
ab0155a2 JB |
1937 | #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF |
1938 | if (!kmemleak_skip_disable) { | |
1939 | kmemleak_disable(); | |
1940 | return; | |
1941 | } | |
1942 | #endif | |
1943 | ||
c5665868 CM |
1944 | if (kmemleak_error) |
1945 | return; | |
1946 | ||
3c7b4e6b CM |
1947 | jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE); |
1948 | jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000); | |
1949 | ||
1950 | object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE); | |
1951 | scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE); | |
3c7b4e6b | 1952 | |
298a32b1 CM |
1953 | /* register the data/bss sections */ |
1954 | create_object((unsigned long)_sdata, _edata - _sdata, | |
1955 | KMEMLEAK_GREY, GFP_ATOMIC); | |
1956 | create_object((unsigned long)__bss_start, __bss_stop - __bss_start, | |
1957 | KMEMLEAK_GREY, GFP_ATOMIC); | |
1958 | /* only register .data..ro_after_init if not within .data */ | |
b0d14fc4 | 1959 | if (&__start_ro_after_init < &_sdata || &__end_ro_after_init > &_edata) |
298a32b1 CM |
1960 | create_object((unsigned long)__start_ro_after_init, |
1961 | __end_ro_after_init - __start_ro_after_init, | |
1962 | KMEMLEAK_GREY, GFP_ATOMIC); | |
3c7b4e6b CM |
1963 | } |
1964 | ||
1965 | /* | |
1966 | * Late initialization function. | |
1967 | */ | |
1968 | static int __init kmemleak_late_init(void) | |
1969 | { | |
8910ae89 | 1970 | kmemleak_initialized = 1; |
3c7b4e6b | 1971 | |
282401df | 1972 | debugfs_create_file("kmemleak", 0644, NULL, NULL, &kmemleak_fops); |
b353756b | 1973 | |
8910ae89 | 1974 | if (kmemleak_error) { |
3c7b4e6b | 1975 | /* |
25985edc | 1976 | * Some error occurred and kmemleak was disabled. There is a |
3c7b4e6b CM |
1977 | * small chance that kmemleak_disable() was called immediately |
1978 | * after setting kmemleak_initialized and we may end up with | |
1979 | * two clean-up threads but serialized by scan_mutex. | |
1980 | */ | |
179a8100 | 1981 | schedule_work(&cleanup_work); |
3c7b4e6b CM |
1982 | return -ENOMEM; |
1983 | } | |
1984 | ||
d53ce042 SK |
1985 | if (IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN)) { |
1986 | mutex_lock(&scan_mutex); | |
1987 | start_scan_thread(); | |
1988 | mutex_unlock(&scan_mutex); | |
1989 | } | |
3c7b4e6b | 1990 | |
0e965a6b QC |
1991 | pr_info("Kernel memory leak detector initialized (mem pool available: %d)\n", |
1992 | mem_pool_free_count); | |
3c7b4e6b CM |
1993 | |
1994 | return 0; | |
1995 | } | |
1996 | late_initcall(kmemleak_late_init); |