]>
Commit | Line | Data |
---|---|---|
45051539 | 1 | // SPDX-License-Identifier: GPL-2.0-only |
3c7b4e6b CM |
2 | /* |
3 | * mm/kmemleak.c | |
4 | * | |
5 | * Copyright (C) 2008 ARM Limited | |
6 | * Written by Catalin Marinas <[email protected]> | |
7 | * | |
3c7b4e6b | 8 | * For more information on the algorithm and kmemleak usage, please see |
22901c6c | 9 | * Documentation/dev-tools/kmemleak.rst. |
3c7b4e6b CM |
10 | * |
11 | * Notes on locking | |
12 | * ---------------- | |
13 | * | |
14 | * The following locks and mutexes are used by kmemleak: | |
15 | * | |
8c96f1bc | 16 | * - kmemleak_lock (raw_spinlock_t): protects the object_list modifications and |
3c7b4e6b CM |
17 | * accesses to the object_tree_root. The object_list is the main list |
18 | * holding the metadata (struct kmemleak_object) for the allocated memory | |
85d3a316 | 19 | * blocks. The object_tree_root is a red black tree used to look-up |
3c7b4e6b CM |
20 | * metadata based on a pointer to the corresponding memory block. The |
21 | * kmemleak_object structures are added to the object_list and | |
22 | * object_tree_root in the create_object() function called from the | |
23 | * kmemleak_alloc() callback and removed in delete_object() called from the | |
24 | * kmemleak_free() callback | |
8c96f1bc HZ |
25 | * - kmemleak_object.lock (raw_spinlock_t): protects a kmemleak_object. |
26 | * Accesses to the metadata (e.g. count) are protected by this lock. Note | |
27 | * that some members of this structure may be protected by other means | |
28 | * (atomic or kmemleak_lock). This lock is also held when scanning the | |
29 | * corresponding memory block to avoid the kernel freeing it via the | |
30 | * kmemleak_free() callback. This is less heavyweight than holding a global | |
31 | * lock like kmemleak_lock during scanning. | |
3c7b4e6b CM |
32 | * - scan_mutex (mutex): ensures that only one thread may scan the memory for |
33 | * unreferenced objects at a time. The gray_list contains the objects which | |
34 | * are already referenced or marked as false positives and need to be | |
35 | * scanned. This list is only modified during a scanning episode when the | |
36 | * scan_mutex is held. At the end of a scan, the gray_list is always empty. | |
37 | * Note that the kmemleak_object.use_count is incremented when an object is | |
4698c1f2 CM |
38 | * added to the gray_list and therefore cannot be freed. This mutex also |
39 | * prevents multiple users of the "kmemleak" debugfs file together with | |
40 | * modifications to the memory scanning parameters including the scan_thread | |
41 | * pointer | |
3c7b4e6b | 42 | * |
93ada579 | 43 | * Locks and mutexes are acquired/nested in the following order: |
9d5a4c73 | 44 | * |
93ada579 CM |
45 | * scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING) |
46 | * | |
47 | * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex | |
48 | * regions. | |
9d5a4c73 | 49 | * |
3c7b4e6b CM |
50 | * The kmemleak_object structures have a use_count incremented or decremented |
51 | * using the get_object()/put_object() functions. When the use_count becomes | |
52 | * 0, this count can no longer be incremented and put_object() schedules the | |
53 | * kmemleak_object freeing via an RCU callback. All calls to the get_object() | |
54 | * function must be protected by rcu_read_lock() to avoid accessing a freed | |
55 | * structure. | |
56 | */ | |
57 | ||
ae281064 JP |
58 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
59 | ||
3c7b4e6b CM |
60 | #include <linux/init.h> |
61 | #include <linux/kernel.h> | |
62 | #include <linux/list.h> | |
3f07c014 | 63 | #include <linux/sched/signal.h> |
29930025 | 64 | #include <linux/sched/task.h> |
68db0cf1 | 65 | #include <linux/sched/task_stack.h> |
3c7b4e6b CM |
66 | #include <linux/jiffies.h> |
67 | #include <linux/delay.h> | |
b95f1b31 | 68 | #include <linux/export.h> |
3c7b4e6b | 69 | #include <linux/kthread.h> |
85d3a316 | 70 | #include <linux/rbtree.h> |
3c7b4e6b CM |
71 | #include <linux/fs.h> |
72 | #include <linux/debugfs.h> | |
73 | #include <linux/seq_file.h> | |
74 | #include <linux/cpumask.h> | |
75 | #include <linux/spinlock.h> | |
154221c3 | 76 | #include <linux/module.h> |
3c7b4e6b CM |
77 | #include <linux/mutex.h> |
78 | #include <linux/rcupdate.h> | |
79 | #include <linux/stacktrace.h> | |
80 | #include <linux/cache.h> | |
81 | #include <linux/percpu.h> | |
57c8a661 | 82 | #include <linux/memblock.h> |
9099daed | 83 | #include <linux/pfn.h> |
3c7b4e6b CM |
84 | #include <linux/mmzone.h> |
85 | #include <linux/slab.h> | |
86 | #include <linux/thread_info.h> | |
87 | #include <linux/err.h> | |
88 | #include <linux/uaccess.h> | |
89 | #include <linux/string.h> | |
90 | #include <linux/nodemask.h> | |
91 | #include <linux/mm.h> | |
179a8100 | 92 | #include <linux/workqueue.h> |
04609ccc | 93 | #include <linux/crc32.h> |
3c7b4e6b CM |
94 | |
95 | #include <asm/sections.h> | |
96 | #include <asm/processor.h> | |
60063497 | 97 | #include <linux/atomic.h> |
3c7b4e6b | 98 | |
e79ed2f1 | 99 | #include <linux/kasan.h> |
3c7b4e6b | 100 | #include <linux/kmemleak.h> |
029aeff5 | 101 | #include <linux/memory_hotplug.h> |
3c7b4e6b CM |
102 | |
103 | /* | |
104 | * Kmemleak configuration and common defines. | |
105 | */ | |
106 | #define MAX_TRACE 16 /* stack trace length */ | |
3c7b4e6b | 107 | #define MSECS_MIN_AGE 5000 /* minimum object age for reporting */ |
3c7b4e6b CM |
108 | #define SECS_FIRST_SCAN 60 /* delay before the first scan */ |
109 | #define SECS_SCAN_WAIT 600 /* subsequent auto scanning delay */ | |
af98603d | 110 | #define MAX_SCAN_SIZE 4096 /* maximum size of a scanned block */ |
3c7b4e6b CM |
111 | |
112 | #define BYTES_PER_POINTER sizeof(void *) | |
113 | ||
216c04b0 | 114 | /* GFP bitmask for kmemleak internal allocations */ |
20b5c303 | 115 | #define gfp_kmemleak_mask(gfp) (((gfp) & (GFP_KERNEL | GFP_ATOMIC)) | \ |
6ae4bd1f | 116 | __GFP_NORETRY | __GFP_NOMEMALLOC | \ |
df9576de | 117 | __GFP_NOWARN) |
216c04b0 | 118 | |
3c7b4e6b CM |
119 | /* scanning area inside a memory block */ |
120 | struct kmemleak_scan_area { | |
121 | struct hlist_node node; | |
c017b4be CM |
122 | unsigned long start; |
123 | size_t size; | |
3c7b4e6b CM |
124 | }; |
125 | ||
a1084c87 LR |
126 | #define KMEMLEAK_GREY 0 |
127 | #define KMEMLEAK_BLACK -1 | |
128 | ||
3c7b4e6b CM |
129 | /* |
130 | * Structure holding the metadata for each allocated memory block. | |
131 | * Modifications to such objects should be made while holding the | |
132 | * object->lock. Insertions or deletions from object_list, gray_list or | |
85d3a316 | 133 | * rb_node are already protected by the corresponding locks or mutex (see |
3c7b4e6b CM |
134 | * the notes on locking above). These objects are reference-counted |
135 | * (use_count) and freed using the RCU mechanism. | |
136 | */ | |
137 | struct kmemleak_object { | |
8c96f1bc | 138 | raw_spinlock_t lock; |
f66abf09 | 139 | unsigned int flags; /* object status flags */ |
3c7b4e6b CM |
140 | struct list_head object_list; |
141 | struct list_head gray_list; | |
85d3a316 | 142 | struct rb_node rb_node; |
3c7b4e6b CM |
143 | struct rcu_head rcu; /* object_list lockless traversal */ |
144 | /* object usage count; object freed when use_count == 0 */ | |
145 | atomic_t use_count; | |
146 | unsigned long pointer; | |
147 | size_t size; | |
94f4a161 CM |
148 | /* pass surplus references to this pointer */ |
149 | unsigned long excess_ref; | |
3c7b4e6b CM |
150 | /* minimum number of a pointers found before it is considered leak */ |
151 | int min_count; | |
152 | /* the total number of pointers found pointing to this object */ | |
153 | int count; | |
04609ccc CM |
154 | /* checksum for detecting modified objects */ |
155 | u32 checksum; | |
3c7b4e6b CM |
156 | /* memory ranges to be scanned inside an object (empty for all) */ |
157 | struct hlist_head area_list; | |
158 | unsigned long trace[MAX_TRACE]; | |
159 | unsigned int trace_len; | |
160 | unsigned long jiffies; /* creation timestamp */ | |
161 | pid_t pid; /* pid of the current task */ | |
162 | char comm[TASK_COMM_LEN]; /* executable name */ | |
163 | }; | |
164 | ||
165 | /* flag representing the memory block allocation status */ | |
166 | #define OBJECT_ALLOCATED (1 << 0) | |
167 | /* flag set after the first reporting of an unreference object */ | |
168 | #define OBJECT_REPORTED (1 << 1) | |
169 | /* flag set to not scan the object */ | |
170 | #define OBJECT_NO_SCAN (1 << 2) | |
dba82d94 CM |
171 | /* flag set to fully scan the object when scan_area allocation failed */ |
172 | #define OBJECT_FULL_SCAN (1 << 3) | |
3c7b4e6b | 173 | |
154221c3 | 174 | #define HEX_PREFIX " " |
0494e082 SS |
175 | /* number of bytes to print per line; must be 16 or 32 */ |
176 | #define HEX_ROW_SIZE 16 | |
177 | /* number of bytes to print at a time (1, 2, 4, 8) */ | |
178 | #define HEX_GROUP_SIZE 1 | |
179 | /* include ASCII after the hex output */ | |
180 | #define HEX_ASCII 1 | |
181 | /* max number of lines to be printed */ | |
182 | #define HEX_MAX_LINES 2 | |
183 | ||
3c7b4e6b CM |
184 | /* the list of all allocated objects */ |
185 | static LIST_HEAD(object_list); | |
186 | /* the list of gray-colored objects (see color_gray comment below) */ | |
187 | static LIST_HEAD(gray_list); | |
0647398a | 188 | /* memory pool allocation */ |
c5665868 | 189 | static struct kmemleak_object mem_pool[CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE]; |
0647398a CM |
190 | static int mem_pool_free_count = ARRAY_SIZE(mem_pool); |
191 | static LIST_HEAD(mem_pool_free_list); | |
85d3a316 ML |
192 | /* search tree for object boundaries */ |
193 | static struct rb_root object_tree_root = RB_ROOT; | |
8c96f1bc HZ |
194 | /* protecting the access to object_list and object_tree_root */ |
195 | static DEFINE_RAW_SPINLOCK(kmemleak_lock); | |
3c7b4e6b CM |
196 | |
197 | /* allocation caches for kmemleak internal data */ | |
198 | static struct kmem_cache *object_cache; | |
199 | static struct kmem_cache *scan_area_cache; | |
200 | ||
201 | /* set if tracing memory operations is enabled */ | |
c5665868 | 202 | static int kmemleak_enabled = 1; |
c5f3b1a5 | 203 | /* same as above but only for the kmemleak_free() callback */ |
c5665868 | 204 | static int kmemleak_free_enabled = 1; |
3c7b4e6b | 205 | /* set in the late_initcall if there were no errors */ |
8910ae89 | 206 | static int kmemleak_initialized; |
5f79020c | 207 | /* set if a kmemleak warning was issued */ |
8910ae89 | 208 | static int kmemleak_warning; |
5f79020c | 209 | /* set if a fatal kmemleak error has occurred */ |
8910ae89 | 210 | static int kmemleak_error; |
3c7b4e6b CM |
211 | |
212 | /* minimum and maximum address that may be valid pointers */ | |
213 | static unsigned long min_addr = ULONG_MAX; | |
214 | static unsigned long max_addr; | |
215 | ||
3c7b4e6b | 216 | static struct task_struct *scan_thread; |
acf4968e | 217 | /* used to avoid reporting of recently allocated objects */ |
3c7b4e6b | 218 | static unsigned long jiffies_min_age; |
acf4968e | 219 | static unsigned long jiffies_last_scan; |
3c7b4e6b CM |
220 | /* delay between automatic memory scannings */ |
221 | static signed long jiffies_scan_wait; | |
222 | /* enables or disables the task stacks scanning */ | |
e0a2a160 | 223 | static int kmemleak_stack_scan = 1; |
4698c1f2 | 224 | /* protects the memory scanning, parameters and debug/kmemleak file access */ |
3c7b4e6b | 225 | static DEFINE_MUTEX(scan_mutex); |
ab0155a2 JB |
226 | /* setting kmemleak=on, will set this var, skipping the disable */ |
227 | static int kmemleak_skip_disable; | |
dc9b3f42 LZ |
228 | /* If there are leaks that can be reported */ |
229 | static bool kmemleak_found_leaks; | |
3c7b4e6b | 230 | |
154221c3 VW |
231 | static bool kmemleak_verbose; |
232 | module_param_named(verbose, kmemleak_verbose, bool, 0600); | |
233 | ||
3c7b4e6b CM |
234 | static void kmemleak_disable(void); |
235 | ||
236 | /* | |
237 | * Print a warning and dump the stack trace. | |
238 | */ | |
5f79020c | 239 | #define kmemleak_warn(x...) do { \ |
598d8091 | 240 | pr_warn(x); \ |
5f79020c | 241 | dump_stack(); \ |
8910ae89 | 242 | kmemleak_warning = 1; \ |
3c7b4e6b CM |
243 | } while (0) |
244 | ||
245 | /* | |
25985edc | 246 | * Macro invoked when a serious kmemleak condition occurred and cannot be |
2030117d | 247 | * recovered from. Kmemleak will be disabled and further allocation/freeing |
3c7b4e6b CM |
248 | * tracing no longer available. |
249 | */ | |
000814f4 | 250 | #define kmemleak_stop(x...) do { \ |
3c7b4e6b CM |
251 | kmemleak_warn(x); \ |
252 | kmemleak_disable(); \ | |
253 | } while (0) | |
254 | ||
154221c3 VW |
255 | #define warn_or_seq_printf(seq, fmt, ...) do { \ |
256 | if (seq) \ | |
257 | seq_printf(seq, fmt, ##__VA_ARGS__); \ | |
258 | else \ | |
259 | pr_warn(fmt, ##__VA_ARGS__); \ | |
260 | } while (0) | |
261 | ||
262 | static void warn_or_seq_hex_dump(struct seq_file *seq, int prefix_type, | |
263 | int rowsize, int groupsize, const void *buf, | |
264 | size_t len, bool ascii) | |
265 | { | |
266 | if (seq) | |
267 | seq_hex_dump(seq, HEX_PREFIX, prefix_type, rowsize, groupsize, | |
268 | buf, len, ascii); | |
269 | else | |
270 | print_hex_dump(KERN_WARNING, pr_fmt(HEX_PREFIX), prefix_type, | |
271 | rowsize, groupsize, buf, len, ascii); | |
272 | } | |
273 | ||
0494e082 SS |
274 | /* |
275 | * Printing of the objects hex dump to the seq file. The number of lines to be | |
276 | * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The | |
277 | * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called | |
278 | * with the object->lock held. | |
279 | */ | |
280 | static void hex_dump_object(struct seq_file *seq, | |
281 | struct kmemleak_object *object) | |
282 | { | |
283 | const u8 *ptr = (const u8 *)object->pointer; | |
6fc37c49 | 284 | size_t len; |
0494e082 SS |
285 | |
286 | /* limit the number of lines to HEX_MAX_LINES */ | |
6fc37c49 | 287 | len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE); |
0494e082 | 288 | |
154221c3 | 289 | warn_or_seq_printf(seq, " hex dump (first %zu bytes):\n", len); |
5c335fe0 | 290 | kasan_disable_current(); |
154221c3 VW |
291 | warn_or_seq_hex_dump(seq, DUMP_PREFIX_NONE, HEX_ROW_SIZE, |
292 | HEX_GROUP_SIZE, ptr, len, HEX_ASCII); | |
5c335fe0 | 293 | kasan_enable_current(); |
0494e082 SS |
294 | } |
295 | ||
3c7b4e6b CM |
296 | /* |
297 | * Object colors, encoded with count and min_count: | |
298 | * - white - orphan object, not enough references to it (count < min_count) | |
299 | * - gray - not orphan, not marked as false positive (min_count == 0) or | |
300 | * sufficient references to it (count >= min_count) | |
301 | * - black - ignore, it doesn't contain references (e.g. text section) | |
302 | * (min_count == -1). No function defined for this color. | |
303 | * Newly created objects don't have any color assigned (object->count == -1) | |
304 | * before the next memory scan when they become white. | |
305 | */ | |
4a558dd6 | 306 | static bool color_white(const struct kmemleak_object *object) |
3c7b4e6b | 307 | { |
a1084c87 LR |
308 | return object->count != KMEMLEAK_BLACK && |
309 | object->count < object->min_count; | |
3c7b4e6b CM |
310 | } |
311 | ||
4a558dd6 | 312 | static bool color_gray(const struct kmemleak_object *object) |
3c7b4e6b | 313 | { |
a1084c87 LR |
314 | return object->min_count != KMEMLEAK_BLACK && |
315 | object->count >= object->min_count; | |
3c7b4e6b CM |
316 | } |
317 | ||
3c7b4e6b CM |
318 | /* |
319 | * Objects are considered unreferenced only if their color is white, they have | |
320 | * not be deleted and have a minimum age to avoid false positives caused by | |
321 | * pointers temporarily stored in CPU registers. | |
322 | */ | |
4a558dd6 | 323 | static bool unreferenced_object(struct kmemleak_object *object) |
3c7b4e6b | 324 | { |
04609ccc | 325 | return (color_white(object) && object->flags & OBJECT_ALLOCATED) && |
acf4968e CM |
326 | time_before_eq(object->jiffies + jiffies_min_age, |
327 | jiffies_last_scan); | |
3c7b4e6b CM |
328 | } |
329 | ||
330 | /* | |
bab4a34a CM |
331 | * Printing of the unreferenced objects information to the seq file. The |
332 | * print_unreferenced function must be called with the object->lock held. | |
3c7b4e6b | 333 | */ |
3c7b4e6b CM |
334 | static void print_unreferenced(struct seq_file *seq, |
335 | struct kmemleak_object *object) | |
336 | { | |
337 | int i; | |
fefdd336 | 338 | unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies); |
3c7b4e6b | 339 | |
154221c3 | 340 | warn_or_seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n", |
bab4a34a | 341 | object->pointer, object->size); |
154221c3 | 342 | warn_or_seq_printf(seq, " comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n", |
fefdd336 CM |
343 | object->comm, object->pid, object->jiffies, |
344 | msecs_age / 1000, msecs_age % 1000); | |
0494e082 | 345 | hex_dump_object(seq, object); |
154221c3 | 346 | warn_or_seq_printf(seq, " backtrace:\n"); |
3c7b4e6b CM |
347 | |
348 | for (i = 0; i < object->trace_len; i++) { | |
349 | void *ptr = (void *)object->trace[i]; | |
154221c3 | 350 | warn_or_seq_printf(seq, " [<%p>] %pS\n", ptr, ptr); |
3c7b4e6b CM |
351 | } |
352 | } | |
353 | ||
354 | /* | |
355 | * Print the kmemleak_object information. This function is used mainly for | |
356 | * debugging special cases when kmemleak operations. It must be called with | |
357 | * the object->lock held. | |
358 | */ | |
359 | static void dump_object_info(struct kmemleak_object *object) | |
360 | { | |
ae281064 | 361 | pr_notice("Object 0x%08lx (size %zu):\n", |
85d3a316 | 362 | object->pointer, object->size); |
3c7b4e6b CM |
363 | pr_notice(" comm \"%s\", pid %d, jiffies %lu\n", |
364 | object->comm, object->pid, object->jiffies); | |
365 | pr_notice(" min_count = %d\n", object->min_count); | |
366 | pr_notice(" count = %d\n", object->count); | |
f66abf09 | 367 | pr_notice(" flags = 0x%x\n", object->flags); |
aae0ad7a | 368 | pr_notice(" checksum = %u\n", object->checksum); |
3c7b4e6b | 369 | pr_notice(" backtrace:\n"); |
07984aad | 370 | stack_trace_print(object->trace, object->trace_len, 4); |
3c7b4e6b CM |
371 | } |
372 | ||
373 | /* | |
85d3a316 | 374 | * Look-up a memory block metadata (kmemleak_object) in the object search |
3c7b4e6b CM |
375 | * tree based on a pointer value. If alias is 0, only values pointing to the |
376 | * beginning of the memory block are allowed. The kmemleak_lock must be held | |
377 | * when calling this function. | |
378 | */ | |
379 | static struct kmemleak_object *lookup_object(unsigned long ptr, int alias) | |
380 | { | |
85d3a316 ML |
381 | struct rb_node *rb = object_tree_root.rb_node; |
382 | ||
383 | while (rb) { | |
384 | struct kmemleak_object *object = | |
385 | rb_entry(rb, struct kmemleak_object, rb_node); | |
386 | if (ptr < object->pointer) | |
387 | rb = object->rb_node.rb_left; | |
388 | else if (object->pointer + object->size <= ptr) | |
389 | rb = object->rb_node.rb_right; | |
390 | else if (object->pointer == ptr || alias) | |
391 | return object; | |
392 | else { | |
5f79020c CM |
393 | kmemleak_warn("Found object by alias at 0x%08lx\n", |
394 | ptr); | |
a7686a45 | 395 | dump_object_info(object); |
85d3a316 | 396 | break; |
3c7b4e6b | 397 | } |
85d3a316 ML |
398 | } |
399 | return NULL; | |
3c7b4e6b CM |
400 | } |
401 | ||
402 | /* | |
403 | * Increment the object use_count. Return 1 if successful or 0 otherwise. Note | |
404 | * that once an object's use_count reached 0, the RCU freeing was already | |
405 | * registered and the object should no longer be used. This function must be | |
406 | * called under the protection of rcu_read_lock(). | |
407 | */ | |
408 | static int get_object(struct kmemleak_object *object) | |
409 | { | |
410 | return atomic_inc_not_zero(&object->use_count); | |
411 | } | |
412 | ||
0647398a CM |
413 | /* |
414 | * Memory pool allocation and freeing. kmemleak_lock must not be held. | |
415 | */ | |
416 | static struct kmemleak_object *mem_pool_alloc(gfp_t gfp) | |
417 | { | |
418 | unsigned long flags; | |
419 | struct kmemleak_object *object; | |
420 | ||
421 | /* try the slab allocator first */ | |
c5665868 CM |
422 | if (object_cache) { |
423 | object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp)); | |
424 | if (object) | |
425 | return object; | |
426 | } | |
0647398a CM |
427 | |
428 | /* slab allocation failed, try the memory pool */ | |
8c96f1bc | 429 | raw_spin_lock_irqsave(&kmemleak_lock, flags); |
0647398a CM |
430 | object = list_first_entry_or_null(&mem_pool_free_list, |
431 | typeof(*object), object_list); | |
432 | if (object) | |
433 | list_del(&object->object_list); | |
434 | else if (mem_pool_free_count) | |
435 | object = &mem_pool[--mem_pool_free_count]; | |
c5665868 CM |
436 | else |
437 | pr_warn_once("Memory pool empty, consider increasing CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE\n"); | |
8c96f1bc | 438 | raw_spin_unlock_irqrestore(&kmemleak_lock, flags); |
0647398a CM |
439 | |
440 | return object; | |
441 | } | |
442 | ||
443 | /* | |
444 | * Return the object to either the slab allocator or the memory pool. | |
445 | */ | |
446 | static void mem_pool_free(struct kmemleak_object *object) | |
447 | { | |
448 | unsigned long flags; | |
449 | ||
450 | if (object < mem_pool || object >= mem_pool + ARRAY_SIZE(mem_pool)) { | |
451 | kmem_cache_free(object_cache, object); | |
452 | return; | |
453 | } | |
454 | ||
455 | /* add the object to the memory pool free list */ | |
8c96f1bc | 456 | raw_spin_lock_irqsave(&kmemleak_lock, flags); |
0647398a | 457 | list_add(&object->object_list, &mem_pool_free_list); |
8c96f1bc | 458 | raw_spin_unlock_irqrestore(&kmemleak_lock, flags); |
0647398a CM |
459 | } |
460 | ||
3c7b4e6b CM |
461 | /* |
462 | * RCU callback to free a kmemleak_object. | |
463 | */ | |
464 | static void free_object_rcu(struct rcu_head *rcu) | |
465 | { | |
b67bfe0d | 466 | struct hlist_node *tmp; |
3c7b4e6b CM |
467 | struct kmemleak_scan_area *area; |
468 | struct kmemleak_object *object = | |
469 | container_of(rcu, struct kmemleak_object, rcu); | |
470 | ||
471 | /* | |
472 | * Once use_count is 0 (guaranteed by put_object), there is no other | |
473 | * code accessing this object, hence no need for locking. | |
474 | */ | |
b67bfe0d SL |
475 | hlist_for_each_entry_safe(area, tmp, &object->area_list, node) { |
476 | hlist_del(&area->node); | |
3c7b4e6b CM |
477 | kmem_cache_free(scan_area_cache, area); |
478 | } | |
0647398a | 479 | mem_pool_free(object); |
3c7b4e6b CM |
480 | } |
481 | ||
482 | /* | |
483 | * Decrement the object use_count. Once the count is 0, free the object using | |
484 | * an RCU callback. Since put_object() may be called via the kmemleak_free() -> | |
485 | * delete_object() path, the delayed RCU freeing ensures that there is no | |
486 | * recursive call to the kernel allocator. Lock-less RCU object_list traversal | |
487 | * is also possible. | |
488 | */ | |
489 | static void put_object(struct kmemleak_object *object) | |
490 | { | |
491 | if (!atomic_dec_and_test(&object->use_count)) | |
492 | return; | |
493 | ||
494 | /* should only get here after delete_object was called */ | |
495 | WARN_ON(object->flags & OBJECT_ALLOCATED); | |
496 | ||
c5665868 CM |
497 | /* |
498 | * It may be too early for the RCU callbacks, however, there is no | |
499 | * concurrent object_list traversal when !object_cache and all objects | |
500 | * came from the memory pool. Free the object directly. | |
501 | */ | |
502 | if (object_cache) | |
503 | call_rcu(&object->rcu, free_object_rcu); | |
504 | else | |
505 | free_object_rcu(&object->rcu); | |
3c7b4e6b CM |
506 | } |
507 | ||
508 | /* | |
85d3a316 | 509 | * Look up an object in the object search tree and increase its use_count. |
3c7b4e6b CM |
510 | */ |
511 | static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias) | |
512 | { | |
513 | unsigned long flags; | |
9fbed254 | 514 | struct kmemleak_object *object; |
3c7b4e6b CM |
515 | |
516 | rcu_read_lock(); | |
8c96f1bc | 517 | raw_spin_lock_irqsave(&kmemleak_lock, flags); |
93ada579 | 518 | object = lookup_object(ptr, alias); |
8c96f1bc | 519 | raw_spin_unlock_irqrestore(&kmemleak_lock, flags); |
3c7b4e6b CM |
520 | |
521 | /* check whether the object is still available */ | |
522 | if (object && !get_object(object)) | |
523 | object = NULL; | |
524 | rcu_read_unlock(); | |
525 | ||
526 | return object; | |
527 | } | |
528 | ||
2abd839a CM |
529 | /* |
530 | * Remove an object from the object_tree_root and object_list. Must be called | |
531 | * with the kmemleak_lock held _if_ kmemleak is still enabled. | |
532 | */ | |
533 | static void __remove_object(struct kmemleak_object *object) | |
534 | { | |
535 | rb_erase(&object->rb_node, &object_tree_root); | |
536 | list_del_rcu(&object->object_list); | |
537 | } | |
538 | ||
e781a9ab CM |
539 | /* |
540 | * Look up an object in the object search tree and remove it from both | |
541 | * object_tree_root and object_list. The returned object's use_count should be | |
542 | * at least 1, as initially set by create_object(). | |
543 | */ | |
544 | static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias) | |
545 | { | |
546 | unsigned long flags; | |
547 | struct kmemleak_object *object; | |
548 | ||
8c96f1bc | 549 | raw_spin_lock_irqsave(&kmemleak_lock, flags); |
e781a9ab | 550 | object = lookup_object(ptr, alias); |
2abd839a CM |
551 | if (object) |
552 | __remove_object(object); | |
8c96f1bc | 553 | raw_spin_unlock_irqrestore(&kmemleak_lock, flags); |
e781a9ab CM |
554 | |
555 | return object; | |
556 | } | |
557 | ||
fd678967 CM |
558 | /* |
559 | * Save stack trace to the given array of MAX_TRACE size. | |
560 | */ | |
561 | static int __save_stack_trace(unsigned long *trace) | |
562 | { | |
07984aad | 563 | return stack_trace_save(trace, MAX_TRACE, 2); |
fd678967 CM |
564 | } |
565 | ||
3c7b4e6b CM |
566 | /* |
567 | * Create the metadata (struct kmemleak_object) corresponding to an allocated | |
568 | * memory block and add it to the object_list and object_tree_root. | |
569 | */ | |
fd678967 CM |
570 | static struct kmemleak_object *create_object(unsigned long ptr, size_t size, |
571 | int min_count, gfp_t gfp) | |
3c7b4e6b CM |
572 | { |
573 | unsigned long flags; | |
85d3a316 ML |
574 | struct kmemleak_object *object, *parent; |
575 | struct rb_node **link, *rb_parent; | |
a2f77575 | 576 | unsigned long untagged_ptr; |
3c7b4e6b | 577 | |
0647398a | 578 | object = mem_pool_alloc(gfp); |
3c7b4e6b | 579 | if (!object) { |
598d8091 | 580 | pr_warn("Cannot allocate a kmemleak_object structure\n"); |
6ae4bd1f | 581 | kmemleak_disable(); |
fd678967 | 582 | return NULL; |
3c7b4e6b CM |
583 | } |
584 | ||
585 | INIT_LIST_HEAD(&object->object_list); | |
586 | INIT_LIST_HEAD(&object->gray_list); | |
587 | INIT_HLIST_HEAD(&object->area_list); | |
8c96f1bc | 588 | raw_spin_lock_init(&object->lock); |
3c7b4e6b | 589 | atomic_set(&object->use_count, 1); |
04609ccc | 590 | object->flags = OBJECT_ALLOCATED; |
3c7b4e6b CM |
591 | object->pointer = ptr; |
592 | object->size = size; | |
94f4a161 | 593 | object->excess_ref = 0; |
3c7b4e6b | 594 | object->min_count = min_count; |
04609ccc | 595 | object->count = 0; /* white color initially */ |
3c7b4e6b | 596 | object->jiffies = jiffies; |
04609ccc | 597 | object->checksum = 0; |
3c7b4e6b CM |
598 | |
599 | /* task information */ | |
600 | if (in_irq()) { | |
601 | object->pid = 0; | |
602 | strncpy(object->comm, "hardirq", sizeof(object->comm)); | |
6ef90569 | 603 | } else if (in_serving_softirq()) { |
3c7b4e6b CM |
604 | object->pid = 0; |
605 | strncpy(object->comm, "softirq", sizeof(object->comm)); | |
606 | } else { | |
607 | object->pid = current->pid; | |
608 | /* | |
609 | * There is a small chance of a race with set_task_comm(), | |
610 | * however using get_task_comm() here may cause locking | |
611 | * dependency issues with current->alloc_lock. In the worst | |
612 | * case, the command line is not correct. | |
613 | */ | |
614 | strncpy(object->comm, current->comm, sizeof(object->comm)); | |
615 | } | |
616 | ||
617 | /* kernel backtrace */ | |
fd678967 | 618 | object->trace_len = __save_stack_trace(object->trace); |
3c7b4e6b | 619 | |
8c96f1bc | 620 | raw_spin_lock_irqsave(&kmemleak_lock, flags); |
0580a181 | 621 | |
a2f77575 AK |
622 | untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr); |
623 | min_addr = min(min_addr, untagged_ptr); | |
624 | max_addr = max(max_addr, untagged_ptr + size); | |
85d3a316 ML |
625 | link = &object_tree_root.rb_node; |
626 | rb_parent = NULL; | |
627 | while (*link) { | |
628 | rb_parent = *link; | |
629 | parent = rb_entry(rb_parent, struct kmemleak_object, rb_node); | |
630 | if (ptr + size <= parent->pointer) | |
631 | link = &parent->rb_node.rb_left; | |
632 | else if (parent->pointer + parent->size <= ptr) | |
633 | link = &parent->rb_node.rb_right; | |
634 | else { | |
756a025f | 635 | kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n", |
85d3a316 | 636 | ptr); |
9d5a4c73 CM |
637 | /* |
638 | * No need for parent->lock here since "parent" cannot | |
639 | * be freed while the kmemleak_lock is held. | |
640 | */ | |
641 | dump_object_info(parent); | |
85d3a316 | 642 | kmem_cache_free(object_cache, object); |
9d5a4c73 | 643 | object = NULL; |
85d3a316 ML |
644 | goto out; |
645 | } | |
3c7b4e6b | 646 | } |
85d3a316 ML |
647 | rb_link_node(&object->rb_node, rb_parent, link); |
648 | rb_insert_color(&object->rb_node, &object_tree_root); | |
649 | ||
3c7b4e6b CM |
650 | list_add_tail_rcu(&object->object_list, &object_list); |
651 | out: | |
8c96f1bc | 652 | raw_spin_unlock_irqrestore(&kmemleak_lock, flags); |
fd678967 | 653 | return object; |
3c7b4e6b CM |
654 | } |
655 | ||
656 | /* | |
e781a9ab | 657 | * Mark the object as not allocated and schedule RCU freeing via put_object(). |
3c7b4e6b | 658 | */ |
53238a60 | 659 | static void __delete_object(struct kmemleak_object *object) |
3c7b4e6b CM |
660 | { |
661 | unsigned long flags; | |
3c7b4e6b | 662 | |
3c7b4e6b | 663 | WARN_ON(!(object->flags & OBJECT_ALLOCATED)); |
e781a9ab | 664 | WARN_ON(atomic_read(&object->use_count) < 1); |
3c7b4e6b CM |
665 | |
666 | /* | |
667 | * Locking here also ensures that the corresponding memory block | |
668 | * cannot be freed when it is being scanned. | |
669 | */ | |
8c96f1bc | 670 | raw_spin_lock_irqsave(&object->lock, flags); |
3c7b4e6b | 671 | object->flags &= ~OBJECT_ALLOCATED; |
8c96f1bc | 672 | raw_spin_unlock_irqrestore(&object->lock, flags); |
3c7b4e6b CM |
673 | put_object(object); |
674 | } | |
675 | ||
53238a60 CM |
676 | /* |
677 | * Look up the metadata (struct kmemleak_object) corresponding to ptr and | |
678 | * delete it. | |
679 | */ | |
680 | static void delete_object_full(unsigned long ptr) | |
681 | { | |
682 | struct kmemleak_object *object; | |
683 | ||
e781a9ab | 684 | object = find_and_remove_object(ptr, 0); |
53238a60 CM |
685 | if (!object) { |
686 | #ifdef DEBUG | |
687 | kmemleak_warn("Freeing unknown object at 0x%08lx\n", | |
688 | ptr); | |
689 | #endif | |
690 | return; | |
691 | } | |
692 | __delete_object(object); | |
53238a60 CM |
693 | } |
694 | ||
695 | /* | |
696 | * Look up the metadata (struct kmemleak_object) corresponding to ptr and | |
697 | * delete it. If the memory block is partially freed, the function may create | |
698 | * additional metadata for the remaining parts of the block. | |
699 | */ | |
700 | static void delete_object_part(unsigned long ptr, size_t size) | |
701 | { | |
702 | struct kmemleak_object *object; | |
703 | unsigned long start, end; | |
704 | ||
e781a9ab | 705 | object = find_and_remove_object(ptr, 1); |
53238a60 CM |
706 | if (!object) { |
707 | #ifdef DEBUG | |
756a025f JP |
708 | kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n", |
709 | ptr, size); | |
53238a60 CM |
710 | #endif |
711 | return; | |
712 | } | |
53238a60 CM |
713 | |
714 | /* | |
715 | * Create one or two objects that may result from the memory block | |
716 | * split. Note that partial freeing is only done by free_bootmem() and | |
c5665868 | 717 | * this happens before kmemleak_init() is called. |
53238a60 CM |
718 | */ |
719 | start = object->pointer; | |
720 | end = object->pointer + object->size; | |
721 | if (ptr > start) | |
722 | create_object(start, ptr - start, object->min_count, | |
723 | GFP_KERNEL); | |
724 | if (ptr + size < end) | |
725 | create_object(ptr + size, end - ptr - size, object->min_count, | |
726 | GFP_KERNEL); | |
727 | ||
e781a9ab | 728 | __delete_object(object); |
53238a60 | 729 | } |
a1084c87 LR |
730 | |
731 | static void __paint_it(struct kmemleak_object *object, int color) | |
732 | { | |
733 | object->min_count = color; | |
734 | if (color == KMEMLEAK_BLACK) | |
735 | object->flags |= OBJECT_NO_SCAN; | |
736 | } | |
737 | ||
738 | static void paint_it(struct kmemleak_object *object, int color) | |
3c7b4e6b CM |
739 | { |
740 | unsigned long flags; | |
a1084c87 | 741 | |
8c96f1bc | 742 | raw_spin_lock_irqsave(&object->lock, flags); |
a1084c87 | 743 | __paint_it(object, color); |
8c96f1bc | 744 | raw_spin_unlock_irqrestore(&object->lock, flags); |
a1084c87 LR |
745 | } |
746 | ||
747 | static void paint_ptr(unsigned long ptr, int color) | |
748 | { | |
3c7b4e6b CM |
749 | struct kmemleak_object *object; |
750 | ||
751 | object = find_and_get_object(ptr, 0); | |
752 | if (!object) { | |
756a025f JP |
753 | kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n", |
754 | ptr, | |
a1084c87 LR |
755 | (color == KMEMLEAK_GREY) ? "Grey" : |
756 | (color == KMEMLEAK_BLACK) ? "Black" : "Unknown"); | |
3c7b4e6b CM |
757 | return; |
758 | } | |
a1084c87 | 759 | paint_it(object, color); |
3c7b4e6b CM |
760 | put_object(object); |
761 | } | |
762 | ||
a1084c87 | 763 | /* |
145b64b9 | 764 | * Mark an object permanently as gray-colored so that it can no longer be |
a1084c87 LR |
765 | * reported as a leak. This is used in general to mark a false positive. |
766 | */ | |
767 | static void make_gray_object(unsigned long ptr) | |
768 | { | |
769 | paint_ptr(ptr, KMEMLEAK_GREY); | |
770 | } | |
771 | ||
3c7b4e6b CM |
772 | /* |
773 | * Mark the object as black-colored so that it is ignored from scans and | |
774 | * reporting. | |
775 | */ | |
776 | static void make_black_object(unsigned long ptr) | |
777 | { | |
a1084c87 | 778 | paint_ptr(ptr, KMEMLEAK_BLACK); |
3c7b4e6b CM |
779 | } |
780 | ||
781 | /* | |
782 | * Add a scanning area to the object. If at least one such area is added, | |
783 | * kmemleak will only scan these ranges rather than the whole memory block. | |
784 | */ | |
c017b4be | 785 | static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp) |
3c7b4e6b CM |
786 | { |
787 | unsigned long flags; | |
788 | struct kmemleak_object *object; | |
c5665868 | 789 | struct kmemleak_scan_area *area = NULL; |
3c7b4e6b | 790 | |
c017b4be | 791 | object = find_and_get_object(ptr, 1); |
3c7b4e6b | 792 | if (!object) { |
ae281064 JP |
793 | kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n", |
794 | ptr); | |
3c7b4e6b CM |
795 | return; |
796 | } | |
797 | ||
c5665868 CM |
798 | if (scan_area_cache) |
799 | area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp)); | |
3c7b4e6b | 800 | |
8c96f1bc | 801 | raw_spin_lock_irqsave(&object->lock, flags); |
dba82d94 CM |
802 | if (!area) { |
803 | pr_warn_once("Cannot allocate a scan area, scanning the full object\n"); | |
804 | /* mark the object for full scan to avoid false positives */ | |
805 | object->flags |= OBJECT_FULL_SCAN; | |
806 | goto out_unlock; | |
807 | } | |
7f88f88f CM |
808 | if (size == SIZE_MAX) { |
809 | size = object->pointer + object->size - ptr; | |
810 | } else if (ptr + size > object->pointer + object->size) { | |
ae281064 | 811 | kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr); |
3c7b4e6b CM |
812 | dump_object_info(object); |
813 | kmem_cache_free(scan_area_cache, area); | |
814 | goto out_unlock; | |
815 | } | |
816 | ||
817 | INIT_HLIST_NODE(&area->node); | |
c017b4be CM |
818 | area->start = ptr; |
819 | area->size = size; | |
3c7b4e6b CM |
820 | |
821 | hlist_add_head(&area->node, &object->area_list); | |
822 | out_unlock: | |
8c96f1bc | 823 | raw_spin_unlock_irqrestore(&object->lock, flags); |
3c7b4e6b CM |
824 | put_object(object); |
825 | } | |
826 | ||
94f4a161 CM |
827 | /* |
828 | * Any surplus references (object already gray) to 'ptr' are passed to | |
829 | * 'excess_ref'. This is used in the vmalloc() case where a pointer to | |
830 | * vm_struct may be used as an alternative reference to the vmalloc'ed object | |
831 | * (see free_thread_stack()). | |
832 | */ | |
833 | static void object_set_excess_ref(unsigned long ptr, unsigned long excess_ref) | |
834 | { | |
835 | unsigned long flags; | |
836 | struct kmemleak_object *object; | |
837 | ||
838 | object = find_and_get_object(ptr, 0); | |
839 | if (!object) { | |
840 | kmemleak_warn("Setting excess_ref on unknown object at 0x%08lx\n", | |
841 | ptr); | |
842 | return; | |
843 | } | |
844 | ||
8c96f1bc | 845 | raw_spin_lock_irqsave(&object->lock, flags); |
94f4a161 | 846 | object->excess_ref = excess_ref; |
8c96f1bc | 847 | raw_spin_unlock_irqrestore(&object->lock, flags); |
94f4a161 CM |
848 | put_object(object); |
849 | } | |
850 | ||
3c7b4e6b CM |
851 | /* |
852 | * Set the OBJECT_NO_SCAN flag for the object corresponding to the give | |
853 | * pointer. Such object will not be scanned by kmemleak but references to it | |
854 | * are searched. | |
855 | */ | |
856 | static void object_no_scan(unsigned long ptr) | |
857 | { | |
858 | unsigned long flags; | |
859 | struct kmemleak_object *object; | |
860 | ||
861 | object = find_and_get_object(ptr, 0); | |
862 | if (!object) { | |
ae281064 | 863 | kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr); |
3c7b4e6b CM |
864 | return; |
865 | } | |
866 | ||
8c96f1bc | 867 | raw_spin_lock_irqsave(&object->lock, flags); |
3c7b4e6b | 868 | object->flags |= OBJECT_NO_SCAN; |
8c96f1bc | 869 | raw_spin_unlock_irqrestore(&object->lock, flags); |
3c7b4e6b CM |
870 | put_object(object); |
871 | } | |
872 | ||
a2b6bf63 CM |
873 | /** |
874 | * kmemleak_alloc - register a newly allocated object | |
875 | * @ptr: pointer to beginning of the object | |
876 | * @size: size of the object | |
877 | * @min_count: minimum number of references to this object. If during memory | |
878 | * scanning a number of references less than @min_count is found, | |
879 | * the object is reported as a memory leak. If @min_count is 0, | |
880 | * the object is never reported as a leak. If @min_count is -1, | |
881 | * the object is ignored (not scanned and not reported as a leak) | |
882 | * @gfp: kmalloc() flags used for kmemleak internal memory allocations | |
883 | * | |
884 | * This function is called from the kernel allocators when a new object | |
94f4a161 | 885 | * (memory block) is allocated (kmem_cache_alloc, kmalloc etc.). |
3c7b4e6b | 886 | */ |
a6186d89 CM |
887 | void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count, |
888 | gfp_t gfp) | |
3c7b4e6b CM |
889 | { |
890 | pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count); | |
891 | ||
8910ae89 | 892 | if (kmemleak_enabled && ptr && !IS_ERR(ptr)) |
3c7b4e6b | 893 | create_object((unsigned long)ptr, size, min_count, gfp); |
3c7b4e6b CM |
894 | } |
895 | EXPORT_SYMBOL_GPL(kmemleak_alloc); | |
896 | ||
f528f0b8 CM |
897 | /** |
898 | * kmemleak_alloc_percpu - register a newly allocated __percpu object | |
899 | * @ptr: __percpu pointer to beginning of the object | |
900 | * @size: size of the object | |
8a8c35fa | 901 | * @gfp: flags used for kmemleak internal memory allocations |
f528f0b8 CM |
902 | * |
903 | * This function is called from the kernel percpu allocator when a new object | |
8a8c35fa | 904 | * (memory block) is allocated (alloc_percpu). |
f528f0b8 | 905 | */ |
8a8c35fa LF |
906 | void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size, |
907 | gfp_t gfp) | |
f528f0b8 CM |
908 | { |
909 | unsigned int cpu; | |
910 | ||
911 | pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size); | |
912 | ||
913 | /* | |
914 | * Percpu allocations are only scanned and not reported as leaks | |
915 | * (min_count is set to 0). | |
916 | */ | |
8910ae89 | 917 | if (kmemleak_enabled && ptr && !IS_ERR(ptr)) |
f528f0b8 CM |
918 | for_each_possible_cpu(cpu) |
919 | create_object((unsigned long)per_cpu_ptr(ptr, cpu), | |
8a8c35fa | 920 | size, 0, gfp); |
f528f0b8 CM |
921 | } |
922 | EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu); | |
923 | ||
94f4a161 CM |
924 | /** |
925 | * kmemleak_vmalloc - register a newly vmalloc'ed object | |
926 | * @area: pointer to vm_struct | |
927 | * @size: size of the object | |
928 | * @gfp: __vmalloc() flags used for kmemleak internal memory allocations | |
929 | * | |
930 | * This function is called from the vmalloc() kernel allocator when a new | |
931 | * object (memory block) is allocated. | |
932 | */ | |
933 | void __ref kmemleak_vmalloc(const struct vm_struct *area, size_t size, gfp_t gfp) | |
934 | { | |
935 | pr_debug("%s(0x%p, %zu)\n", __func__, area, size); | |
936 | ||
937 | /* | |
938 | * A min_count = 2 is needed because vm_struct contains a reference to | |
939 | * the virtual address of the vmalloc'ed block. | |
940 | */ | |
941 | if (kmemleak_enabled) { | |
942 | create_object((unsigned long)area->addr, size, 2, gfp); | |
943 | object_set_excess_ref((unsigned long)area, | |
944 | (unsigned long)area->addr); | |
94f4a161 CM |
945 | } |
946 | } | |
947 | EXPORT_SYMBOL_GPL(kmemleak_vmalloc); | |
948 | ||
a2b6bf63 CM |
949 | /** |
950 | * kmemleak_free - unregister a previously registered object | |
951 | * @ptr: pointer to beginning of the object | |
952 | * | |
953 | * This function is called from the kernel allocators when an object (memory | |
954 | * block) is freed (kmem_cache_free, kfree, vfree etc.). | |
3c7b4e6b | 955 | */ |
a6186d89 | 956 | void __ref kmemleak_free(const void *ptr) |
3c7b4e6b CM |
957 | { |
958 | pr_debug("%s(0x%p)\n", __func__, ptr); | |
959 | ||
c5f3b1a5 | 960 | if (kmemleak_free_enabled && ptr && !IS_ERR(ptr)) |
53238a60 | 961 | delete_object_full((unsigned long)ptr); |
3c7b4e6b CM |
962 | } |
963 | EXPORT_SYMBOL_GPL(kmemleak_free); | |
964 | ||
a2b6bf63 CM |
965 | /** |
966 | * kmemleak_free_part - partially unregister a previously registered object | |
967 | * @ptr: pointer to the beginning or inside the object. This also | |
968 | * represents the start of the range to be freed | |
969 | * @size: size to be unregistered | |
970 | * | |
971 | * This function is called when only a part of a memory block is freed | |
972 | * (usually from the bootmem allocator). | |
53238a60 | 973 | */ |
a6186d89 | 974 | void __ref kmemleak_free_part(const void *ptr, size_t size) |
53238a60 CM |
975 | { |
976 | pr_debug("%s(0x%p)\n", __func__, ptr); | |
977 | ||
8910ae89 | 978 | if (kmemleak_enabled && ptr && !IS_ERR(ptr)) |
53238a60 | 979 | delete_object_part((unsigned long)ptr, size); |
53238a60 CM |
980 | } |
981 | EXPORT_SYMBOL_GPL(kmemleak_free_part); | |
982 | ||
f528f0b8 CM |
983 | /** |
984 | * kmemleak_free_percpu - unregister a previously registered __percpu object | |
985 | * @ptr: __percpu pointer to beginning of the object | |
986 | * | |
987 | * This function is called from the kernel percpu allocator when an object | |
988 | * (memory block) is freed (free_percpu). | |
989 | */ | |
990 | void __ref kmemleak_free_percpu(const void __percpu *ptr) | |
991 | { | |
992 | unsigned int cpu; | |
993 | ||
994 | pr_debug("%s(0x%p)\n", __func__, ptr); | |
995 | ||
c5f3b1a5 | 996 | if (kmemleak_free_enabled && ptr && !IS_ERR(ptr)) |
f528f0b8 CM |
997 | for_each_possible_cpu(cpu) |
998 | delete_object_full((unsigned long)per_cpu_ptr(ptr, | |
999 | cpu)); | |
f528f0b8 CM |
1000 | } |
1001 | EXPORT_SYMBOL_GPL(kmemleak_free_percpu); | |
1002 | ||
ffe2c748 CM |
1003 | /** |
1004 | * kmemleak_update_trace - update object allocation stack trace | |
1005 | * @ptr: pointer to beginning of the object | |
1006 | * | |
1007 | * Override the object allocation stack trace for cases where the actual | |
1008 | * allocation place is not always useful. | |
1009 | */ | |
1010 | void __ref kmemleak_update_trace(const void *ptr) | |
1011 | { | |
1012 | struct kmemleak_object *object; | |
1013 | unsigned long flags; | |
1014 | ||
1015 | pr_debug("%s(0x%p)\n", __func__, ptr); | |
1016 | ||
1017 | if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr)) | |
1018 | return; | |
1019 | ||
1020 | object = find_and_get_object((unsigned long)ptr, 1); | |
1021 | if (!object) { | |
1022 | #ifdef DEBUG | |
1023 | kmemleak_warn("Updating stack trace for unknown object at %p\n", | |
1024 | ptr); | |
1025 | #endif | |
1026 | return; | |
1027 | } | |
1028 | ||
8c96f1bc | 1029 | raw_spin_lock_irqsave(&object->lock, flags); |
ffe2c748 | 1030 | object->trace_len = __save_stack_trace(object->trace); |
8c96f1bc | 1031 | raw_spin_unlock_irqrestore(&object->lock, flags); |
ffe2c748 CM |
1032 | |
1033 | put_object(object); | |
1034 | } | |
1035 | EXPORT_SYMBOL(kmemleak_update_trace); | |
1036 | ||
a2b6bf63 CM |
1037 | /** |
1038 | * kmemleak_not_leak - mark an allocated object as false positive | |
1039 | * @ptr: pointer to beginning of the object | |
1040 | * | |
1041 | * Calling this function on an object will cause the memory block to no longer | |
1042 | * be reported as leak and always be scanned. | |
3c7b4e6b | 1043 | */ |
a6186d89 | 1044 | void __ref kmemleak_not_leak(const void *ptr) |
3c7b4e6b CM |
1045 | { |
1046 | pr_debug("%s(0x%p)\n", __func__, ptr); | |
1047 | ||
8910ae89 | 1048 | if (kmemleak_enabled && ptr && !IS_ERR(ptr)) |
3c7b4e6b | 1049 | make_gray_object((unsigned long)ptr); |
3c7b4e6b CM |
1050 | } |
1051 | EXPORT_SYMBOL(kmemleak_not_leak); | |
1052 | ||
a2b6bf63 CM |
1053 | /** |
1054 | * kmemleak_ignore - ignore an allocated object | |
1055 | * @ptr: pointer to beginning of the object | |
1056 | * | |
1057 | * Calling this function on an object will cause the memory block to be | |
1058 | * ignored (not scanned and not reported as a leak). This is usually done when | |
1059 | * it is known that the corresponding block is not a leak and does not contain | |
1060 | * any references to other allocated memory blocks. | |
3c7b4e6b | 1061 | */ |
a6186d89 | 1062 | void __ref kmemleak_ignore(const void *ptr) |
3c7b4e6b CM |
1063 | { |
1064 | pr_debug("%s(0x%p)\n", __func__, ptr); | |
1065 | ||
8910ae89 | 1066 | if (kmemleak_enabled && ptr && !IS_ERR(ptr)) |
3c7b4e6b | 1067 | make_black_object((unsigned long)ptr); |
3c7b4e6b CM |
1068 | } |
1069 | EXPORT_SYMBOL(kmemleak_ignore); | |
1070 | ||
a2b6bf63 CM |
1071 | /** |
1072 | * kmemleak_scan_area - limit the range to be scanned in an allocated object | |
1073 | * @ptr: pointer to beginning or inside the object. This also | |
1074 | * represents the start of the scan area | |
1075 | * @size: size of the scan area | |
1076 | * @gfp: kmalloc() flags used for kmemleak internal memory allocations | |
1077 | * | |
1078 | * This function is used when it is known that only certain parts of an object | |
1079 | * contain references to other objects. Kmemleak will only scan these areas | |
1080 | * reducing the number false negatives. | |
3c7b4e6b | 1081 | */ |
c017b4be | 1082 | void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp) |
3c7b4e6b CM |
1083 | { |
1084 | pr_debug("%s(0x%p)\n", __func__, ptr); | |
1085 | ||
8910ae89 | 1086 | if (kmemleak_enabled && ptr && size && !IS_ERR(ptr)) |
c017b4be | 1087 | add_scan_area((unsigned long)ptr, size, gfp); |
3c7b4e6b CM |
1088 | } |
1089 | EXPORT_SYMBOL(kmemleak_scan_area); | |
1090 | ||
a2b6bf63 CM |
1091 | /** |
1092 | * kmemleak_no_scan - do not scan an allocated object | |
1093 | * @ptr: pointer to beginning of the object | |
1094 | * | |
1095 | * This function notifies kmemleak not to scan the given memory block. Useful | |
1096 | * in situations where it is known that the given object does not contain any | |
1097 | * references to other objects. Kmemleak will not scan such objects reducing | |
1098 | * the number of false negatives. | |
3c7b4e6b | 1099 | */ |
a6186d89 | 1100 | void __ref kmemleak_no_scan(const void *ptr) |
3c7b4e6b CM |
1101 | { |
1102 | pr_debug("%s(0x%p)\n", __func__, ptr); | |
1103 | ||
8910ae89 | 1104 | if (kmemleak_enabled && ptr && !IS_ERR(ptr)) |
3c7b4e6b | 1105 | object_no_scan((unsigned long)ptr); |
3c7b4e6b CM |
1106 | } |
1107 | EXPORT_SYMBOL(kmemleak_no_scan); | |
1108 | ||
9099daed CM |
1109 | /** |
1110 | * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical | |
1111 | * address argument | |
e8b098fc MR |
1112 | * @phys: physical address of the object |
1113 | * @size: size of the object | |
1114 | * @min_count: minimum number of references to this object. | |
1115 | * See kmemleak_alloc() | |
1116 | * @gfp: kmalloc() flags used for kmemleak internal memory allocations | |
9099daed CM |
1117 | */ |
1118 | void __ref kmemleak_alloc_phys(phys_addr_t phys, size_t size, int min_count, | |
1119 | gfp_t gfp) | |
1120 | { | |
1121 | if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn) | |
1122 | kmemleak_alloc(__va(phys), size, min_count, gfp); | |
1123 | } | |
1124 | EXPORT_SYMBOL(kmemleak_alloc_phys); | |
1125 | ||
1126 | /** | |
1127 | * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a | |
1128 | * physical address argument | |
e8b098fc MR |
1129 | * @phys: physical address if the beginning or inside an object. This |
1130 | * also represents the start of the range to be freed | |
1131 | * @size: size to be unregistered | |
9099daed CM |
1132 | */ |
1133 | void __ref kmemleak_free_part_phys(phys_addr_t phys, size_t size) | |
1134 | { | |
1135 | if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn) | |
1136 | kmemleak_free_part(__va(phys), size); | |
1137 | } | |
1138 | EXPORT_SYMBOL(kmemleak_free_part_phys); | |
1139 | ||
1140 | /** | |
1141 | * kmemleak_not_leak_phys - similar to kmemleak_not_leak but taking a physical | |
1142 | * address argument | |
e8b098fc | 1143 | * @phys: physical address of the object |
9099daed CM |
1144 | */ |
1145 | void __ref kmemleak_not_leak_phys(phys_addr_t phys) | |
1146 | { | |
1147 | if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn) | |
1148 | kmemleak_not_leak(__va(phys)); | |
1149 | } | |
1150 | EXPORT_SYMBOL(kmemleak_not_leak_phys); | |
1151 | ||
1152 | /** | |
1153 | * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical | |
1154 | * address argument | |
e8b098fc | 1155 | * @phys: physical address of the object |
9099daed CM |
1156 | */ |
1157 | void __ref kmemleak_ignore_phys(phys_addr_t phys) | |
1158 | { | |
1159 | if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn) | |
1160 | kmemleak_ignore(__va(phys)); | |
1161 | } | |
1162 | EXPORT_SYMBOL(kmemleak_ignore_phys); | |
1163 | ||
04609ccc CM |
1164 | /* |
1165 | * Update an object's checksum and return true if it was modified. | |
1166 | */ | |
1167 | static bool update_checksum(struct kmemleak_object *object) | |
1168 | { | |
1169 | u32 old_csum = object->checksum; | |
1170 | ||
e79ed2f1 | 1171 | kasan_disable_current(); |
04609ccc | 1172 | object->checksum = crc32(0, (void *)object->pointer, object->size); |
e79ed2f1 AR |
1173 | kasan_enable_current(); |
1174 | ||
04609ccc CM |
1175 | return object->checksum != old_csum; |
1176 | } | |
1177 | ||
04f70d13 CM |
1178 | /* |
1179 | * Update an object's references. object->lock must be held by the caller. | |
1180 | */ | |
1181 | static void update_refs(struct kmemleak_object *object) | |
1182 | { | |
1183 | if (!color_white(object)) { | |
1184 | /* non-orphan, ignored or new */ | |
1185 | return; | |
1186 | } | |
1187 | ||
1188 | /* | |
1189 | * Increase the object's reference count (number of pointers to the | |
1190 | * memory block). If this count reaches the required minimum, the | |
1191 | * object's color will become gray and it will be added to the | |
1192 | * gray_list. | |
1193 | */ | |
1194 | object->count++; | |
1195 | if (color_gray(object)) { | |
1196 | /* put_object() called when removing from gray_list */ | |
1197 | WARN_ON(!get_object(object)); | |
1198 | list_add_tail(&object->gray_list, &gray_list); | |
1199 | } | |
1200 | } | |
1201 | ||
3c7b4e6b CM |
1202 | /* |
1203 | * Memory scanning is a long process and it needs to be interruptable. This | |
25985edc | 1204 | * function checks whether such interrupt condition occurred. |
3c7b4e6b CM |
1205 | */ |
1206 | static int scan_should_stop(void) | |
1207 | { | |
8910ae89 | 1208 | if (!kmemleak_enabled) |
3c7b4e6b CM |
1209 | return 1; |
1210 | ||
1211 | /* | |
1212 | * This function may be called from either process or kthread context, | |
1213 | * hence the need to check for both stop conditions. | |
1214 | */ | |
1215 | if (current->mm) | |
1216 | return signal_pending(current); | |
1217 | else | |
1218 | return kthread_should_stop(); | |
1219 | ||
1220 | return 0; | |
1221 | } | |
1222 | ||
1223 | /* | |
1224 | * Scan a memory block (exclusive range) for valid pointers and add those | |
1225 | * found to the gray list. | |
1226 | */ | |
1227 | static void scan_block(void *_start, void *_end, | |
93ada579 | 1228 | struct kmemleak_object *scanned) |
3c7b4e6b CM |
1229 | { |
1230 | unsigned long *ptr; | |
1231 | unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER); | |
1232 | unsigned long *end = _end - (BYTES_PER_POINTER - 1); | |
93ada579 | 1233 | unsigned long flags; |
a2f77575 | 1234 | unsigned long untagged_ptr; |
3c7b4e6b | 1235 | |
8c96f1bc | 1236 | raw_spin_lock_irqsave(&kmemleak_lock, flags); |
3c7b4e6b | 1237 | for (ptr = start; ptr < end; ptr++) { |
3c7b4e6b | 1238 | struct kmemleak_object *object; |
8e019366 | 1239 | unsigned long pointer; |
94f4a161 | 1240 | unsigned long excess_ref; |
3c7b4e6b CM |
1241 | |
1242 | if (scan_should_stop()) | |
1243 | break; | |
1244 | ||
e79ed2f1 | 1245 | kasan_disable_current(); |
8e019366 | 1246 | pointer = *ptr; |
e79ed2f1 | 1247 | kasan_enable_current(); |
8e019366 | 1248 | |
a2f77575 AK |
1249 | untagged_ptr = (unsigned long)kasan_reset_tag((void *)pointer); |
1250 | if (untagged_ptr < min_addr || untagged_ptr >= max_addr) | |
93ada579 CM |
1251 | continue; |
1252 | ||
1253 | /* | |
1254 | * No need for get_object() here since we hold kmemleak_lock. | |
1255 | * object->use_count cannot be dropped to 0 while the object | |
1256 | * is still present in object_tree_root and object_list | |
1257 | * (with updates protected by kmemleak_lock). | |
1258 | */ | |
1259 | object = lookup_object(pointer, 1); | |
3c7b4e6b CM |
1260 | if (!object) |
1261 | continue; | |
93ada579 | 1262 | if (object == scanned) |
3c7b4e6b | 1263 | /* self referenced, ignore */ |
3c7b4e6b | 1264 | continue; |
3c7b4e6b CM |
1265 | |
1266 | /* | |
1267 | * Avoid the lockdep recursive warning on object->lock being | |
1268 | * previously acquired in scan_object(). These locks are | |
1269 | * enclosed by scan_mutex. | |
1270 | */ | |
8c96f1bc | 1271 | raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING); |
94f4a161 CM |
1272 | /* only pass surplus references (object already gray) */ |
1273 | if (color_gray(object)) { | |
1274 | excess_ref = object->excess_ref; | |
1275 | /* no need for update_refs() if object already gray */ | |
1276 | } else { | |
1277 | excess_ref = 0; | |
1278 | update_refs(object); | |
1279 | } | |
8c96f1bc | 1280 | raw_spin_unlock(&object->lock); |
94f4a161 CM |
1281 | |
1282 | if (excess_ref) { | |
1283 | object = lookup_object(excess_ref, 0); | |
1284 | if (!object) | |
1285 | continue; | |
1286 | if (object == scanned) | |
1287 | /* circular reference, ignore */ | |
1288 | continue; | |
8c96f1bc | 1289 | raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING); |
94f4a161 | 1290 | update_refs(object); |
8c96f1bc | 1291 | raw_spin_unlock(&object->lock); |
94f4a161 | 1292 | } |
93ada579 | 1293 | } |
8c96f1bc | 1294 | raw_spin_unlock_irqrestore(&kmemleak_lock, flags); |
93ada579 | 1295 | } |
0587da40 | 1296 | |
93ada579 CM |
1297 | /* |
1298 | * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency. | |
1299 | */ | |
dce5b0bd | 1300 | #ifdef CONFIG_SMP |
93ada579 CM |
1301 | static void scan_large_block(void *start, void *end) |
1302 | { | |
1303 | void *next; | |
1304 | ||
1305 | while (start < end) { | |
1306 | next = min(start + MAX_SCAN_SIZE, end); | |
1307 | scan_block(start, next, NULL); | |
1308 | start = next; | |
1309 | cond_resched(); | |
3c7b4e6b CM |
1310 | } |
1311 | } | |
dce5b0bd | 1312 | #endif |
3c7b4e6b CM |
1313 | |
1314 | /* | |
1315 | * Scan a memory block corresponding to a kmemleak_object. A condition is | |
1316 | * that object->use_count >= 1. | |
1317 | */ | |
1318 | static void scan_object(struct kmemleak_object *object) | |
1319 | { | |
1320 | struct kmemleak_scan_area *area; | |
3c7b4e6b CM |
1321 | unsigned long flags; |
1322 | ||
1323 | /* | |
21ae2956 UKK |
1324 | * Once the object->lock is acquired, the corresponding memory block |
1325 | * cannot be freed (the same lock is acquired in delete_object). | |
3c7b4e6b | 1326 | */ |
8c96f1bc | 1327 | raw_spin_lock_irqsave(&object->lock, flags); |
3c7b4e6b CM |
1328 | if (object->flags & OBJECT_NO_SCAN) |
1329 | goto out; | |
1330 | if (!(object->flags & OBJECT_ALLOCATED)) | |
1331 | /* already freed object */ | |
1332 | goto out; | |
dba82d94 CM |
1333 | if (hlist_empty(&object->area_list) || |
1334 | object->flags & OBJECT_FULL_SCAN) { | |
af98603d CM |
1335 | void *start = (void *)object->pointer; |
1336 | void *end = (void *)(object->pointer + object->size); | |
93ada579 CM |
1337 | void *next; |
1338 | ||
1339 | do { | |
1340 | next = min(start + MAX_SCAN_SIZE, end); | |
1341 | scan_block(start, next, object); | |
af98603d | 1342 | |
93ada579 CM |
1343 | start = next; |
1344 | if (start >= end) | |
1345 | break; | |
af98603d | 1346 | |
8c96f1bc | 1347 | raw_spin_unlock_irqrestore(&object->lock, flags); |
af98603d | 1348 | cond_resched(); |
8c96f1bc | 1349 | raw_spin_lock_irqsave(&object->lock, flags); |
93ada579 | 1350 | } while (object->flags & OBJECT_ALLOCATED); |
af98603d | 1351 | } else |
b67bfe0d | 1352 | hlist_for_each_entry(area, &object->area_list, node) |
c017b4be CM |
1353 | scan_block((void *)area->start, |
1354 | (void *)(area->start + area->size), | |
93ada579 | 1355 | object); |
3c7b4e6b | 1356 | out: |
8c96f1bc | 1357 | raw_spin_unlock_irqrestore(&object->lock, flags); |
3c7b4e6b CM |
1358 | } |
1359 | ||
04609ccc CM |
1360 | /* |
1361 | * Scan the objects already referenced (gray objects). More objects will be | |
1362 | * referenced and, if there are no memory leaks, all the objects are scanned. | |
1363 | */ | |
1364 | static void scan_gray_list(void) | |
1365 | { | |
1366 | struct kmemleak_object *object, *tmp; | |
1367 | ||
1368 | /* | |
1369 | * The list traversal is safe for both tail additions and removals | |
1370 | * from inside the loop. The kmemleak objects cannot be freed from | |
1371 | * outside the loop because their use_count was incremented. | |
1372 | */ | |
1373 | object = list_entry(gray_list.next, typeof(*object), gray_list); | |
1374 | while (&object->gray_list != &gray_list) { | |
1375 | cond_resched(); | |
1376 | ||
1377 | /* may add new objects to the list */ | |
1378 | if (!scan_should_stop()) | |
1379 | scan_object(object); | |
1380 | ||
1381 | tmp = list_entry(object->gray_list.next, typeof(*object), | |
1382 | gray_list); | |
1383 | ||
1384 | /* remove the object from the list and release it */ | |
1385 | list_del(&object->gray_list); | |
1386 | put_object(object); | |
1387 | ||
1388 | object = tmp; | |
1389 | } | |
1390 | WARN_ON(!list_empty(&gray_list)); | |
1391 | } | |
1392 | ||
3c7b4e6b CM |
1393 | /* |
1394 | * Scan data sections and all the referenced memory blocks allocated via the | |
1395 | * kernel's standard allocators. This function must be called with the | |
1396 | * scan_mutex held. | |
1397 | */ | |
1398 | static void kmemleak_scan(void) | |
1399 | { | |
1400 | unsigned long flags; | |
04609ccc | 1401 | struct kmemleak_object *object; |
3c7b4e6b | 1402 | int i; |
4698c1f2 | 1403 | int new_leaks = 0; |
3c7b4e6b | 1404 | |
acf4968e CM |
1405 | jiffies_last_scan = jiffies; |
1406 | ||
3c7b4e6b CM |
1407 | /* prepare the kmemleak_object's */ |
1408 | rcu_read_lock(); | |
1409 | list_for_each_entry_rcu(object, &object_list, object_list) { | |
8c96f1bc | 1410 | raw_spin_lock_irqsave(&object->lock, flags); |
3c7b4e6b CM |
1411 | #ifdef DEBUG |
1412 | /* | |
1413 | * With a few exceptions there should be a maximum of | |
1414 | * 1 reference to any object at this point. | |
1415 | */ | |
1416 | if (atomic_read(&object->use_count) > 1) { | |
ae281064 | 1417 | pr_debug("object->use_count = %d\n", |
3c7b4e6b CM |
1418 | atomic_read(&object->use_count)); |
1419 | dump_object_info(object); | |
1420 | } | |
1421 | #endif | |
1422 | /* reset the reference count (whiten the object) */ | |
1423 | object->count = 0; | |
1424 | if (color_gray(object) && get_object(object)) | |
1425 | list_add_tail(&object->gray_list, &gray_list); | |
1426 | ||
8c96f1bc | 1427 | raw_spin_unlock_irqrestore(&object->lock, flags); |
3c7b4e6b CM |
1428 | } |
1429 | rcu_read_unlock(); | |
1430 | ||
3c7b4e6b CM |
1431 | #ifdef CONFIG_SMP |
1432 | /* per-cpu sections scanning */ | |
1433 | for_each_possible_cpu(i) | |
93ada579 CM |
1434 | scan_large_block(__per_cpu_start + per_cpu_offset(i), |
1435 | __per_cpu_end + per_cpu_offset(i)); | |
3c7b4e6b CM |
1436 | #endif |
1437 | ||
1438 | /* | |
029aeff5 | 1439 | * Struct page scanning for each node. |
3c7b4e6b | 1440 | */ |
bfc8c901 | 1441 | get_online_mems(); |
3c7b4e6b | 1442 | for_each_online_node(i) { |
108bcc96 CS |
1443 | unsigned long start_pfn = node_start_pfn(i); |
1444 | unsigned long end_pfn = node_end_pfn(i); | |
3c7b4e6b CM |
1445 | unsigned long pfn; |
1446 | ||
1447 | for (pfn = start_pfn; pfn < end_pfn; pfn++) { | |
9f1eb38e | 1448 | struct page *page = pfn_to_online_page(pfn); |
3c7b4e6b | 1449 | |
9f1eb38e OS |
1450 | if (!page) |
1451 | continue; | |
1452 | ||
1453 | /* only scan pages belonging to this node */ | |
1454 | if (page_to_nid(page) != i) | |
3c7b4e6b | 1455 | continue; |
3c7b4e6b CM |
1456 | /* only scan if page is in use */ |
1457 | if (page_count(page) == 0) | |
1458 | continue; | |
93ada579 | 1459 | scan_block(page, page + 1, NULL); |
13ab183d | 1460 | if (!(pfn & 63)) |
bde5f6bc | 1461 | cond_resched(); |
3c7b4e6b CM |
1462 | } |
1463 | } | |
bfc8c901 | 1464 | put_online_mems(); |
3c7b4e6b CM |
1465 | |
1466 | /* | |
43ed5d6e | 1467 | * Scanning the task stacks (may introduce false negatives). |
3c7b4e6b CM |
1468 | */ |
1469 | if (kmemleak_stack_scan) { | |
43ed5d6e CM |
1470 | struct task_struct *p, *g; |
1471 | ||
3c7b4e6b | 1472 | read_lock(&tasklist_lock); |
43ed5d6e | 1473 | do_each_thread(g, p) { |
37df49f4 CM |
1474 | void *stack = try_get_task_stack(p); |
1475 | if (stack) { | |
1476 | scan_block(stack, stack + THREAD_SIZE, NULL); | |
1477 | put_task_stack(p); | |
1478 | } | |
43ed5d6e | 1479 | } while_each_thread(g, p); |
3c7b4e6b CM |
1480 | read_unlock(&tasklist_lock); |
1481 | } | |
1482 | ||
1483 | /* | |
1484 | * Scan the objects already referenced from the sections scanned | |
04609ccc | 1485 | * above. |
3c7b4e6b | 1486 | */ |
04609ccc | 1487 | scan_gray_list(); |
2587362e CM |
1488 | |
1489 | /* | |
04609ccc CM |
1490 | * Check for new or unreferenced objects modified since the previous |
1491 | * scan and color them gray until the next scan. | |
2587362e CM |
1492 | */ |
1493 | rcu_read_lock(); | |
1494 | list_for_each_entry_rcu(object, &object_list, object_list) { | |
8c96f1bc | 1495 | raw_spin_lock_irqsave(&object->lock, flags); |
04609ccc CM |
1496 | if (color_white(object) && (object->flags & OBJECT_ALLOCATED) |
1497 | && update_checksum(object) && get_object(object)) { | |
1498 | /* color it gray temporarily */ | |
1499 | object->count = object->min_count; | |
2587362e CM |
1500 | list_add_tail(&object->gray_list, &gray_list); |
1501 | } | |
8c96f1bc | 1502 | raw_spin_unlock_irqrestore(&object->lock, flags); |
2587362e CM |
1503 | } |
1504 | rcu_read_unlock(); | |
1505 | ||
04609ccc CM |
1506 | /* |
1507 | * Re-scan the gray list for modified unreferenced objects. | |
1508 | */ | |
1509 | scan_gray_list(); | |
4698c1f2 | 1510 | |
17bb9e0d | 1511 | /* |
04609ccc | 1512 | * If scanning was stopped do not report any new unreferenced objects. |
17bb9e0d | 1513 | */ |
04609ccc | 1514 | if (scan_should_stop()) |
17bb9e0d CM |
1515 | return; |
1516 | ||
4698c1f2 CM |
1517 | /* |
1518 | * Scanning result reporting. | |
1519 | */ | |
1520 | rcu_read_lock(); | |
1521 | list_for_each_entry_rcu(object, &object_list, object_list) { | |
8c96f1bc | 1522 | raw_spin_lock_irqsave(&object->lock, flags); |
4698c1f2 CM |
1523 | if (unreferenced_object(object) && |
1524 | !(object->flags & OBJECT_REPORTED)) { | |
1525 | object->flags |= OBJECT_REPORTED; | |
154221c3 VW |
1526 | |
1527 | if (kmemleak_verbose) | |
1528 | print_unreferenced(NULL, object); | |
1529 | ||
4698c1f2 CM |
1530 | new_leaks++; |
1531 | } | |
8c96f1bc | 1532 | raw_spin_unlock_irqrestore(&object->lock, flags); |
4698c1f2 CM |
1533 | } |
1534 | rcu_read_unlock(); | |
1535 | ||
dc9b3f42 LZ |
1536 | if (new_leaks) { |
1537 | kmemleak_found_leaks = true; | |
1538 | ||
756a025f JP |
1539 | pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n", |
1540 | new_leaks); | |
dc9b3f42 | 1541 | } |
4698c1f2 | 1542 | |
3c7b4e6b CM |
1543 | } |
1544 | ||
1545 | /* | |
1546 | * Thread function performing automatic memory scanning. Unreferenced objects | |
1547 | * at the end of a memory scan are reported but only the first time. | |
1548 | */ | |
1549 | static int kmemleak_scan_thread(void *arg) | |
1550 | { | |
d53ce042 | 1551 | static int first_run = IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN); |
3c7b4e6b | 1552 | |
ae281064 | 1553 | pr_info("Automatic memory scanning thread started\n"); |
bf2a76b3 | 1554 | set_user_nice(current, 10); |
3c7b4e6b CM |
1555 | |
1556 | /* | |
1557 | * Wait before the first scan to allow the system to fully initialize. | |
1558 | */ | |
1559 | if (first_run) { | |
98c42d94 | 1560 | signed long timeout = msecs_to_jiffies(SECS_FIRST_SCAN * 1000); |
3c7b4e6b | 1561 | first_run = 0; |
98c42d94 VN |
1562 | while (timeout && !kthread_should_stop()) |
1563 | timeout = schedule_timeout_interruptible(timeout); | |
3c7b4e6b CM |
1564 | } |
1565 | ||
1566 | while (!kthread_should_stop()) { | |
3c7b4e6b CM |
1567 | signed long timeout = jiffies_scan_wait; |
1568 | ||
1569 | mutex_lock(&scan_mutex); | |
3c7b4e6b | 1570 | kmemleak_scan(); |
3c7b4e6b | 1571 | mutex_unlock(&scan_mutex); |
4698c1f2 | 1572 | |
3c7b4e6b CM |
1573 | /* wait before the next scan */ |
1574 | while (timeout && !kthread_should_stop()) | |
1575 | timeout = schedule_timeout_interruptible(timeout); | |
1576 | } | |
1577 | ||
ae281064 | 1578 | pr_info("Automatic memory scanning thread ended\n"); |
3c7b4e6b CM |
1579 | |
1580 | return 0; | |
1581 | } | |
1582 | ||
1583 | /* | |
1584 | * Start the automatic memory scanning thread. This function must be called | |
4698c1f2 | 1585 | * with the scan_mutex held. |
3c7b4e6b | 1586 | */ |
7eb0d5e5 | 1587 | static void start_scan_thread(void) |
3c7b4e6b CM |
1588 | { |
1589 | if (scan_thread) | |
1590 | return; | |
1591 | scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak"); | |
1592 | if (IS_ERR(scan_thread)) { | |
598d8091 | 1593 | pr_warn("Failed to create the scan thread\n"); |
3c7b4e6b CM |
1594 | scan_thread = NULL; |
1595 | } | |
1596 | } | |
1597 | ||
1598 | /* | |
914b6dff | 1599 | * Stop the automatic memory scanning thread. |
3c7b4e6b | 1600 | */ |
7eb0d5e5 | 1601 | static void stop_scan_thread(void) |
3c7b4e6b CM |
1602 | { |
1603 | if (scan_thread) { | |
1604 | kthread_stop(scan_thread); | |
1605 | scan_thread = NULL; | |
1606 | } | |
1607 | } | |
1608 | ||
1609 | /* | |
1610 | * Iterate over the object_list and return the first valid object at or after | |
1611 | * the required position with its use_count incremented. The function triggers | |
1612 | * a memory scanning when the pos argument points to the first position. | |
1613 | */ | |
1614 | static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos) | |
1615 | { | |
1616 | struct kmemleak_object *object; | |
1617 | loff_t n = *pos; | |
b87324d0 CM |
1618 | int err; |
1619 | ||
1620 | err = mutex_lock_interruptible(&scan_mutex); | |
1621 | if (err < 0) | |
1622 | return ERR_PTR(err); | |
3c7b4e6b | 1623 | |
3c7b4e6b CM |
1624 | rcu_read_lock(); |
1625 | list_for_each_entry_rcu(object, &object_list, object_list) { | |
1626 | if (n-- > 0) | |
1627 | continue; | |
1628 | if (get_object(object)) | |
1629 | goto out; | |
1630 | } | |
1631 | object = NULL; | |
1632 | out: | |
3c7b4e6b CM |
1633 | return object; |
1634 | } | |
1635 | ||
1636 | /* | |
1637 | * Return the next object in the object_list. The function decrements the | |
1638 | * use_count of the previous object and increases that of the next one. | |
1639 | */ | |
1640 | static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos) | |
1641 | { | |
1642 | struct kmemleak_object *prev_obj = v; | |
1643 | struct kmemleak_object *next_obj = NULL; | |
58fac095 | 1644 | struct kmemleak_object *obj = prev_obj; |
3c7b4e6b CM |
1645 | |
1646 | ++(*pos); | |
3c7b4e6b | 1647 | |
58fac095 | 1648 | list_for_each_entry_continue_rcu(obj, &object_list, object_list) { |
52c3ce4e CM |
1649 | if (get_object(obj)) { |
1650 | next_obj = obj; | |
3c7b4e6b | 1651 | break; |
52c3ce4e | 1652 | } |
3c7b4e6b | 1653 | } |
288c857d | 1654 | |
3c7b4e6b CM |
1655 | put_object(prev_obj); |
1656 | return next_obj; | |
1657 | } | |
1658 | ||
1659 | /* | |
1660 | * Decrement the use_count of the last object required, if any. | |
1661 | */ | |
1662 | static void kmemleak_seq_stop(struct seq_file *seq, void *v) | |
1663 | { | |
b87324d0 CM |
1664 | if (!IS_ERR(v)) { |
1665 | /* | |
1666 | * kmemleak_seq_start may return ERR_PTR if the scan_mutex | |
1667 | * waiting was interrupted, so only release it if !IS_ERR. | |
1668 | */ | |
f5886c7f | 1669 | rcu_read_unlock(); |
b87324d0 CM |
1670 | mutex_unlock(&scan_mutex); |
1671 | if (v) | |
1672 | put_object(v); | |
1673 | } | |
3c7b4e6b CM |
1674 | } |
1675 | ||
1676 | /* | |
1677 | * Print the information for an unreferenced object to the seq file. | |
1678 | */ | |
1679 | static int kmemleak_seq_show(struct seq_file *seq, void *v) | |
1680 | { | |
1681 | struct kmemleak_object *object = v; | |
1682 | unsigned long flags; | |
1683 | ||
8c96f1bc | 1684 | raw_spin_lock_irqsave(&object->lock, flags); |
288c857d | 1685 | if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object)) |
17bb9e0d | 1686 | print_unreferenced(seq, object); |
8c96f1bc | 1687 | raw_spin_unlock_irqrestore(&object->lock, flags); |
3c7b4e6b CM |
1688 | return 0; |
1689 | } | |
1690 | ||
1691 | static const struct seq_operations kmemleak_seq_ops = { | |
1692 | .start = kmemleak_seq_start, | |
1693 | .next = kmemleak_seq_next, | |
1694 | .stop = kmemleak_seq_stop, | |
1695 | .show = kmemleak_seq_show, | |
1696 | }; | |
1697 | ||
1698 | static int kmemleak_open(struct inode *inode, struct file *file) | |
1699 | { | |
b87324d0 | 1700 | return seq_open(file, &kmemleak_seq_ops); |
3c7b4e6b CM |
1701 | } |
1702 | ||
189d84ed CM |
1703 | static int dump_str_object_info(const char *str) |
1704 | { | |
1705 | unsigned long flags; | |
1706 | struct kmemleak_object *object; | |
1707 | unsigned long addr; | |
1708 | ||
dc053733 AP |
1709 | if (kstrtoul(str, 0, &addr)) |
1710 | return -EINVAL; | |
189d84ed CM |
1711 | object = find_and_get_object(addr, 0); |
1712 | if (!object) { | |
1713 | pr_info("Unknown object at 0x%08lx\n", addr); | |
1714 | return -EINVAL; | |
1715 | } | |
1716 | ||
8c96f1bc | 1717 | raw_spin_lock_irqsave(&object->lock, flags); |
189d84ed | 1718 | dump_object_info(object); |
8c96f1bc | 1719 | raw_spin_unlock_irqrestore(&object->lock, flags); |
189d84ed CM |
1720 | |
1721 | put_object(object); | |
1722 | return 0; | |
1723 | } | |
1724 | ||
30b37101 LR |
1725 | /* |
1726 | * We use grey instead of black to ensure we can do future scans on the same | |
1727 | * objects. If we did not do future scans these black objects could | |
1728 | * potentially contain references to newly allocated objects in the future and | |
1729 | * we'd end up with false positives. | |
1730 | */ | |
1731 | static void kmemleak_clear(void) | |
1732 | { | |
1733 | struct kmemleak_object *object; | |
1734 | unsigned long flags; | |
1735 | ||
1736 | rcu_read_lock(); | |
1737 | list_for_each_entry_rcu(object, &object_list, object_list) { | |
8c96f1bc | 1738 | raw_spin_lock_irqsave(&object->lock, flags); |
30b37101 LR |
1739 | if ((object->flags & OBJECT_REPORTED) && |
1740 | unreferenced_object(object)) | |
a1084c87 | 1741 | __paint_it(object, KMEMLEAK_GREY); |
8c96f1bc | 1742 | raw_spin_unlock_irqrestore(&object->lock, flags); |
30b37101 LR |
1743 | } |
1744 | rcu_read_unlock(); | |
dc9b3f42 LZ |
1745 | |
1746 | kmemleak_found_leaks = false; | |
30b37101 LR |
1747 | } |
1748 | ||
c89da70c LZ |
1749 | static void __kmemleak_do_cleanup(void); |
1750 | ||
3c7b4e6b CM |
1751 | /* |
1752 | * File write operation to configure kmemleak at run-time. The following | |
1753 | * commands can be written to the /sys/kernel/debug/kmemleak file: | |
1754 | * off - disable kmemleak (irreversible) | |
1755 | * stack=on - enable the task stacks scanning | |
1756 | * stack=off - disable the tasks stacks scanning | |
1757 | * scan=on - start the automatic memory scanning thread | |
1758 | * scan=off - stop the automatic memory scanning thread | |
1759 | * scan=... - set the automatic memory scanning period in seconds (0 to | |
1760 | * disable it) | |
4698c1f2 | 1761 | * scan - trigger a memory scan |
30b37101 | 1762 | * clear - mark all current reported unreferenced kmemleak objects as |
c89da70c LZ |
1763 | * grey to ignore printing them, or free all kmemleak objects |
1764 | * if kmemleak has been disabled. | |
189d84ed | 1765 | * dump=... - dump information about the object found at the given address |
3c7b4e6b CM |
1766 | */ |
1767 | static ssize_t kmemleak_write(struct file *file, const char __user *user_buf, | |
1768 | size_t size, loff_t *ppos) | |
1769 | { | |
1770 | char buf[64]; | |
1771 | int buf_size; | |
b87324d0 | 1772 | int ret; |
3c7b4e6b CM |
1773 | |
1774 | buf_size = min(size, (sizeof(buf) - 1)); | |
1775 | if (strncpy_from_user(buf, user_buf, buf_size) < 0) | |
1776 | return -EFAULT; | |
1777 | buf[buf_size] = 0; | |
1778 | ||
b87324d0 CM |
1779 | ret = mutex_lock_interruptible(&scan_mutex); |
1780 | if (ret < 0) | |
1781 | return ret; | |
1782 | ||
c89da70c | 1783 | if (strncmp(buf, "clear", 5) == 0) { |
8910ae89 | 1784 | if (kmemleak_enabled) |
c89da70c LZ |
1785 | kmemleak_clear(); |
1786 | else | |
1787 | __kmemleak_do_cleanup(); | |
1788 | goto out; | |
1789 | } | |
1790 | ||
8910ae89 | 1791 | if (!kmemleak_enabled) { |
4e4dfce2 | 1792 | ret = -EPERM; |
c89da70c LZ |
1793 | goto out; |
1794 | } | |
1795 | ||
3c7b4e6b CM |
1796 | if (strncmp(buf, "off", 3) == 0) |
1797 | kmemleak_disable(); | |
1798 | else if (strncmp(buf, "stack=on", 8) == 0) | |
1799 | kmemleak_stack_scan = 1; | |
1800 | else if (strncmp(buf, "stack=off", 9) == 0) | |
1801 | kmemleak_stack_scan = 0; | |
1802 | else if (strncmp(buf, "scan=on", 7) == 0) | |
1803 | start_scan_thread(); | |
1804 | else if (strncmp(buf, "scan=off", 8) == 0) | |
1805 | stop_scan_thread(); | |
1806 | else if (strncmp(buf, "scan=", 5) == 0) { | |
1807 | unsigned long secs; | |
3c7b4e6b | 1808 | |
3dbb95f7 | 1809 | ret = kstrtoul(buf + 5, 0, &secs); |
b87324d0 CM |
1810 | if (ret < 0) |
1811 | goto out; | |
3c7b4e6b CM |
1812 | stop_scan_thread(); |
1813 | if (secs) { | |
1814 | jiffies_scan_wait = msecs_to_jiffies(secs * 1000); | |
1815 | start_scan_thread(); | |
1816 | } | |
4698c1f2 CM |
1817 | } else if (strncmp(buf, "scan", 4) == 0) |
1818 | kmemleak_scan(); | |
189d84ed CM |
1819 | else if (strncmp(buf, "dump=", 5) == 0) |
1820 | ret = dump_str_object_info(buf + 5); | |
4698c1f2 | 1821 | else |
b87324d0 CM |
1822 | ret = -EINVAL; |
1823 | ||
1824 | out: | |
1825 | mutex_unlock(&scan_mutex); | |
1826 | if (ret < 0) | |
1827 | return ret; | |
3c7b4e6b CM |
1828 | |
1829 | /* ignore the rest of the buffer, only one command at a time */ | |
1830 | *ppos += size; | |
1831 | return size; | |
1832 | } | |
1833 | ||
1834 | static const struct file_operations kmemleak_fops = { | |
1835 | .owner = THIS_MODULE, | |
1836 | .open = kmemleak_open, | |
1837 | .read = seq_read, | |
1838 | .write = kmemleak_write, | |
1839 | .llseek = seq_lseek, | |
5f3bf19a | 1840 | .release = seq_release, |
3c7b4e6b CM |
1841 | }; |
1842 | ||
c89da70c LZ |
1843 | static void __kmemleak_do_cleanup(void) |
1844 | { | |
2abd839a | 1845 | struct kmemleak_object *object, *tmp; |
c89da70c | 1846 | |
2abd839a CM |
1847 | /* |
1848 | * Kmemleak has already been disabled, no need for RCU list traversal | |
1849 | * or kmemleak_lock held. | |
1850 | */ | |
1851 | list_for_each_entry_safe(object, tmp, &object_list, object_list) { | |
1852 | __remove_object(object); | |
1853 | __delete_object(object); | |
1854 | } | |
c89da70c LZ |
1855 | } |
1856 | ||
3c7b4e6b | 1857 | /* |
74341703 CM |
1858 | * Stop the memory scanning thread and free the kmemleak internal objects if |
1859 | * no previous scan thread (otherwise, kmemleak may still have some useful | |
1860 | * information on memory leaks). | |
3c7b4e6b | 1861 | */ |
179a8100 | 1862 | static void kmemleak_do_cleanup(struct work_struct *work) |
3c7b4e6b | 1863 | { |
3c7b4e6b | 1864 | stop_scan_thread(); |
3c7b4e6b | 1865 | |
914b6dff | 1866 | mutex_lock(&scan_mutex); |
c5f3b1a5 | 1867 | /* |
914b6dff VM |
1868 | * Once it is made sure that kmemleak_scan has stopped, it is safe to no |
1869 | * longer track object freeing. Ordering of the scan thread stopping and | |
1870 | * the memory accesses below is guaranteed by the kthread_stop() | |
1871 | * function. | |
c5f3b1a5 CM |
1872 | */ |
1873 | kmemleak_free_enabled = 0; | |
914b6dff | 1874 | mutex_unlock(&scan_mutex); |
c5f3b1a5 | 1875 | |
c89da70c LZ |
1876 | if (!kmemleak_found_leaks) |
1877 | __kmemleak_do_cleanup(); | |
1878 | else | |
756a025f | 1879 | pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n"); |
3c7b4e6b CM |
1880 | } |
1881 | ||
179a8100 | 1882 | static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup); |
3c7b4e6b CM |
1883 | |
1884 | /* | |
1885 | * Disable kmemleak. No memory allocation/freeing will be traced once this | |
1886 | * function is called. Disabling kmemleak is an irreversible operation. | |
1887 | */ | |
1888 | static void kmemleak_disable(void) | |
1889 | { | |
1890 | /* atomically check whether it was already invoked */ | |
8910ae89 | 1891 | if (cmpxchg(&kmemleak_error, 0, 1)) |
3c7b4e6b CM |
1892 | return; |
1893 | ||
1894 | /* stop any memory operation tracing */ | |
8910ae89 | 1895 | kmemleak_enabled = 0; |
3c7b4e6b CM |
1896 | |
1897 | /* check whether it is too early for a kernel thread */ | |
8910ae89 | 1898 | if (kmemleak_initialized) |
179a8100 | 1899 | schedule_work(&cleanup_work); |
c5f3b1a5 CM |
1900 | else |
1901 | kmemleak_free_enabled = 0; | |
3c7b4e6b CM |
1902 | |
1903 | pr_info("Kernel memory leak detector disabled\n"); | |
1904 | } | |
1905 | ||
1906 | /* | |
1907 | * Allow boot-time kmemleak disabling (enabled by default). | |
1908 | */ | |
8bd30c10 | 1909 | static int __init kmemleak_boot_config(char *str) |
3c7b4e6b CM |
1910 | { |
1911 | if (!str) | |
1912 | return -EINVAL; | |
1913 | if (strcmp(str, "off") == 0) | |
1914 | kmemleak_disable(); | |
ab0155a2 JB |
1915 | else if (strcmp(str, "on") == 0) |
1916 | kmemleak_skip_disable = 1; | |
1917 | else | |
3c7b4e6b CM |
1918 | return -EINVAL; |
1919 | return 0; | |
1920 | } | |
1921 | early_param("kmemleak", kmemleak_boot_config); | |
1922 | ||
1923 | /* | |
2030117d | 1924 | * Kmemleak initialization. |
3c7b4e6b CM |
1925 | */ |
1926 | void __init kmemleak_init(void) | |
1927 | { | |
ab0155a2 JB |
1928 | #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF |
1929 | if (!kmemleak_skip_disable) { | |
1930 | kmemleak_disable(); | |
1931 | return; | |
1932 | } | |
1933 | #endif | |
1934 | ||
c5665868 CM |
1935 | if (kmemleak_error) |
1936 | return; | |
1937 | ||
3c7b4e6b CM |
1938 | jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE); |
1939 | jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000); | |
1940 | ||
1941 | object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE); | |
1942 | scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE); | |
3c7b4e6b | 1943 | |
298a32b1 CM |
1944 | /* register the data/bss sections */ |
1945 | create_object((unsigned long)_sdata, _edata - _sdata, | |
1946 | KMEMLEAK_GREY, GFP_ATOMIC); | |
1947 | create_object((unsigned long)__bss_start, __bss_stop - __bss_start, | |
1948 | KMEMLEAK_GREY, GFP_ATOMIC); | |
1949 | /* only register .data..ro_after_init if not within .data */ | |
b0d14fc4 | 1950 | if (&__start_ro_after_init < &_sdata || &__end_ro_after_init > &_edata) |
298a32b1 CM |
1951 | create_object((unsigned long)__start_ro_after_init, |
1952 | __end_ro_after_init - __start_ro_after_init, | |
1953 | KMEMLEAK_GREY, GFP_ATOMIC); | |
3c7b4e6b CM |
1954 | } |
1955 | ||
1956 | /* | |
1957 | * Late initialization function. | |
1958 | */ | |
1959 | static int __init kmemleak_late_init(void) | |
1960 | { | |
8910ae89 | 1961 | kmemleak_initialized = 1; |
3c7b4e6b | 1962 | |
282401df | 1963 | debugfs_create_file("kmemleak", 0644, NULL, NULL, &kmemleak_fops); |
b353756b | 1964 | |
8910ae89 | 1965 | if (kmemleak_error) { |
3c7b4e6b | 1966 | /* |
25985edc | 1967 | * Some error occurred and kmemleak was disabled. There is a |
3c7b4e6b CM |
1968 | * small chance that kmemleak_disable() was called immediately |
1969 | * after setting kmemleak_initialized and we may end up with | |
1970 | * two clean-up threads but serialized by scan_mutex. | |
1971 | */ | |
179a8100 | 1972 | schedule_work(&cleanup_work); |
3c7b4e6b CM |
1973 | return -ENOMEM; |
1974 | } | |
1975 | ||
d53ce042 SK |
1976 | if (IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN)) { |
1977 | mutex_lock(&scan_mutex); | |
1978 | start_scan_thread(); | |
1979 | mutex_unlock(&scan_mutex); | |
1980 | } | |
3c7b4e6b | 1981 | |
0e965a6b QC |
1982 | pr_info("Kernel memory leak detector initialized (mem pool available: %d)\n", |
1983 | mem_pool_free_count); | |
3c7b4e6b CM |
1984 | |
1985 | return 0; | |
1986 | } | |
1987 | late_initcall(kmemleak_late_init); |