]>
Commit | Line | Data |
---|---|---|
dc009d92 EB |
1 | /* |
2 | * kexec.c - kexec system call | |
3 | * Copyright (C) 2002-2004 Eric Biederman <[email protected]> | |
4 | * | |
5 | * This source code is licensed under the GNU General Public License, | |
6 | * Version 2. See the file COPYING for more details. | |
7 | */ | |
8 | ||
c59ede7b | 9 | #include <linux/capability.h> |
dc009d92 EB |
10 | #include <linux/mm.h> |
11 | #include <linux/file.h> | |
12 | #include <linux/slab.h> | |
13 | #include <linux/fs.h> | |
14 | #include <linux/kexec.h> | |
8c5a1cf0 | 15 | #include <linux/mutex.h> |
dc009d92 EB |
16 | #include <linux/list.h> |
17 | #include <linux/highmem.h> | |
18 | #include <linux/syscalls.h> | |
19 | #include <linux/reboot.h> | |
dc009d92 | 20 | #include <linux/ioport.h> |
6e274d14 | 21 | #include <linux/hardirq.h> |
85916f81 MD |
22 | #include <linux/elf.h> |
23 | #include <linux/elfcore.h> | |
273b281f | 24 | #include <generated/utsrelease.h> |
fd59d231 KO |
25 | #include <linux/utsname.h> |
26 | #include <linux/numa.h> | |
3ab83521 YH |
27 | #include <linux/suspend.h> |
28 | #include <linux/device.h> | |
89081d17 YH |
29 | #include <linux/freezer.h> |
30 | #include <linux/pm.h> | |
31 | #include <linux/cpu.h> | |
32 | #include <linux/console.h> | |
5f41b8cd | 33 | #include <linux/vmalloc.h> |
06a7f711 | 34 | #include <linux/swap.h> |
0f4bd46e | 35 | #include <linux/kmsg_dump.h> |
6e274d14 | 36 | |
dc009d92 EB |
37 | #include <asm/page.h> |
38 | #include <asm/uaccess.h> | |
39 | #include <asm/io.h> | |
40 | #include <asm/system.h> | |
fd59d231 | 41 | #include <asm/sections.h> |
dc009d92 | 42 | |
cc571658 VG |
43 | /* Per cpu memory for storing cpu states in case of system crash. */ |
44 | note_buf_t* crash_notes; | |
45 | ||
fd59d231 | 46 | /* vmcoreinfo stuff */ |
edb79a21 | 47 | static unsigned char vmcoreinfo_data[VMCOREINFO_BYTES]; |
fd59d231 | 48 | u32 vmcoreinfo_note[VMCOREINFO_NOTE_SIZE/4]; |
d768281e KO |
49 | size_t vmcoreinfo_size; |
50 | size_t vmcoreinfo_max_size = sizeof(vmcoreinfo_data); | |
fd59d231 | 51 | |
dc009d92 EB |
52 | /* Location of the reserved area for the crash kernel */ |
53 | struct resource crashk_res = { | |
54 | .name = "Crash kernel", | |
55 | .start = 0, | |
56 | .end = 0, | |
57 | .flags = IORESOURCE_BUSY | IORESOURCE_MEM | |
58 | }; | |
59 | ||
6e274d14 AN |
60 | int kexec_should_crash(struct task_struct *p) |
61 | { | |
b460cbc5 | 62 | if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops) |
6e274d14 AN |
63 | return 1; |
64 | return 0; | |
65 | } | |
66 | ||
dc009d92 EB |
67 | /* |
68 | * When kexec transitions to the new kernel there is a one-to-one | |
69 | * mapping between physical and virtual addresses. On processors | |
70 | * where you can disable the MMU this is trivial, and easy. For | |
71 | * others it is still a simple predictable page table to setup. | |
72 | * | |
73 | * In that environment kexec copies the new kernel to its final | |
74 | * resting place. This means I can only support memory whose | |
75 | * physical address can fit in an unsigned long. In particular | |
76 | * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled. | |
77 | * If the assembly stub has more restrictive requirements | |
78 | * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be | |
79 | * defined more restrictively in <asm/kexec.h>. | |
80 | * | |
81 | * The code for the transition from the current kernel to the | |
82 | * the new kernel is placed in the control_code_buffer, whose size | |
163f6876 | 83 | * is given by KEXEC_CONTROL_PAGE_SIZE. In the best case only a single |
dc009d92 EB |
84 | * page of memory is necessary, but some architectures require more. |
85 | * Because this memory must be identity mapped in the transition from | |
86 | * virtual to physical addresses it must live in the range | |
87 | * 0 - TASK_SIZE, as only the user space mappings are arbitrarily | |
88 | * modifiable. | |
89 | * | |
90 | * The assembly stub in the control code buffer is passed a linked list | |
91 | * of descriptor pages detailing the source pages of the new kernel, | |
92 | * and the destination addresses of those source pages. As this data | |
93 | * structure is not used in the context of the current OS, it must | |
94 | * be self-contained. | |
95 | * | |
96 | * The code has been made to work with highmem pages and will use a | |
97 | * destination page in its final resting place (if it happens | |
98 | * to allocate it). The end product of this is that most of the | |
99 | * physical address space, and most of RAM can be used. | |
100 | * | |
101 | * Future directions include: | |
102 | * - allocating a page table with the control code buffer identity | |
103 | * mapped, to simplify machine_kexec and make kexec_on_panic more | |
104 | * reliable. | |
105 | */ | |
106 | ||
107 | /* | |
108 | * KIMAGE_NO_DEST is an impossible destination address..., for | |
109 | * allocating pages whose destination address we do not care about. | |
110 | */ | |
111 | #define KIMAGE_NO_DEST (-1UL) | |
112 | ||
72414d3f MS |
113 | static int kimage_is_destination_range(struct kimage *image, |
114 | unsigned long start, unsigned long end); | |
115 | static struct page *kimage_alloc_page(struct kimage *image, | |
9796fdd8 | 116 | gfp_t gfp_mask, |
72414d3f | 117 | unsigned long dest); |
dc009d92 EB |
118 | |
119 | static int do_kimage_alloc(struct kimage **rimage, unsigned long entry, | |
72414d3f MS |
120 | unsigned long nr_segments, |
121 | struct kexec_segment __user *segments) | |
dc009d92 EB |
122 | { |
123 | size_t segment_bytes; | |
124 | struct kimage *image; | |
125 | unsigned long i; | |
126 | int result; | |
127 | ||
128 | /* Allocate a controlling structure */ | |
129 | result = -ENOMEM; | |
4668edc3 | 130 | image = kzalloc(sizeof(*image), GFP_KERNEL); |
72414d3f | 131 | if (!image) |
dc009d92 | 132 | goto out; |
72414d3f | 133 | |
dc009d92 EB |
134 | image->head = 0; |
135 | image->entry = &image->head; | |
136 | image->last_entry = &image->head; | |
137 | image->control_page = ~0; /* By default this does not apply */ | |
138 | image->start = entry; | |
139 | image->type = KEXEC_TYPE_DEFAULT; | |
140 | ||
141 | /* Initialize the list of control pages */ | |
142 | INIT_LIST_HEAD(&image->control_pages); | |
143 | ||
144 | /* Initialize the list of destination pages */ | |
145 | INIT_LIST_HEAD(&image->dest_pages); | |
146 | ||
147 | /* Initialize the list of unuseable pages */ | |
148 | INIT_LIST_HEAD(&image->unuseable_pages); | |
149 | ||
150 | /* Read in the segments */ | |
151 | image->nr_segments = nr_segments; | |
152 | segment_bytes = nr_segments * sizeof(*segments); | |
153 | result = copy_from_user(image->segment, segments, segment_bytes); | |
154 | if (result) | |
155 | goto out; | |
156 | ||
157 | /* | |
158 | * Verify we have good destination addresses. The caller is | |
159 | * responsible for making certain we don't attempt to load | |
160 | * the new image into invalid or reserved areas of RAM. This | |
161 | * just verifies it is an address we can use. | |
162 | * | |
163 | * Since the kernel does everything in page size chunks ensure | |
164 | * the destination addreses are page aligned. Too many | |
165 | * special cases crop of when we don't do this. The most | |
166 | * insidious is getting overlapping destination addresses | |
167 | * simply because addresses are changed to page size | |
168 | * granularity. | |
169 | */ | |
170 | result = -EADDRNOTAVAIL; | |
171 | for (i = 0; i < nr_segments; i++) { | |
172 | unsigned long mstart, mend; | |
72414d3f | 173 | |
dc009d92 EB |
174 | mstart = image->segment[i].mem; |
175 | mend = mstart + image->segment[i].memsz; | |
176 | if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK)) | |
177 | goto out; | |
178 | if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT) | |
179 | goto out; | |
180 | } | |
181 | ||
182 | /* Verify our destination addresses do not overlap. | |
183 | * If we alloed overlapping destination addresses | |
184 | * through very weird things can happen with no | |
185 | * easy explanation as one segment stops on another. | |
186 | */ | |
187 | result = -EINVAL; | |
72414d3f | 188 | for (i = 0; i < nr_segments; i++) { |
dc009d92 EB |
189 | unsigned long mstart, mend; |
190 | unsigned long j; | |
72414d3f | 191 | |
dc009d92 EB |
192 | mstart = image->segment[i].mem; |
193 | mend = mstart + image->segment[i].memsz; | |
72414d3f | 194 | for (j = 0; j < i; j++) { |
dc009d92 EB |
195 | unsigned long pstart, pend; |
196 | pstart = image->segment[j].mem; | |
197 | pend = pstart + image->segment[j].memsz; | |
198 | /* Do the segments overlap ? */ | |
199 | if ((mend > pstart) && (mstart < pend)) | |
200 | goto out; | |
201 | } | |
202 | } | |
203 | ||
204 | /* Ensure our buffer sizes are strictly less than | |
205 | * our memory sizes. This should always be the case, | |
206 | * and it is easier to check up front than to be surprised | |
207 | * later on. | |
208 | */ | |
209 | result = -EINVAL; | |
72414d3f | 210 | for (i = 0; i < nr_segments; i++) { |
dc009d92 EB |
211 | if (image->segment[i].bufsz > image->segment[i].memsz) |
212 | goto out; | |
213 | } | |
214 | ||
dc009d92 | 215 | result = 0; |
72414d3f MS |
216 | out: |
217 | if (result == 0) | |
dc009d92 | 218 | *rimage = image; |
72414d3f | 219 | else |
dc009d92 | 220 | kfree(image); |
72414d3f | 221 | |
dc009d92 EB |
222 | return result; |
223 | ||
224 | } | |
225 | ||
226 | static int kimage_normal_alloc(struct kimage **rimage, unsigned long entry, | |
72414d3f MS |
227 | unsigned long nr_segments, |
228 | struct kexec_segment __user *segments) | |
dc009d92 EB |
229 | { |
230 | int result; | |
231 | struct kimage *image; | |
232 | ||
233 | /* Allocate and initialize a controlling structure */ | |
234 | image = NULL; | |
235 | result = do_kimage_alloc(&image, entry, nr_segments, segments); | |
72414d3f | 236 | if (result) |
dc009d92 | 237 | goto out; |
72414d3f | 238 | |
dc009d92 EB |
239 | *rimage = image; |
240 | ||
241 | /* | |
242 | * Find a location for the control code buffer, and add it | |
243 | * the vector of segments so that it's pages will also be | |
244 | * counted as destination pages. | |
245 | */ | |
246 | result = -ENOMEM; | |
247 | image->control_code_page = kimage_alloc_control_pages(image, | |
163f6876 | 248 | get_order(KEXEC_CONTROL_PAGE_SIZE)); |
dc009d92 EB |
249 | if (!image->control_code_page) { |
250 | printk(KERN_ERR "Could not allocate control_code_buffer\n"); | |
251 | goto out; | |
252 | } | |
253 | ||
3ab83521 YH |
254 | image->swap_page = kimage_alloc_control_pages(image, 0); |
255 | if (!image->swap_page) { | |
256 | printk(KERN_ERR "Could not allocate swap buffer\n"); | |
257 | goto out; | |
258 | } | |
259 | ||
dc009d92 EB |
260 | result = 0; |
261 | out: | |
72414d3f | 262 | if (result == 0) |
dc009d92 | 263 | *rimage = image; |
72414d3f | 264 | else |
dc009d92 | 265 | kfree(image); |
72414d3f | 266 | |
dc009d92 EB |
267 | return result; |
268 | } | |
269 | ||
270 | static int kimage_crash_alloc(struct kimage **rimage, unsigned long entry, | |
72414d3f | 271 | unsigned long nr_segments, |
314b6a4d | 272 | struct kexec_segment __user *segments) |
dc009d92 EB |
273 | { |
274 | int result; | |
275 | struct kimage *image; | |
276 | unsigned long i; | |
277 | ||
278 | image = NULL; | |
279 | /* Verify we have a valid entry point */ | |
280 | if ((entry < crashk_res.start) || (entry > crashk_res.end)) { | |
281 | result = -EADDRNOTAVAIL; | |
282 | goto out; | |
283 | } | |
284 | ||
285 | /* Allocate and initialize a controlling structure */ | |
286 | result = do_kimage_alloc(&image, entry, nr_segments, segments); | |
72414d3f | 287 | if (result) |
dc009d92 | 288 | goto out; |
dc009d92 EB |
289 | |
290 | /* Enable the special crash kernel control page | |
291 | * allocation policy. | |
292 | */ | |
293 | image->control_page = crashk_res.start; | |
294 | image->type = KEXEC_TYPE_CRASH; | |
295 | ||
296 | /* | |
297 | * Verify we have good destination addresses. Normally | |
298 | * the caller is responsible for making certain we don't | |
299 | * attempt to load the new image into invalid or reserved | |
300 | * areas of RAM. But crash kernels are preloaded into a | |
301 | * reserved area of ram. We must ensure the addresses | |
302 | * are in the reserved area otherwise preloading the | |
303 | * kernel could corrupt things. | |
304 | */ | |
305 | result = -EADDRNOTAVAIL; | |
306 | for (i = 0; i < nr_segments; i++) { | |
307 | unsigned long mstart, mend; | |
72414d3f | 308 | |
dc009d92 | 309 | mstart = image->segment[i].mem; |
50cccc69 | 310 | mend = mstart + image->segment[i].memsz - 1; |
dc009d92 EB |
311 | /* Ensure we are within the crash kernel limits */ |
312 | if ((mstart < crashk_res.start) || (mend > crashk_res.end)) | |
313 | goto out; | |
314 | } | |
315 | ||
dc009d92 EB |
316 | /* |
317 | * Find a location for the control code buffer, and add | |
318 | * the vector of segments so that it's pages will also be | |
319 | * counted as destination pages. | |
320 | */ | |
321 | result = -ENOMEM; | |
322 | image->control_code_page = kimage_alloc_control_pages(image, | |
163f6876 | 323 | get_order(KEXEC_CONTROL_PAGE_SIZE)); |
dc009d92 EB |
324 | if (!image->control_code_page) { |
325 | printk(KERN_ERR "Could not allocate control_code_buffer\n"); | |
326 | goto out; | |
327 | } | |
328 | ||
329 | result = 0; | |
72414d3f MS |
330 | out: |
331 | if (result == 0) | |
dc009d92 | 332 | *rimage = image; |
72414d3f | 333 | else |
dc009d92 | 334 | kfree(image); |
72414d3f | 335 | |
dc009d92 EB |
336 | return result; |
337 | } | |
338 | ||
72414d3f MS |
339 | static int kimage_is_destination_range(struct kimage *image, |
340 | unsigned long start, | |
341 | unsigned long end) | |
dc009d92 EB |
342 | { |
343 | unsigned long i; | |
344 | ||
345 | for (i = 0; i < image->nr_segments; i++) { | |
346 | unsigned long mstart, mend; | |
72414d3f | 347 | |
dc009d92 | 348 | mstart = image->segment[i].mem; |
72414d3f MS |
349 | mend = mstart + image->segment[i].memsz; |
350 | if ((end > mstart) && (start < mend)) | |
dc009d92 | 351 | return 1; |
dc009d92 | 352 | } |
72414d3f | 353 | |
dc009d92 EB |
354 | return 0; |
355 | } | |
356 | ||
9796fdd8 | 357 | static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order) |
dc009d92 EB |
358 | { |
359 | struct page *pages; | |
72414d3f | 360 | |
dc009d92 EB |
361 | pages = alloc_pages(gfp_mask, order); |
362 | if (pages) { | |
363 | unsigned int count, i; | |
364 | pages->mapping = NULL; | |
4c21e2f2 | 365 | set_page_private(pages, order); |
dc009d92 | 366 | count = 1 << order; |
72414d3f | 367 | for (i = 0; i < count; i++) |
dc009d92 | 368 | SetPageReserved(pages + i); |
dc009d92 | 369 | } |
72414d3f | 370 | |
dc009d92 EB |
371 | return pages; |
372 | } | |
373 | ||
374 | static void kimage_free_pages(struct page *page) | |
375 | { | |
376 | unsigned int order, count, i; | |
72414d3f | 377 | |
4c21e2f2 | 378 | order = page_private(page); |
dc009d92 | 379 | count = 1 << order; |
72414d3f | 380 | for (i = 0; i < count; i++) |
dc009d92 | 381 | ClearPageReserved(page + i); |
dc009d92 EB |
382 | __free_pages(page, order); |
383 | } | |
384 | ||
385 | static void kimage_free_page_list(struct list_head *list) | |
386 | { | |
387 | struct list_head *pos, *next; | |
72414d3f | 388 | |
dc009d92 EB |
389 | list_for_each_safe(pos, next, list) { |
390 | struct page *page; | |
391 | ||
392 | page = list_entry(pos, struct page, lru); | |
393 | list_del(&page->lru); | |
dc009d92 EB |
394 | kimage_free_pages(page); |
395 | } | |
396 | } | |
397 | ||
72414d3f MS |
398 | static struct page *kimage_alloc_normal_control_pages(struct kimage *image, |
399 | unsigned int order) | |
dc009d92 EB |
400 | { |
401 | /* Control pages are special, they are the intermediaries | |
402 | * that are needed while we copy the rest of the pages | |
403 | * to their final resting place. As such they must | |
404 | * not conflict with either the destination addresses | |
405 | * or memory the kernel is already using. | |
406 | * | |
407 | * The only case where we really need more than one of | |
408 | * these are for architectures where we cannot disable | |
409 | * the MMU and must instead generate an identity mapped | |
410 | * page table for all of the memory. | |
411 | * | |
412 | * At worst this runs in O(N) of the image size. | |
413 | */ | |
414 | struct list_head extra_pages; | |
415 | struct page *pages; | |
416 | unsigned int count; | |
417 | ||
418 | count = 1 << order; | |
419 | INIT_LIST_HEAD(&extra_pages); | |
420 | ||
421 | /* Loop while I can allocate a page and the page allocated | |
422 | * is a destination page. | |
423 | */ | |
424 | do { | |
425 | unsigned long pfn, epfn, addr, eaddr; | |
72414d3f | 426 | |
dc009d92 EB |
427 | pages = kimage_alloc_pages(GFP_KERNEL, order); |
428 | if (!pages) | |
429 | break; | |
430 | pfn = page_to_pfn(pages); | |
431 | epfn = pfn + count; | |
432 | addr = pfn << PAGE_SHIFT; | |
433 | eaddr = epfn << PAGE_SHIFT; | |
434 | if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) || | |
72414d3f | 435 | kimage_is_destination_range(image, addr, eaddr)) { |
dc009d92 EB |
436 | list_add(&pages->lru, &extra_pages); |
437 | pages = NULL; | |
438 | } | |
72414d3f MS |
439 | } while (!pages); |
440 | ||
dc009d92 EB |
441 | if (pages) { |
442 | /* Remember the allocated page... */ | |
443 | list_add(&pages->lru, &image->control_pages); | |
444 | ||
445 | /* Because the page is already in it's destination | |
446 | * location we will never allocate another page at | |
447 | * that address. Therefore kimage_alloc_pages | |
448 | * will not return it (again) and we don't need | |
449 | * to give it an entry in image->segment[]. | |
450 | */ | |
451 | } | |
452 | /* Deal with the destination pages I have inadvertently allocated. | |
453 | * | |
454 | * Ideally I would convert multi-page allocations into single | |
455 | * page allocations, and add everyting to image->dest_pages. | |
456 | * | |
457 | * For now it is simpler to just free the pages. | |
458 | */ | |
459 | kimage_free_page_list(&extra_pages); | |
dc009d92 | 460 | |
72414d3f | 461 | return pages; |
dc009d92 EB |
462 | } |
463 | ||
72414d3f MS |
464 | static struct page *kimage_alloc_crash_control_pages(struct kimage *image, |
465 | unsigned int order) | |
dc009d92 EB |
466 | { |
467 | /* Control pages are special, they are the intermediaries | |
468 | * that are needed while we copy the rest of the pages | |
469 | * to their final resting place. As such they must | |
470 | * not conflict with either the destination addresses | |
471 | * or memory the kernel is already using. | |
472 | * | |
473 | * Control pages are also the only pags we must allocate | |
474 | * when loading a crash kernel. All of the other pages | |
475 | * are specified by the segments and we just memcpy | |
476 | * into them directly. | |
477 | * | |
478 | * The only case where we really need more than one of | |
479 | * these are for architectures where we cannot disable | |
480 | * the MMU and must instead generate an identity mapped | |
481 | * page table for all of the memory. | |
482 | * | |
483 | * Given the low demand this implements a very simple | |
484 | * allocator that finds the first hole of the appropriate | |
485 | * size in the reserved memory region, and allocates all | |
486 | * of the memory up to and including the hole. | |
487 | */ | |
488 | unsigned long hole_start, hole_end, size; | |
489 | struct page *pages; | |
72414d3f | 490 | |
dc009d92 EB |
491 | pages = NULL; |
492 | size = (1 << order) << PAGE_SHIFT; | |
493 | hole_start = (image->control_page + (size - 1)) & ~(size - 1); | |
494 | hole_end = hole_start + size - 1; | |
72414d3f | 495 | while (hole_end <= crashk_res.end) { |
dc009d92 | 496 | unsigned long i; |
72414d3f MS |
497 | |
498 | if (hole_end > KEXEC_CONTROL_MEMORY_LIMIT) | |
dc009d92 | 499 | break; |
72414d3f | 500 | if (hole_end > crashk_res.end) |
dc009d92 | 501 | break; |
dc009d92 | 502 | /* See if I overlap any of the segments */ |
72414d3f | 503 | for (i = 0; i < image->nr_segments; i++) { |
dc009d92 | 504 | unsigned long mstart, mend; |
72414d3f | 505 | |
dc009d92 EB |
506 | mstart = image->segment[i].mem; |
507 | mend = mstart + image->segment[i].memsz - 1; | |
508 | if ((hole_end >= mstart) && (hole_start <= mend)) { | |
509 | /* Advance the hole to the end of the segment */ | |
510 | hole_start = (mend + (size - 1)) & ~(size - 1); | |
511 | hole_end = hole_start + size - 1; | |
512 | break; | |
513 | } | |
514 | } | |
515 | /* If I don't overlap any segments I have found my hole! */ | |
516 | if (i == image->nr_segments) { | |
517 | pages = pfn_to_page(hole_start >> PAGE_SHIFT); | |
518 | break; | |
519 | } | |
520 | } | |
72414d3f | 521 | if (pages) |
dc009d92 | 522 | image->control_page = hole_end; |
72414d3f | 523 | |
dc009d92 EB |
524 | return pages; |
525 | } | |
526 | ||
527 | ||
72414d3f MS |
528 | struct page *kimage_alloc_control_pages(struct kimage *image, |
529 | unsigned int order) | |
dc009d92 EB |
530 | { |
531 | struct page *pages = NULL; | |
72414d3f MS |
532 | |
533 | switch (image->type) { | |
dc009d92 EB |
534 | case KEXEC_TYPE_DEFAULT: |
535 | pages = kimage_alloc_normal_control_pages(image, order); | |
536 | break; | |
537 | case KEXEC_TYPE_CRASH: | |
538 | pages = kimage_alloc_crash_control_pages(image, order); | |
539 | break; | |
540 | } | |
72414d3f | 541 | |
dc009d92 EB |
542 | return pages; |
543 | } | |
544 | ||
545 | static int kimage_add_entry(struct kimage *image, kimage_entry_t entry) | |
546 | { | |
72414d3f | 547 | if (*image->entry != 0) |
dc009d92 | 548 | image->entry++; |
72414d3f | 549 | |
dc009d92 EB |
550 | if (image->entry == image->last_entry) { |
551 | kimage_entry_t *ind_page; | |
552 | struct page *page; | |
72414d3f | 553 | |
dc009d92 | 554 | page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST); |
72414d3f | 555 | if (!page) |
dc009d92 | 556 | return -ENOMEM; |
72414d3f | 557 | |
dc009d92 EB |
558 | ind_page = page_address(page); |
559 | *image->entry = virt_to_phys(ind_page) | IND_INDIRECTION; | |
560 | image->entry = ind_page; | |
72414d3f MS |
561 | image->last_entry = ind_page + |
562 | ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1); | |
dc009d92 EB |
563 | } |
564 | *image->entry = entry; | |
565 | image->entry++; | |
566 | *image->entry = 0; | |
72414d3f | 567 | |
dc009d92 EB |
568 | return 0; |
569 | } | |
570 | ||
72414d3f MS |
571 | static int kimage_set_destination(struct kimage *image, |
572 | unsigned long destination) | |
dc009d92 EB |
573 | { |
574 | int result; | |
575 | ||
576 | destination &= PAGE_MASK; | |
577 | result = kimage_add_entry(image, destination | IND_DESTINATION); | |
72414d3f | 578 | if (result == 0) |
dc009d92 | 579 | image->destination = destination; |
72414d3f | 580 | |
dc009d92 EB |
581 | return result; |
582 | } | |
583 | ||
584 | ||
585 | static int kimage_add_page(struct kimage *image, unsigned long page) | |
586 | { | |
587 | int result; | |
588 | ||
589 | page &= PAGE_MASK; | |
590 | result = kimage_add_entry(image, page | IND_SOURCE); | |
72414d3f | 591 | if (result == 0) |
dc009d92 | 592 | image->destination += PAGE_SIZE; |
72414d3f | 593 | |
dc009d92 EB |
594 | return result; |
595 | } | |
596 | ||
597 | ||
598 | static void kimage_free_extra_pages(struct kimage *image) | |
599 | { | |
600 | /* Walk through and free any extra destination pages I may have */ | |
601 | kimage_free_page_list(&image->dest_pages); | |
602 | ||
603 | /* Walk through and free any unuseable pages I have cached */ | |
604 | kimage_free_page_list(&image->unuseable_pages); | |
605 | ||
606 | } | |
7fccf032 | 607 | static void kimage_terminate(struct kimage *image) |
dc009d92 | 608 | { |
72414d3f | 609 | if (*image->entry != 0) |
dc009d92 | 610 | image->entry++; |
72414d3f | 611 | |
dc009d92 | 612 | *image->entry = IND_DONE; |
dc009d92 EB |
613 | } |
614 | ||
615 | #define for_each_kimage_entry(image, ptr, entry) \ | |
616 | for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \ | |
617 | ptr = (entry & IND_INDIRECTION)? \ | |
618 | phys_to_virt((entry & PAGE_MASK)): ptr +1) | |
619 | ||
620 | static void kimage_free_entry(kimage_entry_t entry) | |
621 | { | |
622 | struct page *page; | |
623 | ||
624 | page = pfn_to_page(entry >> PAGE_SHIFT); | |
625 | kimage_free_pages(page); | |
626 | } | |
627 | ||
628 | static void kimage_free(struct kimage *image) | |
629 | { | |
630 | kimage_entry_t *ptr, entry; | |
631 | kimage_entry_t ind = 0; | |
632 | ||
633 | if (!image) | |
634 | return; | |
72414d3f | 635 | |
dc009d92 EB |
636 | kimage_free_extra_pages(image); |
637 | for_each_kimage_entry(image, ptr, entry) { | |
638 | if (entry & IND_INDIRECTION) { | |
639 | /* Free the previous indirection page */ | |
72414d3f | 640 | if (ind & IND_INDIRECTION) |
dc009d92 | 641 | kimage_free_entry(ind); |
dc009d92 EB |
642 | /* Save this indirection page until we are |
643 | * done with it. | |
644 | */ | |
645 | ind = entry; | |
646 | } | |
72414d3f | 647 | else if (entry & IND_SOURCE) |
dc009d92 | 648 | kimage_free_entry(entry); |
dc009d92 EB |
649 | } |
650 | /* Free the final indirection page */ | |
72414d3f | 651 | if (ind & IND_INDIRECTION) |
dc009d92 | 652 | kimage_free_entry(ind); |
dc009d92 EB |
653 | |
654 | /* Handle any machine specific cleanup */ | |
655 | machine_kexec_cleanup(image); | |
656 | ||
657 | /* Free the kexec control pages... */ | |
658 | kimage_free_page_list(&image->control_pages); | |
659 | kfree(image); | |
660 | } | |
661 | ||
72414d3f MS |
662 | static kimage_entry_t *kimage_dst_used(struct kimage *image, |
663 | unsigned long page) | |
dc009d92 EB |
664 | { |
665 | kimage_entry_t *ptr, entry; | |
666 | unsigned long destination = 0; | |
667 | ||
668 | for_each_kimage_entry(image, ptr, entry) { | |
72414d3f | 669 | if (entry & IND_DESTINATION) |
dc009d92 | 670 | destination = entry & PAGE_MASK; |
dc009d92 | 671 | else if (entry & IND_SOURCE) { |
72414d3f | 672 | if (page == destination) |
dc009d92 | 673 | return ptr; |
dc009d92 EB |
674 | destination += PAGE_SIZE; |
675 | } | |
676 | } | |
72414d3f | 677 | |
314b6a4d | 678 | return NULL; |
dc009d92 EB |
679 | } |
680 | ||
72414d3f | 681 | static struct page *kimage_alloc_page(struct kimage *image, |
9796fdd8 | 682 | gfp_t gfp_mask, |
72414d3f | 683 | unsigned long destination) |
dc009d92 EB |
684 | { |
685 | /* | |
686 | * Here we implement safeguards to ensure that a source page | |
687 | * is not copied to its destination page before the data on | |
688 | * the destination page is no longer useful. | |
689 | * | |
690 | * To do this we maintain the invariant that a source page is | |
691 | * either its own destination page, or it is not a | |
692 | * destination page at all. | |
693 | * | |
694 | * That is slightly stronger than required, but the proof | |
695 | * that no problems will not occur is trivial, and the | |
696 | * implementation is simply to verify. | |
697 | * | |
698 | * When allocating all pages normally this algorithm will run | |
699 | * in O(N) time, but in the worst case it will run in O(N^2) | |
700 | * time. If the runtime is a problem the data structures can | |
701 | * be fixed. | |
702 | */ | |
703 | struct page *page; | |
704 | unsigned long addr; | |
705 | ||
706 | /* | |
707 | * Walk through the list of destination pages, and see if I | |
708 | * have a match. | |
709 | */ | |
710 | list_for_each_entry(page, &image->dest_pages, lru) { | |
711 | addr = page_to_pfn(page) << PAGE_SHIFT; | |
712 | if (addr == destination) { | |
713 | list_del(&page->lru); | |
714 | return page; | |
715 | } | |
716 | } | |
717 | page = NULL; | |
718 | while (1) { | |
719 | kimage_entry_t *old; | |
720 | ||
721 | /* Allocate a page, if we run out of memory give up */ | |
722 | page = kimage_alloc_pages(gfp_mask, 0); | |
72414d3f | 723 | if (!page) |
314b6a4d | 724 | return NULL; |
dc009d92 | 725 | /* If the page cannot be used file it away */ |
72414d3f MS |
726 | if (page_to_pfn(page) > |
727 | (KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) { | |
dc009d92 EB |
728 | list_add(&page->lru, &image->unuseable_pages); |
729 | continue; | |
730 | } | |
731 | addr = page_to_pfn(page) << PAGE_SHIFT; | |
732 | ||
733 | /* If it is the destination page we want use it */ | |
734 | if (addr == destination) | |
735 | break; | |
736 | ||
737 | /* If the page is not a destination page use it */ | |
72414d3f MS |
738 | if (!kimage_is_destination_range(image, addr, |
739 | addr + PAGE_SIZE)) | |
dc009d92 EB |
740 | break; |
741 | ||
742 | /* | |
743 | * I know that the page is someones destination page. | |
744 | * See if there is already a source page for this | |
745 | * destination page. And if so swap the source pages. | |
746 | */ | |
747 | old = kimage_dst_used(image, addr); | |
748 | if (old) { | |
749 | /* If so move it */ | |
750 | unsigned long old_addr; | |
751 | struct page *old_page; | |
752 | ||
753 | old_addr = *old & PAGE_MASK; | |
754 | old_page = pfn_to_page(old_addr >> PAGE_SHIFT); | |
755 | copy_highpage(page, old_page); | |
756 | *old = addr | (*old & ~PAGE_MASK); | |
757 | ||
758 | /* The old page I have found cannot be a | |
f9092f35 JS |
759 | * destination page, so return it if it's |
760 | * gfp_flags honor the ones passed in. | |
dc009d92 | 761 | */ |
f9092f35 JS |
762 | if (!(gfp_mask & __GFP_HIGHMEM) && |
763 | PageHighMem(old_page)) { | |
764 | kimage_free_pages(old_page); | |
765 | continue; | |
766 | } | |
dc009d92 EB |
767 | addr = old_addr; |
768 | page = old_page; | |
769 | break; | |
770 | } | |
771 | else { | |
772 | /* Place the page on the destination list I | |
773 | * will use it later. | |
774 | */ | |
775 | list_add(&page->lru, &image->dest_pages); | |
776 | } | |
777 | } | |
72414d3f | 778 | |
dc009d92 EB |
779 | return page; |
780 | } | |
781 | ||
782 | static int kimage_load_normal_segment(struct kimage *image, | |
72414d3f | 783 | struct kexec_segment *segment) |
dc009d92 EB |
784 | { |
785 | unsigned long maddr; | |
786 | unsigned long ubytes, mbytes; | |
787 | int result; | |
314b6a4d | 788 | unsigned char __user *buf; |
dc009d92 EB |
789 | |
790 | result = 0; | |
791 | buf = segment->buf; | |
792 | ubytes = segment->bufsz; | |
793 | mbytes = segment->memsz; | |
794 | maddr = segment->mem; | |
795 | ||
796 | result = kimage_set_destination(image, maddr); | |
72414d3f | 797 | if (result < 0) |
dc009d92 | 798 | goto out; |
72414d3f MS |
799 | |
800 | while (mbytes) { | |
dc009d92 EB |
801 | struct page *page; |
802 | char *ptr; | |
803 | size_t uchunk, mchunk; | |
72414d3f | 804 | |
dc009d92 | 805 | page = kimage_alloc_page(image, GFP_HIGHUSER, maddr); |
c80544dc | 806 | if (!page) { |
dc009d92 EB |
807 | result = -ENOMEM; |
808 | goto out; | |
809 | } | |
72414d3f MS |
810 | result = kimage_add_page(image, page_to_pfn(page) |
811 | << PAGE_SHIFT); | |
812 | if (result < 0) | |
dc009d92 | 813 | goto out; |
72414d3f | 814 | |
dc009d92 EB |
815 | ptr = kmap(page); |
816 | /* Start with a clear page */ | |
817 | memset(ptr, 0, PAGE_SIZE); | |
818 | ptr += maddr & ~PAGE_MASK; | |
819 | mchunk = PAGE_SIZE - (maddr & ~PAGE_MASK); | |
72414d3f | 820 | if (mchunk > mbytes) |
dc009d92 | 821 | mchunk = mbytes; |
72414d3f | 822 | |
dc009d92 | 823 | uchunk = mchunk; |
72414d3f | 824 | if (uchunk > ubytes) |
dc009d92 | 825 | uchunk = ubytes; |
72414d3f | 826 | |
dc009d92 EB |
827 | result = copy_from_user(ptr, buf, uchunk); |
828 | kunmap(page); | |
829 | if (result) { | |
830 | result = (result < 0) ? result : -EIO; | |
831 | goto out; | |
832 | } | |
833 | ubytes -= uchunk; | |
834 | maddr += mchunk; | |
835 | buf += mchunk; | |
836 | mbytes -= mchunk; | |
837 | } | |
72414d3f | 838 | out: |
dc009d92 EB |
839 | return result; |
840 | } | |
841 | ||
842 | static int kimage_load_crash_segment(struct kimage *image, | |
72414d3f | 843 | struct kexec_segment *segment) |
dc009d92 EB |
844 | { |
845 | /* For crash dumps kernels we simply copy the data from | |
846 | * user space to it's destination. | |
847 | * We do things a page at a time for the sake of kmap. | |
848 | */ | |
849 | unsigned long maddr; | |
850 | unsigned long ubytes, mbytes; | |
851 | int result; | |
314b6a4d | 852 | unsigned char __user *buf; |
dc009d92 EB |
853 | |
854 | result = 0; | |
855 | buf = segment->buf; | |
856 | ubytes = segment->bufsz; | |
857 | mbytes = segment->memsz; | |
858 | maddr = segment->mem; | |
72414d3f | 859 | while (mbytes) { |
dc009d92 EB |
860 | struct page *page; |
861 | char *ptr; | |
862 | size_t uchunk, mchunk; | |
72414d3f | 863 | |
dc009d92 | 864 | page = pfn_to_page(maddr >> PAGE_SHIFT); |
c80544dc | 865 | if (!page) { |
dc009d92 EB |
866 | result = -ENOMEM; |
867 | goto out; | |
868 | } | |
869 | ptr = kmap(page); | |
870 | ptr += maddr & ~PAGE_MASK; | |
871 | mchunk = PAGE_SIZE - (maddr & ~PAGE_MASK); | |
72414d3f | 872 | if (mchunk > mbytes) |
dc009d92 | 873 | mchunk = mbytes; |
72414d3f | 874 | |
dc009d92 EB |
875 | uchunk = mchunk; |
876 | if (uchunk > ubytes) { | |
877 | uchunk = ubytes; | |
878 | /* Zero the trailing part of the page */ | |
879 | memset(ptr + uchunk, 0, mchunk - uchunk); | |
880 | } | |
881 | result = copy_from_user(ptr, buf, uchunk); | |
a7956113 | 882 | kexec_flush_icache_page(page); |
dc009d92 EB |
883 | kunmap(page); |
884 | if (result) { | |
885 | result = (result < 0) ? result : -EIO; | |
886 | goto out; | |
887 | } | |
888 | ubytes -= uchunk; | |
889 | maddr += mchunk; | |
890 | buf += mchunk; | |
891 | mbytes -= mchunk; | |
892 | } | |
72414d3f | 893 | out: |
dc009d92 EB |
894 | return result; |
895 | } | |
896 | ||
897 | static int kimage_load_segment(struct kimage *image, | |
72414d3f | 898 | struct kexec_segment *segment) |
dc009d92 EB |
899 | { |
900 | int result = -ENOMEM; | |
72414d3f MS |
901 | |
902 | switch (image->type) { | |
dc009d92 EB |
903 | case KEXEC_TYPE_DEFAULT: |
904 | result = kimage_load_normal_segment(image, segment); | |
905 | break; | |
906 | case KEXEC_TYPE_CRASH: | |
907 | result = kimage_load_crash_segment(image, segment); | |
908 | break; | |
909 | } | |
72414d3f | 910 | |
dc009d92 EB |
911 | return result; |
912 | } | |
913 | ||
914 | /* | |
915 | * Exec Kernel system call: for obvious reasons only root may call it. | |
916 | * | |
917 | * This call breaks up into three pieces. | |
918 | * - A generic part which loads the new kernel from the current | |
919 | * address space, and very carefully places the data in the | |
920 | * allocated pages. | |
921 | * | |
922 | * - A generic part that interacts with the kernel and tells all of | |
923 | * the devices to shut down. Preventing on-going dmas, and placing | |
924 | * the devices in a consistent state so a later kernel can | |
925 | * reinitialize them. | |
926 | * | |
927 | * - A machine specific part that includes the syscall number | |
928 | * and the copies the image to it's final destination. And | |
929 | * jumps into the image at entry. | |
930 | * | |
931 | * kexec does not sync, or unmount filesystems so if you need | |
932 | * that to happen you need to do that yourself. | |
933 | */ | |
c330dda9 JM |
934 | struct kimage *kexec_image; |
935 | struct kimage *kexec_crash_image; | |
8c5a1cf0 AM |
936 | |
937 | static DEFINE_MUTEX(kexec_mutex); | |
dc009d92 | 938 | |
754fe8d2 HC |
939 | SYSCALL_DEFINE4(kexec_load, unsigned long, entry, unsigned long, nr_segments, |
940 | struct kexec_segment __user *, segments, unsigned long, flags) | |
dc009d92 EB |
941 | { |
942 | struct kimage **dest_image, *image; | |
dc009d92 EB |
943 | int result; |
944 | ||
945 | /* We only trust the superuser with rebooting the system. */ | |
946 | if (!capable(CAP_SYS_BOOT)) | |
947 | return -EPERM; | |
948 | ||
949 | /* | |
950 | * Verify we have a legal set of flags | |
951 | * This leaves us room for future extensions. | |
952 | */ | |
953 | if ((flags & KEXEC_FLAGS) != (flags & ~KEXEC_ARCH_MASK)) | |
954 | return -EINVAL; | |
955 | ||
956 | /* Verify we are on the appropriate architecture */ | |
957 | if (((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH) && | |
958 | ((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH_DEFAULT)) | |
dc009d92 | 959 | return -EINVAL; |
dc009d92 EB |
960 | |
961 | /* Put an artificial cap on the number | |
962 | * of segments passed to kexec_load. | |
963 | */ | |
964 | if (nr_segments > KEXEC_SEGMENT_MAX) | |
965 | return -EINVAL; | |
966 | ||
967 | image = NULL; | |
968 | result = 0; | |
969 | ||
970 | /* Because we write directly to the reserved memory | |
971 | * region when loading crash kernels we need a mutex here to | |
972 | * prevent multiple crash kernels from attempting to load | |
973 | * simultaneously, and to prevent a crash kernel from loading | |
974 | * over the top of a in use crash kernel. | |
975 | * | |
976 | * KISS: always take the mutex. | |
977 | */ | |
8c5a1cf0 | 978 | if (!mutex_trylock(&kexec_mutex)) |
dc009d92 | 979 | return -EBUSY; |
72414d3f | 980 | |
dc009d92 | 981 | dest_image = &kexec_image; |
72414d3f | 982 | if (flags & KEXEC_ON_CRASH) |
dc009d92 | 983 | dest_image = &kexec_crash_image; |
dc009d92 EB |
984 | if (nr_segments > 0) { |
985 | unsigned long i; | |
72414d3f | 986 | |
dc009d92 | 987 | /* Loading another kernel to reboot into */ |
72414d3f MS |
988 | if ((flags & KEXEC_ON_CRASH) == 0) |
989 | result = kimage_normal_alloc(&image, entry, | |
990 | nr_segments, segments); | |
dc009d92 EB |
991 | /* Loading another kernel to switch to if this one crashes */ |
992 | else if (flags & KEXEC_ON_CRASH) { | |
993 | /* Free any current crash dump kernel before | |
994 | * we corrupt it. | |
995 | */ | |
996 | kimage_free(xchg(&kexec_crash_image, NULL)); | |
72414d3f MS |
997 | result = kimage_crash_alloc(&image, entry, |
998 | nr_segments, segments); | |
dc009d92 | 999 | } |
72414d3f | 1000 | if (result) |
dc009d92 | 1001 | goto out; |
72414d3f | 1002 | |
3ab83521 YH |
1003 | if (flags & KEXEC_PRESERVE_CONTEXT) |
1004 | image->preserve_context = 1; | |
dc009d92 | 1005 | result = machine_kexec_prepare(image); |
72414d3f | 1006 | if (result) |
dc009d92 | 1007 | goto out; |
72414d3f MS |
1008 | |
1009 | for (i = 0; i < nr_segments; i++) { | |
dc009d92 | 1010 | result = kimage_load_segment(image, &image->segment[i]); |
72414d3f | 1011 | if (result) |
dc009d92 | 1012 | goto out; |
dc009d92 | 1013 | } |
7fccf032 | 1014 | kimage_terminate(image); |
dc009d92 EB |
1015 | } |
1016 | /* Install the new kernel, and Uninstall the old */ | |
1017 | image = xchg(dest_image, image); | |
1018 | ||
72414d3f | 1019 | out: |
8c5a1cf0 | 1020 | mutex_unlock(&kexec_mutex); |
dc009d92 | 1021 | kimage_free(image); |
72414d3f | 1022 | |
dc009d92 EB |
1023 | return result; |
1024 | } | |
1025 | ||
1026 | #ifdef CONFIG_COMPAT | |
1027 | asmlinkage long compat_sys_kexec_load(unsigned long entry, | |
72414d3f MS |
1028 | unsigned long nr_segments, |
1029 | struct compat_kexec_segment __user *segments, | |
1030 | unsigned long flags) | |
dc009d92 EB |
1031 | { |
1032 | struct compat_kexec_segment in; | |
1033 | struct kexec_segment out, __user *ksegments; | |
1034 | unsigned long i, result; | |
1035 | ||
1036 | /* Don't allow clients that don't understand the native | |
1037 | * architecture to do anything. | |
1038 | */ | |
72414d3f | 1039 | if ((flags & KEXEC_ARCH_MASK) == KEXEC_ARCH_DEFAULT) |
dc009d92 | 1040 | return -EINVAL; |
dc009d92 | 1041 | |
72414d3f | 1042 | if (nr_segments > KEXEC_SEGMENT_MAX) |
dc009d92 | 1043 | return -EINVAL; |
dc009d92 EB |
1044 | |
1045 | ksegments = compat_alloc_user_space(nr_segments * sizeof(out)); | |
1046 | for (i=0; i < nr_segments; i++) { | |
1047 | result = copy_from_user(&in, &segments[i], sizeof(in)); | |
72414d3f | 1048 | if (result) |
dc009d92 | 1049 | return -EFAULT; |
dc009d92 EB |
1050 | |
1051 | out.buf = compat_ptr(in.buf); | |
1052 | out.bufsz = in.bufsz; | |
1053 | out.mem = in.mem; | |
1054 | out.memsz = in.memsz; | |
1055 | ||
1056 | result = copy_to_user(&ksegments[i], &out, sizeof(out)); | |
72414d3f | 1057 | if (result) |
dc009d92 | 1058 | return -EFAULT; |
dc009d92 EB |
1059 | } |
1060 | ||
1061 | return sys_kexec_load(entry, nr_segments, ksegments, flags); | |
1062 | } | |
1063 | #endif | |
1064 | ||
6e274d14 | 1065 | void crash_kexec(struct pt_regs *regs) |
dc009d92 | 1066 | { |
8c5a1cf0 | 1067 | /* Take the kexec_mutex here to prevent sys_kexec_load |
dc009d92 EB |
1068 | * running on one cpu from replacing the crash kernel |
1069 | * we are using after a panic on a different cpu. | |
1070 | * | |
1071 | * If the crash kernel was not located in a fixed area | |
1072 | * of memory the xchg(&kexec_crash_image) would be | |
1073 | * sufficient. But since I reuse the memory... | |
1074 | */ | |
8c5a1cf0 | 1075 | if (mutex_trylock(&kexec_mutex)) { |
c0ce7d08 | 1076 | if (kexec_crash_image) { |
e996e581 | 1077 | struct pt_regs fixed_regs; |
0f4bd46e KM |
1078 | |
1079 | kmsg_dump(KMSG_DUMP_KEXEC); | |
1080 | ||
e996e581 | 1081 | crash_setup_regs(&fixed_regs, regs); |
fd59d231 | 1082 | crash_save_vmcoreinfo(); |
e996e581 | 1083 | machine_crash_shutdown(&fixed_regs); |
c0ce7d08 | 1084 | machine_kexec(kexec_crash_image); |
dc009d92 | 1085 | } |
8c5a1cf0 | 1086 | mutex_unlock(&kexec_mutex); |
dc009d92 EB |
1087 | } |
1088 | } | |
cc571658 | 1089 | |
06a7f711 AW |
1090 | size_t crash_get_memory_size(void) |
1091 | { | |
1092 | size_t size; | |
1093 | mutex_lock(&kexec_mutex); | |
1094 | size = crashk_res.end - crashk_res.start + 1; | |
1095 | mutex_unlock(&kexec_mutex); | |
1096 | return size; | |
1097 | } | |
1098 | ||
1099 | static void free_reserved_phys_range(unsigned long begin, unsigned long end) | |
1100 | { | |
1101 | unsigned long addr; | |
1102 | ||
1103 | for (addr = begin; addr < end; addr += PAGE_SIZE) { | |
1104 | ClearPageReserved(pfn_to_page(addr >> PAGE_SHIFT)); | |
1105 | init_page_count(pfn_to_page(addr >> PAGE_SHIFT)); | |
1106 | free_page((unsigned long)__va(addr)); | |
1107 | totalram_pages++; | |
1108 | } | |
1109 | } | |
1110 | ||
1111 | int crash_shrink_memory(unsigned long new_size) | |
1112 | { | |
1113 | int ret = 0; | |
1114 | unsigned long start, end; | |
1115 | ||
1116 | mutex_lock(&kexec_mutex); | |
1117 | ||
1118 | if (kexec_crash_image) { | |
1119 | ret = -ENOENT; | |
1120 | goto unlock; | |
1121 | } | |
1122 | start = crashk_res.start; | |
1123 | end = crashk_res.end; | |
1124 | ||
1125 | if (new_size >= end - start + 1) { | |
1126 | ret = -EINVAL; | |
1127 | if (new_size == end - start + 1) | |
1128 | ret = 0; | |
1129 | goto unlock; | |
1130 | } | |
1131 | ||
1132 | start = roundup(start, PAGE_SIZE); | |
1133 | end = roundup(start + new_size, PAGE_SIZE); | |
1134 | ||
1135 | free_reserved_phys_range(end, crashk_res.end); | |
1136 | ||
1137 | if (start == end) { | |
1138 | crashk_res.end = end; | |
1139 | release_resource(&crashk_res); | |
1140 | } else | |
1141 | crashk_res.end = end - 1; | |
1142 | ||
1143 | unlock: | |
1144 | mutex_unlock(&kexec_mutex); | |
1145 | return ret; | |
1146 | } | |
1147 | ||
85916f81 MD |
1148 | static u32 *append_elf_note(u32 *buf, char *name, unsigned type, void *data, |
1149 | size_t data_len) | |
1150 | { | |
1151 | struct elf_note note; | |
1152 | ||
1153 | note.n_namesz = strlen(name) + 1; | |
1154 | note.n_descsz = data_len; | |
1155 | note.n_type = type; | |
1156 | memcpy(buf, ¬e, sizeof(note)); | |
1157 | buf += (sizeof(note) + 3)/4; | |
1158 | memcpy(buf, name, note.n_namesz); | |
1159 | buf += (note.n_namesz + 3)/4; | |
1160 | memcpy(buf, data, note.n_descsz); | |
1161 | buf += (note.n_descsz + 3)/4; | |
1162 | ||
1163 | return buf; | |
1164 | } | |
1165 | ||
1166 | static void final_note(u32 *buf) | |
1167 | { | |
1168 | struct elf_note note; | |
1169 | ||
1170 | note.n_namesz = 0; | |
1171 | note.n_descsz = 0; | |
1172 | note.n_type = 0; | |
1173 | memcpy(buf, ¬e, sizeof(note)); | |
1174 | } | |
1175 | ||
1176 | void crash_save_cpu(struct pt_regs *regs, int cpu) | |
1177 | { | |
1178 | struct elf_prstatus prstatus; | |
1179 | u32 *buf; | |
1180 | ||
4f4b6c1a | 1181 | if ((cpu < 0) || (cpu >= nr_cpu_ids)) |
85916f81 MD |
1182 | return; |
1183 | ||
1184 | /* Using ELF notes here is opportunistic. | |
1185 | * I need a well defined structure format | |
1186 | * for the data I pass, and I need tags | |
1187 | * on the data to indicate what information I have | |
1188 | * squirrelled away. ELF notes happen to provide | |
1189 | * all of that, so there is no need to invent something new. | |
1190 | */ | |
1191 | buf = (u32*)per_cpu_ptr(crash_notes, cpu); | |
1192 | if (!buf) | |
1193 | return; | |
1194 | memset(&prstatus, 0, sizeof(prstatus)); | |
1195 | prstatus.pr_pid = current->pid; | |
6cd61c0b | 1196 | elf_core_copy_kernel_regs(&prstatus.pr_reg, regs); |
6672f76a SH |
1197 | buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS, |
1198 | &prstatus, sizeof(prstatus)); | |
85916f81 MD |
1199 | final_note(buf); |
1200 | } | |
1201 | ||
cc571658 VG |
1202 | static int __init crash_notes_memory_init(void) |
1203 | { | |
1204 | /* Allocate memory for saving cpu registers. */ | |
1205 | crash_notes = alloc_percpu(note_buf_t); | |
1206 | if (!crash_notes) { | |
1207 | printk("Kexec: Memory allocation for saving cpu register" | |
1208 | " states failed\n"); | |
1209 | return -ENOMEM; | |
1210 | } | |
1211 | return 0; | |
1212 | } | |
1213 | module_init(crash_notes_memory_init) | |
fd59d231 | 1214 | |
cba63c30 BW |
1215 | |
1216 | /* | |
1217 | * parsing the "crashkernel" commandline | |
1218 | * | |
1219 | * this code is intended to be called from architecture specific code | |
1220 | */ | |
1221 | ||
1222 | ||
1223 | /* | |
1224 | * This function parses command lines in the format | |
1225 | * | |
1226 | * crashkernel=ramsize-range:size[,...][@offset] | |
1227 | * | |
1228 | * The function returns 0 on success and -EINVAL on failure. | |
1229 | */ | |
1230 | static int __init parse_crashkernel_mem(char *cmdline, | |
1231 | unsigned long long system_ram, | |
1232 | unsigned long long *crash_size, | |
1233 | unsigned long long *crash_base) | |
1234 | { | |
1235 | char *cur = cmdline, *tmp; | |
1236 | ||
1237 | /* for each entry of the comma-separated list */ | |
1238 | do { | |
1239 | unsigned long long start, end = ULLONG_MAX, size; | |
1240 | ||
1241 | /* get the start of the range */ | |
1242 | start = memparse(cur, &tmp); | |
1243 | if (cur == tmp) { | |
1244 | pr_warning("crashkernel: Memory value expected\n"); | |
1245 | return -EINVAL; | |
1246 | } | |
1247 | cur = tmp; | |
1248 | if (*cur != '-') { | |
1249 | pr_warning("crashkernel: '-' expected\n"); | |
1250 | return -EINVAL; | |
1251 | } | |
1252 | cur++; | |
1253 | ||
1254 | /* if no ':' is here, than we read the end */ | |
1255 | if (*cur != ':') { | |
1256 | end = memparse(cur, &tmp); | |
1257 | if (cur == tmp) { | |
1258 | pr_warning("crashkernel: Memory " | |
1259 | "value expected\n"); | |
1260 | return -EINVAL; | |
1261 | } | |
1262 | cur = tmp; | |
1263 | if (end <= start) { | |
1264 | pr_warning("crashkernel: end <= start\n"); | |
1265 | return -EINVAL; | |
1266 | } | |
1267 | } | |
1268 | ||
1269 | if (*cur != ':') { | |
1270 | pr_warning("crashkernel: ':' expected\n"); | |
1271 | return -EINVAL; | |
1272 | } | |
1273 | cur++; | |
1274 | ||
1275 | size = memparse(cur, &tmp); | |
1276 | if (cur == tmp) { | |
1277 | pr_warning("Memory value expected\n"); | |
1278 | return -EINVAL; | |
1279 | } | |
1280 | cur = tmp; | |
1281 | if (size >= system_ram) { | |
1282 | pr_warning("crashkernel: invalid size\n"); | |
1283 | return -EINVAL; | |
1284 | } | |
1285 | ||
1286 | /* match ? */ | |
be089d79 | 1287 | if (system_ram >= start && system_ram < end) { |
cba63c30 BW |
1288 | *crash_size = size; |
1289 | break; | |
1290 | } | |
1291 | } while (*cur++ == ','); | |
1292 | ||
1293 | if (*crash_size > 0) { | |
11c7da4b | 1294 | while (*cur && *cur != ' ' && *cur != '@') |
cba63c30 BW |
1295 | cur++; |
1296 | if (*cur == '@') { | |
1297 | cur++; | |
1298 | *crash_base = memparse(cur, &tmp); | |
1299 | if (cur == tmp) { | |
1300 | pr_warning("Memory value expected " | |
1301 | "after '@'\n"); | |
1302 | return -EINVAL; | |
1303 | } | |
1304 | } | |
1305 | } | |
1306 | ||
1307 | return 0; | |
1308 | } | |
1309 | ||
1310 | /* | |
1311 | * That function parses "simple" (old) crashkernel command lines like | |
1312 | * | |
1313 | * crashkernel=size[@offset] | |
1314 | * | |
1315 | * It returns 0 on success and -EINVAL on failure. | |
1316 | */ | |
1317 | static int __init parse_crashkernel_simple(char *cmdline, | |
1318 | unsigned long long *crash_size, | |
1319 | unsigned long long *crash_base) | |
1320 | { | |
1321 | char *cur = cmdline; | |
1322 | ||
1323 | *crash_size = memparse(cmdline, &cur); | |
1324 | if (cmdline == cur) { | |
1325 | pr_warning("crashkernel: memory value expected\n"); | |
1326 | return -EINVAL; | |
1327 | } | |
1328 | ||
1329 | if (*cur == '@') | |
1330 | *crash_base = memparse(cur+1, &cur); | |
1331 | ||
1332 | return 0; | |
1333 | } | |
1334 | ||
1335 | /* | |
1336 | * That function is the entry point for command line parsing and should be | |
1337 | * called from the arch-specific code. | |
1338 | */ | |
1339 | int __init parse_crashkernel(char *cmdline, | |
1340 | unsigned long long system_ram, | |
1341 | unsigned long long *crash_size, | |
1342 | unsigned long long *crash_base) | |
1343 | { | |
1344 | char *p = cmdline, *ck_cmdline = NULL; | |
1345 | char *first_colon, *first_space; | |
1346 | ||
1347 | BUG_ON(!crash_size || !crash_base); | |
1348 | *crash_size = 0; | |
1349 | *crash_base = 0; | |
1350 | ||
1351 | /* find crashkernel and use the last one if there are more */ | |
1352 | p = strstr(p, "crashkernel="); | |
1353 | while (p) { | |
1354 | ck_cmdline = p; | |
1355 | p = strstr(p+1, "crashkernel="); | |
1356 | } | |
1357 | ||
1358 | if (!ck_cmdline) | |
1359 | return -EINVAL; | |
1360 | ||
1361 | ck_cmdline += 12; /* strlen("crashkernel=") */ | |
1362 | ||
1363 | /* | |
1364 | * if the commandline contains a ':', then that's the extended | |
1365 | * syntax -- if not, it must be the classic syntax | |
1366 | */ | |
1367 | first_colon = strchr(ck_cmdline, ':'); | |
1368 | first_space = strchr(ck_cmdline, ' '); | |
1369 | if (first_colon && (!first_space || first_colon < first_space)) | |
1370 | return parse_crashkernel_mem(ck_cmdline, system_ram, | |
1371 | crash_size, crash_base); | |
1372 | else | |
1373 | return parse_crashkernel_simple(ck_cmdline, crash_size, | |
1374 | crash_base); | |
1375 | ||
1376 | return 0; | |
1377 | } | |
1378 | ||
1379 | ||
1380 | ||
fd59d231 KO |
1381 | void crash_save_vmcoreinfo(void) |
1382 | { | |
1383 | u32 *buf; | |
1384 | ||
1385 | if (!vmcoreinfo_size) | |
1386 | return; | |
1387 | ||
d768281e | 1388 | vmcoreinfo_append_str("CRASHTIME=%ld", get_seconds()); |
fd59d231 KO |
1389 | |
1390 | buf = (u32 *)vmcoreinfo_note; | |
1391 | ||
1392 | buf = append_elf_note(buf, VMCOREINFO_NOTE_NAME, 0, vmcoreinfo_data, | |
1393 | vmcoreinfo_size); | |
1394 | ||
1395 | final_note(buf); | |
1396 | } | |
1397 | ||
1398 | void vmcoreinfo_append_str(const char *fmt, ...) | |
1399 | { | |
1400 | va_list args; | |
1401 | char buf[0x50]; | |
1402 | int r; | |
1403 | ||
1404 | va_start(args, fmt); | |
1405 | r = vsnprintf(buf, sizeof(buf), fmt, args); | |
1406 | va_end(args); | |
1407 | ||
1408 | if (r + vmcoreinfo_size > vmcoreinfo_max_size) | |
1409 | r = vmcoreinfo_max_size - vmcoreinfo_size; | |
1410 | ||
1411 | memcpy(&vmcoreinfo_data[vmcoreinfo_size], buf, r); | |
1412 | ||
1413 | vmcoreinfo_size += r; | |
1414 | } | |
1415 | ||
1416 | /* | |
1417 | * provide an empty default implementation here -- architecture | |
1418 | * code may override this | |
1419 | */ | |
1420 | void __attribute__ ((weak)) arch_crash_save_vmcoreinfo(void) | |
1421 | {} | |
1422 | ||
1423 | unsigned long __attribute__ ((weak)) paddr_vmcoreinfo_note(void) | |
1424 | { | |
1425 | return __pa((unsigned long)(char *)&vmcoreinfo_note); | |
1426 | } | |
1427 | ||
1428 | static int __init crash_save_vmcoreinfo_init(void) | |
1429 | { | |
bba1f603 KO |
1430 | VMCOREINFO_OSRELEASE(init_uts_ns.name.release); |
1431 | VMCOREINFO_PAGESIZE(PAGE_SIZE); | |
fd59d231 | 1432 | |
bcbba6c1 KO |
1433 | VMCOREINFO_SYMBOL(init_uts_ns); |
1434 | VMCOREINFO_SYMBOL(node_online_map); | |
1435 | VMCOREINFO_SYMBOL(swapper_pg_dir); | |
1436 | VMCOREINFO_SYMBOL(_stext); | |
acd99dbf | 1437 | VMCOREINFO_SYMBOL(vmlist); |
fd59d231 KO |
1438 | |
1439 | #ifndef CONFIG_NEED_MULTIPLE_NODES | |
bcbba6c1 KO |
1440 | VMCOREINFO_SYMBOL(mem_map); |
1441 | VMCOREINFO_SYMBOL(contig_page_data); | |
fd59d231 KO |
1442 | #endif |
1443 | #ifdef CONFIG_SPARSEMEM | |
bcbba6c1 KO |
1444 | VMCOREINFO_SYMBOL(mem_section); |
1445 | VMCOREINFO_LENGTH(mem_section, NR_SECTION_ROOTS); | |
c76f860c | 1446 | VMCOREINFO_STRUCT_SIZE(mem_section); |
bcbba6c1 | 1447 | VMCOREINFO_OFFSET(mem_section, section_mem_map); |
fd59d231 | 1448 | #endif |
c76f860c KO |
1449 | VMCOREINFO_STRUCT_SIZE(page); |
1450 | VMCOREINFO_STRUCT_SIZE(pglist_data); | |
1451 | VMCOREINFO_STRUCT_SIZE(zone); | |
1452 | VMCOREINFO_STRUCT_SIZE(free_area); | |
1453 | VMCOREINFO_STRUCT_SIZE(list_head); | |
1454 | VMCOREINFO_SIZE(nodemask_t); | |
bcbba6c1 KO |
1455 | VMCOREINFO_OFFSET(page, flags); |
1456 | VMCOREINFO_OFFSET(page, _count); | |
1457 | VMCOREINFO_OFFSET(page, mapping); | |
1458 | VMCOREINFO_OFFSET(page, lru); | |
1459 | VMCOREINFO_OFFSET(pglist_data, node_zones); | |
1460 | VMCOREINFO_OFFSET(pglist_data, nr_zones); | |
fd59d231 | 1461 | #ifdef CONFIG_FLAT_NODE_MEM_MAP |
bcbba6c1 | 1462 | VMCOREINFO_OFFSET(pglist_data, node_mem_map); |
fd59d231 | 1463 | #endif |
bcbba6c1 KO |
1464 | VMCOREINFO_OFFSET(pglist_data, node_start_pfn); |
1465 | VMCOREINFO_OFFSET(pglist_data, node_spanned_pages); | |
1466 | VMCOREINFO_OFFSET(pglist_data, node_id); | |
1467 | VMCOREINFO_OFFSET(zone, free_area); | |
1468 | VMCOREINFO_OFFSET(zone, vm_stat); | |
1469 | VMCOREINFO_OFFSET(zone, spanned_pages); | |
1470 | VMCOREINFO_OFFSET(free_area, free_list); | |
1471 | VMCOREINFO_OFFSET(list_head, next); | |
1472 | VMCOREINFO_OFFSET(list_head, prev); | |
acd99dbf | 1473 | VMCOREINFO_OFFSET(vm_struct, addr); |
bcbba6c1 | 1474 | VMCOREINFO_LENGTH(zone.free_area, MAX_ORDER); |
04d491ab | 1475 | log_buf_kexec_setup(); |
83a08e7c | 1476 | VMCOREINFO_LENGTH(free_area.free_list, MIGRATE_TYPES); |
bcbba6c1 | 1477 | VMCOREINFO_NUMBER(NR_FREE_PAGES); |
122c7a59 KO |
1478 | VMCOREINFO_NUMBER(PG_lru); |
1479 | VMCOREINFO_NUMBER(PG_private); | |
1480 | VMCOREINFO_NUMBER(PG_swapcache); | |
fd59d231 KO |
1481 | |
1482 | arch_crash_save_vmcoreinfo(); | |
1483 | ||
1484 | return 0; | |
1485 | } | |
1486 | ||
1487 | module_init(crash_save_vmcoreinfo_init) | |
3ab83521 | 1488 | |
7ade3fcc YH |
1489 | /* |
1490 | * Move into place and start executing a preloaded standalone | |
1491 | * executable. If nothing was preloaded return an error. | |
3ab83521 YH |
1492 | */ |
1493 | int kernel_kexec(void) | |
1494 | { | |
1495 | int error = 0; | |
1496 | ||
8c5a1cf0 | 1497 | if (!mutex_trylock(&kexec_mutex)) |
3ab83521 YH |
1498 | return -EBUSY; |
1499 | if (!kexec_image) { | |
1500 | error = -EINVAL; | |
1501 | goto Unlock; | |
1502 | } | |
1503 | ||
3ab83521 | 1504 | #ifdef CONFIG_KEXEC_JUMP |
7ade3fcc | 1505 | if (kexec_image->preserve_context) { |
89081d17 YH |
1506 | mutex_lock(&pm_mutex); |
1507 | pm_prepare_console(); | |
1508 | error = freeze_processes(); | |
1509 | if (error) { | |
1510 | error = -EBUSY; | |
1511 | goto Restore_console; | |
1512 | } | |
1513 | suspend_console(); | |
d1616302 | 1514 | error = dpm_suspend_start(PMSG_FREEZE); |
89081d17 YH |
1515 | if (error) |
1516 | goto Resume_console; | |
d1616302 AS |
1517 | /* At this point, dpm_suspend_start() has been called, |
1518 | * but *not* dpm_suspend_noirq(). We *must* call | |
1519 | * dpm_suspend_noirq() now. Otherwise, drivers for | |
89081d17 YH |
1520 | * some devices (e.g. interrupt controllers) become |
1521 | * desynchronized with the actual state of the | |
1522 | * hardware at resume time, and evil weirdness ensues. | |
1523 | */ | |
d1616302 | 1524 | error = dpm_suspend_noirq(PMSG_FREEZE); |
89081d17 | 1525 | if (error) |
749b0afc RW |
1526 | goto Resume_devices; |
1527 | error = disable_nonboot_cpus(); | |
1528 | if (error) | |
1529 | goto Enable_cpus; | |
2ed8d2b3 | 1530 | local_irq_disable(); |
770824bd RW |
1531 | /* Suspend system devices */ |
1532 | error = sysdev_suspend(PMSG_FREEZE); | |
1533 | if (error) | |
749b0afc | 1534 | goto Enable_irqs; |
7ade3fcc | 1535 | } else |
3ab83521 | 1536 | #endif |
7ade3fcc | 1537 | { |
ca195b7f | 1538 | kernel_restart_prepare(NULL); |
3ab83521 YH |
1539 | printk(KERN_EMERG "Starting new kernel\n"); |
1540 | machine_shutdown(); | |
1541 | } | |
1542 | ||
1543 | machine_kexec(kexec_image); | |
1544 | ||
3ab83521 | 1545 | #ifdef CONFIG_KEXEC_JUMP |
7ade3fcc | 1546 | if (kexec_image->preserve_context) { |
770824bd | 1547 | sysdev_resume(); |
749b0afc | 1548 | Enable_irqs: |
3ab83521 | 1549 | local_irq_enable(); |
749b0afc | 1550 | Enable_cpus: |
89081d17 | 1551 | enable_nonboot_cpus(); |
d1616302 | 1552 | dpm_resume_noirq(PMSG_RESTORE); |
89081d17 | 1553 | Resume_devices: |
d1616302 | 1554 | dpm_resume_end(PMSG_RESTORE); |
89081d17 YH |
1555 | Resume_console: |
1556 | resume_console(); | |
1557 | thaw_processes(); | |
1558 | Restore_console: | |
1559 | pm_restore_console(); | |
1560 | mutex_unlock(&pm_mutex); | |
3ab83521 | 1561 | } |
7ade3fcc | 1562 | #endif |
3ab83521 YH |
1563 | |
1564 | Unlock: | |
8c5a1cf0 | 1565 | mutex_unlock(&kexec_mutex); |
3ab83521 YH |
1566 | return error; |
1567 | } |